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Introduction

In the same way a hyperplane or a quadric is no more than the zero locus of a homo-
geneous polynomial of degree one or two, respectively, a cubic hypersurface is the set of
zeros of a homogeneous polynomial of degree three. The aim of this dissertation is to
state and prove the main properties of smooth cubic surfaces in the classical frame: the
complex three-dimensional projective space.

The study of cubic surfaces is a classical theme in Algebraic Geometry. The interest
in them grew remarkably over the second half of 19th century, when in 1849 Arthur
Cayley and George Salmon proved that every smooth complex cubic surface contains
exactly twenty-seven lines. Later in 1858, Ludwig Schläfli described the configuration of
these lines, which turned to be very symmetric. Together with Luigi Cremona, he also
studied the lines contained in real cubic surfaces, topic that will not be covered in this
dissertation. In 1871, Alfred Clebsch proved that smooth cubic surfaces could be seen
as the blow-up of the complex projective plane at six points in general position. This
has important consequences, such as the fact that every smooth complex cubic surface
admits a parametrization.

This dissertation is divided into three chapters. In the first one, the necessary ba-
sic notions that will be used later are developed. We focus especially on smoothness,
quadrics and linear systems.

The target in Chapter 2 is to prove the Cayley-Salmon Theorem about the twenty-
seven lines upon a smooth cubic surface. The proof is divided into two parts. In the
first one, we show that a smooth cubic surface contains a line indeed. The classical
proof of this fact uses advanced results about dimension of fibres and the completeness
of projective varieties. Therefore, in order to show it in a self-contained way, the path
described in [4] is followed. In the second part of the proof of Cayley-Salmon Theorem,
are deduce from the previous part that there are exactly twenty-seven. At the end of
the chapter we describe the configuration of the lines using Schläfli’s double six. Hence,
it will be clear that the behaviour of the lines upon a smooth cubic surface is very
symmetric.

In the last chapter, we introduce the notion of blowing-up algebraic varieties, which
will allow us to state Clebsch’s Theorem rigorously. However, we will not give a proof
of it, because advanced techniques in schemes and divisors are essential in it. Instead,
we are going to show important consequences that could be deduced from Clebsch’s
Theorem. For instance, we will prove that every smooth cubic surface is parametrizable

v



vi

by cubic polynomials.
Throughout the dissertation, we will deal with two classical cubic surfaces: the

Fermat and the Clebsch diagonal cubic. We will show that they are smooth, find their
twenty-seven lines explicitly and parametrize them. It will obvious that their lines behave
very differently, in the sense that the ones in the latter can be defined over R, while the
ones in the former, cannot.

At the end of the dissertation, an appendix has been added with the very basic
notions and results of Algebraic Geometry, especially thought for the readers who are
not familiarised with the language of this field. All these will be assumed to be known
from the very beginning of the dissertation.

The images that appear in the dissertation have been obtained using Mathematica
11.



Chapter 1

Preliminaries

In this chapter, we introduce tools that we will appear several times throughout the
dissertation. They are about hypersurfaces, smoothness, quadrics and linear systems of
curves.

1.1 Smooth projective hypersurfaces

Definition 1.1.1. Let K be a field and n ∈ N. We say that H ⊂ PnK is a projective hy-
persurface (or simply hypersurface) of PnK if there exists some nonconstant homogeneous
polynomial F (x0, x1, . . . , xn) ∈ K[x0, x1, . . . , xn] such that

H = Z(F ) =
{
p ∈ PnK

/
F (p) = 0

}
.

Furthermore,

(i) If the polynomial F can be taken so that

∇F (p) :=

(
∂F

∂x0
(p), . . . ,

∂F

∂xn
(p)

)
6= (0, . . . , 0), ∀p ∈ H, (1.1)

H is said to be smooth.

(ii) If the polynomial F can be taken of degree one, two or three, H is called hyperplane,
quadric or cubic hypersurface, respectively.

(iii) If the polynomial F can be taken satisfying (1.1) and of degree two or three, H is
said to be a smooth quadric or a smooth cubic hypersurface, respectively.

Hypersurfaces in P2
K are called curves and in P3

K , surfaces.

As the following result proves, this definition does not depend on the chosen coordi-
nates.

Proposition 1.1.1. Let ϕ : PnK −→ PnK be a projective transformation. If H ⊂ PnK is a
hypersurface, then ϕ(H) is also a hypersurface. In fact, both can be written as the zero
locus of polynomials of same degree. Moreover, if H is smooth, so is ϕ(H).

1



2 1.1. Smooth projective hypersurfaces

Proof. Let F (x0, . . . , xn) ∈ K[x0, . . . , xn] be as in the definition. Then:

ϕ(H) =
{
p ∈ PnK / ∃q ∈ H such that ϕ(q) = p

}
=
{
p ∈ PnK / ϕ−1(p) ∈ H

}
=

=
{
p ∈ PnK / F

(
ϕ−1(p)

)
= 0
}

= Z(F ◦ ϕ−1),

where F ◦ ϕ−1 is the polynomial given by

(F ◦ ϕ−1)(x0, . . . , xn) := F (a00x0 + . . .+ a0nxn, . . . , an0x0 + . . .+ annxn),

if

ϕ−1(x0 : . . . : xn) = (a00x0 + . . .+ a0nxn : . . . : an0x0 + . . .+ annxn).

Now, applying the chain rule we get that

∂(F ◦ ϕ−1)
∂xj

= a0j
∂F

∂x0
+ · · ·+ anj

∂F

∂xn
,∀j = 0, . . . , n.

This means that

∇(F ◦ ϕ−1) = ∇F ·A,

where A := (aij)i,j=0,...,n. Thus, if H is smooth for F and p ∈ H,

∇
(
F ◦ ϕ−1

)(
ϕ(p)

)
= ∇F (p) ·A 6= (0, . . . , 0),

because A is nonsingular.

We show two propositions that we use later in the dissertation:

Proposition 1.1.2. If K is an algebraically closed field and n > 1, then every two
hypersurfaces in PnK have nonempty intersection.

Proof. We show it by induction on n. If n = 2, the result is an immediate consequence
of Bézout’s Theorem.

Let n > 2, and suppose the result is true for n− 1. Let H1, H2 ⊂ PnK be two hyper-
surfaces. Without loss of generality, we can suppose that they are projective varieties,
because if not, we would just have to prove the assertion for their irreducible compo-
nents, which are also hypersurfaces in PnK . Take a hyperplane Π ⊂ PnK . For each i = 1, 2,
since Hi is irreducible, we have that Π is not contained in Hi. Besides, Hi ∩ Π 6= ∅.
Thus, H1 ∩Π and H2 ∩Π are hypersurfaces in Pn−1K . Since Π is projectively equivalent
to Pn−1K , by the induction hypothesis we get that H1 ∩Π and H2 ∩Π do not have empty
intersection. Hence, the result follows.

Proposition 1.1.3. Let K be an algebraically closed field and H ⊂ PnK , n > 1, be a
hypersurface associated to a polynomial of degree d. If l ⊂ Pn is a line and p1, . . . , pd+1 ∈
l are d+ 1 distinct points, then l is contained in H if and only if p1, . . . , pd+1 ∈ H.



Chapter 1. Preliminaries 3

Proof. The first implication is trivial. To prove the converse, we proceed again by
induction on n.

If n = 2, the result follows from Bézout’s Theorem.

If n > 2, we suppose the result is true for n − 1. Take a hyperplane Π ⊂ Pn
containing l but not contained in H. As before, H ∩Π is a hypersurface in Π. Besides,
p1, . . . , pd+1 ∈ H ∩Π. By the induction hypothesis, it follows that l ⊂ Π ∩H ⊂ H.

In order to introduce the notion of tangent space, we first need the following results:

Lemma 1.1.4. Let K be an algebraically closed field and H ⊂ PnK be a smooth hyper-
surface. If F is a homogeneous polynomial such that H = Z(F ) and satisfies (1.1), then
F has no multiple irreducible factors.

Proof. Let F = F a11 . . . F arr be in its irreducible factors. Arguing by contradiction,
suppose that ai > 1 for some i = 1, . . . , r. Since K is algebraically closed, we can take
p ∈ PnK such that Fi(p) = 0. In particular we have that p ∈ H. However, for every
j = 1, . . . , n,

∂F

∂xj
=
∂Fi
∂xj
· F a11 · · ·F

ai−1

i−1 F
ai−1
i F

ai+1

i+1 · · ·F
ar
r + Fi ·

∂(F a11 · · ·F
ai−1

i−1 F
ai−1
i F

ai+1

i+1 · · ·F arr )

∂xj
,

so
∂F

∂xj
(p) = 0.

Therefore,

∇F (p) = (0, . . . , 0),

against (1.1).

Corollary 1.1.5. Let K be an algebraically closed field and H ⊂ PnK be a smooth
hypersurface. Then, the homogeneous polynomial F such that H = Z(F ) and satisfying
(1.1) is unique up to multiplication by nonzero scalars.

Proof. Let F and G be two homogeneous polynomials fulfilling both properties. By the
previous lemma, the ideals (F ) and (G) are radical. Since K is algebraically closed, we
can apply Hilbert’s Nullstellensatz twice and get that

(F ) =
√

(F ) = I
(
Z(F )

)
= I(H) = I

(
Z(G)

)
=
√

(G) = (G).

Therefore, F = c ·G for some c ∈ K∗.

Definition 1.1.2. Let K be an algebraically closed field and H ⊂ PnK a smooth hyper-
surface. Let F be an homogeneous polynomial such that H = Z(F ) and satisfying (1.1).
We call the tangent hyperplane of H at p ∈ H to

TpH :=

{
(x0 : . . . : xn) ∈ PnK

/
x0
∂F

∂x0
(p) + . . .+ xn

∂F

∂xn
(p) = 0

}
.



4 1.1. Smooth projective hypersurfaces

Remark 1.1.1. Note that due to Corollary 1.1.5, the definition is correct in the sense
that it does not depend on the choice of F .

Proposition 1.1.6. Let K be an algebraically closed field and H ⊂ PnK a smooth
hypersurface. If l is a line contained in H, then l ⊂ TpH for every p ∈ l.

Proof. Let F be a homogeneous polynomial such that H = Z(F ) and satisfying (1.1),
and p ∈ l. Thanks to Lemma 1.1.1, we can suppose that l = Z(x0, x1). The fact that
l ⊂ H forces F to be of the form

F (x0, . . . , xn) = x0G0(x0, . . . , xn) + x1G1(x0, . . . , xn)

for some homogeneous polynomials G0 and G1. Hence,

∂F

∂xj
= x0

∂G0

∂xj
+ x1

∂G1

∂xj
, ∀j 6= 0, 1.

Therefore,
∇F (p) = (a : b : 0 : . . . : 0)

for some a, b ∈ K, so it clearly follows that l ⊂ TpH.

Finally, we observe that smoothness implies irreducibility for quadrics and cubics.

Theorem 1.1.7. Let K be an algebraically closed field and H ⊂ PnK be a smooth
quadric or cubic, with n > 1. Then, H is a projective variety.

Proof. It only remains to prove that H is irreducible. Let H = Z(F ), with F a ho-
mogeneous polynomial of degree two or three and fulfilling (1.1). We claim that the
polynomial F is irreducible.

By contradiction, we suppose that F = LH for some homogeneous polynomials and
L linear. Applying a projective transformation if necessary, by Proposition 1.1.1 we can
assume that L(x0, . . . , xn) = x0. Hence,

∇F =

(
H + x0

∂H

∂x0
, x0

∂F

∂x1
, . . . , x0

∂H

∂xn

)
.

Since K is algebraically closed, there exists some α ∈ K such that

H(0, . . . , 0, 1, α) = 0.

We reach to a contradiction because

F (0, . . . , 0, 1, α) = 0 · 0 = 0,

so (0 : . . . : 0 : 1 : α) ∈ H. Nevertheless, ∇F (0 : . . . : 0 : 1 : α) = (0, . . . , 0), against (1.1).
Therefore, F is irreducible and

I(H) = I
(
Z(F )

)
=
√

(F ) = (F )

is a prime ideal.
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1.2 Examples

We now introduce two classical examples of smooth cubic surfaces that will appear
several times throughout the dissertation: the Fermat cubic and the Clebsch diagonal
cubic.

1.2.1 The Fermat cubic

This is the surface S ⊂ P3 given by the equation

x3 + y3 + z3 + t3 = 0.

