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Abstract

In the last decades, the presence of UAVs has increased widely in the military world, as

they are able of monitoring conflict areas without endangering human lives. Many of

these UAVs have the disadvantage of being quite big and expensive; therefore, the trend

now is to use lots of smaller and cheaper drones which make it possible for the system to

continue working even if a couple of drones get lost or are unable to contribute.

In this project it has been designed a robust system that using a fixed number of drones

with single cameras on them delivers a good resolution picture comparing with the ones

that are obtained from expensive systems. Given a certain mission area, first a task al-

location algorithm assigns some tasks or positions in the mission area to each UAV, in

a way that the information collected by the images is maximized. After that, an image

mosaicing algorithm will process those images in order to return the final mosaic.

The whole thesis has been developed in a simulation environment in Matlab. The

results show that the proposed algorithms guarantee that the complete mission area will

be covered by the UAVs in the shortest possible time. In addition, the obtained final

mosaic represents perfectly the considered mission area when an adequate overlapping

area is considered. Finally, the system has been proven to be resilient if a UAV is unable

to contribute for some reason.

Keywords
UAV; Image mosaicing; Task allocation; Greedy algorithm; Clustering; Travelling Sales-
man Problem.
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Chapter 1

Introduction

In the last decades, the presence of Unmanned Aerial Vehicles (UAVs) has increased

widely in the military word. The reason behind this increase is that they are able of

monitoring or attacking an area of conflict without endangering human lives. Therefore,

numerous researches have been performed in the last decade, which have led to a huge

prolgress in this field. Currently they can be found a variety of sizes of these vehicles,

which range from several meters to few centimeters. The hundreds of applications related

to the UAVs such as monitoring, mapping, rescue missions in disaster areas, aerial ima-

ging,. . . and others that are emerging, make it clear that it is a field that will experiment a

huge growth in the near future.

1.1 Project Motivation

The idea behind this project was based in the UK Watchkeeper Unmanned vehicle that

Thales UK has supplied to the UK army. The Watchkeeper X is an unmanned aircraft

system designed for a wide range of military and homeland security mission requirements,

as it can operate in extreme and challenging environments to collect and distribute crucial

information. One of its applications is that it can transmit high quality images and video

securely and reliably to different locations, providing commanders information that highly

1



2 CHAPTER 1. INTRODUCTION

improves situational awareness.

Figure 1.1: Thales Watchkeeper Unmanned Aircraft System 1

However, the main disadvantage of this system is that it is quite big and expensive. So,

losing this vehicle or having any damage in any part of it while performing the mission

would have a big impact, as it would not be able to complete its purpose. That is why,

the trend now is to use multiple UAVs with single cameras incorporated on them working

together as a swarm.

This alternative is supported by several advantages. On the one hand, nowadays there

is a huge variety of UAVs, of different sizes and prizes. Due to this cost reduction, it

is possible to use smaller and cheaper drones that work together to perform the same

tasks that were previously performed by expensive systems. In addition, a system which

is formed by multiple UAVs makes it possible to reduce the time required to fulfill the

mission, as the time needed to solve all the tasks is reduced. On the other hand, inter-

connection of multiple UAVs provides also a more flexible solution, as the system can

continue working even if a couple of drones get lost or are unable to contribute for any

reason.
1Image obtained from https://www.thalesgroup.com/en/global/activities/defence/unmanned-aerial-

vehicles-systems/tactical-uav
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Therefore, in order to obtain high quality images of a certain area by using multiple

agents working together as a swarm, it will be necessary to coordinate their positions

in an optimal way, with the objective of achieving a wider field of view of the area of

interest. However, it should be taken into account that the performance of this system will

always be limited by the resolution of the cameras they use. So, this proposal is not about

achieving the same results that are obtained from expensive systems, but about providing

a more affordable alternative.

1.2 Aims and Objectives

The aim of this individual research project could be defined as: ”To design a robust sys-

tem that using a fixed number of drones with single cameras on them delivers a good

resolution picture comparing with the ones that are obtained from expensive systems.”

Therefore, the mission scenario considered in this individual research project is the

case in which a certain area of high interest requires persistent surveillance and monitor-

ing. It will be assumed to be a 2D area from which a complete image wants to be obtained.

Therefore, the agents should be allocated to certain positions in the space in an optimal

way.

After defining the aim of this project they will be listed below the set of objectives

that must be fulfilled to achieve it:

1. ”To develop an image mosaicing algorithm.” The input data of this algorithm will

be multiple overlapping images of a scene. Therefore, the code must be able to

process these photographs and establish a geometric correspondence between them.

Once this is achieved, a final mosaic should be formed, which is the output data, by

stitching these images among them correctly.

2. ”To develop a mobile tasking algorithm.” The efficient cooperation of a group

of UAVs is a vital part for the mission success. This task allocation code should
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allocate the mobile sensing platforms to some positions in the mission scenario

where the drones should go and take a photograph. In addition, once the most

suitable tasks are selected, it should be decided which UAV goes to each task, that

is, each selected task should be assigned to a certain vehicle, trying to minimize the

travelled distance by each drone. Finally, it will be required to find the sequence of

waypoints for each UAV.

3. ”Integration between the image mosaicing and the mobile tasking algorithms.” The

main point in this step will be to develop a mobile tasking algorithm which can

reflect the performance of mosaicing.

4. ”Validation of the proposed solution.” First, the different algorithms of the pro-

posed solution will be validated. After that, the integration between the image

mosaicing and the mobile tasking algorithms will be validated by means of a simu-

lation in Matlab.

1.3 Project Definition

In order to present the ideas in a clear way this project has been organized as follows:

1. Literature Review (Chapter 2): In this chapter it will be performed a search and

evaluation of the available literature (papers, books. . . ) about the different subjects

related to this project. This is the most important step before starting the project,

as it is essential in order to choose the most suitable techniques in each developed

algorithms.

2. Developed image mosaicing and task allocation algorithms (Chapter 3): After

choosing the most appropriate techniques for the image mosaicing and the mobile

tasking algorithms, the methodology followed in the developed codes will be ex-

plained.
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3. Analysis and Results (Chapter 4): In this chapter the performance of the de-

veloped algorithms will be analyzed in order to validate them.

4. Conclusions (Chapter 5): After analyzing the obtained results, some conclusions

will be presented along with the line in which future students should continue in-

vestigating.
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Chapter 2

Literature Review

2.1 Introduction to image mosaicing

Image mosaicing is a process that consists on stitching multiple overlapping images of a

scene with the objective of achieving a wider field of view. Therefore, the idea behind this

technique is to increase the field of view of a camera without decreasing the resolution of

the image and without having to introduce an undesirable deformation in the lens of the

camera. Nowadays, as there are a wide range of applications where it can be applied, such

as motion detection, resolution improvement, medical images. . . , it has been the subject

of numerous studies in the last two decades and different algorithms have been proposed.

Image mosaicing algorithms can be classified into various groups according to the

technique they use. However, even if there are different techniques mosaicing always

involves the same steps of image processing:

• Image acquisition

• Registration

• Reprojection

• Stitching

7
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• Blending

Figure 2.1: Steps of image mosaicing algorithms 1

1. Image acquisition: In this step input images are obtained from some source, which

normally is a hardware-based one. This input data consists of two or more images

taken from the same scene but at different times, from different points of view or

by different sensors.

2. Registration: A geometric correspondence is established between the different im-

ages that have been obtained in the previous step. Registration requires to calculate

the geometric transformations that are required to align the images with respect to a

reference. This step includes calculating the homography matrices (3×3) between

1Image obtained from (Ghosh and Kaabouch, 2016a)
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source images which was algebraically demonstrated in (Hartley and Zisserman,

n.d.) that a mapping on the projective plane P2, that is, from P2 → P2 is a pro-

jectivity if and only if there exists a non-singular 3×3 matrix H which for any point

in P2 is represented by a vector x, it is verified that its mapped point equals the

vector given by the multiplication Hx. Therefore, calculating H in the mosaicing

algorithm will be enough to calculate the homography that maps each xi point from

an image to its corresponding x
′
i in another image.

3. Reprojection: It is the action of aligning the images into a common coordinate sys-

tem applying the geometric transformations that have been calculated previously.

4. Stitching: The objective of this step is to overlay the images that have been aligned

in the reprojection step on a bigger canvas. This is done by combining the pixel

values of the overlapping zones of the images and maintaining the same values

where no overlap happens.

5. Blending: As a consequence of geometric and photometric misalignment errors can

appear in the boundary between the different images. Some of these errors might

be object discontinuities and seams visibility. Therefore, a blending algorithm be-

comes necessary during or after the stitching step to avoid big discontinuities in the

final mosaic.

2.2 Classification of image mosaicing algorithms

The performance of the image mosaicing algorithms is mostly influenced by the registra-

tion and blending steps. This makes sense because they correspond with the first and last

steps of image mosaicing; so, their proper operation becomes essential in order to build

successful algorithms. Therefore, below image mosaicing algorithms will be classified as

in (Ghosh and Kaabouch, 2016a) based on registration or based on blending.
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1. Classification of image mosaicing based on registration

Registration takes images from different sources that correspond to the same target but

that come from different sensors or from different perspectives and calculates the optimal

geometric transformation by comparing both images and obtaining the correspondences

between them. These correspondences can be obtained by different ways. These can be

divided in two main groups as indicated in Figure 2.2. On the one hand, algorithms that

apply spatial domain-based mosaicing algorithms that can be divided at the same time into

area based or feature based, and on the other hand, by using the frequency domain-based

phase correlation property.

