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Abstract The method of the lower deformation

energy has been successfully used for the synthesis of

mechanisms for quite a while. It has shown to be a

versatile, yet powerful method for assisting in the

design of mechanisms. Until now, most of the

implementations of this method used the dimensions

of the mechanism as the synthesis variables, which has

some advantages and some drawbacks. For example,

the assembly configuration is not taken into account in

the optimization process, and this means that the same

initial configuration is used when computing the

deformed positions in each synthesis point. This

translates into a reduction of the total search space.

A possible solution to this problem is the use of a set of

initial coordinates as variables for the synthesis, which

has been successfully applied to other methods. This

also has some additional advantages, such as the fact

that any generated mechanism can be assembled.

Another advantage is that the fixed joint locations are

also included in the optimization at no additional cost.

But the change from dimensions to initial coordinates

means a reformulation of the optimization problem

when using derivatives if one wants them to be

analytically derived. This paper tackles this reformu-

lation, along with a proper comparison of the use of

both alternatives using sequential quadratic program-

ming methods. In order to do so, some examples are

developed and studied.

Keywords Nodal coordinates � Dimensional

synthesis � SQP � Deformed energy error function �
Minimum distance position problem

1 Introduction

The synthesis of mechanisms is a problem of high

practical interest and, thus, it has been the scope of

many research jobs. Synthesis problems can be

classified in different types such as structural synthe-

sis, geometrical synthesis, design synthesis, configu-

ration synthesis, type synthesis, position synthesis,

dimensional synthesis, kinetostatic synthesis, kinetic

synthesis, kinematic synthesis, rectified synthesis,
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optimal synthesis, or probabilistic synthesis. The

contributions presented in this paper will be centred

in the kinematic dimensional synthesis, where the

dimensions of the links of a mechanism are searched

for while trying to fulfil certain position kinematic

requisites defined in this case as synthesis points.

Actually, many methods have been used to accom-

plish the study of the synthesis of mechanisms and

here a short resume will be presented. Some of these

methods are heuristic and some fall into the numerical

type of techniques. Between the first main group of

techniques, there are the Genetic Algorithms [1–6],

the Simulated Annealing [7–9], the Ant Colony

Optimization [10, 11], the Particle Swarm Optimiza-

tion [12–15], and some others like the Tabu Search

[16, 17]. Among the second main group of techniques,

there are the Sequential Quadratic Programming

(SQP) methods where the most common ones are

based on the method of Newton, or Quasi-Newton

approaches. In order to introduce restrictions, if they

are of linear nature, the Null Subspace method should

be appropriate, and a good analysis of the different

alternatives is exposed in [18]. If they are non-linear,

the methods of the Penalty Function, of the Lagrange

Multipliers, or the Augmented Lagrangian Function

should be used. In the case of linear inequality

restrictions, the methods of Karmarkar or the Primal-

Dual should be adequate. Finally, for non-linear

inequality restrictions, the methods of the Slack

Variables or the Logarithmic Barrier Function can be

used. [19–21].

