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Introduction

Physically, Constant Mean Curvature (CMC) surfaces in R3 can be described
in terms of soap films. In fact, compact CMC surfaces can be seen as a model
for soap bubbles, while minimal surfaces (or surfaces with zero mean curva-
ture) model soap films in equilibrium with arbitrary boundary [7],[8]. CMC
surfaces have a long history in Physics and Mathematics and there is a huge
literature on the subject. The aim of this Degree’s Final Dissertation is to
review some fundamental facts on CMC surfaces with rotational symmetry.
We will use modern tools to prove the classical Delaunay’s classification of
CMC rotational surfaces and the classical characterization of CMC surfaces
in terms of the area functional (both date back to 1791 [2]). They are com-
plemented with a recent classification of rotational surfaces with prescribed
curvature function [6] and a recent variational characterization of rotational
CMC surfaces as liquid bridges [9].
Surfaces of revolution with constant mean curvature in R3 where completely
characterized over a hundred years ago by C. Delaunay in 1841 [2]. By us-
ing the geometric properties of conics and their evolutes, Delaunay derived
a non-linear ordinary differential equation involving the radius of curvature
of the planar curve sweeping a CMC rotational surface. He also showed that
this ODE arises geometrically by rolling the focus of a conic along a straight
line without slippage (the roulette of a conic). Thus, as Delaunay’s theorem
says, roulettes of conics are the meridians of CMC surfaces of revolution.
In Chapter 2 we prove Delaunay’s theorem by using a more modern ap-
proach, following Delaunay’s guidelines. In Section 2.1. we first find a
parametrization for the roulettes of conics. Although there are several
parametrizations in the literature, most of them are expressed in terms of
elliptic functions [2],[3],[5], we have chosen to parametrize the roulettes of
conics in terms of the parametrizations of the conics themselves [1]. This
yields more or less simple expressions for the geometric features of the cor-
responding surfaces (including their mean curvature). We also derive a
direct parametrization for surfaces of revolution having roulettes of conics
as profile curves (Delaunay’s surfaces). Using the above parametrization,
it is shown that Delaunay’s surfaces have constant mean curvature. Then,
in Section 2.2. the converse of this fact is proved. In fact, we prove that
CMC surfaces (suitably parametrized) satisfy the ODE equation discovered
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by Delaunay (Proposition 2.2.1. and Remark 2.2.1.), what allows us to con-
clude the Delaunay’s theorem (Theorem 2.2.2.): CMC surfaces of revolution
are Delaunay’s surfaces. Apart from the elementary cases of planes, spheres
and cylinders, there are three cases of Delaunay surfaces, catenoids, undu-
loids and nodoids, corresponding to the choice of the conic as a parabola, an
ellipse, or a hyperbola, respectively (see Chapter 2). The main references
used in this chapter have been [1],[2],[3],[5],[7].
In Chapter 3, we use Kenmotsu’s approach [6] to obtain in Section 3.1. a
parametrization of all surfaces of revolution in R3 having prescribed mean
curvature function H(s) (not necessarily constant). Then, in Section 3.2.,
the above expression is used in combination with Remark 2.2.1., to obtain
another proof that CMC rotation surfaces are Delaunay’s surfaces. Our ba-
sic references for this chapter have been [3] and [6].
Finally, in Chapter 4 a variational characterization and several physical as-
pects of CMC surfaces are analysed. In fact, M. Sturm in an appendix to
Delaunay’s work [2] characterized Delaunay’s surfaces variationally. Indeed,
they were characterized as the solution to an isoperimetric problem in cal-
culus of variations, since they can be seen as surfaces of revolution having
a minimal lateral area for a fixed volume [3],[7]. This isoperimetric varia-
tional approach is discussed in Section 4.1. where we follow [7] and [8] to
prove Theorem 4.1.1. that says that minimal surfaces (H = 0) expressed as
a graph are critical for the area functional. We also prove Theorem 4.1.1.
that says that CMC surfaces are critical for the area functional for admis-
sible variations preserving the algebraic volume. We notice in Section 4.1.
that minimal surfaces (H = 0) do not necessarily minimize the area (see
Example 4.1.1.). A short physical motivation is given in the preamble to
this Chapter 4. Finally, focusing on rotational surfaces, we see in Section
4.2. that CMC surfaces of revolution can be regarded as models for liquid
bridges between two vertical plates (Theorem 4.2.1.). The main references
for this chapter have been [4],[7],[8] and [9].
All figures in this work have been obtained with Wolfram Mathematica 11.2.



Chapter 1

Preliminaries

Along this work we will mostly be using techniques of Differential Geometry,
Differential Calculus and a few basic techniques of Calculus of Variations.
While the latter are described in Chapter 4, here we review some fundamen-
tal definitions and fix notation. For this, we have used Rafael López’s work
mentioned in the bibliography [7].

Definition 1.0.1. An immersed (or parametrized) surface in R3 is a map
x : U −→ R3 of class C∞, where U ⊂ R2 is an open subset, such that the
differential dxq : R2 −→ R3 is injective for all q ∈ U . The image S = x(U)
of x is called the trace of the immersed surface, where

S = {(x, y, z) ∈ R3|(x, y, z) = x(u, v), (u, v) ∈ U}.

Now, consider the surface S ⊂ R3, or x = x(u, v) : U ⊂ R2 −→ R3 a
differentiable map such that S = x(U) is a surface of R3. For each p ∈ S the
tangent plane TpS is formed by all velocity vectors of curves passing through
p at TpS = {α′(0);α : I −→ S, α(0) = p}. Fix N(p) a unit vector orthogonal
to Tp(s). Consider all planes P containing N(p), which are transverse to S
at p. Then P

⋂
S is a planar curve containing p, called a normal section.

Take the orientation on the curve such that the normal vector to this curve
is N(p). Each plane P is determined by a tangent direction v ∈ TpS. We
parametrize P = Pv, where v ∈ S1(p) = {v ∈ TpS; ‖v‖ = 1}. Denote
αv = Pv

⋂
S and let us use a parametrization of αv that satisfies αv(0) = p

and α′v(0) = v. Then kv(p) = kαv(0), where k is the curvature of αv at 0.
By the compactness of S1(p), there exists some v1, v2 ∈ TpS such that

k1(p) = kv1(0) = max{kv(0); v ∈ S1(p)},

k2(p) = kv2(0) = min{kv(0); v ∈ S1(p)}.

Definition 1.0.2. The numbers ki(p) are the principal curvatures of S at
p, and vi are the principal directions for i = 1, 2.

1



2

The principal directions at each point are orthogonal (this means that
k1(p) ⊥ k2(p) for any p ∈ S). Moreover, if we change the normal vector N
to N̂ = −N, the signs of the principal curvatures change (k̂1(p) = −k1(p)
and k̂2(p) = −k2(p)).
Now we can define the curvature of S at p as a type of “average” of the
principal curvatures, for instance, geometrical or arithmetic average.

Definition 1.0.3. The Gauss curvature K(p) and the mean curvature H(p)
are defined respectively as

K(p) = k1(p)k2(p) and H(p) =
k1(p) + k2(p)

2
.

All concepts are invariant by rigid motions of space, except perhaps, by
a sign. In fact, the change from N to N̂ = −N implies that H changes of
sign (Ĥ(p) = −H(p)) but K does not change (K̂(p) = K(p)).

Definition 1.0.4. A minimal surface is a surface whose mean curvature
vanishes on the surface (H(p) = 0 for any p ∈ S).

Definition 1.0.5. An orientation (or a Gauss map) on a surface S is a
differentiable map N : S −→ R3 such that ‖N(p)‖ = 1 and N(p) ⊥ TpS for
each p ∈ S.

We can restrict the image of N and write S2 instead of R3 since the norm
of all vectors N(p) is one.
Any surface is locally orientable, that is, given a point p ∈ S, there exists
a neighbourhood V of p at S such that V is an orientable surface. If x :
U −→ R3 is a local parametrization of the surface around p, we define

N(x(u, v)) = N(u, v) =
xu × xv
‖xu × xv‖

(u, v).