Figure 2.2: Classification of image mosaicing based on registration

1.1 Spatial domain image mosaicing algorithms

Registration is performed considering the properties of pixels of the images. Most image

mosaicing algorithms correspond to this category. As it has been mentioned before, these

can be divided as well into two other groups: area-based or feature-based.

Area-based algorithms

Area-based codes depend on computations between ”windows” of pixel values between

the images that want to be stitched. In (Ghannam and Lynn, 2013) a comparison is per-

formed between two of the most important methods in this category, which are based

on Normalized Cross Correlation (NCC) and on Mutual Information (MI) respectively.

The results demonstrate that both methods have similar performance in a lot of situations,
1Image obtained from (Ghosh and Kaabouch, 2016a)
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however, there are some differences between them. On the one hand, when there are large

rotation angles NCC-based ones perform better. However, the choice of a distinctive tem-

plate becomes crucial in order to obtain good results. On the other hand, when using

MI an acceptable performance was obtained even if no distinctive templates were used.

Anyway, both techniques have the disadvantage of being computationally slow and also

of requiring significant overlappings between the input images.

Feature-based

These mosaicing methods rely on feature-to-feature matching between a pair of input im-

ages. Therefore, they depend mainly on feature extraction algorithms, which are used to

detect salient features from the input images such as points, edges, corners, colours, tex-

tures. . . The resulting features will be subsets of the image domain, which usually have the

form of isolated points, continuous curves or connected regions (Islam and Kabir, n.d.).

Most popular algorithms inside this category are the low level feature-based ones, that

is, Harris, FAST, SIFT and SURF, as the computation of the countour-based method is

too expensive because of the use of high-level features. Each of these four methods has

its own advantages and disadvantages, so, it is fundamental to analyze these in order to

choose the most appropriate one for each application.

Harris corner detector: Feature points are detected following the algorithm explained

in (Ghosh and Kaabouch, 2016b). This algorithm provides a simple and accurate compu-

tation. In addition, even if it usually detects closely crowded features this can be solved

by restricting the maximum number of features in the neighborhood, that is, some of

these points are excluded. This has been performed in (Okumura et al., 2013) or (Brown

et al., 2005). The main disadvantage of this algorithm is that it is only good for moderate

changes in scale an rotation.

FAST corner detector: It has an efficient and fast computation, so they are good for

real-time image processing applications. One of its disadvantages is that it requires prior
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knowledge about the optimal threshold required in order to detect the corners, which

becomes usually a challenge. That is why, it can be added a threshold selecting algorithm

as in (Jichao Jiao et al., 2011).

SIFT feature detector: It is efficient with high resolution images. In addition, it is not

influenced by translations, rotations and scaling transformations in the image domain and

robust to small perspective transformations and illumination variations. However, it is

computationally expensive.

SURF: Because of its fast computation it is convenient for real-time applications.

Nevertheless it has a poor performance under some transformations such as colour, illu-

mination...

1.2 Frequency domain image mosaicing algorithms

These methods require computation in the frequency domain in order to find the best

transformation parameters between the input images. These algorithms apply the prop-

erty of phase correlation for registration. After calculating the cross-power spectrum of

the two images, the shift theorem ensures that the phase of the cross-power spectrum is

equivalent to the phase difference between the images.

2. Classification of image mosaicing based on blending

Blending in used to avoid errors in the boundary between images. These errors can have

different sources such as difference in camera exposure, variation in the illumination

of the environment, appearance of moving objects between frames, geometric misalign-

ments. . . which can decrease the consistency of the final mosaic.

Blending algorithms can be classified into 2 groups as it can be seen in Figure 2.3:

Transition smoothening-based and optimal seam-based. In the methods of the first group

the information of the overlapping region between two images is combined so that the

boundaries of the images of the mosaic become undetectable. On the other hand, optimal

seam-based methods try to minimize the seams in the boundary between images by trying
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to allocate the seam line in the optimal location. This is performed by analyzing the

information content in the overlapping regions of the images.

Figure 2.3: Classification of image mosaicing based on blending 2

It can be seen in Table 2.1 a review on the main advantages and disadvantages of the

different registration algorithms.

Method Advantages Disadvantages

Feathering- Easy to implement, fast and The final mosaic frequently

based good performance under experiences blur and ghosting effect

exposure differences

Pyramid- Appropriate to prevent blur If the error from the registration step is

based and duplication of edges big, output will suffer from

double contouring and ghosting effect

Gradient- The final mosaic is usually more High computational requirements and the

based attractive than with other methods error from the registration step must be

small in order to obtain a good performance

Optimal Good performance when there are Transition between images becomes visible

seam-based moving objects and parallax effects when there are exposure differences

Table 2.1: Comparison among the different blending mosaicing methods

2Image obtained from (Ghosh and Kaabouch, 2016a)
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2.3 Task allocation

The efficient cooperation of a group of UAVs, which is called, task allocation is funda-

mental in order to successfully fulfill the mission. In the sensor placement problems there

are M candidate positions where the sensor can be placed, and N sensors, being N quite

smaller than M in general. The main problem with the task allocation matter is that it

has been verified to be NP-hard most of the times (Shin and Segui-Gasco, 2014), which

means that the problem requires exponential time to be solved optimally.

In order to deal with this NP-hardness concern multiple studies have been developed

and different kind of algorithms have been proposed. These algorithms can be classified

in three different groups:

• Exact approach algorithms

• Heuristic approach algorithms

• Approximation approach algorithms

Exact approach algorithms obtain optimal solutions, but usually they do not guarantee

polynomial time complexity. When the size of the problem is small, these algorithms can

find the optimal solution in limited time. However, if the size of the problem increases or

there is a limitation in the available time to find the solution, these kind of algorithms are

not useful.

Heuristic approach algorithms find viable solutions with certain converge speed. How-

ever, the quality and the optimality of the result are not guaranteed.

Finally, approximation approach algorithms are able to find a solution that com-

pensates the optimality and the computational complexity. That is why numerous ap-

proximation algorithms have been proposed. In addition, if the problem satisfies the sub-

modularity condition its level of optimality and computational complexity can be math-

ematically proven, that is the reason why many maximization problems use submodular
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functions. In (Krause and Golovin, 2013) the concept of submodularity is introduced and

several example functions are mentioned. Algorithms that make use of these properties

are called submodular maximization algorithms.

Submodularity has been already implemented in many path planning problems, in

different areas such as artificial intelligence (Singh et al., n.d.) or robotics (Heng et al.,

2015) .

The most popular submodular optimization algorithm is the greedy algorithm. Its

main characteristics are that it is easy to implement and that it can be mathematically

verified its level of optimality and computational complexity. However, even if the poly-

nomial time complexity in the task allocation algorithm that uses the greedy technique is

guaranteed, it should be taken into account that if the size of the problem gets bigger the

computational load increases excessively. In (Nemhauser et al., 1978) it is proven that the

result obtained by applying the greedy algorithm is a good approximation to the optimal

solution of the NP-hard maximization problem.

2.4 Travelling Salesman Problem

Once the task allocation problem is performed each UAV will have a list of tasks to

perform, that is, a list of positions to visit. As the endurance of the UAVs is limited,

it will be necessary to travel to all these positions trying to minimize the total distance

travelled by each drone. This issue can be faced as a case of the Travelling Salesman

Problem.

The Travelling Salesman Problem (TSP) (Goyal, n.d.) is one of the most famous NP-

hard problems, as it can be applicable in a wide range of fields. The problem is formulated

in the following way:

“Given a list of cities and their pair wise distances, the task is to find a shortest

possible tour that visits each city exactly once.”
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The TSP can is divided usually into two categories: the Symmetric TSP where the

distance between each pair of two cities is the same in both directions, and the Asymmet-

ric TSP where it might only exist a path in one of the directions or the distance between

each pair of two cities is not the same in both directions.

In order to solve this problem there are several ways. Solving the TSP by means of a

naive approach provides an exact algorithm, but is usually a highly inefficient option. One

example of applying a naive approach consists on trying to find the lightest hamiltonian

circuit in the graph. So, for these case it will be necessary to find all possible Hamiltonian

circuits in the graph and selecting the one with the shortest length. However, these is

a NP complete problem, as for N nodes in a graph and having one starting and ending

nodes, there are (n− 1)!/2 maximum possible Hamiltonian cycles in a symmetric TSP.

Therefore, this leads to a O(n!/2) runtime if these circuits are compared between them.

In order to reduce this runtime, they have been suggested numerous deterministic and

non-deterministic algorithms through the years.

Between the deterministic approaches it should be mentioned the dynamic program-

ming formulation that Held and Karp presented in (Held and Karp, 1961), and which had

a time complexity of O(2nn2), but which had a limitation in the N number. The branch

and bound technique based algorithm published in (Little et al., 1963) made it possible to

increase the size of the problem up to 40 cities with appreciable average runtime.

Non-deterministic solutions to TSP are helpful when the running time of the algorithm

is more important than the accuracy of the result. In (Hahsler and Hornik, 2007) they are

described some of the implemented approximate algorithms such as: Nearest Neighbour

Algorithm, Insertion Algorithms and K-Opt Heuristics.

In (Goyal, n.d.) a greedy non-deterministic approach to solve the TSP in polynomial

time has been proposed. Even if as in other common greedy approaches this algorithm

does not work perfectly for some cases of the problem, it halts in polynomial time for

every case and it provides an exact solution to the problem instances it works for.



Chapter 3

Developed image mosaicing and mobile

tasking algorithms

3.1 Image mosaicing algorithm

As it has been explained in Chapter 2, image mosaicing is a process that consists on

stitching multiple overlapping images of a scene with the objective of achieving a wider

field of view (FOV). In this project an image mosaicing algorithm has been developed in

Matlab. The diagram in Figure 3.1 shows the principal steps of this algorithm, which are

going to be explained below.

