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ABSTRACT 
 

The aim of this project is design and analysis of the new fuel injection system in 

the intake manifold of the 2.0 Liter TDI Common Rail BIN5 ULEV Engine. This research is 

part of a long-term research study carried out by Dra. Carrie Hall and the Advanced 

Engine Control Laboratory research team of Illinois Institute of Technology, in which 

‘’Nonlinear Model-based Control Strategies for Advanced Fuel-Flexible Multi Cylinder 

Engines’’ is studied.  

In this paper the research work is summarized and explained. The first part of 

the paper includes the theoretical framework in order to understand the current 

situation of the elements and resources used in this study. This section contains a 

description of the engine used to carry out the long-term research, the air manifold of 

the engine explained in more detail, the chosen fuel injectors and the basics to 

understand the fluid simulation software used in the research. 

Then the procedure followed for analyzing and designing the new system is 

detailly explained. In this practical approach, first, the fluid analysis using a CFD 

simulation software for the actual manifold is carried out and explained in the report. 

Then, the new design with fuel injector is analyzed. Finally, the conclusions of the 

research and the guidelines for the future work are set up.  
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CHAPTER 
 

1. INTRODUCTION 
 

This report contains and summarizes the research done for the design and 

analysis of new fuel injection system in the intake manifold of the IIT’s Advanced Engine 

Control Laboratory test engine. The 2.0 Liter TDI Common Rail BIN5 ULEV Engine is the 

actual engine used by Dra. Carrie Hall’s research team. 

The purpose of this paper is to set up the bases of the preliminary design and 

analysis of the new fuel ports in the intake manifold and help future work that will be 

carried out by Engine Laboratory team. In particular, this report explains the procedure 

of computational fluid analysis of the actual manifold and the design for a new fuel 

system.  

This research work is part of the research project on the ‘’Nonlinear Model-based 

Control Strategies for Advanced Fuel-Flexible Multi Cylinder Engines’’ [1]. The long-term 

objective is to reduce the use of fossil fuel in transportation sector and to lower the 

pollutant emissions levels. In the pursuit of this goal, the research team investigates the 

dynamics of advanced combustion model in order to increase the efficiency of dual-fuel 

diesel engines and creates model-based control techniques that could be applied into 

this nonlinear and complex system.  

Advanced combustion strategies can ensure a higher engine efficiency and lower 

exhaust emissions, comparing with conventional CI1 combustion. Among these 

advanced solutions, Reactivity Controlled Compression Ignition (RCCI) achieves these 

objectives by using two fuels with different reactivity to increase combustion delays 

periods and promote premixing. RCCI uses port-injected gasoline fuel as low reactivity 

fuel and directed injected high reactivity diesel fuel. 

The dynamics of this advanced combustion mode are not completely 

understood, in particular in multi-cylinder engines with alternative fuels. The main 

challenge in this research is analyzing the nonlinear dynamics, modeling the 

representative parameters and controlling these complex systems.  

 

 

 

 

1 CI: compression ignition engines. 
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2. SCOPE 
 

The scope of the research is the design, analysis and implementation of the low 

reactivity fuel injection system into the manifold of the actual diesel engine. In order to 

evaluate the efficiency of the actual and future system, a CFD1 analysis using ANSYS® 

Fluent2 of the manifold model is carried out. 

The figure 1 shows the stages of the current work in this area: 

 

Figure 1. Research current state. 

In this paper, the work done up to the current state of the research is explained 

in detail. As the bases are set up, the future work and research in this area are also 

explained. As the long-term goal of the advanced combustion research project, the final 

conclusions of the analysis of the new port system would be able to ensure the following 

statements: 

• Extract and model the key parameters of the air and fuel intake new system. 

• Incorporate in MoTec3 the tracking of these parameters. 

• Incorporate the new manifold in the overall performance of the dual-fuel 

advanced combustion diesel engine.  

 

 

1 Computational Fluid Dynamics: branch of fluid mechanics that uses numerical analysis and data 

structures to solve and analyze problems that involves fluid flows. 

2 ANSYS® Fluent: advanced CFD simulation software. The software used in the analysis of the manifold. 

3 MoTec: engine management and data acquisition system. The control software installed and used in the 

Advanced Engine Control Laboratory.
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3. BENEFITS OF THE PROJECT 
 

3.1. Technical and Economic Benefits 

The research project benefits are potentially increase the efficiency of fuel-

flexible diesel engine by up to 20% and reduce considerably the harmful pollutant 

emissions of the engine. Once when the complex control for the advanced combustion 

system is understood, the RCCI strategy would be fully develop and implement in actual 

automobile models, with the principal aim of reducing the massive fossil fuel use in the 

vehicles along the world.  

RCCI operates in conditions where optimal premixed combustion eliminates the 

fuel rich area where PM1 is formed. Thus, local temperatures decrease, and NOx
2 

emission reduce.  

A huge world of applications not only for automobile engines, but also for 

industrial heavy diesel engines will be displayed with the optimal development of the 

RCCI combustion strategy along with the use of alternative fuels.  

In particular, the design of the new low reactivity fuel injection in the air intake 

manifold not only implies the design and fluid analysis of the system, but also implies 

the implementation of the new approach in the overall engine performance. Therefore, 

the incorporation of the optimal system would ensure the appropriate conditions for 

the premixed air and fuel combustion, which is one of the key factors of the RCCI 

performance.  

The use of alternative fuels, particularly in the new manifold is one of the more 

challenging parts of the research, but once it is achieved, would enhance the use of new 

ways of fueling the engines. Thus, the use of fossil in automobiles would be drastically 

reduced, which is one of the main goals of the long-term research project. 

