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I.1 The liver and the biliary tract 

The liver is the biggest organ in the human body and one of the most important 

for the maintenance of physiological homeostasis [1]. The liver performs key 

metabolic functions including cholesterol production, glucose storage, protein, 

amino acid, and lipid metabolism, detoxification processes as well as bile 

production [2]. The bile is a vital aqueous secretion unique in the liver which 

owns important functions such as the emulsion of incoming dietary fat, 

immunological protection of the organism from enteric infections and the 

excretion of toxic substances [i.e. bilirubin and bile acids (BAs)] as well as 

elimination of cholesterol [3]. The liver is mainly composed by two epithelial cell 

types, i.e. hepatocytes and cholangiocytes, which represent 70% and 3-5% 

of total liver cells, respectively, and are responsible for the formation of bile [3, 

4] (Figure I.1). Hepatocytes generate and secrete the primary bile into the 

canaliculus (a thin lumen formed between the apical membranes of two 

adjacent hepatocytes). Then, bile drains into the bile ducts (formed by 

cholangiocytes) for its transport and modification in the way to the duodenum 

[3]. The liver also contains other important non-parenchymal cells: i) Kupffer 

cells (specialized liver macrophages with immunological and phagocytic 

functions), ii) hepatic stellate cells (involved in liver remodeling processes 

associated with hepatic fibrosis) and iii) sinusoidal endothelial cells (which allow 

the communication of portal blood with hepatocytes) [1]. 

The biliary tree has a heterogeneous structure, going from the canals of 

Hering to the main bile duct, and is consisted of both intrahepatic and 

extrahepatic bile ducts. The canals of Hering are localized intralobularly, lined 

by immature cholangiocytes (also considered hepatic progenitor cells, HPCs), 

and, among other functions, they collect the canalicular bile. The canals of 

Hering continue into the bile ductules, which are entirely lined by mature 

cholangiocytes. Bile ductules converge into the interlobular bile ducts, which are 

located in the portal space, and then continue into ducts of major size [5-7]. The 

intrahepatic bile ducts correspond to the structure going from the ductule-

canalicular junction with the canals of Hering to the segmental ducts, whereas 

the extrahepatic bile ducts include: hepatic ducts (right, left and common 

hepatic ducts), gallbladder, cystic duct, common bile duct and hepato-
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pancreatic ampulla [6]. The size of the ducts increases throughout the biliary 

tree, from the liver to the intestine, and cholangiocytes lining small vs large 

ducts are functionally heterogeneous [6, 8] (Figure I.1). 

 

Figure I.1. Liver and biliary tree architecture. (A) The liver is mainly composed by 

hepatocytes, which form the canaliculi. Within the liver, bile ducts – which are lined by 

cholangiocytes – form the portal triad together with the adjacent hepatic artery and portal vein. 

(B) The biliary tree consists of a network of intrahepatic and extrahepatic tubular ductules that 

end up in the duodenum (Adapted from Tabibian et al., 2013 and Erice et al., 2015). 

 

I.2 Bile duct epithelial cells: cholangiocytes 

Cholangiocytes represent a small proportion of all liver cells but are very 

important in health and disease. They account for up to ~30-40% of the total 

bile flow, contributing to the fluidization and alkalinization of bile. Cholangiocytes 

contain an array of transmembrane carriers, located either at the apical or at the 

basolateral side, that regulate bile composition [3, 9-11]. This system includes 

channels (like water channels: aquaporins), transporters (e.g. SGLT1: Na+-

glucose transporter) and exchangers (e.g. SLC4A2: Cl-/HCO3
- exchanger) [9-

11]. During the bile transit along the bile ducts, water and other electrolytes are 

secreted and/or absorbed, being bicarbonate secretion one of the most 

important processes [4]. The secretin receptor (SR), the cystic fibrosis 

transmembrane conductance regulator (CFTR) and the Cl-/HCO3
- anion 

exchanger 2 (AE2) altogether promote the biliary bicarbonate secretion, which 
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is the driving force for the movement of water and protects cholangiocytes 

against the damaging effect of toxic apolar hydrophobic BAs (a mechanism 

termed as the “biliary bicarbonate umbrella”) [12, 13]. Cholangiocytes can 

communicate and interact with other cell types in the bile ducts and can 

therefore respond to endogenous and exogenous stimuli, such as xenobiotics, 

microorganisms or drugs [14, 15]. Moreover, cholangiocytes contribute to the 

maintenance of tissue homeostasis by modulating key cellular processes [14, 

15]. 

Cholangiocytes can be damaged by the interaction with exotoxins, 

endotoxins, microorganisms, xenobiotics or other environmental factors and 

respond to these by developing a reactive phenotype, generating a pro-

inflammatory microenvironment. Cells are able to repair potential acute injuries 

regressing to a normal phenotype, a process dependent on cell genetics, 

epigenetic mechanisms and posttranscriptional regulation. However, if the insult 

persists over time, chronic biliary inflammation may lead to the development of 

certain cholangiopathies [15] (Figure I.2). 
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Figure I.2. Cholangiocytes in health and disease. (A) Biology of cholangiocytes. (B) 

Cholangiocytes response to injury. (Adapted from Lazaridis and LaRusso, 2015). 
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I.3 Cholangiopathies 

Diseases affecting cholangiocytes are known as cholangiopathies, a term 

comprising genetic and acquired biliary malignancies. Alterations in the main 

physiological functions of cholangiocytes result in a pathological state, involving 

the following processes: i) abnormalities in bile formation, which results in 

cholestasis, ii) dysfunctions in the interaction with other cells, that might led to 

inflammation and fibrosis, and iii) dysregulations in cell-cycle phenomena, which 

can promote the development of ductopenia, dysplasia or malignancy [15]. 

Under different insults, cholangiocytes activate proliferative mechanisms to 

repair and compensate the loss of cells (i.e. ductopenia), by a process known 

as “ductular reaction”, in which HPCs in the canals of Hering might also 

contribute [16-18]. A neuroendocrine transdiferentiation of cholangiocytes is 

stimulated and autocrine and paracrine factors are released leading to 

fibrogenesis by the activation of portal fibroblasts and hepatic stellate cells [4] 

(Figure I.3). Among the molecules secreted by injured cholangiocytes, pro-

inflammatory cytokines [i.e. interleukin-6 (IL-6), interleukin-8 (IL-8), tumor 

necrosis factor α (TNFα)], growth factors [i.e. platelet-derived growth factor 

(PDGF), vascular endothelial growth factor (VEGF), and transforming growth 

factor-beta (TGFβ] and morphogens (i.e. Hedgehog and Notch) are found, 

which, apart from regulating cholangiocyte functions themselves, also stimulate 

innate and adaptative immune responses contributing to the tissue response to 

injury [15, 19]. Finally, the chronic fibrosis might progress to the development of 

cirrhosis [20]. 
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Figure I.3. Response of cholangiocytes to injury. Injury or cholestasis result in cholangiocyte 

activation, leading to their proliferation and stimulation of the neuroendocrine transdifferentiation 

of cholangiocytes. Their proliferation is regulated in an autocrine/paracrine manner and 

fibrogenic responses of portal fibroblasts and hepatic stellate cells are activated, resulting in 

activated myofibroblasts and in fibrogenesis. (Adapted from Glaser et al 2009). 

 

Cholangiopathies are usually classified based on their etiology into: i) 

immune-associated, ii) infectious, iii) genetic, iv) vascular, v) idiopathic, vi) 

neoplastic or vii) drug-induced [9, 15] (Figure I.4). These biliary diseases are 

commonly characterized by inflammation and cholestasis, but they also have 

their own particularities [15]. In general, cholangiopathies account for high 

morbidity and mortality, and the available therapeutic options usually show 

short-term and modest beneficial effects, liver transplantation being the only 

curative option in many cases [15]. Therefore, it is important to elucidate the 

mechanisms involved in the development and progression of these diseases in 

order to find potential targets for therapy. The present dissertation aimed to 

analyze new mechanisms of pathogenesis in primary biliary cholangitis (PBC; 

an immune-associated cholangiopathy) and cholangiocarcinoma (CCA; the 

neoplastic biliary disease) in order to further search for new therapeutic targets 

and to test novel treatment strategies. 
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Figure I.4. Classification of cholangiopathies according to their etiology (Kindly provided 

by Prof. N. Larusso (Mayo Clinic). 

 

I.3.1 Primary biliary cholangitis (PBC) 

The first human diseases associated with autoimmune phenomena were 

described during 1950s, and the liver was one of the first organs described to 

be affected by these type of diseases [21]. Liver diseases associated to 

autoimmune phenomena include autoimmune hepatitis (AIH), primary 

sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) [21], the last 

two primarily targeting bile duct cells. To date, their etiopathogenesis still 

remains poorly understood. 

I.3.1.1 General features 

Primary biliary cholangitis (PBC), previously named as primary biliary cirrhosis 

[22], is a chronic cholestatic liver disease associated with autoimmune 

phenomena targeting the small intrahepatic bile ducts [22-24]. PBC is 

characterized by progressive impairment and destruction of bile duct epithelial 

cells together with increased portal inflammation and fibrosis [25] that, without 

treatment, may ultimately result in liver cirrhosis [26-29] (Figure I.5). 
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Figure I.5. Stages of PBC pathogenesis. Immune-mediated biliary injury leads to impaired bile 

flow, cholestasis and ductopenia. Intrahepatic accumulation of toxic bile acids causes fibrosis 

that may progress to cirrhosis and end-stage liver disease (Adapted from Dyson et al., 2015). 

 

PBC etiology is considered multifactorial but the specific causes still remain 

unknown. The prevalence of PBC in Europe is estimated in 35 per 100,000 

individuals but there is high variability between countries, being more popular in 

northern than in southern countries [30]. This rare disease is usually diagnosed 

in middle aged (50 years old) women, [31] with a female/male ratio of 10/1 

[32]. Geographical differences have been reported regarding genetic 

susceptibility and environmental factors which may promote the development 

and progression of PBC [30]. The individual role of each of these factors 

separately is not clear, but a correlation of genetic and environmental factors 

mediated by epigenetic modifications has been reported in PBC [33]. PBC-

associated main symptoms include pruritus and fatigue, which significantly 

affect the life quality of these patients [30]. 

I.3.1.2 PBC diagnosis 

PBC is usually diagnosed by a combination of different approaches. PBC 

patients are characterized by increased serum levels of biliary markers of injury 

such as alkaline phosphatase (ALP) and gamma glutamil transferase (GGT), as 

well as by mildly elevated levels of hepatocellular damage markers [i.e. 

aminotranferases such as alanine aminotransferase (ALT) or aspartate 

aminotransferase (AST)]. In addition, increased serum levels of 

immunoglobulins, mainly immunoglobulin M (IgM) also occurs. Of note, ~95% of 

PBC patients are characterized by the presence of anti-mitochondrial 

autoantibodies (AMAs) against the E2 component of the pyruvate 

dehydrogenase complex (PDC-E2) in serum, which is considered the 

serological hallmark of the disease, and a proportion also develop antinuclear 

antibodies (ANAs) [30, 34, 35]. Histological analysis of liver biopsy can also be 

used to further confirm the diagnosis, although this is not commonly indicated. 

Liver imaging by magnetic resonance or by endoscopy allows the exclusion of 

other liver or biliary tract diseases such as PSC [34]. 
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I.3.1.3 PBC therapeutic options 

Despite the autoimmune features of PBC, treatment with classical 

immunosuppressants is inefficient. By contrast, a chronic daily administration of 

ursodeoxycholic acid (UDCA), a choleretic BA, is the first option treatment 

approved by the food and drug administration (FDA) for PBC patients. UDCA 

improves the prognosis in ~2/3 of patients when treated in early stages of the 

disease [24, 36-38]. UDCA is a hepatoprotective BA that induces choleresis by 

stimulating the hepatobiliary secretion of bicarbonate, which further induces the 

alkalinization and fluidization of bile and prevents the damaging effect of 

hydrophobic BAs on the biliary epithelium [24, 37, 38]. On the other hand, 

obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist, has recently been 

approved either in combination with UDCA – for those patients with an 

inadequate response to UDCA – or as monotherapy – for UDCA intolerant 

patients – [39]. OCA improves serum ALP levels, but may provoke adverse side 

effects such as pruritus, fatigue, abdominal pain and discomfort [39]. Ultimately, 

liver transplantation can be required in certain cases [40]. 

I.3.2 Cholangiocarcinoma (CCA) 

I.3.2.1 General features 

Cholangiocarcinoma (CCA) includes a heterogeneous group of malignancies 

affecting cholangiocytes at any point of the biliary tree [41, 42]. CCAs are 

usually classified according to their anatomical location as intrahepatic (iCCA), 

perihilar (pCCA) or distal CCA (dCCA) [43, 44], which share some features but 

also have important inter- and intra-tumoral differences that may impact on the 

pathogenesis and outcome [45]. Taken together, CCAs represent the second 

most frequent primary liver tumor after hepatocellular carcinoma (HCC) and 

correspond to ~3% of all gastrointestinal cancers [41, 43]. Overall, CCA is a 

rare cancer (incidence < 6/100,000) although its incidence is increasing 

worldwide and differs along the geographic distribution [46-48]. In this regard, 

Eastern countries such as Thailand, China and Korea show higher rates 

(>6/100.000) than Western countries (<4/100.000) [48], which is associated to 

infections with endemic parasites (i.e. Opistorchis viverrini and Clonorchis 
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sinensis) [48]. CCA is generally diagnosed in the elderly (~60-70 years-old) and 

is more frequent in men than in women [49]. 

I.3.2.2 Classification 

The classification of CCA has been widely discussed and several classifications 

have been proposed taking into account different aspects of these tumors. 

Based on the anatomical location, the most recent classification grouped CCAs 

as iCCA (involving second degree bile ducts), pCCA (referring to CCAs 

between second degree bile ducts and the cystic duct) and dCCA (which 

corresponds to CCAs arising between the cystic duct and the ampulla of Vater) 

(Figure I.6A) [49]. Among them, pCCA is the most frequent type (~50%) 

followed by dCCA (~40%) and iCCA (~10%) [43]. CCAs have been also 

classified based on their gross appearance. In this sense, iCCAs can grow 

following three different patterns: i) mass-forming (MF), which is the most 

frequent form, ii) periductal infiltrating (PI), and iii) intraductal growing (IG) [50-

54] (Figure I.6B). PI or IG growth patterns have been described for pCCA and 

dCCA, even if pCCA most frequently adopt a nodular+PI growth pattern [53, 55, 

56]. Histological classifications of CCA also exist. Most pCCA and dCCA are 

mucinous adenocarcinomas, whereas iCCAs are highly heterogeneous, being 

the two main subtypes known as bile ductular type (mixed) – arising from small 

intrahepatic bile ducts – and bile duct type (mucinous) – arising from large 

intrahepatic bile ducts – [45, 57-60]. The histological subtyping has been 

suggested as an important classification method, as it underlines different 

aspects such as cell of origin, etiology, risk factors, molecular profile, clinical 

outcome and response to treatment [45]. 



  Introduction 

13 

Figure I.6. CCA classification. (A) CCAs are classified as intrahepatic (iCCA), perihilar (pCCA) 

or distal (dCCA) depending on their anatomical location. (B) CCAs are also classified into mass-

forming, periductal infiltrating or intraductal growing according to the gross appearance 

(Adapted from Erice et al., 2015 and Banales et al., 2016). 

 

I.3.2.3 CCA development 

Different risk factors have been described for CCA, although the majority of 

cases are not associated to any of them [43, 61, 62]. Environmental factors 

such as the infection with liver flukes (i.e. Opistorchis viverrini and Clonorchis 

sinensis) is a common risk factor in East Asia and the leading cause of the high 

CCA incidence in these countries, due to their tradition of eating uncooked fish 

[48, 52, 63-67]. In Europe, the association between CCA (mainly pCCA) and 

PSC or viral hepatitis C (HCV) is more frequent [63, 66]. Other relevant risk 

factors include cirrhosis, viral hepatitis B (HBV), hepatolithiasis, nonalcoholic 

steatohepatitis (NASH), biliary malformations and congenital diseases, such as 

choledocal cysts, Caroli‟s disease and congenital hepatic fibrosis [44, 66, 68-

71]. Of note, biliary obstruction leads to BA accumulation, an event that has 

been suggested as a potential factor promoting CCA development [72]. Other 

common risk factors include smoking, alcohol consumption, obesity or diabetes 

[73-75]. Exposure to toxics or environmental factors such as nitrosamine-

contaminated food, asbestos, dioxins, vinyl-chlorides and, in the past, thorotrast 

may also be related to CCA development [62]. 

I.3.2.4 Cholangiocarcinogenesis 

The process of biliary tumorigenesis involves the malignant transformation of 

cholangiocytes due to genetic and epigenetic alterations in key signaling 

pathways that contribute to well-known hallmarks of cancer such as 

proliferation, survival, resistance to apoptosis, replicative immortality, 

angiogenesis, invasion and metastasis, metabolic deregulation, inflammation 

and immune-modulation [43, 75, 76]. Furthermore, different transcription factors 

(TFs) involved in the regulation of these important sets of mechanisms are 

altered in CCA, contributing to the tumorigenic process [77]. 

Genetic alterations in key pathways such as DNA repair (TP53) [78-80], 

WNT/-catenin (CTNNB1) pathway [81], tyrosine kinase signaling (KRAS, 
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BRAF, SMAD4 and FGFR2) [44, 79, 80, 82-84] or isocitrate dehydrogenases 1 

and 2 (IDH1 and IDH2) [49, 85, 86] have been described in CCA [43, 45]. The 

fibroblast growth factor receptor (FGFR) has arisen as another potential target 

for CCA treatment [82, 87]. In addition, epigenetic modifications in CCA include 

histone modifications, DNA methylation and non-coding RNAs (i.e. miRNAs) 

[45]. Moreover, CCAs are highly desmoplastic tumors [88], and cancer-

associated fibroblasts (CAFs), tumor-associated macrophages (TAM) and 

vascular cells are present in the tumor microenvironment [45, 89] promoting 

tumor growth [90]. 

I.3.2.5 CCA detection 

CCAs are generally asymptomatic in early stages and are usually diagnosed 

when the disease is widespread. Different symptoms might appear during tumor 

progression. Malaise, cachexia, abdominal pain, night sweats, fatigue and/or 

jaundice can occur associated to iCCA, although 20-25% of iCCA are 

diagnosed incidentally [45]. In pCCA and dCCA the biliary obstruction-

associated cholangitis might bring out symptoms, such as jaundice (typically 

painless) and/or pruritus [75]. In PSC patients, CCA may emerge as a rapid 

deterioration of the patient or as an incidental finding at transplant [63, 91-94]. 

Diagnosis is usually made by a combination of non-specific biomarkers in 

serum/biopsy and imaging methods [43]. Histologically, no specific markers 

have been validated and a differential diagnosis of iCCA vs HCC or metastasis 

is difficult [53, 95, 96]. Serum non-specific markers include the 

carcinoembryonic antigen (CEA) and/or the carbohydrate antigen 19-9 (CA19-

9) [48]. In tissue, a combination of biliary, hepatic and tumor markers [i.e. 

cytokeratins 7, 19 and 20 (CK7, CK19, CK20), carbohydrate antigens 125 and 

242 (CA125, CA242), cytokeratin fragment 21-1 (CYFRA21-1), or mucin 5AC 

(MUC5AC)] is usually analyzed [43, 45, 48, 97]. Overall, imaging methods for 

CCA diagnosis consist on computed tomography (CT) and cross-sectional 

imaging studies, and more specifically for each CCA subtype on: magnetic 

resonance imaging (MRI) for iCCA; magnetic resonance cholangiography 

(MRC) for pCCA and dCCA; percutaneous transhepatic cholangiography (PTC) 

for pCCA; endoscopic retrograde cholangiopancreatography (ERCP) and 
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endoscopic ultrasound (EUS) for dCCA [43]. Late diagnosis compromises the 

therapeutic options, leading to poor prognosis [45, 62]. 

I.3.2.6 CCA treatment options 

Currently, the only potential curative options for CCA are the surgical resection 

of the tumor and liver transplantation. However, the advanced stage of these 

cancers at diagnosis highly compromises the use of these therapeutic 

approaches. For instance, only tumors without vascular infiltration and 

metastatic dissemination, and not affecting the normal liver function are suitable 

for surgical resection [98]. However, the 5-year survival rate after resection is 

low (11-44% depending on the CCA subtype) [95]. Liver transplantation for CCA 

is in general controversial and not recommended, since rapid tumor recurrence 

and low survival rates (10-25%) have been observed [48, 49]. Usually, tumor 

transplantation is followed by neoadjuvant therapy including chemotherapies 

such as gemcitabine, cisplatin or 5-fluorouracile [48, 99]. The role of loco-

regional therapies, such as transarterial chemoembolization (TACE) and 

transarterial radioembolization (TARE), have shown promising results but the 

efficacy in CCA patients is not clear and further studies are needed [45]. In 

addition, conventional radiotherapy or chemotherapy (i.e. combination of 

gemcitabine and cisplatin) [48, 49, 100] have usually poor success due to the 

highly chemoresistant nature of these tumors, which show a multidrug 

resistance phenotype based on the activation of different mechanisms of 

chemoresistance (MOC) [101]. MOCs affect different aspects of the drugs, such 

as transport, activation and targets, but are also involved in repair mechanisms 

and apoptosis [45]. Other palliative strategies include biliary stent placement in 

an attempt to restore the biliary drainage and relief cholestasis [102-104]. 

To sum up, owing to the heterogeneity of CCAs and the lack of effective 

therapeutic options, there is an urgent need to understand in detail the 

molecular mechanisms involved in the pathogenesis of CCA. Individual 

characterization (i.e. genomic, epigenetic and molecular) of each tumor may 

provide valuable information on pathogenesis, prognosis and chemosensitivity. 

This information may help selecting the best therapeutic option for each patient 

as well as unraveling new potential targets for therapy. 
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As aforementioned, the present dissertation is focused in PBC and CCA, 

and, indeed, three independent studies are developed. In the first chapter, the 

role of the microRNA-506 in the etiopathogenesis of PBC is analyzed. On the 

other hand, the other two chapters aimed to elucidate two different aspects of 

CCA. First, we attempted to elucidate the role of two BA receptors, FXR and 

TGR5, in CCA progression, and second, we wanted to study the role of the 

Krüppel-like factors (KLFs), particularly KLF5, in CCA. 
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1 - Introduction 

1.I.1 Primary biliary cholangitis (PBC) 

Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease 

associated with autoimmune phenomena targeting small and medium 

intrahepatic bile ducts [22, 25]. PBC is characterized by progressive impairment 

and destruction of bile duct epithelial cells (i.e. cholangiocytes) together with 

increased portal inflammation (Figure 1.I.1) and fibrosis. In the absence of 

treatment, the disease may progress to liver cirrhosis needing liver 

transplantation [22, 25]. 

 

Figure 1.I.1. Liver histology of a PBC portal tract. Haematoxylin-eosin staining of a liver 

tissue section showing damaged bile ducts and portal inflammation. The portal triad is infiltrated 

by lymphocytes (Adapted from Kaplan and Gerswin, 2005). 

 

1.I.1.1 PBC and autoimmunity 

PBC is considered a multifactorial disease but its etiology remains still obscure. 

PBC mainly affects middle-aged women and most of the patients (~95%) 

develop anti-mitochondrial autoantibodies (AMA) specific against PDC-E2 [22, 

25]. Indeed, the presence of AMAs in serum of PBC patients is considered a 

serological hallmark [30, 34]. Despite the autoimmune events, treatment of PBC 

patients with classical immunosuppressants is inefficient. Currently, and as 

aforementioned (see general introduction), UDCA is the best well-established 

FDA-approved treatment seen to contribute to the alkalinization and fluidization 

of bile and protect the biliary epithelium from hydrophobic bile acids [22, 25]. 
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Furthermore, OCA has recently received a conditional approval for PBC 

patients, in combination with UDCA or as a monotherapy [39]. 

In PBC, AE2 deficiency results in sensitivity to apolar hydrophobic bile acids, 

leading to cholangiocyte apoptosis [109] which might result in the attraction of 

proinflammatory cytokines and the subsequent local inflammation [110]. 

1.I.1.2 PBC and cholestasis 

Cholangiocytes own important functions in bile formation, and under an injury, 

damaged cholangiocytes get their normal biological functions impaired. Bile flow 

is altered and a cholestatic microenvironment is favored, with the resultant 

accumulation of cytotoxic bile acids [40]. Cholestasis in PBC patients is linked 

to impaired biliary bicarbonate secretion [111, 112]. The main bicarbonate 

extruder in normal human cholangiocytes is the Cl–/HCO3
– anion exchanger 2 

(AE2/SLC4A2), which is located into the apical membrane promoting the 

secretin-stimulated biliary bicarbonate secretion and regulating the intracellular 

pH (pHi) homeostasis [113-115]. PBC patients exhibit a lack of response to 

secretin associated with decreased expression of AE2 in cholangiocytes which 

results in cholestasis [105]. However, UDCA treatment restores the secretin 

response and improves cholestasis in PBC patients. The etiopathogenic role of 

the characteristic AE2 downregulation in both liver and peripheral blood 

mononuclear cells (PBMCs) of PBC patients is highlighted by the fact that Ae2-/- 

mice develop spontaneously several hepatobiliary and immunological PBC-like 

features, including specific AMA against PDC-E2 [116]. The expression of AE2 

in cholangiocytes is upregulated under the combination of UDCA and 

glucocorticoids, treatment employed for patients that do not respond to UDCA 

monotherapy [114]. 

On the other hand, type III inositol 1,4,5-trisphosphate receptor (InsP3R3) is 

an integral membrane protein located in the subapical portion of the 

endoplasmic reticulum (ER) of cholangiocytes. InsP3R3 functions as a major 

intracellular calcium (Ca2+
i) release channel and its activation promotes biliary 

bicarbonate secretion [117, 118]. Like AE2, the expression of InsP3R3 was also 

found downregulated in PBC cholangiocytes inducing cholestasis [119]. 
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Notably, the characteristic downregulation of both AE2 and InsP3R3 in PBC 

cholangiocytes is mediated, at least partially, by microRNA-506 (miR-506) [105, 

120]. 

1.I.1.3 PBC and microRNAs 

PBC patients have an altered hepatic microRNA (miR) expression pattern 

compared to normal controls [121, 122] (Figure 1.I.2A). MiRs were first 

described in early 1990s [123, 124] and consist on a group of highly conserved 

non-coding RNAs containing about 18-23 nucleotides. The main function of 

these small molecules is that they are able to post-transcriptionally regulate the 

expression of multiple genes. MiRs directly bind to the 3‟UTR region of genes, 

causing translational repression [125, 126]. In this regard, the role of miRs in 

multiple diseases has been reported, including the pathophysiology of the biliary 

tree [127]. Among the altered miRs in PBC, the miR-506 was upregulated in 

PBC livers compared to normal controls. Our group further studied miR-506 

overexpression in PBC. In this regard, miR-506 is overexpressed in the bile 

ducts of PBC patients compared to normal and PSC liver tissue samples [105] 

(Figure 1.I.2B) and directly targets both AE2 and InsP3R3 mRNAs in 

cholangiocytes, leading to impaired biliary secretory functions [105, 120] (Figure 

1.I.2C). 



Chapter 1 – Introduction    

38 

 

Figure 1.I.2. PBC cholangiocytes are characterized by increased miR-506 expression, 

which directly targets both AE2 and InsP3R3 leading to cholestasis. (A) MiRNA microarray 

in normal and PBC human livers (Adapted from Padgett et al., 2009). (B) In situ hybridization of 

miR-506 (green) and immunofluorescence of CK19 (red) in liver tissue from normal PSC and 

PBC patients (Adapted from Banales et al., 2012). (C) Proposed mechanism of action of miR-

506 in PBC cholangiocytes (Adapted from Esparza-Baquer et al., 2016). 
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1 - Hypothesis and Objectives 

MiR-506 seems to have a pivotal role in the etiopathogenesis of PBC but the 

mechanisms that regulate its expression in cholangiocytes and the direct 

functional effects of miR-506 in cholangiocytes are still unknown. In this study, 

we aimed to investigate the role of different factors such as pro-inflammatory 

cytokines, bile acids and estrogens in the regulation of miR-506 expression in 

cholangiocytes and the effect of miR-506 in cholangiocyte pathophysiology and 

in PBC immune regulation. Therefore, we proposed the following objectives: 

I. Analysis of the regulation of miR-506 promoter activity in cholangiocytes. 

II. Determination of the direct effect of miR-506 in cholangiocyte 

pathophysiology. 

