

ABSTRACT

In the last decade, computer vision and image processing technologies have been a central

point for researchers due to their applications in multiple fields. In particular, microscope

image processing is extremely relevant in fields such as medicine, biological research and

metallurgy. This document describes in detail the series of methods and algorithms we

have used for building a single-camera 3D microscope scanner system, which generates 2D

and 3D composite very large resolution images of the scanned objects.

TABLE OF CONTENTS

1. Introduction 1

1.1. Microscope Camera and CCDs 1

1.2. Previous Research 2

1.3. Epipolar Geometry 2

2. Project Description 4

2.1. System Description 4

2.2. Image Acquisition 5

2.3. Image Stitching 6

2.4. 3D Reconstruction 10

3. Results 12

4. Conclusion 18

References 19

1

1. INTRODUCTION

The use of digital image processing techniques on images obtained from microscopes

dates back a half century, when some of the techniques first developed for television were

explored to process and analyze microscope images. Today, modern computing platforms

and their increased processing power, speed and memory allow for a wider and more

complex range of applications in fields such as medicine, biology or metallurgy.

This project applies microscope image processing to build a single-camera 3D microscope

scanner. The system will scan the surface of an object by sliding a digital microscope

camera over a given area at quantized steps, taking a picture of the surface at each step.

Then, a software will process these pictures to combine them into a single very large

resolution image that features the whole scanned area by applying image stitching

techniques. Finally, the software will apply 3D reconstruction techniques to generate a

depth map and a point cloud of the scanned surface, extracting depth information from

the overlapping areas between images taken by the sliding camera.

The purpose of these composite very large resolution images is to provide the user a single

picture with all the information of the scanned surface, so that the global context can be

easily perceived, and the user can jump between local areas without having to deal with

multiple images. Both the final stitched image and the depth map information can be input

to posterior image processing algorithms to perform operations such as classifying,

counting or measuring.

In this chapter, we will introduce some of the fundamentals on which the project is

sustained. These include some concepts related to image acquisition such as microscopes

and charge-coupled devices (CCDs), previous research on image stitching applied to

microscope images, and epipolar geometry for 3D reconstruction.

1.1. Microscope Camera and CCDs

Images are captured using a very simple digital microscope camera. This camera is

composed by a small magnifying lens that directs the light towards a charge-coupled

device (CCD). These devices feature a grid of cells that get charged by incoming photons

during a charging phase. Then the stored value gets shifted vertically one by one towards a

horizontal register, and then horizontally towards the output, generating an output signal

that represents how intense the light was during the charging phase for each cell. That is,

the output signal holds the intensity value for each pixel in an image.

The distance from the microscope lens to the object is adjustable, allowing for different

zooms. However, the camera we used in this project does not include adjustable focusing,

so it only produces focused images when the object is at two certain distances from the

lens, which in effect only allows for 20X and 800X zoom.

2

1.2. Previous Research

This project takes from some of the ideas presented in [1]. In that paper, the authors

describe a method for image stitching based on mosaic tiles. Starting from the center,

images are stitched together by sliding new images over previously stitched images until a

best match is found. The best match is determined by computing the normalized cross

correlation coefficient, defined in equation (1):

𝑐𝑟𝑜𝑠𝑠 − 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ ∑ (𝑤(𝑥, 𝑦) − 𝑤̅) (𝑓(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑓(̅𝑖, 𝑗))𝐾−1

𝑦=0
𝐿−1
𝑥=0

√∑ ∑ (𝑤(𝑥, 𝑦) − 𝑤̅)2𝐾−1
𝑦=0

𝐿−1
𝑥=0

√∑ ∑ (𝑓(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑓(̅𝑖, 𝑗))
2

𝐾−1
𝑦=0

𝐿−1
𝑥=0

 (1)

The stitching order goes from the center to the edges in a spiral pattern, assuring that the

information from the center of the scanned area gets stitched first. This order was decided

because of the nature of the samples that were being scanned, which generally only

occupied the center of the scanned area. Border images represented featureless, flat areas

that are harder to stitch because of the lack of references. The maximum cross-correlation

coefficient for these kinds of images will be lower than for images with multiple and/or

strong features. The authors assume that any coefficient value below 0.7 represents an

incorrect match, and thus leave a ‘hole’ in the composite image when a value above 0.7

cannot be found. Later, they perform a second pass where they try to fill these holes by

sliding the missing images again when more images have been stitched.