A common way of classifying the types of synthesis

problems is path generation, function generation, rigid

solid guide and mixed synthesis. Path generation tries

to obtain the best possible correlation between the path

described by the joints of a mechanism during the solid

rigid motion, together with some other previously

specified path. Function generation studies the coor-

dination or synchronization of the positions of the

input and output links of a mechanism. Rigid solid

guide is the part of the mechanism synthesis that

studies the problem of locating a floating element

(coupler) of a mechanism along a series of given

positions. The mixed synthesis, in its turn, is a

combination of some of the aforementioned types of

synthesis in the same problem. In this paper a new

alternative for a method for dimensional synthesis is

presented, which has been under continuous develop-

ment and accurate improvement for the last thirty

years, since in 1982, in reference [22] for the first time

the concept of the deformed position problem was

presented. The main idea being to obtain the minimum

energy position of the elements of a mechanism when

one or more of its joints is obliged to fulfil certain

geometrical restrictions out from the possible motions

as rigid solid of the mechanism. The mechanism is

considered composed of deformable elements with a

linear elastic behaviour. Thus, the initial position

problem was solved by means of the minimization of

an energetic function, defined as the summation of the

difference between deformed and undeformed squared

lengths for each link in the mechanism. The same

methodology was employed for the definition of the

finite displacements problem, the deformed position

problem and the static equilibrium problem. It was

also suggested to solve the optimum synthesis based

on these same ideas by summing the minimum

deformation energy in each synthesis point. Later on,

this idea was applied in [23], using the dimensions of

the mechanism as variables. Exact derivatives were

obtained for the deformed problem, but for the

synthesis the length in each iteration was obtained

via the arithmetical average of the deformed lengths of

each of the deformed position problems. In 1989, the

algorithm’s convergence was improved by using

approximate derivatives by means of finite differences

in the synthesis instead of the arithmetical average

[24]. The possibility of considering dimensional

restrictions was also introduced bymeans of a stiffness

that increases as long as the dimension gets nearer to

the restricted value, which can be considered as a

penalty function method. In 1993, in [25], the

algorithm was improved by obtaining the exact first

and second derivatives of every term. Furthermore,

special elements with three joints were introduced to

solve the low stiffness problems that appear whenever

those joints are aligned. Here was also introduced a

method to consider the fixed joints positions as

variables. In order to do so, it is supposed that these

are joined in the ends of a spring in direction of x and

another spring in direction of y to a fixed point. In

2000, a preliminary study of the application of genetic

algorithms to the synthesis of mechanisms and other

mechanical problems is presented in [26]. Here it is

demonstrated that the deformed position method is not

very appropriate to be used together with the GA, due

to the problem of the high aptitude of low stiffness

mechanisms combined with the explorative nature of
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GAs. As a result, in 2004, another error function based

on the minimum distance between the mechanism

joint and the synthesis point [27] is applied, which

happens to be valid to be applied with GAs.

In this paper the use of initial coordinates is

explored for the synthesis of mechanisms using SQP

and the deformation energy error function. The use of

these kind of variables for the synthesis is not new, and

has also been used using GAs and a distance error

function with success, but the use of them in a

deformation energy error function has not been yet

studied. In this paper the relevant mathematical

developments are presented and the analysis of several

examples is exposed.

The motivation behind this change is that the use of

dimensions does not include any information on the

assembly configuration and, thus, the search space is

somehow reduced. In the former formulation, an

immutable set of coordinates were introduced by the

user which were used to solve the position problem,

and these coordinates had decisive influence on the

deformed position problem solution.

This change has a main drawback though: an

infinite set of initial coordinates define the same

mechanism and, therefore, the optimization problem is

always underdefined. This means that the optimization

solver needs to be able to solve underdetermined

systems.

The paper is organized as follows. First, a review of

the deformed energy method is exposed. Afterwards,

the choice of using initial coordinates as synthesis

variables along with the deformed energy method is

reasoned. Then, the energetic error function using

initial coordinates is developed and the analytic

expressions are presented, and the method for intro-

ducing boundary conditions is exposed. After that,

some remarks on the optimization method are com-

mented. Finally, some results are presented and some

conclusions are driven.

2 The optimization of mechanisms using

the deformed energy method

In order to better introduce the developments pre-

sented in this paper, a brief approach to the deformed

energy method will be exposed here. To provide

simplicity, this explanation will be reduced to mech-

anisms represented by truss elements joined by

R-joints. In previous work, as shown in the introduc-

tion, the mechanism dimensions were defined by a

vector whose components are those dimensions. The

error function is tailored as follows: The mechanism

under study is placed in an initial position, and

expressed through the dimensions of the links, calcu-

lated bymeans of the nodal coordinates of all the joints

of the mechanism. That is, the data for the problem are

only the dimensions of the links of the mechanism, so

by setting an initial position, an initial assembly

configuration will be established, and this is usually

not changed during the optimization process. Then the

deformed position problem will be solved for each of

the precision positions, by defining the nodal coordi-

nates that give the optimum dimensions of all the

links, usually slightly different for each of the

precision points, so that the stored deformation energy

in the whole mechanism is the minimum. The error

function used for evaluating the fitness is the defor-

mation energy, which is measured in each precision

point and summed for all of the positions as it can be

appreciated in Eq. (1).

FðLÞ ¼
XP

i¼1

XB

j¼1

Lj � ljiðxiÞ
� �2 ð1Þ

This function represents the deformation energy of the

B trusses of the mechanism supposing these are

deformable to be able to reach the P desired synthesis

positions. The Lj are the non-deformed lengths and the

ljiðxiÞ are the lengths of the same trusses but now

deformed in each of the i precision positions, and

expressed through the nodal coordinates of the joints.

To give an example of what does the deformed

problem consist on, a fourbar mechanism is going to

be used. Let us place the mechanism in an initial

position and let us define three precision positions for

the coupler point as seen in Fig. 1. Here nodes A and B

are fixed and node E (the coupler point) is the one to

follow the prescribed path defined by precision points

0–1–2.

The mechanism solved for each of the three

precision positions is shown in the next Fig. 2a–c,

where it can be observed that the trusses are deformed

with respect to the initial lengths and are different for

each position.

In the synthesis error function, the deformed

position problem is solved for each one of the

precision positions, so that a set of coordinates is

Meccanica (2018) 53:1981–1996 1983
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obtained for each of them, which, in term, define the

deformed lengths ljiðxiÞ.
The optimization of the synthesis function has been

approached in two ways. The uncoupled approach,

which is based in discarding the effect of the

modification of a dimension in the deformed position

problem [23] and the coupled approach, which takes

into account this effect [24, 25].