 

 

 

 

 

1 PM: particulate matter or particulate pollution, is the term for a mixture of solid particles and liquid 

droplets found in the air. Once of the emissions formed in the combustion process of the engine. 

2 NOx: nitrogen oxides gases produced from the reaction among nitrogen and oxygen during combustion 

of fuels, at high temperatures, such as occur in CI engines. Contribute to the formation of smog and acid 

rain are the main emission problem for actual vehicles.
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4. ANALYSIS OF ALTERNATIVES 
 

In this section, different alternatives to carry out the analysis and design of the 

new fuel injection system in the intake manifold are introduced. Analysis of alternatives 

is one of the essential stages in the design process, because it helps to decide what 

would be the most appropriate path to follow in order to solve the problem.  

There will be stated and briefly explained the different alternatives that would 

be carried out: 

1. CFD analysis using another software: there could be found several computation 

fluid dynamics software, which could be academic or commercial. Actually, 

Vicente Chapa, a partner of the Engine Lab, has analyzed this case using 

Autodesk® CFD software, for which a student version is available. The problem 

is solved, and the results shown very similar behavior of the fluids inside the 

manifold, which indicated that the solution looks correct. The difference 

between ANSYS® Fluent and Autodesk® CFD is the accuracy of the results. Fluent 

provides more precise and accurate results and Autodesk® has the advantage of 

computational ‘lightweight’. For instance, problem processing in Fluent takes 

around 1 hour and solutions in Autodesk around 15 minutes.  

 

Figure 2. Autodesk® CFD Results. 

2. Experimental analysis: another alternative is to analyze experimentally the 

behavior of the actual manifold. This implies the tracking of different parameter 

during the performance of the engine. This tracking is possible because MoTec, 

the control software, can gather the data form the engine performance. Besides, 

the signals could be measure using traditional methods, which could be using an 

oscilloscope. This alternative is undoubtedly very accurate in the analysis of the 

actual design of the manifold, but it is not very appropriate for the design of the 

new manifold, because the new system need to be set up without the security 

of a proper performance with other engine parts. 
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Figure 3. MoTec user interface example. 

More than explained approaches could be carried out. Finally, all the alternatives 

being considered, the analysis was decided to be carried out using ANSYS® Fluent. The 

reasons of the decision are stated below: 

• Software availability: a complete version of the software was available, 

without any node or iteration restrictions. 

• ANSYS® Fluent reputation: this software is used by several engineering 

firms, and it has been improved during the years and now it is a very 

powerful CFD software. 

• ANSYS® Fluent learning material: there is a huge amount of information 

on the Internet with useful tips about the software. The preparation to 

carry out a successful analysis is done using video tutorials and more 

material online.  

 



9 

5. THEORETICAL FRAMEWORK 
 

This section is essential to understand the context where the main analysis would 

be carried out. The idea is to show and explain the systems and elements used in the 

research, which are the theorical support followed to successfully complete the design 

and analysis of the new manifold. 

 

5.1. RCCI advanced combustion strategy 

Reactivity Controlled Compression Ignition (RCCI) uses two fuels with different 

reactivity to increase combustion delays periods and promote premixing. RCCI uses 

port-injected gasoline fuel as low reactivity fuel and directed injected high reactivity 

diesel fuel. This advanced combustion model ensures a higher engine efficiency and 

lower exhaust emissions. 

 

Figure 4. RCCI Engine System 

The implementation of a control model for this complex system is what the long-

term research project is pursuing. The Advanced Engine Control Laboratory is working 

to achieve this overall objective. The detailed explanation for this combustion model is 

not in the scope of this research, but a basic knowledge of its performance is needed.  

 

5.2. Advanced Engine Control Laboratory 

The research team supervised by Dra. Carrie Hall is formed by undergraduate, 

graduate and PhD students from Armour College of Engineering of Illinois Institute of 

Technology. All of them contribute with their work to advance in the knowledge of the 

new combustion strategy and perform their work in the Advanced Engine Control 

Laboratory.  
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This laboratory consists in two rooms where the resources for the research are 

available. The first room is where the test engine is located, and the second room 

contains the computer equipment to control the engine performance. The software 

used to control the performance of the engine is MoTec.  

Figure 5. Advanced Engine Control Laboratory. 

 

5.3. 2.0 Liter TDI Common Rail BIN5 ULEV Engine 

The 2.0 Liter TDI Common Rail BIN5 ULEV Diesel Engine [2] is tested in the Engine 

Laboratory. This engine was part of 2013 Volkswagen Jetta TDI. This engine has been 

mounted, prepared and tested by research people over the time when long-term study 

has been carried out.  

The technical characteristics of this engine 

• Common rail injection system with piezo fuel injectors. 

• Diesel particulate filter with upstream oxidation catalyst. 

• Intake manifold with flap valve control 

• Electric exhaust gas return valve. 

• Adjustable exhaust gas turbocharger with displacement feedback. 

• Low and high-pressure Exhaust Gas Recirculation (EGR) system. 

Technical data is summarized in the table 1: 

 

Table 1. Engine Technical Data. 

Design 4-Cylinder In-Line Engine

Displacement 1968 cm3

Bore 81 mm

Stroke 95.5 mm

Valves per Cylinder 4

Compression Ratio 16.5:1

Maximum Output 140 HP (103 kW) at 4000 rpm

Maximum Torque 320 Nm at 1750 rpm up to 2500 rpm

Engine Management Bosch EDC 17 

Fuel ULSD/ASTM D975-06b 2_D_S<15 

High and Low Pressure EGR, 

Oxidation Catalytic Converter,

Diesel Particulate Filter,

NOx Storgafe Catalytic Converter

Exhaust Gas Treatment
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Pursuing the objective of completely understand the RCCI combustion strategy, 

the engine has been modified to adapt the components and to track and control the 

engine behavior and characteristics. The engine is shown in the next images. 