3.1.1 Harris Corner Detector Algorithm

As it has been explained in the literature review, there are different feature extraction

techniques in order to perform the registration technique. Among all these techniques it

has been selected the Harris corner detector based algorithm because of its simple and

accurate computation. This algorithm was developed by Chris Harris and Mike Stephens

in 1988 (Harris and Stephens, 1988).

The procedure followed by this algorithm was explained clearly in (Vaghela and

Naina, n.d.).

17
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Figure 3.1: Main steps of the image mosaicing algorithm developed in Matlab

First, a small local detecting window is depicted in the photograph, and the average

variation in intensity obtained by shifting this window a little bit in different directions

is calculated. When the window is shifted there are three possible alternatives that might

happen.

Figure 3.2: Possible alternatives when shifting the local window in Harris Corner Detector
Algorithm 1

• Flat region: When the window is shifted there will not be any change in intensity

in all direction.
1Image obtained from (The Effect of Using Inter-Frame Coding with Jpeg to Improve the Compression

of Satellite Images, 2017)
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• Edge: When the window is shifted there will not be any change in intensity in the

direction of the edge.

• Corner: When the window is shifted there will be an important change in intensity

in all the directions.

So, Harris corner detector provides a mathematical approach in order to determine if

the region that it is been analyzed is flat, or if there is an edge or corner. This algorithm

tends to find closely crowded features, but this will be overcome by applying a novel

Adaptive Non-Maximal Suppression algorithm later. However, it should be taken into

account it is not a suitable technique for images with large changes in scale and rotation.

This is the mathematical procedure followed by Harris corner detector algorithm:

The change of intensity produced by a shift [u,v] is calculated as:

Ex,y = ∑
u,v

wu,v[Ix+u,y+v− Iu,v]
2 = ∑

u,v
wu,v[xX + yY +O(x2,y2)]2 (3.1)

Where:

• I(x,y): Intensity of the individual pixel

• I(x+u,y+v): Shifted intensity

• w: Specifies the image window. It is recommended to use a smooth circular win-

dow, for example a Gaussian:

wu,v = exp[−(u2 + v2)/2σ
2] (3.2)

The first gradients are approximated by:

X = I⊗ (−1,0,1)≈ ∂ I
∂x

(3.3)
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Y = I⊗ (−1,0,1)T ≈ ∂ I
∂y

(3.4)

So, for small shifts the value of the change E produced by a shift can be calculated as:

Ex,y = Ax2 +2Cxy+By2 (3.5)

Where:

A = X2⊗w (3.6)

B = Y 2⊗w (3.7)

C = (XY )⊗w (3.8)

As the operator answers too early to edges because only the minimum of E is taken

into account, the expression of the change E will be rewritten as:

Ex,y = (x,y)M(x,y)T (3.9)

Being M a 2x2 symmetric matrix defined as:

M =

A C

C B

 (3.10)

Finally, not only do we need corner and edge classification regions, but also a measure

of corner and edge quality of response. Defining the values of Tr(M) and Det(M) as:

Tr(M) = α +β = A+B (3.11)
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Det(M) = αβ = AB−C2 (3.12)

And calculating the corners measure for each image pixel (x,y), it is obtained:

R = Det− kTr2 (3.13)

Being R positive in the corner region, negative in the edge region, and small in the flat

region.

Harris method considers that the feature points are the pixel values that correspond

with the local maximum interest point. So, a corner region pixel will be selected as a

nominated corner pixel if its value is an 8-way local maximum.

Finally, a threshold T is set and corner points are detected.

In the image mosaicing algorithm that has been developed in Matlab, Harris corner

detector algorithm is applied to the input images by means of the Matlab function named

as: corner detector.m. The input and output arguments of this function are:

Input arguments:

• image b: an HxW matrix representing the gray scale image whose feature points

want to be extracted.

Output arguments:

• corner img: an HxW matrix representing the gray corner metric matrix of the input

image.

Being H and W respectively the height and width of the image.

3.1.2 Adaptive Non-Maximal Suppression algorithm

As it has been mentioned before, Harris corner detector tends to find closely crowded

features. In addition, as the computational cost of matching increases as the number of
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interest points increases, it will be beneficial to limit the maximum number of feature

points selected from each image. At the same time, it is important for the feature points

to be spatially well distributed over the image, since for image mosaicing applications

between various images the overlapping area between them might be small.

In order to satisfy the above mentioned requirements, it has been applied a novel

adaptive non-maximal suppression (ANMS) (Brown et al., 2005) strategy which selects a

fixed number of interest points from each image.

In this proposed algorithm feature points are suppressed based on the corner strength

fHM, and just the ones that are a maximum in a neighbourhood of radius r pixels are kept.

Theoretically, the proposed algorithm is initialized with the suppression radius r = 0,

and then, this value is increased until the wished number of feature points nip is obtained.

This step can be performed without search as the set of feature points that are gener-

ated by this method conform an ordered list. The first entry in this list will be the global

maximum, that is, the one that is not suppressed at any radius. The following interest

points will be introduced to the list as the suppression radius is reduced from infinity to

lower values. Anyway, taking into account that if a feature point is maximum in radius

r, then, it will also be a maximum in any r j < r, it can be affirmed that once an interest

point appears, it will always stay in the list.

In the implementation, this algorithm is robustified demanding that a neighbour must

have certain sufficient larger strength.

So, the minimum suppression radius ri is defined as:

ri = min
j
|xi− x j|, s.t. f (xi)< crobust f (x j), x j ∈ Γ (3.14)

Where:

• xi: The vector representing the position of the feature point in the image
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• Γ: represents the set of all feature point positions

It is defined crobust = 0.9, in order to guarantee that a neighbour has significantly

higher strength for suppression to happen.

In the developed image mosaicing algorithm in Matlab, the adaptive non-maximal

suppression technique has been applied by means of the Matlab function named as:

anms.m. This function has the following input and output arguments:

Input arguments:

• corner img: an HxW matrix representing the gray corner metric matrix of the input

image. It is the output argument of the corner detector.m function.

• max pts: number of corner points desired from the image. It corresponds with the

nip value defined previously in the explanation of the ANMS technique.

Output arguments:

• x: Column matrix with the x coordinates of the nip corner points.

• y: Column matrix with the y coordinates of the nip corner points.

• r max: value of the suppression radius used to obtain nip corner points.

The nip value can be changed depending on the image that it is being analyzed. In this

project its value has been defined as nip = 300. Therefore, from the adaptive non-maximal

suppression algorithm they are selected the 300 feature points with the largest values of

ri.

3.1.3 Feature descriptor

40x40 patch descriptor:
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Once it has been determined where to place the interest points, a description of the

local image structure that will support reliable and efficient matching of features across

images should be extracted. First, a 40x40 patch descriptor will be chosen around each

corner point.

Geometric blur technique:

Secondly, in this code it will be applied the geometric blur technique explained in

(Berg and Malik, 2001) to each patch in order to obtain a 64×n matrix with the column

i being the 64 dimensional descriptor computed at location (xi,yi) in the corresponding

image.

This technique is based on trying to find point similarities between two images by

applying “geometric blur” to both of them.

Habitual methods to solve the correspondence problem consist on some kind of tem-

plate matching, comparing image windows (patches) that are centered at the two possibly

corresponding points.

The essential part of this method is that before performing the comparison images are

decomposed into channels of feature responses. This is useful as it permits to separate

the uncertainty about the location of the feature points from the uncertainty about their

aspect.

In order to perform the matching between two hypothetical corresponding points, it

is necessary to consider image windows around these points and then calculate some

measure of similarity between the obtained windows. The difficult part here is to be

able to obtain “discriminative” windows and a “robust” matching at the same time. If

the windows have a small size they are not discriminative, because they do not consider

enough context. However, it they are too big, the total change in the windows will be big

from different camera views.
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The usual method in computer vision to perform the matching between the above

mentioned windows is to use a pyramid-like coarse-to-fine approach. This consists on

having at a coarse scale of the pyramid, a blurred version of the image at a fine scale.

Using this technique, all the pixels from a certain window around a feature point have

obtained the same uncertainty about the location by an amount related to the Gaussian

standard deviation (σ ).

Supposing that the theoretically corresponding points are in the center of the windows,

it should be no positional uncertainty at the central pixel of the patch, and increasing

uncertainty level related to more external features. However, the standard methodology

introduces uniform positional blur in the window. Therefore, is not the most appropriate

one as it is been introduced more positional uncertainty than the one required in the central

area of the window and maybe less positional uncertainty than the one required for the

external area of the window.

The advantage of using the geometric blur technique is that the applied blur to the

pixels of the image is proportional to the distance of each pixel to the origin, considering

the origin the central pixel of the patch.

In the developed image mosaicing algorithm in Matlab, this step will be performed

by means of the Matlab function named as: geo blur.m. This function has the following

input and output arguments:

Input arguments:

• image i: d×d matrix representing the 40x40 gray squared feature patch

Output arguments:

• blurred: d×d matrix representing the 40x40 geometric blurred feature patch

In this function the blur is generated by means of the B=imgaussfilt(A,sigma) func-

tion that is already defined in Matlab. This function filters image A with a 2 dimensional
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Gaussian smoothing kernel with a standard deviation defined by the value of sigma. The

bigger the sigma value, the blurrier the image.

Downsample to 8x8:

Once the 40×40 geometric blurred feature patch descriptor has been obtained it will

be downsampled to 8×8.