3 Reasons for the use of initial coordinates

as parameters for the optimization

of mechanisms

To keep the formulation simple, this paper will only

include the definition of mechanisms composed by

R-Joints and modeled by simple truss elements. No

higher order elements or other joints will be consid-

ered, although the ideas exposed here can easily be

generalized for developments such as those published

in [25] or [28].

In order to clarify this point, it is first necessary to

introduce how are usually defined the dimensions of a

mechanism in the optimization process. Let us

consider, for example a simple fourbar as that in

Fig. 3. Again, fixed nodes are A and B. In this example

instead of identifying nodes, we identify the links

because in this case dimensional optimization param-

eters are the lengths.

The synthesis variable vector would in this case be

defined as:

LT ¼ L0 L1 L2 L3 L4f g

The use of the dimensions of the mechanism as

parameters for the optimization is the most straight-

forward approach when performing dimensional opti-

mal synthesis of mechanisms. It also has some

additional advantages. For example, if one wants to

introduce a determinate value for one dimension, this

translates in this case as a linear restriction. This

allows the use of simple methods such as the nullspace

method (see, for example, [18] for a good review on

cost-effective methods on introducing linear restric-

tions), without having to resort to Lagrangemultipliers

or other methods for the introduction of non linear

restrictions. This also applies for interior point

restrictions, where one can use Karmarkar or similar

methods instead of Logarithm Barrier or others. But

this does not come without drawbacks. One of the

most important drawbacks is related to the assembly

configuration. The dimensions of the mechanism do

not define the assembly of the mechanism and, thus,

one needs to somehow introduce the assembly

configuration. For example, as can be seen in Fig. 4,

mechanisms A and B have the same dimensions but is

impossible to switch from one configuration to the

other without dismantling the mechanism. Until now,

Fig. 1 Fourbar in initial position and three precision positions

Fig. 2 Fourbar in deformed positions a 0, b 1, and c 2

Fig. 3 Topology of a fourbar, where optimization parameters

are the dimensions
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this assembly configuration was defined by the user by

introducing a set of initial coordinates for solving the

deformed position problem. It is important to state that

the assembly configuration introduced in this way will

not always be maintained in the final result, but it has a

determinant role in it. However, initial coordinates do

define the assembly configuration of the mechanism,

so making use of these as optimization parameters, the

assembly configuration is being included in this

optimization. Another drawback is derived from the

fact that position of the fixed joints (those united to the

fixed link) are not directly included in the optimization

process, and one needs to modify the algorithm to

optimize them. If one also wants to limit the space

where those joints are to be optimized (restricted

optimization), the algorithm gets quite complex.

The use of initial coordinates has been used in other

synthesis methods as, for example, in [29] and it was

also employed in [27] to tackle the problem of the

assembly configuration when using genetic algorithms

to optimize mechanisms, with quite a good result, and

using an error function based in distances, instead of

deformation energy. This was necessary due to the

exploratory nature of genetic algorithms. Let us

consider the examples exposed before. In the new

formulation, the design vector is now composed of a

set of initial coordinates as it shown in Fig. 5, where

notations of each node are given.

In this case the synthesis vector of variables would

have the form as follows:

xT0 ¼ xA0 yA0 xB0 yB0 xC0 yC0 xD0 yD0 xE0 yE0f g

In this paper this formulation is used, but considering

an energy based error function and using SQP

methods. These methods, although exploitative, can

benefit from the other advantages of the formulation,

namely the optimization of the fixed joints location

and it is also adequate if one wants to perform mixed

optimization combining exploratory and exploitative

methods. It also comes with drawbacks, being the

most relevant of them the redundancy of the solution

vector, in the sense that different solution vectors may

well represent the same mechanism. This leads to the

need of using solvers capable of tackling with

indefinite Hessian matrices.

4 Error function

Once the design vector is defined, one needs to specify

the error function to be optimized. If one is to keep

using a deformed energy error function, this error

function must be rewritten to be expressed in terms of

the initial coordinates. This is: instead of the Eq. (1)

(here it is recalled that the presented formulation is

limited to truss elements and R joints in spite of

simplicity), one must use Eq. (2).

Fðx0Þ ¼
XP

i¼1

XB

j¼1

Ljðx0Þ � ljiðxiÞ
� �2 ð2Þ

where P is the number of precision points; B is the

number of trusses defining the mechanism; Lj is the

dimension of the j-th truss (and, thus, the design

vector, L, is of dimension P); xi are the set of

coordinates which minimize the deformation energy

of the mechanism for the requirements in the precision

point i, and lji is the length of the truss j as defined by

the set of coordinates xi; this is, the deformed length of

the j-th truss. It is important then to state that each of

the xi vectors are obtained by an optimization process

whose objective is to yield the lower deformation

energy of the mechanism (considered as deformable)

in the i-th precision point.