Here × is the cross or vector product and the subscripts u and v denote the
corresponding derivatives. Therefore x(U) ⊂ S is an open set of S oriented
by N ◦ x. We also point out that closed immersed surfaces (compact with
no boundary) are orientable thanks to the existence of an interior domain
of the surface. Since all the surfaces are locally graphs, we can always find
a local parametrization for each point of the surface.
Consider a Gauss map N : S −→ S2 and the differentiable map dNp :
TpS −→ TN(p)S2 ∼= TpS. This map is defined by

dNp(v) =

(
d

dt
N(α(t))

) ∣∣∣∣
t=0

where α : I −→ S is a curve on S such that α(0) = p and α′(0) = v. Then
dNp(v) is an endomorphism, which is self-adjoint, that is,
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< dNp(u), v >=< u, dNp(v) >, u, v ∈ TpS,

or equivalently, the bilinear form σp : TpS × TpS −→ R given by

σp(u, v) = − < dNp(u), v >

is symmetric. Both dNp and σp are diagonalizable.

Definition 1.0.6. The map −dNp : TpS −→ TpS is the Weingarten map
and σp : TpS×TpS −→ R given by σp(u, v) = − < dNp(u), v > is the second
fundamental form.

Moreover, it is known that the Weingarten map is diagonalizable and

Theorem 1.0.1. The eigenvalues of −dNp are precisely the principal cur-
vatures k1 and k2.

Thus, the matrix associated to −dNp can be diagonalized as(
k1 0
0 k2

)
,

and, therefore,

H(p) = −1

2
trace(dNp) = −1

2
(k1(p) + k2(p)).

Theorem 1.0.2. In local coordinates x = x(u, v), the mean curvature H is
given by the formula

H =
1

2

eG− 2fF + gE

EG− F 2
, (1.1)

where

E =< xu,xu >, F =< xu,xv >, G =< xv,xv >,
e =< xuu,N >, f =< xuv,N >, g =< xvv,N > .

Roughly speaking, a surface of revolution is swept out by rotating a
curve of the plane OXY around the OX axis. More precisely,

Definition 1.0.7. Let α(s) = (x(s), y(s)) be a curve in the plane z = 0
in R3. Call I to the open subset of R where α is defined and suppose that
y(s) > 0 in I. Then, we can define a surface of revolution Sα in R3, whose
generatrix is α and whose rotation axis is the x axis, as

Sα = {(x(s), y(s) cos θ, y(s) sin θ) ∈ R3 | s ∈ I, 0 ≤ θ ≤ 2π}. (1.2)

Then, the map x(s, θ) = (x(s), y(s) cos θ, y(s) sin θ) can be used to
parametrize the surface.
In general, we will assume that α is an arc-length parametrized curve, that
is, (x′(s))2 + (y′(s))2 = 1. For the surface of revolution, by differentiating
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the given parametric relation (1.2) with respect to the parameters s and θ,
we get

xs(s, θ) = (x′(s), y′(s) cos θ, y′(s) sin θ),

xθ(s, θ) = (0,−y(s) sin θ, y(s) cos θ).

xss = (x′′(s), y′′(s) cos θ, y′′(s) sin θ)

xsθ = (0,−y′(s) sin θ, y′(s) cos θ)

xθθ = (0,−y(s) cos θ,−y(s) sin θ).

xs × xθ = (y(s)y′(s),−y(s)x′(s) cos θ,−y(s)x′(s) sin θ)

‖xs × xθ‖ =
√
y(s)2y′(s)2 + y(s)2x′(s)2 =

√
y(s)2 = y(s)

If we compute the unit normal vector, we get

N = (y′(s),−x′(s) cos θ,−x′(s) sin θ)

By using the definitions in Theorem 1.0.2, we obtain the expressions for the
coefficients of the First and Second Fundamental Forms

E = x′(s)2 + y′(s)2(cos2 θ + sin2 θ) = x′(s)2 + y′(s)2 = 1,

F = −y′(s) cos θy(s) sin θ + y′(s) sin θy(s) cos θ = 0,

G = y(s)2 sin2 θ + y(s)2 cos2 θ = y(s)2,

e = y′(s)x′′(s)− x′(s)y′′(s) cos2 θ − x′(s)y′′(s) sin2 θ

= y′(s)x′′(s)− x′(s)y′′(s),
f = x′(s)y′(s) sin θ cos θ − x′(s)y′(s) sin θ cos θ = 0,

g = y(s)x′(s) cos2 θ + y(s)x′(s) sin2 θ = y(s)x′(s).

Next, the mean curvature H(s) of the surface can be easily calculated using
the relation given in (1.1). After some simplifications, we obtain

H(s) =
y(s)2x′′(s)y′(s)− y(s)2y′′(s)x′(s) + x′(s)y(s)

2y(s)2

=
y(s)x′′(s)y′(s)− y(s)y′′(s)x′(s) + x′(s)

2y(s)
. (1.3)



Chapter 2

Delaunay surfaces

In this chapter we describe the classical construction of CMC surfaces due
to Delaunay [5] and state Delaunay’s theorem (Theorem 2.2.2.). As it has
been said in the introduction, this is achieved by first finding a suitable
parametrization of Delaunay’s surfaces to show that they are CMC surfaces,
and then by characterizing CMC rotation surfaces (Proposition 2.2.1.) in
terms of an ODE discovered by Delaunay (Remark 2.2.1.).

2.1 Roulettes of conics, Delaunay’s surfaces and
their parametrizations

Remember that conics are those curves that we get when we intersect a cone
and a plane. Then, we have the following definitions:

Definition 2.1.1. Given a curve that rolls over another fixed curve without
slipping, then a point of the moving curve describes a curve that is called
roulette.

Definition 2.1.2. Surfaces of revolution whose profile curve is the roulette
of the focus of a conic rolling over a line, and whose axis of revolution is the
given line, are called Delaunay surfaces.

We will find a parametrization of the trace of the focus F ′ = (F1(t), F2(t))
of a conic when it rolls on a straight line. Consider a point P = (P1, P2)
of the conic, T the tangent line of the conic that goes through P , the focus
of the conic F , R the perpendicular line to T that goes through F and Q,
where Q is the intersection between T and R.

Our goal now is to parametrize the curve that describes the trace of the
focus F = (F1, F2). Apart from the elementary curves of spheres and cylin-
ders, there are three classes of Delaunay surfaces: catenoids, unduloids and
nodoids corresponding to the choice of conics as parabolas, ellipses or hy-
perbolas, respectively. To fix ideas, let us start by assuming that the conic

5



6 2.1. Roulettes of conics, Delaunay’s surfaces and their parametrizations

Figure 2.1: Initial position of
a roulette of a parabola.

Figure 2.2: 2nd position.

is a parabola. We can see in Figure 2.2. that the first coordinate of the
focus and the first coordinate of Q′ = (Q1, Q2) are the same,

F1(t) = Q1 = s(t)− |
−−→
P ′Q′| = s(t)− |

−−→
PQ|; (2.1)

where s(t) is the arclength parabola from its vertex P0 to P , and |
−−→
PQ| is the

length from P to Q, or, in other words, the length from Q1 to P1. Instead
of rolling the conic over a line we could interchange roles, fix the conic and
use the tangent line at each point of the conic.
A parametrization of the parabola is given by α(t) =

(
2b sinh t, b sinh2 t

)
,

where b > 0 and t ∈ [t1, t2]. The arc length for the parabola from t0 = 0 to
t is given by

s(t) =

∫ t

t0

|α′(u)|du = b(t+ sinh t cosh t).

The line T is parametrized as

T : (2b sinh t, b sinh2 t) + λ(2b cosh t, 2b sinh t cosh t)

since it goes through the point P = α(t) of the parabola and has the direction
vector α′(t). Then, considering that Q is the intersection between the lines
y = 0 and T , equalling the second coordinate of T with zero, we get that

Q = (b sinh t, 0). It follows that
−−→
PQ = (−b sinh t,−b sinh2 t) and the length

of the segment PQ is

|
−−→
PQ| = b sinh t cosh t.

Then,

F1(t) = s(t)− |
−−→
PQ| = bt.
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Now, we compute F2 = |
−−→
FQ|, where |

−−→
FQ| is the length of the segment that

goes from F to Q. The segment R is parametrized using the fact that goes
through Q and that its direction vector is perpendicular to α′(t):

R : (b sinh t, 0) + λ(−2b sinh t cosh t, 2b cosh t).

Then, since F is the intersection between R and x = 0, we calculate it
by equalling the first coordinate of R with zero, and we get F = (0, b).

