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Abstract 14 

In the present work, several building materials suffering from black crusts and soiled 15 

surfaces were evaluated by scanning electron microscopy energy dispersive X-Ray 16 

spectrometry (SEM-EDS) and micro-Raman spectroscopy. The goal was to examine the 17 

elemental and molecular composition, the distribution on the samples and the 18 

morphology of endogenous and exogenous compounds on those black crusts and soiled 19 

surfaces. The black crusts were deposited over different building materials such as 20 

limestone, sandstone and brick that constitute a small construction called “Malacate” as 21 

well as over a limestone substrate of a cemetery gate. Both constructions are dated back 22 

to the beginning of the twentieth century. The samples of soiling were taken from the 23 

façade of a building constructed in the 1980s. The analytical evaluation allowed in a 24 

first stage the determination of the composition and the observation of the morphology 25 

of soiling and black crusts. In addition, the evaluation of the compositions of the soiling 26 

and black crusts of different grade and formation allowed the assessment of the main 27 

weathering phenomena that the buildings have suffered, which were found to 28 

be:  sulfate impact, marine aerosol impact, depositions of metallic particles, crustal 29 

particulate matter depositions, carbonaceous particles, biodeterioration and vandalism.  30 

 31 
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Introduction 36 

The majority of heritage constructions are constituted by stone and brick materials. 37 

Their outdoor character makes them vulnerable to the atmospheric weathering 38 

phenomena (Doehne and Price 2011) and, among the effects likely to occur, the 39 

formation of black crusts and soiling are of special importance, apart from the 40 

blackening of the surfaces (Brimblecombe and Grossi 2005), because they lead to 41 

physicochemical decay and also act as a pollutant accumulator (Schiavon et al. 2004; 42 

Larseen et al. 2006; Charola et al. 2007; Barca et al. 2010; Barca et al. 2014; Ruffolo et 43 

al. 2015; ) and acting in some cases as natural passive samplers (Morillas et al. 2016a). 44 

Consequently, not only they suppose an aesthetical problem, but in some cases they can 45 

also jeopardize the integrity of a construction. In addition, these crust are prone to 46 

include or accumulate diverse microorganisms and organic compounds in its structure. 47 

Some of these microorganism can bio-synthesize large amounts of hydrated calcium 48 

oxalate (McAlister et al. 2008) or even also promote a physical stress on the building 49 

material (cracks, fissures, etc.) placed at the back of the crust. In fact, it has already 50 

been reported that the accumulation of organic pollutants leads to an increase of 51 

microorganism activity (Potgieter-Vermaak et al. 2005). 52 

Black crust growth is due to the formation of gypsum on surfaces sheltered from water 53 

and attacked by SO2-polluted atmosphere. According to ICOMOS glossary (ICOMOS 54 

2008), black crust is a “Kind of crust developing generally on areas protected against 55 

direct rainfall or water runoff in urban environment. They are composed mainly of 56 

particles from the atmosphere, trapped into a gypsum matrix (CaSO4·2H2O)”. On the 57 

other hand, soiling is a “Deposit of a very thin layer of exogenous particles (e.g. soot) 58 

giving a dirty appearance to the stone surface. […] With increasing adhesion and 59 

cohesion, soiling can transform into a crust” (ICOMOS 2008). 60 

The identification of the particulate matter deposited on stone/brick surfaces plays a 61 

crucial role in the understanding of the type of weathering processes suffering or likely 62 

to be suffered by this kind of substrates (Maguregui et al. 2008). At the same time, they 63 

provide significant information about the surrounding atmosphere, reflecting indirectly 64 

the air quality, which has an important effect in the environment as well as in the human 65 

health.  66 

The nature of the inorganic salts crystallization occurring in the black crusts and soiling 67 
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has been widely studied. Works on the field focused on the study of carbon and metallic 68 

particles depositions and on the characterization of the nature of metallic particles 69 

deposited on black crust are increasing in the last years (Sýkorová et al. 2011, Ruffolo 70 

et al. 2015, Morillas et al. 2016a). 71 

The present work reports a detailed microscopic and chemical characterization of 72 

different altered stone and brick surfaces to shed light on the deterioration mechanisms 73 

happening on heritage buildings due to the influence of urban polluted and coastal 74 

environments.  75 

Regarding the analytical techniques used in the field of building materials analysis, non-76 

invasive techniques based on micro-spectroscopy have gained ground in the last years. 77 