Its defining polynomial is

F (x, y, z, t) = x3 + y3 + z3 + t3,

with gradient

∇F = (3x, 3y, 3z, 3t).

Clearly, there is no point in S in which ∇F vanishes, so the Fermat cubic is a smooth
cubic surface.

Figure 1.1: Real points of the Fermat cubic

1.2.2 Clebsch diagonal cubic

This second surface S ⊂ P3 is defined by

x3 + y3 + z3 + t3 = (x+ y + z + t)3.
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Again, if F (x, y, z, t) := x3 + y3 + z3 + t3 − (x+ y + z + t)3, then

∇F =
(
3x2 − 3(x+ y + z + t)2, 3y2 − 3(x+ y + z + t)2,

3z2 − 3(x+ y + z + t)2, 3t2 − 3(x+ y + z + t)2
)
.

If (a : b : c : d) ∈ S is a point in which ∇F vanishes, in particular a2 = b2 = c2 = d2,
and hence, b = ±a, c = ±a and d = ±a, not all signs necessarily the same. Therefore,
the only possibilities for (a : b : c : d) are

(1 : 1 : 1 : 1), (1 : 1 : 1 : −1),

(1 : 1 : −1 : 1), (1 : −1 : 1 : 1),

(−1 : 1 : 1 : 1), (1 : 1 : −1 : −1),

(1 : −1 : 1 : −1), (1 : −1 : −1 : 1).

However, ∇F does not vanish on any of them. Thus, S is also a smooth cubic surface.

Figure 1.2: Real points of the Clebsch diagonal cubic

1.3 Quadrics

Before going into the study of smooth cubic surfaces, we need some results about
quadrics. From now onwards, we will always work in the complex projective space,
so we will simply write Pn instead of PnC.

The following result shows that the defining polynomial of a quadric is more deter-
mined than in general hypersurfaces.

Proposition 1.3.1. Let F (x0, . . . , xn), G(x0, . . . , xn) ∈ C[x0, . . . , xn] be two homoge-
neous polynomials of degree two. If Z(F ) = Z(G), then F = c ·G for some c ∈ C∗.

Proof. Since C is algebraically closed, we can apply Hilbert’s Nullstellensatz twice and
get that √

(F ) = I
(
Z(F )

)
= I
(
Z(G)

)
=
√

(G),
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so F and G have the same number of irreducible factors. Since both polynomials have
degree two, we have that necessarily (F ) = (G). Hence, the result follows.

Remark 1.3.1. As we have said in the previous section, a quadric is an algebraic set Q ⊂
Pn such that Q = Z(F ) for some homogeneous polynomial F (x0, . . . , xn) ∈ C[x0, . . . , xn]
of degree two. This polynomial can be written as

F (x0, . . . , xn) =
n∑

i,j=0

aijxixj .

Without loss of generality, we can always suppose that aij = aji for every i, j, because

F (x0, . . . , xn) =

n∑
i,j=0

aij + aji
2

xixj .

Definition 1.3.1. Let Q = Z(F ) ⊂ Pn be a quadric and F as in the remark above. We
define the rank of Q by the rank of the matrix A := (aij)i,j . If the rank of Q is n+ 1, it
is said to be nonsingular.

Remark 1.3.2. Observe that this definition is correct due to Proposition 1.3.1.

Theorem 1.3.2 (Classification of quadrics). Let Q ⊂ Pn be a quadric of rank r + 1.
Then, Q is projectively equivalent to

Z(x20 + · · ·+ x2r) =
{

(x0 : . . . : xn) ∈ Pn
/
x20 + · · ·+ x2r = 0

}
.

Proof. Let F be a homogeneous quadratic polynomial of the form

F (x0, . . . , xn) =
n∑

i,j=0

aijxixj ,

with aij = aji for every i, j, and such that Q = Z(F ). Since the matrix A := (aij)i,j is
symmetric, there exists P ∈ GL(n+ 1,C) such that

P tAP =



1
. . .

1
0

. . .

0


,

with r + 1 1’s in the diagonal. Taking the projective transformation ϕ : Pn −→ Pn
determined by P−1, we get that

ϕ(Q) = Z(x20 + . . .+ x2r).
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Corollary 1.3.3. Let Q ⊂ Pn be a quadric. Then, Q is smooth if and only if it is
nonsingular.

Proof. Let r + 1 be the rank of Q. By the last theorem, Q is projectively equivalent to
Z(x20 + . . .+ x2r), so it suffices to study the smoothness of the latter. We have that

∇(x20 + . . .+ x2r) = (2x0, . . . , 2xr, 0, . . . , 0).

From this equality the result is immediate.

We now focus on quadrics in P2 and P3. Quadrics in the projective plane P2 are
known as conics. Applying the theorem about the classification of quadrics to these, we
obtain the following:

Theorem 1.3.4. Let c ⊂ P2 be a conic fo rank r + 1. Then:

(i) If r = 2, c is projectively equivalent to the nonsingular conic Z(x20 + x21 + x22).

(ii) If r = 1, c is projectively equivalent to the union of a pair of different lines.

(iii) If r = 0, c is projectively equivalent to a (double) line.

The configuration of the lines contained in a nonsingular quadric of P3 is completely
determined:

Theorem 1.3.5. The lines contained in a nonsingular quadric Q of P3 are divided into
two disjoint families, R1 and R2, with the following properties:

(1) Lines of the same families do not intersect each other. However, lines of different
families always intersect.

(2)
⋃
Ri = Q, for i = 1, 2.

Each of the families R1 and R2 is called a ruling of Q.

Proof. Since all nonsingular quadrics are projectively equivalent, it suffices to prove the
statement for just one. We claim that Q := Z(xt− zy) is a nonsingular quadric indeed.
Certainly,

xt−yz = (x, y, z, t)


t
0
−y
0

 = (x, y, z, t)


0 0 0 1
0 0 0 0
0 −1 0 0
0 0 0 0



x
y
z
t

 =

= (x, y, z, t)
1

2


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0



x
y
z
t

 .



Chapter 1. Preliminaries 9

Figure 1.3: The nonsingular quadric in P3 and two lines of different rulings

The symmetric matrix has rank four, so Q is a nonsingular quadric.
We consider the Segre embedding s : P1 × P1 −→ Q, defined by

s
(
(u0 : u1), (v0 : v1)

)
:= (u0v0 : u0v1 : u1v0 : u1v1),

and take the families R1 and R2, where

R1 :=
{
s
(
{p} × P1

) /
p ∈ P1

}
,

R2 :=
{
s
(
P1 × {q}

) /
q ∈ P1

}
.

The elements of R1 and R2 are lines contained in Q. For instance, if we fix p := (a :
b) ∈ P1 we have that

s
(
{p} × P1

)
=
{

(av0 : av1 : bv0 : bv1) ∈ P3
/

(v0 : v1) ∈ P1
}

is the line that goes through (a : 0 : b : 0) and (0 : a : 0 : b). Similarly, the elements of
R2 are also lines in Q.

We claim that every line contained in Q belongs to one of these families. Let l be such
a line, and pick any x := s(p, q) ∈ l. By Proposition 1.1.6, we have that l, s

(
{p} × P1

)
and s

(
P1 × {q}

)
are all contained in TxQ ∩Q. Since Q is nonsingular, it is smooth and

thus irreducible by Corollary 1.3.3 and Theorem 1.1.7 respectively, so TxQ 6⊂ Q and
TxQ∩Q is a plane conic in TxQ. In particular, there are at most two lines contained in
TxQ ∩Q, which forces l to coincide with either s

(
{p} × P1

)
or s

(
P1 × {q}

)
.

Properties (1) and (2) are immediate because s is a bijection.

We now prove a result concerning quadrics in P3 that will be useful in the next
chapter.

Lemma 1.3.6. Every line contained in the cone Q = Z(x20 + x21 + x22) ⊂ P3 passes
through the vertex v := (0 : 0 : 0 : 1).
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Proof. Consider the projection to the plane Π := Z(x3), π : Q 99K Q ∩Π, given by

π(x0 : x1 : x2 : x3) = (x0 : x1 : x2 : 0).

This rational map is defined in every point but in the vertex. We take a line l in Q, that
goes through the distinct points (a0 : a1 : a2 : a3), (b0 : b1 : b2 : b3) ∈ Q. It is of the form

l =
{

(λa0 + µb0 : λa1 + µb1 : λa2 + µb2 : λa3 + µb3) ∈ P3
/
λ, µ ∈ C, not both zero

}
.

Arguing by contradiction, we suppose that v 6∈ l, so the image of l under π is

π(l) =
{

(λa0 + µb0 : λa1 + µb1 : λa2 + µb2 : 0) ∈ P3
/
λ, µ ∈ C,not both zero

}
.

Thus, it is either a point or the line that goes through (a0 : a1 : a2 : 0) and (b0 :
b1 : b2 : 0). In order to prove that π(l) is indeed a line, we just have to show that
(a0 : a1 : a2 : 0) 6= (b0 : b1 : b2 : 0). If they are equal, there exists some k ∈ C∗ such that

(a0, a1, a2) = (kb0, kb1, kb2).

Besides, since (a0 : a1 : a2 : a3) 6= (b0 : b1 : b2 : b3), we have that a3 6= kb3. Choosing the
parameters λ = 1 and µ = − 1

k , we get that v ∈ l, which contradicts the hypothesis.

Therefore, π(l) is a line contained in Q ∩ Π. However, this is impossible because
Q ∩Π is a nonsingular conic in Π.

Lemma 1.3.7. Let l1, l2, l3, l4 be four pairwise disjoint lines in P3. Then, one and only
one of these holds:

(i) l1, l2, l3, l4 lie on a nonsingular quadric. In this case, there are infinitely many lines
meeting the four of them.

(ii) l1, l2, l3, l4 do not lie on any quadric. In this case, there are exactly one or two lines
intersecting the four of them.

Proof. We first claim that there is a nonsingular quadric containing l1, l2, l3. Certainly,
the set of all homogeneous polynomials of degree two together with the zero polynomial is
a complex vector space of dimension 10. Let p1, p2, p3 ∈ l1, p4, p5, p6 ∈ l2 and p7, p8, p9 ∈
l3, all different. The subspace

V :=
{
F (x0, x1, x2) ∈ C[x0, x1, x2]

/
F is homogeneous of degree 2 and

F (pi) = 0,∀i = 1, . . . , 9
}
∪ {0}

is of dimension at least 10−9 = 1. In particular, V 6= {0}, so there exists a homogeneous
polynomial F of degree two such that F (pi) = 0 for every i = 1, . . . , 9. Hence, Q :=
Z(F ) ⊂ P3 is quadric containing p1, . . . , p9. From Lemma 1.1.3 it follows that in fact Q
contains l1, l2, l3.

We compute the rank of Q arguing by contradiction in every possible case:
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∗ If the rank is one, then Q is projectively equivalent to a plane, so l1, l2, l3 must
intersect, against being disjoint.

∗ If the rank is two, then Q is projectively equivalent to the union of two planes.
Thus, two of the lines so l1, l2, l3 must intersect, against being disjoint.

∗ If the rank is three, then Q is projectively equivalent to the cone Z(x20 + x21 + x22).
By Lemma 1.3.6, we have that all the lines l1, l2, l3 pass through a certain point,
against being disjoint.

Therefore, the rank of Q is four, so Q is nonsingular. We distinguish two situations:

(i) If l4 ⊂ Q, then the four lines are in the same ruling of Q, say R1. Hence, every
line in R2 intersects the four l1, l2, l3, l4.

(ii) If l4 6⊂ Q, then l4 ∩Q consists of one or two points. For each of the p ∈ l4 ∩Q, let
lp be the line of Q that goes through p but it is not in the same ruling as l1, l2, l3.
Then, lp is a line that intersects the four lines l1, l2, l3, l4.
In fact, there are no more lines meeting them. If l is such a line, then from
Proposition 1.1.3 we have that l ⊂ Q. Hence, if l ∩ l4 = {p}, we have that
p ∈ l4 ∩Q. Since l is not in the same ruling as l1, l2, l3, l4, it follows that l = lp.

1.4 Linear systems of curves

The results that will be shown in this section will be fundamental in Chapter 3.
First of all, we need some definitions and notation. For each d ∈ N, we denote by Sd

the set of homogeneous polynomials in C[x0, x1, x2] of degree d together with the zero
polynomial. Clearly, it is a complex vector space, with dimension

dimSd =

(
d+ 2

2

)
.

