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Abstract

Background

During cardiopulmonary resuscitation (CPR), there is a high incidence of capnograms dis-

torted by chest compression artifact. This phenomenon adversely affects the reliability of

automated ventilation detection based on the analysis of the capnography waveform. This

study explored the feasibility of several filtering techniques for suppressing the artifact to

improve the accuracy of ventilation detection.

Materials and methods

We gathered a database of 232 out-of-hospital cardiac arrest defibrillator recordings con-

taining concurrent capnograms, compression depth and transthoracic impedance signals.

Capnograms were classified as non-distorted or distorted by chest compression artifact. All

chest compression and ventilation instances were also annotated. Three filtering techniques

were explored: a fixed-coefficient (FC) filter, an open-loop (OL) adaptive filter, and a closed-

loop (CL) adaptive filter. The improvement in ventilation detection was assessed by compar-

ing the performance of a capnogram-based ventilation detection algorithm with original and

filtered capnograms.

Results

Sensitivity and positive predictive value of the ventilation algorithm improved from 91.9%/

89.5% to 97.7%/96.5% (FC filter), 97.6%/96.7% (OL), and 97.0%/97.1% (CL) for the dis-

torted capnograms (42% of the whole set). The highest improvement was obtained for the

artifact named type III, for which performance improved from 77.8%/74.5% to values above

95.5%/94.5%. In addition, errors in the measurement of ventilation rate decreased and

accuracy in the detection of over-ventilation increased with filtered capnograms.
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Conclusions

Capnogram-based ventilation detection during CPR was enhanced after suppressing the

artifact caused by chest compressions. All filtering approaches performed similarly, so the

simplicity of fixed-coefficient filters would take advantage for a practical implementation.

Introduction

Sudden cardiac arrest is defined as the sudden and often unexpected cessation of the effective

contraction of the heart, confirmed by the absence of signs of circulation and breathing [1].

The key techniques during resuscitation of cardiac arrest include airway, breathing and circu-

lation support by means of cardiopulmonary resuscitation (CPR) and defibrillation. In out-of-

hospital (OOH) settings, advanced life support (ALS) includes manual defibrillation, advanced

airway management, and drug administration during CPR [2, 3].

Capnography is increasingly used by ALS Emergency Medical Services (EMS) systems dur-

ing the treatment of OOH cardiac arrest [4, 5]. Capnography allows the assessment of the par-

tial pressure of carbon dioxide (CO2) in the respiratory gases. The concentration of CO2 at the

end of the exhalation (ETCO2) is considered a surrogate measurement of the pulmonary circu-

lation generated during resuscitation efforts [6]. Customarily, monitoring the capnogram is

widely used for guiding ventilation. Excessive ventilation rate has been shown to be frequent

and detrimental to the patient during CPR [7–9]. Other uses of capnography in EMS include

assessment of the correct positioning of the endotracheal tube [10], monitoring the effective-

ness of CPR, identification of restoration of spontaneous circulation [11], and determination

of patient prognosis [2, 5, 12].

Quality of the recorded capnogram is essential for a reliable analysis, either visual or auto-

mated. However, several authors have reported the appearance of oscillations synchronized

with chest compressions distorting capnograms recorded during OOH cardiac arrests [13–

17]. Idris et al. specifically reported a high incidence of 70% of distorted OOH capnograms

[13]. This phenomenon was not systematically assessed until a recent observational study, in

which researchers retrospectively analyzed more than 200 capnograms collected during OOH

cardiac arrests [17]. The episodes were classified into distorted (42%) or undistorted (58%),

restricting the number of distorted capnograms to those with at least 1 min of distorted venti-

lations. Three types of artifact were defined according to the location of the oscillations in the

respiratory cycle. Finally, the authors reported the negative influence of chest compression

artifact in automated detection of ventilations, compromising the reliability of capnogram-

based ventilation guidance during CPR.

In this context, we hypothesized that suppressing chest compression artifact from the cap-

nogram was possible using adequate filtering techniques. Filtering would improve the capno-

gram signal quality and consequently the reliability of automated ventilation detection even in

the presence of chest compression oscillations.