III. Elucidation of the role of miR-506 on PBC immune regulation. 
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1 - Materials and Methods 

1.M.1 Cloning of hsa-miR-506 promoter in a luciferase expression vector 

Three different sizes of the human miR-506 gene (hsa-miR-506; NCBI Gene ID: 

574511) promoter were cloned in a luciferase expression vector. Briefly, 3229, 

1936 or 993 bp of the 5‟-flanking region of hsa-miR-506 (Z1-hsa-miR-506pr, Z2-

hsa-miR-506pr and Z3-hsa-miR-506pr, respectively) were cloned using 

genomic DNA obtained from a healthy individual and the promoter of 

cytomegalovirus (CMV) associated to the luciferase gene was inserted in the 

expression vector pEXP-gck as a positive control (Figures 1.M.1 A-C). First, 

hsa-miR-506pr constructs were amplified by high fidelity PCR using the 

AccuPrime Pfx DNA polymerase (Invitrogen). Specific oligonucleotide primers, 

shown in Table 1.M.1, with appropriate attB sites were added to obtain cDNA 

adapted for cloning using Gateway® technology. PCR products were 

recombined with pDONRTM221 P1-P5r vector (Invitrogen). Next, these vectors 

were again recombined in a Multisite Gateway cloning reaction with a promoter-

less destination vector (pDEST/pL) containing the coding sequence of firefly 

luciferase (Luc2), as previously described [128]. 

Table 1.M.1. Primers used for high fidelity PCR. 

Primer code Sequence 5‟-3‟ 

miR-506-Z1 
Forward  5‟-CGTCGTTGATACATGACTGACATAAAGT-3‟ 
Reverse  5‟- GGTGGTGGCACTGACCATCT-3‟ 

miR-506-Z2 
Forward  5‟- GTGTCGTCTATCCCTGATACGTGCT-3‟ 
Reverse  5‟- GGTGGTGGCACTGACCATCT-3‟ 

miR-506-Z3 
Forward  5‟- TCCCTTCCCCAGACTCTGGT-3‟ 
Reverse  5‟- GGTGGTGGCACTGACCATCT-3‟ 
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Figure 1.M.1. Promoter cloning. (A) Three fragments of different length of the sequence 

located immediately 5‟-upstream of miR-506 were cloned [i.e. Z1 (3229 bp), Z2 (1936 bp) and 

Z3 (993 bp)]. (B) Cloning of promoter regions were performed in a pEXP-gck expression vector 

containing the luciferase gene. (C) The cytomegalovirus (CMV) promoter was used as a positive 

control of luciferase gene expression. 
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1.M.2 Luciferase reporter assays 

H69 human cholangiocytes were transfected with Z1, Z2 or Z3 recombinant 

vectors using Lipofectamine 2000 (Life Technologies). Briefly, cells were 

seeded in a 24-well plate with fully-supplemented DMEM/F-12 medium (Table 

I.2) and incubated O/N. The following day, cells were washed twice with PBS, 

and 500 µL of transfection mix (1 µg DNA, 2.5 µL lipofectamine and 3 mL Opti-

MEM) were added to each well. The transfection mix was replaced 6 h later by 

DMEM+10% FBS alone or together with each particular treatment condition. 

Luciferase activity was assessed 24 h after transfection using the Luciferase 

Assay Kit, E151A (Promega), by adding 50 µL of Lysis Buffer into each well. 

Luciferase activity was measured in a NOVOstar Apparatus (BMG LABTECH) 

and normalized to the total protein concentration. 

1.M.2.1 Cell treatments 

The effect of different pro-inflammatory cytokines [i.e. interleukins (IL) 1β, 6, 8, 

12, 17, 18, tumor necrosis factor alpha (TNFα), and interferon gamma (IFNγ)], 

pro-fibrotic factors [i.e. transforming growth factor beta 1 (TGFβ1)], estrogens 

(i.e. 17β-estradiol), glucocorticoids [i.e. dexamethasone (DEX)], growth factors 

[i.e. epidermal growth factor (EGF)] and bile acids [i.e. cholic acid (CA), 

ursodeoxycholic (UDCA) and tauroursodeoxycholic (TUDCA)] in the luciferase 

activity of Z1, Z2 or Z3 promoters was tested. For that purpose, H69 cells were 

transfected and cultured as previously mentioned adding the stimuli together 

with lipofectamine and Opti-MEM. The concentration used for each treatment is 

specified in Table 1.M.2. 
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Table 1.M.2. Stimuli used for the analysis of miR-506 promoter activity. 

Stimuli Concentration Comercial 
IL-18 100 ng/mL MBL 

IL-17 100 ng/mL Sigma 

IL-8 50 ng/mL R&D 

IL-12 50 ng/mL R&D 

IL-6 50 ng/mL Sigma 

IL1β 10 ng/mL R&D 

TGFβ1 100 ng/mL R&D 

TNFα 100 ng/mL Sigma 

INFγ 100 ng/mL Abcam 

CA 100 µM Sigma 

UDCA 100 µM ACROS Organics 

TUDCA 100 µM Calbiochem 

DEX 100 µM Sigma 

EGF 40 ng/mL Sigma 

17β-est 100 µM Sigma 

 

1.M.3 Generation of human cholangiocytes overexpressing miR-506 in 

culture 

H69 human cholangiocytes were stably transfected with recombinant vectors 

containing miR-506 (H69-miR-506), a miR-negative (H69-miR-neg) control 

sequence (Thermo Fisher Scientific), or just with vehicle (H69), as we 

previously described [105, 120]. Then, transfected cells were continuously 

selected with blasticidin (Invitrogen) in fully-supplemented DMEM/F-12 medium. 

1.M.4 Gene and miR-506 expression 

The quantification of miR-506 expression was performed using the TaqMan 

MicroRNA Reverse Transcription Kit and commercial miR-specific primers 

(miR-506 Mature miRNA sequence UAAGGCACCCUUCUGAGUAGA; Applied 

Biosystems). TaqMan Universal PCR Master Mix no AmpErase was used for 

qPCR. Z30 small nuclear RNA control (Z30 Control sequence 

TGGTATTGCCATTGCTTCACTGTTGGCTTTGACCAGGGTATGATCTCTTAAT

CTTCTCTCTGAGCTG; Applied Biosystems) was used as normalizing control. 

On the other hand, gene expression (mRNA) was determined by qPCR from 

RNA isolated and retrotranscribed as described in general materials and 

methods section (see above). GAPDH was used as a housekeeping control. 

The primers used in this study are shown in Table 1.M.3. 
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Table 1.M.3. Primers used for qPCR of human mRNAs. 

Primers Sequences 

UCP1 
Forward 5‟-CTCACCGCAGGGAAAGAA-3‟ 
Reverse 5‟-GGTTGCCCAATGAATACTGC-3‟ 

UCP2 
Forward 5‟-GTTCTACACCAAGGGCTCTGA-3‟ 
Reverse 5‟-AATCGGACCTTTACCACATCC-3‟ 

Cytokeratin 7 
Forward 5‟-ATCTTTGAGGCCCAGATTGC-3‟ 
Reverse 5‟-TTGATCTCATCATTCAGGGC-3‟ 

ZO1 
Forward 5‟-CGGTCCTCTGAGCCTGTAAG-3‟ 
Reverse 5‟-GGATCTACATGCGACGACAA-3‟ 

N-cadherin 
Forward 5‟-TCCTGCTTATCCTTGTGCTGA-3‟ 
Reverse 5‟-CGGATTCCCACAGGCTTGAT-3‟ 

IL8 
Forward 5‟-GTGCAGTTTTGCCAAGGAGT-3‟ 
Reverse 5‟-ACTTGTCCACAACCCTCTGC-3‟ 

p21 
Forward 5‟-CGATGGAACTTCGACTTTGTCA-3‟ 
Reverse 5‟-GCACAAGGGTACAAGACAGTG-3‟ 

IRE1 
Forward 5‟-AGGGACAGGAGGGAATCGTA-3‟ 
Reverse 5‟-CAGTCCCTAATGCCACACCT-3‟ 

CHOP 
Forward 5‟-TCTTCATACATCACCACACC-3‟ 
Reverse 5‟-CTTGTGACCTCTGCTGGTTC-3‟ 

ATF6 
Forward 5‟-GCTGGATGAAGTTGTGTCAGAG-3‟ 
Reverse 5‟-TGTTCCAACATGCTCATAGGTC-3‟ 

PERK 
Forward 5‟-CAGGCAAAGGAAGGAGTCTG-3‟ 
Reverse 5‟-AACAACTCCAAAGCCACCAC-3‟ 

XBP-1 

Forward 5‟GCAGGTGCAGGCCCAGTTGTCAC-3‟ 
Reverse 5‟CCCCACTGACAGAGAAAGGGAGG-3‟ 

GAPDH 

    Forward 5‟-CCAAGGTCATCCATGACAAC-3‟ 
Reverse 5‟-TGTCATACCAGGAAATGAGC-3‟ 

 
1.M.5 Mass spectrometry-based quantitative proteomics 

Shotgun comparative proteomic analysis of H69, H69-miR-neg and H69-miR-

506 cells was performed using iTRAQ (isobaric Tags for Relative and Absolute 

Quantitation) [129]. Peptide labeling, peptide fractionation and mass-

spectrometry analysis were performed as previously described [130]. After 

MS/MS analysis, protein identification and relative quantification were 

performed with the ProteinPilot™ software (version 4.5; Sciex) using the 
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Paragon™ algorithm as the search engine [131]. Although relative quantification 

and statistical analysis were provided by the ProteinPilot software, an additional 

1.3-fold change cutoff for all iTRAQ ratios (ratio <0.77 or >1.3) and a p-value 

lower than 0.05 were selected to classify proteins as up- or down-regulated. 

Functional analysis of proteins was determined by gene ontology (GO) 

enrichment using the Panther Classification System database 

(http://pantherdb.org/). 

1.M.6 Western blotting 

Changes in protein expression were detected by western blot using 40 µg of 

whole cell extracts as described in general materials and methods section (see 

above). Samples were electrophoresed in 7.5% (for AE2) or 12.5% (PDC-E2, 

p21 and cleaved caspase-3) SDS-PAGE. β-actin was used as a protein 

normalizing control. The antibodies used are shown in Table 1.M.4. 

Table 1.M.4. Antibodies used for western blot and/or immunofluorescence. 

Antibody Company Reference Use 

Goat polyclonal anti-AE2 Santa Cruz sc-46710 WB (1:250 Room Tº) 

Goat polyclonal anti-PDC-E2 Santa Cruz sc-16890 
WB (1:250 4ºC) 

IF (1:50) 

Rabbit polyclonal anti-PDC-E2 Santa Cruz sc-32925 WB (1:250 4ºC) 

Rabbit polyclonal anti-p21 Abcam ab7960 WB (1:1,000 4ºC) 

Rabbit monoclonal anti-Cleaved 

Caspase-3 
Cell signaling 9664 WB (1:500 4ºC) 

Rabbit monoclonal anti-pH2AX Cell signaling 9718 WB (1:500 4ºC) 

Mouse monoclonal anti-β-actin Sigma A5316 WB (1:1,000 4ºC) 

Anti-rabbit IgG, HRP-linked 

Antibody 
Cell signaling 7074 WB (1:5,000 Room Tº) 

Anti-mouse IgG, HRP-linked 

Antibody 
Cell signaling 7076 WB (1:5,000 Room Tº) 

Donkey anti-goat IgG, HRP-

linked Antibody 
Santa Cruz sc-2020 WB (1:5,000 Room Tº) 

Donkey anti-Goat IgG (H+L) 

Cross-Adsorbed Secondary 

Antibody, Alexa Fluor 568 

ThermoFisher A11057 IF (1:1,000) 

 
Abbreviations: WB, western blot; IF, immunofluorescence; Room Tº, room temperature 
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1.M.7 Flow-cytometry based-cell proliferation 

The evaluation of cell proliferation was carried out in H69, H69-miR-neg and 

H69-miR-506 cholangiocytes using the Cell Proliferation Dye eFluor® 670 as 

described in general materials and methods section (see above). In particular, 

3.5x104 cells per well were seeded and cultured for 72 h in collagen-coated 12-

well plates in fully-supplemented DMEM/F-12 medium (Table I.2) and then 

analyzed by flow cytometry in a Guava Easycyte 8HT flow-cytometer. 

 

1.M.8 Determination of cell adhesion properties 

Cell adhesion was evaluated in H69, H69-miR-neg and H69-miR-506 

cholangiocytes. 5x104 cells were seeded in collagen-coated 12-well plates and 

cultured at 37ºC for 3 h in fully-supplemented DMEM/F-12 medium (Table I.2). 

Cells were then fixed and stained with 4% formaldehyde and 0.5% crystal violet 

in PBS for 20 min and washed with water. Once dried, cell staining was 

dissolved with 10% acetic acid in PBS and the absorbance was measured at 

595 nm in a Multiskan Ascent® spectrophotometer (Thermo). 

1.M.9 Cell migration 

Cell migration was tested in H69, H69-miR-neg and H69-miR-506 

cholangiocytes using transwell migration chambers as described in general 

materials and methods section (see above). In particular, 3.5x104 cells were 

seeded in the top side of the chambers and were cultured for 48 h. Pictures of 

the migrated cells were taken on random fields of the bottom side of the 

chamber and staining was dissolved for measuring absorbance at 550 nm in a 

Multiskan Ascent® spectrophotometer (Thermo). 

1.M.10 Oxidative stress detection by dihydroethidium staining 

Dihydroethidium (DHE) staining was used to detect reactive oxygen species 

(ROS) in H69, H69-miR-neg and H69-miR-506 cholangiocytes. For this 

purpose, 2x104 cells per well were seeded in coverslips in 24-well plates and 

these were grown for 48 h. Cells were stained with 15 μM DHE (Molecular 
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Probes, ThermoFisher) for 10 min at 37ºC in darkness, fixed with 1% 

paraformaldehyde in PBS and mounted using Vectashield (Vector 

Laboratories). Pictures were taken using a fluorescence microscope (Leica DM 

IRB). 

1.M.11 Evaluation of apoptosis by flow cytometry in cholangiocytes 

overexpressing miR-506 in culture 

The cytotoxicity of the hydrophobic BAs chenodeoxycholic acid (CDCA, Sigma) 

and glycochenodeoxycholic acid (GCDCA, Sigma) was evaluated in H69, H69-

miR-neg and H69-miR-506 cholangiocytes by flow-cytometry using annexin V 

and propidium iodide, as described in general materials and methods (see 

above). In particular, 2.5x104 cells per well were seeded; the day after, cells 

were treated and cultured for 48 h. Untreated cells were used as control. Cells 

were then stained and analyzed in a Guava Easycyte 8HT flow-cytometer. 

1.M.12 Mitochondrial function assessment by Seahorse Analyzer 

An XF96 Extracellular Flux Analyzer (Seahorse Bioscience) was employed for 

measuring oxygen consumption and extracellular acidification rates (OCR and 

ECAR, respectively). The XF Cell Mito Stress Test Kit was used for that 

purpose, as described in general materials and methods section (see above). In 

the present study, 1x104 H69, H69-miR-neg or H69-miR-506 cholangiocytes 

were seeded and cultured for 48 h in fully-supplemented DMEM/F-12 medium 

(Table I.2) for further Seahorse analysis. 

1.M.13 Metabolic activity determination by ATP measurement 

Levels of ATP in H69, H69-miR-neg and H69-miR-506 cells were measured 

using the ATP Assay Kit (Abcam; ab83355) following manufacturer‟s 

instructions. Briefly, cells were cultured in fully-supplemented DMEM/F-12 

media (Table I.2) in P150 plates (Corning) until confluence. Then, cells were 

trypsinized as usual and 3x106 H69, H69-miR-neg or H69-miR-506 cells were 

separated in triplicates in different 1.5 mL Eppendorf tubes for further 

processing. Cells were pelleted (1,500 rpm for 5 min) and washed with 1 mL of 

cold PBS. Pellets were quickly resuspended in 100 µL of ATP Assay Buffer by 
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repeated up and down and vortexed for cell lysis. Samples were centrifuged at 

14,000 rpm for 2 min at 4ºC and supernatant was harvested and placed into a 

new tube. Next, deproteinization was performed as follows: 25 µL of ice-cold 4 

M perchloric acid (PCA) were added, samples were vortexed and incubated for 

5 min on ice. Tubes were centrifuged at 13,000 g for 2 min at 4ºC. Supernatant 

was placed into a new tube and 34 µL of cold 2 M potassium hydroxide (KOH) 

were added and briefly vortexed. The pH was adjusted to pH 6.5 - 8 using PCA, 

samples were centrifuged at 13,000 g for 15 min at 4ºC and supernatant was 

transferred into another tube. An ATP reaction mix containing ATP Assay Buffer 

(44 µL), ATP Probe (2 µL), ATP converter (2 µL) and Developer mix (2 µL) was 

prepared for all the samples and for the standard curve, which was prepared in 

parallel. The standard curve was prepared as indicated by the manufacturer‟s 

using 1 mM ATP and ATP Assay Buffer at six different concentrations. 

Additionally, a background reaction mix containing ATP Assay Buffer (46 µL), 

ATP Probe (2 µL) and Developer mix (2 µL) was also prepared. Next, 40 µL of 

the reaction mix and 40 µL of each sample (including the standard curve) were 

placed in each well of a 96-well plate and incubated for 30 min at room 

temperature in darkness. Absorbance was measured at 570 nm in a Multiskan 

Ascent spectrophotometer (Thermo). 

1.M.14 PDC-E2 detection by immunofluorescent microscopy 

H69, H69-miR-neg and H69-miR-506 cholangiocytes were cultured on glass 

coverslips O/N. Next, cells were fixed with cold methanol for 10 min at -20°C 

and permeabilized with a 0.5% Tween in PBS solution for 20 min at room 

temperature. PDC-E2 (Santa Cruz) primary antibody at 1:50 dilution was 

incubated for 1 h at room temperature. A fluorescent red-conjugated secondary 

antibody (Life Technologies, 1:1000 dilution) was incubated for 1 h and 30 min 

at room temperature and Vectra System (Vector Laboratories) was used for 

nuclei staining and cell mounting. PDC-E2 cellular expression was observed in 

a fluorescence microscope (Leica DM IRB). See Table 1.M.4.for antibody 

specifications. 
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1.M.15 Co-culture of human cholangiocytes with peripheral blood 

mononuclear cells (PBMCs) of PBC patients 

H69, H69-miR-neg or H69-miR-506 human cholangiocytes were co-cultured 

with PBMCs isolated from a PBC patient. Briefly, H69, H69-miR-neg or H69-

miR-506 cholangiocytes (5x103 cells per well) were plated in collagen-coated 

96-well plates in fully-supplemented DMEM/F-12 medium (Table I.2). After O/N 

attachment, culture media was changed to RPMI (Gibco) supplemented with 

10% FBS/1% P/S. After 48 h, PBMCs were isolated from a middle-aged female 

PBC patient using a density gradient media. Briefly, peripheral blood was 

diluted to 50% with physiological serum and carefully added to LymphoprepTM 

(Fresenius Kabi Norge) (3/4 parts of Lymphoprep regarding the total peripheral 

blood volume). Samples were centrifuged at 2500 rpm for 30 min at room 

temperature. The PBMC fraction was carefully harvested using a Pasteur pipet 

and placed in a new tube containing physiological serum. Samples were 

centrifuged at 1,500 rpm for 10 min and supernatant was carefully removed. 

Pellet was washed with physiological serum and centrifuged at 1500 rpm for 10 

min. Supernatant was carefully removed. If erythrocytes were not present, the 

pellet was resuspended in RPMI supplemented with 10% FBS/1% P/S and 

counted as usual. In the presence of erythrocytes, an intermediate step for 

erythrocyte lysis was performed, incubating samples for 10 min with RBC Lysis 

Solution (QIAGEN) and doing a subsequent washing. 

Once PBMCs were isolated, cells were stained with CellTrace™ CFSE Cell 

Proliferation Kit (Invitrogen) following manufacturer‟s instructions and then 

1.5x105 PBMCs in RPMI supplemented with 10% FBS/1% P/S were added to 

H69, H69-miR-neg or H69-miR-506 human cholangiocytes for 96 h. Afterwards, 

PBMCs were harvested and stained with the lymphocyte activation marker 

CD25 (BD Biosciences) and the cell death marker 7AAD (Life technologies) for 

20 min and analyzed in a Guava Easycyte 8HT flow cytometer. For the 

analysis, PBMCs were gated and the 7AAD-positive cells were discarded for 

testing both CFSE and CD25. Phytohaemagglutinin M form (PHA-M) (Gibco) 

and dimethyl sulfoxide (DMSO) (Sigma) were used as positive and negative 

controls for lymphocyte activation and proliferation, respectively. The research 

protocol was approved by the Clinical Research Ethics Committee of the 
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Donostia Hospital, and the patient signed a written consent for the use of her 

blood samples for biomedical research. 

1.M.15.1 Cytokine evaluation in the cell cultures 

The supernatant of both cell cultures and cell co-cultures were harvested and 

levels of IL-17A and IL-23 cytokines were evaluated using Milliplex Map human 

high sensitivity T cell panel – Immunology multiplex assay (Millipore), following 

manufacturer‟s instructions. 

1.M.16 Statistical analysis 

Results were statistically analyzed as stated in general materials and methods 

section (see above). For comparisons between two groups, parametric unpaired 

t-test or non-parametric Mann-Whitney test were used. For comparisons 

between more than two groups, parametric One-Way analysis of variance 

(ANOVA) test followed by a posteriori Bonferroni test were used. Differences 

were considered significantly different when p<0.05. 
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1 – Results 

1.R.1 Regulation of miR-506 promoter activity in human cholangiocytes 

We previously reported that miR-506 expression is upregulated in PBC 

cholangiocytes compared to normal human cholangiocytes [105]. Here, the 

regulatory activity of the miR-506 promoter was evaluated in human 

cholangiocytes using recombinant luciferase reporter vectors containing a 

fragment of the promoter region. Three fragments of different length of the 

sequence located immediately 5‟-upstream of miR-506 were cloned and 

assayed [i.e. Z1 (3229 bp), Z2 (1936 bp) and Z3 (993 bp)] (Figure 1.R.1A) in the 

presence or absence of different pro-inflammatory, pro-fibrotic and/or pro-

mitotic molecules found overexpressed in PBC livers. As a positive control, a 

recombinant vector containing the cytomegalovirus (CMV) promoter was used 

(Figure 1.R.1A). Under basal conditions, the recombinant luciferase vector 

containing the Z1 (the longest fragment) miR-506 promoter showed higher 

expression of luciferase compared to both Z2 and Z3 fragments, whereas no 

differences in the activities were observed between Z2 and Z3 fragments 

(Figure 1.R.1A). The presence of pro-inflammatory cytokines IL-8, IL-12, IL-17, 

IL-18 or TNF- all induced the luciferase expression in human cholangiocytes 

transfected with the Z1 recombinant vector (Figure 1.R.1B). Of note, these 

effects were absent in cells transfected with Z2- or Z3-promoter fragment 

(Figure 1.R.1C). On the other hand, other pro-inflammatory (i.e. IL-6, IL-1β and 

IFNγ) and pro-fibrotic (i.e. TFG1) cytokines did not affect miR-506 Z1-promoter 

activity in cholangiocytes (Figure 1.R.1D). Finally, the presence of bile acids 

(i.e. CA, UDCA and TUDCA), estrogens (i.e. 17-estradiol), glucocorticoids (i.e. 

DEX) and growth factors (i.e. EGF) neither affected the Z1-promoter activity in 

human cholangiocytes (Figure 1.R.1D). 
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Figure 1.R.1. MiR-506 promoter activity in cholangiocytes. (A) Three fragments of different 

length (i.e. 3229, 1936 and 993 bp) located 5‟-upstream hsa-miR-506, named as Z1, Z2 and Z3 

respectively, were cloned upstream of the beginning of transcription of firefly luciferase (Luc2) 

coding sequence. Z1 promoter show higher luminescent levels compared to Z2 and Z3 (n=10). 

CMV promoter was used as a positive control (n=10). (B) Interleukins 8, 12, 17 and 18, as well 
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as TNFα, increased the luciferase activity of promoter Z1 (n=10). (C) Interleukins 8, 12, 17 and 

18, and TNFα, did not alter the luciferase activity of Z2 and Z3 promoter sequences (n=10). (D) 

Interleukin 6 and 1β, 17β-estradiol, TGFβ1, IFNγ, DEX, EGF and bile acids (CA, UDCA, 

TUDCA) did not influence Z1 promoter luciferase activity (n=10). 

 

1.R.2 Generation of miR-506 overexpressing H69 human cholangiocytes 

H69 cholangiocytes overexpressing miR-506 (H69-miR-506) or a negative 

control (H69-miR-neg) sequence under the regulation of a CMV promoter were 

generated [105, 120]. We first verified that the expression of the miR-506 

precursor (pre-miR-506) resulted in an augmented expression of the mature 

miR-506 sequence compared to cells transfected with the pre-miR-neg or 

vehicle (Figure 1.R.2). 

 

Figure 1.R.2. Analysis of miR-506 expression in H69, H69-miR-neg and H69-miR-506 

cholangiocytes. H69 cells transfected with a miR-506 precursor have increased expression 

levels of mature miR-506 compared to H69 cells transfected with a negative control vector (miR-

neg) or vehicle (H69). Z-30 was used as a housekeeping control. 

 

1.R.3 Effect of miR-506 on AE2 protein expression in cholangiocytes 

Our group previously reported that transient overexpression of miR-506 in H69 

cholangiocytes results in the downregulation of AE2 protein expression and 
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activity [105]. As predicted, stable transfection of H69 cholangiocytes with 

recombinant vectors that overexpress miR-506 also diminished AE2 protein 

expression compared to cells transfected with miR-neg or vehicle (Figure 

1.R.3). 

 

Figure 1.R.3. MiR-506 decreases AE2 protein expression in cholangiocytes. 

Representative western blot and corresponding quantification showing that miR-506 

overexpression in H69 cells leads to downregulation of AE2 protein expression compared to 

controls. Bar-graph shows AE2 quantification using β-actin as a loading control (n=5). 

 

1.R.4 Proteomic profile associated to overexpression of miR-506 in H69 

human cholangiocytes 

To elucidate the pathophysiological impact of miR-506 in cholangiocytes, a 

proteomic analysis was performed in H69, H69-miR-neg and H69-miR-506 

cells. Overexpression of miR-506 in human cholangiocytes prompted the 

dysregulation of multiple proteins compared to control conditions (Figure 

1.R.4A). The dysregulated proteins are involved in different biological processes 

such as biological adhesion (i.e. COLGALT1), biological regulation (i.e. 

ATP1A1, DDX3X and KPNA2) and cellular component organization or 

biogenesis (i.e. GSPT1, RPS19, OPA1, HSPA8, LMNA, CCT7 and ACTN1), 

among others (Figure 1.R.4B), but particularly in metabolic processes with 

altered mitochondrial proteins (i.e. ALDH2, ACO2, OPA1, PDHB, SLC25A3, 

NNT, ATP5H and ACLY) (Figure 1.R.4C). 
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Figure 1.R.4. Proteomic profile associated to miR-506 overexpression in cholangiocytes. 

(A) Heatmap of the differentially-expressed proteins. (B-C) Functional classification of 

dysregulated proteins using the Panther Classification System database (http://pantherdb.org/), 

and classifications based on (B) biological or (C) metabolic processes. 