Figure 6. Test Engine. 

 

5.4. Intake Manifold 

The main function of the intake manifold of a diesel engine is to supply air to 

each intake port in the cylinder head. In order to ensure the correct distribution of the 

air a partial vacuum exist in the manifold. The intake manifold of the engine is 

manufactured of aluminum.  

The intake system used by 2.0 Liter TDI engine is shown in the figure 7: 

 

Figure 7. Intake system of 2.0 Liter TDI Engine. 

This figure illustrates the variable flap system of the intake manifold. The Intake 

Flap Motor V157 controls the positioning of the flaps and adjusts the intake air based 

on the engine speed and load.  

At low speed the flap valves are closed, thus the formation of the mixture is 

enhanced. The flap valves are adjusted depending on the engine speed and load. When 

almost 3000 rpm is reached, the flap valves are completely open. The system ensures 

an optimal performance for the intake system.  
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 Figure 8 shows the location of the intake manifold in the lab engine, and the 

actual manifold used for modeling the geometry for the analysis: 

 

Figure 8. Actual intake manifold and intake manifold model. 

 

5.5. Exhaust gas turbocharger 

Another important component which directly influences the intake manifold 

pressure is the turbocharger. The turbocharger increases the efficiency and power 

output by recovering the remain energy of exhaust gases and feeding it back into the 

intake system.  

 

Figure 9. Sketch of turbocharger system of the TDI engine. 

The engine boost pressure control is the system responsible for the management 

of the volume of air that is compressed by the turbocharger. The increase of air mass 

ensures all fuel is burned before the exhaust stroke. Thus, temperature and pressure 

increase, and this results in a higher efficiency for the engine.  

The pressure increase caused by the turbocharger performance, as well as the 

one caused by the Exhaust Gas Recirculation (EGR) system, is an important feature to 

consider in the analysis of the intake manifold, thus this varies the boundary conditions 

of the analysis. 
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5.6. Fuel injectors 

For the new fuel injection system implementation in the intake manifold, 4 

piezoelectric injectors will be set up. The piezoelectric injectors inject highly pressurized 

fuel, when voltage is applied across piezo crystal. This material generates an electrical 

charge once mechanical stress is applied. 

The injector model chosen for the study is ID1700X from Bosch Motorsports and 

Injector Dynamics. The technical features of the injector are summarized in table 2: 

 

Table 2. Fuel injector technical data. 

 

Figure 10. Fuel injector Dimensions. 

 

5.7. ANSYS® FLUENT 

ANSYS® Fluent 18.2 is the computational fluid dynamics simulation software 

used in the fluid analysis of this research. Among different options to carry out the 

analysis, the huge computational capability, result accuracy and industrial application of 

the software are the features that decided the use of ANSYS® Fluent in the study. 

 

Figure 11. ANSYS® Fluent Project Schematic Window. 

Nominal Flow Rate 1725 cc/min at 3 bar (43.5 psi)

Maximum Differential Fuel Pressure 7 bar (101.5 psi)

Fuel Compatibility Methanol/Ethanol/All Hydrocarbon Fuels

Prize $250
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As it is illustrated in figure 11, the software requires the completion of different 

modules before processing the physics problem. First, common modules used in 

different physics problems such as Geometry and Mesh need to be completed. Then, 

Setup holds the Fluent module for processing part of the problem. Finally, Solution and 

Results allow the postprocessing of the analysis. The setup of Fluent parameters will be 

explained in detail in the analysis section of the report. 
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6. METHODOLOGY 
 

In this section the design and analysis process are explained in detail. The fluid 

analysis of the intake manifold is carried out in two stages. In the first stage the actual 

manifold is analyzed, in which air the only fluid. The second stage incorporates the fuel 

injector inlets; thus, air and gasoline would be the flux analyzed. The results of each 

analysis are shown and discusses along with the analysis.  

 

6.1. First Stage: Fluid analysis of Intake Manifold 

The analysis was carried out to simulate and understand the fluid process in the 

intake manifold. The actual design for the manifold is evaluated. In the following section 

this process and the achieved results would be shown, and the order of the different 

phases of the process are set up in the same order as ANSYS® modules have been 

completed.  

 

6.1.1. Geometry 

The actual design of the intake manifold is imported into the Design Modeler of 

ANSYS®. This design was done by Riddish Parekh, a research student who worked in the 

Engine Laboratory. All the shapes and details of the manifold are modeled in the step 

file and exported them into the software CAD modeler.  

 

Figure 12. Geometry of the manifold. 

The geometry imported into Design Modeler only represents the cavity of the 

manifold, that is the geometry is designed without thickness. The reason is because the 

analysis becomes simpler in Fluent, and the importance of the walls is negligible.  
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6.1.2. Mesh Model 

The next step of the process is meshing the geometry. The mesh is an important 

step of the analysis because the success of the fluid analysis starts when the mesh is 

successfully exported to Fluent. Because of this, the mesh quality has to meet some 

requirements, so mesh elements have to be small enough to enable the analysis and 

achieve accurate results.  

The size function used in Meshing module is curvature. The curvature on faces 

and edges is examined and the mesh is computed by setting up the element size on 

these curvatures and in any case exceeding the maximum size or the curvature normal 

angle. In this analysis, these parameters are automatically calculated by the software. 