It is especially important the development carried out in the spectral mapping 78 

techniques for the application on building materials that have suffered impact of 79 

atmospheric pollution such as the following spectroscopic techniques: Raman 80 

spectroscopy, infrared spectroscopy, micro X-Ray fluorescence spectrometry, scanning 81 

electron microscopy coupled to energy-dispersive X-Ray spectrometry (SEM-EDS), 82 

laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), etc. 83 

(Watson et al. 2005; Sarmiento et al. 2008; Barca et al., 2010; Barca et al. 2011;  Crupi 84 

et al., 2016; Morillas et al. 2016b, Morillas et al. 2016c). Although such techniques are 85 

commonly used in a non-quantitative way, they allow determining the conservation 86 

state of the materials under study in a first stage. 87 

For this study, SEM/EDS and micro-Raman spectroscopy were chosen because they 88 

allow obtaining the elemental and molecular composition of the compounds embedded 89 

inside the crust. They also allow visualizing the black crusts appearance as well as the 90 

surfaces that have suffered soiling processes. Furthermore, both techniques allow a 91 

micro-invasive characterization of small samples. Moreover, by Raman spectroscopy it 92 

is possible to discern between different calcium sulfate polymorphs depending on their 93 

hydration states such as gypsum or anhydrite, which are of special relevance concerning 94 

the degradation processes that their dissolution/precipitation cycles may imply 95 

(Rodriguez-Navarro et al. 2000; Flatt et al. 2002; Espinosa-Marzal et al. 2010). The use 96 

of micro-spectroscopic techniques for the study of this type of damaged layers has had 97 

an increase in the last years since it provides reliable information about the composition 98 

of them. 99 
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In the present work, black crusts formed on sandstone, limestone and brick substrates 100 

belonging to one century old constructions were sampled, as well as soiling samples 101 

from an approximately 30 years old building façade. All these historical buildings are 102 

located in the metropolitan area of Bilbao (Basque Country, north of Spain). For the 103 

samples characterization SEM/EDS and micro-Raman spectroscopy techniques were 104 

selected. 105 

 106 

Materials and methods 107 

Sampling 108 

All the studied cases are from buildings located in the municipality of Getxo (Biscay, 109 

North of Spain), which belongs to the metropolitan area of Bilbao (Basque Country, 110 

north of Spain). The sites are in an architecturally noteworthy area situated on the coast, 111 

where the Nerbioi-Ibaizabal estuary finishes. This estuary is the major industrialized 112 

area with the highest population density of the North of Spain. Due to its geographic 113 

situation and because of its mineral resources richness, mainly iron, since the nineteenth 114 

century, this area has suffered the rapid growth of industrialization and population 115 

developments with the subsequent pollution problems. These problems were mainly 116 

manifested since the 1930s, but it was not until after the 1960s, when the inhabitants 117 

started to be aware of them. Despite the improvement of the environmental conditions, 118 

the high rates of air pollution during this period are still obvious in many building 119 

surfaces of the area. In order to study if signs of this pollution are evident on different 120 

kind of crusts formed on buildings, two historical buildings and a more recent one were 121 

selected. In total fifteen samples have been considered for this work. All the samples 122 

have been taken at around 1-1.5 meters from the ground level. 123 

Malcate building   124 

This small construction (built around 1900) is one of the remaining constructions that 125 

was built to control the sewage system of Bilbao, as part of the first modern sewage 126 

network of the state. It was a necessary infrastructure for the rapidly growing industrial 127 

society. It was built with rich architectural elements, in terms of materials and structure. 128 

In 1994, the malacate buildings were designated monumental sets of the Basque 129 

Country and in 2004 this specific malacate building located in the municipality of Getxo 130 
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was included inside the list of historic and architectural heritage properties from the 131 

Basque Country. This building presents black crusts on sheltered areas of the three 132 

materials used for its construction: limestone, sandstone and brick (see Figure 1b). All 133 

these materials covered with black crust were sampled for this work. From each 134 

material showing the presence of black crusts three fragments, a biggest one (around 3 x 135 

3 cm) and two fragments smallest (around 0.5 x 0.5 cm), were taken. 136 

The Getxo’s cemetery gate 137 

The Getxo’s cementery gate as the malacate building is already included inside the list 138 

of historic and architectural heritage properties from the Basque Country. This gate of 139 

the beginning of the twentieth century shows black crusts compactly adhered to 140 

sheltered areas of the limestone substrate. It is worth remarking that the gate is situated 141 

opposite to the main rainfall direction (see Figure 1). Three sample fragments of black 142 

crust (one of around 2 x 2 and two of around 0.5 x 0.5 cm respectively) were taken from 143 

these areas.  144 

Talaieta street building 145 

This construction is located in Getxo’s downtown (Biscay, North of Spain). It was 146 

constructed during the last decades of the twentieth century and is one of the typical 147 

buildings of the area. It is under the direct influence of road traffic, marine fog and 148 

potential industrial influence. The cantilever does not allow the washing of the zones 149 

that it covers, promoting the concentration of soiling in this part, hence in the present 150 

work was only regarded the lowest part of the building (at around 1 m above ground 151 

level). The damaged façade is constituted by brick shaped limestones. The limestones 152 

with lowest impact show a yellowish color. On the contrary, the most affected ones 153 

show a grayish colour. The natural yellow hue of the stone is given by the presence of 154 

iron as part of its composition. Three fragments of crusts of 3 x 3 (one) and 0.5 x 0.5 155 