In Eq. (2), instead of being taken as optimization

parameters, Lj are defined by the optimization

Fig. 4 Two possible configurations with the same dimensions

Fig. 5 Topology of a fourbar, where optimization parameters

are the nodal coordinates
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parameters x0, which represent a set of initial coordi-

nates. One of the strong points of Eq. (2) is that it can

be expressed as the assembly of a finite element matrix

composed of truss elements by using the form in

Eq. (3):

Fðx0Þ ¼
XP

i¼1

XB

j¼1

Ljfx0g � ljiðxiÞ
� �2¼

XB

j¼1

Fe
j0ðx0; xiÞ

ð3Þ

This is quite convenient, because one can now perform

operations on a per element basis.

5 Computing the derivatives

As exposed before, the computation of derivatives

when using dimensions as variables has been per-

formed in two different ways. The exact one, usually

called coupled approach and an approximated one,

called uncoupled. Both have their advantages and

disadvantages. The coupled approach has second

order convergence, but the derivation of the Hessian

matrix is quite costly, while the uncoupled approach

has lower rate of convergence but at a smaller iteration

cost. The difference appears in the dependence of

vectors xi on vector L. Taking the derivative of the

expression in Eq. (1) with respect to Lj, one can write

Eq. (4):

dFðLÞ
dLj

¼ oFðLÞ
oLj

þ
XP

i¼1

oFðLÞ
oxi

� �T
oxi

oLj
ð4Þ

The use of this full expression would be the so called

coupled approach, while in the uncoupled approach

one uses the expression in Eq. (5):

dFðLÞ
dLj

� oFðLÞ
oLj

ð5Þ

Here it will be demonstrated that, for this first

derivative, one introduces no error when using

Eq. (5) instead of (4). xi is the set of coordinates that

delivers minimal deformation energy in the synthesis

point i. Thus, one can write Eq. (6):

o
PB

j¼1

Lj � ljiðxiÞ
� �2

oxi
¼ 0

ð6Þ

In the other hand:

XP

i¼1

oFðLÞ
oxi

� �T
oxi

oLj
¼
XP

i¼1

o
PB

j¼1

ðLj� ljiðxiÞÞ2

oxi

0
BBB@

1
CCCA

T

oxi

oLj
¼ 0

ð7Þ

One cannot state the same for the second order

derivatives. In this paper the uncoupled formulation

will be applied, but using x0 instead of L a similar

development to that presented in Eqs. (6) and (7)

could be performed in this case, leading to similar

conclusions, this is, the first derivatives are not

affected by the use of coupled and uncoupled hypoth-

esis. One can write the expression in (8).

gej ¼
oFe

j0ðxj0Þ
oxj0

¼

oFðx0Þ
oxjk0

oFðx0Þ
oyjk0

oFðx0Þ
oxjl0

oFðx0Þ
oyjl0

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

¼ 2
XP

i¼1

1� ljiðxjiÞ
Ljðxj0Þ

� �
xjk0 � xjl0

yjk0 � yjl0

xjl0 � xjk0

yjl0 � yjk0

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

¼ 2 P�
XP

i¼1

ljiðxjiÞ
Ljðxj0Þ

 !
dj0

ð8Þ

where:

xj0 ¼

xjk0

yjk0

xjl0

yjl0

8
>>><

>>>:

9
>>>=

>>>;
; dj0 ¼

xjk0 � xjl0

yjk0 � yjl0

xjl0 � xjk0

yjl0 � yjk0

8
>>><

>>>:

9
>>>=

>>>;
ð9Þ

To reach to this equation and those which will follow,

the identity in Eq. (10) is of importance:

oLjðxj0Þ
oxj0

¼ 1

Ljðxj0Þ
dj0 ð10Þ

The second derivative (Hessian matrix) will have the

form of expression in (11).
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He
j0 ¼

o2Fe
j0ðxj0Þ

ðoxj0Þ2

¼

o2Fðxj0Þ
ðoxjk0Þ2

o2Fðxj0Þ
oxjk0oyjk0

o2Fðxj0Þ
oxjk0oxjl0

o2Fðxj0Þ
oxjk0oyjl0

o2Fðxj0Þ
oyjk0oxjk0

o2Fðxj0Þ
ðoyjk0Þ2

o2Fðxj0Þ
oyjk0oxjl0

o2Fðxj0Þ
oyjk0oyjl0

o2Fðxj0Þ
oxjl0oxjk0

o2Fðxj0Þ
oxjl0oyjk0

o2Fðxj0Þ
ðoxjl0Þ2

o2Fðxj0Þ
oxjl0oyjl0

o2Fðxj0Þ
oyjl0oxjk0

o2Fðxj0Þ
oyjl0oyjk0

o2Fðxj0Þ
oyjl0oxjl0

o2Fðxj0Þ
ðoyjl0Þ2

2

6666666666666664

3

7777777777777775

ð11Þ

Taking into account the fact that:

o2Ljðxj0Þ
ðoxj0Þ2

¼ 1

Ljðxj0Þ
odj0
oxj0

� 1

L3j ðxj0Þ
dj0d

T
j0 ð12Þ

where:

odj0
oxj0

¼

1 0 � 1 0

0 1 0 �1

� 1 0 1 0

0 � 1 0 1

2
6664

3
7775 ð13Þ

One can reach the expression in Eq. (14):