If A ⊂ P2, we write

Sd(A) :=
{
F ∈ Sd

/
F (p) = 0,∀p ∈ A

}
.

These sets are of course subspaces of Sd, and they are known as linear systems of curves.

Definition 1.4.1. Let A ⊂ P2. We say that the points of A are in general position if
no three are collinear and no six lie on a nonsingular conic.

The propositions that follow are all about the dimension of particular linear systems
of curves.

Proposition 1.4.1. The space of cubic homogeneous polynomials that vanish at six
points in general position has dimension 4.
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Proof. Let p1, . . . , p6 ∈ P2 six points in general position. Note that

S3(p1, . . . , p6) = S3(p1) ∩ · · · ∩ S3(p6)

and that S(pi) is a vector hyperplane of S3 for every i. Since

dimS3 =

(
5

2

)
= 10,

it follows that

dimS3(p1, . . . , p6) ≥ 10− 6 = 4.

Arguing by contradiction, we suppose that

dimS3(p1, . . . , p6) > 4.

Take a line l ⊂ P2 which does not pass through any of the points p1, . . . , p6, and choose
four distinct points p7, p8, p9, p10 ∈ l. We have that

dimS3(p1, . . . , p10) ≥ dimS3(p1, . . . , p6)− 4 > 0,

so there exists some nonzero polynomial F ∈ S3(p1, . . . , p10). Z(F ) and l have at least
four common points and F is of degree 3, so by Bézout’s Theorem it follows that l ⊂
Z(F ). Taking the ideals of these algebraic sets and applying Hilbert’s Nullstellensatz
twice, we get that

(F ) ⊂
√

(F ) = I
(
Z(F )

)
⊂ I(l) =

√
(L) = (L),

where L ∈ S1 such that l = Z(L). In other words, L divides F in C[x0, x1, x2], so there
is some Q ∈ S2 − {0} such that F = LQ. Because of the choice of F and L, in fact we
have that Q ∈ S2(p1, . . . , p6).

Now, Q cannot be irreducible, because if so, p1, . . . , p6 would be lying on a nonsin-
gular conic, against the fact that they are in general position. However, Q cannot be
reducible either, because in that case it would be the product of two linear homogeneous
polynomials, and thus three points of p1, . . . , p6 would be lying on the same line, against
being in general position.

Proposition 1.4.2. Let p1, . . . , p7 be seven distinct points not lying on a nonsingular
conic and such that no four are aligned. Then,

dimS3(p1, . . . , p7) = 3.

Proof. As before, we have that

dimS3(p1, . . . , p7) ≥ 10− 7 = 3.

We have to distinguish three different cases:
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(i) The seven points are in general position.
The proof is as in the previous proposition but the line l is chosen so that p1 ∈ l,
p2, . . . , p7 6∈ l.

(ii) There are three collinear points.
If three points, say p1, p2, p3, lie on a line l := Z(L), then by hypothesis p4, . . . , p7 6∈
l. Let p8 ∈ l different from p1, p2, p3. Using Bézout’s Theorem and Hilbert’s
Nullstellensatz as before, we deduce that

S3(p1, . . . , p8) =
{
LQ

/
Q ∈ S2(p4, . . . , p7)

}
.

We claim that dimS2(p4, . . . , p7) = 2. Of course,

dimS2(p4, . . . , p7) ≥ 6− 4 = 2.

Let q ∈ P2 so that no four points of p4, . . . , p7, q are collinear. Again,

dimS2(p4, . . . , p7, q) ≥ 6− 5 = 1.

Besides, by Bézout’s Theorem and the classification of conics, there is at most a
conic containing p4, . . . , p7, q, so

dimS2(p4, . . . , p7, q) = 1.

Hence,
dimS2(p4, . . . , p7) ≤ dimS2(p4, . . . , p7, q) + 1 = 2.

Then, dimS3(p1, . . . , p8) = 2 and therefore,

dimS3(p1, . . . , p7) ≤ dimS3(p1, . . . , p8) + 1 = 3.

(iii) There are six points lying on a nonsingular conic.
Suppose that p1, . . . , p6 ∈ c := Z(Q) a nonsingular conic. Take p8 ∈ c different
from those six points. Again by Bézout’s Theorem and Hilbert’s Nullstellensatz,
we have that

S3(p1, . . . , p8) =
{
LQ

/
L ∈ S1(p7)

}
.

Furthermore, dimS1(p7) = 2, so dimS3(p1, . . . , p8) = 2. Hence,

dimS3(p1, . . . , p7) ≤ dimS3(p1, . . . , p8) + 1 = 3.

Proposition 1.4.3. Let p1, . . . , p8 be eight distinct points such that no four are aligned
and no seven are lying on a nonsingular conic. Then,

dimS3(p1, . . . , p8) = 2.

Proof. The proof is almost the same as the previous one.





Chapter 2

The lines on a cubic surface

The remaining two chapters are devoted to the study of smooth complex cubic surfaces
in P3.

The target of the first two sections of this chapter is proving this fundamental result:

Theorem 2.0.1 (Cayley-Salmon, 1849). Every smooth complex cubic surface contains
exactly twenty-seven lines.

Actually, the hardest point in the proof of Theorem 2.0.1 is showing that S contains
a line. The aim of Section 2.3 is precisely to prove this very first step. In order to do so,
we will introduce some new tools of Algebraic Geometry. Later in Section 2.3, we will
describe how these lines intersect.

During the rest of the chapter, we will assume that S ⊂ P3 is a smooth cubic surface
and S = Z(F ) for some homogeneous polynomial F (x, y, z, t) ∈ C[x, y, z, t] of degree
three such that

∇F (p) =

(
∂F

∂x
(p),

∂F

∂y
(p),

∂F

∂z
(p),

∂F

∂t
(p)

)
6= (0, 0, 0, 0), ∀p ∈ S.

If necessary, we may refer to the variables x, y, x, t by x0, x1, x2, x3, respectively.

2.1 Existence of a line

The first notion we have to deal with is the Hessian.

Definition 2.1.1. The Hessian of F is the homogeneous polynomial given by

HF := det

(
∂2F

∂xi∂xj

)
i,j=0,1,2,3

.

Remark 2.1.1. If we consider the change of coordinates given by the projective trans-
formation ϕ : P3 −→ P3, and we denote F ∗ = F ◦ ϕ and (HF )∗ = HF ◦ ϕ then by the
chain rule we have that

HF ∗ = (detA)2(HF )∗,

where A ∈ GL(4,C) is the matrix that defines ϕ.

15
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Lemma 2.1.1. There is a point p ∈ S such that the plane cubic curve γ := S ∩ TpS is
either reducible or projectively equivalent to the cuspidal curve Z(x2z − y3, t).

Figure 2.1: The cuspidal curve

Proof. Consider the surface H := Z(HF ). By Proposition 1.1.2 in Chapter 1, S∩H 6= ∅,
so there exists a point p ∈ S such that HF (p) = 0. Note that since S is irreducible,
TpS 6⊂ S and γ := S ∩ TpS is indeed a plane cubic curve. If the curve is reducible, we
are done. Thus, we suppose that γ is irreducible.

Making a change of coordinates we can assume that TpS = Z(t) and p = (0 : 0 : 1 : 0),
and due to the remark above, still HF (p) = 0. The definition of tangent plane and the
smoothness of S imply that

∂F

∂x
(p) =

∂F

∂y
(p) =

∂F

∂z
(p) = 0 6= ∂F

∂t
(p).

Dividing F by a scalar if necessary, this forces the polynomial to be of the form

F (x, y, z, t) = z2t+ zQ(x, y, t) +G(x, y, t),

where Q(x, y, t), G(x, y, t) ∈ C[x, y, t] are quadratic and cubic homogeneous polynomials,
respectively.

In turn, Q is of the form

Q(x, y, t) =
∑

i,j=0,1,3

aijxixj ,

with aij = aji for every i, j.
We have that

0 = HF (p) = det


2a00 2a01 0 2a03
2a10 2a11 0 2a13

0 0 0 2
2a30 2a31 2 2a33

 = 16 det

(
a00 a01
a10 a11

)
,

and thus,

det

(
a00 a01
a10 a11

)
= 0.
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Hence, Q(x, y, 0) is the square of a linear homogeneous polynomial or the zero poly-
nomial. Arguing by contradiction, if Q(x, y, 0) = 0, then F (x, y, z, 0) = G(x, y, 0) and γ
is the union of at most three lines, against such curve being irreducible.

Therefore, Q(x, y, 0) = L(x, y)2 for some linear homogeneous polynomial L(x, y) ∈
C[x, y], and we can still assume that L(x, y) = x. Then,

F (x, y, z, 0) = x2z +G(x, y, 0),

and we write
G(x, y, 0) = ax3 + bx2y + cxy2 + dy3.

From γ being irreducible it follows that d 6= 0. After the change of coordinates

y = ỹ − c

3d
x,

F results as
F (x, y, z, 0) = x2z + a′x3 + b′x2ỹ + dỹ3

for some a′, b′ ∈ C. After the second change of coordinates

z = −a′x− b′ỹ − dz̃,

we finally get
F (x, y, z, 0) = −d(x2z̃ − ỹ3),

which is clearly projectively equivalent to the cuspidal curve.

The second important notion is the polar.

Definition 2.1.2. The polar of F is defined to be

F1(x0, . . . , x3; y0, . . . , y3) =
3∑
i=0

∂F

∂xi
yi.

The polar turns to be a fundamental tool due to this result:

Lemma 2.1.2. Let p, q ∈ P3. Then, the line pq is contained in S if and only if

F (p) = F (q) = F1(p, q) = F1(q, p) = 0.

Proof. An elemental computation shows that if p = (x0 : . . . : x3) and q = (y0 : . . . : y3),
then

F
(
λ(x0, . . . , x3) + µ(y0, . . . , y3)

)
= λ3F (p) + λ2µF1(p, q) + λµ2F1(q, p) + µ3F (q)

for every λ, µ ∈ C. From this, the result follows.

So we are interested in finding common roots of several polynomials. This problem
is solved by using the theory of resultants.
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Definition 2.1.3. For the homogeneous polynomials r, s ∈ C[u, v] given by

r(u, v) = a0u
2 + a1uv + a2v

2,

s(u, v) = b0u
3 + b1u

2v + b2uv
2 + b3v

3,

the resultant of r and s is defined to be

R(r, s) := det


a0 a1 a2

a0 a1 a2
a0 a1 a2

b0 b1 b2 b3
b0 b1 b2 b3

 .

Lemma 2.1.3. Let r and s as above. Then, they have a common root in P1 if and only
if R(r, s) = 0.

Proof. Consider the complex vector space V of the homogeneous polynomials of C[u, v]
of degree 4. This space is of dimension 5 and canonical basis {u4, u3v, u2v2, uv3, v4}. In
this basis, the coordinates of the polynomials u2r, uvr, v2r, us, vs correspond respectively
to the rows of 

a0 a1 a2
a0 a1 a2

a0 a1 a2
b0 b1 b2 b3

b0 b1 b2 b3

 .

Therefore, there is a linear dependence among those polynomials if and only if R(r, s) =
0.

If r and s have a common root, so do u2r, uvr, v2r, us, vs. Thus, they cannot span V
and they are linearly dependent.

Conversely, if u2r, uvr, v2r, us, vs are linearly dependent, there exist l, q ∈ C[u, v]
homogeneous quadratic and linear polynomials respectively, not both zero, such that
qr = ls. In particular, qr and ls have the same roots in P1, so necessarily r and s have
a common root.

We can now state and prove the main result of this section:

Theorem 2.1.4. S contains a line.

Proof. Let p and γ be as in Lemma 2.1.1. If γ is reducible, then it is the union of a conic
and a line and we are done.

If not, the same lemma allows us to take coordinates such that γ = Z(x2z − y3, t)
and p = (0 : 0 : 1 : 0). Therefore, F is of the form

F (x, y, z, t) = λ(x2z − y3) + tG(x, y, z, t),

where G(x, y, z, t) ∈ C[x, y, z, t] is a homogeneous polynomial of degree two and λ ∈ C∗.
Besides, the smoothness of S forces g(0, 0, 1, 0) 6= 0. Thus, we can suppose that λ =
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g(0, 0, 1, 0) = 1 after an appropriate change of variables that will not vary the equations
of γ and p.

For each α ∈ C, we consider the point pα := (1 : α : α3 : 0), which clearly lies on
γ. Similarly, let q := (0 : y : z : t) be an arbitrary point of the plane Z(x). By Lemma
2.1.2,

pαq ⊂ S ⇐⇒ F1(pα, q) = F1(q, pα) = F (q) = 0.