(two) cm respectively were taken from the grayish affected area. 156 

Instrumentation 157 

Scanning electron microscopy X-Ray energy dispersive spectrometry 158 

(SEM/EDS)One sample of each different material and location was selected for the 159 

microscopic evaluation. The criteria for the election were both the quantity and the 160 
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morphology, selecting in this way samples showing the major quantity of crust, and as 161 

much flat as possible. All the considered samples were metallized using gold, and then 162 

studied using an EVO 40 (Carl Zeiss) SEM equipment. The elemental composition of 163 

samples was determined by an energy dispersive EDS, using an X-Max (Oxford 164 

Instruments) equipment. Data were collected at two different voltages of 20 and 30 keV 165 

and a current of 50 μA for the acquisition of images, and 200 μA for the acquisition of 166 

spectra. The working distance ranged between 9 and 11 mm. The EDS spectra were 167 

acquired and treated using the INCA software (Oxford Instruments).  168 

The SEM analysis coupled to EDS and processed by the INCA program, permits the 169 

elemental analysis of selected particles previously seen by SEM. Furthermore, a 170 

mapping of specific microscopic areas in the samples is possible, allowing the 171 

evaluation of the distribution of these elements over the sample. Additionally, it 172 

provides semi-quantitative data in terms of weight percentages of the detected elements. 173 

It is necessary to underline that the SEM/EDS semi-quantitative data provided in this 174 

work are just indicative and cannot be considered completely quantitative because no 175 

reference materials/standards were used to perform an empirical calibration. 176 

Micro Raman spectroscopy  177 

 178 

For the micro-Raman measurement of biggest crust samples, a Raman Renishaw RA 179 

100 spectrometer, with an excitation wavelength of 785 nm (diode laser) and a Peltier 180 

cooled CCD detector was used for the molecular characterization of the samples. The 181 

system was calibrated daily using the 520 cm−1 silicon line. In order to avoid thermal 182 

decomposition of samples, the laser power (150 mW maximum) was kept in low levels, 183 

mainly between 1.5 to 15 mW, depending on the sample. 184 

The spectral resolution was 4 cm−1 in the range between 3000–200 cm−1 and the spectra 185 

were acquired randomly on the crusts under study by accumulating from 5 to 20 scans 186 

to improve the signal-to-noise ratio. Due to a microscope lens built in the microprobe 187 

(objective lenses of: 4×, 20×, 50×) and a video-camera, a proper focusing of the laser 188 

beam spot is possible (approximately 10–200 μm, depending on the focusing lens). Data 189 

acquisition was carried out with the Wire 3.0 software package (Renishaw, UK) and the 190 

analysis of the results was performed using the Omnic V.7.2. software (Nicolet).  191 
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Additionally, a portable Raman spectrometer (innoRam B&WTEKINC.) was used for the 192 

measurement of the smallest crust samples. This spectrometer implements a 785 nm 193 

excitation laser source and has a variable power range up to 300 mW. The probe offers 194 

also the possibility to perform microscopic analysis mounting it on a micro-camera and 195 

using different objective lenses (20× and 50×) that allow measuring areas of a diameter 196 

between 10 and 200 μm. In contrast to the RA 100 spectrometer, with this instrument 197 

samples can be placed under the objective lens to acquire the Raman spectra. With the 198 

RA100 spectrometer, samples must be placed vertically on a support to perform the 199 

spectral acquisition. This sample positioning could be more difficult for small samples 200 

(0.5 x 0.5 cm), thus it was decided to measure them using the portable innoRam 201 

spectrometer available in the laboratory. 202 

Finally, in the cases where the 785 nm excitation wavelength was giving a weak Raman 203 

signal, a 514 nm excitation wavelength (50 mW nominal laser power) was used. With 204 

this purpose, an inVia Renishaw confocal Raman micro-spectrometer (Renishaw, 205 

Gloucestershire, UK) coupled to a DMLM Leica microscope with a variety of objective 206 

lenses (20×, 50×, and 100×) to choose and a Peltier cooled CCD detector which 207 

implements a 514 nm excitation wavelength laser was used.  208 

The interpretation of the acquired Raman spectra was carried out by comparison with 209 

the Raman spectra of standard samples that are registered in the dispersive Raman 210 

spectroscopic database of e-VISNICH (Maguregui et al. 2010a) and comparing with 211 

free Raman databases (e.g. RRUFF (Downs and Hall-Wallace 2002)). 212 

 213 

Results and discussion 214 

 215 

In the Table 1, a summary of the main results obtained for the crusts samples of the 216 

three building located in the municipality of Getxo, in the Bilbao metropolitan area, 217 

after the application of the proposed analytical methodology is presented.  218 

 219 
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Black crust of Malacate building  222 

Raman characterization 223 

Gypsum (CaSO4-H2O) was the main constituent identified on the black crusts growing 224 

on the three building materials from the malacate building, which can be formed as a 225 

consequence of the transformation of calcite (CaCO3) in the presence of atmospheric 226 

sulfur oxide (wet or dry deposition) (Morillas et al. 2016d; Morillas et al. 2016e). 227 