It follows that
−−→
FQ = (b sinh t,−b) and F2(t) = |

−−→
FQ| = b cosh t, thus the

parametrization of the focus is given by

A(t) = (F1(t), F2(t)) = (bt, b cosh t).

Then A(t) gives a parametrization of the catenary, whose surface of revolu-
tion is the catenoid (see figures 2.3. and 2.4.).

-1.0 -0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 2.3: Catenary. Figure 2.4: Catenoid.

For the ellipse, parametrized by β(t) = (a cos t, b sin t), with b < a, c =√
a2 − b2 and t ∈ [t1, t2], the arc length from t0 to t is

s(t) =

∫ t

t0

|β′(z)|dz =

∫ t

t0

√
a2 − c2 cos2 zdz.

Since the ellipse has two foci, in this case two curves are generated. Taking



8 2.1. Roulettes of conics, Delaunay’s surfaces and their parametrizations

Figure 2.5: Ellipse.

F , the closest focus to the tangent, the length of the segment that goes from
P to Q is

|
−−→
PQ| = c sin t(a− c cos t)√

a2 − c2 cos2 t
.

Thus

F1 = s(t)− |
−−→
PQ| =

∫ t

t0

√
a2 − c2 cos2 zdz − c sin t(a− c cos t)√

a2 − c2 cos2 t
.

Now, F2 corresponds to the length of the segment that goes from F to Q,
thus,

F2 = |
−−→
FQ| = b(a− c cos t)√

a2 − c2 cos2 t
.

Hence, B1(t) = (F1, F2) is therefore the parametrization of the roulette
generated by the focus of the ellipse. Choosing the other focus F ′, it follows
after computing the length of PQ′ that the first coordinate is

F1 =

∫ t

t0

√
a2 − c2 cos2 zdz − c sin t(a+ c cos t)√

a2 − c2 cos2 t
,

and the second coordinate is the length of the segment from F ′ to Q′, thus

F2 =
b(a+ c cos t)√
a2 − c2 cos2 t

,

and B2(t) = (F1, F2) is, therefore, the parametrization of the roulette gen-
erated by the focus F ′ of the ellipse. The roulette of the focus of an ellipse
is called the undulary.
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0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

Figure 2.6: Undulary.

Figure 2.7: Unduloid.

Now, we consider the hyperbola parametrized by γ(t) = (a cosh t, b sinh t)
with a, b > 0, c =

√
a2 + b2 and t ∈ [t1, t2]. The arc length from t0 to t is

s(t) =

∫ t

t0

|γ′(z)|dz =

∫ t

t0

√
c2 cosh2 z − a2dz.

First, we consider F , the closest focus to the tangent. By computing the
length of the segment PQ it then follows that the first coordinate of the
trace of the focus is

F1 = s(t)− |
−−→
PQ| =

∫ t

t0

√
c2 cosh2 z − a2dz − c sinh t(c cosh t− a)√

c2 cosh2 t− a2
,

and the second coordinate is given by the length of FQ, namely,

F2 = |
−−→
FQ| = b(c cosh t− a)√

c2 cosh2 t− a2
.

C1(t) = (F1, F2) is therefore the parametrization of the roulette generated
by the focus F of the hyperbola.
Taking the focus F ′ instead, and computing the length of the segment PQ′

or the first coordinate of the focus is

F1 = s(t)− |
−−→
PQ′| =

∫ t

t0

√
c2 cosh2 z − a2dz − c sinh t(c cosh t+ a)√

c2 cosh2 t− a2
,
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Figure 2.8: Hyperbola.

and the second coordinate is the length of F ′Q′, thus,

F2 = |
−−→
F ′Q′| = b(c cosh t+ a)√

c2 cosh2 t− a2
.

C2(t) = (F1, F2) is therefore the parametrization of the roulette generated
by the focus F ′. The roulette of the focus of a hyperbola is called the nodary
(see images 2.9. and 2.10.).

-1 0 1 2
x

0.5

1.0

1.5

2.0

2.5

3.0

z

Figure 2.9: Nodary.
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Figure 2.10: Nodoid.

Then, the surfaces of revolution generated by the curves A(t), B1(t),
B2(t), C1(t) and C2(t) obtained in the previous lines admit the following
parametrization:

x(t, v) = (F1(t), F2(t) cos v, F2(t) sin v) , (2.2)

which correspond respectively with

• Catenoids, if the profile curve is A(t).

• Unduloids, if the profile curve is either B1(t) or B2(t).

• Nodoids, if the profile curve is either C1(t) or C2(t).

Moreover, using the above parametrization (2.2) and Theorem 1.0.2, it can

be seen after a direct long calculation that H = 0 for catenoids, H =
1

2a

with a > 0 for unduloids and H = − 1

2a
with a > 0 for nodoids. In other

words, Delaunay surfaces have constant mean curvature.

2.2 Delaunay’s theorem

Basically, Delaunay surfaces are the only surfaces of revolution with constant
mean curvature. This result was obtained by Delaunay in [2] using geometric
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properties of roulettes. On the other hand, the following remark will be
fundamental in our approach to Delaunay’s result.

Remark 2.2.1. Using again the geometric properties of conics and roulettes,
it has been shown in [2] that if α(s) = (x(s), y(s)) is an arc-length parametri-
zation of the roulette of the focus of a given conic β, then,

• β is a parabola if and only if
dx

ds
(s) =

a

y(s)
and α(s) is a catenary (Sα

is a catenoid).

• β is an ellipse if and only if
dx

ds
(s) = ±y

2(s) + b2

2ay(s)
and α(s) is an

undulary (Sα is an unduloid).

• β is a hyperbola if and only if
dx

ds
(s) = ±y

2(s)− b2

2ay(s)
and α(s) is a

nodary (Sα is a nodoid).

Here a and b are real constants and a > 0.

Now, leaving aside the most basic cases of planes and cylinders, we can
prove the following result:

Proposition 2.2.1. Assume that α(s) = (x(s), y(s)) is an arc-length parame-
trized planar curve and denote by Sα the surface of revolution obtained by
revolving α around the x-axis. Assume that Sα is not a cylinder nor a plane.
Then,

• Sα is minimal, that is, H = 0, if and only if, dx
ds (s) y(s) = c, for some

c ∈ R.

• Sα has non-zero mean curvature H = 1
2a , for a ∈ Rr {0}, if and only

if, dx
ds (s)y(s) + A = 1

2ay
2(s), with A ∈ R. Moreover, Sα is a sphere if

and only if A = 0.

Proof. From (1.3) and since α is arc-length parametrized, we get the follow-
ing system of differential equations:{

2H(s)y(s)− y(s)x′′(s)y′(s) + y(s)y′′(s)x′(s)− x′(s) = 0

x′(s)2 + y′(s)2 = 1

Solving this system we will obtain an explicit formula for the generatrix
curve of a general surface of revolution.
Among the proof we will use some equalities that are obtained from the fact
that α is arc-length parametrized:

x′(s)2 + y′(s)2 = 1 ⇒ 2x′(x)x′′(s) + 2y′(s)y′′(s) = 0 (2.3)

⇒ −x′(s)x′′(s) = y′(s)y′′(s) (2.4)
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and
x′(s)2 + y′(s)2 = 1⇒ −x′(s)2 = y′(s)2 − 1.

Multiplying the first equation of the system by x′(s) we get

2H(s)y(s)x′(s)− y(s)x′′(s)y′(s)x′(s) + y(s)y′′(s)x′(s)2 − x′(s)2 = 0.

Using the equation (2.4), the term −y(s)x′′(s)y′(s)x′(s) becomes
y(s)y′(s)2y′′(s); then,

0 = 2H(s)y(s)x′(s) + y(s)y′(s)2y′′(s) + y(s)y′′(s)x′(s)2 − x′(s)2,
0 = 2H(s)y(s)x′(s) + y(s)y′′(s)(y′(s)2 + x′(s)2)− x′(s)2,
0 = 2H(s)y(s)x′(s) + y(s)y′′(s)− x′(s)2,
0 = 2H(s)y(s)x′(s) + y(s)y′′(s) + y′(s)2 − 1.

