
  



 

 

ABSTRACT 
 

 

In the last decade, computer vision and image processing technologies have been a central 

point for researchers due to their applications in multiple fields. In particular, microscope 

image processing is extremely relevant in fields such as medicine, biological research and 

metallurgy. This document describes in detail the series of methods and algorithms we 

have used for building a single-camera 3D microscope scanner system, which generates 2D 

and 3D composite very large resolution images of the scanned objects.  
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1. INTRODUCTION 
 

 

The use of digital image processing techniques on images obtained from microscopes 

dates back a half century, when some of the techniques first developed for television were 

explored to process and analyze microscope images. Today, modern computing platforms 

and their increased processing power, speed and memory allow for a wider and more 

complex range of applications in fields such as medicine, biology or metallurgy. 

This project applies microscope image processing to build a single-camera 3D microscope 

scanner. The system will scan the surface of an object by sliding a digital microscope 

camera over a given area at quantized steps, taking a picture of the surface at each step. 

Then, a software will process these pictures to combine them into a single very large 

resolution image that features the whole scanned area by applying image stitching 

techniques. Finally, the software will apply 3D reconstruction techniques to generate a 

depth map and a point cloud of the scanned surface, extracting depth information from 

the overlapping areas between images taken by the sliding camera. 

The purpose of these composite very large resolution images is to provide the user a single 

picture with all the information of the scanned surface, so that the global context can be 

easily perceived, and the user can jump between local areas without having to deal with 

multiple images. Both the final stitched image and the depth map information can be input 

to posterior image processing algorithms to perform operations such as classifying, 

counting or measuring. 

In this chapter, we will introduce some of the fundamentals on which the project is 

sustained. These include some concepts related to image acquisition such as microscopes 

and charge-coupled devices (CCDs), previous research on image stitching applied to 

microscope images, and epipolar geometry for 3D reconstruction. 

 

1.1.  Microscope Camera and CCDs 

Images are captured using a very simple digital microscope camera. This camera is 

composed by a small magnifying lens that directs the light towards a charge-coupled 

device (CCD). These devices feature a grid of cells that get charged by incoming photons 

during a charging phase. Then the stored value gets shifted vertically one by one towards a 

horizontal register, and then horizontally towards the output, generating an output signal 

that represents how intense the light was during the charging phase for each cell. That is, 

the output signal holds the intensity value for each pixel in an image. 

The distance from the microscope lens to the object is adjustable, allowing for different 

zooms. However, the camera we used in this project does not include adjustable focusing, 

so it only produces focused images when the object is at two certain distances from the 

lens, which in effect only allows for 20X and 800X zoom. 
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1.2.  Previous Research 

This project takes from some of the ideas presented in [1]. In that paper, the authors 

describe a method for image stitching based on mosaic tiles. Starting from the center, 

images are stitched together by sliding new images over previously stitched images until a 

best match is found. The best match is determined by computing the normalized cross 

correlation coefficient, defined in equation (1):  

 

𝑐𝑟𝑜𝑠𝑠 − 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ ∑ (𝑤(𝑥, 𝑦) − 𝑤̅) (𝑓(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑓(̅𝑖, 𝑗))𝐾−1

𝑦=0
𝐿−1
𝑥=0

√∑ ∑ (𝑤(𝑥, 𝑦) − 𝑤̅)2𝐾−1
𝑦=0

𝐿−1
𝑥=0

√∑ ∑ (𝑓(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑓(̅𝑖, 𝑗))
2

𝐾−1
𝑦=0

𝐿−1
𝑥=0

       (1) 

 

The stitching order goes from the center to the edges in a spiral pattern, assuring that the 

information from the center of the scanned area gets stitched first. This order was decided 

because of the nature of the samples that were being scanned, which generally only 

occupied the center of the scanned area. Border images represented featureless, flat areas 

that are harder to stitch because of the lack of references. The maximum cross-correlation 

coefficient for these kinds of images will be lower than for images with multiple and/or 

strong features. The authors assume that any coefficient value below 0.7 represents an 

incorrect match, and thus leave a ‘hole’ in the composite image when a value above 0.7 

cannot be found. Later, they perform a second pass where they try to fill these holes by 

sliding the missing images again when more images have been stitched. 

The blending method that is used in our project is also inspired in the one used in [1]. 

There, the authors use a gradient blending method that computes the intensity values of 

the overlapping areas of the new composite image as a weighted sum of the pixels from 

the previous composite image and the pixels from the new image that is being stitched. 

The weighting (α) for the new image is calculated as a distance from the image edge, going 

from 0 to 1 as the distance increases. The weighting for the previous composite image will 

be the opposite of that of the new image (i.e. α-1). 