 

1.R.5 Role of miR-506 on the biliary phenotype, and on cholangiocyte 

proliferation, adhesion and migration 

PBC cholangiocytes are characterized by dedifferentiation, linked to decreased 

expression of biliary [132] and epithelial markers and acquisition of 
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mesenchymal markers [133, 134]. In this regard, we found that H69-miR-506 

cells exhibited downregulation of biliary [i.e. cytokeratin 7 (CK7)] and epithelial 

(i.e. ZO-1) markers and increased expression of mesenchymal (i.e. N-cadherin) 

and pro-inflammatory (i.e. IL-8) markers compared to controls (Figure 1.R.5A). 

On the other hand, miR-506 decreased cell proliferation (Figure 1.R.5B), which 

was associated with upregulation of the cell cycle inhibitor p21 at mRNA and 

protein level compared to controls (Figure 1.R.5C). 

 



  Chapter 1 – Results 

59 

Figure 1.R.5. MiR-506 induces cholangiocyte dedifferentiation and inhibits cell 

proliferation. (A) Bar-graph showing the mRNA expression levels of biliary [i.e. cytokeratin 7 

(CK7)], epithelial (i.e. ZO-1), mesenchymal (i.e. N-cadherin) and pro-inflammatory (i.e. IL-8) 

markers in H69-miR-506 cells compared to controls (n=6). GAPDH was used as housekeeping 

control. (B) Representative flow cytometry-based histograms and quantification of proliferation 

(n=3). (C) p21 mRNA expression (n=6) (with GAPDH used as housekeeping control) and 

representative western blot of p21 protein expression. Bar-graph shows p21 quantification, 

using β-actin as loading control (n=3). 

 

This altered phenotype was also associated with decreased adhesion and 

migration properties of cholangiocytes (Figure 1.R.6). 

 

Figure 1.R.6. MiR-506 inhibits cholangiocyte adhesion and migration. (A) Representative 

images and corresponding quantification of the adhesion properties of H69, H69-miR-neg and 

H69-miR-506 cells (n=8). (B) Representative images and corresponding quantification of cell 

migration analysis using transwell assays (n=5). 

 

1.R.6 Involvement of miR-506 in cholangiocyte stress and apoptosis 

PBC cholangiocytes are characterized by cellular stress [135] and increased 

apoptosis [136, 137]. These PBC features are promoted by a downregulation of 
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AE2 and InsP3R3 in cholangiocytes. In this context, the lack of AE2 in PBC 

cholangiocytes sensitizes the cells to the apoptosis induced by cytotoxic apolar 

hydrophobic bile acids [138], and the downregulation of InsP3R3 leads to 

altered ER-related Ca2+ signaling [117, 120, 139]. Since miR-506 directly 

targets both AE2 and InsP3R3 mRNAs, cellular stress and apoptosis were 

evaluated in H69-miR-506 cells and controls. MiR-506 increased the levels of 

reactive oxidative species (ROS) in cholangiocytes (Figure 1.R.7A) and 

upregulated the expression of two key endoplasmic reticulum (ER) stress 

markers such as IRE1 and CHOP compared to controls (Figure 1.R.7B), while 

other markers such as ATF6, PERK or XBP1 remained unaltered (Figure 

1.R.7B). 
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Figure 1.R.7. MiR-506 induces stress in cholangiocytes. (A) Representative fluorescence 

microscopy images and quantification of DHE staining (n=57-59 cells in each group). (B) mRNA 

expression of ER stress markers (n=6). GAPDH was used as a housekeeping control. 

All these pathological events were associated with upregulation of the DNA 

damage marker γH2AX protein (Figure 1.R.8A) but did not affect the baseline 

apoptosis of cholangiocytes compared to controls (Figure 1.R.8B). 

 

Figure 1.R.8. MiR-506 induces DNA damage in cholangiocytes but do not affect baseline 

apoptosis. (A) Representative immunoblot of γH2AX. Bar-graph showing the quantification 

relative to β-actin (n=4). (B) Baseline cell death determined by flow cytometry using annexin V 

and propidium iodide staining (n=6 from two independent experiments). 
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However, notably, miR-506 sensitized cholangiocytes to the apoptosis 

induced by the cytotoxic BAs CDCA or GCDCA measured by flow cytometry-

based assays (i.e. annexin V and propidium iodide) compared to controls 

(Figure 1.R.9 A and B, respectively). 
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Figure 1.R.9. MiR-506 sensitizes cholangiocytes to cytotoxic bile acid-induced apoptosis. 

Flow cytometry-based apoptosis images and quantification of annexin V and propidium iodide 

staining under the presence of (A) 200 µM CDCA (n=6) or (B) 750 µM GCDCA (n=6). 
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In line with this, the presence of CDCA in the culture medium highly 

stimulated p21, cleaved caspase-3 and γH2AX expression in H69-miR-506 

cholangiocytes (Figure 1.R.10). 

 

Figure 1.R.10. MiR-506 sensitizes cholangiocytes to toxic bile acid-induced DNA damage 

and apoptosis. Immunoblots of cleaved caspase-3, p21 and γH2AX in H69-miR-506 cells in 

the presence or absence of 200 µM CDCA. β-actin was used as a housekeeping control. 

 

1.R.7 Role of miR-506 in the mitochondrial energetic metabolism in 

cholangiocytes 

Since most of the proteins found dysregulated in cholangiocytes under miR-506 

overexpression participate in metabolic processes (Figure 1.R.4), mitochondrial 

metabolism was investigated. Hence, oxygen consumption rate (OCR) and 

extracellular acidification rate (ECAR) were monitored upon sequential 

treatment of H69, H69-miR-neg and H69-miR-506 cells with different 

mitochondrial inhibitors in a Seahorse XF96 Extracellular Flux Analyzer (Figure 

1.R.11A). MiR-506 altered the mitochondrial energetic metabolism in 

cholangiocytes which was characterized by increased baseline respiration, 

maximal respiration, ATP-linked respiration and non-mitochondrial respiration 

compared to controls (Figure 1.R.11B). In addition, H69-miR-506 cells showed 
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increased ECAR, glycolysis and oxidative phosphorylation (OXPHOS), and a 

more energetic phenotype compared to controls (Figure 1.R.11C). 

 

Figure 1.R.11. Cholangiocytes overexpressing miR-506 show increased mitochondrial 

metabolism. (A) Representative oxygen consumption rate (OCR) of H69, H69-miR-neg and 

H69-miR-506 cells during mitochondrial stress test analyzed by the Seahorse technology. (B) 

Metabolic parameters calculated upon OCR measurements. (C) Bar-graph showing 
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extracellular acidification rate (ECAR) during mitochondrial stress test and representation of 

OCR vs ECAR for determining the metabolic-switch. Seahorse data corresponds to n=22-30 

wells in each group. 

Notably, all these functional events in H69-miR-506 cells were associated 

with increased proton leak compared to controls (Figure 1.R.11B), indicating 

higher uncoupling of mitochondrial ATP production from respiration in H69-miR-

506 cells that results in overall decreased ATP production (Figure 1.R.12A). 

The increased uncoupled respiration in H69-miR-506 cells was confirmed by 

the upregulation of the mitochondrial uncoupling proteins 1 and 2 (UCP1 and 

UCP2) gene expression in H69-miR-506 cells compared to controls (Figure 

1.R.12B). These functional data were also supported by the fact that different 

proteins involved in metabolic processes were found altered by proteomic 

analysis in cholangiocytes under miR-506 overexpression, including proteins 

involved in the mitochondrial energetic metabolism. 

 

Figure 1.R.12. MiR-506 decreased ATP production in cholangiocytes and increased 

expression of mitochondrial uncoupling proteins (UCP). (A) ATP production rate (n=6). (B) 

UCP1 and UCP2 mRNA expression relative to GAPDH (n=6). 

 

1.R.8 Relevance of miR-506 on PDC-E2 expression in cholangiocytes and 

on immune regulation 

PBC patients are mostly characterized (95%) by spontaneous development of 

AMA specific against PDC-E2, as a consequence of the overexpression and 

mislocalization of PDC-E2 in cholangiocytes, resulting in autoimmune 
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phenomena [35, 140]. Thus, we analyzed whether the miR-506 regulates PDC-

E2 expression and its role in immunity. Here, we found that H69-miR-506 cells 

have PDC-E2 mRNA and protein overexpression (Figures 1.R.13 A and B, 

respectively), which was found located in both cytoplasm and plasma 

membrane compared to control conditions, where PDC-E2 was mainly localized 

into the cytoplasm (Figure 1.R.13B). 

 

Figure 1.R.13. MiR-506 induces PDC-E2 overexpression in cholangiocytes. (A) 

Representative immunoblot and corresponding quantification (n=6) showing PDC-E2 protein 

overexpression in H69-miR-506 cells compared to controls. β-actin is used as a loading control. 

(B) Representative immunofluorescent microscopy images showing PDC-E2 protein expression 

and location, and corresponding fluorescence quantification (n=40-54 cells for each group). 

 

Next, co-cultures of H69, H69-miR-neg or H69-miR-506 cells together with 

PBC peripheral blood mononuclear cells (PBMCs) were carried out and the 

proliferation and activation of PBMCs was studied. Co-cultures of H69-miR-506 

cholangiocytes together with PBMCs from PBC patients induced the generation 

of higher number and size of lymphocyte-aggregates compared to control 

conditions (Figure 1.R.14A). Notably, these aggregates were characterized by 

increased proliferation (CFSE assay by flow-cytometry; Figure 1.R.14B) and 
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activation (CD25 marker by flow-cytometry; Figure 1.R.14C) of PBC PBMCs 

compared to controls. 

 

Figure 1.R.14. MiR-506 promotes immune activation. H69, H69-miR-neg and H69-miR-506 

co-culture with PBMCs from a PBC patient was established (n=5). (A) Representative 

microscope images of the different co-culture conditions. (B-C) In PBMCs under co-culture 

conditions (B) proliferation rate (with CFSE staining), and (C) activation (by CD25 staining) were 

evaluated. Representative dot-blots are shown for each condition. 

 

Additionally, the levels of cytokines involved in the immune response of PBC 

patients were evaluated in the supernatant of the cells cultured alone or co-

cultured with PBMCs from a PBC patient. When co-cultured, H69-miR-506 cells 

showed higher IL-17A and IL-23 cytokine levels compared to controls and to the 

other co-culture conditions (Figure 1.R.15). 
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Figure 1.R.15. MiR-506 promotes the secretion of IL-17A and IL-23. Levels of (A) IL-17A 

and (B) IL-23 in the supernatant of H69, H69-miR-neg and H69-miR-506 co-cultured with PBC 

PBMCs (n=4-5). 
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1 - Discussion 

PBC is characterized by a dysregulation of the miR expression profile in both 

liver and PBMCs [122, 141], but their functional relevance still remains mostly 

unknown. In this regard, we previously found that miR-506 is exclusively 

expressed in the bile duct epithelial cells of PBC livers and its expression is 

increased compared to the bile duct cells of normal controls [105]. In 

cholangiocytes, miR-506 directly targets both AE2 [105] and Ins3PR3 [120] 

leading to cholestasis [119, 120, 142]. However, the regulation of miR-506 

expression and its role in cholangiocyte pathophysiology and immune regulation 

remain unknown. In the current report, the evaluation of different lengths of 

miR-506 promoter indicate that the full-length 3 kb region of miR-506 promoter 

is required for its activation by pro-inflammatory cytokines found overexpressed 

in PBC livers such as IL-8, IL-12, IL-17, IL-18 and TNF. These pro-

inflammatory cytokines are involved in PBC immune response modulation and 

are associated with disease progression [133, 143-146]. Thus, in PBC patients, 

the cytokine profile in serum and liver samples suggests activation and liver 

recruitment of T-helper (Th)1 and Th17 cells [144]. lL-12 and IL-23, which are 

produced by antigen presenting cells, are responsible for promoting Th1 and 

Th17 immune responses, respectively. IL-12 primarily promotes the 

differentiation of Th0 to Th1 cells (which are known to produce IFN-γ, IL-18 and 

TNF), whereas IL-23 is implicated in the differentiation of Th0 to Th17 that 

induces IL-17 secretion [40, 147]. In contrast, other pro-inflammatory or pro-

fibrotic cytokines, as well as estrogens believed to participate in the 

pathogenesis of this disease that mainly affects middle-aged women, growth 

factors, immunosuppressors, and choleretic but potentially cytotoxic (i.e. CA) or 

hypercholeretic and hepatoprotective (i.e. UDCA and TUDCA) bile acids (BAs) 

did not show any effect on miR-506 expression. These data indicate that the 

full-length promoter sequence contains essential regulatory elements for the 

specific regulation of miR-506 expression in cholangiocytes under baseline and 

stimulated conditions, and highlight the importance of specific pro-inflammatory 

cytokines in the induction of miR-506 expression. 

AE2 is critical for the maintenance of intracellular pH homeostasis in both 

cholangiocytes and CD8(+) T lymphocytes and for the modulation of immune 
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responses [109, 148]. In this sense, Ae2-/- mice spontaneously develop different 

PBC-like features such as portal infiltration of T lymphocytes and bile duct 

damage, increased oxidative stress in cholangiocytes, elevated production of 

IFN and IL-12, periductular hepatic fibrosis, an increase of IgM, IgG and 

hepatic alkaline phosphatase and specific AMA against PDC-E2, all favoring 

autoimmunity against cholangiocytes [109, 116]. Since the characteristic 

downregulation of AE2 in PBC cholangiocytes is, at least partially, mediated by 

miR-506, in the present work, we further evaluated the role of miR-506 in 

cholangiocyte pathophysiology. Experimental overexpression of miR-506 in 

cholangiocytes induced the dysregulation of proteins involved in fundamental 

biological processes. In particular, miR-506 decreased the expression of 

biliary/epithelial markers and upregulated the expression of mesenchymal and 

pro-inflammatory markers in cholangiocytes. In addition, miR-506 inhibited 

cholangiocyte proliferation, adhesion and migration. These results mimic the 

phenotype of PBC cholangiocytes, which are characterized by dedifferentiation 

and inflammation [40]. Senescence and oxidative stress have also been 

described to be involved in PBC. The damaged small bile ducts in PBC livers 

showed senescence-associated beta-galactosidase and increased levels of 

γH2AX-DNA-damage-foci, p16INK4a and p21WAF1/Cip1 by immunostaining, 

together with telomere shortening [149, 150]. Senescence is known to be 

related to ER stress. Biliary epithelial cells become senescent by increased ER 

stress and, moreover, senescent cells in PBC livers showed ER stress markers 

(i.e. glucose-regulated protein 78 [GRP78]) [135]. In agreement with these PBC 

features, our data indicate that miR-506 induces cell senescence by increasing 

p21 expression and stimulates cellular stress by increasing ROS levels, ER 

stress and DNA damage; this altered phenotype did not result in baseline 

cholangiocyte cell death but sensitized the cells against caspase-3-dependent 

apoptosis induced by toxic BAs. The pro-apoptotic effect of miR-506 may be 

related, to a certain degree, to its direct targeting of AE2 mRNA, as 

experimental downregulation of AE2 in cholangiocytes has been shown to favor 

bile salt-induced apoptosis (BSIA) [151]. Moreover, GCDC has been described 

to reduce AE2 expression in biliary epithelial cells by inducing ROS [152]. 

These data pointed out the relevant role of miR-506 regulating the so called 

“AE2-related biliary bicarbonate umbrella”. AE2 downregulation impairs this 
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protective barrier resulting in increased intracellular pH, accumulated toxic 

apolar hydrophobic BAs and cell apoptosis [13]. All these PBC-like features 

observed in miR-506 overexpressing cholangiocytes may be responsible, at 

least in part, of the progressive ductopenia which is characteristic of these 

patients [150]. 

On the other hand, the pro-apoptotic phenotype of miR-506 overexpressing 

cholangiocytes is in line with studies indicating that this miR acts as a tumor 

suppressor in different types of cancer such as colon, pancreas, hepatocellular 

(HCC), breast or glioblastoma [153]. Downregulation of miR-506 in cancer 

promotes cell survival, proliferation, invasion/migration and chemoresistance 

[153]. Data indicating the tumor suppressor capacity of miR-506 in different 

cancers may provide insights into the differential predisposition of different 

biliary diseases to the development of cholangiocarcinoma (CCA). PBC is rarely 

associated with biliary cancer development whereas primary sclerosing 

cholangitis (PSC), another biliary disease also associated with autoimmune 

phenomena targeting the bile duct epithelial cells, predisposes to the 

development of CCA in up to 15% of patients [45]. We previously reported 

miR-506 overexpression in the bile duct cells of PBC patients but not in PSC 

patients [105]. Thus, whether miR-506 is involved on PSC should be analyzed, 

in order to determine if miR-506 overexpression could contribute to the 

differential pro-tumorigenic predisposition of PSC vs PBC. Future studies 

should clarify the role of miR-506 in hepatobiliary cancers. 

The role of miR-506 was also evaluated on the mitochondrial metabolic 

activity and immune activation. Mitochondrial abnormalities are involved in the 

pathogenesis of PBC. Toxic BA accumulation during cholestasis leads to 

mitochondrial dysfunction through oxidative stress [154]. Our data showed that 

overexpression of miR-506 in cholangiocytes led to an altered mitochondrial 

energetic metabolism characterized by increased oxygen consumption and 

glycolysis but also with increased proton leak, indicating an increase of 

uncoupling respiration. This increase in uncoupling could be in line with the 

increase in ROS production and perhaps with DNA damage and ER stress. Of 

note, miR-506-dependent mitochondrial dysfunction in cholangiocytes was also 

associated with PDC-E2 overexpression, a typical PBC feature that may 

promote, at least in part, the immunogenicity of cholangiocytes [40]. Therefore, 
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we evaluated the capacity of miR-506 in cholangiocytes to modulate PBC 

lymphocytes under co-culture. Interestingly, miR-506 overexpressing 

cholangiocytes promoted the proliferation and activation of PBC PBMCs 

compared to cholangiocytes under control conditions, pointing out the relevance 

of miR-506 in the regulation of cholangiocyte immunogenicity and in the 

potential induction of auto-immunity. In addition, co-cultures of H69-miR-506 

cells and PBMC increased both IL-17 and IL-23 levels, important cytokines in 

Th1 and Th17 immune responses and in PBC, as these pro-inflammatory 

cytokines are overexpressed in peripheral blood of PBC patients [145]. These 

data are consistent with previous reports indicating that PBC cholangiocytes are 

characterized by an overexpression and aberrant location, into the plasma 

membrane, of mitochondrial PDC-E2. Additionally, PBC cholangiocytes present 

increased apoptosis [136, 137] and immunologically active PDC-E2 due to the 

lack of glutathiolation [155], which may be present in apoptotic bodies (known 

as apotopes) [155, 156]. These two mechanisms of aberrant PDC-E2 

presentation may be the base of the development of AMA and further promotion 

of autoimmunity against cholangiocytes. 

In summary, this study provides novel insights of the important role of miR-

506 in the pathogenesis of PBC. Different pro-inflammatory cytokines found 

overexpressed in PBC livers promote the upregulation of miR-506 expression in 

cholangiocytes, leading to the development of PBC-like features such as cell 

dedifferentiation, stress, predisposition to bile-salt induced apoptosis, alterations 

in mitochondrial function and PDC-E2 overexpression, which finally result in 

PBC immune activation (Figure 1.D.1). These effects are mediated, to a certain 

degree, by direct targeting of miR-506 to both AE2 and Ins3PR3, which play key 

roles in the maintenance of the biliary phenotype. However, the role of miR-506 

directly regulating the expression of other genes must also be considered and 

determined in future studies. 
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Figure 1.D.1. Working model. Pro-inflammatory cytokines such as IL-8, IL-12, IL-17, IL-18 and 

TNFα stimulate the promoter activity of miR-506 gene. Overexpression of miR-506 in 

cholangiocytes inhibits AE2 and Ins3PR3 expression and activities, resulting in altered 

intracellular pH and Ca
2+ 

concentration. MiR-506 leads to altered mitochondrial energetic 

metabolism associated with altered expression of proteins involved in such process; the 

resultant mitochondrial energetic metabolism fails and results in decreased ATP production and 

in overexpression and mislocalization of PDC-E2, leading to immune activation. MiR-506 

decreases the expression of biliary and epithelial markers in cholangiocytes and increases the 

expression of mesenchymal, inflammatory and senescence genes, impairing cell proliferation, 

adhesion and migration, and stimulating ROS, ER stress and DNA damage. MiR-506 also 

sensitizes cholangiocytes against toxic BA-induced apoptosis. 
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1 - Conclusions 

The key findings reported here are related to the role of miR-506 in 

cholangiocyte pathophysiology and immune regulation. Our data indicate that: 

I. Different pro-inflammatory cytokines (i.e. IL-8, IL-12, IL-17, IL-18 and 

TNF) found overexpressed in PBC livers stimulated the activity of miR-

506 gene promoter, whereas bile acids, estrogens and growth factors 

had no effects. 

II. MiR-506 in cholangiocytes inhibited AE2 protein expression and 

dysregulated the proteomic profile of the cells, particularly altering the 

expression of proteins involved in mitochondrial metabolism. 

III. MiR-506 inhibited the expression of biliary and epithelial markers in 

cholangiocytes and induced the expression of mesenchymal, 

inflammatory and senescence/cell cycle inhibitory genes. This phenotype 

resulted in a decrease in cell proliferation, adhesion and migration. 

IV. MiR-506 stimulated ROS, ER stress and DNA damage in cholangiocytes, 

and sensitized the cells to the apoptosis induced by toxic bile acids. 

V. MiR-506 increased the mitochondrial metabolism and oxidative 

phosphorylation, events that were associated with an uncoupling of ATP 

production from mitochondrial respiration and with overexpression of 

PDC-E2. 

VI. MiR-506 in cholangiocytes induced the proliferation and activation of 

PBC PBMCs, and stimulated the secretion of IL-17 and IL-18 cytokines, 

which participate in autoimmunity processes. 

Our data are consistent with the notion that miR-506 is a key player in the 

pathogenesis of PBC and a potential target for therapy. 
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2 - Introduction 

2.I.1 Cholangiocarcinoma (CCA) 

Cholangiocarcinomas (CCAs) are heterogeneous cancers affecting the biliary 

tract, and some symptoms arise as a consequence of the biliary obstruction 

caused by the tumor [43, 53]. The etiology of most CCAs is currently unknown. 

However, CCA development has been associated to different risk factors 

including choledocal cysts and cholestatic conditions such as primary sclerosis 

cholangitis (PSC) and hepatolithiasis, and CCAs may themselves cause 

cholestasis by tumor-induced biliary obstruction [45]. The biliary obstruction can 

result in the accumulation of toxic bile acids (BAs) and increased BA 

concentration has been suggested as a potential event inducing CCA 

development and progression [72]. For instance, BAs regulate the secretion, 

proliferation, apoptosis and differentiation of cholangiocytes [157]. 

2.I.2 Bile acids (BAs) 

Bile acids (BAs) are water-soluble and amphipathic molecules derived from 

cholesterol. BAs are mainly synthetized in the liver and then transformed by 

bacteria in the gut [158]. Cholesterol metabolism in the liver and fat digestion 

and absorption in the gut are the main functions for BAs. However, BAs 

participate in the regulation of multiple pathophysiological processes along the 

gastrointestinal tract. 

There are two main biosynthetic pathways for primary BA formation. The 

“classical or neutral” is only present in the liver and is catalyzed by the enzymes 

microsomal cholesterol 7α-hydroxylase (CYP7A1) and cytochrome P450 family 

8 subfamily B member 1 (CYP8B1). The two primary BAs in humans are 

synthesized by this pathway: cholic acid (3α, 7α, 12α-trihydroxy-5β-cholanoic 

acid) (CA) and chenodeoxycholic acid (3α, 7α-dihydroxy-5β-cholanoic acid) 

(CDCA) [159] (Figure 2.I.1). This pathway is considered the most relevant for 

BA synthesis in humans. However, the “alternative or acidic” pathway has been 

also described. This pathway is catalyzed by the sterol 27-hydroxylase 

(CYP27A1) and the oxysterol 7α-hydroxylase (CYP7B1) and occurs in the liver; 
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however, it may also occur in the kidneys and brain due to their high expression 

of CYP7B1 [160]. In this process, CDCA is the main BA synthesized [161]. Over 

99% of BAs are taurine- or glycine-conjugated, being these conjugated forms 

the major solutes in bile [162, 163]. The primary BAs (CA or CDCA) are then 

metabolized by intestinal microbiota resulting in the formation of the secondary 

bile acids: deoxycholic acid (3α acid, 12α-dihydroxy-5β-cholanoic) (DCA) and 

lithocholic acid (3α-hydroxy-5β-cholanoic) (LCA) [161] (Figure 2.I.1). 

 

Figure 2.I.1. “Classical or neutral” pathway for BA synthesis. (Adapted from Qi et al., 

2014). 

 

Once synthesized, BAs enter into the enterohepatic circulation and are 

transported by different carriers [158, 164] (Figure 2.I.2): 

 Bile salt export pump (BSEP): located into the bile canaliculus. BSEP 

is involved in the luminal secretion of BAs [165]. 

 Apical sodium-dependent bile salt transporter (ASBT): located at the 

apical membrane of distal ileal epithelial cells, ASBT reabsorbs BAs from 

the gut [166]. 

 Organic solute transporter α/β (OST α/β): located at the basolateral 

membrane of ileal epithelial cells, OST α/β is responsible for BA 

secretion into the portal circulation [167]. 

 Na+-taurocholate cotransporting polypeptide (NTCP; also known as 

SLC10A1): a sodium/BA cotransporter located at the basolateral 
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membrane of hepatocytes and involved in BA absorption into the liver 

[168]. 

 

Figure 2.I.2. Enterohepatic circulation of BAs. BAs are secreted into the canaliculus by 

BSEP. ASBT reabsorbs BAs in the ileum and then are secreted to portal circulation via OST 

α/β. NTCP is responsible of the absorption of BAs to the liver (Adapted from Schaap et al., 

2014). 

 

In addition, hepatocytes and cholangiocytes both have different important BA 

transporters. In the basolateral membrane of hepatocytes, the family of organic 

anion transporting polypeptides (OATP) is involved in the sinusoidal sodium-

independent BA uptake [169]. BA efflux in the basolateral membrane of 

hepatocytes is carried out by the multidrug-resistance associated proteins 

MRP3 and MRP4, or by OST α/β [164]. In the canalicular membrane, apart from 

BSEP, MRP2 and ATP-binding cassette sub-family G member 2 (ABCG2 or 

BCRP) are found, which mediate the transport of conjugated BAs [161, 164, 

170] (Figure 2.I.3A). Regarding cholangiocytes, BAs are absorbed by ASBT at 

the apical membrane and then effluxed by OST α/β at the basolateral 

membrane [164] (Figure 2.I.3B). 
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Figure 2.I.3. BA transporters in hepatocytes and cholangiocytes. Different transport 

systems are present in both hepatocytes and cholangiocytes for BAs and other solutes. (A) In 

hepatocytes, BAs are uptaken through NTCP and OATP and effluxed via BSEP, MRP2 and 

MDRs. (B) In cholangiocytes, ASBT and OST α/β are the main BA transporters (Adapted from 

Geier et al., 2006). 

 

Newly synthesized BAs are secreted into the canalicular lumen and then 

transported to the gallbladder, where BAs are stored. After food ingestion, BAs 

are secreted to the intestinal lumen for lipid and vitamin adsorption. Once 

digestive functions are performed, over 95% of the BAs are transported back to 

the liver [159, 162]. Furthermore, some BAs undergo what is called the 

cholehepatic shunting, where BAs in bile can be reabsorbed by cholangiocytes 

and then uptake by hepatocytes and further secreted to bile [171-173]. Finally, 

non-reabsorbed BAs enter the colon to be either converted to secondary BAs or 

eliminated with the feces [174]. The levels of BA have to be meticulously 

regulated, as BAs are essential for the hepatic elimination of toxic endogenous 

compounds and xenobiotics. Thus, maintaining BA homeostasis is crucial in 

order to avoid toxicity. BAs modulate cholesterol levels but also the levels of 

phospholipids [175]. 