Moreover, several iron oxides were characterized. Hematite (Fe2O3) was found on all 228 

three substrates, with major presence in the case of limestone, pointing out the exposure 229 

of the building to Fe rich particles. Moreover, magnetite (Fe3O4) was also detected on 230 

samples of the black crust on limestone. The size of the magnetite particles identified 231 

ranges from 5-50 m. Thus, it can be considered that isolated spherules and 232 

agglomerates could be present on the black crusts formed on the limestone. Magnetite 233 

can be associated with atmospheric particles in the urban environment. They are mainly 234 

derived from combustion processes such as industrial, domestic and vehicle emissions 235 

or from abrasion products from asphalt and from vehicle brake systems (Gautam et al. 236 

2005). 237 

Additionally, Raman spectroscopic analysis performed in black crusts on the brick, 238 

revealed the presence of a band at 1025 cm-1. Using Raman spectroscopy it has been 239 

proven that iron (III) oxide is present in the original brick composition (see Raman 240 

bands related with hematite in Figure 2A). The band at 1025 cm-1 can be related with 241 

(para)coquimbite (Fe2(SO4)3·9H2O), which is a degradation compound formed due to 242 

the attack of sulfuric acid aerosol (sulfur dioxide wet deposition) to iron oxides 243 

(Maguregui et al. 2011). The atmospheric sulphur oxides (SOX), usually reacts firstly 244 

with the ions of calcium providing gypsum and, later this gypsum starts reacting with 245 

the iron oxides providing (para)coquimbite, following the reactions (1) and (2) 246 

(Maguregui et al. 2010b). 247 

 248 

H2SO4 + CaCO3 + H2O         CaSO4·2H2O(s) + CO2(g)
             CaSO4 Ca2+ + SO4

2-      (1) 249 

Fe2O3(s) + 3H+ + 3HCO3
- + 3SO4

2- + 3Ca2+ + 6H2O        Fe2(SO4)3·9H2O + 3CaCO3  (2) 250 

 251 
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According to this reaction, it is supposed to be normal to find (para)coquimbite together 252 

with gypsum and hematite, as they are the reactants of this degradation product (see the 253 

spectra in the Figure 2A).  254 

It is very difficult to distinguish among Raman spectra of coquimbite and 255 

paracoquimbite, because they are quite similar. Both are iron (III) sulfate non-hydrates 256 

and they are also polytypes (a special kind of polymorphism, in which the two 257 

polymorphs differ only in the stacking of identical two-dimensional sheets or layers). 258 

The Raman band at 1025 cm-1 can be also related with -anhydrite (-CaSO4) (Wein et 259 

al. 2014). In the same spectrum where this band was identified, the main band of 260 

gypsum is also present (see Figure 2A). This observation could also suggest that 261 

gypsum is suffering a dehydration process, giving rise to the anhydrous form. Anhydrite 262 

is usually crystallized as -anhydrite. According to some authors, the environmental 263 

temperature and the internal stress of the material could have influence in the 264 

dehydration process of gypsum, causing the crystallization of the  or -anhydrite phase 265 

(Comodi et al. 2012; Prieto-Taboada et al. 2014). 266 

The calcite (CaCO3) identified in the brick can arise from the carbonation process of the 267 

hydrated calcium oxide (Ca(OH)2), present in the brick, which can be subsequently 268 

sulfated (Maguregui et al. 2009). Calcite can also be present as a consequence of its 269 

deposition on the brick as airborne particulate matter. Unfortunately, it has not been 270 

possible to identify calcite on the surface of the brick. Another calcium source could be 271 

the remnant calcium carbonate, which has not been completely decomposed into 272 

calcium oxide (CaO) during the firing process of the clay from the brick.  273 

Furthermore, several spectra of amorphous carbon were acquired both from the 274 

limestone’s and sandstone’s black crusts. The literature reports that in the carbonaceous 275 

content appearing in the black crusts, the organic carbon fraction is usually higher than 276 

the elemental fraction in most cases due to a great number of microscopically detectable 277 

microorganisms and carbonaceous particles from the atmosphere including organic 278 

compounds bound in the surface layer (aliphatic hydrocarbons, polycyclic aromatic 279 

hydrocarbons, terpenoid derivatives, etc.) (Saiz-Jimenez et al 1991; Bonazza et al. 280 

2007). 281 
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Additionally, the presence of other compounds, coming from anthropogenic sources, 282 

was also identified in the black crusts from limestone. These are phtalocyanine blues, a 283 

phtalocyanine (C32,H18,N8) based compound,  widely used in the dying industry. Black 284 

diamond pigment, based on carbon black pigment was also detected. Both are 285 

commercial pigments and were ascribed to graffitii residues. Through Raman 286 

spectroscopy, burnt sienna was also identified. This is an earth pigment that takes its 287 

name from the heated version of raw sienna which contains iron oxide and manganese 288 

oxide (Genestar and Pons, 2005).  Nevertheless, the origin of burnt sienna is not 289 

completely clear, since this could be a constituent of the limestone as well, since they 290 

are similar from the mineralogical viewpoint.  291 

SEM/EDS evaluation  292 

In the black crust samples from Malacate building sandstone, a smooth and compact 293 

carbon layer with some pores from where the underlying gypsum crystals are 294 

observable can be appreciated (see Figure 3A and 3B). Furthermore, depositions of Al-295 

silicates, quartz (-SiO2), calcite and those ascribed to sea aerosol containing Na, Mg, 296 