He
j0 ¼ 2

XP

i¼1

1� ljiðxjiÞ
Ljðxj0Þ

� �
odj0
oxj0

þ 2
XP

i¼1

dj0ljiðxjiÞ
1

L2j ðxj0Þ
oLjðxj0Þ
oxj0

� �T

¼ 2 P�
XP

i¼1

ljiðxjiÞ
Ljðxj0Þ

 !
odj0
oxj0

þ 2
XP

i¼1

ljiðxjiÞ
L3j ðxj0Þ

dj0d
T
j0

ð14Þ

This expressions allows one to obtain the full Hessian

matrix and full gradient vector by means of expansion

and assembly of the matrices obtained for each truss

element.

6 Boundary conditions

The use of a set of nodal coordinates as parameters for

the optimization also leads to a phenomenon to take

into consideration: if any of these coordinates belong

to a fixed joint in the mechanism, a change in these

coordinates would also lead to a change in the

deformed lengths obtained in each of the precision

points. This is, lijðxjiÞ would be affected and, thus, this
phenomenon is to be considered in g and H. If one

considers Eq. (15):

dFðx0Þ
dx0

¼ o

ox0

XP

i¼1

XB

j¼1

Ljðx0Þ � ljiðxiÞ
� �2

þ
XP

i¼1

XB

j¼1

oxi

ox0

o

oxi
Ljðx0Þ � ljiðxiÞ
� �2

ð15Þ

It is easy to find out that the effect of the boundary

conditions in g can be expressed as the summation of

those components obtained in the previous section and

an additional term. In order to use the same finite

element approach described before, one can write

Eq. (16):

dFðx0Þ
dx0

¼
XB

j¼1

o

oxj0

XP

i¼1

Ljðxj0Þ � ljiðxjiÞ
� �2

þ
XB

j¼1

XP

i¼1

oxji

oxj0

� �
o

oxji
Ljðxj0Þ � ljiðxjiÞ
� �2

¼
XB

j¼1

gej0 þ
XB

j¼1

XP

i¼1

geji

ð16Þ

So it can be considered the expression in Eq. (17), for

a truss j, joining joints k and l:

gej ¼ gej0 þ
XP

i¼1

geji ð17Þ

Where gej0 has already been obtained. Then one can

write the equation (18):

geji ¼
oxji

oxj0

� �
o

oxji
Ljðxj0Þ � ljiðxjiÞ
� �2

¼ 2 1� Ljðxj0Þ
ljiðxjiÞ

� �
oxji

oxj0
dji

ð18Þ

Where expression in Eq. (19) are fulfilled.
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xji ¼

xki

yki

xli

yli

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

; dji ¼

ðxki � xliÞ

ðyki � yliÞ

�ðxki � xliÞ

�ðyki � yliÞ

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

;

oxji

oxj0
¼

fk 0 0 0

0 fk 0 0

0 0 fl 0

0 0 0 fl

2

666664

3

777775

ð19Þ

fk equals 1 if node k in truss j is fixed and 0 if it is not; fl
equals 1 if node l in truss j is fixed and 0 in the other

case. It has also been used here the Eq. (20):

oljiðxjiÞ
oðxjiÞ

¼ 1

ljiðxjiÞ
dji ð20Þ

For He
j , one can write Eq. (21):

He
j ¼

dgej

dxj0
¼

ogej0

oxj0
þ
XP

i¼1

oxji

oxj0

ogej0

oxji

þ
XP

i¼1

ogeji

oxj0
þ
XP

i¼1

oxji

oxj0

ogeji

oxji

¼ He
j0 þ

XP

i¼1

He
j0i þ

XP

i¼1

He
ji0 þ

XP

i¼1

He
jii

ð21Þ

To derive the relevant matrices, the identity expressed

in Eq. (22) is of extensive use:

o

oxji
1� ljiðxjiÞ

Lðxj0Þ

� �
¼ �1

ljiðxjiÞ
dji ð22Þ

He
j0 was attained in the previous Sect. 5. He

j0 is

obtained from Eq. (23).