BAs regulate pathophysiological processes in different cell types by binding 

to BA receptors. There is a group of nuclear hormone receptors (NHRs) for BA 

binding that include the farnesoid X receptor (FXR, encoded by NR1H4), 

pregnane X receptor (PXR, encoded by NR1I2), vitamin D3 receptor (VDR, 

encoded by NR1I3) and constitutive androstane receptor (CAR, encoded by 

NR1I3) [176-179]. Additionally, BAs may bind to a cell-surface receptor termed 

TGR5 (also known as G protein-coupled BA receptor 1 -GPBAR1-) [180]. 
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2.I.3 BAs in cholangiocytes and CCA 

Besides the aforementioned functions, BAs modulate different functions in 

different cell types, including cholangiocytes [181]. In this regard, BAs are key 

molecules regulating physiological and pathological events in cholangiocytes 

[181]. The binding of BAs to their specific receptors lead to the regulation of 

cholangiocyte proliferation, secretion, dead and survival pathways [157]. Among 

the receptors, FXR and TGR5 are crucial for BA homeostasis [158]. On the 

other hand, accumulation of toxic BAs during cholestasis may promote the 

development and progression of gastrointestinal tumors [72]. In particular, 

intrahepatic accumulation of toxic BAs does not induce carcinogenesis directly, 

but facilitates a co-carcinogenic effect by inducing cholangiocyte inflammation 

and proliferation [182-185]. 

2.I.4 BA receptors: FXR and TGR5 

2.I.4.1 FXR 

FXR is the member of the NHR superfamily that preferentially mediates and 

regulates BA homeostasis and signaling [158, 176, 186-189]. Four FXR 

isoforms have been described, named as  FXRα1+, FXRα1−, FXRα2+ and 

FXRα2− due to differences in exon 1 to 3 (α1 and α2) and the presence (+) or 

absence (−) of a 12 base pair insert at the end of exon 5 [190, 191]. FXR 

expression is higher in tissues exposed to high BA concentration, thus FXR 

levels increase along the enterohepatic circulation of BAs. Indeed, high FXR 

expression has been described in the intestine (particularly in the ileum), liver 

(both in hepatocytes and cholangiocytes) and in the kidneys [176, 192]. To 

exert its function on target genes, FXR forms a heterodimer with the retinoid X 

receptor α (RXRα, also known as NR2B1) [158]. FXR is crucial for BA 

homeostasis and modulates it at different levels [158]: i) repression of BA 

synthesis by indirect regulation of CYP7A1 expression, via upregulation of 

CYP7A1 inhibitor short heterodimer partner (SHP) in hepatocytes [193, 194] or 

by stimulating FGF19 transcription in the ileum that is further secreted into 

portal circulation, binds to its receptor in hepatocytes (i.e. FGFR4) and 

subsequently inhibits CYP7A1 [195]; ii) stimulation of BA secretion from 
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hepatocytes by stimulating BSEP [196]; iii) increase of basolateral efflux of BAs 

in the ileum by OST α/β upregulation [167]; and iv) stimulation of BA 

conjugation [163]. Importantly, FXR also mediates BA signaling in hepatobiliary 

pathophysiology, being involved in several processes such as lipid and glucose 

metabolism, immunomodulation, liver fibrosis, inflammation, regeneration, cell 

differentiation and tumorigenicity, among others [192, 197-201]. 

2.I.4.1.1 FXR and CCA 

In the last decade, FXR was described to have a potential role in liver 

tumorigenesis since Fxr knockout mice (Fxr-/-) spontaneously develop liver 

tumors [199, 202]. Regarding CCA, FXR expression was found to be 

downregulated in CCA samples compared to healthy livers [191], but the 

mechanisms by which this occurs is not clear. Several studies postulated that 

epigenetic silencing (i.e. by miR-421, SIRT1 or methylation) or the inflammatory 

microenvironment might be involved in FXR downregulation [203]. On note, 

simultaneous study of the hepatobiliary carcinogen thioacetamide (TAA) 

administration and/or experimental induction of obstructive cholestasis (i.e. bile 

duct ligation (BDL) showed a higher reduction of FXR expression in the liver 

upon BA accumulation in the BDL models, both alone or in combination with 

TAA, compared to rats that received TAA alone. Moreover, the combination of 

TAA and BDL or BDL alone increased the expression of CCA and inflammation 

markers in the liver compared to the administration of TAA alone, indicating that 

increased BA levels are not directly responsible of cholangiocarcinogenesis but 

they favour it [204]. 

2.I.4.1.2 FXR agonists 

Given the assortment of functions of FXR and its implication in different liver 

diseases, targeting of this nuclear receptor appeared as a potential therapeutic 

tool. Several FXR ligands have been described and used for treating liver 

diseases. Among BAs, CDCA is the most potent FXR endogenous agonist, 

followed by DCA, LCA and finally CA, the less potent BA activator for FXR [158, 

188]. Synthetic BA analogues have been developed for FXR activation, 

including obeticholic acid (OCA) [also known as INT-747 (6α-ethyl-
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chenodeoxycholic acid)] [205] and INT-767 (6α-ethyl-3α,7α,23-trihydroxy-24-

nor-5β-cholan-23-sulfate) [206]. Other nonsteroidal synthetic FXR agonists 

include GW4064, fexaramine, GSK2324, Way362450 or PX-102 [158]. 

OCA (Figure 2.I.4) is a synthetic BA derivative that activates FXR with high 

affinity and selectivity [205]. OCA is currently under clinical evaluation for the 

treatment of several diseases such as non-alcoholic steatohepatitis (NASH), 

PSC and biliary atresia [207, 208], and has recently been approved for the 

treatment of primary biliary cholangitis (PBC) [39]. 

 

Figure 2.I.4. Molecular structure of obeticholic acid. OCA (also named INT-747 or 6-

ECDCA) is synthetized by Intercept Pharmaceuticals (Adapted from Schaap et al.,2013). 

 

2.I.4.2 TGR5 

TGR5 is a G protein-coupled BA membrane receptor that is activated by BAs 

independently of transport systems [180, 209]. TGR5 is broadly expressed, but 

its expression is higher in tissues such as brown adipose tissue, brain, muscle, 

placenta, lung, intestine, spleen, stomach, gallbladder and liver [158, 210-212]. 

In the liver, TGR5 expression is found in sinusoidal epithelial cells, Kupffer cells 

and cholangiocytes [213-215]. In different tissues, activation of TGR5 leads to 

downstream adenylate cyclase stimulation and increases intracellular cAMP 

production subsequently activating protein kinase A and further downstream 

signaling activation [216]. Together with FXR, TGR5 is involved in the 

maintenance of BA homeostasis. In this regard, Tgr5 knockout mice (Tgr5-/-) 

have lower total BA pool concentration (in a liver, gallbladder and small intestine 

homogenate) compared to wild-type mice [216, 217]. Importantly, localized in 

the apical membrane and at the primary cilium of cholangiocytes, TGR5 

functions as a sensor of bile composition and stimulates the generation of the 
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so-called “bicarbonate biliary umbrella”, which is crucial to avoid BA-induced 

toxicity [13]. TGR5 regulates the CFTR channel, increasing Cl- secretion and 

further bicarbonate secretion into bile [13, 212]. Besides these functions, TGR5 

is very important in metabolic disorders. TGR5 regulates glucose homeostasis 

and insulin-sensitivity, by modulating glucagon-like peptide-1 (GLP-1) release in 

the gut [218]. Studies using Tgr5-/- mice and TGR5 activation mechanisms 

pointed TGR5 as an important negative regulator in obesity, as TGR5 increases 

the energy expenditure and oxygen consumption in muscle and brown adipose 

tissue by a cAMP-dependent generation of active thyroid hormone (T3) [217, 

219]. 

2.I.4.2.1 TGR5 and cancer 

TGR5 expression and activity are altered in different cancers. In particular, 

increased TGR5 expression has been associated with pro-tumorigenic effects in 

gastrointestinal cancers, favouring cell proliferation and survival by regulating 

downstream targets such as EGFR, ERK1/2 or cyclin D1 [220]. However, 

regarding CCA, although TGR5 has been postulated to have pro-tumoral effects 

[221-223] no clear information is available yet. In this regard, TGR5 has been 

suggested to protect cholangiocytes against apoptosis as BAs known to be 

TGR5 ligands were described to protect cholangiocytes from induced-cell injury 

[221, 224, 225]. 

2.I.4.2.2 TGR5 agonists 

Similar to FXR, TGR5 is considered a promising target for therapy in several 

diseases such as NASH, hypercholesterolaemia, hyperglyceridaemia and type 

2 diabetes mellitus [158]. TGR5 activation by BAs is given as follows, in a 

decreasing order of potency: LCA, DCA, CDCA and CA. Of note, taurine-

conjugated BAs activate TGR5 more effectively compared to unconjugated BAs 

[180, 211]. Regarding synthesized BA analogues for TGR5 activation, INT-777 

(6α-ethyl-23(S)-methyl-3α,7α,12α-trihydroxyl-5β-cholan-24-oic acid or 6-EMCA) 

[226] and the dual FXR-TGR5 agonist INT-767 [206] are found. 

INT-777 (Figure 2.I.5) is a synthetic BA derivative that with high affinity and 

selectivity activates TGR5. In different animal models, INT-777 has been 

reported to control glucose homeostasis, hamper atherosclerosis by 
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macrophage regulation, prevent diabetic kidney disease and control weight gain 

as well as adiposity modulating cAMP and energy expenditure [227-229]. 

 

Figure 2.I.5. Molecular structure of INT-777. INT-777 (6-EMCA) is synthetized by Intercept 

Pharmaceuticals (Adapted from Schaap et al.,2013). 
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2 - Hypothesis and Objectives 

The present study aimed to elucidate the role of FXR and TGR5 activation in 

CCA progression, using the specific agonists OCA and INT-777. We propose 

the following objectives: 

I. Analysis of FXR and TGR5 expression in CCA tissues of two 

independent cohorts of patients and elucidation of their association with 

tumor clinicopathology. 

II. Evaluation of the expression of FXR and TGR5 in normal and tumor 

human cholangiocytes in culture. 

III. Determination of the effect of FXR and TGR5 agonists on CCA tumor 

growth in an orthotopic mouse model. 

IV. Determination of the differential effects of FXR or TGR5 activation in 

CCA cell growth in culture. 
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2 - Materials and Methods 

2.M.1 Human liver biopsies 

CCA and surrounding non-tumoral human tissues of two independent cohorts of 

patients [Copenhagen (Denmark) and San Sebastian (Spain)] were studied. On 

the one hand, in collaboration with the group of Dr Jesper Andersen 

(Copenhagen), whole transcriptome profiling was performed in samples of a 

cohort of patients analyzed in Copenhagen (named as Copenhagen cohort), 

which included 104 CCA surgical specimens (68 intrahepatic and 36 perihilar 

CCAs) and 60 surrounding normal tissue samples, by using humanRef-8v2 

BeadChips (Illumina) as previously described (GEO: GSE26566) [230]. 

Additionally, both FXR and TGR5 mRNA expression was determined by 

qPCR in CCA human biopsies and surrounding normal human liver tissues 

obtained from the Basque Biobank of the Donostia University Hospital (named 

as San Sebastian cohort). The clinical information of the patients included in the 

analysis of FXR or TGR5 expression is stated in Table 2.M.1. 

Research protocols were approved by the Clinical Research Ethics 

Committees of supporting institutions, and all patients signed written consents 

for the use of their samples for biomedical research. 

 

Table 2.M.1. Clinical information of the San Sebastian cohort of patients for FXR and TGR5 

expression analysis. 

 

Gender 

Age Disease 

Average Standard Deviation iCCA eCCA 

FXR Male 68,90 9,09 7 3 
Female 67,75 15,84 3 1 

TGR5 Male 62,00 9,23 7 1 
Female 64,86 14,19 4 3 

 

Abbreviations: iCCA, intrahepatic CCA; eCCA, extrahepatic CCA 
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2.M.2 Cell culture 

Normal human cholangiocytes (i.e. NHC) and two CCA cell lines (i.e. EGI1 and 

TFK1) were used in the present study. Cells and culture conditions are 

described in general materials and methods section (see above). 

2.M.3 Cell treatments 

In vivo and in vitro assays were performed using specific FXR and TGR5 

agonists produced by Intercept Pharmaceuticals. FXR and TGR5 agonists 

consist on obeticholic acid (OCA) and INT-777, respectively. 

2.M.4 Gene expression (mRNA) 

Gene expression was determined by qPCR from RNA isolated and 

retrotranscribed as described in general materials and methods section (see 

above). The primers used in the present study are grouped in Table 2.M.2. 

Table 2.M.2. Primers used for RT-PCR of human mRNAs. 

Primer Sequences 

FXR Forward 5‟-ACAGAACAAGTGGCAGGTC-3‟ 

 Reverse 5‟-CTGAAGAAACCTTTACACCCCTC-3‟ 

TGR5 Forward 5‟-TTGGTCCACTTGTGCTCTTC-3‟ 

 Reverse 5‟-GCTGGTGTGTAGTGGTCTTC-3‟ 

Ki67 Forward 5‟-CCACGCAAACTCTCCTTGTA-3‟ 

 Reverse 5‟-TTGTCAACTGCGGTTGCTCC-3‟ 

PCNA Forward 5‟-ACACTAAGGGCCGAAGATAACG-3‟ 

 Reverse 5‟-ACAGCATCTCCAATATGGCTGA-3‟ 

Cyclin D1 Forward 5‟-GCTGCGAAGTGGAAACCATC-3‟ 

 Reverse 5‟-CCTCCTTCTGCACACATTTGAA-3‟ 

Cyclin D3 Forward 5‟-TACCCGCCATCCATGATCG-3‟ 

 Reverse 5‟-AGGCAGTCCACTTCAGTGC-3‟ 

Cdc25a Forward 5‟-CTGCCTGCACTCTCATGGAC-3‟ 

 Reverse 5‟-CTGTCCAGAGGCTTGCCATG-3‟ 

GAPDH Forward 5‟-CCAAGGTCATCCATGACAAC-3‟ 

 Reverse 5‟-TGTCATACCAGGAAATGAGC-3‟ 
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2.M.5 Liver orthotopic CCA model in vivo 

An orthotopic model of human CCA was generated in immunodeficient CD1 

nude mice (Crl:CD1-Foxn1nu, strain 086, homozygous) obtained from Charles 

River. In order to determine the effects of FXR or TGR5 activation on CCA 

progression, mice were fed with either a control chow diet or a chow diet 

supplemented with the FXR agonist OCA or the TGR5 agonist INT-777 (0,03%; 

both from Intercept Pharmaceuticals). Briefly, CCA human cells (i.e. EGI1) were 

subcutaneously injected (5x105 cells) in nude mice to generate CCA tumors. 

Seven weeks later, CCA tumors were resected and dissected into ~2-3 mm 

pieces, which were afterwards implanted in the liver of new immunodeficient 

mice. The CCA tumor volume in liver was determined and monitored overtime 

at the Molecular Imaging Unit of CIC biomaGUNE (San Sebastian, Spain) using 

a 7 Tesla Bruker Biospec 70/30 magnetic resonance imaging (MRI) system 

acquiring respiration synchronized T2 weighted images of the abdomen 

covering the whole liver. The volume was calculated from manual segmentation 

of the MRI images using the ImageJ 1.47 software. First, the tumor volume was 

measured by MRI one week after the orthotopic implantation of CCAs. Then, 

mice were homogeneously distributed into three different groups according to 

the initial tumor volume for the administration of control, OCA or INT-777 diet for 

2 months. Subsequently, new MRI studies were performed 1 and 2 months after 

the beginning of diet administration. Animal experimental protocols were 

approved by the Animal Experimentation Ethics Committee of Biodonostia 

Health Research Institute and CIC biomaGUNE. Mice were weighted weekly. 

2.M.5.1 Mice sacrifice 

Mice were anesthetized and livers were extracted. Tumor samples were 

collected and some tissue was frozen for RNA isolation and other tissue was 

paraffin-embebed for immunohistochemistry. 

2.M.6 Immunohistochemistry 

Ki67 and PCNA staining were performed on formalin-fixed paraffin-embedded 

mouse liver tissue sections. Briefly, sections were deparaffined in xylene and 

hydrated using decreasing percentages of ethanol solutions. Thereafter, 
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endogenous peroxidase was blocked in 3.5% H2O2 in methanol for 15 min. 

Antigen-retrieval was performed with citrate buffer pH 6.0 and avidin and biotin 

sites were then blocked with avidin-biotin blocking kit (Vector laboratories). 

Next, slides were blocked with 20% FBS in PBS. Rabbit anti-human Ki67 

(Abcam) and rabbit anti-human PCNA (Santa Cruz) antibodies were incubated 

overnight at 4ºC and were used at a dilution of 1:500 and 1:200 in PBS, 

respectively. Sections were then incubated with biotinylated swine anti-rabbit 

secondary antibody for 1 h and after PBS washing incubated with streptavidin 

biotin-peroxidase complex for 45 min (Vectastain ABC kit) (Vector laboratories) 

Positive cells were stained with 3,3-diaminobenzidine (DAB) (Vector 

laboratories). Finally, sections were counterstained with hematoxylin and slides 

were dehydrated, mounted in DPX (Sigma) and visualized on a Nikon optical 

microscope (Eclipse E800). 

2.M.7 Determination of cell proliferation 

Cell proliferation was assessed by CellTrace™ CFSE Cell Proliferation staining, 

following the described protocol in general materials and methods section (see 

above). Cells were treated for 48 h with the FXR and TGR5 agonists in 

DMEM/F-12 supplemented with 3%FBS/1% P/S. 

2.M.8 Determination of cell death by flow cytometry 

Cell death was analyzed by flow cytometry using annexin V and propidium 

iodide staining as described in general materials and methods section (see 

above). Cells were treated for 48 h with the FXR and TGR5 agonists in 

DMEM/F-12 supplemented with 3%FBS/1% P/S. 

2.M.9 Mitochondrial function assessment by Seahorse Analyzer 

Oxygen consumption rate (OCR) was measured in an XF96 Extracellular Flux 

Analyzer (Seahorse Bioscience) using the XF Cell Mito Stress Test Kit following 

the manufacturer‟s instructions. Briefly, 8x103 cells per well were seeded in a 

collagen-coated 96-well Seahorse microplate and cultured O/N in fully 

supplemented DMEM/F-12 media (Table I.2). Next, cells were pre-treated for 2 

h with OCA or INT-777 (25 µM), and then cell culture medium was replaced by 
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Assay medium (Gibco) supplemented with glucose, L-glutamine and sodium 

pyruvate (Sigma) at pH = 7.4 with the corresponding BA receptor agonists 

(OCA or INT-777; 25 µM) or vehicle (DMSO) and cells were cultured for 1 h at 

37°C without CO2. Three initial measurements were performed in each cell 

culture, DMSO was injected, as this was the vehicle for the treatments, and 

three basal measurements were carried out. Next, mitochondrial inhibitors [i.e. 1 

µM Oligomycin, 1.2 µM FCCP and 0.5 µM both Rotenone-Antimycin A (all from 

Sigma)] were sequentially added and three measurements were performed 

after the administration of each inhibitor. Metabolic parameters were calculated 

as indicated by Seahorse Bioscience and as described in general materials and 

methods section (see above). 

2.M.10 Determination of cell migration 

Cell migration was analyzed by wound-healing assays and by transwell 

migration chambers as stated in general materials and methods section (see 

above). 

2.M.11 Statistical analysis 

Results were statistically analyzed as stated in general materials and methods 

section (see above). For comparisons between two groups, parametric unpaired 

T-test or non-parametric Mann-Whitney test were used. For paired data 

comparisons, paired T-test or Wilcoxon matched-paires signed rank test were 

used. Differences were considered significant when p<0.05. 
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2 - Results 

2.R.1 Expression of FXR and TGR5 in CCA human tissue and cells 

We first tested the mRNA expression of FXR and TGR5 in samples of two 

independent CCA patient cohorts. FXR and TGR5 expression was analyzed in 

CCA human biopsies and surrounding normal human liver tissues by two 

approaches (i.e. mRNA microarray and qPCR) in both cohorts of patients (i.e. 

Copenhagen and San Sebastian), respectively. In agreement with previous 

observations, mRNA microarray analysis in samples of the Copenhagen cohort 

showed that FXR is significantly downregulated in whole tissue of 104 CCA 

tumor biopsies compared to 60 surrounding normal human liver tissues (Figure 

2.R.1A). Notably, FXR expression correlated with the tumor differentiation 

degree; those CCAs with lower FXR expression presented less differentiation 

than those CCAs with higher FXR expression (Figure 2.R.1B). Similarly, FXR 

expression was also evaluated in the San Sebastian cohort of patients and 

qPCR data revealed that FXR levels are also lower in 14 CCA tissues 

compared to 12 surrounding non-tumoral liver tissues (Figure 2.R.1C). Besides, 

matched tumor/surrounding non-tumoral tissue samples showed decreased 

FXR mRNA expression in tumor tissue (n=12) (Figure 2.R.1D). 
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Figure 2.R.1. FXR expression is decreased in CCA tumors and correlates with tumor 

differentiation. (A) FXR mRNA (microarray) expression in CCA tumors (n=104) compared to 

surrounding normal human tissue (n=60) (Copenhagen cohort). (B) FXR mRNA (microarray) 

expression in CCA tumors grouped upon tumor differentiation grade: well-/moderately- (n=44) 

or poorly- (n=9) differentiated (Copenhagen cohort). (C-D) FXR mRNA expression (qPCR) (C) 

in CCA tumors (n=14) compared to surrounding non-tumoral human liver tissue (n=12) and (D) 

in matched-paired CCA tissue and surrounding tissue (n=12) (San Sebastian cohort). 

 

In contrast, TGR5 expression was found to be upregulated in 104 CCA 

human biopsies compared to 60 normal surrounding human liver tissues of the 

Copenhagen cohort (Figure 2.R.2A). TGR5 expression was higher in perihilar 

(n=36) than in intrahepatic (n=68) CCAs, and in tumors with perineural invasion 

(n=42) compared to those without perineural invasion (n=50) (Figure 2.R.2B). 
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Likewise, qPCR evaluation of TGR5 mRNA expression in the San Sebastian 

cohort of patients corroborated the increased TGR5 expression in 15 CCA 

human tissues compared to 11 surrounding non-tumoral liver tissue (Figure 

2.R.2C). Furthermore, in matched-paired samples, TGR5 expression was 

higher in CCA tissue than in matched-surrounding human liver tissue (n=11) 

(Figure 2.R.2D). 

 

Figure 2.R.2. TGR5 expression is increased in CCA tumors, been higher in perihilar than 

in intrahepatic CCAs, and correlates with perineural invasion. (A) TGR5 mRNA 

(microarray) expression in CCA tumors (n=104) compared to surrounding normal human tissue 

(n=60) (Copenhagen cohort). (B) TGR5 mRNA (microarray) expression in CCA tumors upon 

clinico-pathological parameters: anatomical location [perihilar (n=36) or intrahepatic (n=68)] and 

perineural invasion [negative (n=50) or positive (n=42)] (Copenhagen cohort). (C-D) TGR5 

mRNA expression (qPCR) (C) in CCA tumors (n=15) compared to surrounding non-tumoral 
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human liver tissue (n=11) and (D) in matched-paired CCA tissue and surrounding tissue (n=11) 

(San Sebastian cohort). 

 

Next, we examined FXR and TGR5 expression in CCA cell lines compared to 

NHCs, and cells exhibited similar FXR and TGR5 expression patterns to that 

observed in human liver biopsies. FXR mRNA expression was downregulated 

and TGR5 was upregulated in two human CCA cell lines (i.e. EGI1 and TFK1) 

compared to NHC in vitro (Figures 2.R.3A and B, respectively). 

 

Figure 2.R.3. FXR expression is decreased and TGR5 expression is increased in CCA cell 

lines compared to normal human cholangiocytes (NHCs). (A) FXR mRNA expression 

(qPCR) in NHCs and CCA cell lines (n=5-6). (B) TGR5 mRNA expression (qPCR) in NHCs and 

CCA cell lines (n=4-6). 

 

2.R.2 Role of FXR or TGR5 activation on tumor growth in an orthotopic 

mouse model of human CCA 

The effect of FXR or TGR5 activation induced by OCA or INT-777, respectively, 

was evaluated on tumor growth in an orthotopic mouse model of CCA. 

Orthotopic CCA human tumors were generated by implantation of EGI1 CCA 

tumors in immunodeficient mice and control-, OCA- or INT-777- chow diet was 

administered. Tumors were monitored by MRI and they progressively grew 

overtime (Figure 2.R.4A). Of note, the tumor growth was lower in mice 

chronically treated with OCA compared to controls (Figure 2.R.4B and C). 
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Conversely, no differences on tumor volume were observed between mice 

chronically receiving INT-777 and control mice (Figure 2.R.4B and C). 

 

Figure 2.R.4. The FXR agonist obeticholic acid (OCA) inhibited tumor growth in vivo. (A) 

Tumor volume progression quantified by MRI during nude mice treatment with OCA, INT-777 or 

control diet. (B) Representative MRI and liver images of control mice, OCA-treated mice and 

INT-777-treated mice. (C) Bar-graph showing tumor volume fold-change in the last month of 

treatment quantified by MRI (Control n=8, OCA n=6 and INT-777 n=9). 

 

To evaluate whether the FXR-dependent inhibition of CCA tumor growth in 

vivo could be related to the regulation of CCA cell proliferation, the expression 

of proliferation markers was analyzed in the tumors by qPCR and 

immunohistochemistry. In agreement with the inhibitory effect of FXR activation 

on tumor growth, CCA tumors from mice treated with OCA showed significantly 

decreased expression of the proliferation markers Ki67 and PCNA by both 
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strategies (Figures 2.R.5 and 6). A decreasing trend was observed in Cdc25a, 

cyclin D1 and cyclin D3 expression in the OCA treated group (Figure 2.R.5). 

 

Figure 2.R.5. The FXR agonist obeticholic acid (OCA) decreased the mRNA expression of 

proliferation markers in CCA tumors in vivo. Analysis of proliferation markers (i.e. Ki67, 

PCNA, Cdc25a, cyclin D1 and cyclin D3) within the tumors by qPCR (n=5-8). 
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Figure 2.R.6. The FXR agonist obeticholic acid (OCA) decreased the protein expression 

of proliferation markers in CCA tumors in vivo. Immunohistochemical analysis of 

proliferation markers (A) Ki67 and (B) PCNA within the tumors. 

 

2.R.3 Effect of FXR activation on CCA cell proliferation, survival, migration 

and mitochondrial energy metabolism in vitro 

To gain further insight on the influence of FXR or TGR5 activation on CCA cell 

biology, the effects of FXR or TGR5 agonists were evaluated in CCA cells and 

NHC in vitro. Our data indicate that OCA inhibits, in a dose-dependent manner 

(10, 25 and 50 µM), the proliferation of two different CCA cell lines (i.e. EGI1 

and TFK1) compared to vehicle-treated control cells (Figure 2.R.7A). Moreover, 

the highest dose of OCA (i.e. 50 µM) was the only one that stimulated CCA cell 

(i.e. EGI1 and TFK1) apoptosis (evaluated by annexin V and propidium iodide 

staining) compared to control conditions (Figure 2.R.8A). In contrast, the 

inhibitory effect of OCA on NHC proliferation was only observed at the highest 

dose (50 µM) (Figure 2.R.7B), which was also associated with increased 

apoptosis (Figure 2.R.8B). Based on these data, further in vitro assays were 

performed with 25 µM OCA, which inhibits CCA cell proliferation but does not 

affect apoptosis. Under these conditions, OCA inhibited mRNA expression of 

different proliferation markers (i.e. Ki67, PCNA, cyclin D1 and cyclin D3) in EGI1 

CCA cells compared to controls (Figure 2.R.9). 

 

Figure 2.R.7. The FXR agonist OCA inhibits CCA cell proliferation in a dose-dependent 

manner. Flow cytometry-based cell proliferation (by CFSE) under increasing doses of OCA for 

48 h. (A) Proliferation of CCA cells (i.e. EGI1 and TFK1, n=4-5) and (B) NHCs (n=7). 
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Figure 2.R.8: The FXR agonist does not induce apoptosis at low doses, but is toxic at the 

highest dose of 50 µM. Flow cytometry-based apoptosis assays (by Annexin V and Propidium 

Iodide staining) under increasing doses of OCA for 48 h. Cell death representative histograms 
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and corresponding quantification on (A) CCA cells (i.e. EGI1 and TFK1) (n=6-7 and n=3, 

respectively) and (B) NHCs (n=4). 