Normalization:

Finally, the feature patch will be normalized in order to have a mean of 0 and a stand-

ard deviation of 1.

In the developed image mosaicing algorithm in Matlab, the whole feature descriptor

step will be performed by means of the Matlab function named as: f eat desc geoblur.m.

This function has the following input and output arguments:

Input arguments:

• image i: H×W matrix representing the gray scale matrix that it is being analyzed.

• x corners i: n×1 column matrix with the x coordinates of the corner points. It

corresponds with the x value that was the output from the anms.m function defined

previously.

• y corners i: n×1 column matrix with the y coordinates of the corner points. It

corresponds with the y value that was the output from the anms.m function defined

previously.

Output arguments:

• descriptor: a 64×n matrix of double values with column i being the 64 dimensional

descriptor computed at location (xi,yi) in image i.
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The f eat desc geoblur.m function can be explained by means of the following pseudo-

code:

Pseudocode of the ”feat desc geoblur.m” function

N: number of corner points

for i=1 to N do

1. A 40×40 feature patch it is obtained around each corner point.

2. A 40×40 geometric blurred feature patch is obtained around each corner point using

the geo blur.m function.

3. The 40×40 patch descriptor is downsampled to 8x8

4. The 8×8 patch descriptor is normalized in order to have a mean of 0 and a standard

deviation of 1.

5. The obtained 64 dimensional descriptor around the i corner point will be saved in

the i column of the output matrix named descriptor.

end

3.1.4 Feature matching. Computing homography

Given multi-scale oriented patches extracted from all n images. The goal of the matching

step is to find geometrically consistent feature matches.

In the developed image mosaicing algorithm in Matlab, this step will be performed by

means of the feature match.m function. This function has the following input and output

arguments:

Input arguments:

• descriptor1: a 64×n1 matrix of double values with column i being the 64 dimen-

sional descriptor computed at location (xi,yi) in image 1. It corresponds with the
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output descriptor value obtained from applying the feat desc geoblur.m function to

image 1.

• descriptor2: a 64×n2 matrix of double values with column i being the 64 dimen-

sional descriptor computed at location (xi,yi) in image 2. It corresponds with the

output descriptor value obtained from applying the f eat desc geoblur.m function

to image 2.

Output arguments:

• match is n1×1 vector of integers where match(i) points to the index of the descriptor

in “descriptor2” that matches with the descriptor “descriptor1(:,i)”. If no match is

found, match(i) = -1.

The objective will be to find a set of candidate feature matches using an approximate

nearest neighbour algorithm. In this case it will be used the “KDTreeSearcher” function

already defined in Matlab.

“KDTreeSearcher” is used to store results of a nearest neighbor search using the Kd-

tree algorithm. This algorithm separates an n×K data set by recursively dividing n points

which are in K-dimensional space into a binary tree. This is done by executing the fol-

lowing expression in Matlab:

kdtree = KDTreeSearcher((descriptor2)′)

where (descriptor2)’ is the transpose of “descriptor2”.

Once the KDTreeSearcher model object is created, the stored tree is examined in order

to find all neighboring points to the query data by performing a nearest neighbor search

using “knnsearch”.

“[INDEX,D] = knnsearch(X,Y,K)” finds the nearest neighbor in X for each point in

Y, being X an MX×N matrix and Y an MY×N matrix. Rows of X and Y correspond
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to observations (in this case they will be the 64 dimensional descriptors of each feature

point) and columns correspond to variables (which will correspond with different feature

points in this algorithm). INDEX is a column vector with MY rows, and each of these

contains the index of the nearest neighbor in X for the corresponding row in Y.

Here are some remarks about the “knnsearch” function:

• ’K’: It is a positive integer that specifies the number of nearest neighbors in X to

find for each point in Y. If no value is inserted, 1 is chosen by default.

• INDEX and D are MY×K matrices.

• D sorts the distances in each row in ascending order.

• Each row in INDEX contains the indices of K closest neighbors in X corresponding

to the K smallest distances in D.

In the programmed code, it has been defined K=2, therefore, they will be found 2

nearest neighbors in X for each point in Y.

[idx D] = knnsearch(kdtree, desc′, ′K′, 2)

Where “desc” takes in each iteration a 64 dimensional descriptors of a feature point

from the variable “descriptor1”. So, it will be a 64×1 dimensional column vector.

The condition to accept that a match has been found with the nearest neighbor will be

given by:

SSD o f 1st matching / SSD o f 2nd matching < 0.6 (3.15)

Where SSD is the Sum of Square Differences.

If a match is found then: match(i) = idx(1).

match(i) = idx(1) (3.16)
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However, if no match is found:

match(i) =−1. (3.17)

The “knnsearch” function will be executed n1 times, as in each iteration it considers

one different feature point from the variable “descriptor2”.

To sum up this section, the feature match.m function can be explained by means of

the following pseudocode:

Pseudocode of the “feature match.m” function

n1: number of feature points in descriptor1

n2: number of feature points in descriptor2

match: zeros(n1,1)

kdtree = KDTreeSearcher(descriptor2’)

for i=1 to n1 do

1. desc = descriptor1(:, i)

2. Apply the “knnsearch” function to desc by:

[idxD] = knnsearch(kdtree,desc′,′K′,2)

3. Save the two matches that are obtained. They correspond with the idx(1) and idx(2)

columns in the “descriptor2” variable

4. See if the criteria in Equation 3.15 is verified

5. If it is verified, then match(i) = idx(1). If it is not verified, match(i) = -1.

end
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3.1.5 Outlier rejection by RANSAC

RANSAC (Random Sample Consensus) is the most habitually used algorithm to perform

homography. Homography consists on removing the corners that do not belong to the

overlapping area.

The idea of this algorithm is very simple as explained in (Ghosh and Kaabouch,

2016b): for an N number of iterations a random sample of 4 correspondences is chosen

and a homography matrix H is calculated from those four correspondences. After that,

each correspondence will be defined as an inlier or outlier according to their concurrence

with the obtained homography matrix. Once all the iterations are performed, the one that

had the highest number of inliers is chosen. Finally, H can be recalculated considering

only the correspondences that were classified as inliers in that iteration.

When the RANSAC method is applied, there are important issues that need to be

considered. On the one hand, it should be chosen a condition in order to classify corres-

pondences as inliers or outliers. On the other hand, it should be chosen also the value of

N, that is, the number of times that the algorithm will be run. This number must guarantee

that at least one of the samples will have no outliers. In the developed Matlab algorithm,

N will be defined as 1000. Then, the algorithm has the following steps:

1. Select N number of iterations.

2. Determine a threshold T: this will be threshold on distance used to determine if the

transformed points agree.

3. Choose a random sample of 4 correspondences.

4. Calculate the homography matrix with the chosen sample.

5. Find the number of data items that fit the model, that is, the number of inliers. In

order to determine if the transformed points are inliers or outliers it is used the

threshold (T) value defined before.
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6. It will be defined K as the number of inliers in that iteration.

7. If K is bigger than the ones in previous iterations save that homography matrix.

8. Repeat steps 3-6 N times.

In the developed image mosaicing algorithm in Matlab, the outlier rejection will be

performed by means of the Matlab function named as: ransac est homography.m func-

tion, which has the following input and output arguments:

Input arguments:

• x 1, y 1, x b, y b: They are the corresponding point coordinate vectors (x, y) of

size N×1 of the corner points of the i and the base images respectively. That is,

each (x1(i), y1(i)) matches (xb(i), yb(i)) after a preliminary matching.

• threshold: It is the threshold on distance used to determine if transformed points

agree.

Output arguments:

• H: It is the 3x3 homography matrix computed in the final step of RANSAC.

• inlier index: It is the column vector with the indices of the points in the arrays x 1,

y 1, x b and y b that were found to be inliers.

Computing the plane to plane homography matrix

Now, it will be explained the procedure of computing the homography matrix from

source (x,y) to destination (X,Y). Under perspective projection corresponding points are

related by:

X = Hx (3.18)
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From equation 3.18 each point correspondence between 2 images provides two linear

equations in the H matrix elements. Therefore, for n correspondences it is obtained a

system with 2n equations in 8 unknowns. So, if n = 4 then an exact solution is achieved.

However, if n > 4, the matrix is over determined and therefore, H would need to be

calculated by an adequate minimization scheme.

It should be taken into account that the covariance of the estimated homography mat-

rix H is influenced by two different factors: the errors in the position of the points used

for its calculation and the estimation method used.

There are three standard methods for estimating H:

• Non-homogeneous linear solution

• Homogeneous solution

• Non-linear geometric solution

Homogeneous estimation method

If the homography matrix H is written in the following vector form:

h = (h11,h12,h13,h21,h22,h23,h31,h32,h33)
T (3.19)

the homogeneous equation 3.18 for n points becomes Ah=0, being A the 2n x 9 matrix
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defined as:

A =



x1 y1 1 0 0 0 −x1X1 −y1X1 −X1

0 0 0 x1 y1 1 −x1Y1 −y1Y1 −Y1

x2 y2 1 0 0 0 −x2X2 −y2X2 −X2

0 0 0 x2 y2 1 −x2Y2 −y2Y2 −Y2

...
...

...
...

...
...

...
...

...

xn yn 1 0 0 0 −xnXn −ynXn −Xn

0 0 0 xn yn 1 −xnYn −ynYn −Yn



(3.20)

It is a standard result of linear algebra that the vector h that minimizes the algebraic

residuals |Ah|, subject to |h|=1, is obtained by the eigenvector of least eigenvalue of AT A.