The purpose of this study was to explore different filtering techniques to eliminate chest

compression artifact from the capnogram. Fixed-coefficient filtering as well as classical adap-

tive schemas were examined. To assess the filter performance we compared the accuracy of a

capnogram-based algorithm for automated detection of ventilations before and after filtering

OOH capnograms. We also evaluated the improvement in the measurement of ventilation rate

and in the detection of over-ventilation after artifact suppression.
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Chest compression artifact in the capnogram during CPR

Fig 1 shows the morphology of a normal capnogram, representing the evolution of CO2

concentration in the airway with time. Typical intervals and phases are named according to

the terminology used by Bhavani-Shankar et al. [18]. During inspiration or phase 0, the air-

way is filled with CO2-free gases, resulting in a rapid decrease of CO2 concentration to a

zero level that defines the baseline of the capnogram. Expiration comprises three intervals:

phase I represents the CO2-free gas in anatomical dead space, between the patient’s alveoli

and the measurement device; phase II represents the mixture of gases from the anatomical

dead space and the alveoli; phase III defines the alveolar plateau, representing the rising of

the CO2 concentration produced by CO2 rich gases coming from the alveoli. The alveolar

plateau ends up at a peak level corresponding to the end-tidal CO2 concentration (ETCO2)

[6].

The studies presented in references [14, 15] reported that during CPR, chest compres-

sions generate a fluctuation of little gas volumes that are detected by the capnography sen-

sor, producing oscillations in the capnogram waveform. This artifact has been recently

examined in more detail by our research team in a retrospective observational study [17].

We worked with a set of undistorted (clean) and distorted capnograms from patients in

OOH cardiac arrest and observed that the artifact appeared as oscillations of varying ampli-

tudes and locations in the capnogram. In that study, we identified three types of artifact,

depending on the location of the oscillations: type I, if oscillations appeared in the alveolar

plateau; type II, in the baseline; and type III, the most confounding artifact, if the artifact

spanned from the plateau to the baseline. No induced oscillations were found in the slopes

of phases 0 and II.

Fig 2A shows examples of distorted capnograms corresponding to the three observed types

of artifact (upper panel). The compression depth (CD) signal depicted below each capnogram

shows that the artifact is synchronous with the CD waveform. Fig 2B shows the normalized

power spectral density (PSD) estimated for both the capnogram (in solid blue line) and the CD

signal (in dotted red line). The PSD of the capnogram presents a low frequency band associ-

ated to the ventilation rate (close to 10 per minute in the three examples), and a single peak

corresponding to the artifact oscillation frequency. This frequency is exactly the fundamental

frequency of the CD signal (fcc), that is, the chest compression rate. Hence, the artifact presents

a sinusoidal characteristic with a fundamental frequency equal to the frequency of the chest

compressions.

Fig 1. A normal capnogram. The waveform represents the varying CO2 levels during the respiratory cycle. Typical segments and

phases are named according to [18].

https://doi.org/10.1371/journal.pone.0201565.g001
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Materials and methods

Data collection and annotation

For this study, data were extracted from OOH cardiac arrest episodes from the Resuscitation

Outcomes Consortium (ROC) Epidemiological Cardiac Arrest Registry approved by the Ore-

gon Health & Science University (OHSU) Institutional Review Board (IRB00001736). No

Fig 2. The three different types of observed artifact. (A) Type I, located in the plateau of the capnogram; type II, in the baseline, and type III,

spanning from the plateau to the baseline. Each capnogram is depicted with the corresponding CD signal. (B) Power spectral density (PSD) of each

capnogram (in solid blue line) and CD signal (in dotted red line). Capnograms present a significant peak at the fundamental frequency of the

artifact, fcc, with highest amplitudes in type III samples.

https://doi.org/10.1371/journal.pone.0201565.g002
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patient private data was required for this study. All episodes were recorded using Heartstart

MRx monitor-defibrillators (Philips, USA), equipped with real-time CPR feedback technology

(Q-CPR) and capnography monitoring using sidestream technology (Microstream, Oridion

Systems Ltd, Israel). As the database for this study was the same used in reference [17], we pro-

vide here a brief description of the materials. Readers are encouraged to consult the original

reference for additional details.

We gathered 232 episodes with the concurrent capnogram, compression depth (CD) signal

computed by the Q-CPR technology, and transthoracic impedance (TI) signal acquired from

defibrillation pads. Experts participating in the review process manually and visually examined

each capnogram and the concurrent CD signal. The CD signal was used as the reference to

determine whether chest compressions were provided or not. Episodes were classified as dis-

torted if evident chest compression artifact appeared during more than 1 min of the total chest

compression time. Otherwise, episodes were grouped in the clean category. Distorted episodes

were then categorized into the artifact categories type I, type II, or type III.