K and Cl were characterized on the surface. Concretely, in the Figure 3C a Cl particle 297 

inserted in the pores of the carbon layer of the black crust can be observed (see Figure 298 

3C and 3D). These finding evidences that the particles coming from the marine aerosol 299 

can be deposited and trapped in the black crust matrix (Morillas et al. 2016a).  300 

With regard to the limestone’s black crust, carbon was not present as a smooth and 301 

compact layer (see EDS carbon map in Figure S1 from Supplementary Material) like in 302 

the black crust from sandstone. In this case, the contribution of calcite depositions 303 

ascribed to the crustal particulate matter was observed over calcite crystals, which 304 

seemed to have been recrystallized during the black crust formation. In Figure 4, 305 

examples of particles deposited on the black crust can be observed. According to the 306 

semi-quantitative information included in Table 2 and EDS spectral evidences presented 307 

in Figure 4, not only individual particles of gypsum (see EDS Figure 4B and Table 2), 308 

and calcite (see Figure 4C and Table 2) were identified on the limestone’s black crust, 309 

but also aggregate particles including aluminosilicates, sulfates and chlorine (see Figure 310 

4A and Table 2) 311 

 312 
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Black crusts of the cemetery gate 314 

 315 

Raman characterization 316 

 317 

Raman spectroscopy allowed the identification of gypsum, hematite and magnetite as 318 

the main components of the black crusts from the cemetery gate. Gypsum crystals and 319 

hematite particles are distributed to a great extent in the black crust, indicating that this 320 

building has been influenced by a highly polluted environment. Additionally, 321 

carotenoids were also identified embedded in the black crusts, indicating that 322 

microorganisms are included inside the matrix of the black crust. These colonizers are 323 

able to excrete organic pigments, called carotenoids, or they can be present in its 324 

biological structure. Only having the two main Raman bands of carotenoids it is quite 325 

difficult to ascribe this Raman signal to a specific carotenoid, but as it is shown in 326 

Figure S2 from Supplementary Material, this signal could belong to -carotene. 327 

 328 

SEM/EDS evaluation 329 

 330 

The black crust in the cemetery gate was constituted by a matrix of gypsum crystals 331 

with depositions of carbon and random particles (see Figure 5B, where the carbon layer 332 

is highlighted in red). According to the literature, this is the most characteristic case of 333 

black crust (Moropoulou et al. 1998). The average size of the acicular gypsum crystals 334 

of the matrix (see Figure 5A) is circa 30 μm long and 5 μm wide.  335 

Apart from the ubiquitous gypsum, EDS analysis performed on different particles 336 

deposited on the gypsum matrix showed that most of the particles consist mainly of 337 

aluminosilicates of Ca and K (see Figure 5C). These compounds can come from the 338 

physical and chemical weathering of soils and rocks, then being transported by the wind 339 

and finally been deposited in the façades. In atmospheric geochemistry this kind of 340 

compounds is known as crustal particulate matter (Querol et al. 2011) and comprises the 341 

44% of global emissions of particulate matter (PM) to the atmosphere (Inza-Agirre 342 

2010). Some of the particles (see particle 2 in Figure 5C) show the presence of S and Cl 343 

apart from aluminosilicates and most of them also contain traces of metals such as Fe, 344 

Zn, Ti and Mn (see Figure 5C). Elements like S (from sulfates) and Cl (from chorides) 345 

can come from particles emitted by marine aerosol (Morillas et al. 2016e). The first 346 

element linked with sulfates can come also from anthropogenic emissions or also from 347 
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calcium carbonate crustal particles that can be transformed in the atmosphere into 348 

sulfates by reaction with the H2SO4 (coming from SOX emission) present in the acid 349 

rain (Morillas et al. 2016e). 350 

The length of the particles varies in the range of 5 to 15 μm approximately. Apart from 351 

the hazards that the pollutants can cause to the human health due to their toxicity (e.g. 352 

heavy metals) their size can be also crucial as far as the hazardousness is concerned; the 353 

smaller the particles are, the worse is the effect caused on human health. The PM10 354 

particles (those sizing less than 10 μm) are more hazardous than the bigger ones, since 355 

they are difficult to expel (especially from the human body). Moreover, the particles 356 

below 2.5 μm (PM2.5) are even more hazardous, since, once inhaled, they reach directly 357 

the blood system (Inza-Agirre 2010; EPA 2016).     358 

The composition of particle 4 in Figure 5A is given in the pie chart (Figure 5D). It gives 359 

an idea of the nature of this kind of aggregates deposited on the surface. Apart from the 360 

elements mentioned before, here we can see the contribution of Na, Cl and Mg, ascribed 361 

to the chlorides coming from marine fog.  362 

This is an example of how airborne particulate matter in form of deposition is mixed 363 

with particles from both anthropogenic and natural sources. It cannot be predicted if the 364 

aggregate has been formed in the atmosphere, or once deposited on the gypsum matrix. 365 