It is possible to obtain directly the value of this eigenvalue from the SVD of A. This is

performed by the “svd” function that it is already defined in Matlab. In the case of n = 4,

h is the null-vector of A and the residuals are zero.

In the developed image mosaicing algorithm the function that calculates H given 4

correspondences is called est homography.m. This function has the following input and

output arguments:

Input arguments:

• X,Y: They are the coordinates of the destination points, which in this case corres-

pond to the ones in the base image. Each variable is a column vector of length

4.

• x,y: They are the coordinates of the source points, which in this case correspond to

the ones in the base image. Each variable is a column vector of length 4.

Output arguments:

• H: It is the homography matrix that verifies Equation 3.18
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3.1.6 Image homographic warping and stitching

Image warping is the step in which the image is digitally manipulated such that any shapes

portrayed in the image are significantly distorted. So, warping is performed in order to

correct image distortion. In this step, images are aligned into a common coordinate system

using the previously calculated geometric transformations (H).

First, the size of the output mosaic is calculated by computing the range of warped

image coordinates for each input image. This can be performed easily by mapping four

corners of each source image forward and calculating the minimum and maximum x and

y coordinates in order to establish the size of the output mosaic.

Then, the x-offset and y-offset values which determine the offset of the reference

image origin relative to the output panorama are computed.

The last step is to use the inverse warping for mapping the pixels from each input

image to the plane defined by the reference image. Both images are stitched by merging

pixel values of the overlapping regions and retaining the pixel values where there is no

overlap.

3.1.7 Image blending

Image blending is the final step of image mosaicing algorithms. In this step, pixels colours

of the overlapped region are blended in order to avoid seams. As it has been explained

in the literature review there are different techniques to perform the blending. However,

in this project is has been chosen the feathering-based one because it is easy to imple-

ment, fast and it performs well under exposure differences. This technique uses weighted

averaging colour values to blend the pixels of the overlapped regions.

Usually it is defined an alpha factor which has its highest value in the centre pixel and

becomes zero after decreasing linearly to the border pixels in the image. In the developed

algorithm in Matlab a distance map is computed in terms of Euclidean distance of each
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valid pixel from its nearest invalid pixel. This is performed by using the dist2border

function defined inside the function mymosaic.m. This function uses the bwdist function

which is already defined in Matlab.

Therefore, the values of the pixels that are located in the overlapped regions between

two images will be calculated as follows. Given two photos Img1 and Img2 with some

overlapping in the output mosaic, each pixel (x,y) in photo Imgi is represented as:

Imgi(x,y) = (αiR, αiG, αiB, αI) (3.21)

where (R,G,B) are the color values at the pixel.

So, it will be computed the pixel value in the position (x, y) in the output mosaic as:

Value(x,y) =
(α1R, α1G, α1B, α1)+(α2R, α2G, α2B, α2)

α1 +α2
(3.22)

In the code, it will be defined a parameter p as follows:

p =
dist2border(Img1)

dist2border(Img1)+dist2border(Img2)
(3.23)

Finally, developing Equation 3.22 the following expression that calculates the pixel

values of the overlapped regions is obtained:

Value(x,y) =
α1Img1 +α2Img2

α1 +α2

=
α1

α1 +α2
Img1 +

α2

α1 +α2
Img2

= p∗ Img1 +
α2 +α1−α1

α1 +α2
∗ Img2

= p∗ Img1 +(1− p)p∗ Img2

(3.24)
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3.2 Mobile tasking

The efficient cooperation of multiple UAVs, which is defined as task allocation, is a funda-

mental part in order to achieve the mission success. In this research, the mission scenario

is an area of high interest in which certain waypoints or tasks have been placed.

Therefore, the aim of the sensor placement problem will be to decide where the

sensors should be placed, taking into account that there are M candidate locations, and

N<<M sensors. So, each UAV or sensor platform should have allocated some positions

in the mission scenario where they should go and take a photograph. In addition, once

that each sensor has allocated some positions it should be selected the sequence in which

the tasks should be visited by each UAV in order to minimize the travelled distance.

Therefore, the task allocation algorithm can be divided in three steps:

1. Select the most appropriate tasks in order to maximize the amount of information

obtained by the sensors in the shortest possible time. This will be performed using

a Greedy algorithm which is based, as it will be explained later, in maximizing a

submodular function f.

2. Once the required tasks are selected, they should be divided in N clusters, being N

the number of UAVs that are being used.

3. Finally, the task sequence inside each cluster should be chosen, with the condition

of minimizing the travelled distance by each UAV.

3.2.1 Greedy algorithm

The essential part of Greedy algorithms is to define properly the objective function f. In

this case, this objective function will be the fundamental part of the integration between

the mosaicing and the mobile tasking parts, and therefore, it will be necessary to develop

a submodular function which can reflect the performance of mosaicing.
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In this study, the objective connected to the purpose of the study is to maximize the

amount of information obtained by the images, as this will provide a complete output

mosaic with no missing parts.

First, it should be defined what a submodular function f. Submodular functions are

functions that exhibit a natural diminishing returns property, which means that the mar-

ginal benefit of any given element decreases as more elements are selected. Defining it

mathematically, a submodular function f : 2V → R assigns a subset A⊆V a utility value

f (A) such that:

f (A∪{i})− f (A)≥ f (B∪{i})− f (B) (3.25)

for any A⊆ B⊆V and i ∈V \ B. Where V is called the ground set.

This definition expresses that adding an element i to a subset A of set B yields at least

much value (or more) as if i is added to B. In other words, the marginal gain of adding i

to A is bigger or equal to the marginal gain of adding i to B.

In this project, the area of interest will be divided in squares as it can be seen in Figure

3.3, being the corners of these squares the tasks or waypoints where the UAVs could take

a picture.

So, in the problem they will be considered a fixed number of UAVs, that will be

defined as N, and M tasks.

As it has been mentioned before, in order to apply a Greedy algorithm it is important

to define a suitable submodular objective function. In this case, the objective will be

defined as maximizing the coverage area obtained by all the images, because logically the

bigger the coverage area, the more information will be obtained, and therefore, a better

final mosaic will be achieved.

It will be assumed there is a dwaypoints distance between waypoints, and that when a

UAV takes a picture in the position (x, y) it is covering a square area of of side 2×dwaypoints.
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Figure 3.3: Tasks in the area of interest

However, this will not be completely true, since in reality it is covering a bigger size,

which is necessary in order to guarantee overlapping regions between the images.

In order to explain the methodology of this step it will be assumed there is a small

number of UAVs, for example N = 4, and that all the squares that appear in Figure 3.3

refer to areas that should be covered by the UAVs.

In order to achieve the objective in an optimal way, the following Greedy algorithm

will be executed for maximizing the coverage area.

Pseudocode of the Greedy algorithm for maximizing the coverage area

Input: t1, t2, t3,..., tM ⊆V

Output: S (Selected tasks)

begin

• S← Ø It begins with an empty set S.

• V′ = V = {t1, t2, t3,..., tM}

• while there exists ti ∈V ′ such that ∆ f (ti |S)> 0 do

(While the marginal gain of adding one element is greater than zero)
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– Let ti be the element of V ′ maximizing ∆ f (ti |S)

ti = arg max
ti

∆ f (ti |S)

– Add ti to S

S = S ∪ {ti}

– Delete ti from V ′

V ′ = V ′ - {ti}

• end

So, as it can be seen in the above pseudocode the algorithm has only one input ar-

gument, which is a set V with all the possible waypoints in which the UAV can take

an image. Then, the algorithm starts with an empty set S, and in each iteration it adds

the element that maximizes the objective function f while the marginal gain of adding

one element is greater than zero. Therefore, this algorithm will stop once all the area of

interest is covered by the drones.

Finally, after running the Greedy algorithm for the above case the following tasks that

appear in Figure 3.4 are selected.

Figure 3.4: Tasks in the area of interest
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3.2.2 Clustering

Once all the tasks have been selected, each UAV should be assigned a certain number of

tasks. Obviously, this will not be performed randomly, as it is required the mission to last

the shortest possible time. In order to achieve this objective, clustering will be a good

alternative.

In this project, this step will be performed using K-means clustering. K-means clus-

tering is a kind of unsupervised learning, which is useful when there is some unlabeled

data that want to be separated in different groups. So, the objective of this algorithm is to

find K groups in the given data. After applying this technique:

1. Each data point will be assigned to a single cluster

2. Each cluster will have a fixed centroid

One of the important parameters when applying this algorithm is to choose the value

of K. However, in the developed task allocation algorithm in Matlab K will coincide with

the number of UAVs, that is, with N.

The K-means clustering algorithm uses an iterative method to find the final result. The

input arguments to the algorithm will be:

• The data set: It will be a list with the coordinates (x,y) of all the tasks that have

been selected in the previously run Greedy algorithm.

• Number of clusters K: As it has been mentioned, this will be the same as N.

Now, they will be explained the different steps of this clustering algorithm. First, they

are randomly generated the centroids of the K clusters, which will be named as: µ1, µ2,

µ3,..., µK . However, the result of this algorithm will be influenced by the initial locations

of the clusters’ centroids. That is the reason why in the developed Matlab algorithm it

has been applied a method to select those initial positions, with the objective of achieving

good results at the end.
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Therefore, the following steps are performed to initialize the K cluster centroids:

1. θ = 2π

K

2. Define a point (xre f ,yre f ) which is located in the centre of the interest area. That is:

xre f =
xlength

2 and yre f =
ylength

2 .