It is also worth mentioning that during the first attempts to assemble an image stitching 

software OpenCV’s stitcher class [2] was tried. This class implements a complex pipeline 

that is based on feature finding and matching. The problem with this approach is that while 

it is very well suited for images taken under different conditions (e.g. panoramic images 

taken manually with a regular camera or a smartphone with different camera poses), such 

a level of complexity is not required in our system, where images can be assumed to suffer 

from no rotation effects. This class was both slower and less accurate than the cross-

correlation approach, as it will later be shown in this report. 

 

1.3.  Epipolar Geometry 

Epipolar geometry describes the geometric relations between the 3D points of a scene and 

their projections onto the 2D images taken by a pair of cameras observing that scene. 

These relations allow us to extract depth information from a pair of stereo images, just like 

the human brain does with the information captured by the eyes. 
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Figure 1.1. Epipolar geometry 

 

The fundamental relations in epipolar geometry are illustrated in the figure above. A 2D 

point in the left view, XL, can be at any distance from the image plane, but we know it will 

be contained in the direction of the line that goes from the left camera optical center, OL, to 

the 2D point XL. If we project that line on to the right view that will give us a 2D line in the 

right image where the point XL from the left view must be contained. This is named an 

epipolar line, and it gives us all the possible locations of XL in the right view.  

We can notice that this epipolar line and the point XL form a plane that contains both 

cameras’ optical centers. This is called an epipolar plane, and it can be easily deduced that 

for any point in the left view its corresponding epipolar plane will contain both optical 

centers as well. That is, epipolar planes spin with the baseline (the line OL-OR that unites 

both optical centers) as its axis. This means that all epipolar lines, which must be contained 

within an epipolar plane, will pass through the common point that all epipolar planes share 

with the right view: the point where the baseline crosses the right image plane, eR.  

Therefore, all epipolar lines in the right view converge in eR. As such, if we want to find a 

point from the left view in the right view to determine the depth of the point, all we have to 

do is find the epipolar line in the right view corresponding to that point, knowing that the 

line converges in eR, and then perform a search along that line to find a best match with 

the left point.  

This process will be simpler in the case both the left view and the right view are contained 

within the same plane and the baseline is parallel to that plane (i.e., the focal distances for 

both cameras are the same). In this case, the baseline never crosses the image planes, and 

thus epipolar planes will converge in the infinite. As such, epipolar lines will be parallel, and 

the search can be performed in horizontal rows.  

Generally, stereo vision systems will be rectified so that this condition is satisfied in order 

to simplify the search. In our case, the view planes can be assumed to be perfectly 

contained in the same plane as we do not use a pair of cameras but a single camera that is 

slided along a plane, so there is no need to rectify the images. 
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2. PROJECT DESCRIPTION 
 

 

In this chapter we will describe in detail the different procedures and algorithms used in 

the project. First, we will introduce an overall description of the system, the different pieces 

of hardware that compose it and their interconnections, and how the software controls 

these. Then, we will explain the image acquisition procedure. We will continue detailing the 

image stitching algorithm, including the blending method that we used and some 

commentary on the observations that we made testing the algorithm on different kinds of 

surfaces. Finally, we will discuss the 3D reconstruction algorithm, and how it uses the 

information acquired during the stitching process. 

 

2.1.  System Description 

An illustration of the different components of the system can be found in the figure below. 

The central component is the computing platform, which runs the software that will send 

orders to the other components and will process the captured images. The software has 

been coded in Python and uses some functions from the OpenCV library. The computing 

platform is directly connected to the digital microscope camera and sends orders to the 

CNC machine that moves the camera through an Arduino board running GRBL, a 

controlling software for machine motion. The connection between the computing platform 

and the Arduino is serial, and messages are sent in G-Code, a language for numeric control 

commonly used in automation. 

 

 

Figure 2.1. System schematic 
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2.2.  Image Acquisition 

The image acquisition procedure is quite simple. The computing platform will send a 

command to the CNC machine through the Arduino controller to move in a certain 

direction for a given step size, and then it will capture and store an image from the 

microscope camera. The relative coordinates of the image of the captured image are saved 

as the filename of the image, which has the format “x-y-.png”. This process is repeated 

following a zig-zag pattern until the whole area, which size is input by the user, has been 

scanned. All images are saved in a folder named after the date and time when the scan was 

initiated. 