 

Figure 13. Mesh of the manifold. 

 

6.1.3. Fluent 

The module where solution is processed. The Fluent module is launched as a 

Double Precision Parallel solver, in order to achieve accurate results of the fluid analysis. 

Table 3 illustrates the solution set up: 

 

Table 3. Solution Set Up. 

In the analysis air is the unique fluid and the physical properties are shown 

below: 

 

Table 4. Air properties. 

Solver type Pressure-based

Solver time Steady

Energy equation Off

Gravity Off

Flux Laminar

Method Simple

Density 1.225 kg/m3

Viscosity 1.79E-05 kg/m·s
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Once the solution parameters and the fluid properties are established, the 

boundary conditions for this flow need to be set up.  

 

Figure 14. Inlets and outlets of the manifold 

As it shown in the figure above, the manifold is composed by one air inlet and 

eight outlets. The air outlets represent the runners of the intake manifold, which extend 

from the plenum of the intake manifold to the cylinders head intake ports. There are 

two runners for each cylinder, one is the swirl channel and the other the fill channel of 

the manifold, as it is explained in the theoretical framework’s intake manifold section. 

In order to represent different operating points of the engine, the pressure in the 

air inlet is changed, and 4 different analysis are carried out. With this different analysis 

the influence of the turbocharger and the exhaust gases recirculation systems is 

evaluated. These 4 different pressures are represented in Table 5: 

 

Table 5. Different pressure conditions. 

The difference between Gauge pressure and Absolute pressure is the first one 

uses the reference of atmospheric pressure, and the second one takes the perfect 

vacuum as its reference.  

The operating conditions in the plenum, the manifold cavity, is set up as 

atmospheric pressure. Then, the air inlet boundary conditions are set up as pressure 

inlet, and the pressure value is modified depending the case that is been analyzed. The 

outlets are established as pressure outlet, and the pressure is indicated as atmospheric 

pressure in all of the, despite the fact that the pressure in the outlets would be an output 

of the analysis, but a first approximation is needing to initialize the iteration process. 

Condition Gauge Pressure Absolute pressure

Atmospheric pressure 0 MPa 101325 MPa

1.5 Atmospheric Pressure 50662.5 MPa 151988 MPa

2 Atmospheric Pressure 101325 MPa 202650 MPa

3 Atmospheric Pressure 202650 MPa 303975 MPa
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Figure 15. Air inlet as pressure inlet. 

 

Figure 16. Outlets as pressure outlets. 

When the boundary conditions are set up, the problem can be initialized, and the 

processing part of the problem is set up in 100 iterations. The computational time to run 

the analysis is almost 10 minutes for each case.  

 

6.1.4. Results 

The postprocessing of the fluid analysis is done using CFD-Post module of 

ANSYS®. Among several possibilities that could be shown, since the postprocessing tool 

of the software provides the users with multiple options, in this research the following 

results for each case will be shown, which are: 

• Velocity streamlines. 

• Pressure values of the manifold plenum, inlets and outlets. 

Finally, the results would be commented and a conclusion for this analysis is 

presented in the report.
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Table 6. Results Stage 1. 

Vmax Comments

observed that

two central of

the cental outlets

do not have any 

streamline, so air 

is not going by

problems is 

fixed here, note 

that velocities

and pressures

are much more 

higher in this

the previous case, 

all runners 

contain fluid 

flux, and here the

velocities and 

pressure are also

all the runners 

are fulfilled, and  

the increase in

pressure and 

velocity is

significant.

3 x Atmospheric Pressure 680 m/s

In this last case

2 x Atmospheric Pressure 460 m/s

Similarly to

higher

1.5 x Atmospheric Pressure 330 m/s

The previous

case

Pressure

It can clearly

these runners

Case

Atmospheric Pressure

Velocity Streamlines

31 m/s
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6.1.5. Stage 1 Conclusions 

Once the results are evaluated, some conclusions for the first stage should be 

discussed. In this moment, the analytical and critical though of the engineer plays a 

fundamental role, because the results from a Finite Element Analysis need 

interpretation and evaluation.  

• Velocity streamlines: as it is clearly observed in the results table in the previous 

page, the higher the air inlet gauge pressure is, the better distribution happen 

for the velocity streamlines. In the first case, there are two central runners 

without any air flux. When the pressure is increased in the inlet, air flows along 

all the runners. Comparing with the engine performance, the higher engine 

speed, the higher intake pressure in the air inlet of the manifold, and the more 

air flux flows along the runners to the cylinders.  

• Maximum velocity value: focusing on the values taken from the postprocessing 

module, the values are extremely high. In the three last cases, the values are 

higher than the sound’s velocity, which is around 340 m/s. Thus, this values are 

illogical, however, the interpretation could be done as taking the velocity 

proportional to the pressure, that is the higher intake pressure, the higher the 

velocity of the flux inside the plenum, which is logical as part as Bernoulli’s 

equation says.  

• Wall pressure: all the cases deliver the same results, indicating that the 

maximum pressure of the plenum is achieved just in the air inlet pipe and in the 

back part of the plenum, just in front of the air exit from the inlet. 

The main purpose for this analysis was analyzing the flux inside an actual intake 

manifold, and it has been achieved. The actual conditions inside the manifold depend 

on several parameters, and it is very difficult to define in Fluent. This stage set the bases 

for the important analysis of the research, which it is explained in the next section.
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6.2. Second Stage: Fluid analysis of the New Intake Manifold 

Once the actual intake manifold is analyzed, the new design of the manifold has 

to be done. In this section, the new design is shown, and then the fluid analysis is 

explained in detail. The fluid analysis is carried out in different ways, in order to 

understand the flux behavior inside the plenum and the runners. These different case 

studies will be explained in the Fluent module section of this stage. The process will be 

tracked as in the precious stage, following the order of the ANSYS® modules.  