Therefore, if we denote

Aα := F1(pα, q),

Bα := F1(q, pα),

C := F (q),

which are all homogeneous polynomials in C[α][y, z, t], it suffices to show that there is
an α ∈ C such that Aα, Bα and C have a common root in P2. These polynomials are
given by

Aα(y, z, t) = −3α2y + z + tG(1, α, α3, 0),

Bα(y, z, t) = −3αy2 + tG1(1, α, α
3, 0; 0, y, z, t),

C(y, z, t) = −y3 + tG(0, y, z, t).

Since G is quadratic and G(0, 0, 1, 0) = 1, we have that

a := G(1, α, α3, 0) = α6 + . . .

(here and in the rest of the proof, . . . represents terms of lower order).
Hence,

Aα = 0 ⇐⇒ z = 3α2y − at.
We substitute z in Bα, and since G1(1, α, α

3, 0; 0, y, z, t) is linear in y, z, t, we get that

B̃α := Bα(y, 3α2y − at, t) = b0y
2 + b1yt+ b2t

2,

where

b0 = −3α,

b1 = G1(1, α, α
3, 0; 0, 1, 3α2, 0) = 6α5 + . . . ,

b2 = G1(1, α, α
3, 0; 0, 0,−a, 1) = −2α9 + . . .

Analogously for C:

C̃α := C(y, 3α2y − at, t) = c0y
3 + c1y

2t+ c2yt
2 + c3t

3,

where

c0 = −1,

c1 = G(0, 1, 3α2, 0) = 9α4 + . . . ,

c2 = G1(0, 1, 3α
2, 0; 0, 0,−a, 1) = −6α8 + . . . ,

c3 = G(0, 0,−a, 1) = α12 + . . .
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Therefore, Aα, Bα and C have a common root in P2 if and only if B̃α and C̃α have a
common root in P1. This can be solved by using theory of resultants.

Let R(α) := R(B̃α, C̃α) ∈ C[α] be the resultant of B̃α and C̃α. It is given by

R(α) = det


b0 b1 b2

b0 b1 b2
b0 b1 b2

c0 c1 c2 c3
c0 c1 c2 c3

 .

We compute its leading term:

det


−3α 6α5 −2α9

−3α 6α5 −2α9

−3α 6α5 −2α9

−1 9α4 −6α8 α12

−1 9α4 −6α8 α12

 =

= α27 det


−3 6 −2

−3 6 −2
−3 6 −2

−1 9 −6 1
−1 9 −6 1

 = α27.

In particular, R(α) is nonconstant, and since C is algebraically closed, R(α) has a root.
From Lemma 2.1.3 the result follows.

Remark 2.1.2. As it was mentioned in the introduction, this is not the classical proof
of the existence of a line upon a cubic surface. However, nonelementary results about
fibre dimension and completeness of projective varieties are essential in it. This is why I
have decided to give this self-contained proof, which based on Reid’s in [4] and developed
in [3]. If the reader is interested in the topic, in Section 6 of Chapter 1 of [7] the needed
theory is developed.

2.2 The 27 lines

Proposition 2.2.1. If Π ⊂ P3 is a plane, then one and only one of these holds:

(i) S ∩Π is an irreducible plane curve.

(ii) S ∩Π = l ∪ c, where l is a line and c is a nonsingular conic in Π.

(iii) S ∩Π = l ∪m ∪ n, where l,m, n are three different lines.

Proof. S is a projective variety by Theorem 1.1.7. In particular, Π 6⊂ S, so S ∩ Π is a
plane cubic curve in Π.
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If the curve is irreducible, we are in (i). If not, taking coordinates so that Π = Z(t),
we have that

F (x, y, z, 0) = L(x, y, z)Q(x, y, z)

for some homogeneous polynomials L,Q of degree one and two respectively. Since Π 6⊂ S,
we get that

c := Z(Q) ∩Π and

l := Z(L) ∩Π,

are a line and conic in Π, respectively. Moreover, S ∩Π = l ∪ c.
If c is nonsingular, we are in (2). If not, we show that it is the union of two dis-

tinct lines. Arguing by contradiction, suppose that Q = M2 for some homogeneous
linear polynomial M(x, y, z) ∈ C[x, y, z]. Without loss of generality, we can assume that
M(x, y, z) = z. Then,

F (x, y, z, t) = z2L(x, y, z) + tG(x, y, z, t)

for some homogeneous polynomial G of degree two. Therefore,

∇F =

(
z2
∂L

∂x
+ t

∂G

∂x
, z2

∂L

∂y
+ t

∂G

∂y
, z2

∂L

∂z
+ 2zL+ t

∂G

∂z
, z2

∂L

∂t
+ t

∂G

∂t
+G

)
.

Since C is algebraically closed, there exists α ∈ C such that G(1, α, 0, 0) = 0. Hence,
(1 : α : 0 : 0) ∈ S and

∇F (1 : α : 0 : 0) = (0, 0, 0, 0),

against S being smooth. Therefore, c = m ∪ n for some distinct lines m and n. In fact,
the same argument shows that l is different from both m and n.

Observe that in (i) S ∩Π is irreducible, in (ii) it has two irreducible components and
in (iii) it has three irreducible components. In particular, just one of the three situations
can happen.

Lemma 2.2.2. Given any point p ∈ S, there are at most three lines contained in S
passing through p. Besides, if there are more than one, they are coplanar.

Proof. It follows from applying the previous result and Proposition 1.1.6 of Chapter
1.

Theorem 2.2.3. For every line l, there are exactly ten lines contained in S that intersect
l. These lines can be gathered into five pairs (l1, l

′
1), . . . , (l5, l

′
5) such that

(1) For every i = 1, . . . , 5, l, li and l′i are coplanar. In particular, li and l′i also intersect.

(2) (li ∪ l′i) ∩ (lj ∪ l′j) = ∅ if i 6= j.

(3) For every i = 1, . . . , 5, if m is another line contained in S different from l, li and l′i,
then it intersects exactly one of the three.
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Proof. Choosing appropriate coordinates, assume that

l = Z(z, t) =
{

(x : y : z : t) ∈ P3
/
z = t = 0

}
,

which forces F to be of the form

F (x, y, z, t) = a(z, t)x2 + b(z, t)xy + c(z, t)y2 + d(z, t)x+ e(z, t)y + f(z, t), (2.1)

where a(z, t), b(z, t), . . . , f(z, t) ∈ C[z, t] are homogeneous polynomials, with a, b, c of
degree 1, d, e of degree 2 and f of degree 3.

A general plane containing l is of the form

Π(λ:µ) := Z(µz − λt).

Note that if p, q ∈ P1, Πp = Πq if and only if p = q. Take p ∈ P1. We have that

S ∩Πp = l ∪ cp,

where cp is a a conic in Πp. In order to give cp explicitly, we have to distinguish two
cases:

(i) If p = (1 : µ), then in Π we have that t = µz. Substituting it in F and taking out
the factor z, we get that

cp =
{

(x : y : z : t) ∈ P3
/
λt = µz,

a(1, µ)x2 + b(1, µ)xy + c(1, µ)y2 + d(1, µ)xz + e(1, µ)yz + f(1, µ)z2 = 0
}
.

(ii) If p = (0 : 1), similarly we obtain that

cp =
{

(x : y : z : t) ∈ P3
/
z = 0,

a(0, 1)x2 + b(0, 1)xy + c(0, 1)y2 + d(0, 1)xt+ e(0, 1)xt2 + f(0, 1)t2 = 0
}
.

In any of the two cases, the symmetric matrix associated to cp, where p := (λ : µ), is

Mp :=

 a(λ, µ) b(λ, µ)/2 c(λ, µ)/2
b(λ, µ)/2 c(λ, µ) e(λ, µ)/2
d(λ, µ)/2 e(λ, µ)/2 f(λ, µ)


Its determinant is

detMp =
1

4
(4acf + bde− cd2 − b2f − ae2)(1, µ).

By Lemma 2.2.1, S ∩Πp is the union of three different lines if and only if cp is singular;
i.e., if ∆(λ, µ) = 0, where ∆(z, t) ∈ C[z, t] is the homogeneous polynomial of degree five
defined by

∆ := 4acf + bde− cd2 − b2f − ae2.
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We claim that ∆ has exactly five roots in P1; i.e., all its roots are simple. Let
(λ : µ) ∈ P1 be a root of ∆. Since change of coordinates between z and t do not change
anything, we can reduce to the case of (λ : µ) = (1 : 0). Therefore, we just have to show
that t2 - ∆(z, t).

The point (1 : 0) corresponds to the plane Π := Π(1:0) = Z(t). Thus, there exist m
and n lines in S, such that l,m, n are all different and

S ∩Π = l ∪m ∪ n.

Now, the three lines may have a common point or not. If not, the coordinates can be
taken so that

m = Z(x, t) and n = Z(y, t)

(the other case is similar so that part will be omitted).

Since m,n ⊂ S, we get that

0 = F (x, 0, z, 0) = a(z, 0)x2 + d(z, 0)x+ f(z, 0) and

0 = F (0, y, z, 0) = c(z, 0)y2 + e(z, 0)y + f(z, 0).

Hence, a(z, 0) = c(z, 0) = d(z, 0) = e(z, 0) = f(z, 0) = 0; i.e., t | a, c, d, e, f . Since S
is a projective variety, it follows from (2.1) that t - b. Thus, we just have to show that
t2 - f(z, t). Since f is a homogeneous polynomial of degree three divisible by t, it is of
the form f(z, t) = αz2t+ βzt2 + γt3, with α, β, γ ∈ C.

Now, observe that (0 : 0 : 1 : 0) ∈ m ⊂ S, but

∂F

∂x
(0, 0, 1, 0) =

∂F

∂y
(0, 0, 1, 0) =

∂F

∂z
(0, 0, 1, 0) = 0.

Hence, the smoothness of S forces that

α =
∂f

∂t
(1, 0) =

∂F

∂t
(0, 0, 1, 0) 6= 0.

Therefore, t2 - f(z, t).

Finally, if p1, . . . , p5 ∈ P1 are the five roots of ∆, then for each i there exist li and li
lines in S such that l, li, l

′
i are all different and

S ∩Πpi = l ∪ li ∪ l′i.

We claim that there are no more lines intersecting l that these ten. In fact, if m is
such a line, then l and m lie on a plane Π. Hence, Π = Πpi for some i, so m must be
either li or l′i.

We check that these ten lines fulfil the properties (1), (2) and (3) in the statement:

(1) Immediate by construction.
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(2) Arguing by contradiction, suppose that there exists p ∈ li ∩ lj for some i 6= j. In
fact,

p ∈ li ∩ lj ⊂ Πpi ∩Πpj = l,

so by Lemma 2.2.2, the three lines l, li, lj are coplanar. Therefore, Πi = Πj but
i 6= j.

(3) Let i = 1, . . . , 5 and m be a line contained in S not equal to l, li, l
′
i. If m∩Πpi = {qi},

then
qi ∈ m ∩Πpi ⊂ S ∩Πpi = l ∪ li ∪ l′i.

Therefore, m meets at least one of l, li, l
′
i. If m met more than one, then m would

be contained in S ∩ Πpi = l ∪ li ∪ l′i. Hence, m would be one of l, li, l
′
i, against the

hypothesis.

Corollary 2.2.4. S contains a pair of disjoint lines.

Let l and m be two disjoint lines contained in S, and let l1, . . . , l5, l
′
1, . . . , l

′
5 be again

as in Theorem 2.2.3. Now, for each i = 1, . . . , 5, m intersects either li or l′i but not
both. Without loss of generality, assume that it meets li but not l′i. Applying Theorem
2.2.3 to m, we get that there are five new different lines l′′1 , . . . , l

′′
5 contained in S such

that l1, . . . , l5, l
′′
1 , . . . , l

′′
5 are the ten lines contained in S that meet m and satisfying the

following properties:

(1) For every i = 1, . . . , 5, m, li, l
′′
i are coplanar.

(2) (li ∪ l′′i ) ∩ (lj ∪ l′′j ) = ∅ if i 6= j.

(3) l′′i meets l′j if i 6= j.

Let A := {l,m, l1, . . . , l5, l′1, . . . , l′5, l′′1 , . . . , l′′5} and B be the set of lines contained in S
that are not in A.