The value of the step size is extremely relevant for the correct performance of the later 

image stitching and 3D reconstruction steps. The step size will determine how big is the 

overlap between adjacent images, and a sufficient overlap is required for both of these 

steps. The 3D reconstruction step is the most critical, as we can only extract depth 

information from the overlapping areas between images. Then, if we want to combine or 

stitch that depth information together, a common overlap between the overlapping areas 

is also needed. A step size value that guarantees an overlap of about 2/3rds of the image’s 

width has been found to be enough for the processing algorithms. A smaller step-size will 

result in increased scanning and computation time, and will reduce the baseline length for 

3D reconstruction, which is not desired. 

Because of the limitations of the microscope camera regarding the zoom and focus we 

previously commented, it made no sense to implement an automated selection of the step 

size. However, for a microscope camera with multiple available zooms it would be optimal 

to automate the step size selection based on either known information about the zoom or 

after a template matching search to determine the current overlap between images. 

As a pre-processing step before following with image stitching, we will check the 

histograms of the acquired images to try to correct any image that is under or over 

exposed. 

 

 

 

Figure 2.2. Zig-zag scanning pattern 
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2.3.  Image Stitching 

The image stitching algorithm can be divided in two major steps: finding the new image 

position within the previous result and blending the new image with the previous result.  

We use a template matching approach to find the new image position that is very similar to 

the one used in [1]. The new image is slided over the previous image until a best match is 

found, where the best match is determined by the normalized cross-correlation coefficient. 

In our case, we use OpenCV’s template matching function [3], which implements equation 

(2): 

 

𝑅(𝑥, 𝑦) =
∑ (𝑇′(𝑥′, 𝑦′) · 𝐼′(𝑥 + 𝑥′, 𝑦 + 𝑦′))𝑥′,𝑦′

√∑ 𝑇′(𝑥′, 𝑦′)2
𝑥′,𝑦′ ·  ∑ 𝐼′(𝑥 + 𝑥′, 𝑦 + 𝑦′)2

𝑥′,𝑦′

       (2) 

where: 

𝑇′(𝑥′, 𝑦′) = 𝑇(𝑥′, 𝑦′) −
1

𝑤 · ℎ
· ∑ 𝑇(𝑥′′, 𝑦′′)

𝑥′′ ,𝑦′′
 

𝐼′(𝑥 + 𝑥′, 𝑦 + 𝑦′) = 𝐼(𝑥 + 𝑥′, 𝑦 + 𝑦′) −
1

𝑤 · ℎ
· ∑ 𝐼(𝑥 + 𝑥′′, 𝑦 + 𝑦′′)

𝑥′′ ,𝑦′′
 

 

This coefficient has a value that goes from 0 to 1, where 1 denotes a perfect match. The 

function returns a matrix with the coefficient values for each possible position of the 

template (i.e. the new image) over the previous image. The position of the new image will 

be determined from the location of the maximum value within said matrix. A colormap of a 

sample matrix returned by this function can be found in the figure below. 

 

Figure 2.3. Colormap of a matrix holding correlation coefficient values after template searching 
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This colormap shows a very distinct point where the coefficient has its maximum value. The 

colormap also shows that the image has some strong vertical and horizontal components, 

indicated by how the coefficient value decreases at a lower rate from the maximum to the 

edges in the direction of the vertical and horizontal axes. 

Images with weaker features, those of flat surfaces with less contrast, will result in a 

colormap with a maximum that is not as sharp, and with a value that is not as close to 1. If 

the image is extremely flat the template matching might provide an inaccurate match. This 

is generally not a relevant problem, since we rarely want to scan flat surfaces with no 

relevant information.  

A more relevant issue is associated with images with periodic patterns. These images will 

result in multiple peaks that are close in value to the maximum at the actual matching 

position, and in some cases they may even surpass that value, causing a matching error.  

In order to decrease computation time and increase the probability of an accurate match, a 

reduced search method has been developed. The idea is that instead of sliding a template 

block from the new image over all the previous image, we can take advantage of the fact 

that the step size is constant and the overlapping areas between images should be similar. 

That is, if we have an approximate for what the overlapping area should be, we can simply 

search around that area instead of performing a full search. 

The first step is to estimate this approximate value for the overlapping area between two 

adjacent images by performing a full search on any pair of images. The Y offset or position 

of the image will give us the width of the non-overlapping area for that pair. Now, for any 

new search we can reduce the search area to one that is centered at that position plus 

some margin or search range to account for background depth changes or camera motion 

imprecision. 

The way the template and target blocks are defined is shown in the figure below. The 

target block from the left or previous image has a size equal to the estimated overlapping 

area plus a margin on the left side. The template block from the right or new image has a 

size equal to the overlapping area minus a margin on all its sides. The reason for applying 

the margin on all sides corresponds to the need to leave some room for sliding, and 

because of the lighting effects caused by the camera LEDs on the image borders.  