3. Define a radius r =
√

(xre f )2+(yre f )2

3

4. for i=1 to K do

xcentroid(i) = xre f + r ∗ cos (2i−1)θ
2

ycentroid(i) = yre f + r ∗ sin (2i−1)θ
2

end

After that, the algorithm iterates between the two following steps until a defined stopping

criteria is met.

1. Assign data to clusters

In this step, taking into account that each cluster is defined by the position of its centroid,

each task will be allocated to its nearest cluster centroid. More formally, considering there

are m data points, for each of them it should be found the ki cluster that minimizes the

Euclidean distance between the task position and the cluster centroid, that is:

min
ki
||xi−µk|| for i=1, 2, 3,...,m (3.26)

2. Update the positions of the centroids

The centroid of each cluster is recalculated. This is performed by computing the mean of

the data points that have been assigned to each cluster. So, assuming that Sk is the set of

points that have been assigned to cluster k:

µk =
1
n

n

∑
i=1

xi xi ∈ Sk (3.27)
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where nk are the number of points that have been assigned to cluster k.

So, the K-means clustering algorithm will go iterating between the previous two steps

until the stopping criteria is verified. In this case, the algorithm will stop if no cluster

changes its data points after one of the iterations.

For the example it is being analyzed above they were already selected the tasks that

should be performed. So, the first step for the clustering part was to compute the ini-

tial centroids of the clusters, which allows to obtain the following positions indicated in

Figure 3.5.

Finally, the K-means clustering algorithm is run, which will provide the final result

after two iterations as it can be seen in Figures 3.6 and 3.7.

Figure 3.5: Initial centroid positions
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Figure 3.6: Task distribution among clusters after the first iteration

Figure 3.7: Task distribution among clusters after the second iteration

3.2.3 Task sequence selection

Once the task allocation issue is performed each UAV has a set of tasks to perform, that is,

a set of positions to visit. As the endurance of the UAVs is limited, it will be necessary to

travel to all these positions trying to minimize the total travelled distance by each drone.

This problem will be faced as it was mentioned in the literature review as a case

of the Travelling Salesman Problem (TSP). In the developed mobile tasking algorithm in

Matlab it has been programmed a code based on the Held-Karp algorithm (Held and Karp,

1961). This algorithm solves the TSP using dynamic programming (DP). Therefore, it is
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guaranteed to provide an optimal result, but the number of tasks will be limited as the

time complexity of the algorithm is O(2nn2).

In the developed Matlab algorithm the function that solves the TSP is called tsp.m.

This function has the following input and output arguments:

Input arguments:

• tasks: It is an n×2 matrix with the locations of the tasks. These tasks will all

correspond to the same cluster.

Output arguments:

• optimaltour: It is a vector with the indices of the tasks, according to the optimal

route to perform all the tasks.

• mindistance: The total length of the optimal route.

The Held-Karp algorithm applies the following property of the TSP: Every subpath of

a path of minimum distance is itself of minimum distance.

Therefore, when trying to find the shortest path, instead of looking at every possible

permutation using a simple ”top-down” method, it is used a ”bottom-up” method. The

advantage of this technique is that all the intermediate information which is necessary in

order to solve the problem will be calculated once and only once.

So, the first step will be the smallest subpath. Then, at each step a larger subpath is

solved, making it possible to look up the results of all the smaller subpath problems that

have been previously calculated.

Hence, the time required to solve the problem is reduced because it has already been

found a solution for all the smaller subpaths and these savings compound exponentially

(at each higher subpath level). However, the main disadvantage is that a large memory is
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required to solve the problem, as all the intermadiate path results need to be saved until

the end.

Here it is a pseudocode of the algorithm it has been implemented in Matlab that was

taken from Wikipedia.

Where:

It is assumed that the route begins at task 1.

di, j: distance between task i and task j

n: number of tasks

C(S,k): minimum distance starting in task 1, visiting all the tasks in S and finishing

in task k

function algorithm for the TSP (G, n)

for k := 2 to n do

C({k}, k) := d1,k

end for

for s := 2 to n-1 do

for all S ⊆ {2, . . . , n}, |S| = s do

for all k ∈ Sdo

C(S,k) := minm 6=k, m∈S [C (S\{k}, m) + dm,k]

end for

end for

end for

opt := minm6=1 [C ({2,3, ...,n}, k) + dk,1]

return(opt)

end
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Finally, the TSP algorithm will be run for the example it has been considered. So,

after running the tsp.m Matlab function N times, that is, one per cluster, the following

routes are obtained for each of the UAVs:

Figure 3.8: Optimal task sequence for each UAV
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Chapter 4

Results and Analysis

In this chapter the procedure that has been followed to validate each part of the project

will be explained. In order to do that, the obtained results will be shown and analyzed.

4.1 Image mosaicing algorithm

First, the performance of the image mosaiciing algorithm will be validated. This can be

easily done by proving that the algorithm returns a well built final mosaic when a number

of images of the same scene with some overlapping areas are introduced as the input data

of the algorithm.

The algorithm was run first with the following input images of Figure 4.1. As it can be

seen, all the images correspond to the same scene and were taken from the same point but

pointing to different directions. Therefore, once they are stitched they should complete a

panoramic image.

After running the algorithm the output mosaic of Figure 4.2 is obtained. As it can

be seen all the feature points of each image must have been well identified and matched

with their corresponding points of other figures, as the images have been perfectly stitched

among them. Therefore, as this mosaic represents perfectly the complete scene it has been

demonstrated that the image mosaicing code works properly with this kind of images.

49
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Figure 4.1: Input images to the image mosaicing algorithm

Figure 4.2: Obtained output mosaic from the image mosaicing algorithm
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The above considered images have a lot of features points, as the image shows dif-

ferent buildings with very noticeable corners on them. This fact makes it easier for the

algorithm to find a good final solution. As it has been explained in the introduction, this

project is based in the Thales Watchkeeper, which is an unmanned aircraft system de-

signed specially for military purposes. Then, the mission areas in which it operates are

not usually the centre of a city. That is the reason why it has been decided to validate the

image mosaicing algorithm for images with more sparse features like the ones shown in

Figure 4.3.

Figure 4.3: Input images (with more sparse features) to the image mosaicing algorithm

Running the algorithm the mosaic which is shown in Figure 4.4 is obtained. In addi-

tion, even if this images have much less quality than the ones considered previously, the

algorithm has been proven to continue working.
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Figure 4.4: Obtained output mosaic from the image mosaicing algorithm (input images
with more sparse features)

4.2 Task allocation

4.2.1 Validation of the task selection algorithm

As it has been explained in Chapter 3, given a certain mission area the task allocation

algorithm consisted on three steps:

1. Task selection algorithm: A certain number of tasks are selected trying to maximize

the coverage area.

2. Task allocation to each UAV

3. Selection of the shortest route to be performed by each UAV

In this section it will be validated the proposed Greedy algorithm for the first step.

This algorithm selects tasks with the objective of maximizing the coverage area by all the

UAVs. In addition, one of its advantages is that given a certain mission area and a distance

between these waypoints, the algorithm is capable of calculating the minimum number of

tasks which are necessary to cover all the area.

The validation will be carried out by means of a comparison, that is the performance

of the results obtained with the proposed algorithm will be compared by the one obtained
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by a randomized approach. That is, in the randomized approach there should be selected

the same number of tasks (m) that in the Greedy algorithm, but their positions should be

randomly chosen among all the possible tasks. As there is an element of randomness in

the simulation, the Monte Carlo method will be used in order to asses its the performance.

Let be assumed the following mission area of Figure 4.5. A number M of tasks have

been defined inside that area, being M in this case 91. Therefore an m number of tasks

should be selected until all the interest area is covered by the UAVs. After running the

proposed Greedy algorithm 37 tasks have turned to be chosen as it is shown in Figure 4.6.

So, it can be stated that given that mission scenario it is possible to achieve a complete

coverage area by suitably selecting 37 tasks.

Figure 4.5: Tasks in the area of interest

Now, the following Monte Carlo simulation will be applied. They will be selected

as well 37 tasks among all, but in this case their positions will be randomly selected

assuming that all the tasks have the same probability to be chosen. Once these tasks have

been chosen the percentage of the total mission area they cover, that is, their coverage

area, will be calculated. This Monte Carlo simulation has been performed for N=200

different cases, and the following results have been obtained.



54 CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.6: Selected tasks in the area of interest

The mean coverage area was resulted to be a 71%, which is much less than the one

obtained from the Greedy algorithm. In addition, the following graph was obtained, in

which the probabilities of achieving each percentage of covered area are indicated.

Figure 4.7: Probability of achieving a certain coverage area

As it can be seen in N=200 iterations there was no case in which a 100% coverage area

was achieved. The maximum coverage area was resulted to be 83%. So, in the performed

Monte Carlo simulation the coverage are was resulted to be between the 59% and the
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83%.

It can be concluded then, than the proposed algorithm to select the positions in which

the UAVs should be placed performs much better than the approach of randomly choosing

these positions.

4.3 Integration of image mosaicing and mobile tasking

4.3.1 Simulation

Finally, the complete project, that is, the integration of image mosaicing and task alloc-

ation, should be validated. As there was no time for hardware demonstration with real

UAVs, it was decided to validate the proposal by means of a Matlab simulation.

The simulation will be performed in the following way. Let be assumed there is a

certain mission area. In this case, the mission area will correspond with an image of

dimensions H×W. After running the task allocation algorithm in that image, there will

be selected some waypoints among all. In addition, each UAV will have a trajectory

assigned, in which it will be indicated which are the positions where it should stop in

order to take a picture. So, it will be made the UAVs fly over the image taking pictures

in the positions that were selected by the task allocation algorithm. After that, a set of

images will be obtained by each UAV which will need to be stitched. In order to do that,

first they will be stitched the images obtained by each UAV, that is, all the images that

correspond to the same cluster will be stitched together. Once this N mosaics have been

obtained, being N the number of UAVs, the image mosaicing algorithm will be run one

last time with these N mosaics as input arguments in order to obtain the last complete

mosaic. If the simulation performs properly, the obtained last mosaic should coincide

with the image that was considered to be the mission area.