He
j0ij ¼

oxji

oxj0

ogej0

oxji
¼ �2

Lðxj0ÞlðxjiÞ

fk 0 0 0

0 fk 0 0

0 0 fl 0

0 0 0 fl

2
6664

3
7775dj0d

T
ji

ð23Þ

Which is gathered from expressions in Eq. (24):

ogej0

oxji
¼ 2

o

oxji
1� ljiðxjiÞ

Lðxj0Þ

� �
dj0

� �

¼ 2dj0
o

oxji
1� ljiðxjiÞ

Lðxj0Þ

� �� �T

þ 2 1� ljiðxjiÞ
Lðxj0Þ

� �
o

oxji
dj0

¼ �2dj0
1

Lðxj0ÞlðxjiÞ
dTji

ð24Þ

For He
jji0 it can be expressed as in Eq. (25) the

following:

He
jji0 ¼

ogeji

oxj0
¼ 2

o

oxj0
1� Ljðxj0Þ

ljiðxjiÞ

� �
oxji

oxj0
dji

� �

¼ 2
oxji

oxj0
dji

o

oxj0
1� Ljðxj0Þ

ljiðxjiÞ

� �� �T

þ 2 1� Ljðxj0Þ
ljiðxjiÞ

� �
o

oxj0

oxji

oxj0
dji

� �

¼ �2

ljiðxjiÞLjðxj0Þ
oxji

oxj0
djid

T
j0

þ 2 1� Ljðxj0Þ
ljiðxjiÞ

� �
o

oxj0

oxji

oxj0
dji

� �

ð25Þ

Where the last term in Eq. (25) can be expressed as

shown in Eq. (26):

o

oxj0

oxji

oxj0
dji

� �
¼

fk 0 �fkfl 0

0 fk 0 �fkfl

�fkfl 0 fl 0

0 �fkfl 0 fl

2
6664

3
7775

ð26Þ

The last term to define is He
jjiji, which is expressed in

Eq. (27).
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He
jjiji ¼

oxji

oxj0

ogeji

oxji
¼ 2

oxji

oxj0

o

oxji

� 1� Ljðxj0Þ
ljiðxjiÞ

� �
oxji

oxj0
dji

� �

¼ 2
oxji

oxj0

oxji

oxj0
dji

o

oxji
1� Ljðxj0Þ

ljiðxjiÞ

� �� �T
 

þ 1� Ljðxj0Þ
ljiðxjiÞ

� �
o

oxji

oxji

oxj0
dji

� ��

ð27Þ

The last term of Eq. (27) is equal to zero, due to the

fact that:

oxji

oxj0
dji ¼

fkðxjk0 � xjl0Þ
fkðyjk0 � yjl0Þ
�flðxjk0 � xjl0Þ
�flðyjk0 � yjl0Þ

8
>>><

>>>:

9
>>>=

>>>;
ð28Þ

Because if fk ¼ 1, xjki is not an independent variable,

because it equals xjk0. Similar reasoning can be made

for the rest of the elements. So one has the expression

in Eq. (29):

He
jjiji ¼ 2

oxji

oxj0

oxji

oxj0
dji

o

oxji
1� Ljðxj0Þ

ljiðxjiÞ

� �� �T
 !

¼ 2
Ljðxj0Þ
l3j ðxjiÞ

oxji

oxj0
djid

T
ji

oxji

oxj0

� �T
 !

ð29Þ

7 Optimization algorithm

As exposed before, the chosen optimization algorithm

is an in-house developed SQP method, which, in our

case, has full Hessian analysis. This is necessary

because, as exposed before, when using initial coor-

dinates as parameters of the synthesis, the Hessian

matrix should always be underdetermined. This algo-

rithm is applied both to the synthesis problem and the

inner deformed position function, which, as exposed

before, is itself an optimization problem. The Hessian

matrices and gradient vectors are built via assembly of

the trusses matrices and, afterwards, linear restrictions

(required for the inner function) are introduced via

direct manipulation of these matrices. The resultant

linear system is afterwards diagonalized by means of

the method presented in [30], which is able to solve

underdetermined systems.

This allows one to obtain the increment vector in a

decoupled system, where one can verify the signs of

each variable to check if it leads to a maximization or a

minimization, or an inflexion point. The underdeter-

mined nature of the problem will lead to, at least, an

stationary point in one direction. After this procedure,

unidimensional optimization techniques are applied.

The optimization algorithm chosen is of the

exploitative type. This means that it is very effective

when one wants to improve an initial mechanism with

an acceptable quality. If it is desired to find an

appropriate mechanism from a fresh start, it would be

more logic to use one explorative algorithm such as the

Genetic Algorithm. In such case, it would not be

possible to use this deformation energy based error

function because, as it is demonstrated in reference

[27], this type of functions leads to mechanisms with

low stiffness and, therefore, of low usefulness.

8 Experimental results

In order to verify the behaviour of the algorithm, some

simple examples are shown. The first topology that

will be addressed consists on a simply articulated

truss, which is wanted to follow a prescribed path.

Taking into account the fact that any point of a simply

articulated truss describes a circle, the result should be

an adjustment to a circle as seen in Fig. 6. Here a truss

is drawn with node A fixed while B describes the

prescribed path defined by precision points 0–1–2.

In the left-handed picture the problem along with

the starting guess is shown. The obtained result is

shown in the right-handed picture, where it can be

observed the optimized position of the fixed node A.