The blending method that is used in our project is also inspired in the one used in [1].

There, the authors use a gradient blending method that computes the intensity values of

the overlapping areas of the new composite image as a weighted sum of the pixels from

the previous composite image and the pixels from the new image that is being stitched.

The weighting (α) for the new image is calculated as a distance from the image edge, going

from 0 to 1 as the distance increases. The weighting for the previous composite image will

be the opposite of that of the new image (i.e. α-1).

It is also worth mentioning that during the first attempts to assemble an image stitching

software OpenCV’s stitcher class [2] was tried. This class implements a complex pipeline

that is based on feature finding and matching. The problem with this approach is that while

it is very well suited for images taken under different conditions (e.g. panoramic images

taken manually with a regular camera or a smartphone with different camera poses), such

a level of complexity is not required in our system, where images can be assumed to suffer

from no rotation effects. This class was both slower and less accurate than the cross-

correlation approach, as it will later be shown in this report.

1.3. Epipolar Geometry

Epipolar geometry describes the geometric relations between the 3D points of a scene and

their projections onto the 2D images taken by a pair of cameras observing that scene.

These relations allow us to extract depth information from a pair of stereo images, just like

the human brain does with the information captured by the eyes.

3

Figure 1.1. Epipolar geometry

The fundamental relations in epipolar geometry are illustrated in the figure above. A 2D

point in the left view, XL, can be at any distance from the image plane, but we know it will

be contained in the direction of the line that goes from the left camera optical center, OL, to

the 2D point XL. If we project that line on to the right view that will give us a 2D line in the

right image where the point XL from the left view must be contained. This is named an

epipolar line, and it gives us all the possible locations of XL in the right view.

We can notice that this epipolar line and the point XL form a plane that contains both

cameras’ optical centers. This is called an epipolar plane, and it can be easily deduced that

for any point in the left view its corresponding epipolar plane will contain both optical

centers as well. That is, epipolar planes spin with the baseline (the line OL-OR that unites

both optical centers) as its axis. This means that all epipolar lines, which must be contained

within an epipolar plane, will pass through the common point that all epipolar planes share

with the right view: the point where the baseline crosses the right image plane, eR.

Therefore, all epipolar lines in the right view converge in eR. As such, if we want to find a

point from the left view in the right view to determine the depth of the point, all we have to

do is find the epipolar line in the right view corresponding to that point, knowing that the

line converges in eR, and then perform a search along that line to find a best match with

the left point.

This process will be simpler in the case both the left view and the right view are contained

within the same plane and the baseline is parallel to that plane (i.e., the focal distances for

both cameras are the same). In this case, the baseline never crosses the image planes, and

thus epipolar planes will converge in the infinite. As such, epipolar lines will be parallel, and

the search can be performed in horizontal rows.

Generally, stereo vision systems will be rectified so that this condition is satisfied in order

to simplify the search. In our case, the view planes can be assumed to be perfectly

contained in the same plane as we do not use a pair of cameras but a single camera that is

slided along a plane, so there is no need to rectify the images.

4

2. PROJECT DESCRIPTION

In this chapter we will describe in detail the different procedures and algorithms used in

the project. First, we will introduce an overall description of the system, the different pieces

of hardware that compose it and their interconnections, and how the software controls

these. Then, we will explain the image acquisition procedure. We will continue detailing the

image stitching algorithm, including the blending method that we used and some

commentary on the observations that we made testing the algorithm on different kinds of

surfaces. Finally, we will discuss the 3D reconstruction algorithm, and how it uses the

information acquired during the stitching process.