Now, different simulations will be done in order to analyze the validity of the project

and find the limitations that this has. That is, the drones will need to coordinate in an
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optimal way, trying to cover all that area in the shortest possible time.

Simulation 1:

First, the following Notting Hill (London) image will be considered as the “mission area”.

Figure 4.8: Mission area for simulation 1

The dimensions of the area that are introduced in the task allocation algorithm corres-

pond with the dimensions of this image. So, in this case, as it is a 609×1200 pixel image,

it will be assumed a 600×1200m2 mission area. As it can be seen, the input dimensions

in the task allocation algorithm will be slightly smaller. However, this will suppose no

inconvenient because when a UAV takes a picture in a certain point (x, y), the area it is

covering in reality is a bit bigger than the one considered in the task allocation algorithm.

This fact guarantees that images that are taken in positions that are next to each other

will have a certain overlapping. In addition, the inserted dimensions value will also have

the advantage of obtaining an easier waypoint distribution later, as it is easier to find a

dwaypoints value, which is the distance between waypoints which are next to each other,

that matches perfectly with dimensions X and Y.

After inserting the above mentioned two values for the X and Y dimensions, it has

been defined dwaypoints as 100 metres. Therefore, the following waypoint distribution of

Figure 4.9 has been obtained in the considered mission area.
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Figure 4.9: Waypoint distribution over the mission area for simulation 1

It will be assumed there are 4 UAVs, that is, N=4. So, at the beginning they will be

placed those 4 drones in 4 different positions in the mission area. These will be considered

the starting points of each UAV. These positions are indicated in red in Figure 4.10.

Figure 4.10: Initial UAV positions in the mission area for simulation 1

After that, the developed Greedy algorithm will select the set of tasks that need to be

performed in order to cover all the mission area trying to minimize obviously the number

of selected tasks. As it has been explained in Chapter 3, the objective function that should

be maximized while running the Greedy algorithm is the coverage area. Therefore, in each

iteration of this algorithm it is selected the task that maximizes the objective function f

while the marginal gain of adding one element is greater than zero. As a consequence of
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this last condition, this algorithm will stop once all the area of interest is covered.

Anyway, it should not be forgotten that in order the mosaicing algorithm to work it

will be necessary to guarantee an overlapping area between the images that are obtained.

This parameter will be analyzed at the end of this validation step, as they will be compared

the results obtained with different overlappings.

In this case, after running the Greedy algorithm it is obtained a set of 23 tasks that

are indicated in Figure 4.11. This means that the UAV should go to those positions in the

mission area and take a photo there.

Figure 4.11: Selected tasks by the Greedy algorithm for simulation 1

Once it has been decided which are the positions in which the images should be taken,

the next step will be to allocate a set of tasks to each UAV. In this case, as there are

4 drones the tasks that were obtained from the Greedy algorithm should be divided in

4 groups, according to the proximity they have among them. That is, tasks should be

divided in 4 clusters applying the K-means clustering algorithm. The initial positions of

the clusters were defined as they are indicated in Figure 4.12.
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Figure 4.12: Initial positions of the clusters’ centroids in simulation 1

As it has been explained previously, the K-means clustering method implies various

iterations, until the positions of the centroids do not vary from the obtained ones in the

previous iteration. In this case, they have been required 3 iterations until the final cluster

distribution is achieved.

In Figures 4.13, 4.14 and 4.15, the task distribution in clusters and their corresponding

centroid positions in each iteration can be seen.

In addition, it is clearly shown that Figures 4.14 and 4.15 are exactly the same. This

makes sense, because as it was explained earlier, the algorithm finishes when there is no

change in the assigned tasks to each cluster from one iteration to another.

Figure 4.13: Distribution of tasks in clusters (after iteration 1) in simulation 1
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Figure 4.14: Distribution of tasks in clusters (after step 2) in simulation 1

Figure 4.15: Distribution of tasks in clusters (after step 3) in simulation 1

After that, the Held-Karp algorithm is applied in order to obtain the trajectory that

each UAV should follow so that the time used by each of them to go over all the tasks is

the minimum one. This trajectories are indicated in Figure 4.16

Figure 4.16: Final cluster distribution and minimum path for each UAV in simulation 1
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Once all the task allocation algorithm has been run, each UAV will fly over the image

of Figure 4.8. Therefore, each selected task will be related with one position in the image.

These positions are indicated in Figure 4.17.

Figure 4.17: Positions in which the UAVs will take a photograph during the simulation 1

So, in this case there will be obtained 23 images (see Appendix A) that should be

stitched with the developed image mosaicing algorithm. This will be performed in two

different steps:

1. It will be formed a mosaic with the corresponding images of each UAV. That is, the

mosaicing algorithm will be run N=4 times.

2. Once the N mosaics which correspond to the different clusters are obtained, it will

be executed the mosaicing algorithm one last time in order to obtain the final mo-

saic.

It can be seen in Figure 4.18 the results obtained after the first step, that is, the obtained

mosaic for each of the clusters.
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(a) Cluster 1 (dark blue)

(b) Cluster 2 (green)

(c) Cluster 3 (pink)

(d) Cluster 4 (cyan)

Figure 4.18: Obtained mosaic for each of the clusters in simulation 1
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After performing the second step, the final mosaic of Figure 4.19 has been obtained.

Figure 4.19: Final mosaic in simulation 1 1

It should be remarked that this procedure has been developed numerous times with

different overlapping areas between images. After performing an analysis about the re-

quired overlapping in order to obtain a good final mosaic, it has been concluded that it

is required a minimum overlapping of 50% between two images that are located next to

each other to guarantee the quality of the final result.

Finally, comparing images from Figures 4.8 and 4.19, it can be affirmed that the ob-

tained final mosaic covers all the mission area, as it is a perfect copy of that Notting Hill

street it has been used for the simulation. Therefore, the integration of image mosaicing

and task allocation has been validated.

Simulation 2:

Now, it will be carried out a second simulation in order to prove that good results are

obtained for a wide variety of images.

The next considered mission area for the simulation, will be the image in Figure 4.20.

1Image obtained from https://www.theresident.co.uk/homes-interiors/move-over-shoreditch-notting-
hill-is-proving-west-is-best/
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This image is very different to the one considered in the previous simulation, as it is a

landscape. In addition, as it is a 2108× 3360 pixel image, it will be assumed a 2000×

3500m2 mission area. So, after inserting these two values for the X and Y dimensions it

has been defined the dwaypoints value as 250 metres. Therefore, the following waypoint

distribution of Figure 4.21 has been obtained in the mission area.

Figure 4.20: Mission area for simulation 2 2

Figure 4.21: Waypoint distribution over the mission area for simulation 2

It will be assumed as well that there are 4 UAVs, that is, N=4. So, at the beginning

2Image obtained from https://www.pexels.com/search/landscape/
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they will be placed those 4 drones in the following 4 positions in the mission area, which

are indicated in red in Figure 4.10.

Figure 4.22: Initial UAV positions in the mission area for simulation 2

After that, the developed Greedy algorithm will select the set of tasks that need to be

performed in order to cover all the mission area in an optimal way, that is, by using the

minimum number of tasks. In this case, it was obtained a set of 37 tasks that are indicated

in Figure 4.23.

Figure 4.23: Selected tasks by the Greedy algorithm for simulation 2

The next step is to allocate a certain number of tasks to each UAV, which is done using

the clustering method. Therefore, as there are 4 UAVs, the previously obtained tasks will

be divided in 4 clusters. The initial positions of the clusters were defined as they are

indicated in Figure 4.24.
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Figure 4.24: Initial positions of the clusters’ centroids in simulation 2

In this case, they have been required 2 iterations until the final cluster distribution is

achieved. In Figures 4.25 and 4.26 the task distribution in clusters and their corresponding

centroid positions in each iteration can be seen.

Figure 4.25: Distribution of tasks in clusters (after iteration 1) in simulation 2

Figure 4.26: Distribution of tasks in clusters (after iteration 2) in simulation 2
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To end with the task allocation algorithm, the trajectories that each UAV must perform

are calculated with the Held-Karp algorithm. These trajectories are indicated in Figure

4.27.

Figure 4.27: Final cluster distribution and minimum path for each UAV in simulation 2

Then, the simulation where the UAVs ”fly” over the image starts. As it can be seen in

Figure 4.28, each task will be related with one position in the image.

Figure 4.28: Positions in which the UAVs will take a photograph during simulation 2

So, in this simulation they will be obtained 37 images (see Appendix B) that should
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be stitched together in order to obtain the final mosaic.

It can be seen in Figure 4.29 the mosaic obtained for each of the clusters, and in Figure

4.30 the final mosaic.

(a) Cluster 1 (dark blue)

(b) Cluster 2 (green)

(c) Cluster 3 (pink)

(d) Cluster 4 (cyan)

Figure 4.29: Obtained mosaic for each of the clusters in simulation 1



4.3. INTEGRATION OF IMAGE MOSAICING AND MOBILE TASKING 69

Figure 4.30: Final mosaic in simulation 2

Finally, comparing images of Figures 4.20 and 4.30 it can be affirmed that the mo-

saic represents perfectly the original image, and therefore, the integration between image

mosaicing and task allocation has been validated.