Ventilations were annotated using the TI signal. Ventilations induce slow fluctuations in

the TI signal acquired by defibrillators. TI increases during inspiration due to the increment

of the gas volume of the chest and to the longer distance between the electrodes, that pro-

duces a decrement in the conductivity [19–21]. The raw TI signal was low-pass filtered to

enhance the slow fluctuations caused by ventilations. Experts visually examined the pro-

cessed TI signal to manually annotate the position of each single ventilation. Fig 3 shows an

example of the ventilation annotation. The top panel depicts the raw TI signal in gray with

the enhanced low frequency component in blue. Ventilations were annotated at the instant

corresponding to a rise in the impedance (vertical red lines). To visually confirm the pres-

ence of ventilations the capnogram is depicted in the middle panel. Resulting ventilation

annotations were used as the gold standard to evaluate the effectiveness of the proposed fil-

tering techniques. Chest compression instances were annotated at the local minima (Fig 3,

bottom panel red dots) corresponding to the maximum depth reached for each chest

compression.

Methods

Algorithm for ventilation detection. To assess filtering performance we applied a capno-

gram-based ventilation detection algorithm before and after artifact suppression [17]. A sim-

plified scheme of the detector is shown in Fig 4. Basically, the algorithm locates series of

consecutive upstrokes (tup) and downstrokes (tdw) in the capnogram applying an amplitude

threshold (Thamp). Durations between those instants, Dex and Din, are the two features used to

classify potential candidates as true ventilations, according to a simple decision tree based on

thresholds Thex and Thin, respectively. Other similar detection algorithms have been previously

described in the literature [21].

In the next sections the filtering techniques used for the suppression of the chest compres-

sion artifact are presented. We studied three different alternatives: a simple fixed-coefficient

filter and two more computationally intensive adaptive filtering techniques.

Fixed coefficient (FC) filtering. Observation of the PSD in Fig 2B supports the use of a

simple filter with fixed coefficients to suppress the spectral content of the capnogram above 1

Hz (60 cpm). To that end, we implemented a digital infinite impulse response low-pass Butter-

worth filter.

Adaptive filtering. Variability of chest compression rate may affect the efficacy of the FC

filter [8, 9, 22, 23]. Adaptive techniques in which the filter parameters are adjusted in time

according to the varying characteristics of the artifact could be a suitable solution. In the

Enhancing ventilation detection during CPR by filtering chest compression artifact from the capnogram
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literature, adaptive filtering has been extensively used for the suppression of the artifact

induced by chest compressions in the electrocardiogram recorded by defibrillators during

CPR [24–28].

In this study, we designed two different adaptive filtering configurations, an open-loop and

a closed-loop adaptive filter [29]. Details of the adaptive filters are addressed in the supporting

information S1 Appendix.

Fig 5 illustrates the performance of the filters. The three filtering techniques were applied

to the same capnogram (top panel), and the resulting filtered waveforms are depicted in the

lower panels (blue line) superimposed on the original capnogram (gray line). Ventilations

detected before and after filtering are marked with vertical red dotted lines. Ventilations with

chest compression artifact (the four consecutive ventilations in the center of the tracing) were

not detected in the original capnogram, but they were successfully identified after artifact

cancellation.

Data analysis and performance evaluation

Ventilation annotations in the database constituted the gold-standard used to evaluate the per-

formance of the automated ventilation detection algorithm applied to the original and to the

Fig 3. Annotation of ventilations and chest compressions. Ventilations were annotated using the low frequency component of

the TI signal (upper panel, in blue), obtained by low-pass filtering the raw TI signal (in gray). Each ventilation was annotated at

the rise of a TI fluctuation (red vertical lines). In the capnogram (middle panel), these annotations corresponded to CO2

concentration’s rapid decay to zero. Chest compression instances were annotated in the CD signal (lower panel), and are depicted

with red dots corresponding to the instants where the maximum compression depth was achieved.

https://doi.org/10.1371/journal.pone.0201565.g003
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filtered capnograms. The reliability of the proposed filtering techniques was assessed by com-

paring the sensitivity (Se) and positive predictive value (PPV) of the ventilation detector before

and after filtering. Se was defined as the proportion of annotated ventilations that were cor-

rectly detected by the algorithm and PPV was the proportion of detected ventilations that were

true ventilations.