 

6.2.1. Geometry 

The new design of the manifold is the first step. 4 gasoline injectors need to be 

placed in the intake manifold. The locations of the injectors are decided along with 

Vicente Chapa, a research partner in the Engine Laboratory. After discussing the 

appropriate location of these fuel ports, the final place was set up in the horizontal 

upper plane of the manifold, just behind the runners. The best way to understand the 

new design is focusing on the figure 17: 

 

Figure 17. Geometry of the new manifold. 

The fuel ports are represented in green in the image above. The geometry of the 

injector is modeled only with a cylindrical port, which simplifies a lot the fuel flux across 

the injectors. The fuel ports are centered in the upper plane and are separated at equal 

distance between two consecutive ones.  

As in the previous case, the geometry imported into Design Modeler only 

represents the cavity of the manifold, since the analysis becomes simpler, and the 

importance of the walls is negligible.  
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6.2.2. Mesh Model 

This step of the process is set up automatically by Meshing module of ANSYS® 

and the properties of the mesh are explained in the Module 2 section of the first stage. 

The figure 18 shows the final shape of the mesh for the new design: 

 

Figure 18. Mesh of the new manifold. 

 

6.2.3. Fluent & Results 

Unlike the first stage of the methodology, in the following section there will be 

explained the fluent module and results together. That is because, different approaches 

are evaluated, in order to completely understand the characteristics of the flux in the 

manifold, and in order to easily associate each analysis and its corresponding results.  

 

Step 1: Unique fluid analysis 

When more than one fluid or fluid phases are introduced in Fluent, the resolution 

of the problem is much more complex. For this reason, the first step is carrying out an 

analysis using only one fluid in the manifold. Thus, in this step only air or gasoline, which 

will be in vapor and liquid phase, flows along the intake manifold.  

The gasoline used in the analysis is a common fuel employed in automobiles. The 

gasoline is n-octane, C8H18, analyzed in liquid and vapor phases. The physical properties 

for each fluid are shown in the table below: 

 

Table 7. Properties of the fluids. 

Fluid

Density 1.225 kg/m
3

4.84 kg/m
3

720 kg/m
3

Viscosity 1.79E-05 kg/m·s 6.75E-06 kg/m·s 5.40E-04 kg/m·s

Air C8H18 liquidC8H18 vapor
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Three analysis are carried out, each of then uses one of this fluid in the analysis: 

1. Air: similar to stage one, in this case there are 5 air inlets in the manifold. The 

actual one and the fuel ports as air inlets. 

2. C8H18 vapor: now the air inlet is set up as a wall, and the fuel is injected in vapor 

phase from the fuel ports.  

3. C8H18 liquid: here again the air inlet is a wall, and the liquid fuel is injected 

pressurized from the fuel ports.  

In the table below the solution set up is illustrated. As it is shown, the solver 

conditions are similar in all the case studies, except the flux condition. In the air analysis 

a laminar flux is set up, but when gasoline is analyzed, convergence problems appeared 

trying to solve a laminar flux, so a turbulent analysis was carried out. 

 

Table 8. Solution set up. 

The next step in the process is set up the boundary conditions: 

 

Figure 19. Inlets and outlets of the manifold. 

As it is illustrated in the image above, an air inlet, 4 fuel ports and eight outlets 

compose the manifold boundaries. As it is explained in the previous stage, there are two 

runners per cylinder, which are the swirl channel and the fill channel of the manifold. 

The differences among the three cases is in the air inlet, in the first analysis the inlet is 

set up as a pressure inlet, and the other two analysis the air inlet is set up as wall, 

because only the fuel ports are open in this simulations. 

Case Air C8H18 vapor C8H18 liquid

Solver type Pressure-based Pressure-based Pressure-based

Solver time Transient Transient Transient

Energy equation Off Off Off

Gravity Off Off Off

Flux Laminar Turbulent Turbulent

Method Simple Simple Simple
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The operating conditions in the plenum, the manifold cavity, is set up as 

atmospheric pressure. The following table summarized the boundary conditions for 

each case, and then each case conditions will be explained in order to clarify the 

decisions made. 

 

Table 9. Boundary conditions. 

1. Air: air inlet and fuel ports are set up with a gauge pressure of 101325 Pa, which 

means that the air and fuel is injected at the double of atmospheric pressure. 

2. C8H18 vapor: the vapor fuel is injected with 5 bar of total pressure, in order to 

represent a pressurized fuel injected by this injectors. 

3. C8H18 liquid: the liquid fuel is injected pressurized at 7 bar of total pressure, 

which is an actual high value taken from the characteristics of the injectors. 

 

Figure 20. Air inlet as pressure inlet. 

 

Figure 21. Fuel ports as pressure inlets. 

When the boundary conditions are set up, the problem can be initialized. Once 

the problem is initialized the processing part starts. At this point, some parameters have 

to be explained. 

Case Air C8H18 vapor C8H18 liquid

Air inlet Pressure Inlet Wall Wall

Air inlet Gauge pressure 101325 Pa None None

Fuel ports Pressure Inlet Pressure Inlet Pressure Inlet

Fuel ports Gauge Pressure 101325 Pa 398675 Pa 598675 Pa

Outlets Pressure Outlet Pressure Outlet Pressure Outlet
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• Time step: in unsteady flow calculations, time step is the incremental 

change in time for which the governing equations are being solved. It is a 

key parameter to achieve the convergence in the solution.  