Proposition 2.2.5. Every line of B meets exactly three of the lines l1, . . . , l5. Con-
versely, given three different lines of l1, . . . , l5, say li, lj , lk, there exists a unique line lijk
in B that intersects them all.

Proof. We first show that any four pairwise disjoint lines m1, . . . ,m4 contained in S do
not lie on a nonsingular quadric. Arguing by contradiction, suppose that such quadric
surface Q exists, and we claim that in Q ⊂ S. Since Q is nonsingular, Proposition 1.3.5
of Chapter 1 tells us that the lines contained in it are divided into two rulings, R1 and
R2. Besides, the lines m1, . . . ,m4 are disjoint, and therefore, they are all contained in
the same ruling, say R1. Since Q =

⋃
R2, it suffices to show that S contains every line

of R2. Indeed, let r ∈ R2, and assume that r = Z(z, t). Now, r and m1, . . . ,m4 are part
of different families, and hence, r meets each m1, . . . ,m4. Then, F (x, y, 0, 0) has four
different roots in P1. Since this polynomial is homogeneous of degree three or the zero
polynomial, necessarily the latter holds and r ⊂ S.
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Therefore, Q ⊂ S, contradicting the irreducibility of S. By Lemma 1.3.7, we con-
clude that for every four pairwise disjoint lines of S there are exactly one or two lines
intersecting them.

Thus, if n ∈ B, it cannot meet more than three of the lines l1, . . . , l5, because l and
m already cut them. On the other hand, if n meets less than three of the l1, . . . , l5, then
it cuts three or more lines l′1, . . . , l

′
5. Two cases may happen:

(i) n meets l′h, l
′
i, l
′
j , l
′
k with h, i, j, k ∈ {1, 2, 3, 4, 5} different. However, this contradicts

the previous claim because l and l′′ already intersect those lines, where l′′ is the
only line l′′1 , . . . , l

′′
5 different from l′′h, l

′′
i , l
′′
j , l
′′
k.

(ii) n meets lh, l
′
i, l
′
j , l
′
k with h, i, j, k ∈ {1, 2, 3, 4, 5} different. This is also a contradic-

tion because l and l′′h already intersect lh, l
′
i, l
′
j , l
′
k.

Hence, n meets exactly three lines of l1, . . . , l5. Conversely, given li, lj , lk, we know
by Theorem 2.2.3 that li meets with exactly ten lines contained in S. Four of them,
l,m, l′i, l

′′
i , are in A, and the rest of them, in B. Thus, any of the remaining six intersects

exactly two of {l1, . . . , l5} − {li}, so there are
(
4
2

)
= 6 possibilities. Each possibility can

happen once at most, because if not, we would have three lines intersecting a group of
four pairwise disjoint lines in S; contradiction. Hence, we conclude that all possibilities
must occur exactly once.

Now, we know that A∪̇B is the set of lines contained in S. On one hand, we have
that

|A| = 1 + 1 + 3× 5 = 17,

and on the other, thanks to the last proposition, that

|B| =
(

5

3

)
= 10.

Combining these two, we conclude that there are

|A|+ |B| = 17 + 10 = 27

different lines contained in S, and therefore, Theorem 2.0.1 is finally proved.

2.3 The configuration of the lines. The double six.

In the previous section we have proved that S contains precisely 27 lines, and that each
of them meets exactly with other 10. In fact, we know explicitly their configuration.
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With the same notation as in the previous section, we have that:

l meets l1, . . . , l5, l
′
1, . . . , l

′
5.

m meets l1, . . . , l5, l
′′
1 , . . . , l

′′
5 .

l1 meets l,m, l′1, l
′′
1 , l123, l124, l125, l134, l135, l145.

l′1 meets l, l1, l
′′
2 , l
′′
3 , l
′′
4 , l
′′
5 , l234, l235, l245, l345.

l′′1 meets m, l1, l
′
2, l
′
3, l
′
4, l
′
5, l234, l235, l245, l345.

l123 meets l1, l2, l3, l
′
4, l
′
5, l
′′
4 , l
′′
5 , l145, l245, l345.

The intersections of the remaining lines are given by appropriate permutations of indices
In order to give a more symmetric representation of the 27 lines, Schläfli introduced

the following concept:

Definition 2.3.1. We say that the set {aij / i = 1, 2, j = 1, . . . , 6} of 12 lines contained
in S is a double six if

aij meets ars ⇐⇒ i 6= r and j 6= s

for every i, r = 1, 2 and j, s = 1, . . . , 6.

A double six is usually represented in matrix form as(
a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26

)
,

so that each line does not intersect the ones in the same row and column but the
remaining ones.

Theorem 2.3.1 (Schläfli, 1858). The 27 lines in S can be given by 12 lines aij , with
i = 1, 2, j = 1, . . . , 6, and 15 lines brs, with r, s = 1, . . . , 6 and r < s, such that

(1) The lines aij form a double six.

(2) For every r, s, the line brs intersects a1r, a1s, a2r, a2s and buv for u, v 6∈ {r, s}.

Moreover, given any line, the choice of the aij and brs can be done so that such line
belongs to the double six or not.

Proof. With the same notations as in the previous section, it suffices to choose(
a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26

)
=

(
l l′′1 l′′2 l′′3 l′′4 l′′5
m l′1 l′2 l′3 l′4 l′5

)
and

b12 = l1, b13 = l2, b14 = l3, b15 = l4, b16 = l5,

b23 = l345, b24 = l245, b25 = l235, b26 = l234,

b34 = l145, b35 = l135, b36 = l134,

b45 = l125, b46 = l124,

b56 = l123.
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If we want a certain line to be in the double six, we just have to choose it to be l and
take the lines as above.

If not, take two more lines such that the three are pairwise disjoint, and choose them
to be l and m. Thus, if we maintain the choice of before the original line cannot be in
the double six.

Observe that in S there are

27× 16× 5× 4× 3× 2× 1

2!× 6!
= 36

double sixes.

2.4 Examples

We now proceed to find the 27 lines of the two examples given in Chapter 1, the Fermat
and the Clebsch diagonal cubics.

2.4.1 The Fermat cubic

Recall that this surface is given by

x3 + y3 + z3 + t3 = 0.

In this example the 27 lines are easy to be found. If ω ∈ C is a primitive third root of
unity, then it can be checked that the 27 lines are:

lij :

{
x+ ωiy = 0

z + ωjt = 0
,

l′ij :

{
x+ ωiz = 0

y + ωjt = 0
,

l′′ij :

{
x+ ωit = 0

y + ωjz = 0
,

with i, j = 0, 1, 2 in the three cases.

2.4.2 Clebsch diagonal cubic

This is the variety

S : x3 + y3 + z3 + t3 = (x+ y + z + t)3.
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The first 15 lines of S are easy to be found:

l1 :

{
x+ y = 0

z + t = 0
, l2 :

{
x+ z = 0

y + t = 0
,

l3 :

{
x+ t = 0

y + z = 0
, l4 :

{
x = 0

y + z = 0
,

l5 :

{
x = 0

y + t = 0
, l6 :

{
x = 0

z + t = 0
,

l7 :

{
y = 0

x+ z = 0
, . . . . . . . . . . . . . . . ,

l15 :

{
t = 0

y + z = 0

In order to find the remaining 12, we first observe that if ζ is a primitive fifth root of
unity, then p := (1 : ζ : ζ2 : ζ3) is a point of S. In fact:

1 + ζ + ζ2 + ζ3 + ζ4 = 0 =⇒ (1 + ζ + ζ2 + ζ3)3 = (−ζ4)3 = −ζ12 = −ζ2,

and since ζ3 is also a primitive fifth root of unity,

13 + ζ3 + (ζ2)3 + (ζ3)3 + (ζ4)3 = 13 + ζ3 + (ζ3)2 + (ζ3)3 + (ζ3)4 = 0 =⇒
=⇒ 13 + ζ3 + (ζ2)3 + (ζ3)3 = −(ζ4)3 = −ζ12 = −ζ2.

Besides, taking conjugates, the point

q := (1 : ζ̄ : ζ̄2 : ζ̄3) = (1 : ζ−1 : ζ−2 : ζ−3) = (ζ3 : ζ2 : ζ : 1)

also lays in S.
We claim that the line pq is in fact contained in S. This set is given by

pq =
{

(λ+ µζ3 : λζ + µζ2 : λζ2 + µζ : λζ3 + µ) ∈ P3
/
λ, µ ∈ C, not both zero

}
.

So, if λ, µ ∈ C, not both zero, we have that

(λ+ µζ3)3 + (λζ + µζ2)3 + (λζ2 + µζ)3 + (λζ3 + µ)3 =

= (1 + ζ3 + ζ + ζ4)λ3 + 3(ζ3 + ζ4 + 1 + ζ)λ2µ+

+ 3(ζ + 1 + ζ4 + ζ3)λµ2 + (ζ4 + ζ + ζ3 + 1)µ3 =

= (1 + ζ + ζ3 + ζ4)(λ+ µ)3 = −ζ2(λ+ µ)3.

On the other hand,(
(λ+ µζ3) + (λζ + µζ2) + (λζ2 + µζ) + (λζ3 + µ)

)3
=

=
(
(1 + ζ + ζ2 + ζ3)(λ+ µ)

)3
=
(
− ζ4(λ+ µ)

)3
= −ζ2(λ+ µ)3.
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Thus, pq is the sixteenth line of S, which will be denoted by l16. It is given by the
equations

l16 :

{
x− (ζ + ζ−1)y + z = 0

y − (ζ + ζ−1)z + t = 0
.

Furthermore, if we fix ζ = e4πi/5, then

ζ + ζ−1 = ζ + ζ̄ = 2 cos
4π

5
= −2 cos

π

5
= −φ,

where φ := 1+
√
5

2 is the golden ratio. Hence, l16 is given by

l16 :

{
x+ φy + z = 0

y + φz + t = 0
.

Exchanging variables, we get 4!
2 = 12 lines, so we are done.

Remark 2.4.1. Note a fundamental difference between the lines in the Fermat and the
ones in the Clebsch diagonal. While in the latter the 27 lines are given by equations with
coefficients in R,

(
in fact in Q(

√
5)
)
, in the former just three of them have such property.

A consequence of this is that when we consider these surfaces in P3
R, the Clebsch diagonal

preserves its 27 lines, whereas the Fermat, does not.





Chapter 3

Cubic surfaces and blow-ups

Through this chapter we will study the close relation between cubic surfaces and blow-
ups of the projective plane. This fact is perfectly described by Clebsch’s Theorem in
Section 3.2. However, its proof requires advanced techniques in Algebraic Geometry,
especially in schemes and divisors. Therefore, we are just going to state and describe
the theorem.

In any case, in Sections 3.3 and 3.5 we are going to give direct proofs of some facts
that could be deduced from the theorem, such as the fact that every smooth cubic surface
admits a parametrization. Furthermore, we are going to develop a method to obtain it
explicitly. In particular, we are going to give the parametrization of the Fermat and the
Clebsch diagonal cubic.

3.1 Blow-up of a variety

Before stating Clebsch’s Theorem, we need to specify what we mean when we speak
about blowing up the projective plane.

Definition 3.1.1. Let X be an algebraic variety and p1, . . . , pt ∈ X. We say that the
variety X̃ is a blow-up of X at the points p1, . . . , pt if there exists a morphism ε : X̃ −→ X
such that, if we denote Ei := ε−1(pi) for every i = 1, . . . , t, then

1) Ei ' P1, for every i = 1, . . . , t.

2) ε
∣∣
X̃−

t⋃
i=1

Ei

: X̃ −
t⋃
i=1

Ei −→ X − {p1, . . . , pt} is an isomorphism.

In this case, ε is called the blow-up morphism and its rational inverse ε−1 : X 99K X̃,
the blow-down rational map. The Ei are called the exceptional divisors of the blow-up.
If Y is a subvariety of X, then Ỹ := Y − {p1, . . . , p6} is called the strict transform of Y .

Remark 3.1.1.

31
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(1) It can be shown that the blow-up variety and the blow-up morphism are unique up
to isomorphisms.

(2) Observe that under these conditions, X and X̃ are birationally equivalent.

Remark 3.1.2. Despite being irrelevant in this context, it is worth commenting that
blow-ups turn to be a fundamental tool in resolution of singularities in Algebraic Geom-
etry. If the reader is interested in this topic, [1] is recommended.

We now proceed to construct the blow-up of P2 at the points p1, . . . , pt, which is
the example we are interested in. For the sake of simplifying notation, we will assume
that pi = (1 : ai : bi) for every i = 1, . . . , t. If not, one just has to exchange variables
appropriately.