 

Figure 2.4. Reduced search based on estimated overlap 
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This approach contrasts with the one used in [1], where the authors used only the pixels 

closer to the edges of the new image as their template block. 

Once we have found the position of the new image we have to combine the information 

from both images into a single image. In order to eliminate any visible edges between the 

stitched images we will apply a gradient blending algorithm that combines the overlapping 

areas by computing the weighted sum of the left and right images. The algorithm does so 

in a way that each image offers a bigger contribution coming from the pixels that are closer 

to its center. 

We have employed a method for blending that allows for very fast computation times while 

offering high quality results. The overlapping areas of each image are divided into N vertical 

slots or strips, assigning to each slot in the left image a weight w equal to (N-n)/N, and a 

weight equal to 1-w = n/N for each slot in the right image. An illustration of how these 

weights are assigned can be found in Figure 2.5. Finally, the stitched overlapping area is 

formed as the weighted sums of corresponding slots from the left and right images. The 

non-overlapping areas will simply take their value from the original images. 

Once the images have been stitched, any vertical offset in the new image position will 

cause the resulting image to be non-rectangular, with blank areas at the top and bottom 

edges. We crop the resulting image reducing its height to form a perfectly rectangular 

result, for visual ease. In practice, we actually crop these areas from the original images 

before blending for simplicity, and we only blend the areas that we know will not need to 

be cropped. 

The images in the following page show the difference between blended and unblended 

results, as well as some cropped results. These images date from the early iterations of the 

blending algorithm, so there are some visible errors that are no longer present in the 

current version of the algorithm, as it will be shown later. The reason for choosing this 

images is that we had no examples of unblended results for the current version of the 

algorithm, and we wanted to show those for contrast. 

 

 

Figure 2.5. Gradient blending algorithm  



9 

 

 

 

 

Figure 2.6. Blending and cropping results for a strip of 9 images of the backcase of a Motorola 

smartphone. From top to bottom: Stitched images without blending, stitched images after 

blending and resulting area after cropping. 

 

These results show how the blending algorithm effectively eliminates any visible edges, and 

it helps reducing the undesirable lighting effects introduced by the camera LEDs. They also 

help illustrate the way we have implemented image stitching for multiple images. New 

images are stitched one by one to the previous result horizontally, generating these 

horizontal strips. Then, the horizontal strips are stitched vertically, generating the global 

composite image. 
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2.4.  3D Reconstruction 

We extract the depth information from the acquired images based on the epipolar 

geometry we discussed in the introduction of this report. As we noted there, we do not 

need to rectify our images for stereo matching as they have been taken with a single 

camera slided over a singular plane. That means we can assume the view planes for all of 

our images are contained within the same plane, and they all have been acquired by the 

same camera with the same focal length. Therefore, epipolar lines converge in the infinite 

and we only have to search along horizontal rows to find the disparity values. 

OpenCV’s stereo matcher class has been used to compute the depth maps for each pair of 

images. We use the vertical offset information obtained during the stitching process to 

align the image pairs that will be fed to the stereo matcher. The process the stereo matcher 

follows to compute the disparity values has been illustrated in Figure 2.7. 

For each pixel in the left image, a block of a given block size is built around that pixel. Then, 

in the right image, the block from the left image is slided along a horizontal row until a best 

match is found. A search range is defined by the number of disparities parameter, where the 

search area will go from the position the block was in the left image to the left. The search 

only happens to the left of that position because it is virtually impossible that the actual 

point is to the right of that position, as the camera is more to the right and is assumed to 

have the same angle. 

In order to reduce the search range, which reduces computation time and the probability 

of inaccurate disparity values, we feed the stereo matcher only with the overlapping areas 

of both images. This causes a problem, as the overlapping area is determined by the best 

match during the stitching process, which means it is based on the average background 

depth. Points above or below that average depth will not match in both images (which is 

the basis of 3D reconstruction), where points above the average background will move to 

the left on the right image, but points below the average background depth will move to 

the right on the right image. That is, points below the average background will be outside 

of the stereo matcher’s search range, and the disparity values for those points will either 

be erroneous or not found. 

 

 

Figure 2.7. Stereo matching algorithm  
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The solution to this problem is to add a margin to the cropped images we feed to the 

stereo matcher. This margin will have to be sufficient so that the points below the average 

background still appear within the stereo matcher’s search range.  