• Time step size: the time for each time step.  

• Flow time: once the number of time steps multiply by the time step size, 

gives the time in which the flow is simulated. For example, with a time 

step size of 0.01 seconds and 100 time steps, the software would simulate 

a flow of 1 second.  

• Maximum iterations per time step: fluent is trying to achieve stability in 

the solution. If the boundary conditions are set up correctly, the 

convergence could be achieved with a small number of iterations in one 

time step, but many times, the software needs more iterations to achieve 

convergent solution.  

In all the cases, there was decided to simulate 0.1 seconds, because is enough to 

evaluate the flux within the plenum and the runners. Thus, 10 time steps were done 

with a size of 0.01 seconds. The maximum iterations per time steps were 50. 

At this point the problem is resolved and the postprocess of the problem has to 

be done. In the next page, the results for each case is shown. This figures illustrate the 

velocity streamlines for each flux.  
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Table 10. Results Stage 1 Step 1. 

Case All flows Air inlet Fuel port 1 Fuel port 2 Fuel port 3 Fuel port 4

Air

C8H18 vapor

C8H18 liquid
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Stage 2 Step 1 Conclusions 

The variety in the results need an interpretation, and in this chapter the results 

will be discusses. As each case is totally different from the others, an individual analysis 

is done. Finally, an overall conclusion will be stated for this case study. 

• Air: apparently the case with better results. In this case, the unique fluid is air, 

which makes the problem easier than the other ones. The air flow from the air 

inlet cause interaction among air particles inside the plenum. All the flux 

interacts among each other, and all the runners are filled, which represent an 

optimal performance of the manifold. Besides, it can be observed that the fuel 

port 4 fills all the runners. On the contrary, the first fuel injector only fills the 

most closer outlets. That is because of the design of the manifold, which its upper 

plane is not horizontal, it is inclined. Thus, the last two fuel ports achieve a better 

filling than the first two ones. 

• C8H18 vapor: results suggest a difficult interpretation. The air inlet is set up as 

wall, and the only flows come from the injectors. Three runners are empty, 

without gasoline flowing within then. Besides, each injection fills the closest 

runner, and the runner in the right. There is not almost any interaction between 

the injections flows. Finally, injection 4 only fills the runners in the right. The 

logical interpretation is as any air inlet provides the necessary air flow to cause 

interaction among fuel and air particles, the fuel behavior is not the proper one 

to perform an optimal filling of the cylinders.  

• C8H18 liquid: here the results clarify something logical. The density of the liquid 

fuel is too high to perform any movement within the plenum. Thus, the fuel 

directly falls over each runner above the injection. The preliminary aim was 

simulating the behavior of a pressurized fuel, but in this final case this is not 

achieved.  

To sum up, air injection is need in the manifold. If there is an air flow coming 

from the intake inlet, interaction among particles would be generated inside the 

manifold, and an optimal filling of the manifold would be achieved. 

As it is explained, the design of the manifold causes a different distribution of the 

fuel injection due to the fact that the upper plane of the plenum is inclined, and the 

injection occurs in different heights. This can be a design factor in future work, because 

an equal filling of the runner is needed in order to balance the fuel and air mixture flow 

distributed to each cylinder.  
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Step 2: Volume of Fluids 

Finally, the second step of the stage 2 is the more complex analysis carried out 

with ANSYS® Fluent. The introduction of two different fluids, in two different phases 

increase the complicity of the problem, due to the computational limitations and a 

precisely set up of boundaries.  

The way of simulating the flux of two different fluids in Fluent is using the VOF, 

(Volume of Fluids) multiphase model. The VOF model allow the simulation of two or 

more immiscible fluids. The software solves a single set of momentum equations, and 

then tracks the volume fraction of simulated fluids’ flows along the domain. 

Undoubtedly, it is a powerful tool to model fluids flows, but the model has some 

limitations, and the achieving a solution is a complex process., even more in a 3D design. 

For this analysis, the problem is solved using three different fluid or phases. Air, 

water and n-octane in vapor phase are taken from the Fluent database, and they have 

the following properties: 

 

Table 11. Properties of the fluids. 

Due to the computational limitations, two analysis are carried out. In both, it is 

tried to represent an actual performance of the manifold, thus practical boundary 

conditions are set up: 

1. Air-C8H18 vapor: the most representative and complex analysis. Two different 

gas fluid are analyzed, water and gasoline in vapor phase. As it is explained, 

injectors inject pressurized liquid gasoline. After trying to simulate this situation 

and getting errors in all the attempts, the solution taken was injecting 

pressurized vapor gasoline through the injectors. Here again, air enters from the 

air inlet and the gasoline is injected through the fuel ports.  

2. Air-H2O liquid: two phases of air and liquid water are simulated here. The water 

represents the behavior of liquid fuel flowing through the plenum and runners. 

In this case, air comes from the air inlet, and water is injected through the fuel 

ports.  

Then, the solution is set up. This part is become very important, because the VOF 

model posses some limitations, such as only accepts steady-state fluids in certain 

conditions, laminar calculations are also limited to particular problems or the set up of 

correct boundary conditions to ensure the convergence. Table 12 shows the solver 

conditions: 

Fluid

Density 1.225 kg/m
3

998.2 kg/m
3

4.84 kg/m
3

Viscosity 1.79E-05 kg/m·s 0.001003 kg/m·s 6.75E-06 kg/m·s

Air C8H18 vaporH2O liquid
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Table 12. Solution set up.  