Filter parameters were optimized for all filtering strategies with a training subset of 15 clean

and 15 distorted capnograms. Optimization criteria was maximum Se for a minimum PPV of

95%. Filter performance was reported for the remaining 202 episodes comprising the test subset.

For each episode in the whole set, we computed the number of ventilations provided every

minute (ventilation rate), using a 1 minute sliding window with an overlap factor of 1/6, i.e.

the ventilation rate value was updated every 10 s. We compared the ventilation rate measure-

ments computed from the estimated ventilations before and after filtering with those com-

puted from the gold-standard ventilations.

We also tested the accuracy in the detection of over-ventilation, defined as a ventilation rate

greater than 10 per minute. This value was selected according to the general recommendation

in current resuscitation guidelines [2, 3]. For that purpose, Se was defined as the proportion of

annotated over-ventilation intervals that were detected by the algorithm, and PPV as the pro-

portion of true over-ventilation instances among all the over-ventilation alarms provided by

the algorithm.

Results

Table 1 shows a summary of the episodes included in the study. Mean (±standard deviation)

duration of the episodes was 31 (±10) min. Airway types were endotracheal tube (ETT) in

Fig 4. Scheme of the ventilation detector. The algorithm locates upstrokes (tup) and downstrokes (tdw) in the capnogram signal (right) applying a fixed amplitude

threshold Thamp. It extracts the duration of the intervals Dex and Din. Finally, fixed duration thresholds Thex and Thin are used to discriminate true ventilation from the

potential candidates. Detected ventilations are depicted with vertical red dotted lines in the bottom panel.

https://doi.org/10.1371/journal.pone.0201565.g004
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64.2%, supraglottic airway (SGA) in 31.7%, and bag-valve-mask (BVM) in 0.03% of the epi-

sodes. Distorted episodes comprised 42.2% of the whole set. Type I artifact was annotated in

48%, type II in 21% and type III in 31% of the distorted episodes. A total of 52654 ventilations

were annotated, with a mean of 224 (±115) ventilations per episode. A total of 532597 chest

compressions were annotated, with a mean of 2296 (±1230) per episode. Mean chest compres-

sion rate was 114.0 (±14.4) compressions per minute.

Fig 5. Examples of filtering performance. Original capnogram with clean and distorted respiration cycles (top panel). Detected ventilations are

depicted with vertical lines. Distorted ventilations could not be detected by the algorithm. Lower panels show the filtered capnogram (in blue)

superimposed to the original capnogram (in gray), for the three filtering alternatives. Detected ventilations are depicted with vertical red dashed

lines. In this example, all ventilations were correctly detected after filtering.

https://doi.org/10.1371/journal.pone.0201565.g005

Enhancing ventilation detection during CPR by filtering chest compression artifact from the capnogram

PLOS ONE | https://doi.org/10.1371/journal.pone.0201565 August 2, 2018 8 / 14

https://doi.org/10.1371/journal.pone.0201565.g005
https://doi.org/10.1371/journal.pone.0201565


Ventilation detection performance

Table 2 shows the performance of the ventilation detection algorithm for the test set before

and after filtering. For the whole test set, Se/PPV improved from 96.4%/95.0% before filtering

to values above 98.2%/97.7%. The results for the clean subset stayed stable before and after fil-

tering. In the distorted subset, Se/PPV improved from 91.9%/89.5% before filtering to values

above 97.0%/96.5%. The improvement was much higher for type III records, for which Se/

PPV improved from 77.6%/73.5% to values above 95.5%/94.5%.

The box plots in Fig 6A show the distribution of Se and PPV per episode for each type of

artifact, before and after filtering with the three proposed techniques. Box plots graphically

show median (central line in the box) and interquartile values (edges of the box), maximum

and minimum values (extreme values of the whiskers), and outliers (red dots). In general, Se

and PPV improved after filtering. Furthermore, the high dispersion among type III episodes

was drastically reduced after artifact cancellation with all three filtering approaches.