2.1. System Description

An illustration of the different components of the system can be found in the figure below.

The central component is the computing platform, which runs the software that will send

orders to the other components and will process the captured images. The software has

been coded in Python and uses some functions from the OpenCV library. The computing

platform is directly connected to the digital microscope camera and sends orders to the

CNC machine that moves the camera through an Arduino board running GRBL, a

controlling software for machine motion. The connection between the computing platform

and the Arduino is serial, and messages are sent in G-Code, a language for numeric control

commonly used in automation.

Figure 2.1. System schematic

5

2.2. Image Acquisition

The image acquisition procedure is quite simple. The computing platform will send a

command to the CNC machine through the Arduino controller to move in a certain

direction for a given step size, and then it will capture and store an image from the

microscope camera. The relative coordinates of the image of the captured image are saved

as the filename of the image, which has the format “x-y-.png”. This process is repeated

following a zig-zag pattern until the whole area, which size is input by the user, has been

scanned. All images are saved in a folder named after the date and time when the scan was

initiated.

The value of the step size is extremely relevant for the correct performance of the later

image stitching and 3D reconstruction steps. The step size will determine how big is the

overlap between adjacent images, and a sufficient overlap is required for both of these

steps. The 3D reconstruction step is the most critical, as we can only extract depth

information from the overlapping areas between images. Then, if we want to combine or

stitch that depth information together, a common overlap between the overlapping areas

is also needed. A step size value that guarantees an overlap of about 2/3rds of the image’s

width has been found to be enough for the processing algorithms. A smaller step-size will

result in increased scanning and computation time, and will reduce the baseline length for

3D reconstruction, which is not desired.

Because of the limitations of the microscope camera regarding the zoom and focus we

previously commented, it made no sense to implement an automated selection of the step

size. However, for a microscope camera with multiple available zooms it would be optimal

to automate the step size selection based on either known information about the zoom or

after a template matching search to determine the current overlap between images.

As a pre-processing step before following with image stitching, we will check the

histograms of the acquired images to try to correct any image that is under or over

exposed.

Figure 2.2. Zig-zag scanning pattern

6

2.3. Image Stitching

The image stitching algorithm can be divided in two major steps: finding the new image

position within the previous result and blending the new image with the previous result.

We use a template matching approach to find the new image position that is very similar to

the one used in [1]. The new image is slided over the previous image until a best match is

found, where the best match is determined by the normalized cross-correlation coefficient.

In our case, we use OpenCV’s template matching function [3], which implements equation

(2):

𝑅(𝑥, 𝑦) =
∑ (𝑇′(𝑥′, 𝑦′) · 𝐼′(𝑥 + 𝑥′, 𝑦 + 𝑦′))𝑥′,𝑦′

√∑ 𝑇′(𝑥′, 𝑦′)2
𝑥′,𝑦′ · ∑ 𝐼′(𝑥 + 𝑥′, 𝑦 + 𝑦′)2

𝑥′,𝑦′

 (2)

where:

𝑇′(𝑥′, 𝑦′) = 𝑇(𝑥′, 𝑦′) −
1

𝑤 · ℎ
· ∑ 𝑇(𝑥′′, 𝑦′′)

𝑥′′ ,𝑦′′

𝐼′(𝑥 + 𝑥′, 𝑦 + 𝑦′) = 𝐼(𝑥 + 𝑥′, 𝑦 + 𝑦′) −
1

𝑤 · ℎ
· ∑ 𝐼(𝑥 + 𝑥′′, 𝑦 + 𝑦′′)

𝑥′′ ,𝑦′′

This coefficient has a value that goes from 0 to 1, where 1 denotes a perfect match. The

function returns a matrix with the coefficient values for each possible position of the

template (i.e. the new image) over the previous image. The position of the new image will

be determined from the location of the maximum value within said matrix. A colormap of a

sample matrix returned by this function can be found in the figure below.