Since (y(s)y′(s))′ = y′(s)y′(s) + y(s)y′′(s) we can rewrite the equation as

2H(s)y(s)x′(s) + (y(s)y′(s))′ − 1 = 0 (2.5)

Now we multiply the first equation of the initial system by y′(s):

2H(s)y(s)y′(s)− y(s)x′′(s)y′(s)2 + y(s)y′′(s)x′(s)y′(s)− x′(s)y′(s) = 0.

Using (2.4), the term y(s)y′′(s)x′(s)y′(s) becomes −y(s)x′(s)2x′′(s), so

2H(s)y(s)y′(s)− y(s)x′′(s)(y′(s)2 + x′(s)2)− x′(s)y′(s) = 0.

For the second equation of the initial system,

2H(s)y(s)y′(s)− y(s)x′′(s)− x′(s)y′(s) = 0.

Lastly, since (y(s)x′(s))′ = y′(s)x′(s) + y(s)x′′(s), we get

2H(s)y(s)y′(s)− (y(s)x′(s))′ = 0. (2.6)

Let us prove the first point. Assume that H = 0. Then, from (2.6) we know
that (x(s)y′(s))′ = 0, and this means that y(s)x′(s) = c for some c ∈ R.
For the other implication, assume that x(s)y′(s) = c is constant. Then (2.6)
becomes 2H(s)y(s)y′(s) = 0 or H(s)(y2(s))′ = 0. Then two things can
happen: either H(s) = 0 or (y2(s))′ = 0. Let us see that the second option
implies that the surface is a cylinder. If (y2(s))′ = 0, then y2(s) = C is
constant, and it follows that y(s) = K is also constant. Then, y′(s) = 0
and from x′(s)2 + y′(s)2 = 1, we get that x′(s)2 = 1 or x′(s) = ±1, thus,
x(s) = ±s + B, so y is constant for any x and the generated surface is a
cylinder.

Now we will prove the second point. Firstly, assume that H =
1

2a
. Then,

equation (2.6) becomes (Hy(s)2−y(s)x′(s))′ = 0, thus, Hy(s)2−y(s)x′(s) =
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A with A ∈ R is constant and considering that H =
1

2a
, it follows x′(s)y(s)+

A =
1

2a
y2(s).

Notice that if A = 0, then we easily obtain the sphere. In fact, if A = 0, we
have

x′(s)y(s) =
1

2a
y(s)2 ⇒ x′(s) =

1

2a
y(s) (2.7)

Moreover, the equation x′(s)2+y′(s)2 = 1 implies that there exists θ(s) such
that

x′(s) = sin θ(s) (2.8)

y′(s) = cos θ(s) (2.9)

Differentiating (2.7) and using (2.8) and (2.9), we have

x′′(s) =
1

2a
y′(s) ⇒ θ′(s) cos θ(s) =

1

2a
cos θ(s) ⇒ θ′(s) =

1

2a

⇒ θ(s) =
1

2a
s+ b.

Then,

x(s) = −2a cos

(
1

2a
s+ b

)
+ c1,

y(s) = 2a sin

(
1

2a
s+ b

)
+ c2.

Since the equation

(x(s)− c1)2 + (y(s)− c2)2 = 4a2

is satisfied, α(s) = (x(s), y(s)) is a circle and Sα is a sphere.

For the other implication, suppose that x′(s)y(s) +A =
1

2a
y2(s) is satisfied.

Deriving this equation, we get
1

a
y(s)y′(s) = (y(s)x′(s))′ and using (2.6) we

derive
1

a
y(s)y′(s) = 2H(s)y(s)y′(s), thus,

(
2H(s)− 1

a

)
y(s)y′(s) = 0 or(

2H(s)− 1

a

)(
1

2
y2(s)

)′
= 0. Then two things can happen: either 2H(s)−

1

a
= 0 (and it follows that H =

1

2a
) or (

1

2
y2(s))′ = 0. We have shown before

that the second option implies that the surface of revolution is a cylinder,
so the proposition follows.

Combining the above Proposition 2.2.1 with Remark 2.2.1 we have the
following theorem.
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E = 1 + f ′(u)2, F = 0, G = f(u)2,

e =
−f ′′√
1 + f ′2

, f = 0, g =
f√

1 + f ′2
,

Theorem 2.2.2. (Delaunay’s theorem) An arc-length parametrized curve
α generates a surface Sα with constant mean curvature when we rotate it
around the x axis, if and only if, α is the roulette of a focus of a conic.

Finally, for later use in Section 4.2., we obtain another version of Remark
2.2.1, when the profile curve is described as a curve parametrized as a graph
α(u) = (u, f(u)). This can always be achieved locally. Let us consider a
surface of revolution given by the parametrization

x(u, v) = (u, f(u) cos v, f(u) sin v),

where u belongs to an open interval I of the real line, f(u) is a real-valued
smooth function, v belongs to the interval (0, 2π) and f(u) > 0 for any
u ∈ I. By differentiating the parametric relation x(u, v), with respect to the
parameters u and v, we get

xu(u, v) = (1, f ′(u) cos v, f ′(u) sin v),

xv(u, v) = (0,−f(u) sin v, f(u) cos v).

We obtain the expressions for the coefficients of the First and Second fun-

damental Forms with the unit normal N =
1√

1 + f ′2
(f ′,− cos v,− sin v).

Next, with the aid of the above calculated coefficients values, the mean
curvature H of the surface can be easily calculated using the relation in
Theorem 1.0.2. After some simplifications, we obtain

H =
−ff ′′ + 1 + f ′2

2f
√

(1 + f ′2)3
. (2.10)

The following theorem is a well-known consequence of the equation above.

Theorem 2.2.3. Assume that a surface of revolution S other than a cylin-
der is parametrized by

x(u, v) = (u, f(u) cos v, f(u) sin v).

• Then H = 0 if and only if it is part of a catenoid.

• H = ± 1

2a
is constant if and only if the function f(u) satisfies

f2 ± 2af√
1 + f ′2

= ±b2, (2.11)

where a and b are positive constants.
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Proof. Let us consider the equation of the mean curvature of a surface of
revolution given in (2.10). Suppose that H = c/2 is constant. Then,

• If c = 0: the equation for the curvature’s equation becomes 1 + f ′2 −
ff ′′ = 0, and it can be shown that its general solution is f(v) =
1

e
cosh(cu+d), which means that α(u) is a catenary. Then, if a surface

of revolution is minimal (H = 0), it is part of a catenoid. The opposite
direction of the proof follows directly.

• If c 6= 0: we get the differential equation 1 + f ′2 − ff ′′ = cf(1 +

f ′2)3/2. If c = −1

a
with a > 0, we can rewrite the equation as

a(1 + f ′2)− ff ′′a
(1 + f ′2)3/2

+ f = 0. If f is constant, (x(u), y(u)) = (u, f(u))

gives an horizontal line and S is a cylinder. Assume f is not constant.
Then multiplying it by 2f ′, it becomes

2af ′(1 + f ′2)− 2ff ′f ′′a

(1 + f ′2)3/2
+ 2ff ′ = 0 ⇒ d

du

[
2af√
1 + f ′2

+ f2

]
= 0.

Thus,
2af√
1 + f ′2

+ f2 = ±b2,

and repeating the process for c =
1

a
we get

2af√
1 + f ′2

− f2 = ±b2. (2.12)

For the opposite implication of the theorem we just need to follow the
steps that we have done from the end to the beginning.

Notice that equation (2.12) can be rewritten as

1√
1 + f ′2

=
f2 ± b2

2af
, (2.13)

and our profile curve is α(u) = (u, f(u)), so, the arc-length parameter is

s(u) =

∫ u

0

√
1 + f ′2(t)dt.

Deriving it we get

ds

du
=
√

1 + f ′2(u),
du

ds
=

1√
1 + f ′2(u)

,
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and substituting it in (2.13) we get

dx

ds
=
du

ds
=
f2 ± b2

2af
=
y(s)2 ± b2

2ay(s)
.

From Remark 2.2.1 we know that

dx

ds
=
y(s)2 + b2

2ay(s)
or f2 ± 2af√

1 + f ′2
= −b2 (2.14)

corresponds to the undulary (and rotating it we get the unduloid) and

dx

ds
=
y(s)2 − b2

2ay(s)
or f2 ± 2af√

1 + f ′2
= b2 (2.15)

gives the nodary (and rotating it we get the nodoid). It is an amazing
fact discovered by Delaunay that this differential equation (2.11) arises geo-
metrically. There is a geometric construction which produces the differential
equation above and, consequently, all surfaces of revolution of constant mean
curvature.
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Chapter 3

Surfaces of revolution with
prescribed mean curvature

In the previous chapters we have seen how to obtain the mean curvature
for any surface of revolution and what Delaunay surfaces are. Now we will
analyze another problem: the following theorem tells us how we can find all
surfaces of revolution whose mean curvature is a prescribed smooth function.