The first case represents an actual situation within the plenum, thus turbulent 

transient flow is represented, and also energy equation is applied here. The second case 

is the simplest one, where laminar flow is analyzed. The solution process takes huge 

time to be processed, for that reason, the problem should be simplified in order to 

reduce the computational time.  

In order to get a stable solution, several attempts have been done. In the vast 

majority, convergence errors or computational limitations came across. It has been 

applied different changes in the boundary conditions and solver parameters, to achieve 

a successful results.  

 Boundary conditions are shown in the figure below: 

 

Figure 22. Inlets and outlets of the new manifold. 

As it is illustrated in the image above, an air inlet, 4 fuel ports and eight outlets 

compose the manifold boundaries. As it is explained in the previous stage, there are two 

runners per cylinder, which are the swirl channel and the fill channel of the manifold.  

The table below contains the boundary conditions for each case, which will be 

explained after that in detail to clarify the decisions taken:  

Case Air-C8H18 vapor Air-H20 liquid

Solver type Pressure-based Pressure-based

Solver time Transient Transient

Energy equation On Off

Gravity Off Off

Flux Turbulent Laminar

Method PISO SIMPLE
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Table 13. Boundary conditions. 

1. Air-C8H18 vapor: a trial to represent not only the most realistic operating 

conditions of the manifold, but also the most complex analysis for the software. 

Here, the plenum and outlets have been set up with vacuum pressure, in order 

to create depression inside the manifold and induce the flows through the 

plenum and the runners.  

The inlets have been set up as pressure inlets. Air is injected with 101325 

Pa higher than atmospheric pressure, and fuel is injected with 5 bar of total 

pressure, which means 398675 Pa of Gauge pressure. 

2. Air-H2O liquid: it was tried to represent actual conditions, which means setting 

up the inlets as pressure-inlet, since the fluids are injected due to the pressure 

applied. However, convergence errors such as floating-point exception or large 

Courant Number appeared, terms that will be explained later. 

In order to fix these problems, velocity-inlets have been set up. The 

velocity as it can be observed is very low, since the convergence problems still 

came across when a higher velocity magnitude was tried to establish. Manifold 

plenum and outlets are set up with atmospheric pressure. 

 

Figure 23. Air inlet as velocity inlet and pressure inlet. 

Case Air-H20 liquid Air-C8H18 vapor

Interior Pressure 101325 Pa 101325 Pa

Air inlet Velocity-inlet Pressure-inlet

Air inlet Gauge pressure 2 m/s 101325 Pa

Fuel ports Velocity-inlet Pressure-inlet

Fuel ports Gauge Pressure 1 m/s 398675

Outlets Pressure Outlet Pressure Outlet

Outlets Gauge Pressure 0 Pa -101325 Pa

Plenum absolute pressure 101325 Pa 0 Pa
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Figure 24. Fuel ports as velocity-inlets and pressure-inlets. 

Along with the convergence parameter explained in the previous step of the 

stage 2, here other terms should be discussed in order to understand the solution 

stability: 

• Courant Number: is a dimensionless number that compares the time step 

in the VOF calculation to the characteristic time of transit of a fluid 

element across a control volume. The default value is 2, and it could be 

reduced if more accurate results are needed. In some calculation, 

Courant Number starts increasing as time steps are completed, which 

means that the velocity field is increasing, so the problem could end up 

in an unstable solution. This number depends on the mesh element size, 

velocity magnitudes and the time step size. 

This number influence the solution convergence, and it is an 

indicator of a correct set up of the boundary conditions of the problem. 

The attempts focused on maintaining this number below 5, because of 

computational limitations.  

• Floating-point exception: this convergence error message appears when 

the iterations became unstable. The solution seems to solve correctly, but 

suddenly the iteration residuals start to increase uncontrollably. Figure 

25 shows the error details. Floating-point set up a boundary in processing 

capability, and it has been a setback to overcome during this second step.  

 

 

 

 

 

Figure 25. Floating-point exception and residuals. 
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In the first case, air and gasoline vapor, the flow simulation is 0.001 milliseconds, 

since only one time step of 1x10-7 second was simulated. This is because the 

convergence is very limited here, and if the number of iterations per time steps or the 

time step increase the solution is not stable. There is something to fix in future 

simulations. 

In the second case, air and liquid water, the flow simulation time is 1 second, 

which is established since the time step size is 0.001 seconds and there are simulated 

300 time steps in which 20 iterations are done in each one. Considering all these 

parameters, the solution time is around 12 hours, which is a huge simulation time.  

At this point, the problem is resolved and the postprocess of the problem has to 

be done. The results for both cases are shown separately. 

 

Air & C8H18 vapor Results 

Unfortunately, this case is not as well solved as the other cases. The reason are 

the convergence and computational limitations. In the set-up process of the boundaries 

and other conditions, a lot of errors appeared in the solving process, problems such as 

floating-point exception, computation limitation that enables the resolution of the case, 

and more.  

 In this section the results for this case are show. Since the flow has only been 

simulated 1x10-7 seconds, the results do not show the actual behavior of the fluid 

iteration. 

 

Figure 26. Results velocity streamlines. 

As it can be observed in the figure, the velocity is zero in all the streamlines 

drawn. The reason is the lack of flow simulation time, as it has been explained before.  
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Air & H2O liquid Results 

The results of this case study are very conclusive. It can be observed from them 

a clear behavior of the flows inside the manifold. The flow is simulated 0.3 seconds and 

it allows a complete visualization of new manifold design performance.  

 

Figure 27. Water volume fraction. 