Consider

P̃2 :=
{(

(x0 : x1 : x2), (y10 : y11), . . . , (yt0 : yt1)
)
∈ P2 × P1 × t. . .× P1

/
yi1(x1 − aix0) = yi0(x2 − bix0), ∀i = 1, . . . , t

}
and the natural projection π : P̃2 −→ P2.

For each i = 1, . . . , t, we define the map fi : P2 99K P1 by

fi(x0 : x1 : x2) := (x1 − aix0 : x2 − bix0).

Its domain is Domfi = P2 − {pi}. It is immediate that if q ∈ P2 − {p1, . . . , pt}, then

π−1(q) =
{(
q, f1(q), . . . , ft(q)

)}
.

Besides,

π−1(pi) = {pi} × {f1(pi)} × . . .× {fi−1(pi)} × P1 × {fi+1(pi)} × . . .× {ft(pi)}.

Hence,

π−1(pi) ' P1, ∀i = 1, . . . , t,

and π induces an isomorphism between P̃2 − π−1{p1, . . . , pt} and P2 − {p1, . . . , pt}.
In particular, P̃2 − π−1{p1, . . . , pt} is irreducible because so is P2 − {p1, . . . , pt}. Be-

sides,

P̃2 − π−1{p1, . . . , pt} = P̃2,

so we conclude that P̃2 is a projective variety. Therefore, P̃2 is the blow-up of P2 at
p1, . . . , pt.
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3.2 Clebsch’s Theorem

We now state Clebsch’s fundamental result about smooth cubic surfaces:

Theorem 3.2.1 (Clebsch, 1871).

(1) The blow-up of P2 at six points in general position is isomorphic to a smooth cubic
surface in P3.

(2) Conversely, every smooth cubic surface in P3 can be obtained in this way.

Proof. See [2], Chapter V: Corollary 4.7 and Remark 4.7.2.

Cayley-Salmon Theorem, the double six concept and Clebsch’s Theorem are related
in this result:

Theorem 3.2.2. If S is the cubic surface obtained by blowing-up P2 at the points in
general position p1, . . . , p6, then its 27 lines can be described in terms of the blowing-up:

(1) 6 lines are the exceptional divisors.

(2)
(
6
2

)
= 15 are the strict transforms of the lines pipj , i 6= j.

(3) 6 are the strict transforms of the conics passing through {p1, . . . , p6}−{pi} for each
i.

Furthermore, the 12 lines of the first and third families form a double six.

Proof. See [2], Chapter V: Theorem 4.9.

As we have said at the beginning of this chapter, these results need of advanced
methods in schemes and divisors. Nevertheless, in the next sections we will prove weaker
results that follow from Clebsch’s Theorem.

3.3 Blow-ups as cubic surfaces

Let p1, . . . , p6 ∈ P2 be six points in general position. By Proposition 1.4.1 in Chapter 1,
S3(p1, . . . , p6), the space of cubic forms that vanish at p1, . . . , p6 has dimension 4. Let
{F0, F1, F2, F3} be a basis of this space.

Proposition 3.3.1. With the same notation as above,

Z(F0, F1, F2, F3) = {p1, . . . , p6}.

Proof. If there exists q 6= p1, . . . , p6 such that F0(q) = F1(q) = F2(q) = F3(q) = 0, since
{F0, F1, F2, F3} is a basis of S3(p1, . . . , p6), we get that

S3(p1, . . . , p6) = S3(p1, . . . , p6, q).

The points p1, . . . , p6, q do not lie on a nonsingular quadric and no four are aligned, so by
the Proposition 1.4.2 in Chapter 1, S3(p1, . . . , p6, q) has dimension 3; contradiction.
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Consider the rational map γ : P2 99K P3 given by

γ(p) =
(
F0(p) : F1(p) : F2(p) : F3(p)

)
.

From the previous proposition, its domain is

Domγ = P2 − {p1, . . . , p6}.

Proposition 3.3.2. The map γ is injective on a Zariski open set of P2.

Proof. We introduce some notation. For each i, j = 1, . . . , 6, i 6= j, let lij be the line
that goes through pi and pj . Besides, given i = 1, . . . , 6, if there exists a conic through
p1, . . . , pi−1, pi+1, . . . , p6, this curve is unique and we denote it by ci. If not, we just set
ci = ∅.

With all this, we define U ⊂ P2 as the complement of

⋃
1≤i<j≤6

lij ∪
6⋃
i=1

ci.

Clearly, U is open, and we claim that γ is injective on it. Arguing by contradiction,
suppose there are a, b ∈ U such that γ(a) = γ(b) but a 6= b. Choosing appropriate
coordinates, we can suppose that a = (1 : 0 : 0).

Let {G0, G1, G2, G3} be a basis of S3(p1, . . . , p6) such that G1, G2, G3 do not have
term in x30. Therefore, they are of the form

Gi(x0, x1, x2) = x1Si(x0, x1, x2) + x2Ti(x0, x1, x2), ∀i = 1, 2, 3.

It follows that

Gi(a) = 0, ∀i = 1, 2, 3.

Now, {F0, F1, F2, F3} is a basis of S3(p1, . . . , p6), so there exists λ ∈ C∗ such that F (a) =
λF (b) for every F ∈ S3(p1, . . . , p6). In particular, we also have that

Gi(b) = 0, ∀i = 1, 2, 3.

Therefore, {G1, G2, G3} is a set of linearly independent cubic forms that vanish at
p1, . . . , p6, a, b. However, by the choice of U , no four points are collinear and no seven
lie on a nonsingular conic, so we have reached to a contradiction with Proposition 1.4.3
in Chapter 1.

Theorem 3.3.3. The Zariski closure of the image of the map γ is an irreducible cubic
surface.

Proof. Let D := Domγ = P2 − {p1, . . . , p6} and

S := Imγ = γ(D).
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We first show that S is a projective variety. We proceed as follows. D is an open set
of P2. Since P2 is a projective variety, D is quasi-projective. Furthermore, irreducibility
is preserved under Zariski continuous maps, so Imγ is also irreducible. Finally, since
irreducibility is preserved by taking closures, we conclude that S = Imγ is a projective
variety.

Let U be as in the last proposition. We claim that S = γ(U).

First, we have that U ⊂ D, so γ(U) ⊂ γ(D) and hence,

γ(U) ⊂ γ(D) = S.

To prove the other inclusion, recall that γ : D −→ P3 is continuous with the Zariski
topology. Therefore,

γ−1
(
γ(U)

)D
⊂ γ−1

(
γ(U)

)
.

In turn,

γ−1
(
γ(U)

)D
⊃ UD = U ∩D = P2 ∩D = D.

Hence, γ(D) ⊂ γ(U) and thus, S = γ(D) ⊂ γ(U).

Consider ψ := γ
∣∣
U

. This morphism is both injective and dominant, so dimS = 2 and
therefore, there exists a nonconstant homogeneous polynomial F such that S = Z(F ).
Suppose that F is of degree n.

Let l ⊂ P3 be a generic line; i.e., a line such that for some plane Π ⊂ P3 containing
l, the line intersects the curve C := S ∩ Π transversally. Besides, we can suppose that
l ∩ C ⊂ Imψ. By Bézout’s Theorem, we have that n = #l ∩ C. Besides,

l ∩ C = l ∩ S ∩Π = l ∩ S = l ∩ Imψ,

so n = #l ∩ Imψ.

Without loss of generality, we can suppose that l = Z(z, t). Observe that F2 and
F3 cannot have a common irreducible factor, because in that case l ∩ Imψ would be
infinite due to the injectivity of ψ. Thus, we can apply again Bézout’s Theorem and
conclude that F2 and F3 have exactly nine common roots in P2. We know that six of
them are p1, . . . , p6. From the injectivity of ψ, we have that the remaining ones are in
U . Therefore,

#
{
p ∈ U

/
F2(p) = F3(p) = 0

}
= 3.

Since ψ is injective, we conclude that

n = #l ∩ Imψ = 3

and S is an irreducible cubic surface.

Remark 3.3.1. Although it is not stated in the theorem, the cubic surface S obtained in
this way is also smooth and γ a birational map. However, in order to prove it advanced
techniques in schemes are needed. The reader is referred to [2] for more details.
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3.4 Example

We apply the previous result to a particular example.
Consider in P2 the points

p1 = (1 : 0 : 0), p4 = (−1 : 1 : 1),

p2 = (0 : 1 : 0), p5 = (1 : −1 : 1),

p3 = (0 : 0 : 1), p6 = (1 : 1 : −1).

Clearly, no three are aligned. On the other hand, they do not lie on a nonsingular conic.
To check this, let

Q(x0, x1, x2) := ax20 + bx21 + cx22 + dx0x1 + ex0x2 + fx1x2

be a polynomial that vanishes at p1, . . . , p6. We have that:

0 = Q(1, 0, 0) = a

0 = Q(0, 1, 0) = b

0 = Q(0, 0, 1) = c

0 = Q(−1, 1, 1) = −d− e+ f

0 = Q(1,−1, 1) = −d+ e− f
0 = Q(1, 1,−1) = d− e− f

Since

det

−1 −1 1
−1 1 −1
1 −1 −1

 = 4 6= 0,

we get d = e = f = 0, so Q = 0. Therefore, the six points are in general position.
We know from the previous section that the space of cubic homogeneous polynomials

that vanish at p1, . . . , p6 is of dimension four. We proceed to find a basis of it. Consider
a general polynomial

F (x0, x1, x2) = ax30 + bx31 + cx32 + dx20x1 + ex20x2+

+ fx0x
2
1 + gx21x2 + hx0x

2
2 + ix1x

2
2 + jx0x1x2

with the desired property. Then:

0 = F (1, 0, 0) = a

0 = F (0, 1, 0) = b

0 = F (0, 0, 1) = c

0 = F (−1, 1, 1) = d+ e− f + g − h+ i− j
0 = F (1,−1, 1) = −d+ e+ f + g + h− i− j
0 = F (1, 1− 1) = d− e+ f − g + h+ i− j
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We get that

h = e− f + g

i = −d+ e+ g

j = e+ g

Thus,

F (x0, x1, x2) = d(x20x1 − x1x22) + f(x0x
2
1 − x0x22) + g(x21x2 − x20x2)+

+ (e+ g)(x20x2 + x0x
2
2 + x1x

2
2 + x0x1x2).

Therefore, if we choose

F0 = x0x
2
1 − x0x22,

F1 = x20x1 − x1x22,
F2 = x20x2 − x21x2,
F3 = x20x2 + x0x

2
2 + x1x

2
2 + x0x1x2,

then {F0, F1, F2, F3} is a basis. It induces the rational map γ : P2 99K P3 defined by

γ(p) = (F0(p) : F1(p) : F2(p) : F3(p)).

From the previous section, we know that S := Imγ ⊂ P3 is a smooth cubic surface. To
find the cubic polynomial which has S as zero locus, we program the computations using
Magma:

Q := Rat iona l s ( ) ;
Par<x0 , x1 , x2> := PolynomialRing (Q, 3 ) ;
P2 := Pro j e c t iveSpace ( Par ) ;
R<x , y , z , t> := PolynomialRing (Q, 4 ) ;
parametr i za t i on := [ x0∗x1ˆ2−x0∗x2 ˆ2 , x0ˆ2∗x1−x1∗x2 ˆ2 ,
x0ˆ2∗x2−x1ˆ2∗x2 , x0ˆ2∗x2+x0∗x2ˆ2+x1∗x2ˆ2+x0∗x1∗x2 ] ;
f := hom<R −> Par | parametr i zat ion >;
I0 := I m p l i c i t i z a t i o n ( f ) ;
P3 := Pro j e c t iveSpace (R) ;
S := Scheme (P3 , I0 ) ;
S ;

The output is the polynomial

F (x, y, z, t) = x2t+ y2z − y2t− yz2 − z2t+ xt2 − yt2 + zt2 + xyz + 2yzt,

so

Imγ = Z(F ).
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3.5 Parametrization of cubic surfaces

The aim of this last section is to show that every smooth cubic surface admits a
parametrization given by cubic polynomials.

First of all, we introduce the precise notion of parametrization of projective varieties:

Definition 3.5.1. Let X ⊂ Pn be a projective variety. We say that a rational map
γ : Pm 99K X is a parametrization of X if it is dominant; i.e., if

Imγ = X.