3.1 Kenmotsu’s approach

Here, we will use Kenmotsu’s approach to the problem [6] and we will obtain
another proof of Delaunay’s theorem when H is constant.

Theorem 3.1.1. (Kenmotsu’s solution) Given a continuous function H =
H(s) with s ∈ I, the generatrix curve of a surface of revolution with mean
curvature H(s) is given by

α(s,H(s), a, b, c) = (

∫ s

0

(G(t) + b)F ′(t)− (F (t)− a)G′(t)√
(F (t)− a)2 + (G(t) + b)2

dt+ c,√
(F (s)− a)2 + (G(s) + b)2)

where

F (s) :=

∫ s

0
sin

(
2

∫ u

0
H(t)dt

)
du, G(s) :=

∫ s

0
cos

(
2

∫ u

0
H(t)dt

)
du

and a, b, c ∈ R.

Proof. Introducing the complex notation, we consider the expression
(2.5)−i(2.6), where i =

√
−1 is the imaginary unity number. This expression

is

2H(s)y(s)x′(s) + (y(s)y′(s))′ − 1− 2iH(s)y(s)y′(s) + i(y(s)x′(s))′ = 0.

19
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If we define in an appropriate way

Z(s) := y(s)y′(s) + i(y(s)x′(s)), (3.1)

this function satisfies, for the equation above, the ordinary complex differ-
ential equation of order one

Z ′(s)− 2iH(s)Z(s)− 1 = 0. (3.2)

Now, our objective is to solve the equation above. Using the integrating
factor u(s) = exp

(
−
∫

2iH(s) ds
)

we obtain that the general solution of
(3.2)

Z(s) =

(∫ s

0
exp

(
−
∫ u

0
2iH(t)dt

)
du+K

)
exp

(∫ s

0
2iH(u)du

)
. (3.3)

Now we have

exp

(∫ u

0
2iH(t)dt

)
= cos

(
2

∫ u

0
H(t)dt

)
+ i sin

(
2

∫ u

0
H(t)dt

)
,

exp

(
−
∫ u

0
2iH(t)dt

)
= cos

(
2

∫ u

0
H(t)dt

)
− i sin

(
2

∫ u

0
H(t)dt

)
.

Then, the solution of the differential equation is

Z(s) =

(∫ s

0

[
cos

(
2

∫ u

0
H(t)dt

)
− i sin

(
2

∫ u

0
H(t)dt

)]
du+K

)
×
(

cos

(
2

∫ u

0
H(t)dt

)
+ sin

(
2

∫ u

0
H(t)dt

))
.

If we define the functions F and G as it says in the theorem

F (s) =

∫ s

0
sin

(
2

∫ u

0
H(t)dt

)
du, G(s) =

∫ s

0
cos

(
2

∫ u

0
H(t)dt

)
du,

we can rewrite Z(s) as

Z(s) = (G(s)− iF (s) + b+ ai)(G′(s) + iF ′(s)),

where K = b+ ai. Now we will write Z(s) in a more convenient way. Since
1 = −i2 = −ii, if we multiply Z(s) with −ii:

Z(s) = −ii(−i(F (s)− a) +G(s) + b)(G′(s) + iF ′(s)),

we multiply the first factor by i and the second one by −i:

Z(s) = i(−i(F (s)− a) +G(s) + b)(−i)(G′(s) + iF ′(s))

= (F (s)− a+ i(G(s) + b))(F ′(s)− iG′(s)).
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Thus, finally we get

Z(s) = ((F (s)− a) + i(G(s) + b))
(
F ′(s)− iG′(s)

)
. (3.4)

From this expression we can get the generatrix curve α(s) = (x(s), y(s)) of
the surface of revolution that we were looking for. We will start from the
calculus of y(s). For this, we calculate Z(s)’s modulus using its definition
in (3.1) and we get

‖Z(s)‖ = ‖y(s)y′(s) + iy(s)x′(s)‖
=

√
y(s)2y′(s)2 + y(s)2x′(s)2 =

√
y(s)2 = y(s).

On the other hand, from the expression obtained in (3.4) we have

y(s) = ‖Z(s)‖ = ‖ ((F (s)− a) + i(G(s) + b))
(
F ′(s)− iG′(s)

)
‖. (3.5)

Since the modulus of the product of two complex numbers is the product of
the modulus and

‖F ′(s)− iG′(s)‖ =

√
cos2

(
2

∫
H(s)ds

)
+ sin2

(
2

∫
H(s)ds

)
= 1,

we get that

y(s) = ‖ ((F (s)− a) + i(G(s) + b)) ‖‖
(
F ′(s)− iG′(s)

)
‖

=
√

(F (s)− a)2 + (G(s) + b)2,

then, we get that

y(s) =
√

(F (s)− a)2 + (G(s) + b)2.

Now, we will calculate x(s). Using the definition of Z(s) in (3.1), if we
subtract its conjugate, we have

Z(s)−Z(s) = y(s)y′(s) + iy(s)x′(s)− (y(s)y′(s)− iy(s)x′(s)) = 2iy(s)x′(s).

Then,

x′(s) =
Z(s)− Z(s)

2iy(s)
. (3.6)

The numerator is just 2 times the imaginary part of (3.4), in the denominator
we substitute y(s) by the formula that we have just obtained

x′(s) =
−2i(F (s)− a)G′(s) + 2i(G(s) + b)F ′(s)

2i
√

(F (s)− a)2 + (G(s) + b)2
,

and integrating we finally get

x(s) =

∫ s

0

(G(t) + b)F ′(t)− (F (t)− a)G′(t)√
(F (t)− a)2 + (G(t) + b)2

dt+ c.
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3.2 Finding CMC rotational surfaces using Ken-
motsu’s theorem

In this section we will see that if we choose H to be constant in Kenmotsu’s
theorem’s proof, we get the plane, the cylinder, the sphere, the catenoid, the
unduloid and the nodoid. In other words, we recover Delaunay’s surfaces.

• Zero constant mean curvature

When H(s) = 0, the formula (3.2) in Kenmotsu’s theorem’s proof gives
Z ′(s) = 1 and the solution

Z(s) = s+ C = s+ c1 + ic2,

for some complex number C = c1 + ic2. This gives us

y(s) = |Z(s)| =
√

(s+ c1)2 + c22, (3.7)

x′(s) =
ImZ

y
=

c2√
(s+ c1)2 + c22

.

By integrating x we obtain x(s) = c2arcsinh

(
s+ c1
c2

)
hence s + c1 =

c2 sinh

(
x

c2

)
. Substituting into equation (3.7) we obtain

y(s) =

√
c22 sinh2

(
x

c2

)
+ c22 = c2 cosh

(
x

c2

)
.

Clearly, this is a parametrization of a catenary.

• Non zero constant mean curvature

If H 6= 0 then from (3.3) Z(s) becomes

Z(s) =

(
1

2iH
(1− e−2iHs) + C

)
e2iHs

=
1

2iH

(
(1 + 2iHC)− e−2iHs

)
e2iHs

=
Bei(2Hs+θ) − 1

2iH
,

where Beiθ = 1 + 2iHC for some B, θ ∈ R and C ∈ C is an arbitrary con-
stant. Using the fact that y(s) > 0 we have by translation of the arclength
and by restricting our attention to H > 0

y(s) = |Z(s)| = 1

2H

√
1 +B2 + 2B sin 2Hs,

x′(s) =
ImZ(s)

y(s)
=

1 +B sin 2Hs√
1 +B2 + 2B sin 2Hs

.
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Hence the solution is the one-parameter family of surfaces of revolution
having constant mean curvature H given by

α(s,H,B) =

(∫ s

0

1 +B sin 2Ht√
1 +B2 + 2B sin 2Ht

dt,
1

2H

√
1 +B2 + 2B sin 2Hs

)
(3.8)

for any B ∈ R and H > 0. Let us see which surfaces of revolution are
generated by the generatrix α for different values of B. When H(s) = H
is constant and B = 0 we obtain the cylinder. Substituting these in the
formula above (3.8), we get the generatrix

α(s,H, 0) =

(
s,

1

2H

)
which is the straight-line y =

1

2H
parallel to the x axis. So, its surface of

revolution is the cylinder.