Ventilation rate estimation

Fig 6B shows the distributions of the unsigned error in percentage per episode between the

estimated ventilation rate and the gold-standard value. Again, errors for type III subgroup

decreased notably after filtering, as well as errors for type I subgroup, although to a much lesser

extent.

Detection of over-ventilation

Table 3 shows the influence of filtering in the detection of over-ventilation (ventilation rate

above 10 min-1). From the annotations of the whole dataset, there was a 56.4% (17 901/31 760)

of 1-minute intervals with over-ventilation. Globally, the algorithm yielded a Se/PPV of

Table 1. Characteristics of the episodes included in the study. Values are expressed as mean (±standard deviation).

Group Episodes Ventilation type Duration (min) Ventilations Compressions

BVM ETT SGA NA

Total 232 7 149 73 3 31 (±10) 224 (±115) 2296 (±1230)

Clean 134 7 90 35 2 30 (±8) 227 (±124) 1994 (±1247)

Distorted 98 0 59 38 1 32 (±12) 221 (±102) 2708 (±1084)

Type I 47 0 19 28 0 31 (±7) 212 (±105) 2893 (±1089)

Type II 21 0 15 6 0 29 (±6) 249 (±108) 2507 (±1079)

Type III 30 0 25 4 1 34 (±18) 214 (±92) 2558 (±1068)

BVM: bag-valve-mask; ETT: endotracheal tube; SGA: supraglottic airway; NA: not available

https://doi.org/10.1371/journal.pone.0201565.t001

Table 2. Performance of the ventilation detection algorithm before and after filtering for each type of artifact.

Group Episodes Before Fixed-coefficient Open-loop Closed-loop

Se(%) PPV(%) Se(%) PPV(%) Se(%) PPV(%) Se(%) PPV(%)

Total 202 96.4 95.0 98.4 97.7 98.5 97.9 98.2 98.3

Clean 119 99.6 99.0 99.0 98.5 99.2 98.7 99.1 99.2

Distorted 83 91.9 89.5 97.7 96.5 97.6 96.7 97.0 97.1

Type I 42 97.6 96.2 98.3 97.2 98.3 97.1 98.0 97.6

Type II 16 98.5 97.2 98.2 97.7 98.1 98.0 96.5 98.1

Type III 25 77.6 73.5 96.3 94.5 96.0 95.1 95.5 95.5

https://doi.org/10.1371/journal.pone.0201565.t002
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99.1%/92.6% before and above 97.9%/97.2% after filtering. For the distorted subset, Se/PPV

was 98.2%/85.8% before and above 96.3%/95.2% after filtering. Improvement was higher for

type III episode, with Se/PPV of 95.5%/72.1% before and above 94.8%/91.1% after filtering.

Discussion

In 2010, Idris et al. observed “chest compression oscillations” in more than 70% OOH capno-

grams [13]. In a recent study, we reported 42% of distorted capnography tracings during CPR

Fig 6. (A) Distributions of Se/PPV values per episode in each artifact category, before and after filtering. (B) Distribution of the

unsigned error in percentage in the estimation of ventilation rate. Results are provided for all categories: C: clean. D: distorted. I: type I

artifact. II: type II; III: type III.

https://doi.org/10.1371/journal.pone.0201565.g006
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[17]. Among the distorted episodes, artifact appearing in the capnogram plateau (type I) was

the most prevalent (48%), followed by artifact spanning from the plateau to the baseline (type

III) in 31%, and artifact appearing in the capnogram baseline (type II) in 21% of the episodes.

The nature of the artifact is a sinusoid at the frequency of the chest compressions, with vary-

ing amplitude. Our findings are in line with the few studies to date which have reported low

ventilation volumes incidental to chest compressions [13, 14]. These volumes, although lower

than the anatomical dead space, are sufficient to alter the measurement of the capnogram

device.

From a clinical perspective, the presence of chest compression artifact has three important

drawbacks: first, it impedes the automated detection of ventilations, causing inaccuracies in

the measurement of ventilation rate and false over-ventilation alarms. Moreover, the distorted

capnogram tracing is difficult to interpret by clinicians. Measurement of reliable ETCO2 values

becomes impossible, compromising the analysis of ETCO2 trends. In conclusion, chest com-

pression artifact may jeopardize most potential uses of capnography during resuscitation,

including CPR quality assessment, detection of restoration of spontaneous circulation and

prognosis assessment.