Figure 27 shows a volume rendering for the water volume fraction. Here it can 

be clearly appreciated the behavior of the water particles inside the plenum. The liquid 

particles are too heavy to interact with the air particles, so they go straight to their 

respective runners. The interaction between the two fluids is negligible, which is not an 

appropriate result for the analysis. 

In the result table below, there are illustrated the velocity streamlines starting 

from the different inlets. 

 

Table 14. Velocity streamlines. 

  

All flows Air inlet Water port 1

Water port 2 Water port 3 Water port 4
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Focusing on these results, the air streamline is distributed among all the runners, 

which is an important result because the mixture air-gasoline would have to distribute 

properly among all the cylinder to ensure a successful combustion inside them. The 

distribution of the water among the fuel ports is clear. Almost all the water injected from 

them exit from their respective runners. In the second, third and fourth water ports, a 

small quantity of this water is distributed among other runners. This only occurs in these 

ports because there are located higher than the first port.  

 

Stage 2 Step 2 Conclusions 

Analyzing separately both cases of this step, some conclusions are drawn. Finally, 

an overall conclusion will be stated to clarify this case. 

• Air-C8H18 vapor: clearly this case has to be checked and redefined. The flow 

simulation time is not enough to observe the behavior of the fluids in the 

manifold. As the actual operating conditions have been represented in Fluent, 

the computation limitations and convergence play an important role in the 

analysis. When these error are fixed, the analysis will lead to successful results 

for the research. 

• Air-H2O liquid: once a huge analysis is run, which spend more than 12 hours 

processing, results shows a clear behavior of the fluids inside the manifold. It is 

illustrated in the results that air and water do not interact between them. This 

could be because of the boundary conditions. The inlets are set up as velocity 

inlets, which is not an actual characteristic of the manifold. This analysis was 

done in order to show the behavior of a liquid inside the manifold, and it can 

clearly conclude that the liquid need to be pressurized in order to ensure a 

proper interaction among air and liquid particles. 

To summarize, it is difficult to represent an actual situation inside the manifold. 

However, when this is achieved, the results will shed light and the research would a 

complete success.  
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7. CONCLUSIONS 
 

The particular results and conclusion for each analyzed cases have been 

explained during the methodology section of the report. In this section, overall 

conclusions for the research are discussed. 

First, a totally successful fluid analyzed of the actual manifold has been carried 

out. These results show the behavior and shape of the air flow along the manifold, which 

have set up the bases for the next more complex analysis. The second stage of the 

analysis has been undoubtedly more complicated. Several analysis were carried out, 

where a lot of them were unsuccessful, and finally two cases are shown in the report, 

which set up the bases for the future work.  

Once all the cases are analyzed, there is a clear conclusion which may solve the 

flow problems in the manifold: 

• The upper inclined plane of the manifold need to be flat: as it is observed 

in more than one case, the injectors position in the upper plane is not at 

the same level. Because of that, the fuel injected in each injection has 

different behavior. The right fuel ports achieved a better filling, because 

there are located higher than the other ones. One of the solution that 

might be taken is design a horizontal upper plane in the manifold, which 

would distribute equally the fuel flows within the cavity of the manifold. 

Apart from the empirical results and conclusions, there are more skills 

developed, among them the most important ones are summarized here: 

• Working in a research laboratory environment: the research group work 

together to achieve a common objective. All the members are involved 

not only in their particular duties, but also in the research success. Weekly 

the group meet and discuss about the work done during the week, and 

the next duties are established. 

• Actual engine and control equipment: although the research is done by 

computer software, the actual engine, control equipment and laboratory 

staff are used during the project. Apart from the current research, there 

are more duties that needed to be completed during the semester. These 

duties are common examples of actual work in any engineering company, 

which is really enriching for the engineer formation. 

• Dra. Carrie Hall help and supervise: the research is supervised by an 

expert in this field of the engineering. The help and support during the 

semester has been essential to complete the research. Supervised project 

is another work environment characteristic which will be applied in the 

future career of the engineer.  
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8. FUTURE WORK 
 

In this last section, it will be presented the future work that could complete this 

research project. The design process is a continuous iterative process, where new 

improvements can be applied in order to achieve optimal results. There are summarized 

the most important next step that could be done to achieve this optimal results: 

• Achieve a successful analysis using liquid gasoline: as it is explained in 

the methodology, the computational and convergence limited the 

solution for the air and liquid gasoline approach. The next step is trying 

to fix these problem and achieve more revealing results for this case.  

• New design analysis: a new design with the upper plane horizontal is the 

next step in the design process. A complete fluid analysis has to be carried 

out, in order to determine if the new design is viable. 

• Manufacturing the new design: once a revealing complete analysis is 

achieved, the next step will be manufacturing this new design and 

incorporate the injectors. There are many ways to do this, thus an 

alternative analysis has to be done to find the most cost-effective and 

useful solution. 

• Fluid reactivity: in the research the fuel reactivity has not been 

considered. In future analysis, since the fuel could react within some 

pressure and temperature conditions, critical operating conditions might 

be analyzed to ensure a correct behavior of the mixture during engine 

demanding performances. 

• Fuel injection timing: another important variable to introduce in the 

analysis is the fuel injection timing. The fuel injector has a particular 

shape of the injection timing, and there would be very helpful introducing 

this timing shapes in the fluid analysis. 

• Incorporate the new injection system to the engine: a long-term 

objective is installing the new injection system in the test engine. For that, 

several modifications and new fuel system has to be placed in the engine. 

It is an ambitious long-term project.  

• Implement the changes into MoTec and track the results: once the new 

injection is installed in the engine, the next step would be tracking and 

gathering the variables involves in the process.  
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