Figure 2.3. Colormap of a matrix holding correlation coefficient values after template searching

7

This colormap shows a very distinct point where the coefficient has its maximum value. The

colormap also shows that the image has some strong vertical and horizontal components,

indicated by how the coefficient value decreases at a lower rate from the maximum to the

edges in the direction of the vertical and horizontal axes.

Images with weaker features, those of flat surfaces with less contrast, will result in a

colormap with a maximum that is not as sharp, and with a value that is not as close to 1. If

the image is extremely flat the template matching might provide an inaccurate match. This

is generally not a relevant problem, since we rarely want to scan flat surfaces with no

relevant information.

A more relevant issue is associated with images with periodic patterns. These images will

result in multiple peaks that are close in value to the maximum at the actual matching

position, and in some cases they may even surpass that value, causing a matching error.

In order to decrease computation time and increase the probability of an accurate match, a

reduced search method has been developed. The idea is that instead of sliding a template

block from the new image over all the previous image, we can take advantage of the fact

that the step size is constant and the overlapping areas between images should be similar.

That is, if we have an approximate for what the overlapping area should be, we can simply

search around that area instead of performing a full search.

The first step is to estimate this approximate value for the overlapping area between two

adjacent images by performing a full search on any pair of images. The Y offset or position

of the image will give us the width of the non-overlapping area for that pair. Now, for any

new search we can reduce the search area to one that is centered at that position plus

some margin or search range to account for background depth changes or camera motion

imprecision.

The way the template and target blocks are defined is shown in the figure below. The

target block from the left or previous image has a size equal to the estimated overlapping

area plus a margin on the left side. The template block from the right or new image has a

size equal to the overlapping area minus a margin on all its sides. The reason for applying

the margin on all sides corresponds to the need to leave some room for sliding, and

because of the lighting effects caused by the camera LEDs on the image borders.

Figure 2.4. Reduced search based on estimated overlap

8

This approach contrasts with the one used in [1], where the authors used only the pixels

closer to the edges of the new image as their template block.

Once we have found the position of the new image we have to combine the information

from both images into a single image. In order to eliminate any visible edges between the

stitched images we will apply a gradient blending algorithm that combines the overlapping

areas by computing the weighted sum of the left and right images. The algorithm does so

in a way that each image offers a bigger contribution coming from the pixels that are closer

to its center.

We have employed a method for blending that allows for very fast computation times while

offering high quality results. The overlapping areas of each image are divided into N vertical

slots or strips, assigning to each slot in the left image a weight w equal to (N-n)/N, and a

weight equal to 1-w = n/N for each slot in the right image. An illustration of how these

weights are assigned can be found in Figure 2.5. Finally, the stitched overlapping area is

formed as the weighted sums of corresponding slots from the left and right images. The

non-overlapping areas will simply take their value from the original images.

Once the images have been stitched, any vertical offset in the new image position will

cause the resulting image to be non-rectangular, with blank areas at the top and bottom

edges. We crop the resulting image reducing its height to form a perfectly rectangular

result, for visual ease. In practice, we actually crop these areas from the original images

before blending for simplicity, and we only blend the areas that we know will not need to

be cropped.

The images in the following page show the difference between blended and unblended

results, as well as some cropped results. These images date from the early iterations of the

blending algorithm, so there are some visible errors that are no longer present in the

current version of the algorithm, as it will be shown later. The reason for choosing this

images is that we had no examples of unblended results for the current version of the

algorithm, and we wanted to show those for contrast.

Figure 2.5. Gradient blending algorithm

9

Figure 2.6. Blending and cropping results for a strip of 9 images of the backcase of a Motorola

smartphone. From top to bottom: Stitched images without blending, stitched images after

blending and resulting area after cropping.