Fig. 6 Simple truss, following a circle described by three points
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The result is obtained in about 8 iterations to a

precision in the order of 10�31.

Being this a numerical algorithm its sensitivity is

determined by the size of the floating point used and

other factors such as the preciseness of the criteria of

convergence. In this case floating point of double

precision have been worked with and criteria of

convergence have been adjusted to obtain results with

at least 5 significant numbers.

It is important to point out that although in the

results presented the precision points are achieved in

the specified order, this is due to the fact that they

belong to feasible paths for the mechanisms of the

considered typology. That is, in the optimization

process it has not been introduced any condition to

verify this order. However, in the proposed algorithm

constraints could be introduced to force the mecha-

nism to follow a certain order. In any case, these

constraints could cause the lack of convergence

towards a quality solution.

The second example deals with the same topology,

but now the result is not exact. In this case it is desired

to adjust the circle to 5 points as it can be appreciated

in Fig. 7. While A is a fixed node, B approaches the

prescribed path defined by 0–1–2–3–4.

The result is obtained in a similar number of

iterations, with an increased cost for each of them.

These results show that the algorithm is able to deal

with both exact and approximate synthesis. In both of

these examples, due to their particular nature, coupled

and uncoupled formulations coincide. Now more

complex problems will be addressed.

The next one is a fourbar mechanism, which is

wanted to describe a 9 point path (see Fig. 8). The

initial mechanism is defined by the set of coordinates

expressed in Table 1. In this example fixed nodes are A

and D, as can be seen addressed in the aforementioned

figure:

And the target points are defined in Table 2.

The initial fitness is 17.2888. The algorithm reaches

0.002953. The final result is stopped due to the fact

that the gradient reaches a change in the configuration,

which in turn leads to an increment in the fitness for

the iteration, which is not allowed in the algorithm.

Some of the undeformed minimum distance points are

shown in Fig. 9.

The final coordinates for the mechanism in this

example are given in Table 3.

Convergence rate in the first iterations is quite

good, while afterwards, the fact that it is being used an

approximation of the Hessian penalizes it. Anyway, a

quite good improvement is done in about 8 iterations

as shown in the graphic in Fig. 10.

Obviously, with the dimensional approach, one

cannot include the basement locations as optimization

variables without introducing complex modifications,

as explained before. In order to compare methods, the

same problem will be solved including restrictions so

the fixed nodes are not part of the optimization.

Using initial coordinates, the finally obtained result

yields a deformation energy of 0.000615813. It may

surprise that the obtained result has better fitness than

the case where fixed nodes are part of the optimization,

but the reason behind it is that this limitation is that the

algorithm has converged to a different local minimum

as shown in Fig. 11.

The minimum distance positions to the target points

are quite accurate. Some of them are shown in Fig. 12.

The resultant coordinates are shown in Table 4.

When employing dimensions, the obtained result is

about the same, only differenced by the convergence
Fig. 7 Simple truss, following a circle described by five points

Fig. 8 Initial position of the fourbar (left) and its obtained

solution (right) with the dimensional parameters

1990 Meccanica (2018) 53:1981–1996

123



moment, so one should compare the cost. The

following plots in Fig. 13 describe the evolution of

each of the approaches in the first 50 iterations. They

are quite similar, as is the cost per iteration (although it

should be slightly better in the dimensional approach,

due to the reduced number of variables, but in this case

the comparison is 5 to 6 and implementation differ-

ences and other factors can also affect this cost).

In this case, the resulting variables are the dimen-

sions of the links of the mechanism, which are shown

in Table 5.

As a final example, a double butterfly mechanism

will be dealt with (see Fig. 14). In this case, to further

Table 1 Initial coordinates

of the fourbar
XA YA XB YB XC YC

- 5.7114 2.5202 - 3.8503 - 0.4130 - 2.1952 - 0.5217

XD YD XE YE

- 2.0260 - 3.2762 - 2.8596 0.8072

Table 2 Coordinates of the 9 precision points to be followed

by the fourbar

X Y X Y

- 2.6301 1.0126 - 0.2139 2.2690

- 2.1589 1.0488 0.0882 2.8610

- 1.6757 1.1213 0.2443 3.5135

- 1.2408 1.3630 0.2931 4.1358

- 0.6850 1.7254

Fig. 9 Solution mechanism in positions 0, 3, 6, and 8

Table 3 Final coordinates of the fourbar

XA YA XB YB XC YC

- 9.3343 3.7231 - 2.2052 0.4771 - 1.2526 2.9409

XD YD XE YE

- 6.7509 - 0.5369 - 3.8337 1.4035

Fig. 10 Evolution of the fitness, the elastic energy function

Fig. 11 Obtained solution

with the nodal coordinates

parameters
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show the advantages of the approach, this example

will be formulated with prescribed timing: one wants

the input link to achieve a determinate angle while the

coupler point reaches a target position for each of the 6

precision points introduced 0–1–2–3–4–5. The A fixed

node location of the input link is fixed, while the other

two fixed point positions J and G are free. The initial

coordinates are the ones shown in Table 6.