 

Figure 2.R.9: Inhibition of CCA cell proliferation by OCA is aasociated to decreased 

expression of proliferation-related genes. mRNA expression of proliferation markers (i.e. 

Ki67, PCNA, cyclin D1 and cyclin D3) in CCA cells (i.e. EGI1) under OCA (25 μM) treatment for 

3-6-12 h compared to vehicle-treated control cells (n=5-6). 

 

Since cell migration is a characteristic event in metastatic tumors like CCA, 

the migratory properties of EGI1 CCA cells were analyzed in the presence or 

absence of OCA. OCA (25 µM) inhibited the migratory capacity of CCA cells 

compared to control conditions (Figure 2.R.10). 

 

Figure 2.R.10: The FXR agonist OCA inhibits CCA cell migration. Representative 

microscope images and corresponding quantification of wound-healing assays at 12 h in 

vehicle-treated or OCA-treated (25 μM) EGI1 CCA cells (n=6). 
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Tumor cell features such as uncontrolled growth and invasiveness are 

mediated by the mitochondrial energy metabolism [231]. Accordingly, the 

inhibitory effect of OCA on CCA cell proliferation and migration was also 

associated with decreased mitochondrial energy metabolism compared to 

controls (Figure 2.R.11). In particular, OCA inhibited the basal, ATP-linked and 

maximal oxygen consumption rate (OCR) of CCA cells compared to control 

conditions, and increased proton-leak, suggesting increased mitochondrial 

stress (Figure 2.R.11B). 

 

Figure 2.R.11: The FXR agonist OCA decreases mitochondrial metabolism in CCA cells. 

Seahorse oxygen consumption rate (OCR) using mitochondrial stress test kit in CCA cells (i.e. 

EGI1) vehicle-treated or treated with OCA (25 μM), with 3 h pre-treatment. (A) OCR profile and 

(B) bar-graph of metabolic parameters calculated upon OCR measurements (n=11-12). 
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2.R.4 Effect of TGR5 activation on CCA cell proliferation, migration and 

mitochondrial energy metabolism in vitro 

Contrarily to FXR, it has been reported that TGR5 seems to be pro-tumorigenic 

and our data in TGR5 expression and its in vivo activation is consistent with this 

idea. In this regard, our results showed that TGR5 agonists INT-777 and 

taurolitocholic acid (TLCA) stimulate CCA cell proliferation (Figures 2.R.12A 

and B) and migration (Figure 2.R.13) compared to control conditions, whereas 

INT-777 did not alter the proliferation of NHC (Figures 2.R.12C). The effects of 

TGR5 activation on CCA cell proliferation and migration were associated to a 

moderate increase of basal mitochondrial respiration and proton-leak compared 

to control conditions (Figure 2.R.14). 

 
Figure 2.R.12: The TGR5 agonists slightly stimulate the proliferation of CCA cells. Flow 

cytometry-based cell proliferation assays (by CFSE) under increasing doses of TGR5 agonists 
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(i.e. INT777 or TLCA) for 48 h compared to vehicle-treated control cells. (A-B) CCA cells (i.e. 

EGI1) treated with (A) INT777 (n=5-6) and (B) TLCA (n=3-4). (C) NHCs (n=4-5). 

 

Figure 2.R.13: The TGR5 agonists stimulate the migration of CCA cells. Representative 

microscope images and corresponding quantification of wound-healing assays at 12 h and 

transwell migration chambers at 24 h in (A-B) OCA-treated (25 μM) (n=6-9 and 2-4, 

respectively) or (C-D) TLCA-treated (25 μM) EGI1 CCA cells compared to vehicle-treated cells 

(n=3 and 2-4, respectively). 
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Figure 2.R.14: The TGR5 agonist INT-777 stimulates the mitochondrial metabolism of 

CCA cells. Seahorse oxygen consumption rate (OCR) using mitochondrial stress test kit in 

CCA cells (i.e. EGI1) vehicle-treated or treated with INT-777 (25 μM), with 3 h pre-treatment. 

(A) OCR profile and (B) Bar-graph of metabolic parameters calculated upon OCR 

measurements (n=11-12). 
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2 - Discussion 

The key findings reported here are related to the role of BA receptors FXR and 

TGR5 in CCA progression. Our data are consistent with the notion that 

regulation of FXR and/or TGR5 activities in CCA tumor cells may have potential 

therapeutic value. 

BAs are important organic molecules synthesized from cholesterol in 

hepatocytes, and their canaliculus secretion confers the driving force for the 

generation of the bile flow. In the last years, increasing number of evidence is 

expanding the knowledge of the role of BAs in health and disease. It is now 

clear that BAs are not mere detergent molecules mediating fat digestion and 

intestinal absorption of hydrophobic compounds (like liposoluble vitamins) after 

food intake, but they are also important regulators of different 

pathophysiological processes in the liver and extrahepatic tissues, including cell 

proliferation, survival, secretion, differentiation, metabolism, regeneration, 

fibrosis and inflammation, among others. The identification of FXR and TGR5 

BA receptors has opened new and promising fields of research in physiology, 

pathology and pharmacology. FXR and TGR5 are differentially activated by 

distinct BAs and their activation mediates specific and complex responses 

regulating multiple pathophysiological processes. Moreover, there are four FXR 

isoforms, whose differential activation depends on their expression pattern and 

the BA pool composition [192]. 

The development of novel BA derivatives able to selectively target FXR or 

TGR5 (i.e. OCA and INT-777, respectively) has allowed to evaluate their 

therapeutic value for the treatment of liver diseases, including cholestatic, 

metabolic and cancer conditions. CCAs can arise as a consequence of 

prolonged cholestasis and inflammation in the liver [232, 233]. Although, novel 

tests have shown that BAs cannot be considered direct genotoxic agents [204], 

they may function as co-carcinogens by stimulating, via BA receptors, the 

proliferation, survival and inflammatory response of biliary epithelial cells [204]. 

We have confirmed in a larger number of CCA patients of two independent 

cohorts (Copenhagen and San Sebastian) the previously reported observations 

[191] indicating that FXR expression is lower in the tumors compared to 
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surrounding non-tumoral liver tissue. Interestingly, these results showed that 

FXR expression levels directly correlate with the degree of tumor differentiation. 

Additionally, our data indicated that FXR expression is lower in poorly-

differentiated CCA tumors compared to moderate/well differentiated tumors. 

Since the tumor differentiation status has prognostic value [234], the analysis of 

FXR expression may help to characterize the CCA tumor features. On the other 

hand, our data indicated that, in both cohorts of patients, TGR5 expression is 

enhanced in CCA tumors compared to surrounding normal liver tissue. 

Differences among subtypes were found as TGR5 expression was higher in 

perihilar than in intrahepatic CCAs. Importantly, TGR5 expression in CCA 

tumors correlated with their perineural invasion, which has important 

implications regarding the evolution of this cancer. Similarly, the expression of 

FXR and TGR5 showed the same pattern in human CCA cells compared to 

normal human cholangiocytes in vitro. Therefore, the clinicopathological 

correlations for FXR and TGR5 expression reported here may be helpful to 

better characterize human CCA tumors and may have potential prognostic 

value. 

Next, we evaluated the effect of chronic activation of FXR or TGR5 on the 

tumor growth of an orthotopic mouse model of human CCA using the selective 

BA derivatives OCA and INT-777, respectively. Our results showed that chronic 

administration of OCA halts CCA tumor growth in vivo measured by MRI and 

inhibits the expression of pro-mitotic markers Ki67 and PCNA compared to 

controls. These results were expanded in vitro showing that OCA inhibits CCA 

cell proliferation in a dose-dependent manner compared to control conditions. 

Notably, NHCs were less sensitive to the effect of OCA and only the highest 

tested dose could inhibit cell proliferation in vitro. OCA also inhibited the 

migratory properties of CCA cells. These inhibitory effects of OCA on the 

proliferation and migration of CCA cells were associated with decreased 

mitochondrial energy metabolism. Conversely, although TGR5 activation by 

INT-777 did not modify CCA tumor growth in vivo, it stimulated proliferation and 

migration in vitro, which was associated with increased mitochondrial energy 

metabolism. These results indicate that the regulation of FXR and/or TGR5 

activities may have important therapeutic value for CCA and suggest the 

potential use of OCA for the treatment of CCA patients. Moreover, the 
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development of selective TGR5 inhibitors will be of high importance to evaluate 

the potential therapeutic regulatory value of TGR5 activity in diseases like CCA. 

OCA has recently been approved for the treatment of patients with PBC and 

is under study for diseases such as NASH, PSC and biliary atresia [207, 235]. 

Up to now, the beneficial effects of OCA have been related to its anti-

cholestatic, anti-inflammatory and anti-fibrotic properties. Here, we have 

reported the therapeutic value of OCA in CCA by inhibiting orthotopic tumor 

growth in immunodeficient mice as well as proliferation, migration and 

mitochondrial energy metabolism of CCA tumor cells in vitro. These data are 

consistent with previous reports showing the inhibitory effect of the synthetic 

non-steroidal isoxazole-based FXR agonists GW4064 on the subcutaneous 

growth of CCA cells in nude mice [236]. Since FXR activation has been 

described to promote chemosensation [237], the effect of OCA together with 

chemotherapy should be evaluated in the near future. Based on our data, 

inhibition of TGR5 activity might also have therapeutic value for CCA. Previous 

studies have reported that TGR5 activation stimulates adenylate-cyclase and 

therefore increases cAMP generation, which subsequently activates protein 

kinase A (PKA) and cholangiocyte proliferation via EGFR/ERK [238]. In 

addition, TGR5 activation was reported to specifically stimulate the proliferation 

of non-ciliated cholangiocytes [239] as well as the survival to apoptosis in 

normal cholangiocytes [238]. CCA human cells are characterized by a shorter 

or even absent primary cilia compared to NHCs, thus, the pro-tumoral effects of 

TGR5 activation in CCA cells could be related to ciliary abnormalities in CCA 

cells. Our data indicating the pro-metastatic features of TGR5 activation in CCA 

cells are consistent with the fact that conjugated BAs such as taurocholate are 

known to increase CCA invasiveness [185] and INT-777 was reported to 

stimulate gastric cancer cell migration [240]. TGR5 has also been suggested to 

play a role in inflammation. Activation of TGR5 in hepatic Kupffer cells reduces 

LPS-induced pro-inflammatory cytokine production [214]. Based on these data 

and the fact that TGR5 activation in mice promotes protective mechanisms in 

biliary epithelial cells (as it contributes to the maintenance of the so-called 

„bicarbonate umbrella‟) and reduces hepatic and systemic inflammation [241], 

TGR5 agonists were suggested for the treatment of PSC patients [241]. 

However, PSC is a well-known risk factor of CCA and 10-15 % of PSC patients 
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develop CCA [242]. As per our data TGR5 activation shows pro-tumorigenic 

properties in CCA progression and dissemination, the potential treatment of 

PSC patients with TGR5 agonists needs further investigation. 
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2 - Conclusions 

The key findings reported here provide novel insights into the potential 

therapeutic value of regulating FXR and/or TGR5 activities in CCA. Our data 

indicate that: 

I. FXR is downregulated in human CCA tissue compared to normal 

surrounding liver tissue as well as in CCA cells compared to normal 

human cholangiocytes. FXR expression correlated with tumor 

differentiation. 

II. TGR5 is upregulated in human CCA tissue compared to normal 

surrounding liver tissue as well as in CCA cells compared to normal 

human cholangiocytes. TGR5 expression correlated with perineural 

invasion and the expression is higher in perihilar than in intrahepatic 

CCAs. 

III. In mice with orthotopic implants of human CCA tumors, chronic 

administration of OCA inhibited the tumor growth compared to untreated 

control animals; this was accompanied by decreased expression of 

proliferation markers within the tumors. In contrast, chronic 

administration of INT-777 in vivo showed no effects on CCA tumor 

growth. 

IV. In vitro, OCA inhibited CCA cell proliferation and migration, associated 

with decreased mitochondrial energetic metabolism, and did not affect 

apoptosis. In contrast, INT-777 stimulated proliferation and migration of 

CCA cells, associated with increased mitochondrial energetic 

metabolism. 

Our data are consistent with the notion that FXR and TGR5 represent 

potential targets for therapy. 
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3 - Introduction 

3.I.1 Cholangiocarcinoma (CCA) 

Cholangiocarcinoma (CCA) is genomicaly heterogeneous and numerous 

genetic and epigenetic alterations have been described [45, 77]. Alterations in 

important regulatory genes involved in DNA repair mechanisms [78-80], cell 

proliferation pathways [43] or cholangiocyte differentiation [45], among others, 

are prevalent in CCA. Moreover, transcription factors (TFs) upstream of these 

important sets of genes are altered in CCA, contributing to the tumorigenic 

process [77]. A recent study has provided a number of TFs aberrantly 

expressed in CCA tissues by computational identification using the Gene 

Expression Omnibus (GEO) database [77]. 

3.I.2 Transcription factors (TFs) 

Cancer is characterized by dysregulation of gene transcription. These 

alterations affect upstream signals and/or TFs [243]. In the last decades, the 

hallmarks of cancer have been well-established [244] and technological 

advances have permitted the better understanding of the function of TFs on 

these processes as well as their downstream targets and effectors [243] (Figure 

3.I.1). Targeting of TFs involved in cancer development and progression may 

have potential therapeutic value [243] and, among them, the Krüppel-like factor 

(KLF) family seems to play an important role in different cancers. 
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Figure 3.I.1. Transcription factors in cancer. Different cancer hallmarks may be regulated by 

TFs (Adapted from Johnston and Carroll, 2015). 

 

3.I.3 Krüppel-Like Factors (KLFs) 

3.I.3.1 KLF family 

The first member of the actually termed Krüppel-like factor (KLF) family was 

described for the first time in 1993 [245]. EKLF (erythroid Krüppel-like factor; 

KLF1) was discovered as the mammalian homologue of the Drosophila 

melanogaster gene named Krüppel [245]. Up to now, 17 different KLF members 

have been described (Figure 3.I.2A), which consist in zinc finger-containing 

TFs. In particular, each KLF is formed by three C2H2 zinc-fingers in the 

carboxyl-terminal end of the proteins, a highly conserved region for DNA-

binding of KLFs [246]. In contrast, the amino-terminal region is different along 

the KLF family members. These variations result in differential binding to co-

activators, co-repressors and modifiers (i.e. histone acetyltransferases) [246]. 

KLFs are usually grouped upon the structural organization into groups with 

similar functionalities (Figure 3.I.2B). KLFs are also modified by post-
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translational modifications (i.e. acetylation, phosphorylation, ubiquitination and 

sumoylation), modulating their transcriptional activity [246]. 

 

Figure 3.I.2. Human Krüppel-like factors (KLFs): structure and features. (A) KLFs grouped 

upon common structural and functional domains. High similarities are observed in the carboxyl-

terminal DNA-binding regions, formed by three C2H2 zinc-finger motifs. (B) Phylogenetic 

representation of KLFs, performed by ClustalW tool-based multiple sequence alignment and 

phylogenetic analysis, grouping KLFs based on functional similarities (Adapted from McConnell 

and Yang, 2010). 
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Some KLFs are ubiquitously expressed, whereas others are tissue-specific 

[247]. Moreover, the expression of certain KLFs varies during developmental 

stages and diseases [247]. 

3.I.3.2 Functions of KLFs 

KLFs regulate many normal biological processes. For instance, KLF4 inhibits 

the growth of damaged cells by inducing cell cycle arrest [248, 249], whereas 

KLF8 promotes cell cycle progression [250]. Cell differentiation and tissue 

homeostasis maintenance are also mediated by KLFs. As an example, KLF1 

acts during erythropoiesis regulating the maturation of erythroid cells and 

simultaneously, a sumoylated form of KLF1 regulates megakaryopoiesis [251]. 

Differentiation in many other tissues (i.e. intestinal epithelium, adipocytes or 

cardiomyocytes) is also mediated by KLFs [246]. Importantly, KLFs are involved 

in almost any of the physiological processes of human biology and therefore, 

dysregulation of KLFs results in the development of diseases. Among the 

organs, KLFs are also involved in the homeostasis of the digestive system. In 

the liver, the initial activation of hepatic stellate cells (HSCs) upon liver injury 

induces KLF6 expression leading to fibrogenesis and extracellular matrix 

formation [252] by activating collagen α1(I) and TGF-β gene promoters [253]. 

3.I.3.3 KLFs and cancer 

KLFs are dysregulated in cancer. The expression and/or function of certain 

KLFs vary depending on the cancer type or even also in the cancer stage [247]. 

Moreover, functional changes in KLFs are mediated by different mechanisms: i) 

under „molecular switches‟, by changes in p53, p21 or SIN3a [247]; ii) by 

alternative splicing [254]; or iii) by post-translational modifications, which can 

regulate protein stability, determine protein localization or can also change 

KLFs function [247]. 

Cell proliferation is crucial for tumoral progression and some KLFs are able to 

regulate this process at different levels. Cell cycle regulators such as cyclins, 

cyclin-dependent kinases (CDKs) and CDK inhibitors are targeted by KLFs. 

(Figure 3.I.3) [247]. Moreover, proliferation signaling pathways, such as 

canonical WNT, RAS, TGFβ, NOTCH, and hormone receptor signaling, and 
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oncogenic transformation are all regulated by several KLFs [247] (Figure 3.I.3). 

On the other hand, apoptosis is also modulated by these TFs [247]. Several 

pro-apoptotic (i.e. BAX or NOXA), anti-apoptotic (i.e. BCL2 or MCL1) or pro-

survival (i.e. BIRC5) regulators are directly targeted by KLFs like KLF4, 5 or 6 

[247, 255-258]. Tumor cells are highly invasive and KLFs 2, 4, 5, 6, 8, 10, 12 or 

17 have been reported to somehow regulate this process. Cell metastasis 

requires a joint work of mechanisms including epithelial-mesenchymal transition 

(EMT), invasion, immune cell recruitment and development of new vessels. For 

instance, the EMT regulators SNAIL, SLUG, TWIST1 or MMP9 are regulated by 

KLFs 4, 5, 6 or 8 [247]. Regarding angiogenesis, KLF functions are also 

variable, with several KLFs involved in its regulation [247]. Interestingly, KLFs 

have also been linked to pluripotency [259]. In 2006, KLF4 was described as 

part of the termed „Yamanaka factors‟, that together with OCT4, SOX2 and c-

MYC permitted the generation of pluripotent cells from differentiated adult 

somatic cells [260]. Recently, the cooperation of all three KLFs 2, 4 and 5 has 

been reported to be linked to pluripotency [261-263] (Figure 3.I.3). 

 

Figure 3.I.3. Functions of human Krüppel-like factors (KLFs) in cancer. KLFs regulate 

many cellular processes in cancer: i) cell cycle; ii) proliferation signaling pathways; iii) oncogenic 

transformation; iv) survival; v) metastasis and tumor microenvironment regulation; and vi) 

cancer stem cells (Adapted from Tetreault et al., 2013). 
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However, although important roles have been described for KLFs in cancer, 

there is no information about their role in CCA. Thus, the present study has 

analyzed the expression of KLFs in CCA, and then focused on Krüppel-like 

factor 5. 

3.I.3.4 Krüppel-like factor 5 

Human Krüppel-like factor 5 (KLF5, also known as IKLF or BTEB2) [264] is the 

fifth member of the KLF family. As a KLF member, three zinc-fingers are 

present in its carboxyl-terminus and it has a proline-rich motif E3 ubiquitin ligase 

WWP1 binding domain (Figure 3.I.4A) [265]. KLF5 is located in chromosome 13 

at q22.1 position (Figure 3.I.4B) with ~22.6 kb and formed by four exons (Figure 

3.I.4C). KLF5 protein is formed by 457 amino acids with a molecular mass of 

50792 Da (from Genecards) (Figure 3.I.4C). However, KLF5 is modified by 

alternative splicing and to date, two transcript variants have been described. 

Transcript variant 1 represents the longer transcript (consisting of 3583 bp 

linear mRNA), whereas transcript variant 2 lacks a portion in the 5' UTR 

(consisting of 2969 bp linear mRNA) (according to NCBI/Nucleotide). 

 

Figure 3.I.4. Structure of KLF5. (A) KLF5 consists of three zinc-fingers in the carboxyl-

terminus and a proline-rich motif E3 ubiquitin ligase WWP1 binding domain. (B) KLF5 is located 

at q22.1 position in the chromosome 13. (C) KLF5 is formed by four exons and code for a 457 

aminoacid protein with a molecular mass of 50792 Da. 

KLF5 is highly expressed in the intestinal epithelium crypt cells [264] but it is 

also widely expressed among different tissues along the digestive tract or in 

others such as prostate or lung [266]. KLF5 regulates the expression of many 
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important downstream target genes binding to GC-rich DNA sequences through 

its zinc-finger domains [266, 267]. Nevertheless, KLF5 function is context-

dependent, modulated in part by post-translational modifications (ubiquitination, 

SUMOylation, acetylation and phosphorylation) [266]. KLF5 mediates cell 

proliferation, apoptosis, migration or differentiation both in normal and tumoral 

cells and besides cancer, KLF5 is involved in cardiovascular diseases, 

inflammatory diseases or metabolic disorders like obesity [266]. 

KLF5 has been reported as pro-tumorigenic in different cancers such as 

bladder, breast, colon, lung or gastric cancers [246, 259], whereas studies in 

prostate cancer and esophageal squamous cell carcinoma pointed KLF5 as a 

tumor suppressor [268, 269]. However, the role of KLF5 in CCA has not been 

described yet. 
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3 - Hypothesis and Objectives 

Krüppel-like factors (KLFs) are important TFs in different cancers, but there is 

no information about their role in CCA. Our preliminary analysis of KLFs 

expression in CCA pointed that KLF5 is overexpressed, being potentially 

relevant in cholangiocacinogenesis. Therefore, this study aims to elucidate the 

role of KLF5 in the pathogenesis of CCA and its potential therapeutic regulatory 

value. We propose the following objectives: 

I. Analysis of KLFs expression in CCA cell lines compared to normal 

controls. 

II. Analysis of KLFs expression in CCA human tissue compared to controls. 

III. Evaluation of the role of KLF5 in the pathogenesis of CCA in vitro. 

IV. Determination of the role of KLF5 in the CCA response to chemotherapy 

in vitro. 

V. Analysis of the role of KLF5 in the pathogenesis of CCA in vivo. 
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3 - Materials and Methods 

3.M.1 Cell culture 

NHC primary cultures, non-tumoral SV-40 immortalized H69 cells and CCA 

human cell lines were used in the present study. Cells and culture conditions 

are described in general materials and methods section (see above). 

3.M.2 Human liver biopsies 

CCA and surrounding normal human tissues from three independent cohorts of 

patients were used. On the one hand, the here named “Copenhagen cohort” of 

patients was analyzed, where 104 CCA surgical specimens (68 intrahepatic and 

36 perihilar CCAs) and 60 tumor adjacent normal tissue samples were analyzed 

in collaboration with Dr. Jesper Andersen (Copenhagen). Whole transcriptome 

profiling was performed using humanRef-8v2 BeadChips (Illumina) as 

previously described (GEO: GSE26566) [230]. The relationship between KLF5 

expression and tumor clinical information (i.e. lymphatic invasion) was also 

analyzed. Data from The Cancer Genome Atlas (TCGA) was also used by the 

Andersen‟s group for the analysis of KLF5 expression in 36 CCA tissue 

samples compared to 9 tumor adjacent tissues. Finally, the “San Sebastian 

cohort” of patients corresponded to 12 CCA samples and 10 tumor adjacent 

non-tumoral tissue samples. The clinical information of this cohort of patients is 

shown in Table 3.M.1. KLF5 expression was determined by qPCR. Research 

protocols were approved by the Clinical Research Ethics Committees of 

supporting institutions, and all patients signed written consents for the use of 

their samples for biomedical research. 
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Table 3.M.1. Clinical information of patients from the San Sebastian cohort. 

Patient 
ID 

Disease Gender Age Stage Size (cm) CA19-9 CEA 

1 iCCA M 85 II 3.8 - - 

2 iCCA M 62 II 2.7 2963 2.3 

3 iCCA F 78 IVB 6 43.2 1.2 

4 iCCA M 70 II 2 19.7 1.9 

5 iCCA F 82 IIIA 5.5 3528 307.9 

6 pCCA F 47 II 3.2 394.1 1.6 

7 iCCA M 61 II 4 0.6 2.8 

8 iCCA F 64 IIIA 5 374 2.9 

9 dCCA M 78 IIIA 2.3 16112 4.4 

10 iCCA M 68 IV 1.7 4.5 0.8 

11 iCCA M 60 II 5.2 19 2.9 

12 pCCA M 64 III 2 582.4 4.2 

 

Abbreviations: iCCA: intrahepatic CCA; pCCA: perihilar CCA; dCCA: distal CCA; M: male; F: 

female 

 

3.M.3 Gene expression (mRNA) 

Gene expression was determined by qPCR from RNA isolated and 

retrotranscribed as described in general materials and methods section (see 

above). The primers used in the present study are grouped in Table 3.M.2. 

 
Table 3.M.2. Human primers used for qRT-PCR. 

Primer Sequences 

KLF2 Forward 5‟-GCATCTGAAGGCGCATCTGC-3‟ 

 Reverse 5‟-CACGATCGCACAGATGGCAC-3‟ 

KLF3 Forward 5‟-AGAACCTGGGATCGAACCAC-3‟ 

 Reverse 5‟-CACATCTGTGTATCCTCCGC-3‟ 

KLF4 Forward 5‟-CTTCCTGCCCGATCAGATGC-3‟ 

 Reverse 5‟-CCTGGTCAGTTCATCTGAGC-3‟ 

KLF5 Forward 5‟-AACGACGCATCCACTACTGC-3‟ 

 Reverse 5‟-CAGTGCTCAGTTCTGGTGCC-3‟ 

KLF6 Forward 5‟-AGGAGCTCCAGATCGTGCAC-3‟ 

 Reverse 5‟-AAACATAGCAGGGCTCGCTC-3‟ 

KLF7 Forward 5‟-ATGAGCTCACGAGGCACTAC-3‟ 
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 Reverse 5‟-ACACTAGCCGATGCCATGGC-3‟ 

KLF8 Forward 5‟-ATCCCAGTGGTAGTGCAGTC-3‟ 

 Reverse 5‟-GTAGTCCCTGCAGACTCTGC-3‟ 

KLF9 Forward 5‟-ACAAGTGCCCCTACAGTGGC-3‟ 

 Reverse 5‟-GTGGTCACTCCTCATGAAGC-3‟ 

KLF10 Forward 5‟-GGAGTCACATCTGTAGCCAC-3‟ 

 Reverse 5‟-ATGGTCACTCCTCATGAACC-3‟ 

KLF11 Forward 5‟-CAGTGTTCATCACCTCTAGC-3‟ 

 Reverse 5‟-ATGCTTCGTCAGGTGGTCAC-3‟ 

KLF12 Forward 5‟-ACAAGACGCCAGAGACGGTC-3‟ 

 Reverse 5‟-CAGGTAGCATTCCTCACACC-3‟ 

KLF13 Forward 5‟-AAGCACAAGTGCCACTACGC-3‟ 

 Reverse 5‟-CTTGTTGCAGTCCTGCCAGC-3‟ 

KLF15 Forward 5‟-GCTGCAGCAAGATGTACACC-3‟ 

 Reverse 5‟-CTTCACACCTGAGTGCGAGC-3‟ 

KLF16 Forward 5‟-CTTTGGATGGCACTGGTGTG-3‟ 

 Reverse 5‟-GAGAACACAGAGAGCCGAGG-3‟ 

KLF17 Forward 5‟-GGAGTTCATGAGGTCTGACC-3‟ 

 Reverse 5‟-CTTGAAGACTGCCTCTCCTC-3‟ 

Cyclin B1 Forward 5‟-AAGGCGAAGATCAACATGGC-3‟ 

 Reverse 5‟-GTTACCAATGTCCCCAAGAG-3‟ 

Cyclin D1 Forward 5‟-GCTGCGAAGTGGAAACCATC-3‟ 

 Reverse 5‟-CCTCCTTCTGCACACATTTGAA-3‟ 

Cyclin D3 Forward 5‟-TACCCGCCATCCATGATCG-3‟ 

 Reverse 5‟-AGGCAGTCCACTTCAGTGC-3‟ 

PCNA Forward 5‟-ACACTAAGGGCCGAAGATAACG-3‟ 

 Reverse 5‟-ACAGCATCTCCAATATGGCTGA-3‟ 

Cdc25a Forward 5‟-CTGCCTGCACTCTCATGGAC-3‟ 

 Reverse 5‟-CTGTCCAGAGGCTTGCCATG-3‟ 

Ki67 Forward 5‟-CCACGCAAACTCTCCTTGTA-3‟ 

 Reverse 5‟-TTGTCAACTGCGGTTGCTCC-3‟ 

VEGF Forward 5‟-AGGGCAGAATCATCACGAAGT-3‟ 

 Reverse 5‟-AGGGTCTCGATTGGATGGCA-3‟ 

MMP9 Forward 5‟-AAGGATACAGTTTGTTCCTCGTG-3‟ 

 Reverse 5‟-GCCCCTCAGTGAAGCGGTACAT-3‟ 

RhoA Forward 5‟-GAATGATGAGCACACAAGGC-3‟ 
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 Reverse 5‟-GCTGAACACTCCATGTACCC-3‟ 

Rac1 Forward 5‟-ATGTCCGTGCAAAGTGGTATC-3‟ 

 Reverse 5‟-CTCGGATCGCTTCGTCAAACA-3‟ 

Cdc42 Forward 5‟-GACAACTATGCAGTCACAG-3‟ 

 Reverse 5‟-GCAGTCTCTGGAGTGATAGG-3‟ 

GAPDH Forward 5‟-CCAAGGTCATCCATGACAAC-3‟ 

 Reverse 5‟-TGTCATACCAGGAAATGAGC-3‟ 

3.M.4 Immunoblot and immunofluorescence 

Protein expression was analyzed by immunoblot as well as by 

immunofluorescence. The antibodies used for both methodologies are listed in 

Table 3.M.3. 