Nevertheless, the airborne particulate matter tends to sediment once it has reached the 366 

aerodynamic diameter of 20 μm. Indeed, the particles with higher diameter are called 367 

sedimentable particles and they are characterized by their short time in the atmosphere, 368 

which is of about some hours (Inza-Agirre 2010). Therefore, either the source is in the 369 

proximity of the building or it has been formed once deposited, acting as a nucleation 370 

point.  371 

 372 

Soiling process of the Talaieta street building 373 

 374 

Raman characterization 375 

 376 

A big variety of compounds were identified in this building’s samples through Raman 377 

microscopy. The presence of iron oxides such as hematite (see Figure 2C) and 378 

magnetite, detected in abundance, was ascribed to the deposition of particulate matter. 379 

Silicates, among them quartz and feldspars, such as adularia and sanidine alkali 380 
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feldspars (KAlSi3O8), were also identified as particulate matter deposition and more 381 

specifically as crustal particular matter. The bands between 1200 and 1600 cm-1 in 382 

Figure 2D were initially ascribed to silicates in general, but there is an open discussion 383 

about the topic, and the latest assumptions are that they might be fluorescence signals 384 

arising from impurities that are actually in silicate matrices, but not directly resulting 385 

from silicates (Gómez-Nubla et al. 2013). In fact, in a measurement acquired with a 532 386 

nm laser, they should not appear for this same reason.  387 

Degradation products deriving from the interaction between atmospheric pollutants and 388 

the calcareous stone surface were also identified, such as gypsum and anhydrite (see 389 

Figure 2D). The presence of calcium sulfates with different hydration states could 390 

suggest that the hydration/dehydration cycle of gypsum-anhydrite is taking place (in this 391 

case bassanite was not identified). This cycle produces tension in the material due to a 392 

volume change on the stone and can promote cracks, fissures and fractures on the 393 

material. 394 

Apart from the exogenous compounds ascribed to degradation processes and 395 

atmospheric depositions, some remains of graffiti painting were found. For instance, the 396 

presence of ultramarine blue pigment was confirmed by Raman spectroscopy (see 397 

Figure 2A).  398 

SEM/EDS evaluation 399 

At a first stage, the brownish crust present in the Talaieta street building is formed by 400 

several randomly arranged particles which do not show strong cohesion as in the rest of 401 

the buildings. In this case, there is not an evident gypsum crystals layer. In Figure 6A 402 

and 6B, Ca, Si and S EDS maps can be observed. As can be appreciated in the overlaid 403 

EDS map, Ca is spread over the sample whereas there is predominance in S over Si 404 

matching with Ca map. Considering this, it is assumed that the crust is a mixture of 405 

gypsum and silicates.  406 

Different subtractions were made on the same EDS maps (in Figure 5A and 5B) 407 

revealing spots with high amount of Ca, which did not match neither with S nor with Si. 408 

Therefore, they were ascribed to possible calcite depositions. Furthermore, several Si 409 

accumulation points were also spotted depicting possible quartz depositions. The 410 

assumption of being deposited rather than belonging to the substrate is made taking into 411 
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account the minimum penetration depth of the X-Ray beam of the EDS.  412 

EDS spectra indicate a high input of metallic airborne particulate matter. Al, Ca, Fe, K, 413 

Ti, Zn, Cu, Pb, Cr, Mn and V were identified. Among them, titanium particles were the 414 

most abundant, regularly accompanied by Fe and traces of Pb and V (see Figure 6F).   415 

Apart from the Al-silicates encountered repeatedly among the EDS analysis, EDS 416 

spectra, acquired on the particle circled in Figure 6D of more heterogeneous nature and 417 

with a diameter of about 3 μm, showed gypsum as one of the main constituents of the 418 

particle, but also the presence of fluorine (around 22% in weight). The origin of the 419 

fluorine is not clear. Fluorides are naturally occurring components (in rocks, soils, etc.) 420 

and they can enter the atmosphere through volcanic emissions and the re-suspension of 421 

soil by the wind. Marine aerosols also release small amounts of gaseous hydrogen 422 

fluoride and fluoride salts into the air (Franzén 1990; Stefanis et al. 2005). Moreover, it 423 

may come from anthropogenic sources such as industry, incinerators, etc. Indeed, 424 

fluorine identified on the surface of a building located in Getxo, may come from a 425 

factory (where fluorine compounds are produced), as has been reported (Martínez-426 