These results show how the blending algorithm effectively eliminates any visible edges, and

it helps reducing the undesirable lighting effects introduced by the camera LEDs. They also

help illustrate the way we have implemented image stitching for multiple images. New

images are stitched one by one to the previous result horizontally, generating these

horizontal strips. Then, the horizontal strips are stitched vertically, generating the global

composite image.

10

2.4. 3D Reconstruction

We extract the depth information from the acquired images based on the epipolar

geometry we discussed in the introduction of this report. As we noted there, we do not

need to rectify our images for stereo matching as they have been taken with a single

camera slided over a singular plane. That means we can assume the view planes for all of

our images are contained within the same plane, and they all have been acquired by the

same camera with the same focal length. Therefore, epipolar lines converge in the infinite

and we only have to search along horizontal rows to find the disparity values.

OpenCV’s stereo matcher class has been used to compute the depth maps for each pair of

images. We use the vertical offset information obtained during the stitching process to

align the image pairs that will be fed to the stereo matcher. The process the stereo matcher

follows to compute the disparity values has been illustrated in Figure 2.7.

For each pixel in the left image, a block of a given block size is built around that pixel. Then,

in the right image, the block from the left image is slided along a horizontal row until a best

match is found. A search range is defined by the number of disparities parameter, where the

search area will go from the position the block was in the left image to the left. The search

only happens to the left of that position because it is virtually impossible that the actual

point is to the right of that position, as the camera is more to the right and is assumed to

have the same angle.

In order to reduce the search range, which reduces computation time and the probability

of inaccurate disparity values, we feed the stereo matcher only with the overlapping areas

of both images. This causes a problem, as the overlapping area is determined by the best

match during the stitching process, which means it is based on the average background

depth. Points above or below that average depth will not match in both images (which is

the basis of 3D reconstruction), where points above the average background will move to

the left on the right image, but points below the average background depth will move to

the right on the right image. That is, points below the average background will be outside

of the stereo matcher’s search range, and the disparity values for those points will either

be erroneous or not found.

Figure 2.7. Stereo matching algorithm

11

The solution to this problem is to add a margin to the cropped images we feed to the

stereo matcher. This margin will have to be sufficient so that the points below the average

background still appear within the stereo matcher’s search range.

It is worth mentioning that we opted for a high baseline because that makes errors in the

disparity values relatively smaller. Another approach we tried was a smaller baseline that

increased the overlapping areas, but the performance for the high baseline was much

better.

After we obtain the depth maps for every image pair, we combine them into a single depth

map following a similar process to the one we used during the stitching phase. Again, we

use the information from the stitching phase to determine the positions of the depth

maps, and then we blend them together using a weighted sum.

Because we fed the stereo matcher with only the overlapping areas of the images, the

resulting depth maps have a varying offset that can we compensate by comparing the

mean values in the overlapping areas between depth maps.

Once we have the composite depth map, we can generate a point cloud of the scanned

surface by adding the color information from the composite stitched image to the depth

information of the depth map. We generate a .ply file where every line is a point in the

point cloud, containing the X, Y, and Z coordinates as well as the R, G, and B color channels.

These files can be visualized using any software that is compatible with point clouds, such

as MeshLab.

The most accurate way to generate these point clouds involves reprojecting the 2D points

to their actual X and Y coordinates, which can be computed knowing the depth or Z

coordinate, the focal length, and the distance of the point to the optical center as shown in

equations (4) and (5). The disparity values can be easily converted into actual metric units

knowing the baseline length and the focal length as shown in equation (3).