Table 3.M.3. Antibodies used for immunoblot and/or immunofluorescence. 

Antibody Company Reference Use 

Rabbit polyclonal to KLF5 Abcam ab24331 WB 1:500 – IF 1:50 

Rabbit polyclonal to GAPDH Abcam ab22555 WB 1:1000 

Rabbit polyclonal to Histone H3 Santa Cruz sc-10809 WB 1:1000 

Mouse monoclonal anti-KRT19 
(CK19) 

ARP 03-61029 IF 1:50 

Anti-rabbit IgG, HRP-linked 
Antibody 

Cell signaling 7074 WB 1:5000 

Donkey anti-Rabbit IgG (H+L) 
Secondary Antibody, Alexa Fluor® 

488 conjugate 
ThermoFisher A21206 IF 1:1000 

Donkey anti-Mouse IgG Secondary 
Antibody, Alexa Fluor® 568 

conjugate 
ThermoFisher A10037 IF 1:1000 

 

Abbreviations: WB: western blot; IF: immunofluorescence 

 

3.M.4.1 Immunoblot 

Total protein extracts and nuclear protein extracts were used in this study. 

Proteins were harvested, quantified and the expression determined by western 

blotting as described in general materials and methods section (see above). 
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3.M.4.2 Immunofluorescence 

Liver tissue samples and cells in culture were used for immunofluorescence 

studies following a similar protocol but with some variations. Both methods were 

performed in a moist chamber and at end samples were mounted with a drop of 

VECTASHIELDTM mounting medium (Vector) with 40,6-diamidino-2-

phenyindole (DAPI, Vector laboratories). Finally, pictures were taken with a 

Nikon Digital Sight camera under a fluorescence microscope (Eclipse 80i, 

Nikon) with the NIS-elements AR 3.2 software. 

3.M.4.2.1 Immunofluorescence in liver tissue samples 

Paraffin-embedded tissue samples were deparaffined at 60ºC for 30 min and 

de-waxed in xylene. Decreasing grades of ethanol (100%, 96%, 70% and 50%) 

were used for tissue rehydration. Antigen retrieval was performed with antigen 

unmaskin solution (Vector), boiling the tissue samples for 15 min. Blocking 

solution (1% BSA/5% FBS/0.5% Triton/PBS 1x) was added for 1 h at room 

temperature. Samples were incubated O/N at 4ºC with the primary antibody 

(1:50) in a solution containing 1% BSA/0.1% Triton/PBS 1X. After 3 washes 

with PBS Tween 0.5%, samples were incubated with the corresponding 

fluorescent secondary antibody (1:400) for 1 h in darkness and then washed 3 

times with PBS/0.5% Tween. Next, slides were mounted using a coverslip as 

above indicated. 

3.M.4.2.2 Immunofluorescence in cell cultures 

Cells (5x104) were cultured O/N on the top of collagen-coated coverslips 

(Menzel-Gläser). Then, cells were fixed adding 1 mL of cold methanol for 10 

min at -20ºC. Samples were washed 3 times and incubated for 20 min with 

permeabilizing solution (0.5% Triton/PBS 1X) at room temperature. Next, 

blocking solution (5% FBS/1% BSA/0.5%Triton/PBS 1X) was added for 30 min 

at room temperature and the primary antibody (1:50) was then added in a 

solution containing 0.1% Triton/1% BSA/PBS 1X for 1h. Afterwards, cells were 

washed 3 times with 1% BSA/PBS 1X solution and incubated with the 

corresponding fluorescent secondary antibody (1:1000) diluted in the same 

solution for 2 h in the darkness. Finally, cells were washed 3 times with 1% 
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BSA/PBS 1X solution and coverslips were mounted and visualized as described 

above. 

 

3.M.5 Lentiviral vectors for KLF5 silencing 

The present study aimed to determine the effects of KLF5 in CCA. For that 

purpose, different approaches were followed for KLF5 silencing in CCA cell 

lines. 

3.M.5.1 KLF5 silencing with short hairpin RNA (shRNA) lentiviruses 

KLF5 was experimentally downregulated in CCA cells by using short hairpin 

RNAs (shRNAs) specific for KLF5. A non-target shRNA control was used as 

control. The Lent-shRNA-KLF5 contains a specific sequence designed to 

knock-down KLF5 gene expression: CCGGCCTATAATTCCAGAGCAT 

AAACTCGAGTTTATGCTCTGGAATTATAGGTTTTTG. The non-target shRNAs 

are produced from sequence-verified lentiviral plasmid vectors that should not 

target any known human gene. The shRNAs were cloned in a pLKO.1-puro-

CMV-tGFP vector, which is shown in Figure 3.M.1. The plasmid contains a 

region for puromycin resistance and GFP expression, which allow the selection 

of the infected cells. The shRNA-KLF5 and shRNA-control were purchased in 

glycerol stock and plasmid DNA formats, respectively (both from MISSION 

Sigma). Therefore, different methodologies were followed for plasmid 

amplification and lentiviral production. 

 

Figure 3.M.1. The shRNAs were cloned in a pLKO.1-puro-CMV-tGFP vector. Map of the 

pLKO.1-puro-CMV-tGFP (MISSION Sigma). 
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3.M.5.1.1 Plasmid amplification 

ShRNA-control lentiviruses were obtained in plasmid DNA format, so an initial 

bacterial transformation was needed. Next, bacteria were amplified for both 

shRNA-control and shRNA-KLF5. 

3.M.5.1.1.1 Bacterial transformation 

Plasmid DNA and XL1-Blue competent bacteria were thaw on ice. 80 ng of 

plasmid DNA was added into a vial of competent bacteria and mixed by 

inverting the tube. The mixture was incubated for 30 min on ice. Then, the cells 

were exposed to a heat shock at 42°C for 2 min and the tubes were 

immediately chilled on ice, facilitating the entrance of the plasmid into the 

bacteria. Next, 250 μL of room temperature LB Broth (1231.00, Conda) was 

added and the tube was placed horizontally in a shaker at 200 rpm and 

incubated at 37°C for 1-2 h. An appropriate volume (50-200 μL) of the 

transformation volume was spread on a pre-warmed plate of LB Agar (1083.00, 

Conda) supplemented with 100 μg/mL ampicillin (624619.1, Lab. Normon) to be 

able to obtain well-spaced colonies. Plates were incubated O/N at 37°C. 

Plasmids were then amplified and purified. 

3.M.5.1.1.2 Bacterial amplification 

For both shRNA-control and shRNA-KLF5 lentiviruses, the surface of the 

glycerol stock was scratched with a sterile tip and the culture was spread onto a 

plate containing LB Agar supplemented with 100 μg/mL ampicillin. Plates were 

incubated O/N at 37°C and then an independent colony was picked from the 

plate in sterile conditions and it was inoculated in 3-5 mL of LB Broth 

supplemented with 100 μg/mL ampicillin. Samples were incubated in a shaker 

at 37°C for 4-8 h. Next, 100-250 mL of LB Broth with 100 μg/mL ampicillin were 

inoculated with an aliquot of each recombinant bacteria in sterile conditions. 

Bacteria were grown O/N in a shaker at 37°C. Plasmid DNA was purified using 

NucloBond Xtra Midi Plus kit (740412, Macherey-Nagel) following 

manufacturer‟s instructions and quantified by ultraviolet (UV) spectrophotometry 

using the NanoDrop® ND-1000 apparatus (Thermo Scientific). Samples were 

stored at -20ºC for further viral production. 
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3.M.5.1.2 Lentiviral production 

Next, lentiviral particles were produced. For that purpose, 2x106 HEK293T cells 

(ATCC) were seeded in P100 plates in DMEM/F-12 media containing 10% FBS 

and 1% P/S. The next day, transfection was performed by using three 

packaging plasmids (Addgene) (Figure 3.M.2) and TurboFect 

(ThermoScientific). 

 

Figure 3.M.2. Packaging plasmids. Map of the vectors (Addgene). 

 

The packaging plasmids and the transfer vector were thawed on ice. The 

transfection mix containing DMEM/F-12 (1.2 mL), plasmids (3.25 μg pMDLg-

pRRE, 1.25 μg pRSV-REV and 1.75 μg pCMV-VSV-G) and transfer vector (5 

μg) was first prepared in a sterile 1.5 mL Eppendorf tube. Afterwards, TurboFect 

was vortexed and 24 μL were added into the mix and immediately mixed by 

vortexing. The transfection mix was incubated for 15-20 min at room 

temperature. The mix was added dropwise along the surface of the plate with 

HEK293T cells containing 5 mL of DMEM/F-12 supplemented with 10% 
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FBS/1% P/S. Next, 16-18 h post-transfection, media was carefully replaced for 

10 mL of DMEM/F-12 10% FBS/1% P/S. The following day lentiviruses were 

harvested and 10 mL of DMEM/F-12 10% FBS/1% P/S were added again to 

cells for 24 h culture for a second harvest. Harvested media was centrifuged at 

1,500 rpm for 5 min for debris removal. Lentiviral particles were concentrated 

adding Lenti-X Concentrator reagent (ClonTech) (1 volume of reagent for 3 

volumes of media). Tubes were mixed by gentle inversion and placed at 4ºC 

O/N. Afterwards, samples were centrifuged at 1,500 g at 4ºC for 45 min and 

supernatant was discarded. The pellet was resuspended in 100-400 μL 

DMEM/F-12, aliquoted and stored at -80ºC. Lentiviral particles were titrated by 

flow-cytometry using GFP expression as follows. 

3.M.5.1.3 Lentiviral titration 

In order to determine the concentration of each lentiviral production, CCA cells 

(i.e. EGI1; 2x104 cells) were seeded in 24-well plates and incubated O/N at 

37ºC. Culture media (fully-supplemented DMEM/F-12) was replaced by culture 

media containing polybrene (6 µg/µL) (Santa Cruz) and different amount of the 

lentiviruses (ranging 0.01 – 6 µL) were added to each well. A well without virus 

was used as a negative control. Plates were centrifuged at 1,800 g at 32ºC for 

90 min. Then, cells were cultured O/N at 37ºC, and media was replaced. After, 

72 h post-infection, cells were trypsinized, harvested in PBS with 20% FBS and 

GFP was checked by flow-cytometry. Thus the multiplicity of infection (MOI) 

was determined. 

3.M.6 Lentiviral infection of cells 

Similar to the titration protocol, CCA cells (i.e. EGI1 and Witt) were seeded in 

appropriate collagen-coated plates and left to attach at 37ºC. Culture media 

(fully-supplemented DMEM/F-12) was replaced by culture media containing 

polybrene (6 µg/µL) (Santa Cruz) and shRNA-control or shRNA-KLF5 

lentiviruses were added at different multiplicity of infection (MOI) to each well. 

Cells without any lentivirus were maintained as negative control. Plates were 

centrifuged at 1,800 g at 32ºC for 90 min and cultured at 37ºC as needed. 

Puromycin dihydrochloride (Sigma) at 2 µg/mL was added 72 h post-infection 
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for selecting the cells infected with shRNA-KLF5 or shRNA-control and cells 

were amplified and used for functional assays. 

 

3.M.7 KLF5 knockout by CRISPR/Cas9 technology 

The novel clustered regularly interspaced short palindromic repeats (CRISPR) 

technology has been recently described. The RNA-guided CRISPR-associated 

nuclease Cas9 permits to introduce targeted mutations at specific sites in the 

genome leading to loss-of function [270, 271]. CRISPR/Cas is an adaptive 

immune system found in bacteria and archaea, which helps in the defense 

against invading genetic elements (virus or plasmid) [272] (Figure 3.M.3). 

 

Figure 3.M.3. CRISPR-Cas adaptive immune system. 1) Foreign double stranded DNA are 

incorporated into CRISPR array. 2) Cas proteins are transcribed and traduced, and CRISPR 

array is transcribed, generating small CRISPR RNAs. 3) CRISPR RNAs guide Cas proteins 

towards complementary foreign DNA and Cas proteins cleave virus or plasmid DNA inactivating 

them (Adapted from D Bhaya, M Davison and R Barrangou, 2011). 
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Based on this system, human genome engineering was achieved by 

heterologous expression of a guide RNA (gRNA), which guides the Cas9 

nuclease to the genomic location of interest for cleaving DNA [273]. Thus, in the 

present study, KLF5 was knocked-out by CRISPR/Cas9 methodology in CCA 

cells, in collaboration with Prof. Charles Lawrie‟s Lab (Biodonostia). The 

CRISPR/Cas9 technology allows the specific editing of the genome with a 

complete knockout, instead of the partial knockdown obtained by shRNA, thus 

enhancing the phenotypic effects [270, 271]. This methodology has also some 

off-targets – which are less than those observed with shRNAs – and can be 

predicted in the guide design and further checked to ensure there are no 

undesirable off-target effects. One issue whilst using this methodology might be 

the need of cell individualization for obtaining individual clones, as each clone 

could act differently, but this can be avoided by using several clones with 

verified gene knockout, as performed in the present study (see below). 

3.M.7.1 Guide design and oligo ordering 

Specific guides for KLF5 were designed using the CRISPR Design Tool in 

Genome-Engineering webpage (http://crispr.mit.edu/). Guides are designed in 

exons in order to ensure changes in protein expression. Single guide “sense” 

and “antisense” oligos (sgRNA_FW and sgRNA_RV, respectively) were 

ordered. In particular, the sense oligo must be 5‟ to 3‟ towards the protospacer 

adjacent motif (PAM). We selected the exon 2, as the forward KLF5 primer 

used in the present study was there. The program suggests several guides, 

specifying the genomic sequence, locus, score and offtargets, thus guides with 

higher scores and less offtargets were selected. Once the guides are selected, 

both “sense” and “antisense” sequences are designed as single guide RNAs 

(sgRNA) following the format showed in Table 3.M.4. This format allows a better 

transcriptional activity of the DNA polymerase III and a perfect annealing and 

reconstitution of the overhands generated by the BsbI enzyme. 
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Table 3.M.4. Format of the guides for CRISPR/Cas9 editing. 

Oligo Format 

sgRNA_FW 5‟ - CACCGG_N19 (sense)- 3‟ (towards PAM) 

sgRNA_RV 5‟ - AAAC_N19 (antsense)_CC - 3‟ 

 

In the present study, five different guides were initially selected according to 

the quality score and the number and location of offtarget sites. Oligos (0.025 

µmol) were ordered (Sigma). The specific sequences are shown in Table 3.M.5. 

 

Table 3.M.5. KLF5 guide sequences. 

KLF5 oligos Sequence 5’-3’ 

Guide 1 Forward   5‟-CACCGGTGTGTTACGCACGGTCTCT-3‟ 

Reverse   5‟-AAACAGAGACCGTGCGTAACACACC-3‟ 

Guide 2 Forward   5‟-CACCGGTAGAAGGAGTAACCCCGATT-3‟ 

Reverse   5‟-AAACAATCGGGGTTACTCCTTCTACC-3‟ 

Guide 3 Forward   5‟-CACCGGTGCGTCGTTTCTCCAAATCG-3‟ 

Reverse   5‟-AAACCGATTTGGAGAAACGACGCACC-3‟ 

Guide 4 Forward   5‟-CACCGGTGCGCTCGCGGTTCTCTCG-3‟ 

Reverse   5‟-AAACCGAGAGAACCGCGAGCGCACC-3‟ 

Guide 5 Forward   5‟-CACCGGCGCGTCGCGGGCCGGATTCG-3‟ 

Reverse   5‟-AAACCGAATCCGGCCCGCGACGCGCC-3‟ 

 

3.M.7.2 Cloning of the guides in the Cas9 expressing plasmid 

To begin with, the guides have to be cloned in a pX330 EGFP/2A NEO-NEO 

(addgene) plasmid. For that purpose, first 10 µg of the plasmid were digested 

with a mix containing the BbsI restriction enzyme (NEB), 10X NEBuffer and 

DNase-RNase-free-H2O (free-dH2O), at 37ºC for 15 min, followed by a 20 min 

inactivation at 65ºC. Next, the digested plasmid was gel-purified by running the 

digestion product in a 0.8% agarose gel, harvesting the bands under UV light 

and extracting de DNA using the QUIaquick Gel Extraction Kit (Cat. No 28704, 

QIAGEN). The purified plasmid DNA was quantified by NanoDrop (Thermo 
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Scientific). Subsequently, double stranded oligos (dsOligo) were generated from 

the single stranded DNA guides. Forward and reverse stranded oligos (100 µM 

of each) in 10X NEBuffer 2.1 and free-dH2O were subjected to 99ºC for 5 min, 

followed by a slow cool down until placing samples on ice. The dsOligo were 

precipitated using 3M NaOAc at pH 5.6 and 100% ethanol, with a 30 min 

centrifugation at 14000 rpm at 2ºC. The pellet was washed with 70% ethanol, 

centrifuged at 14000 rpm at room temperature for 10 min, dried and 

resuspended in free-dH2O. The dsOligo DNA was then measured by Nanodrop. 

In order to ligate the dsOligo and the digested plasmid, a previous kinase of 

the dsOligos is needed. 1 µg of the dsOligo was kinased using a T4 

polynucleotide kinase (NEB) and the corresponding 10x buffer. The samples 

were incubated for 1 h at 37ºC. In this process, gamma-phosphates are 

transferred from ATP to the 5‟ end of the DNA, being ready for the ligation. The 

ligation reaction was performed with 20 µg of the plasmid opened backbone and 

0.5 µL of the dsOligo using a T4 ligase (NEB) and associated 10x buffer, 

incubated for 1 h at room temperature. The ligation product (5 µL) was 

transformed in XL1-blue competent bacteria following these steps: 20 min on 

ice, 2 min at 42ºC and 3 min on ice. Next, LB Broth media (without antibiotics) 

was added and incubated for 1 h at 37ºC shaking, for bacteria recovery. 

Bacteria were grown O/N at 37ºC in LB Agar plates with ampicillin. Individual 

colonies were picked and grown O/N at 37ºC in LB Broth with ampicillin. 

Glycerol stocks of the samples were harvested and the plasmids were isolated 

using the QIAprep Spin Miniprep kit (QIAGEN), following manufacturer‟s 

instructions. DNA was quantified in a Nanodrop. Samples were then Sanger 

sequenced, using a forward primer for the plasmid (sequence: 5‟-

GCCTGGTATCTTTATAGTCC-3‟) in order to verify the correct cloning of the 

guides into the plasmid. Once the cloning was verified and one colony was 

selected, bacteria were picked from the glycerol stock for further amplification in 

LB Broth with ampicillin and subsequent plasmid isolation using the 

NucleoBond® Xtra Midi Plus (Macherey-Nagel). 
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3.M.7.3 Cell transfection and selection by cell sorting 

CCA cells were seeded in P100 plates (Corning; 5x105 cells per plate) with 

fully-supplemented DMEM/F-12 medium (Table I.2) and allowed growing O/N. 

The day after, cells were transfected using Opti-MEM (Gibco) medium, plasmid 

DNA (500 ng per 3 x 104 cells) and lipofectamine®2000 (Invitrogen)(1 µL per 3 

x 104 cells). Transfection was left for 6 h and media was replaced by fully-

supplemented DMEM/F-12 medium. 72 h post-transfection, cells were sortened 

in a FACSAria III Sorting Cytometer (BD) upon positive GFP expression, and 

each cell was seeded in a well of a collagen-coated V-bottom 96-well plate 

Cellstar® (Greiner) and cells were allowed to grow. 

3.M.7.4 Amplification of clones and detection of mutations in KLF5 

Individual cell clones were expanded and DNA was isolated using the 

NucleoSpin® Tissue kit (Macherey-Nagel), following manufacturer‟s 

instructions. Nanodrop quantified DNA was then amplified on the genomic 

regions of interest using specific primers for each guide, shown in Table 3.M.6. 

A master mix was prepared with 10x buffer, MgCl, dNTPs, Taq polymerase (all 

from Bioline), free-H2O and the corresponding forward and reverse primers and 

mixed with the DNA. PCR conditions were set as follows in a Veriti Thermal 

Cycler: 1 min at 95ºC; 35 cycles of 30 seconds at 95ºC, 30 seconds at 64ºC 

and 30 seconds at 72ºC; 5 min at 72ºC; and placed at 4ºC. Samples were run in 

a 1.8% agarose gel in TBE using gel red in order to verify the amplification of 

the region. Subsequently, PCR products were Sanger sequenced, using the 

corresponding forward primers for each guide, for detection of mutations in 

KLF5. 
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Table 3.M.6. Specific primers used for amplification of the genomic region of interest for each 

KLF5 guide. 

 

3.M.7.5 Confirmation by immunoblot 

Clones containing specific homozygous mutations were selected for KLF5 

silencing confirmation at protein level by immunoblot. 

3.M.8 Cell proliferation and cell cycle analysis 

Cell proliferation markers were analyzed by qPCR as previously stated (see 

above) and cell cycle profile was determined as explained below. 

3.M.8.1 Cell cycle analysis 

The cell cycle profile was analyzed by flow cytometry using TO-PRO-3 which 

allows distinguishing G0/G1, S and G2/M phases. Briefly, 1x106 cells were 

harvested, washed with PBS and then resuspended in 300 µL of cold PBS for 

further fixation by adding 700 µL of cold (-20ºC) 100% ethanol dropwise while 

cells were being vortexed. Cells were incubated O/N at -20ºC. Next, samples 

were centrifuged at 1,000 g for 5 min and the pellet was washed with PBS in a 5 

min centrifugation at 1,000 g. Cell pellets were subsequently stained with a PBS 

solution (470 µL) containing TO-PRO-3 (25 µL of a 1 µM stock; Life 

Technologies) and RNAse A (5 µL of 10 mg/mL stock; Sigma). Samples were 

incubated for 30 min at 37ºC in darkness. Samples were then transferred to a 

KLF5 guide 

amplification primers Sequence 5’-3’ 

Guide 1 
Forward   5‟-CACTGAGGAGTTTGCCCTAGTACC-3‟ 

Reverse   5‟-CTTCCAGGCTCTGAGCTTGGTGG-3‟ 

Guides 2 and 3 
Forward   5‟-ACCTCTGCTGTTCCGCAGACTGC-3‟ 

Reverse   5‟-CTGCCTGCAACCTCCACTTCACC-3‟ 

Guide 4 
Forward   5‟-CTGCCTCTCTCCCTGCTCATAGGC-3‟ 

Reverse   5‟-CGGCTCTTCCTACCTGGACCAGG-3‟ 

Guide 5 
Forward   5‟-TGAGGAGTCCACCCGAAACCTCCC-3‟ 

Reverse   5‟-TGGAGAGCGGTACAGGCGAAGGC-3‟ 
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U-bottom 96-well plate and cell cycle analysis was performed using a Guava® 

easyCyte HT Flow Cytometer (Merck Millipore). 

3.M.9 Determination of cell migration 

Cell migration was analyzed by wound-healing and transwell assays as stated 

in general materials and methods section (see above). 

3.M.10 Determination of cell viability by WST-1 

Cells (2x104) were seeded and, once attached, 6 h starvation was performed in 

DMEM/F-12 supplemented with 1 or 3% FBS and 1% P/S, as stated in each 

assay. Cell viability under the treatment with toxic bile acids or 

chemotherapeutics (shown in Table 3.M.7) was determined using WST-1 

(Roche) as described in general materials and methods (see above). 

Table 3.M.7. Molecules evaluated on CCA cell viability. 

Drug (abbreviation) Solvent Concentration Reference Company 

Chenodeoxycholic acid 

(CDCA) 
DMSO 100 µM  C9377 Sigma 

Gemcitabine (Gem) 
H2O 0.05 to 2 µM  G6423 Sigma 

Cis-Diammineplatinum (II) 

dichloride or Cisplatin (Cis) 

H2O 5 and 10 µM  P4394 Sigma 

5-Fluorouracil (5-FU) 
DMSO 1 and 3 µM  F6627 Sigma 

Doxorubicin hydrochloride 

(Doxo) 

DMSO 20 to 100 nM  D1515 Sigma 

 

3.M.11 In vivo CCA model 

The role of KLF5 was studied in vivo using a subcutaneous xenograph model of 

CCA. These studies were performed in collaboration with the group of Dr. Maite 

Garcia (CIMA, Pamplona). To achieve this objective, KLF5 wild-type and KLF5 

knockout CCA cells were previously transfected with a luciferase expressing 

vector (a kind gift from Dr. Maite Garcia). Once luciferase expression was 
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verified a subcutaneous model of CCA was established to determine the role of 

KLF5 in CCA tumor growth. Immunodeficient CD1 nude mice (Crl:CD1-Foxn1nu, 

strain 086, homozygous) (from Charles River) were employed for the generation 

of the xenograph models. All experimental procedures were approved by the 

Ethical Committee for Animal Experimentation of the supporting institution and 

were used in conformity with the institution‟s guidelines for the use of laboratory 

animals. 

3.M.11.1 Luciferase transfection and verification 

A luciferase expressing vector with a CMV promoter (addgene) was used for 

CCA cell (EGI1) transfection. Cells were transfected as aforementioned using 

Opti-MEM (Gibco) medium and lipofectamine®2000 (Invitrogen). Transfection 

was left for 6 h and media was replaced by fully-supplemented DMEM medium. 

Luciferase expression was checked using the Dual-Luciferase® Reporter Assay 

system (Promega), following manufacturer‟s instructions, in a PHERAstar 

apparatus (BMG LABTECH). 

3.M.11.2 Subcutaneous model of CCA 

EGI1 control and CRISPR-KLF5 cells (1x106) were subcutaneously injected in 

both flanks of five nude mice each. Tumor volumes were monitored initially by 

luciferase expression in a PhotonImager after intraperitoneal injection of 

luciferine and later also by measuring the tumor size with a caliper. Tumor 

volume (V) was calculated using the following formula: V = (D x d2)/2 (where “D” 

represents the largest diameter measured and “d” the shortest). 