Arkarazo et al. 2007). 427 

With regard to the metallic elements distribution, the predominant element was found to 428 

be iron as is depicted in Figure 6C (Fe particles are highlighted in blue). This spot was 429 

considered as representative of the sample as this behavior is extended along the 430 

surface. These maps contribute to know the way in which metallic particles are 431 

deposited. At this spot, Mn, Fe and Ti-rich particles are shown. Iron is clearly the most 432 

abundant element, being deposited in a wide range of different particle sizes, which 433 

range from 1 μm long to a diameter of 20-25 μm approximately. The EDS spectrum of 434 

the Fe particle particularly, revealed the contribution of other metals such as Zn and 435 

traces of Pb (see Figure 6F).  436 

In addition to Fe, titanium particles with acicular shape of 20 μm long approximately 437 

can be observed (see Figure 6C). And finally, manganese is present in a minor extent 438 

with an average size of around 5 μm. The EDS spectrum of the Mn particle revealed 439 

that it is composed mainly of Mn, without any contribution of other metals, in 440 

contradiction to the cases of other aggregates. 441 

Thanks to the EDS maps, through correlation of the elements, it was possible to 442 
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evaluate the different kinds of depositions apart from those mentioned before. On the 443 

one hand, the influence of marine aerosol is obvious. The EDS maps of Na, Cl and also 444 

Mg are quite coincident, suggesting deposition of halite (NaCl) and MgCl (see Figure 445 

S3 from Supplementary Material). Moreover, in some microscopic areas from the Na 446 

and Cl EDS maps, both elements distribution is coincident pointing out the presence of 447 

halite (NaCl) crystal (see Figure S3 from Supplementary Material). On the other hand, 448 

the depositions of aluminosilicates are shown in the EDS maps of Al and Si (see Figure 449 

S3 from Supplementary Material). Furthermore, the distribution of Fe and Ti, highlight 450 

again the high rate of metallic depositions on the sample (see Figure S3 from 451 

Supplementary Material). Finally, the C map showed an accumulation, which indicates 452 

the presence of carbonaceous particles, probably corresponding to soot (see Figure S3 453 

from Supplementary Material).  454 

In order to perform a comparative analysis of the elemental composition from each 455 

representative crust extracted from the three buildings, three selected areas from each 456 

crust sample (one from each building) were analyzed by EDS. For each crust sample, 457 

the semi-quantitative information from the three selected areas was obtained and an 458 

average value was calculated for each building crust sample. In Figure 7 a 459 

representative SEM image of each building crust sample is shown together with the 460 

semi-quantitative values (average) obtained from each building crust sample. The 461 

results pointed out that the major concentration of sulfur was present in the cemetery 462 

gate’s black crust. Hence, it is assumed that the limestone of the cemetery has been 463 

exposed to an atmosphere rich in SOx acid aerosols for a longer period of time 464 

comparing with the rest of the building, with the proper conditions to commence an 465 

important sulfation process, enhancing in this way the formation of crystals that are, 466 

doubtless, the best formed crystals comparing to the rest of the samples in terms of size 467 

and crystal structure (see SEM image 3 In Figure 7 showing the sulfate crystals from the 468 

cemetery gate’s black crust in comparison with the crusts of the other two buildings). 469 

 470 

 471 

Conclusions 472 

Through the evaluation of the different patterns of weathering processes –all due to 473 

atmospheric influence– among the analyzed façades, it was determined that the 474 

presence of sulfates was massive in the case of limestone’s black crusts and minor in the 475 
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case of other materials. Despite the minor presence of sulfates,, the hazardousness of the 476 

identified anhydrite plays a crucial role in the soiling of Talaieta street building due to 477 

the dissolution/precipitation processes that can suffer this kind of sulfate.  478 

All the cases showed the influence of marine aerosols, being the case of Talaieta street 479 

building the most affected one. In this case, the contribution of marine aerosols may 480 

have played a negative role in the formation of the crust (contribution of airborne 481 

particulate matter).  482 

Carbonaceous particles associated to the nearby preexisted railway and road traffic were 483 

found in a great extent in the crusts formed on the sandstone from the Malacate 484 

building. These particles have formed a smooth compact layer over the gypsum crystals 485 

of the crust.  486 

Regarding the rate of depositions, the most recently constructed building is the most 487 

affected by the depositions of airborne particulate matter, depicting the highest 488 

susceptibility (among the studied substrates) that have been ascribed to the low quality 489 

of the building material associated to the high percentage of aluminosilicates in the 490 

substrate.  491 

The Malacate construction has been exposed to a polluted atmosphere rich in SOx and 492 

iron particles, as the advanced stages of the crusts indicates the presence of hematite, 493 

magnetite and (para)coquimbite.  494 

The cemetery gate has undergone the formation of a crust, which also hosts 495 

microorganisms/colonizers, depicting a complex black crust matrix.   496 

The use of molecular and elemental spectroscopic techniques allowed the determination 497 

of the degradation state of the substrates due to the formation of soiling and black 498 

crusts. Moreover, micro-Raman spectroscopy together with SEM/EDS has proven to be 499 

a reliable combination for the assessment of the depositions of airborne particulate 500 

matter and the degradation products formed due to the impact of atmospheric pollutants, 501 

as well as any other inputs such as graffiti for example.  502 

The use of micro-Raman spectroscopy results in a valuable resource for this kind of 503 

crusts, especially regarding the characterization of crustal particulate matter such as 504 

hematite and magnetite, feldspars such adularia, sanidine and other kind of Al-silicates 505 
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as well as calcium sulfates. 506 
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FIGURE CAPTIONS 652 