2 4 6 8 10

0.5

1.0

1.5

2.0

Figure 3.1: Horizontal line, H =
0.5.

Figure 3.2: Cylinder, H = 0.5.

When H(s) = H doesn’t depend on s and B = 1 we obtain the sphere.
First, let us substitute B = 1 in formula (3.8) of the generatrix curve.

α(s,H, 1) =

(∫ s

0

1 + sin(2Ht)√
2 sin(2Ht) + 2

dt,
1

2H

√
2 sin(2Hs) + 2

)

=

(
1√
2

∫ s

0

√
1 + sin(2Ht)dt,

1√
2H

√
sin(2Hs) + 1

)
.

Using the formula of the double angle and trigonometric identities, we have

sin(2Ht)+1 = 2 sin(Ht) cos(Ht)+sin2(Ht)+cos2(Ht) = (cos(Ht)+sin(Ht))2.

Thus, √
sin(2Ht) + 1 = cos(Ht) + sin(Ht).

Using this equality, the first coordinate of the curve becomes

x(s) =
1√
2

∫ s

0
(cos(Ht) + sin(Ht))dt =

1√
2

[
1

H
sin(Ht)− 1

H
cos(Ht)

]s
0

=
1√
2H

(sin(Hs)− cos(Hs) + 1).
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For the second coordinate, we have

y(s) =
1√
2H

(cos(Hs) + sin(Hs)).

So,

α(s,H, 1) =

(
1√
2H

(sin(Hs)− cos(Hs) + 1),
1√
2H

(cos(Hs) + sin(Hs))

)
.

(3.9)
Let us see that the curve α(s,H, 1) = (x(s), y(s)) inscribes half circumfer-
ence (

x(s)− 1√
2H

)2

+ y(s)2 =

=

(
1√
2H

sin(Hs)− 1√
2H

cos(Hs)

)2

+

(
1√
2H

cos(Hs) +
1√
2H

sin(Hs)

)2

=
1

2H2
(sin(Hs)− cos(Hs))2 +

1

2H2
(sin(Hs) + cos(Hs))2

=
1

2H2
(sin2(Hs)− 2 sin(Hs) cos(Hs) + cos2(Hs)

+ sin2(Hs) + 2 sin(Hs) cos(Hs) + cos2(Hs))

=
1

2H2
(2− 2 sin(Hs) cos(Hs) + 2 sin(Hs) cos(Hs)) =

1

H2
.

This means that the generatrix α is part of a circumference of radius
1

H
with

centre (
1√
2H

, 0). If we rotate α around the x-axis we obtain the sphere as

we wanted.

0.5 1.0 1.5

-0.5

0.5

1.0

Figure 3.3: Semicircle, H = 1. Figure 3.4: Sphere, H = 1.
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When H(s) = H doesn’t depend on s and 0 < B < 1 we get the undulary
and the unduloid. In fact, using the parametrization (3.8), after long direct
computations, it can be checked that α(s,H,B) = (x(s), y(s)) is arc-length

parametrized (x′(s)2 + y′(s)2 = 1). Hence, calling H = 1
2a , b

2 = 1−B2

4H2 we
have

dx

ds
=
y2 + b2

2ay
.

Thus, Remark 2.2.1 gives us that α(s,H,B) = (x(s), y(s)) is a undulary.
When H(s) = H is constant and B > 1 we get the nodary and the

nodoid. Again, we start from the parametrization (3.8). Now, with the
same notation as before and by long direct computations, we can also check
that α(s,H,B) = (x(s), y(s)) is arc-length parametrized and that calling

H = 1
2a , b

2 = B2−1
4H2 we have

dx

ds
=
y2 − b2

2ay
.

Again, the Remark 2.2.1 gives us that α(s,H,B) = (x(s), y(s)) is a nodary.

Figure 3.5: Half unduloid, H =
2, B = 0.9.

Figure 3.6: Half nodoid, H =
0.5, B = 2.
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Chapter 4

Variational characterization
of CMC surfaces

In this section we will see following [7] that CMC surfaces are solutions of a
variational problem since they minimize the area among those surfaces with
the same boundary and enclosed volume. Physically, CMC surfaces corre-
spond with the following physical situation. We deposit an amount of liquid
on a planar substrate and assume that there are no chemical and physical
reactions between liquid, air and solid. We also neglect the gravitational
forces. We denote by L,A and S the liquid, air and solid phases, and by SIJ
the interface between the I and J phases for I, J ∈ {L,A, S}. In mechanical
equilibrium, the liquid drop attains its shape when the following equation
holds

PL(p)− PA(p) = 2γH(p) (Laplace)

for each p ∈ SLA. Here PL and PA are the pressures in the liquid and air.
The constant γ is the surface tension coefficient of the liquid and H is the
mean curvature of the interface SLA. The coefficient γ is determined by
chemical and physical properties of the liquid and it measures the inter-
molecular forces that exist in the liquid which are necessary to move the
molecules from inside to the SLA interface. If the pressures in both sides of
the interface are constant (that is, if PL(p) = PL and PA(p) = PA), then the
interface is a surface with constant mean curvature:

PL − PA = γ2H(p) ⇒ H(p) =
PL − PA

2γ
= constant

In our system, the only force acting on the interface is the surface ten-
sion. This is proportional to the area of this interface. Then the energy is
proportional to the area of SLA. We remark that the volume of the drop re-
mains constant. If we perturb the drop, the liquid tries to reduce its energy
(proportional to the area of SLA) and when this occurs, this interface has
constant mean curvature. Thus, using a particular version of the Principle

27



28 4.1. Isoperimetric approach

of minimum energy, we can say that the shapes of (small) liquid drops are
modelled by CMC surfaces.

4.1 Isoperimetric approach

CMC surfaces can also be described by using a variational principle. This
was first made by Sturm [2] who noticed that CMC surfaces are connected
to the Isoperimetric Problem. The isoperimetric problem is connected to the
classical Dido’s problem in R2. This problem consists on finding a closed
curve which encloses the maximum area for a given perimeter. The answer
for this problem is the circumference. There is a dual equivalent problem
that consists on finding the closed curve that has the shortest perimeter for
a given area. The answer is again the circumference. This class of problems
are called isoperimetric problems.
From the mathematical viewpoint, CMC surfaces can be introduced by the
isoperimetric problem extended to R3: among all compact surfaces in Eu-
clidean space enclosing the same volume, which is the one with smaller
area? For minimal surfaces, the analogous problem is the so-called minimiz-
ing area: characterize those surfaces which have least area among all surfaces
with the same boundary. In both cases, a surface which is a minimum for
the area must be a critical surface for the area functional: A′(0) = 0.
To achieve our goal, we will need to introduce some formalisms.

Definition 4.1.1. Let U be an open set of R2 and x : U −→ x(U) be
a parametrized surface or R3. Assume that γ : I −→ U is a piecewise
differentiable closed simple curve in U . Denote by Γ = γ(I) the trace of γ
and by D its interior domain (D = Γ∪D and ∂D = Γ). Then x(D) is called
a parametrized surface with boundary x(Γ).

For simplicity, a parametrized surface with boundary will be called a sur-
face S = x(D) with boundary ∂S = x(Γ). Let us consider a compact surface
S with possible non-empty boundary ∂S. A boundary preserving variation
or admissible variation of x is a differentiable map g : U × (−ε, ε) −→ R3

such that

(i) for each t, gt : U −→ R3 given by gt(p) = g(p, t) is a surface with
boundary.

(ii) g(p, 0) = x(p), that is, g0 = x.

(iii) g(p, t) = x(p) for any t ∈ (−ε, ε) and p ∈ Γ. This means that the
variation fixes the boundary.

We define the area and algebraic volume functionals of the variation A, V :
(−ε, ε) −→ R, as
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A(t) = area(gt), V (t) = volume(gt),

or

A(t) =
∫
St

1dSt, V (t) = −1
3

∫
St
〈xv,Nv〉dSt.