3.M.12 Statistical analysis 

Statistical comparisons were performed as described in general materials and 

methods (see above). Unpaired T-test or Mann-Whitney test were used for 

comparisons between two groups. For paired samples, the paired T-test or the 

equivalent Wilcoxon matched-paires signed ranks test were used. Differences 

were considered significant when p<0.05. 
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3 - Results 

3.R.1 Expression of KLFs in normal and tumor cholangiocytes in culture 

The expression of 15 members of the KLF family was analyzed by qPCR in 

three CCA human cells (i.e. EGI1, TFK1 and Witt) and NHC (i.e. NHC2, 

NHCSS and C324). Data showed that KLF5 is overexpressed in all CCA human 

cell lines compared to NHC, whereas the expression of KLFs 7, 8, 12, 13 and 

15 is decreased in all CCA cell lines compared to NHC (Figure 3.R.1). On the 

other hand, the expression of KLFs 2, 3, 6, 9, 10, 11, 16 and 17 varies between 

cell lines (Figure 3.R.1). Since KLF5 was the only KLF found overexpressed in 

all CCA human cell lines compared to NHC, we put our attention in this TF. 

KLF5 studies in other cancers pointed it as a potential tumor promoter and 

therefore, as potential therapeutic target [266, 274] and nothing was known 

about its role in CCA. 
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Figure 3.R.1. Expression of KLFs in normal and tumor cholangiocytes in culture. Relative 

mRNA expression of KLFs 2-13 and 15-17 in CCA human cell lines (i.e. EGI1, TFK1 and Witt) 

compared to NHCs (i.e. NHC2, NHCSS and C324) (n=5-6). Statistical comparisons are 

compared to NHC2. 

 

3.R.2 Expression of KLF5 normal and tumor cholangiocytes in culture 

KLF5 expression was then studied more in detail by analyzing its expression in 

eight CCA human cell lines, H69 cells and four NHC. In this regard, we found 

that KLF5 is overexpressed in all human CCA cell lines compared to H69 cells 

and all NHC (Figure 3.R.2). Thus, KLF5 appears to be overexpressed in all 

CCA human cells independent of the genetic background (i.e. KRAS-mutated or 

wild-type) and type of CCA (i.e.iCCA, mixed HCC-CCA or eCCA). 

 

Figure 3.R.2. KLF5 is overexpressed in CCA human cells compared to NHC in culture. 

Relative mRNA expression of KLF5 in eight different CCA cell lines (black bars) and NHC (four 

different NHC primary cultures and H69 cells, which are non-tumor SV-40 inmortalized human 

cholangiocytes) (n=5-6). 

 

Then, the protein expression of KLF5 was evaluated in both CCA human cell 

lines and NHC by immunoblotting (Figure 3.R.3) and immunofluorescence 
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(Figure 3.R.4). Since KLF5 is a nuclear TF, its protein levels were determined 

by immunoblotting in proteins isolated from total cell or nuclear extracts. Data 

showed that KLF5 protein is also overexpressed in all CCA human cell lines 

compared to NHC, and this overexpression is localized in the nuclei of CCA 

cells (Figure 3.R.3) 

 

Figure 3.R.3. KLF5 protein is overexpressed in CCA human cell lines compared to NHC in 

culture. Representative immunoblot images showing KLF5 expression in both total protein cell 

extracts and nuclear protein extract from CCA cell lines (i.e. EGI1, TFK1 and Witt) and NHC (i.e. 

NHCSS, C324 and NHC2). GAPDH and H3 were used as housekeeping controls for total and 

nuclear protein extracts, respectively. 

 

In addition, these results were confirmed by immunofluorescence analysis 

showing overexpression of KLF5 in the nuclei of CCA cells compared to NHC 

(Figure 3.R.4). 

 

Figure 3.R.4. KLF5 is overexpressed in the nuclei of CCA human cells compared to NHC 

in culture by immunofluorescence. Representative immunofluorescence images showing 

KLF5 (green) expression in NHC (i.e. NHC2) and CCA cells (i.e. EGI1 and Witt). CK19 (red) 

was used as a marker of cholangiocytes and nuclei were stained with Dapi (blue). Pictures were 

taken with the 40x objective. 
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3.R.3 Expression of KLF5 in CCA and normal liver human tissues  

KLF5 expression was also evaluated in CCA and normal liver human tissue 

from three different cohorts of patients, i.e. “Copenhagen cohort”, “tissue 

genome atlas (TCGA)” and “San Sebastian cohort”. The “Copenhagen cohort” 

showed KLF5 overexpression in tumoral CCA samples (n=104) compared to 

tumor adjacent normal tissue (TAN; n=60) by whole transcriptome profiling 

(Figure 3.R.5A). Moreover, KLF5 expression was analyzed upon several 

clinicopathologic parameters on samples from the “Copenhagen cohort”. Data 

showed that tumor samples with higher KLF5 expression are associated to 

lymphatic invasion (Figure 3.R.5B). KLF5 was also checked by RNA-seq in a 

cohort from the tissue genome atlas (TCGA) and higher KLF5 expression was 

observed in CCA tissue samples compared to TAN (Figure 3.R.5C). 

 

Figure 3.R.5. KLF5 is overexpressed in CCAs from three different cohorts of patients and 

is associated to lymphatic invasion. (A-B) KLF5 expression was analyzed in the 

Copenhagen cohort of patients by mRNA microarray in (A) CCA tissue and tumor adjacent 

normal tissue samples and (B) in CCA samples from individuals with negative or positive 

lymphatic invasion. (C) KLF5 expression analysis by RNAseq in a cohort from TCGA. Dots: 

number of patients. 

 

Additionally, the expression of KLF5 was evaluated by qPCR in the “San 

Sebastian cohort” and the same expression pattern was observed. Data 

showed that KLF5 is overexpressed in CCA tissue compared to non-tumoral 

surrounding liver tissue and NHC in culture (i.e. NHC2) in culture (Figure 

3.R.6A). Of note, paired non-tumoral and CCA tumor samples from the same 
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patients also showed increased KLF5 mRNA expression in CCA tissues (Figure 

3.R.6B). 

 

Figure 3.R.6. KLF5 is overexpressed in CCA human tissue compared to normal 

surrounding liver tissue and normal human cholangiocytes in culture. (A) Relative mRNA 

expression of KLF5 in NHCs and liver biopsies (tumor adjacent non-tumoral tissue and CCA 

tissue) from CCA patients of the “San Sebastian cohort” analyzed by qPCR. (B) Matched-paired 

samples of CCA and surrounding tissue showing increased KLF5 levels in CCA tissue. Dots: 

number of patients. 

 

On the other hand, immunofluorescence of KLF5 in liver biopsies from CCA 

patients also showed higher KLF5 expression in CCA tissue than in normal 

human bile ducts (Figure 3.R.7). 
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Figure 3.R.7. KLF5 expression in CCA and normal liver human tissue by 

immunofluorescence. Representative Immunofluorescence images showing KLF5 (green) 

expression in normal and CCA liver tissue. CK19 (red) was used as a cholangiocyte marker and 

nuclei were stained with Dapi (blue). Pictures were taken with the 40x objective. 

 

3.R.4 Experimental downregulation of KLF5 in CCA cell lines 

The role of KLF5 in the pathogenesis of CCA was then evaluated by using 

experimental KLF5 knock down and knock out approaches in CCA cells. 

3.R.4.1 KLF5 silencing by short hairpin RNA lentiviruses 

KLF5 was knocked down with specific short hairpin RNAs (shRNAs) for KLF5. 

For that purpose, we produced lentiviral particles from a glycerol stock of 

shRNA in a pLKO.1-puro-CMV-tGFP vector (from Sigma). A non-target control 

was also purchased and control lentiviruses were produced in parallel. All 

procedures were performed as described in materials and methods section (see 

above). Two different CCA cell lines (i.e. EGI1 and WITT) were employed for 

evaluating KLF5 silencing. EGI1 CCA cells were infected with shRNA-KLF5 or 

shRNA-control lentiviruses at different multiplicity of infection (MOI) and 

selected with puromycin. We determined that at MOI of 5 cells were properly 

infected with both lentiviruses and that KLF5 was effectively silenced with 

shRNA-KLF5 lentiviruses (Figure 3.R.8). Therefore, a MOI of 5 was used along 

the study. 

 

Figure 3.R.8. Experimental silencing of KLF5 expression with shRNA lentiviruses in CCA 

(EGI1) cells. Representative immunoblot of KLF5 expression in total protein extracts of CCA 

(EGI1) cells non-infected or infected with shRNA-control or shRNA-KLF5 lentiviruses at the 

indicated MOIs. GAPDH was used as housekeeping control. 

 

Moreover, KLF5 expression was determined along the CCA (EGI1) cell 

passages after infection with shRNA-KLF5 or shRNA-control lentiviruses. The 
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expression of KLF5 was partially recovered 5 passages post-infection in CCA 

cells infected with shRNA-KLF5 lentiviruses (Figure 3.R.9). Therefore, all the 

experiments were performed using CCA cells with less than 5 passages post-

infection. 

 

Figure 3.R.9. Expression of KFL5 protein in CCA (EGI1) cells along the cell passages in 

vitro after infection with specific shRNA lentiviruses. Representative immunoblot of KLF5 

expression in total protein extracts of CCA (EGI1) cells along the cell passages in vitro after 

infection with specific shRNA lentiviruses. Non-infected cells were used as control. GAPDH was 

used as housekeeping control. 

 

In addition, experimental KLF5 knock down was also carried out in another 

type of CCA human cells, i.e. Witt, compared both to non-infected cells and 

cells infected with shRNA-control lentiviruses (Figures 3.R.10). 

 

Figure 3.R.10. Expression of KFL5 protein in Witt CCA cells after infection with specific 

shRNA lentiviruses. Representative immunoblot of KLF5 expression in total protein extracts of 

CCA (Witt) cells after infection with specific shRNA lentiviruses. Non-infected or shRNA-control-

infected cells were used as control. GAPDH was used as housekeeping control. 

 

3.R.4.2 Genetic knock out of KLF5 by CRISPR/Cas9 technology in CCA cells 

CRISPR/Cas9 is a novel methodology that enables to specifically knock out a 

particular gene of interest. The development of specific KLF5 knock out CCA 
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cells through CRISPR/Cas9 would allow us to obtain stable cells without KLF5 

and compare the cell phenotype with the results obtained by knocking down 

KLF5 with specific shRNA-KLF5. Five different guides were first designed as 

described in the materials and methods section (see above) and cloned in the 

Cas9 expressing plasmid (i.e. px330). Three out of five guides were 

successfully cloned (see Figure 3.R.11 as an example). 

 

Figure 3.R.11. Guide cloning in the Cas9 expressing plasmid. Example of a cloned guide 

highlighted in yellow. Three different guides were successfully cloned into the px330 vector. 

Next, CCA (EGI1) cells were transfected and selected by GFP-sorting. 

Individual clones were expanded and Sanger sequencing was performed in the 

KLF5 gene sequence. Samples with no mutations and with heterozygous 

mutations were discarded and only clones with homozygous mutations were 

selected. Of note, five CCA cell clones with different KLF5 mutations were 

obtained by using the guide 2. Changes in each clone are described in Table 

3.R.1. 

Table 3.R.1. Mutations in KLF5 gene sequence by Sanger sequencing. 

 

 

Clone 

number 
Alteration 

CRISPR/Cas9 

Guide 2 

Clone 2 Removal of 30 bases 

Clone 3 Insertion of a new base: heterozygous C/G 

Clone 12 Removal of 2 bases 

Clone 16 Removal of 9 bases 

Clone 20 Removal of 23 bases 

 

The expression of KLF5 was then evaluated at protein level in all five KLF5-

mutated clones. Immunoblot analysis showed that at least four clones had 
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alterations on KLF5 expression and/or changes in the protein size (Figure 

3.R.12A). Taking into account the alteration produced in the KLF5 gene 

sequence and subsequent KLF5 protein expression and size, both clone 2 and 

20 were selected for further analysis. 

 

Figure 3.R.12. KLF5 is effectively mutated by CRISPR/Cas9 technology in CCA (EGI1) 

cells. Representative immunoblot of KLF5 expression in total protein extracts of wild-type or 

CRISPR/Cas9-KLF5 CCA (EGI1) cells. GAPDH was used as housekeeping control. 

 

3.R.5 Role of KLF5 in CCA progression in vitro 

Different assays were carried out to test the role of KLF5 in CCA. For this 

purpose, KLF5-silenced CCA (EGI1 and Witt) cells were used. For KLF5 

silencing, both shRNA- and CRISPR/Cas9-based methodologies were 

employed. Since the results obtained with both methodologies were similar, this 

report only shows the data on CRISPR/Cas9 as representative. 

3.R.5.1 Role of KLF5 in CCA cell proliferation 

We analyzed the cell cycle profile using the CRISPR/Cas9 cells or the control 

cells and results showed that KLF5 knock out induces cell cycle arrest in G0/G1 

phase (Figure 3.R.13). 
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Figure 3.R.13. KLF5 knock out induces G0/G1 cell cycle arrest in CCA cells. Flow-

cytometry based analysis by TO-PRO-3 staining of cell cycle profile in wild-type or 

CRISPR/Cas9-KLF5 CCA cells. 

 

Next, the expression of genes related to proliferation was determined by 

qPCR. The expression of the several proliferation markers (i.e. cyclin D1, 

Cdc25a, PCNA, and Ki67) was determined and found downregulated in CCA 

cells knocked out for KLF5 (Figure 3.R.14). 

 

Figure 3.R.14. Expression of cell proliferation markers in CCA cells upon CRISPR/Cas9-

based KLF5 knock out. The mRNA expression of proliferation genes (i.e. cyclin D1, Cdc25a, 

PCNA, and Ki67) in wild-type or CRISPR/Cas9-KLF5 CCA cells (n=3). 
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3.R.5.2 Role of KLF5 in CCA migration 

KLF5 knock out CCA (EGI1) cells have decreased migration properties 

compared to wild-type cells by using both wound-healing and transwell 

migration assay (Figure 3.R.15A and B, respectively). 

 

Figure 3.R.15. KLF5 regulates cholangiocyte migration in CCA cells in vitro. Migration was 

determination by wound-healing and transwell migration assays in wild-type or CRISPR/Cas9-

KLF5 CCA cells. (A) Representative wound-healing images and corresponding quantification at 

12 h (n=6). (B) Representative transwell migration chamber images at 24 h. 

 

Migration-related genes were also analyzed by qPCR in wild-type and 

CRISPR/Cas9-KLF5 CCA cells. Data showed decreased expression of RhoA 

and Rac1 in KLF5 knockout clones compared to control CCA cells (Figure 

3.R.16). 
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Figure 3.R.16 Expression of migration-related genes under KLF5 silencing in CCA cells. 

Relative mRNA expression of genes involved in cell migration (i.e. RhoA and Rac1) in wild-type 

or CRISPR/Cas9-KLF5 CCA cells (n=3). 

 
3.R.5.3 Role of KLF5 in CCA response to cytotoxic bile acids 

Since CCA arises more frequently under cholestatic conditions [45], the role of 

KLF5 was evaluated on cell viability under the presence or absence of toxic bile 

acids (BAs) (i.e. CDCA 100 µM) that induces apoptosis. Data showed that 

CDCA reduced cell viability in wild-type CCA cells, but this effect was more 

marked in KLF5 knock out CCA cells (Figure 3.R.17). 

 

Figure 3.R.17. KLF5 promotes cell viability in CCA cells under the presence of toxic bile 

acids. Quantification of cell viability in wild-type vs CRISPR-KLF5 CCA cells under the 

presence or absence of CDCA in DMEM/F-12 supplemented with 3% FBS/1% P/S (n=6). 
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3.R.6 Role of KLF5 in the CCA response to chemotherapy 

The effect of four different chemotherapeutics (i.e. gemcitabine, 5-fluorouracil, 

cisplatin and doxorubicin) was evaluated on the survival of wild-type and KLF5 

knock out CCA cells. Dose-dependent studies were carried out with each drug 

in wild-type CCA cells and specific doses were selected for further experiments 

(data not shown). Data showed that KLF5 knock out CCA cells showed 

decreased cell viability under the presence of gemcitabine, cisplatin, 

gemcitabine+cisplatin, or doxorubicin than wild-type cells (Figure 3.R.18). In 

contrast, this effect was not observed under the presence of 5-FU. 
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Figure 3.R.18. Cell viability under treatment with chemotherapy. Cell viability was tested in 

EGI1 CCA cells with CRISPR/Cas9-mediated KLF5 silencing or EGI1 wild-type cells by WST-1 

assays upon treatment with different chemotherapeutics for 72 h in DMEM/F-12 supplemented 

with 1% FBS/ 1% P/S. (A) 0.1 µM gemcitabine (Gem) treatment (n=3). (B) 5 µM cisplatin (Cis) 

treatment (n=4). (C) 5 µM Cis and 50 nM Gem treatment (n=4-6). (D) 3 µM 5-fluorouracil (5-FU) 

treatment (n=3). (E) 50 nM doxorubicin (Doxo) treatment (n=4). 
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3.R.7 Role of KLF5 in the subcutaneous implantation and growth of CCA 

cells in immunodeficient mice 

Wild-type and CRISPR/Cas9-KLF5 CCA (EGI1) cells transfected with a 

luciferase expressing vector were subcutaneously injected in the flanks of 

immunodeficient mice and tumor growth was monitored by luciferase 

expression and by tumor size measurement using a caliber. For this purpose, 

the CRISPR/Cas9-KLF5 CCA clone 20 was selected. Results showed that 

KLF5 knock out dramatically impaired the CCA cell implantation and/or growth 

subcutaneously in immunodeficient mice compared to wild-type cells (Figure 

3.R.19). 

 

Figure 3.R.19. KLF5 promotes CCA implantation and grow subcutaneously in 

immunodeficient mice. (A) Tumor volume growth in wild-type vs CRISPR-KLF5 CCA cells 

injected subcutaneously in immunodeficient mice. (B) Luciferase expression of wild-type vs 

CRISPR-KLF5 CCA tumors. (C) Image of wild-type and CRISPR-KLF5 CCA tumors extracted at 

the end of the experiment. 
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3 - Discussion 

CCAs, similarly to other cancers, are characterized by alterations in 

transcription factors (TFs) upstream of genes involved in tumorigenesis [77, 

243]. The family of TFs Krüppel-like factors (KLFs) are widely expressed in 

human tissue and play important roles in health and disease [246], and for 

instance the expression and activity of certain KLFs are altered in some types of 

cancer [247]. However, very limited information is available about their role in 

biliary pathophysiology and particularly in CCA. The analysis of the expression 

of the different KLFs in normal and tumor cholangiocytes in culture revealed a 

differential expression pattern between both types of cells. In particular, KLF5 

was the only KLF significantly and homogeneously overexpressed in all CCA 

cell lines compared normal human cholangiocytes (NHC) in culture. The 

expression of KLF5 was also found upregulated in CCA human tissue from 

three independent CCA cohorts of patients compared to controls. These results 

are in line with previous observations in other cancer types such as breast 

cancer [275], prostate cancer [276] and stem-like esophageal cancer cells 

[277], where KLF5 was also found overexpressed. Moreover, our data also 

indicate that KLF5 expression in CCA is associated with some 

clinicopathological features of the tumors such as lymph node invasion. Those 

CCA tumors with lymph node invasion presented higher expression levels of 

KLF5 than those tumors without lymph node invasion, suggesting KLF5 as a 

potential prognostic marker. In this regard, KLF5 has previously been 

suggested as a potential prognostic factor for disease-free survival and overall 

survival in breast cancer [275]. 

The relevant role of KLF5 in CCA pathology was highlighted here by using 

KLF5 loss-of-function studies in CCA cells. The results revealed that KLF5 

promotes CCA cell cycle progression and migration, events associated with 

overexpression of different genes involved in both processes. KLF5 has been 

previously described to promote cell proliferation via cyclin D1 stimulation [278] 

or both p27 and p15 repression [279]. Regarding migration, our data are 

consistent with a recent report in breast cancer describing that the tumor 

necrosis factor-α (TNFα)-induced gene TNFAIP2 is a direct target of KLF5, and 

that both regulate Rac-1 and Cdc42 genes, which are members of the Rho 
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superfamily of GTPases that, among other functions, regulate cell motility [267, 

280]. Moreover, KLF5 modulates the sensitivity of CCA cells to cytotoxic BAs, 

which are elevated under cholestasic conditions. Indeed, experimental silencing 

of KLF5 expression decreased the viability of CCA cells under the presence of 

toxic-BA compared to control CCA cells. The anti-apoptotic effect of KLF5 in 

CCA cells is in agreement with reports showing that KLF5 targets the apoptosis 

inhibitor survivin (also known as BIRC5) in ovarian cancer [281] or leukemia 

[258] and the survival kinase Pim1 [282]. 

On the other hand, our data strongly indicated that KLF5 may be important in 

response to chemotherapy. CCAs are highly chemoresistant tumors and 

chemotherapy is only administered as adjuvant after transplantation or as a 

palliative strategy for patients with unresectable or metastatic disease [43, 45]. 

Thus, chances of success for CCA patients with current available drugs are 

very low and this is related to the mechanisms of chemoresistance (MOCs) 

present on these tumors [45]. Our results indicated that KLF5 in CCA cells 

induces resistance to doxorubicin, cisplatin also gemcitabine. Doxorubicin is an 

anthracycline with topoisomerase II inhibition properties that induces double-

strand break in the DNA [283] and is widely used as anti-tumor therapy [284, 

285], although it is not commonly used in CCA clinical practice. However, in 

vitro studies showed CCA cells are sensitive to it, with beneficial effects upon 

combination with approaches such as NF-kB activity inhibition [286]. Cisplatin is 

a platinum compound approved by the FDA for cancer treatment, which overall 

acts binding to purine residues, subsequently causing DNA damage, impairing 

cell division and inducing cell apoptosis [287]. Gemcitabine is a nucleoside 

analog used against a wide variety of tumors, including CCA [288] which mainly 

inhibits DNA synthesis through blocking cytidine during DNA replication and 

arresting cell growth [289]. In CCA, combination of cisplatin and gemcitabine 

(CisGem) is the referent chemotherapy for CCA patients, which slightly 

improves their overall survival [288, 290]. Of note, KLF5-silenced CCA cells 

were more sensitive to CisGem than control CCA cells; albeit the benefits with 

the combination vs monotherapy are small, as low additive effect was observed. 

The MOCs induced by KLF5 in CCA cells should be analyzed in detail in the 

next future. These relevant results are rather novel since little information is 

available on the role of KFL5 in the regulation of response to chemotherapy in 
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cancer, and, indeed, the available studies pointed KLF5 might be involved in 

chemoresistance in ovarian cancer and in breast cancer [281, 291, 292], what is 

in accordance to our results in CCA. 

Furthermore, the in vivo studies revealed that KLF5 is crucial for CCA tumor 

implantation and growth subcutaneously in immunodeficient mice. In our model, 

only 1 out of 10 tumors was able to grow in the CRISPR-KLF5 group compared 

to 10/10 tumors in the control group. In this regard, we are currently evaluating 

the role of KLF5 in CCA under intravenous or intrahepatic injection of cells, i.e. 

models of metastasis or liver cancer, respectively. 

Altogether, these data strongly suggest KLF5 as a potential therapeutic 

target in CCA. In the last years, several studies have focused on identifying 

selective KLF5 inhibitors. In this regard, KLF5 expression or activity is indirectly 

regulated by different inhibitors of general key cellular pathways such as RAR-

ligands or some MEK, HDAC or PI3K inhibitors. Moreover, specific KLF5 

inhibitors have been developed by ultra-high-throughput screening (uHTS) in 

colon cancer cell lines and are under study [265]. Recently, ML264 (Sigma) has 

been produced as the most promising KLF5 inhibitor, showing effective 

antitumoral activity in colorectal cancer [274]. Therefore, future studies will be 

carried out by using this new inhibitor in experimental (in vitro and in vivo) 

models of CCA. 

KLF5 gain-of-function studies using lentiviruses overexpressing KLF5 in 

NHCs would help to further elucidate the role of this TF in the process of CCA 

development. In this regard, our preliminary data (not shown) indicate that KLF5 

promotes migration and confers resistance to chemotherapy in NHCs, 

highlighting the role of KLF5 in the malignant transformation of cholangiocytes. 

It was previously reported that KLF5 expression is stimulated by 

RAS/MAPK/PI3K and WNT signaling pathways [274], and whether certain 

growth factors (i.e. EGF and Wnt3a) and pro-inflammatory (i.e. IL1β) or pro-

fibrogenic (i.e. TGFβ) cytokines found commonly overexpressed in the CCA 

microenvironment participate in its regulation should be clarified. For instance, 

both IL1β and HIF1α have been described as promoters of KLF5 expression in 

pancreatic cancer [257]. On the other hand, TGFβ-mediated acetylation of KLF5 

results in differential KLF5 function in epidermal cells. In the presence of TGFβ, 

this recruits acetylase p300 to acetylate KLF5, and this leads to altered binding 
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of KLF5 to the promoter of the cell cycle inhibitor p15, resulting in the reversal of 

KLF5 function [293]. On the other hand, studies in breast cancer pointed KLF5 

as a potential target for triple negative breast cancer and have shown that its 

expression is regulated by miR-217 [294]. Thus, it would be interesting to 

analyze how KLF5 becomes overexpressed in CCA. Importantly, FBW7 (F-box 

and WD repeat domain-containing 7, also known as CDC4, AGO and SEL10) 

targets KLF5 for its degradation through the proteasome [295]. FBW7 is part of 

the E3 ubiquitin ligase complex and mediates the ubiquitin-dependent 

proteolysis, targeting many substrates including cyclin E, c-Myc or Mcl-1, [295]. 

Mutations in FBW7 resulted in the inactivation of this gene and FBW7 is known 

as a tumor suppressor gene. Of note, CCAs are the tumors with the highest 

rates in FBW7 mutations, with a 35% of frequency [296]. In this regard, FBW7 

was seen downregulated in CCA cells and biopsies and was associated to 

tumor metastasis [297]. Additionally, a recent work has shown that the isoform α 

of FBW7 is important in CCA progression, as its experimental overexpression 

using lentiviruses resulted in the inhibition of CCA cell proliferation as well as in 

CCA growth impairment in vivo [298]. 
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3 - Conclusions 

The key findings reported here are related to the role of Krüppel-like factors 

(KLFs) in the etiopathogenesis of CCA and indicate that KLF5 acts as an 

oncogene promoting CCA progression. Our data indicate that: 

I. The expression of KLF family members is dysregulated in CCA cells 

compared to NHC in culture. 

II. KLF5 is overexpressed in different CCA cell lines compared to primary 

cultures of NHC. This KLF5 overexpression was mainly found in 

the nucleus of CCA cells. 

III. In three different cohorts of patients, KLF5 was found overexpressed in 

human CCA tissue compared to normal surrounding liver tissue. 

KLF5 expression correlated with lymph node invasion. 

IV. Experimental KLF5-silenced CCA cells showed reduced cell cycle 

progression, migration and viability under the presence of toxic 

bile acids or different chemotherapeutics. 

V. KLF5 knock out CCA cells presented impaired subcutaneous 

implantation and/or growth in immunodeficient mice compared to 

controls. 

Our results are consistent with the notion that KLF5 is a relevant TF in CCA 

development and progression, as well as a potential diagnostic/prognostic 

biomarker and a target for therapy. 
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INTRODUCCIÓN GENERAL 

El hígado es uno de los órganos más importantes del cuerpo humano, 

realizando funciones claves tales como el metabolismo de proteínas, 

aminoácidos y lípidos, detoxificación y producción de bilis [1, 2]. El hígado está 

formado por dos tipos de células epiteliales, hepatocitos y colangiocitos, que 

representan el ~70% y ~3-5% de la población celular hepática, respectivamente 

[3, 4]. Los colangiocitos, pese a ser una pequeña proporción de todas las 

células del hígado, participan en procesos clave para el correcto 

funcionamiento del hígado, tales como la fuidificación y alcalinización de la bilis 

generada en el canalículo de los hepatocitos [5-8]. Para ello, contienen 

diversos transportadores específicos de membrana que participan en el 

intercambio de electrolitos, ácidos biliares y metabolitos, entre otros [4, 9-11]. 