The exact solution is impossible to achieve, due to

the fact that there are more restrictions than variables.

The obtained solution is shown in Fig. 15.

The minimum distance position to the requirements

is described in Fig. 16.

The evolution of the error is as usual, quite fast at

the beginning while slow at the final stages, due to the

Hessian approximation as one can appreciate in

Fig. 17. The final solution yields 0.007, which is less

than one hundred percent of the starting value.

The coordinates of the nodes in the final mechanism

are given in Table 7.

Obviously, in order to successfully apply these

techniques to complex mechanisms like the present

one, the starting solution is of most importance,

because of the presence of a large amount of local

optima and also because the energy function favours

low stiffness mechanisms, which can be useless, but

can reach any condition. In the case of the coordinate

based approach, it can also yield to degenerated 2 dof

mechanisms if the initial solution is too far from the

desired optima. As exposed in [1], the use of distance

based functions along with genetic algorithms can

give good initial solutions in these situations.

The examples shown in this work have been run on

an Intel Xeon E5645@2,4GHz and the code was not

programmed for multithread. The execution times are

Fig. 12 Solution mechanism in positions 0, 3, 5, and 8

Table 4 final coordinates

of the fourbar
XA YA XB YB XC YC

- 5.7114 2.5202 - 5.2815 - 2.0171 - 1.8628 - 11.183

XD YD XE YE

- 2.0260 - 3.2762 - 3.1240 - 0.8376

Fig. 13 Evolution of the fitness, with synthesis based on initial

coordinates (squares) and based on dimensions (diamonds)

Table 5 Final dimensions of the fourbar

L0 L1 L2 L3 L4

2,2565 6,1263 5,4331 3,0782 4,1256
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very variable, where the fourbar examples lie under

one second, although in cases of slow convergence it

has been reached, very exceptionally, the 10 min. In

the example of the double butterfly presented the

execution time was of 33 s.

Comparing with synthesis methods based on

dimensions, the use of initial coordinates presents a

similar performance. This was to be expected as the

number of unknowns does not increase in a consid-

erable way.

9 Conclusions and future work

This paper has shown a new approach to the dimen-

sional synthesis of mechanism which, although based

in the same concepts as previous developments,

introduces fundamental changes in its conception.

The main contribution of this work is that thanks to the

fact that the initial coordinates are used as optimiza-

tion variables, the assembly configuration is included

in the optimization process, which is of most impor-

Fig. 14 Initial guess of double butterfly with prescribed timing

path generation

Table 6 Initial coordinates

of the double butterfly
XA YA XB YB XC YC

- 3.7300 - 2.0300 - 3.8200 1.8900 - 2.4300 0.7300

XD YD XE YE XF YF

- 1.5400 1.6000 0.6800 1.8200 - 0.2700 0.8500

XG YG XH YH XI YI

0.8500 - 1.0400 - 1.7300 - 0.3500 - 0.8400 - 0.3900

XJ YJ XK YK

- 1.3300 - 1.0800 - 0.7800 2.4800

Fig. 15 Solution of double butterfly with prescribed timing path

generation
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tance in the definition of the mechanism. A second

point of interest derives from the fact that the

coordinates of the fixed points are also variables of

the optimization and thus, one does not need to include

workarounds to optimize them. A final advantage,

directly derived from the first, is that all of the possible

solution vectors define a mechanism which always can

be assembled, which not always holds truth when

using dimensions. These advantages come to some

cost, namely the fact that the same mechanism can be

defined in infinite ways, thus leading to an underde-

termined optimization problem. This disadvantage can

successfully be overcome with an appropriate opti-

mization method. Experimentation has shown that,

depending on the problem, the use of one or another of

the methods can deliver different results, so the best

bet is to use both or even combinations of them. In this

paper an uncoupled approach has been used, which

tends to be better at the initial stages, but is slower at

the final iterations. In this paper the relevant algo-

rithms and mathematical developments have been

exposed and, although they have been limited to

mechanisms composed by R-Joints, they can easily be

generalized to P-joints and even three-dimensional

problems. In any case, the new algorithm inherits not

only the advantages of the former approach, but also

some of its drawbacks, specially the problem of the

low stiffness mechanisms. Further developments

should tackle with this problem, possibly employing

a minimum distance approach, which has already

shown some good results along with genetic algo-

rithms, but requires a complex development if SQP

algorithms are to be applied. The use of coupled

approaches could also be of interest.

Fig. 16 Undeformed double butterfly in minimum distance

problem at every point

Fig. 17 Evolution of the elastic energy function with synthesis

based on initial coordinates
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22. González RA (1980) Análisis cinemático de mecanismos
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