It is worth mentioning that we opted for a high baseline because that makes errors in the 

disparity values relatively smaller. Another approach we tried was a smaller baseline that 

increased the overlapping areas, but the performance for the high baseline was much 

better. 

After we obtain the depth maps for every image pair, we combine them into a single depth 

map following a similar process to the one we used during the stitching phase. Again, we 

use the information from the stitching phase to determine the positions of the depth 

maps, and then we blend them together using a weighted sum. 

Because we fed the stereo matcher with only the overlapping areas of the images, the 

resulting depth maps have a varying offset that can we compensate by comparing the 

mean values in the overlapping areas between depth maps.  

Once we have the composite depth map, we can generate a point cloud of the scanned 

surface by adding the color information from the composite stitched image to the depth 

information of the depth map. We generate a .ply file where every line is a point in the 

point cloud, containing the X, Y, and Z coordinates as well as the R, G, and B color channels. 

These files can be visualized using any software that is compatible with point clouds, such 

as MeshLab. 

The most accurate way to generate these point clouds involves reprojecting the 2D points 

to their actual X and Y coordinates, which can be computed knowing the depth or Z 

coordinate, the focal length, and the distance of the point to the optical center as shown in 

equations (4) and (5). The disparity values can be easily converted into actual metric units 

knowing the baseline length and the focal length as shown in equation (3). 

 

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 =
𝐵 ∗ 𝑓

𝑧
      (3) 

𝑥′ = (𝑥 − 𝑥0) ∗
𝑧

𝑓
      (4) 

𝑦′ = (𝑦 − 𝑦0) ∗
𝑧

𝑓
      (5) 

where: 

𝐵 =  𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 

𝑓 =  𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 

𝑥0 𝑎𝑛𝑑 𝑦0 =  𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑐𝑎𝑙 𝑐𝑒𝑛𝑡𝑒𝑟 
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3. RESULTS 
 

 

The following pages show results obtained for different scanned surfaces and area sizes. A 

table with the computation times for two samples after different stages has been included 

below. The computing platform on which these results have been obtained is equipped 

with an Intel Core i7-7700HQ processor and an NVIDIA GeForce GTX 1050 graphic card.  

 

Number of 

Images 

Stitched 

Image 
+ Depth Map + Pointcloud 

+ Histogram 

Fixing 

20x20 15.78s 52.20s 59.57s 62.87s 

9x9 4.10s 11.34s 13.88s 17.95s 

 

Table 2.1. Computation times for 20x20 and 9x9 input images  
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Figure 3.1. Image stitching results for a 9x9 images scan of an electronic board  

 

The image above shows the output composite image after feeding the stitching algorithm 

with a 9x9 grid of captured images, where 6 of the 81 images that were input to the 

software are shown in the bottom of the figure. Edges are unnoticeable thanks to the 

blending algorithm. The depth map and the point cloud in the next page show that the 3D 

reconstruction algorithm has been able to properly identify the height of the different 

electronic components. 
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Figure 3.2. Depth map for a 9x9 images scan of an electronic board  

 

 

Figure 3.3. Generated point cloud for a 9x9 images scan of an electronic board  
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Figure 3.4. Image stitching results for a 20x20 images scan of an electronic board 

 

The image above shows the image stitching results for the same board, but this time for a 

20x20 image grid given as an input. We can see in the top right area the problems the 

algorithm encounters when facing flat surfaces with little information. This problem was 

made worse by the fact that the input images for that area show different lighting effects 

depending on the illumination angle, providing false references. In the depth map and 

point cloud results shown in next page we can see how the stereo matcher does not return 

a value for this area, as the correlation coefficient for the best match is not above the 

confidence threshold. 

 

 



16 

 

 

Figure 3.5. Depth map for a 20x20 images scan of an electronic board 

 

 

Figure 3.6. Point cloud for a 20x20 images scan of an electronic board 
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Figure 3.7. Image stitching results for a 16x18 images scan of a coin 

 

 

Figure 3.8. Point cloud for a 16x18 images scan of a coin  
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4. CONCLUSION 
 

 

The system shows promising results both in terms of quality and computation speed. The 

stitching algorithm produces high quality composite images with unnoticeable edges 

between the stitched images, although it has room for improvement when it comes to 

dealing with flat, featureless surfaces. Computation speed can also be improved by 

developing a smarter search method that follows gradients to find the highest cross-

correlation coefficient, instead of computing the coefficient value for each position within 

the search range. 

As for 3D reconstruction, results can be improved by applying post-processing techniques 

such as smoothing or hole-filling. Improvements can be achieved as well by generating 

more depth maps based on different image pairs other than those directly adjacent.  
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