For a geometric justification of the second formula see [7, 8]. We want to see
which is the surface that minimizes the area (more generally, which is crit-
ical for the area) for a fixed volume, that is, we will focus in the variations
where V (t) = V (0) for any t and we will find those immersions x, such that
A′(0) = 0 for any such variation. The following theorem gives us the result
that we are searching for.

Theorem 4.1.1. Assume S is a compact surface with boundary ∂S. Then

(i) S is minimal (H = 0) if and only if A′(0) = 0 for any admissible
variation.

(ii) S has constant mean curvature H 6= 0 if and only if it is a critical
point of the area for any admissible preserving volume variation.

Proof. We will show the theorem for the case that the surface is a graph.
Notice that this is not a big restriction since all surfaces are locally graphs.
Consider S given as a graph of a function f defined on U ⊂ R2 and
parametrized as x(x, y) = (x, y, f(x, y)) for any (x, y) ∈ U . Consider a
variation St as graphs on U where

• g : U × (−ε, ε) −→ R, with St = g(U, t) and g(x, y, 0) = f(x, y). This
means that at t = 0, we have the original graph f .

• g(x, y, t) = f(x, y) for any (x, y) ∈ ∂D. With this condition, the
variation preserves the boundary of S.

The area of St is

A(t) =

∫
St

1dSt =

∫
U

√
1 + g2x + g2ydxdy.

We differentiate with respect to t:

A′(t) =

∫
U

2gxgxt + 2gygyt

2
√

1 + g2x + g2y

dxdt =

∫
U

gxgxt + gygyt√
1 + g2x + g2y

dxdy,

Now, let t = 0. Since g(x, y, 0) = f(x, y), gx(x, y, 0) = fx(x, y), gy(x, y, 0) =

fy(x, y) etc. and for 5f = (fx, fy) we get ‖ 5 f‖ =
√
f2x + f2y , we obtain

A′(0) =

∫
U

fxgxt + fygyt√
1 + f2x + f2y

(x, y, 0)dxdy =

∫
U

fxgxt + fygyt√
1 + ‖∇f‖2

(x, y, 0)dxdy.



30 4.1. Isoperimetric approach

Denote

T (f) =
∇f√

1 + ‖∇f‖2
=

 fx√
1 + f2x + f2y

,
fy√

1 + f2x + f2y

 .

The divergence satisfies

div(gtT ) = gtdivT+ < 5gt, T >

= gtdivT+ < (gtx, gty), T >

= gtdivT +
gtxfx√

1 + f2x + f2y

+
gtyfy√

1 + f2x + f2y

= gtdivT +
fxgxt + fygyt√

1 + ‖∇f‖2
.

Combining this with the above expression for A′(0),

A′(0) =

∫
U
div(gtT )(x, y, 0)dxdy −

∫
U
gtdivT (f)(x, y, 0)dxdy

=

∫
∂U
gt〈T (f),−→n 〉(x, y, 0)ds−

∫
U
gtdivT (f)(x, y, 0)dxdy,

where in the last identity we have used the divergence theorem, see [7]
page 80, and where −→n is the outer unit normal vector to ∂U . The first
integral vanishes because g(x, y, t) = f(x, y) doesn’t depend on t for any
(x, y) ∈ ∂U , and so, gt(x, y, 0) = 0 on ∂U . Recall that the divergence is

defined as divF = ∇ · F =

(
∂

∂x
,
∂

∂y

)
· (F1, F2) =

∂F1

∂x
+
∂F2

∂y
. Then

A′(0) =

= −
∫
U
gtdivT (f)(x, y, 0)dxdy = −

∫
U
gtdiv

 (fx, fy)√
1 + f2x + f2y

 (x, y, 0)dxdy

= −
∫
U
gt

 ∂

∂x

 fx√
1 + f2x + f2y

+
∂

∂y

 fy√
1 + f2x + f2y

 (x, y, 0)dxdy
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= −
∫
U
gt


fxx
√

1 + f2x + f2y − fx
fxfxx + fyfyx√

1 + f2x + f2y

1 + f2x + f2y

 (x, y, 0)dxdy

−
∫
u
gt


fyy
√

1 + f2x + f2y − fy
fxfxy + fyfyy√

1 + f2x + f2y

1 + f2x + f2y

 (x, y, 0)dxdy

= −
∫
U
gt
fxx + f2xfxx + f2y fxx − f2xfxx − fxfyfyx

(1 + f2x + f2y )3/2
(x, y, 0)dxdy

−
∫
U
gt
fyy + f2xfyy + f2y fyy − fxfyfxy − f2y fyy

(1 + f2x + f2y )3/2
(x, y, 0)dxdy

= −
∫
U
gt

(
fxx + f2y fxx − 2fxfyfxy + fyy + f2xfyy

(1 + f2x + f2y )3/2

)
(x, y, 0)dxdy.

On the other hand, we can compute the mean curvature of S following
Theorem 1.0.2 and using the parametrization x(x, y) = (x, y, f(x, y)):

H(x, y) =
1

2

fxx + f2y fxx − 2fxfyfxy + fyy + f2xfyy

(1 + f2x + f2y )3/2
.

As we can see,

A′(0) = −
∫
U

(2H)gt(x, y, 0)dxdy. (4.1)

What we have shown so far is true for any surface. This formula is called
the First Variational Formula for the area.
Let us prove (i):
If H = 0, then A′(0) = 0 for any g, and we have finished one of the impli-
cations of the proof. Assume now that A′(0) = 0 for any preserving volume
variation of S. We consider an appropriate variation g given by:

g(x, y, t) = f(x, y) + tHp(x, y),

where p(x, y) > 0 on U and p(x, y) = 0 for (x, y) ∈ ∂U . Then gt(x, y, t) =
ft(x, y) +Hp(x, y) = Hp(x, y) implies

0 = A′(0) = −
∫
U

(2H)Hp(x, y, 0)dxdy = −2

∫
U
H2p(x, y, 0)dxdy

and so,
∫
S H

2p dS = 0 and since p is positive, H = 0.
As a conclusion, we have proved that H = 0 on the surface if and only if the
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surface is a critical point of the functional area. In other words, minimal
surfaces are critical for the area.
Finally, let us prove (ii):
If we assume that the variation preserves the volume, we have the constraint
V (t) =

∫
U gdxdy = constant. If t = 0 is a critical point of A(t), a version

of Lagrange multiplier’s theorem [8] says that there exists a constant λ ∈ R
such that

A′(0) + λV ′(0) = 0.

Now, since V (t) =
∫
U g(x, y, t)dxdy,

V ′(t) =
∂

∂t

∫
U
g(x, y, t)dxdy =

∫
U
gt(x, y, t)dxdy

and

V ′(0) =

∫
U
gt(x, y, 0)dxdy. (4.2)

Then

A′(0) = −λV ′(0) = −
∫
U
λgt(x, y, 0)dxdy.

And, for the first variational formula, (4.1),

0 = A′(0) +A′(0) = −
∫
U

2Hgt(x, y, 0)dxdy −
∫
U
λgt(x, y, 0)dxdy

= −
∫
U
gt(2H + λ)(x, y, 0)dxdy.

If this happens for any g, for appropriate variations g, we have 2H + λ = 0,

that is, H = −λ
2

is constant.

For the other implication, assume that H is constant. Then, (4.1) becomes

A′(0) = −
∫
U

(2H)gt(x, y, 0)dxdy = −2H

∫
U
gt(x, y, 0)dxdy

and, since the variation preserves the volume,

V ′(0) =

∫
U
gt(x, y, 0)dxdy = 0.

Thus,

A′(0) = −2H

∫
U
gt(x, y, 0)dxdy = −2HV ′(0) = 0.

We remark that the algebraic volume changes when we translate the
surface, however, this does not affect the above result, since the volumes of
surfaces of a translated admissible variation will be the same as those of the
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Figure 4.1: Sd (green) and Ŝ (red), for d = 2.

original variation but a constant ([7], page 14).
Observe also that the proof of Theorem 5.0.1. means that a surface is
minimal if and only if it is critical of the area for any admissible variation.
In particular, if a surface minimizes the area for admissible variations, then
H = 0, but the converse is not true. The following example illustrates this
point.

Example 4.1.1. Let a > 0 and fix b = cosh d. Let

Sd = {(x, y, z) ∈ Sα | |z| < d},
Ŝ = {x2 + y2 < b2, z = ±d}.