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 =
𝐵 ∗ 𝑓

𝑧
 (3)

𝑥′ = (𝑥 − 𝑥0) ∗
𝑧

𝑓
 (4)

𝑦′ = (𝑦 − 𝑦0) ∗
𝑧

𝑓
 (5)

where:

𝐵 = 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑓 = 𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ

𝑥0 𝑎𝑛𝑑 𝑦0 = 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑐𝑎𝑙 𝑐𝑒𝑛𝑡𝑒𝑟

12

3. RESULTS

The following pages show results obtained for different scanned surfaces and area sizes. A

table with the computation times for two samples after different stages has been included

below. The computing platform on which these results have been obtained is equipped

with an Intel Core i7-7700HQ processor and an NVIDIA GeForce GTX 1050 graphic card.

Number of

Images

Stitched

Image
+ Depth Map + Pointcloud

+ Histogram

Fixing

20x20 15.78s 52.20s 59.57s 62.87s

9x9 4.10s 11.34s 13.88s 17.95s

Table 2.1. Computation times for 20x20 and 9x9 input images

13

Figure 3.1. Image stitching results for a 9x9 images scan of an electronic board

The image above shows the output composite image after feeding the stitching algorithm

with a 9x9 grid of captured images, where 6 of the 81 images that were input to the

software are shown in the bottom of the figure. Edges are unnoticeable thanks to the

blending algorithm. The depth map and the point cloud in the next page show that the 3D

reconstruction algorithm has been able to properly identify the height of the different

electronic components.

14

Figure 3.2. Depth map for a 9x9 images scan of an electronic board

Figure 3.3. Generated point cloud for a 9x9 images scan of an electronic board

15

Figure 3.4. Image stitching results for a 20x20 images scan of an electronic board

The image above shows the image stitching results for the same board, but this time for a

20x20 image grid given as an input. We can see in the top right area the problems the

algorithm encounters when facing flat surfaces with little information. This problem was

made worse by the fact that the input images for that area show different lighting effects

depending on the illumination angle, providing false references. In the depth map and

point cloud results shown in next page we can see how the stereo matcher does not return

a value for this area, as the correlation coefficient for the best match is not above the

confidence threshold.

16

Figure 3.5. Depth map for a 20x20 images scan of an electronic board

Figure 3.6. Point cloud for a 20x20 images scan of an electronic board

17

Figure 3.7. Image stitching results for a 16x18 images scan of a coin

Figure 3.8. Point cloud for a 16x18 images scan of a coin

18

4. CONCLUSION

The system shows promising results both in terms of quality and computation speed. The

stitching algorithm produces high quality composite images with unnoticeable edges

between the stitched images, although it has room for improvement when it comes to

dealing with flat, featureless surfaces. Computation speed can also be improved by

developing a smarter search method that follows gradients to find the highest cross-

correlation coefficient, instead of computing the coefficient value for each position within

the search range.

As for 3D reconstruction, results can be improved by applying post-processing techniques

such as smoothing or hole-filling. Improvements can be achieved as well by generating

more depth maps based on different image pairs other than those directly adjacent.

19

REFERENCES

[1] Vladan Rankov, Rosalind J. Locke, Richard J. Edens, Paul R. Barber and Borivoj Vojnovic,

“An algorithm for image stitching and blending”.

March 2005

[2] OpenCV’s Stitcher Class:

https://docs.opencv.org/trunk/d8/d19/tutorial_stitcher.html

[3] OpenCV’s Template Matching:

https://docs.opencv.org/3.3.0/d4/dc6/tutorial_py_template_matching.html

[4] S. K. Chow, H. Hakozaki, D. L. Price, N. A. B. Maclean, and others, “Automated microscopy

system for mosaic acquisition and processing”.

2006

[5] F.B. Legesse, O. Chernavskaia, S. Heuke, T. Bocklitz, T. Meyer, J. Popp and R.

Heintzmann, “Seamless stitching of tile scan microscope images”.

2015

[6] Qiang Wu, Fatima A. Merchant and Kenneth R. Castleman, “Microscope Image

Processing”.

2008

https://docs.opencv.org/trunk/d8/d19/tutorial_stitcher.html
https://docs.opencv.org/3.3.0/d4/dc6/tutorial_py_template_matching.html