Remark 3.5.1. With this concept, the statement of Theorem 3.3.3 in section 3.5 could
be rewritten as:
”The map γ parametrizes some irreducible cubic surface.”

We now have this result:

Theorem 3.5.1. Smooth cubic surfaces are rational varieties; i.e., birationally equiva-
lent to P2.

Proof. Let S := Z(F ) be a smooth cubic surface for some homogeneous polynomial
F (x, y, z, t) ∈ C[x, y, z, t] of degree three. Preserving the notation used in Chapter 1,
take l and m two skew lines contained in S, and let l1, . . . , l5 be the lines in S that cut
both l and m. Recall that these five lines are disjoint. Without loss of generality, we
can suppose that

l : x = y = 0, m : z = t = 0,

l1 : x = z = 0, l2 : y = t = 0.

This forces F to be of the form

F (x, y, z, t) = αx2t+ βy2z + xyf(z, t) + xtg(z, t) + yzh(z, t),

where f, g, h are linear forms.

We construct the rational map η : S 99K P2 as follows.

Let Π := Z(x − z). Given p ∈ S − (l1 ∪ l2), the exists a unique line lp that goes
through p and intersects both l and m. Note that lp ⊂ Π if and only if p ∈ l1. Certainly,
if p ∈ l1, then lp = l1 ⊂ Π. Conversely, if lp ⊂ Π and we suppose that p 6∈ l1, then lp and
l1 are coplanar and distinct, so they meet at a point q. By hypothesis, q 6= p. Moreover,
q 6= lp∩l, because if not, lp, l, l1 would be coplanar, necessarily in Π, but l 6⊂ Π. Similarly,
q 6= lp ∩m. Hence, lp contains four different points of S. By Proposition 1.1.3, we get
that lp ⊂ S. Thus, lp is a line in S that meets both l and m. However, it also meets l1,
which is impossible.

Hence, we define η0 : S − (l ∪m ∪ l1) −→ Π by

η0(p) := lp ∩Π,
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with the obvious abuse of notation.

In order to give the explicit expression of η0, we take p = (a : b : c : d) ∈ S−(l∪m∪l1)
and observe that

lp =
{

(λa : λb : µc : µd) ∈ P3 / λ, µ ∈ C, not both zero
}
.

If (λ, µ) ∈ C2 − {(0, 0)} and λa = µc, then

(λa : λb : µc : µd) = (λac : λbc : µc2 : µcd) = (λac : λbc : λac : λad) =

= (ac : bc : ac : ad),

so

η0(p) = (ac : bc : ac : bd).

In particular, η0 : S 99K Π is a rational map. Furthermore, it is defined on S−(l∪m∪ l1)
as expected.

Now, Π and P2 are projectively equivalent via, for example, the projective transfor-
mation ϕ : Π −→ P2, defined by

ϕ(x : y : z : t) = (x : t : y).

Composing η0 and ϕ, we get the rational map η = ϕ ◦ η0 : S 99K P2, given by

η(x : y : z : t) = (xz : xt : yz).

To find the rational inverse of η, we recall its geometric definition and go backwards.
As above, for each p ∈ Π− (l1 ∪ l2), the exists a unique line l′p that goes through p and
meets l and m. Due to the configuration of the lines in S, we observe that l′p ⊂ S if and
only if l′p = l1, . . . , l5, which is equivalent to p ∈ l1 ∪ . . . ∪ l5.

In thatis case, the intersection of l′p and S consists of exactly three points counting
multiplicity: l′p∩ l, l′p∩m and a third, say qp (possibly equal to one of the first two). We
define γ0 : Π− (l1 ∪ . . . ∪ l5) −→ S by

γ0(p) = qp.

We give its expression explicitly. If p := (a : b : a : d) ∈ Π − (l1 ∪ . . . ∪ l5), observe
that

l′p =
{

(λa : λb : µa : µd) / λ, µ ∈ C, not both zero
}
.

Thus, if λ, µ 6= 0, we have that

F (λa, λb, µa, µd) =

= α(λa)2µd+ β(λb)2µa+ λaλbf(µa, µd) + λaµdg(µa, µd) + λbµah(µa, µd) =

= λµ
((
αa2d+ βab2 + abf(a, d)

)
λ+

(
adg(a, d) + abh(a, d)

)
µ
)
.
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Hence,

γ0(a : b : a : d) :=
(
a2dg(a, d) + a2bh(a, d) : abdg(a, d) + ab2h(a, d) :

: −αa3d− βa2b2 − a2bf(a, d) : −αa2d2 − βab2d− abdf(a, d)
)
.

We take γ = γ0 ◦ ϕ−1 : P2 99K S, which is given by

γ(u : v : w) =
(
uvg(u, v) + uwh(u, v) : vwg(u, v) + w2h(u, v) :

: −αu2v − βuw2 − uwf(u, v) : −αuv2 − βvw2 − vwf(u, v)
)
.

(3.1)

By construction, η and γ are mutual rational inverses in some Zariski open sets.

Corollary 3.5.2. Every smooth cubic surface admits a parametrization by cubic ho-
mogeneous polynomials.

Proof. It suffices to take the map γ in the proof of the previous theorem and recall that
birational maps are dominant.

Remark 3.5.2. It could be shown that the rational map η is in fact defined everywhere
in S and that it is the blow-up morphism of P2 at six points in general position. Moreover,
the algebraic construction of Section 3.3 coincides with the geometric construction of this.

3.6 Examples

Based on the proof of the theorem above and on (3.1), we are going to give the explicit
parametrizations of the Fermat and the Clebsch diagonal cubics.

3.6.1 Fermat cubic

As in the previous chapters, this is the surface S defined by

F (x, y, z, t) = x3 + y3 + z3 + t3.

Let ζ ∈ C be a primitive third root of unity. With the same notation as in the proof of
Theorem 3.5.1, consider the lines

l :

{
x+ ζy = 0

z + ζt = 0
, m = l̄ :

{
x+ ζ2y = 0

z + ζ2t = 0
,

l1 :

{
x+ ζz = 0

y + ζt = 0
, l2 = l̄1 :

{
x+ ζ2z = 0

y + ζ2t = 0
.

The intersection points of these lines are

l ∩ l1 =
{

(ζ : −1 : −1 : ζ2)
}
, l ∩ l2 =

{
(−1 : ζ2 : ζ : −1)

}
,

m ∩ l1 =
{

(−1 : ζ : −ζ2 : −1)
}
, m ∩ l2 =

{
(ζ2 : −1 : −1 : ζ)

}
.
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We therefore choose the change of coordinates
x
y
z
t

 =


ζ2 −1 −1 ζ
−1 ζ ζ2 −1
−1 ζ2 ζ −1
ζ −1 −1 ζ2



X
Y
Z
T

 . (3.2)

After this transformation, the lines l,m, l1, l2 become

l̃ : X = Y = 0, m̃ : Z = T = 0,

l̃1 : X = Z = 0, l̃2 : Y = T = 0,

as desired. In turn, S becomes S̃ := Z(F̃ ), where

F̃ (X,Y, Z, T ) = (ζ2X − Y − Z + ζT )3 + (−X + ζY + ζ2Z − T )3+

+ (−X + ζ2Y + ζZ − T )3 + (ζX − Y − Z + ζ2T )3 =

= −9
(
X2T + Y 2Z +XY (2Z + 2T ) +XT (2Z + T ) + Y Z(Z + 2T )

)
.

By formula (3.1), we get γ̃ : P2 99K S̃, a parametrization of S̃:

γ̃(u : v : w) =(2u2v + u2w + uv2 + 2uvw : v2w + uw2 + 2vw2 + 2uvw :

: −u2v − 2u2w − uw2 − 2uvw : −uv2 − 2v2w − vw2 − 2uvw)

In order to find the parametrization of S in the original coordinates, we just have to
multiply γ̃ by the matrix in (3.2). In this way, we get γ : P2 99K S, with

γ(u : v : w) =(−u2v + ζ2u2w − uv2 − v2w + ζvw2 − 2uvw :

: −ζ2u2v + u2w − ζv2w + uw2 + vw2 + 2uvw :

: ζu2v − u2w + ζ2v2w − uw2 − vw2 − 2uvw :

: u2v − ζu2w + uv2 + v2w − ζ2vw2 + 2uvw).

3.6.2 Clebsch diagonal cubic

We proceed as before. Consider the lines

l :

{
x = 0

y + z = 0
, m :

{
x+ z = 0

y + t = 0
,

l1 :

{
x+ t = 0

y + z = 0
, l2 :

{
x = 0

y + t = 0
.

The intersection points are

l ∩ l1 =
{

(0 : 1 : −1 : 0)
}
, l ∩ l2 =

{
(0 : −1 : 1 : 1)

}
,

m ∩ l1 =
{

(1 : 1 : −1− 1)
}
, m ∩ l2 =

{
(0 : 1 : 0 : −1)

}
.
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We do the change of variables
x
y
z
t

 =


0 1 0 0
1 1 −1 1
0 −1 1 −1
−1 −1 1 0



X
Y
Z
T

 . (3.3)

After this transformation, the lines l,m, l1, l2 become

l̃ : X = Y = 0, m̃ : Z = T = 0,

l̃1 : X = Z = 0, l̃2 : Y = T = 0,

as desired. In turn, S becomes S̃ := Z(F̃ ), where

F̃ (X,Y, Z, T ) = Y 3 + (X + Y − Z + T )3 + (−Y + Z − T )3 + (−X − Y + Z)3 − Z3 =

= 3
(
X2T + Y 2Z + 2XY T +XT (−2Z + T )− Y Z2

)
.

Applying formula (3.1) to this case, we get a parametrization of S̃, γ̃ : P2 99K S̃:

γ̃(u : v : w) =(2u2v + u2w − uv2 : −v2w + uw2 + 2uvw :

: u2v + uw2 + 2uvw : uv2 + 2v2w + vw2)

As before, in order to find the parametrization of S in the original coordinates, we just
have to apply the matrix in (3.3) to γ̃. In this way, we get γ : P2 99K S, with

γ(u : v : w) =(−v2w + uw2 + 2uvw : u2v + u2w + v2w + vw2 :

: u2v − uv2 − v2w − vw2 : −u2v − u2w + uv2 + v2w).
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Appendix - Basic notions and
results of Algebraic Geometry

This appendix is directed for readers who are not familiarised with Algebraic Geometry.
All the results and definitions here are taken for granted in the three chapters.

Thus, we briefly recall the very basic definitions and classical results of projective
Algebraic Geometry.

4.1 Homogeneous polynomials and ideals

Definition 4.1.1. Let K be a field. A nonzero polynomial

F (x0, x1, . . . , xn) =
∑

i1,...,in≥0
ai0...inx

i0
0 . . . x

in
n

in K[x0, x1, . . . , xn] is said to be homogeneous of degree d if fulfils for every i0, . . . , in
that

ai0...in 6= 0 =⇒ i0 + . . .+ id = d

Of course, d coincides with the degree of F as a polynomial.

When working with a homogeneous polynomial F in K[x0, . . . , xn], we can speak
about the zeros of F in PnK unambiguously. In fact, if F is of degree d, and

p := (a0 : . . . : an) = (b0 : . . . : bn) ∈ PnK ,

then there exists λ ∈ K∗ such that ai = λbi for every i = 0, . . . , n. Thus,

F (a0, . . . , an) = λdF (b0, . . . , bn).

Hence, F (a0, . . . , an) = 0 if and only if F (b0, . . . , bn) = 0; i.e., the fact that p is a zero of
F does not depend on the representative of the point. In that case, we will simply say
that p is a root of F or that F vanishes at p, and we will write F (p) = 0.

43
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Since every polynomial can be written uniquely as sum of homogeneous polynomials
of different degrees (its homgeneous components), we can extend this notion to any
arbitrary polynomial F by saying that F vanishes at a point p if every component
vanishes at it. If the field K is infinite, this is equivalent to saying that F vanishes at
every representative of the point p. As above, we will simply write F (p) = 0 in that
case.

Definition 4.1.2. An ideal a of K[x0, . . . , xn] is said to be homogeneous if the homo-
geneous components of every polynomial of a are also in a.

Homogeneous ideals have the following properties:

Proposition 4.1.1.

(1) An ideal a of K[x0, . . . , xn] is homogeneous if and only if it can be generated by
homogeneous polynomials.

(2) The sum, product, intersection and radical of homogeneous ideals are also homoge-
neous.