The surface Sd is part of the catenoid Sα with −d < z < d, and Ŝ is the
union of two discs with radius b. Both surfaces are minimal and have the
same boundary. Let γ be that boundary:

∂Sd = ∂Ŝ = γ = {x2 + y2 = b, z = ±d}.

Let us calculate the area of both surfaces. The area of Ŝ encloses the area
of both discs, so,

A(Ŝ) = 2πb2 = 2π cosh2 d.

The area of Sd is given by

A(Sd) =

∫∫
Sd

1 dAxd ,
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where xd : Ud → R3 and Ud = (−d, d) × (0, 2π), given by xd(u, v) =
x(u, v) = (coshu cos v, coshu sin v, u) is a parametrization of Sd. Then,

A(Sd) =

∫∫
Ud

√
EG− F 2dudv =

∫ 2π

0

∫ d

−d
(EG−F 2)1/2dudv = 2π

∫ d

−d
cosh2 udu.

Here E, F and G are the coefficients of the first fundamental form. Inte-
grating by parts, we get

t = coshu, dt = sinhudu,

ds = coshudu, s = sinhu.∫
cosh2 udu = coshu sinhu−

∫
sinh2 udu = coshu sinhu−

∫
(cosh2 u−1)du

Thus, ∫
cosh2 udu =

1

2
(coshu sinhu+ u)

and

A(Sd) = 2π

[
u+ sinhu coshu

2

]d
−d

= 2π (d+ sinh d cosh d)

Hence A(Ŝ) < A(Sd) happens when

cosh2 d < d+ sinh d cosh d ⇒ e2d + e−2d + 2

4
< d+

e2d − e−2d

4

⇒ e−2d + 1 < 2d.

Let d0 be the intersection of the curves y = e−2d + 1 and y = 2d.

exp(-2 d) + 1

2 d

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

If d < d0, A(Ŝ) > A(Sd), whereas if d > d0, A(Ŝ) < A(Sd). Then, if d > d0,
Sd is not the surface with minimum area, so Sd doesn’t minimize the area
of all surfaces with γ as a boundary.

Remark 4.1.1. (Dual Isoperimetric Problem). Surfaces of revolution with
CMC can be obtained as surfaces which are maximum for the enclosed
volume for variations with constant area [4].
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4.2 Mathematical models for the liquid bridge be-
tween two plates

In this section, we investigate the shape of the tear meniscus that forms
around a contact lens following the study of Thanuja Paragoda in Chapter
3 of [9]. Since the tear film’s thickness is much smaller than the radius of
the cornea and the contact lens, one may neglect the curvature of both the
contact lens and the cornea, and treat them as flat surfaces. Thus, to make
this problem amenable to analysis, we consider a meniscus of a liquid bridge
that forms between two vertical plates.
In other words, we consider a liquid drop, which is trapped between two
vertical plates, and model the profile curve of the drop using a Calculus of
Variations approach. We will obtain a formula for the profile curve that
is formed between the liquid-air interface by minimizing the total potential
energy of the drop while imposing a volume constraint. According to [9],
the total potential energy of a liquid is mainly composed of three different
energy forms.

(i) Surface energy of a liquid surface, which is proportional to the surface
area of the liquid-air interface (free surface).

(ii) Wetting energy that arises due to the contact area of solid-liquid in-
terface.

(iii) And, gravitation potential energy, which we will neglect here.

We consider a rotationally-symmetric liquid drop, and hence the latter en-
ergy type is neglected on our analysis.
To simplify, we consider a liquid drop which is trapped between two vertical
plates, and the profile of the drop has the equation z = f(x) with respect
to the configuration of the Cartesian coordinate system, which is on the left
plate (plate 1). Note that the continuity of the drop implies that f(x) > 0
on the interval [0, L], and assume the shape of the solid-liquid contact area
on the plates to be circles with radii f(0) and f(L), respectively. The rel-
ative adhesion coefficients of the liquid with the plates 1 and 2 are β1 and
β2.

Thus, under the absence of gravity, the total energy E of a rotationally
symmetric liquid drop may be written in the following form [9]

E =

∫ L

0
2πγf(x)

√
1 + f ′2(x)dx− γβ1πf(0)2 − γβ2πf(L)2,

where γ denotes the surface energy per unit area of the liquid; βi is the
relative adhesion coefficient between the ith wall and the liquid. The integral
term represents the surface energy of the liquid drop, and the last two terms
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denote the wetting energy of the drop. We wish to minimize the energy E
subjected to the volume constraint

V0 =

∫ L

0
πf(x)2dx,

where V0 denotes the volume of the liquid drop. Thus, by using a version
of the Lagrange multiplier’s theorem [4], the new energy functional E that
includes the volume constraint V0 is

E =

∫ L

0
2πγf(x)

√
1 + f ′2(xf)dx− γβ1πf(0)2

−γβ2πf(L)2 + λ

(∫ L

0
πf(x)2dx− V0

)
.

Here, the Lagrange multiplier λ is an unknown constant. We consider the
variation of E (δE) with respect to the drop radius (capillary surface height)
f(x) and the meniscus height at the end points: f(0) and f(L). Then, from
formula (5) of [4] in page 56, we have that the variation of the energy is
given by

δE = 2πγ

∫ L

0

√
1 + f ′2(x)δfdx+ 2πγ

∫ L

0
f

f ′√
1 + f ′2

δfxdx

−2πγβ1f(0)δf(L)− 2πγβ2f(L)δf(L) + 2πλ

∫ L

0
f(x)δfdx,
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which simplifies to

δE = −2πγf(0)

(
β1 +

f ′(0)√
1 + f ′2(0)

)
δf(0)

+2πγf(L)

(
f ′(L)√

1 + f ′2(L)
− β2

)
δf(L)

+2πγ

∫ L

0

(
λ

γ
f +

√
1 + f ′2(x)− d

dx

(
ff ′√

1 + f ′2(x)

))
δf(x)dx.

The necessary condition for the energy minimization is that δE = 0. Thus,
we have the following system of equations that reads

λ

γ
f +

√
1 + f ′2(x)− d

dx

(
ff ′√

1 + f ′2(x)

)
= 0 in [0, L] , (4.3)

β1 +
f ′(0)√

1 + f ′2(0)
= 0 at x = 0, (4.4)

f ′(L)√
1 + f ′2(L)

− β2 = 0 at x = L. (4.5)

Let the value of the contact angles of the liquid meniscus with the plates
be θ1 and θ2, and assume they are rotationally invariant. Hence, we have
the same contact angle values along the periphery of the contact circles.
We observe that f ′(0) = − cot θ1 and f ′(L) = cot θ2. Then, the relative
adhesion coefficients β1 and β2 may be expressed as

β1 = cos θ1 and β2 = cos θ2.

Finally, simplifying (4.3) results in

λ

γ
=
ff ′′ − f ′2 − 1

f(1 + f ′2)3/2
, ∀x ∈ [0, L] .

This equation represents the liquid surface of the drop in terms of its profile
curve f(x), and we further observe that the right hand side of this equation
relates to the mean curvature of the liquid surface. In fact, since Lagrange
multiplier λ and the surface energy per unit area of the liquid γ are constants,
using (2.10) the above equation leads us to an equation of the form

λ

γ
=
ff ′′ − f ′2 − 1

f(1 + f ′2)3/2
= 2H. (4.6)

Notice that we have just proved that the rotational bridge surface is a CMC
surface. This result can be formulated as [9]
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Theorem 4.2.1. Rotational liquid bridges between vertical walls, which
minimize the surface and wetting type energies represent rotationally CMC
surfaces with H 6= 0.

Remark 4.2.1. Multiplying (4.6) by f ′, rearranging terms, and integrating
with respect to the x variable, one may obtain

2Hff ′ +
f ′((1 + f ′2)− ff ′′)√

(1 + f ′2)3
= 0 ⇔

(
f√

1 + f ′2

)′
+H(f2)′ = 0

⇔

(
f√

1 + f ′2
+Hf2

)′
= 0 ⇔ f√

1 + f ′2
+Hf2 = C1

⇔ f2 +
f

H
√

1 + f ′2
= C2,

where C1, C2 are constants. Then, from the differential equation (2.14)

using the positive sign and choosing H =
1

2a
and −b2 = C2 one can see

using Remark 2.2.1 that f is an undulary.
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