The present study focused on the improvement of automated ventilation detection using

filtering techniques to pre-process the raw capnogram before the application of the detector

algorithm. All the proposed filter schemes performed similarly, reporting favourable Se and

PPV values well above 97% and 96%, respectively, for the distorted episodes. This caused an

improvement in the measurement of ventilation rate with errors in median below 3.6%, and

over-ventilation detection, with Se and PPV values above 96% and 95%, respectively, for the

distorted episodes.

The highest improvement was obtained in type III episodes, the most challenging distor-

tion, with Se/PPV in ventilation detection improving from 78%/74% to values higher than

94%. The detector was designed to detect inspiration and expiration downstrokes in a normal

capnogram. In the presence of type I artifact the capnogram remains well-above the baseline,

i.e. oscillations do not cause false detections of inspiration onsets. Similarly, in the presence

of type II artifact, the value of the distorted CO2 is not high enough to detect the expiration

upstroke. On the contrary, type III artifact spanning from the plateau to the baseline strongly

decreases the ventilation detection. Consequently, the positive impact of filtering is much bet-

ter observable in type III episodes. In addition, the few studies addressing the artifact phenom-

enon showed graphical examples of type III capnograms, highlighting the importance of this

confounding effect [13, 15].

The adaptive filters should present a better performance than the fixed coefficient filter

since compression rates tend to vary during CPR. However, none of the approaches showed a

Table 3. Detection of over-ventilation (ventilation rate>10 min-1).

Group Gold Standard Before Fixed-coefficient Open-loop Closed-loop

nv nhv Se(%) PPV(%) Se(%) PPV(%) Se(%) PPV (%) Se(%) PPV(%)

Total 31 760 17 901 99.1 92.6 98.6 97.3 98.4 97.2 97.9 98.0

Clean 17 413 10 511 99.7 98.0 99.1 98.3 99.0 98.4 98.9 98.9

Distorted 14 347 7 390 98.2 85.8 97.9 95.6 97.4 95.2 96.3 96.6

Type I 7 167 3 398 98.9 90.8 98.9 96.8 98.4 96.4 98.0 97.0

Type II 2 826 1 837 99.8 96.6 97.6 98.2 97.2 97.8 95.2 98.3

Type III 4 354 2 155 95.5 72.1 96.5 91.5 95.9 91.1 94.8 94.2

nv is the number of annotated ventilation rate values in the gold standard (whole set), and nhv is the number of annotated over-ventilation intervals.

https://doi.org/10.1371/journal.pone.0201565.t003
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distinctive superiority in terms of performance. The main reason is that, in our recordings,

chest compression rate is generally ten times greater than ventilation rate. In this scenario the

fixed coefficient filter shows a good performance. The adaptive approaches would be more effi-

cient in case of an excess of ventilation rate with low compression rates. Hence, selection of the

filtering algorithm could be analyzed in terms of complexity and computational burden. In

this case, adaptive filtering is at a disadvantage compared to the simplicity of a fixed-coefficient

filter. Consequently, it seems adequate to apply a filter with fixed coefficients to suppress the

chest compression artifact from the capnogram. Nevertheless, the implementation of the three

filtering approaches would operate the capnogram signal in real time, being transparent to the

user.

The capnogram waveform achieved after filtering approximates the mean peak-to-peak

amplitude of the artifact, as illustrated in Fig 5 in the Methods section). After filtering, the cap-

nogram is still difficult to interpret by clinicians. The filtered capnogram waveform hinders

the reliable analysis of ETCO2 trends, a very useful clinical information during CPR. In the fig-

ure, reliable ETCO2 values could only be measured in the undistorted tracing before and after

the distorted interval. In practice, capnogram filtering would be an intermediate stage in the

ventilation detection algorithm if implemented in the monitor-defibrillator but the resulting

waveform would not be displayed on the screen, the raw capnogram would appear instead.

The development of other techniques aimed at removing the artifact (to improve ventilation

tracking) and at the same time preserving the capnogram tracing would favor clinical

interpretation.

Conclusion

We assessed three filtering alternatives for suppressing the artifact caused by chest compres-

sions on OOH capnograms and analyzed their performance in terms of the improvement of the

automated detection of ventilations during CPR. All approaches yielded good results, so sim-

plicity and low computational burden could determine the best alternative to be implemented.
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