4.3.2 Changes in the number of UAVs to deal with broken drones

In this section, it is going to be proved that the system can continue working when for

some reason one of the UAVs in unable to contribute. This might happen when a drone

gets lost or needs to be charged.

So, let assume the mission area of the first simulation, that is, the Notting Hill image

of Figure 4.8. At the beginning it was considered there were N=4 UAVs, but suddenly one

of them stops working, and so, it will not be able to perform any task. In this situation,

the algorithm is capable of reprogramming everything in order to divide the same selected

tasks by the greedy algorithm in (N-1) clusters, that is, in this case they will be divided in

3 clusters.

The procedure followed from this point on is exactly the same to the previous simula-

tions. First, the initial positions of the clusters are defined as they are indicated in Figure

4.31.
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Figure 4.31: Initial positions of the clusters’ centroids in simulation 3

After that, the K.means clustering method will be applied. In this case, the final cluster

distribution is achieved after two iterations as indicated in Figures 4.32 and 4.33.

Figure 4.32: Distribution of tasks in clusters (after iteration 1) in simulation 3

Figure 4.33: Distribution of tasks in clusters (after iteration 2) in simulation 3
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And after applying the Held-Karp algorithm the following trajectories are obtained

for each of the UAVs.

Figure 4.34: Final clusters and minimum path for each UAV in simulation 3

(a) Cluster 1 (dark blue)

(b) Cluster 2 (green)

(c) Cluster 3 (pink)

Figure 4.35: Obtained mosaic for each of the clusters in simulation 3



72 CHAPTER 4. RESULTS AND ANALYSIS

Then, the simulation where the UAVs ”fly” over the image starts, and the mosaics of

Figure 4.35 will be formed with the images that are taken inside each cluster.

Finally, the mosaic of Figure 4.36 is obtained. As it can be seen, it has been possible

to cover all the mission area with one less drone. However, it should be paid attention to

the number of tasks that are assigned to each cluster with this new clustering distribution.

In this case it has been no problem as the number of tasks per city was less than 14.

Nevertheless, if the number of tasks inside a cluster exceeds this value, the Held-Karp

algorithm will not be able to find a trajectory in a reasonable runtime.

Figure 4.36: Final mosaic in simulation 3
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Conclusions

In this chapter, the overall conclusions of the whole projected are commented. In addition,

possible future work about this thesis and ways of improving the system performance are

suggested.

In the last decades, the presence of UAVs has increased widely in the military word,

as they are able of monitoring or attacking an area of conflict without endangering hu-

man lives. One UAV example is the Watchkeeper X unmanned aircraft system, which is

capable of transmitting high quality images and video securely and reliably to different

locations. However, the main disadvantage of this system is that it is quite big and ex-

pensive. That is why, the trend now is to use multiple smaller UAVs with single cameras

incorporated on them working together as a swarm. This provides several advantages

such as:

• Cost reduction

• Reduction in the time required to fulfill the mission, as the same number of tasks is

performed using a higher number of UAVs.

• More flexible solution: The system can continue working even if a couple of drones

get lost or are unable to contribute for some reason.

73
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In order to obtain high quality images of a certain area by using multiple agents work-

ing together as a swarm, it will be necessary to coordinate their positions in an optimal

way, that is the reason why developing suitable task allocation algorithm for the mission

becomes so important.

The aim of this thesis has been to design a robust system that using a fixed number of

drones with single cameras on them delivers a good resolution picture comparing with the

ones that are obtained from expensive systems. The overall project has been developed in

a simulation environment using Matlab.

The carried work can be summarized in the following steps. First, an image mosaicing

algorithm that stitches multiple overlapping images has been designed. Secondly, given a

certain mission scenario area, a task allocation algorithm that assigns each UAV to certain

positions in the area has been developed. In addition, this algorithm defines the trajectory

that each UAV should follow. After that, the different parts of the project have been

validated independently. And finally, the integration of the image mosaicing and task

allocation algorithms was proved to work properly by means of a simulation in Matlab.

The results obtained will be summarized below.

1. Image mosaicing algorithm

The results obtained in the validation from the image mosaicing algorithm proved that

the developed algorithm worked with a wide variety of images, that is, with images that

had lots of feature points and also with images that had more sparse features. When the

mosaic consisted on images that should just be stitched all of them one after the other in

the same direction, the final result was achieved perfectly. That is, it was enough with

entering all the images at the same time. In addition, the algorithm performed well both

for small and bigger overlapping areas between images.

2. Task allocation: Greedy algorithm

The proposed Greedy algorithm which selected the most suitable tasks in order to cover
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all the mission area was proved to perform better than the method of selecting the same

number of tasks randomly. That is, the Greedy algorithm selects the most suitable tasks in

order to cover all the mission area by using the minimum possible number of UAVs. So,

after performing a Monte Carlo simulation for one of the cases, it was demonstrated that

with 200 iterations, there was no iteration in which the 100% coverage was achieved. The

coverage area resulted to be between the 59% and the 83%, resulting the mean coverage

are to be a 71% of the total one.

3. Integration of image mosaicing and mobile tasking

The integration of these two parts of the algorithm has been performed by means of a sim-

ulation in Matlab, in which the mission area was assumed to be an image of dimensions

H×W. So, it was made the UAVs fly over the image taking pictures in the positions that

were selected by the task allocation algorithm.

In order to stitch correctly all the obtained images, different techniques were tried.

However, the most adequate one resulted the one of forming the mosaic in two steps.

Supposing there are N UAVs, the first step consisted on forming first N mosaics, one

with the images of each cluster. After that, the N obtained mosaics were stitched together

running one last time the image mosaicing algorithm.

The integration between both algorithms was proved to work perfectly when the sys-

tem is formed by 4 UAVs, as the obtained final mosaics represented perfectly the images

that were considered to be the mission area. However, in this part, as it was required

to stitch together multiple images inside an area that were not located in the final mo-

saic just one after the other, it was required a bigger overlapping between images. This

could be also influenced by the fact that all the input images were cut outs of the original

image around a selected point, so if the chosen overlapping region between images was

too small, they would not be enough feature points in the resulting cut out images, and

therefore, the matching step would not be performed appropriately.

Finally, the system has also been proven to be flexible when suddenly a UAV is unable



76 CHAPTER 5. CONCLUSIONS

to contribute. When this happens the system is capable of reprogramming the clustering

algorithm so that it separates the selected tasks in N-1 clusters, being N the number of

UAVs that were at the beginning. Therefore, it is guaranteed that all the tasks will be

performed.

5.1 Future Work

To end, they will me mentions some possible steps to follow with this research research

project:

• Dynamics of the UAVs: In this project it has been assumed that UAVs move from

one position of the space to another one, but it has not been defined the agents’

dynamics. That is the reason why, in order to do a more real simulation it would be

necessary to define their movement dynamics and also their stopping dynamics for

the instant in which the photograph is taken.

• Increase the number of UAVs: The proposed algorithms have been proven to work

appropriately when the number of UAVs that are considered is small. However, it

should be analyzed what happens when this number becomes high. In addition,

having too many agents requires a perfect coordination among them, as it is easier

for them to obstruct each others trajectories.

• More realistic scenario: In this simulation it has been assumed that all the mission

area should be photographed. However, in reality there might be some zones which

are more interesting than others. This could be simulated by defining some prob-

ability density function over the plane that reflects the probability of having some

important information in some of the positions of the mission area.

• Propose other methods to select the most appropriate trajectory inside a cluster:

The idea of finding the shortest path in order to fulfill all the tasks inside a cluster

in the minimum possible time has been faced as a case of the Travelling Salesman
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Problem, which has been proven to be NP-hard. The developed algorithm has been

based on the Held-Karp algorithm that uses dynamic programming to solve this

problem. However, because of the large memory required to solve the problem us-

ing this method, it is not suitable when the number of tasks becomes bigger than 20.

That is the reason why it will be convenient to look in the future for other altern-

ative methods to solve the TSP which are more suitable when the number of tasks

increases.

• Implementation in real scenarios: As a consequence of the limited time that has

been available to develop the project, it has not been possible to test the algorithm

in a real environment. Therefore, a future step would be to implement the proposed

algorithms in a real environment. However, it should be taken into account that in

real scenarios there are many more factors that should be taken into account such as

the environmental conditions, the flight height, the characteristics of the cameras...
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Appendix A

Extra data from simulation 1

These are the cropped images that were obtained from the first simulation.

1

2

3 4

Figure A.1: Obtained cropped images (1-4) from simulation 1

79
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5 6

7 8

9

10

Figure A.2: Obtained cropped images (5-10) from simulation 1
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11 12

13

14

15 16

Figure A.3: Obtained cropped images (11-16) from simulation 1
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17

18

19 20

21 22

23

Figure A.4: Obtained cropped images (17-23) from simulation 1



Appendix B

Extra data from simulation 2

These are the cropped images that were obtained from the second simulation.

1

2

3 4

Figure B.1: Obtained cropped images (1-4) from simulation 2
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5 6

7

8

9 10

Figure B.2: Obtained cropped images (5-10) from simulation 2
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11

12

13 14

15

16

Figure B.3: Obtained cropped images (11-16) from simulation 2
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17

18

19 20

21 22

Figure B.4: Obtained cropped images (17-22) from simulation 2
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23
24

25

26

27 28

Figure B.5: Obtained cropped images (23-28) from simulation 2
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29 30

31 32

33 34

Figure B.6: Obtained cropped images (29-34) from simulation 2
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35
36

37

Figure B.7: Obtained cropped images (35-37) from simulation 2
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