Las enfermedades que afectan a los colangiocitos se conocen como 

colangiopatías, y se clasifican en: i) inmuno-asociadas, ii) infecciosas, iii) 

genéticas, iv) asociadas con alteraciones vasculares, v) neoplásicas, vi) 

inducidas por sustancias tóxicas, o vii) idiopáticas [15]. Se trata de un grupo 

heterogéneo de enfermedades que suelen estar caracterizadas por procesos 

inflamatorios crónicos y por presencia de colestasis. Sin embargo, dichas 

enfermedades presentan sus propias particularidades que determinan la 

historia natural de cada enfermedad [15]. Pese a ser enfermedades poco 

frecuentes, las colangiopatías presentan elevada morbilidad y mortalidad [15]. 

En la actualidad, debido a la escasez de tratamientos eficaces frente a las 

distintas colangiopatías, es clave investigar en detalle la etiopatogenia de estas 

enfermedades para poder así aportar nuevas dianas y estrategias terapéuticas. 

Este trabajo de tesis doctoral se centra en el estudio de dos enfermedades 

biliares, como lo son la colangitis biliar primaria (CBP) (del inglés primary biliary 

cholangitis, PBC) – asociada con procesos autoinmunes frente a los 

colangiocitos – y en el colangiocarcinoma (CCA) – cáncer biliar–. En concreto, 

se han llevado a cabo 3 trabajos, evaluando el papel del miR-506 en la 

etiopatogenia de la PBC y el de los receptores de ácidos biliares FXR y TGR5, 

así como del factor de transcripción KLF5, en el CCA. 
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CAPÍTULO 1: PAPEL DEL MIR-506 EN LA COLANGITIS BILIAR 

PRIMARIA (PBC) 

Introducción 

La colangitis biliar primaria (CBP, en inglés primary biliary colangitis o PBC) es 

una enfermedad hepática colestásica crónica asociada con procesos auto-

inmunes frente a los conductos biliares intrahepáticos pequeños y medianos 

[22, 24]. Existen varios estadios de la enfermedad caracterizados por un 

aumento progresivo de colestasis y fibrosis hepática [25], que sin tratamiento 

efectivo pueden evolucionar en cirrosis hepática [26-29]. La etiología de la PBC 

permanece todavía desconocida pero se cree que es multifactorial. Afecta 

mayoritariamente a mujeres de mediana edad [30, 31] y está caracterizada por 

el desarrollo (en el ~95% de los casos) de auto-anticuerpos anti-mitocondriales 

(en inglés anti-mitochondrial autoantibodies, AMAs) específicos frente a la 

subunidad E2 del complejo piruvato deshidrogenasa mitocondrial (en inglés E2 

component of the pyruvate dehydrogenase complex, PDC-E2) [35]. Es 

importante destacar que, pese a ser una enfermedad asociada con procesos 

auto-inmunes, los inmunosupresores habituales no presentan eficacia 

terapéutica. Actualmente, el único tratamiento aprobado por la “food and drug 

administration” (FDA de Estados Unidos) para el tratamiento de la PBC es la 

administración diaria y crónica de ácido ursodesoxicólico (en inglés 

ursodeoxycholic acid, UDCA). Se ha comprobado que el UDCA mejora el 

pronóstico en ~2/3 de pacientes con PBC tratados en estadíos iniciales de la 

enfermedad [24, 36-38]. Sin embargo, para los pacientes que no responden a 

la monoterapia con UDCA, se están estudiando tratamientos alternativos con 

ciertos beneficios terapéuticos, como es el caso del ácido obeticólico (del inglés 

obeticholic acid, OCA), el cual parece mejorar ciertos parámetros de colestasis 

aunque presenta efectos secundarios importantes [39]. 

La colestasis de los pacientes con PBC está caracterizada con alteraciones 

en la secreción biliar de bicarbonato [111, 112], la cual es clave para la 

fluidificación y alcalinización de la bilis y para proteger al epitelio biliar frente al 

efecto dañino de los ácidos biliares tóxicos. En humanos, el intercambiador Cl-

/HCO3
- AE2 (en inglés anion exchanger 2, AE2, también conocido como 
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SLC4A2) es el responsable de la secreción biliar de bicarbonato, estando 

localizado en la membrana apical de los colangiocitos. Además, AE2 participa 

en la regulación del pH intracelular (pHi) de las células biliares [113-115]. Los 

pacientes con PBC presentan una disminución muy notable en la expresión de 

AE2 en los colangiocitos, lo cual favorece la colestasis [105]. El papel de AE2 

parece ser clave en la etiopatogenia de la PBC, ya que ratones Ae2-/- 

desarrollan diversas características hepato-biliares e inmunológicas típicas de 

los pacientes con PBC, incluyendo la presencia de AMAs frente a PDC-E2 

[116]. Por otro lado, el receptor inositol 1,4,5-trifosfato tipo 3 (Ins3PR3) parece 

tener un papel importante en la colestasis de los pacientes con PBC. El 

Ins3PR3 es una proteína integral de membrana localizada en la región 

subapical del retículo endoplasmático (en inglés endoplasmic reticulum, ER) 

que favorece la secreción biliar de bicarbonato dependiente de AE2 en los 

colangiocitos a través de la salida de calcio (Ca2+) desde el ER al citoplasma 

celular [117, 118]. Al igual que AE2, la expresión del Ins3PR3 se encuentra 

disminuida en los colangiocitos PBC, favoreciendo también la colestasis [119]. 

En este sentido, cabe destacar que fue recientemente comprobado que el 

descenso de expresión de AE2 e Ins3PR3 en los colangiocitos PBC es 

inducido, al menos en parte, por el miR-506, el cual se encuentra sobre-

expresado [105, 120]. 

 

Hipótesis y objetivos 

El miR-506 parece tener un papel fundamental en la etiopatogénesis de la 

PBC. Sin embargo, hasta el momento se desconocen los mecanismos que 

regulan su expresión en los colangiocitos así como el papel del miR-506 en la 

patogenia de los colangiocitos y en la regulación inmune. Este trabajo pretende 

estudiar la regulación de la expresión del miR-506 en los colangiocitos y su 

papel en la patología y activación inmune de la PBC. Para ello, nos propusimos 

los siguientes objetivos: 

I. Análisis de la regulación de la actividad promotora del miR-506 en 

colangiocitos. 

II. Determinación del efecto directo del miR-506 en la fisiopatología de los 

colangiocitos. 
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III. Estudio del papel del miR-506 en la regulación inmune en PBC. 

 

Material y métodos 

1. Estudio de la regulación de la actividad del promotor del miR-506 

en colangiocitos humanos normales 

Para determinar los mecanismos de regulación de la actividad del promotor del 

gen humano miR-506 (hsa-miR-506) en colangiocitos humanos normales se 

clonaron tres regiones de distinto tamaño del promotor (~3000, ~2000 y ~1000 

bp, denominadas Z1, Z2 y Z3, respectivamente) en un vector de expresión que 

contiene el gen de la luciferasa. Posteriormente se transfectaron colangiocitos 

humanos (H69) con los tres vectores recombinantes. Tras 6 h de transfección, 

las células fueron tratadas durante 24 h con diversos estímulos: citoquinas pro-

inflamatorias, [en inglés interleukins (IL) 1β, 6, 8, 12, 17, 18, tumor necrosis 

factor alpha (TNFα), e interferon gamma (IFNγ)], factores pro-fibróticos [en 

inglés transforming growth factor beta 1 (TGFβ1)], estrógenos (17β-estradiol), 

glucocorticoides [dexametasona (DEX)], factores de crecimiento [en inglés 

epidermal growth factor (EGF)] y ácidos biliares [ácidos cólico (CA), 

ursodesoxicólico (UDCA) y tauroursodesoxicólico (TUCA)]. Posteriormente, las 

células fueron lisadas y se determinó la actividad luciferasa utilizando un kit de 

luciferasa (Promega). 

2. Estudio del efecto de la sobre-expresión del miR-506 en 

colangiocitos humanos normales 

Los colangiocitos humanos H69 fueron transfectados de manera estable 

utilizando vectores de expresión que contienen la secuencia del miR-506 (H69-

miR-506) o una secuencia control (H69-miR-neg) (Thermo Fisher Scientific). 

Además, se utilizaron también células tratadas con el vehículo de transfección 

como control. Se determinó el perfil proteómico de las células mediante 

espectrometría de masas y se analizó la expresión génica de marcadores 

biliares y epiteliales, así como de marcadores mesenquimales y pro-

inflamatorios. Además, se analizó el efecto de la sobre-expresión del miR-506 

en la proliferación, adhesión, migración y muerte celular, en el estrés oxidativo 

y en la actividad metabólica mitocondrial. Por último, se llevaron a cabo co-
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cultivos de colangiocitos con sobre-expresión del miR-506 junto con células 

mononucleares de sangre periférica (en inglés peripheral blood mononuclear 

cells, PBMCs) de una paciente con PBC para determinar el efecto de la sobre-

expresión del miR-506 en los colangiocitos sobre la regulación inmunológica. 

 

Resultados y discusión 

Diversas citoquinas pro-inflamatorias cuya expresión está aumentada en 

hígados de pacientes con PBC (i.e. IL8, IL12, IL17, IL18 y TNF) estimularon la 

actividad del promotor del gen miR-506 en colangiocitos humanos normales. 

Sin embargo, los ácidos biliares, estrógenos y factores de crecimiento 

evaluados no mostraron efecto sobre la actividad promotora del gen miR-506. 

La sobre-expresión del miR-506 en colangiocitos inhibió la expresión 

proteica de AE2 y alteró el perfil proteómico de las células, particularmente 

afectando a la expresión de proteínas implicadas en procesos metabólicos. 

Además, el miR-506 inhibió la expresión de diversos marcadores biliares y 

epiteliales en colangiocitos, y promovió la expresión de genes mesenquimales, 

inflamatorios y de senescencia. Este fenotipo alterado dio como resultado una 

disminución de la proliferación, adhesión y migración celular. Por otro lado, el 

miR-506 estimuló el estrés celular, mediante el aumento de los niveles de 

especies reactivas de oxígeno (en inglés reactive oxigen species, ROS), del 

estrés de ER y del daño del ADN en los colangiocitos, y sensibilizó a las células 

a la apoptosis inducida por ácidos biliares citotóxicos habitualmente 

aumentados en hígados de pacientes con PBC. Los efectos del miR-506 se 

vieron también asociados a un aumento del metabolismo mitocondrial y de la 

fosforilación oxidativa – eventos que se dieron junto con un desacoplamiento 

de la producción de ATP de la respiración mitocondrial –, y también con 

sobreexpresión de PDC-E2. Finalmente, el miR-506 en colangiocitos promovió 

la proliferación y activación de los PBMCs de PBC, y estimuló la secreción de 

las citoquinas pro-inflamatorias IL-17A e IL-23, que participan en procesos de 

autoinmunidad. 

 

Conclusión 
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Los hallazgos descritos en este estudio indican que el ambiente inflamatorio 

presente en el hígado de pacientes con PBC favorece la expresión del miR-506 

en los colangiocitos. Dicho miRNA promueve el desarrollo de características 

fenotípicas típicas de PBC en los colangiocitos, favoreciendo asimismo la 

activación inmune. Nuestros datos apoyan la idea de que el miR-506 juega un 

papel clave en la patogenia de la PBC, siendo una posible diana terapéutica. 

 

CAPÍTULO 2: PAPEL DE FXR Y TGR5 EN EL 

COLANGIOCARCINOMA (CCA) 

Introducción 

Los CCAs agrupan a un conjunto heterogéneo de tumores que afectan a los 

colangiocitos [41, 42]. Se trata del segundo tipo de tumor hepático primario más 

frecuente detrás del carcinoma hepatocelular (en inglés hepatocellular 

carcinoma, HCC), representado el ~3% de los cánceres gastrointestinales [41, 

43]. Se trata de tumores asintomáticos en estadios iniciales, siendo 

generalmente diagnosticados en fases avanzadas, lo cual compromete las 

posibles opciones terapéuticas [45, 62]. En la actualidad, las únicas opciones 

potencialmente curativas son la resección quirúrgica del tumor o el trasplante 

hepático, aunque solo están indicadas en un número reducido de casos que 

cumplen con criterios estrictos de estadio tumoral [98]. Este hecho, junto con la 

elevada quimioresistencia que presentan estos tumores [101], hace que el 

pronóstico de los pacientes CCA sea muy malo a corto plazo. Por ello, es clave 

esclarecer los mecanismos moleculares involucrados en el desarrollo y 

progresión de estos tumores para aportar nuevas estrategias terapéuticas 

efectivas. 

En la actualidad, la etiología de la mayoría de los CCAs se desconoce. Sin 

embargo, un gran número de CCAs aparece en presencia de colestásis [45]. La 

acumulación de ácidos biliares (ABs) tóxicos puede favorecer el desarrollo y la 

progresión de tumores gastrointestinales [72]. En este sentido, los ABs tóxicos 

no inducen carcinogénesis directamente en los colangiocitos, pero pueden 

favorecer el desarrollo y progresión de los CCAs mediante la estimulación de la 

inflamación y proliferación de los colangiocitos [183-185]. Los ABs son 



 Summary in Spanish (Resumen en Español) 

179 

moléculas que regulan diversos procesos fisiológicos y patológicos en los 

colangiocitos, tales como proliferación, secreción o supervivencia celular [157, 

181], a través de su unión selectiva por dos tipos de receptores de ABs: el 

receptor nuclear farnesoide X (del inglés farnesoid X receptor, FXR, también 

conocido como NR1H4) [176-179] y el receptor de membrana tipo 1 acoplado a 

proteína G (TGR5, también conocido como GPBAR1) [180]. 

FXR es el miembro de la superfamilia de receptores nucleares de hormonas 

más específico para la regulación de la homeostasis y señalización de ABs 

[158, 176, 186-189]. La expresión de FXR se encuentra aumentada en aquellas 

células y tejidos expuestos a altas concentraciones de ABs, incluyendo los 

colangiocitos. FXR está involucrado en funciones tales como el metabolismo de 

lípidos y glucosa, inflamación, inmumodulación, fibrosis, así como 

regeneración, diferenciación y proliferación celular [197-201]. TGR5 también es 

un importante mediador en la homeostasis de ABs y su expresión es más 

generalizada, con mayor expresión en tejidos como tejido adiposo pardo, 

cerebro, músculo, placenta, pulmón, intestino, bazo, estómago, vesícula biliar e 

hígado [158, 210-212]. En los colangiocitos, TGR5 se expresa en la membrana 

apical, favoreciendo la secreción biliar de bicarbonato [13]. 

Tanto FXR como TGR5 parecen estar involucrados en el desarrollo y 

progresión de distintos tipos de cánceres. En este sentido, FXR parece 

funcionar como supresor tumoral [200] mientras que TGR5 parece ser un 

promotor tumoral mediante la estimulación de la proliferación y supervivencia 

celular en diversos tipos de cáncer [220, 240]. Por lo tanto, la regulación 

funcional de estos receptores de ABs se presenta como posible opción 

terapéutica para diversas enfermedades. En este sentido, se han desarrollado 

nuevos derivados de ABs capaces de activar de forma selectiva FXR o TGR5, 

entre los que se encuentran el ácido obeticólico (en inglés obeticholic acid, 

OCA) y el INT-777, respectivamente. OCA (también conocido como INT-747 o 

ácido 6α-etil-chenodesoxicólico) es un derivado sintético de AB que activa FXR 

con gran afinidad y selectividad [205] y que está bajo evaluación clínica para el 

tratamiento de diversas enfermedades tales como esteatohepatitis no 

alcohólica (del inglés non-alcoholic steatohepatitis, NASH), la colangitis 

esclerosante primaria (del inglés primary sclerosing colangitis, PSC) y atresia 

biliar [207, 208]. Además, el OCA ha sido aprobado recientemente para el 
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tratamiento de pacientes con PBC. Por otro lado, el INT-777 (ácido 6α-etil-

23(S)-metil-3α,7α,12α-trihidroxil-5β-colan-24-oico) [226] es otro derivado 

sintético de AB que en este caso activa TGR5 de forma selectiva. Estudios con 

animales han mostrado que el INT-777 controla la homeostasis de glucosa, 

previene la aterosclerosis y enfermedad renal diabética, y controla también el 

aumento de peso y la adiposidad mediante la regulación del AMP cíclico y el 

consumo energético [227-229]. 

 

Hipótesis y objetivos 

Dada la importancia de los ABs en el desarrollo y progresión del CCA, este 

estudio pretende investigar el papel de FXR y TGR5 en la patogenia del CCA, 

para lo cual evaluará el efecto diferencial de su activación en la progresión 

tumoral utilizando los agonistas selectivos OCA e INT-777. Para ello, nos 

propusimos los siguientes objetivos: 

I. Análisis de la expresión de FXR y TGR5 en tejido de CCA de 2 cohortes 

independientes de pacientes y determinación de su asociación con parámetros 

clinicopatológicos tumorales. 

II. Evaluación de la expresión de FXR y TGR5 en colangiocitos humanos 

normales y tumorales en cultivo. 

III. Determinación del efecto de los agonistas de FXR o TGR5 sobre el 

crecimiento del CCA en un modelo ortotópico en ratones inmunodeficientes. 

IV. Estudio de los efectos diferenciales de la activación de FXR o TGR5 en el 

crecimiento de células de CCA en cultivo. 

 

Material y métodos 

1. Expresión de FXR y TGR5 

La expresión génica de FXR y TGR5 fue determinada mediante PCR 

cuantitativa en tejido de CCA e hígado normal de 2 cohortes diferentes de 

pacientes – cohortes de „San Sebastian‟ y „Copenhagen‟ –, así como en líneas 

celulares humanas de CCA (EGI1 y TFK1) y colangiocitos humanos normales 

(NHC) en cultivo. 
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2. Efecto de OCA e INT-777 sobre un modelo animal de CCA humano 

ortotópico 

Se estableció un modelo de CCA humano en hígado de ratones 

inmunodeficientes mediante la implantación de tumores derivados de células 

humanas de CCA (EGI1). El crecimiento tumoral en el hígado fue monitorizado 

mediante resonancia magnética (en inglés magnetic resonance imaging, MRI) 

durante 2 meses de tratamiento con OCA o INT-777 (Intercept 

Pharmaceuticals) en dieta (0.03%). Posteriormente, se analizó la expresión de 

marcadores de proliferación en los tumores mediante PCR cuantitativa e 

inmunohistoquímica. 

3. Efecto de la administración de OCA e INT-777 en colangiocitos 

normales y tumorales en cultivo 

Se utilizaron células de CCA (EGI1 y TFK1) y NHC en cultivo para determinar 

el efecto de OCA e INT-777 sobre su proliferación, apoptosis (ambos por 

citometría de flujo), migración (por “wound-healing” y “transwell”) y/o 

metabolismo energético mitocondrial (por Seahorse). 

 

Resultados y discusión 

La expresión de FXR se encuentra disminuida y la de TGR5 aumentada en 

tejido tumoral de CCA humano en comparación con tejido hepático sano 

adyacente. La expresión de FXR correlaciona con el grado de diferenciación 

tumoral mientras que la de TGR5 correlaciona con la invasión tumoral 

perineural. La expresión de TGR5 es mayor en CCAs perihilares que en 

intrahepáticos. In vitro, la expresión de FXR está disminuida mientras que la de 

TGR5 está aumentada en células de CCA en relación a NHC en cultivo. En 

ratones con implantes ortotópicos de tumores de CCA humanos, la 

administración crónica de OCA inhibió el crecimiento tumoral en comparación 

con animales control no tratados. Este hecho fue acompañado por una 

disminución de la expresión de marcadores de proliferación en los tumores. Por 

el contrario, la administración crónica de INT-777 in vivo no mostró efectos en 

el crecimiento tumoral. In vitro, OCA inhibió la proliferación y migración de las 

células de CCA, evento asociado con una disminución del metabolismo 
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energético mitocondrial, y sin afectar a la apoptosis. Por el contrario, INT-777 

estimuló la proliferación y la migración de las células de CCA, evento asociado 

con el aumento del metabolismo energético mitocondrial. 

 

Conclusiones 

Este estudio proporciona nuevo conocimiento sobre el potencial valor 

terapéutico de la regulación de la actividad de FXR y/o TGR5 en CCA. La 

activación de FXR por OCA inhibe el crecimiento del CCA, mientras que la 

activación de TGR5 mediante INT-777 no muestra actividad inhibidora e incluso 

puede promover la progresión del CCA. Estos efectos están mediados, al 

menos en parte, por el efecto diferencial de la activación de FXR o TGR5 sobre 

la proliferación, migración y metabolismo energético mitocondrial en las células 

de CCA. Además, la correlación de la expresión de FXR o TGR5 con 

importantes características clínico-patológicas como la diferenciación tumoral y 

la invasión perineural, respectivamente, pueden tener importante valor 

pronóstico. Por lo tanto, nuestros resultados indican que FXR y TGR5 son 

posibles dianas terapéuticas para el tratamiento de los pacientes con CCA. 

 

CAPÍTULO 3: PAPEL DEL FACTOR DE TRANSCRIPCIÓN KLF5 

EN EL COLANGIOCARCINOMA (CCA) 

 

Introducción 

El desarrollo y progresión del colangiocarcinoma (CCA), al igual que otros 

tumores, está regulado por factores de transcripción (FT) involucrados en 

procesos de proliferación, diferenciación y supervivencia, entre otros. Se han 

descrito alteraciones en la expresión de diversos FT que regulan diferentes 

características del CCA [77], siendo su regulación potentialmente terapéutica. 

En los últimos años se ha descrito el papel de la familia de FT tipo Krüppel (en 

inglés Krüppel-like factor, KLF) en diversos procesos biológicos y patológicos, 

incluido el cáncer. Sin embargo, su papel en la fisiopatología del epitelio biliar y 

en el CCA permanece prácticamente desconocido. La familia de KLFs consta 

de 17 miembros, los cuales contienen tres dedos de zinc con una región bien 
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conservada en su región carboxi-terminal para la unión al DNA y una región 

amino-terminal variable entre los miembros [246]. Es esta última región la que 

determina la función de cada KLF a través de su unión a co-activadores, co-

represores o modificadores como las histona acetiltransferasas. Además, los 

KLFs pueden sufrir modificaciones post-transduccionales que regulan su 

función y actividad transcripcional [246]. Este trabajo se centra en el estudio de 

la expresión de los KLFs en colangiocitos normales y tumorales en cultivo, y en 

particular en el análisis del papel de KLF5 en la etiopatogenia del CCA. 

 

Hipótesis y objetivos 

Los factores de transcripción KLF están involucrados en el desarrollo y 

progresión de diversos cánceres, no obstante, su papel en CCA es 

desconocido. Nuestros datos preliminares de expresión de KLFs en CCA 

mostraron que KLF5 se encuentra altamente sobre-expresado en colangiocitos 

tumorales en comparación con colangiocitos normales, indicando su posible 

relevancia en la colangiocarcinogénesis. Este estudio pretende analizar el 

papel de KLF5 en la patogenia del CCA y determinar el posible valor 

terapéutico de su regulación. Los objetivos del estudio son: 

I. Analizar la expresión de los distintos KLF en líneas celulares de CCA en 

comparación con colangiocitos normales. 

II. Analizar la expresión de KLF5 en tejido de CCA en comparación con 

controles hepáticos no tumorales. 

III. Evaluar el papel de KLF5 en la patogénesis del CCA in vitro. 

IV. Estudiar el papel de KLF5 en la respuesta del CCA a la quimioterapia in 

vitro. 

V. Determinar el papel de KLF5 en la patogénesis de CCA in vivo. 

 

Material y métodos 

1. Expresión de KLFs en colangiocitos normales y tumorales, así 

como en tejido de pacientes con CCA e hígado normal 

Se llevaron a cabo análisis de expresión de los distintos KLFs a nivel de RNA 

mensajero mediante PCR cuantitativa. Para ello, se utilizaron líneas celulares 
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de CCA humano (EGI1, TFK1 y Witt, entre otras) así como cultivos primarios 

de colangiocitos humanos normales (NHC2, NHC3, NHC-SS y C324) y 

colangiocitos humanos no tumorales inmortalizados con el oncogen SV-40 

(células H69). Por otro lado, se analizaron muestras de tejido de CCA e hígado 

sano adyacente al tumor de 3 cohortes diferentes de pacientes (“Copenhagen”, 

“TCGA” y “San Sebastian”) para la determinación de la expresión génica de 

KLF5. Además, se analizó la expresión proteica de KLF5 mediante inmunoblot 

e inmunofluorescencia en los colangiocitos normales y tumorales en cultivo, y 

también mediante inmunofluorescencia en tejido de pacientes con CCA. 

2. Inhibición de la expresión de KLF5 en células de CCA mediante 

RNA de interferencia y tecnología CRISPR/Cas9 y análisis de su papel 

funcional in vitro 

Tras la determinación de la expresión de los KLFs en colangiocitos normales y 

tumorales en cultivo, se comprobó que KLF5 se encuentra altamente sobre-

expresado en diversas líneas celulares de CCA en comparación con NHC. 

Para poder estudiar el efecto funcional de dicha sobre-expresión, se procedió a 

la inhibición o anulación de la expresión de KLF5 mediante partículas 

lentivirales con shRNAs específicos o tecnología CRISPR/Cas9, 

respectivamente. Posteriormente, se analizó el efecto de la pérdida de 

expresión de KLF5 sobre la proliferación, migración, y supervivencia celular en 

presencia de ácidos biliares tóxicos o quimioterápicos. 

3. Efecto de la pérdida de expresión de KLF5 sobre la tumorogénesis 

del CCA in vivo 

Se analizó el papel de la pérdida de expresión de KLF5 en células de CCA 

(tecnología CRISPR/Cas9) sobre la implantación y crecimiento tumoral 

subcutáneo en ratones inmunodeficientes. 

 

Resultados y discusión 

La expresión de diferentes miembros de la familia de factores de transcripción 

KLF se encuentra alterada en colangiocitos humanos tumorales en 

comparación con colangiocitos normales en cultivo. Entre los KLFs cuya 

expresión se encuentra alterada en células de CCA destacó KLF5, el cual se 
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encuentra altamente sobre-expresado en 8 líneas celulares de CCA en 

comparación con 4 cultivos primarios de NHC. La expresión de KLF5 se 

encuentra particularmente elevada en el núcleo de las células de CCA. La 

expresión de KLF5 se encontró también aumentada en tejido de CCA de 

pacientes de 3 cohortes independientes en comparación con tejido hepático 

adyacente no tumoral. Curiosamente, los tumores que presentaban invasión de 

nódulos linfáticos mostraron mayores niveles de expresión de KLF5 en 

comparación con los tumores de CCA que no presentaban dicha invasión de 

nódulos linfáticos, indicando su posible valor pronóstico. El silenciamiento 

experimental de la expresión de KLF5 en células de CCA en cultivo mediante 

tecnología CRISPR/Cas9 y/o lentivirus shRNA específicos provocó una parada 

en el ciclo celular e inhibición de la migración, así como una menor viabilidad 

celular en presencia de ácidos biliares tóxicos y diversos agentes 

quimioterápicos. Por último, los estudios llevados a cabo en ratones 

inmunodeficientes mostraron que las células de CCA deficientes de KLF5 

inyectadas de manera subcutánea presentan una drástica disminución en la 

capacidad de implantación y crecimiento tumoral en comparación con las 

células control. 

 

Conclusiones 

Los hallazgos descritos en este estudio demuestran que las células de CCA 

presentan alteraciones en la expresión de distintos KLF, entre los que destaca 

KLF5. La expresión de KLF5 se encuentra aumentada en tumores de pacientes 

con CCA y particularmente en tumores con invasión de nódulos linfáticos 

(asociado a un estadio avanzado de la enfermedad). Los estudios 

experimentales in vitro e in vivo demuestran que KLF5 promueve la 

proliferación, migración y tumorogénesis de las células de CCA y favorece su 

supervivencia y quimioresistencia. Por tanto, KLF5 puede ser un importante 

marcador diagnóstico y pronóstico, así como una diana terapéutica en CCA. 

Serán necesarios futuros estudios para validar y expandir dichos resultados, 

así como para evaluar la posible regulación terapéutica de KLF5 en pacientes 

con CCA. 
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