 653 

Figure 1. (a) Detail of the sampling location, (b) Malacate building and detail of its 654 

deteriorations patterns in sandstone, limestone and brick (from right to left), (c) Talaieta street 655 

building and a zoom of the soiling process and (d) Cemetery and detail of black crusts on it. 656 

Figure 1. Raman spectra of samples of (A) Malacate’s brick showing hematite, gypsum and 657 

(para)coquimbite or -anhydrite, (B) Malacates’s sandstone showing carbon and gypsum, (C) 658 

Talaieta street’s building showing hematite and (D) Talaieta street building showing anhydrite. 659 

Figure  2. (A) SEM images of black crust on Malacate’s sandstone showing a matrix of carbon 660 

layer. (B) Zoom of gypsum crystals on the pore. (C) Zoom of a deposited particle. (D) EDS 661 

spectrum depicting the main composition of Cl-particle in (C). 662 

Figure 4. SEM image of the black crust on Malacate’s limestone where the EDS punctual 663 

analyses were carried out, showing an aggregate of salts (A), gypsum (B) and calcite (c). 664 

Figure 5. (A) SEM image of the cemetery gate’s black crust showing random depositions. (B) 665 

Carbon EDS map highlighted in red (C) EDS spectra of selected particles on images A and (D) 666 

the pie chart of semi-quantitative information about the composition of aggregate particle 4 667 

obtained by EDS. 668 

Figure 6. Soiling affected samples of Talaieta street building: (A) Ca EDS map (B) Si and S 669 

EDS maps overlapped on the same microscopic area as A (C) metallic particles identified by 670 

EDS on the same microscopic area (D) additional microscopic area focused with the SEM (E) 671 

EDS analysis of the particle circled in (D) (F) EDS spectrum of Fe particles from Figure C. 672 

Figure 7. SEM images and the corresponding semi-quantitative composition (Atomic %) 673 

acquired by EDS analysis. Samples corresponding, to the soiling of the building of Talaieta 674 

street (1), black crust on the sandstone of the Malacate (2) and on the limestone of the cemetery 675 

gate (3). 676 
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Table 1. Summary of the main results obtained from the crust samples study. 

 Malacate sandstone  Malacate limestone Cemetery gate Talaieta buidling 

Appearance 

of the crust 

Smooth and compact 

carbon layer with 

pores from where the 

underlaying gypsum 

crystals are 

observable 

Not as smooth and 

compact carbon 

layer  

A matrix of gypsum 

crystals with 

depositions of carbon 

particles and particles 

deposited randomly 

Brownish crust with not 

so many gypsum crystals 

and several randomly 

arranged particles without 

cohesion 

Main 

components 

Gypsum 

Amorphous carbon 

Hematite 

 

Gypsum 

Amorphous carbon 

Hematite 

Magnetite 

Gypsum 

Carotenoids 

Hematite 

Magnetite 

Gypsum 

Aluminosilicates 

Graffiti 

remains 

 Phtalocyanine blue 

Black diamond 

Burnt sienna (?) 

 Ultramarine blue 

Nature of the 

deposited 

particles 

Aluminosilicates 

Quartz 

Calcite 

Gypsum 

Marine aerosol 

particles (Na, K, Mg 

and Cl) 

Aluminosilicates 

Quartz 

Calcite 

Gypsum 

Particles coming 

from marine aerosol 

including (Na, K, 

Mg and Cl) 

Aluminosilicates 

Sulfates 

Marine aerosol 

particles (Na, K, Mg 

and Cl) 

Metallic particles (Ti, 

Mn, Fe and Zn) 

 

Alkali feldspars  

Quartz 

Calcite 

Hematite 

Magnetite 

Carbonaceous particles 

Marine aerosol particles 

(Na, K, Mg and Cl) 

Fluorine 

Metallic particles (Ti, Cr, 

V, Mn, Fe, Cu, Zn, Pb) 

 

 

 

Table 2. Semi-quantitative composition (% weight units) of deposited particles (see Figure 4) on the 

black crust of limestone from Malacate building obtained by means of EDS. 

SPECTRUM C O Na Mg Al Si S Cl Ca Fe 
A 25.9 61.1 0.3 0.1 0.3 0.6 0.1 0.2 11.1 0.01 
B 19.5 64.1     5.4  11.0  

C  85.0       15.0  

 

Table
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