4.2 Algebraic sets. Hilbert’s Nullstellensatz

Definition 4.2.1. Let S ⊂ K[x0, . . . , xn]. We define

Z(S) :=
{
p ∈ PnK

/
F (p) = 0,∀F ∈ S

}
,

which is said to be the zero locus of S. This kind of subsets of PnK are called algebraic
sets.

It is immediate that

(1) If S ⊂ T ⊂ K[x0, . . . , xn], then Z(S) ⊃ Z(T ).

(2) Z(S) = Z
(
(S)
)

for every S ⊂ K[x0, . . . , xn].

Observe that every algebraic can be written as Z(S), where all polynomials of S are
homogeneous. Furthermore, by (2) we can also suppose that S is a homogeneous ideal.
On the other hand, since K[x0, . . . , xn] is a Noetherian ring, S can also be taken to be
a finite set of homogeneous polynomials.

Algebraic sets have this interesting property:

Theorem 4.2.1. There exists a unique topology over PnK such that the algebraic sets
are its closed sets. This topology is known as the Zariski topology over PnK .

Using Z, we can send homogeneous ideals of K[x0, . . . , xn] to algebraic sets. Con-
versely, we have this map:
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Definition 4.2.2. Let A ⊂ PnK . We define

I(A) :=
{
F ∈ K[x0, . . . , xn]

/
F (p) = 0, ∀p ∈ A

}
.

It can be checked that this set is a radical homogeneous ideal of K[x0, . . . , xn].
The correspondences Z and I are of course related:

Proposition 4.2.2.

(i) For every A ⊂ PnK , Z
(
I(A)

)
= Ā (Zariski closure).

(ii) For every ideal a of K[x0, . . . , xn],

I
(
Z(a)

)
⊃
√
a.

Moreover, if the field K is algebraically closed, in (2) equality holds. This is a classical
result in Algebraic Geometry, known as Hilbert’s Nullstellensatz:

Theorem 4.2.3 (Hilbert’s Nullstellensatz). If a is a homogeneous ideal of K[x0, . . . , xn]
different from (x0, . . . , xn), then

I
(
Z(a)

)
=
√
a.

4.3 Irreducibility and algebraic varieties

Definition 4.3.1. A topological space X is called irreducible if it is not the union of
two proper closed sets. A subset A ⊂ X is said to be irreducible if it is irreducible with
the induced topology of X.

Irreducibility has other two equivalent definitions:

Proposition 4.3.1. Let X a topological space. They are equivalent:

(1) X is irreducible.

(2) Every pair of nonempty open sets have nonempty intersection.

(3) Every nonempty open set in X is dense.

Besides, irreducibility has the following properties:

Proposition 4.3.2. Let X be a topological space. Then:

(1) If X is irreducible, then its open sets are also irreducible.

(2) If A ⊂ X is irreducible, so is Ā.

(3) Continuous maps send irreducible sets to irreducible sets.

Definition 4.3.2.
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(1) An algebraic set X ⊂ PnK is a projective variety if it is an irreducible set of PnK with
the Zariski topology.

(2) More general, open sets of projective varieties are called quasi-projective varieties or
algebraic varieties.

Irreducibility of algebraic sets can be characterised by studying their ideals:

Proposition 4.3.3. Let X ⊂ PnK be an algebraic set. Then, X is a projective variety if
and only if I(X) is a prime ideal.

Hence, it follows that PnK is a projective variety.

In many cases, we can reduce our study just to varieties due to this fundamental
result:

Theorem 4.3.4. Every algebraic set X ⊂ PnK can be expressed as

X = X1 ∪ . . . ∪Xr,

where the Xi are projective varieties and Xi 6⊂ Xj if i 6= j. Furthermore, this decomposi-
tion is unique up to rearrangements of indices. The varieties Xi are called the irreducible
components of X.

4.4 Products

In order to give structure of projective variety to PmK × PnK , we identify it with some
projective variety via the Segre embedding.

Theorem 4.4.1. Let s : PmK × PnK −→ PNK , with N := mn+m+ n, be the map defined
by

s
(
(x0 : . . . : xm), (y0 : . . . : yn)

)
:= (x0y0 : . . . : x0yn : x1y0 : . . . : xmyn).

Then,

(1) s is injective.

(2) If we take z00, . . . , z0n, z10, . . . , zmn as the variables in PNK , the image of s is a pro-
jective variety given by

Ims = Z
(
{zijzkl − zilzkj

/
i, k = 0, . . . ,m, j, l = 0, . . . , n}

)
.

The map s is called the Segre embedding.

Therefore, we will consider PmK×PnK as a projective variety by identifying it with Ims.
Recall that the spaces PmK × PnK with the product topology of their Zariski topologies
and Ims as a subspace of PNK are not homeomorphic.
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4.5 Rational maps and morphisms

Let X ⊂ PnK be a projective variety. By Proposition 4.3.3, we have that I(X) is a prime
ideal of K[x0, . . . , xn]. Hence, K[x0, . . . , xn]

/
I(X) is an integral domain. Let L be its

field of fractions. We consider

K(X) :=

{
F + I(X)

G+ I(X)
∈ L

/
F,G homogeneous polynomials in K[x0, . . . , xn] of

same degree, G 6∈ I(X)

}
.

It can be checked that K(X) is a subfield of L, and it is called the function field of X.
Its elements are called rational functions.

Definition 4.5.1. A rational function f ∈ K(X) is said to be regular at p ∈ X if there
are homogeneous polynomials of same degree F,G such that

(1) f = F+I(X)
G+I(X) and

(2) G(p) 6= 0.

If this is the case, we define

f(p) :=
F (p)

G(p)
.

The domain of f is the set of points in which f is regular. It is denoted by Domf .

Therefore, rational functions can be regarded as partially defined functions. To be
reflect this fact, we will usually write

f : X 99K K.

As the following results shows, rational functions are regular in most of points in X:

Proposition 4.5.1. If f ∈ K(X), then Domf is a nonempty open set of X. In partic-
ular, it is dense in X.

Definition 4.5.2. Let p ∈ X. The local ring of X at p is

Op(X) :=
{
f ∈ K(X)

/
f regular at p

}
.

Certainly, Op(X) is a local ring; i.e., it has a unique maximal ideal, namely

mp(X) :=
{
f ∈ Op(X)

/
f(p) = 0}.

Definition 4.5.3. Let X ⊂ PmK be a projective variety. The elements f = (f0 : . . . :
fn) ∈ PnK(X) are called rational maps from X to PmK .

Definition 4.5.4. A rational map f of X is said to be defined or regular at p ∈ X if
there exist f0, . . . , fn ∈ K(X), not all zero, such that
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(1) f = (f0 : . . . : fn),

(2)
(
f0(p), . . . , fn(p)

)
6= (0, . . . , 0).

In that case, we define

f(p) =
(
f0(p) : . . . : fn(p)

)
.

The domain of f is the set of all regular points of f . Is is denoted by Domf .

It is very common to write rational maps by abuse of notation as

f = (F0 : . . . : Fn),

where F0, . . . , Fn are homogeneous polynomials of same degree, not all elements of I(X).

If f is a rational map from X to PmK and Y ⊂ PnK is a projective variety such that

f(p) ∈ Y, ∀p ∈ Domf,

then f can be seen as partially defined map between projective varieties. We will repre-
sent this fact by

f : X 99K Y.

The map f : Domf −→ Y is of course continuous with the Zariski topology.

If A ⊂ X and B ⊂ Y , we define

f(A) :=
{
f(p) ∈ Y

/
p ∈ A ∩Domf

}
,

f−1(B) :=
{
p ∈ Domf

/
f(p) ∈ B

}
.

As usual, Imf := f(X) = f(Domf) is called the image of f. The map f is called
dominant if its image is dense in Y ; i.e., if

Imf = Y (Zariski closure).

Definition 4.5.5. Let U ⊂ PmK and V ⊂ PnK be two quasi-projective varieties, and
X := U and Y := V . We say that the map f : U −→ V is a morphism if there exists
some rational map f̃ : X 99K Y such that

(1) U ⊂ Domf̃ and

(2) f(p) = f̃(p),∀p ∈ U .

A bijetive morphism whose inverse is also a morphism is called an isomorphism. Two
quasi-projective varieties U, V are said to be isomorphic if there is an isomorphism from
one to the other. We represent it by U ' V .

Change of coordinates is a particular case of isomorphisms:

Definition 4.5.6.
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(1) Let A ∈ GL(n+ 1,K), and we consider the map ϕ : PnK −→ PnK given by

ϕ(x0 : . . . : xn) = (a00x0 + . . .+ a0nxn : . . . : an0x0 + . . .+ annxn).

These maps are called projective transformations, and they are clearly isomorphisms.

(2) Two algebraic sets in X,Y ⊂ PnK are said to be projectively equivalent if there exists
a projective transformation ϕ : PnK −→ PnK such that ϕ(X) = Y .

Definition 4.5.7.

(1) Let X ⊂ PmK and Y ⊂ PnK be two projective varieties and f : X 99K Y a rational
map. We say that f is birational if there are quasi-projective varieties U and V
contained in X and Y respectively such that f induces an isomorphism between U
and V .

(2) Two projective varieties are said to be birationally equivalent if there is a birational
map from one to another. Varieties which are birationally equivalent to PnK for some
n are called rational.

Certainly, this notion is less restrictive than that of being isomorphic. However,
many properties are just preserved under birational maps:

Theorem 4.5.2. If f : X 99K Y a birational map between projective varieties, then:

(1) f is dominant.

(2) The map f∗ : K(Y ) −→ K(X), given by

f∗(g) := g ◦ f

is well-defined and it is an isomorphism of fields.

4.6 Dimension

There are several ways of defining the dimension of a variety. We use the topological
one:

Definition 4.6.1. Let X be a topological space.The dimension of X is defined to the
supremum of all integers n such that there exists a chain

Z0 $ Z1 $ . . . $ Zn

of irreducible closed sets. It is denoted by dimX.

The dimension of a quasi-projective variety is its dimension as a topological space
with Zariski topology. It has the following properties:

Proposition 4.6.1.
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(1) dimPnK = n is n.

(2) dim(PmK × PnK) = m+ n.

(3) If U is a quasi-projective variety, then dimU = dimU .

(4) Let X ⊂ PnK be a projective variety. Then, dimX = n − 1 if and only if there
exists an irreducible homogeneous polynomial F (x0, . . . , xn) ∈ K[x0, . . . , xn] such
that X = Z(F ).

(5) Dimension is preserved under birational maps.

4.7 Intersection multiplicity and Bézout’s Theorem

Definition 4.7.1. Let F (x0, x1, x2), G(x0, x1, x2) ∈ K[x0, x1, x2] be two homogeneous
polynomials, C1 := Z(F ) and C2 := Z(G) two plane curves and p ∈ P2

K .

(1) We say that C1 and C2 intersect properly at p if p ∈ C1 ∩ C2 and F and G do not
have common irreducible factors that vanish at p.

(2) We say that C1 and C2 intersect transversally if p ∈ C1 ∩C2, C1 and C2 are smooth
at p and TpC1 6= TpC2.

Definition 4.7.2. Let F (x0, x1, x2), G(x0, x1, x2) ∈ K[x0, x1, x2] be two homogeneous
polynomials, and C1 := Z(F ) and C2 := Z(G) two plane curves. The intersection
multiplicity at p ∈ P2

K with respect F and G is defined to be

Ip(C1, C2) := dimK Op(P2
K)/(F,G).

The following properties are fulfilled:

Proposition 4.7.1. Let F,G,C1, C2 and p be as in the definition. Then:

(1) p ∈ C1 ∩ C2 if and only if Ip(C1, C2) > 0.

(2) C1 and C2 intersect properly at p if and only if 0 < Ip(C1, C2) <∞.

(3) C1 and C2 intersect transversally at p if and only if Ip(C1, C2) = 1.

We now can state a classical fundamental result about intersection of plane curves
in the projective plane:

Theorem 4.7.2 (Bézout’s Theorem). Let K be an algebraically closed field, F,G be two
homogeneous polynomials of degreem and n respectively inK[x0, x1, x2] and C1 := Z(F )
and C2 := Z(G) be two plane curves in P2

K . Then,∑
p∈P2

K

Ip(C1, C2) = mn.
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An immediate corollary is this:

Corollary 4.7.3. If K is algebraically closed, then two plane curves in P2
K always

intersect. Moreover, if they are the zero locus of two homogeneous polynomial of degree
m and n with no common irreducible factors, then they meet in at most mn points.
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