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ABSTRACT 

In this paper, a procedure for the kinematic design of a 3-PRS compliant parallel manipulator of 3 degrees 
of freedom is proposed. First, under the assumption of small displacements, the solid body kinematics of the 3-
PRS has been studied, performing a comprehensive analysis of the inverse and forward kinematic problem, and 
calculating the rotations that the revolute and spherical flexure joints must perform. Then, after defining some 
design requirements and therefore the necessary displacements to fulfill, a design process based on the finite 
element calculations has been stablished, giving the necessary guidelines to reach the optimal solution on a 3-
PRS compliant mechanism. Also, a prototype has been tested, using a coordinate measuring machine to verify 
its dimensions and the resulting displacements in the end effector and the actuated joints. Finally, those 
measurements have been compared with the FEM and the rigid body kinematics predictions, contrasting the 
validity of those two modelling approaches for the kinematic design of compliant mechanisms. 
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(Figures and Tables are provided for a better comprehension) 
 

1. INTRODUCTION 
At present, the requirements of precision and surface finish in different areas as scientific, medical, 

metrological and communication fields have led to the necessity of creating new mechanisms capable of 
achieving accuracy constraints on the order of microns or nanometers. A well-known solution for many of these 
high-tech applications are the compliant mechanisms [1], which allow generating motions with great 
repeatability, precision, speed and a high bandwidth, through the controlled deformation in several points of 
their monolithic structure. Those flexible points are flexure joints, that substitute the traditional joints used in 
typical mechanisms overcoming the problems they usually suffer, as friction, clearances, hysteresis and wear. 
Nevertheless, the main drawback of these mechanisms is a more complex design, because it is necessary to 
control the elastic deformation of the joints, and the appearance of parasitic motions together with the desired 
displacements. For that reason, it is important to develop approaches to study, design and validate these 
compliant machines, which is one of the objectives of the present work.  

Here, the design of a 3-PRS compliant parallel mechanism [2] is proposed. It is a fusion of a parallel 
mechanism [3–6] and a compliant mechanism, so the advantages of both devices can be obtained: higher 
mechanical stiffness, higher loading capacity, and higher positioning accuracy from the parallel mechanism and 
the zero backlash, no friction, no need for lubrication from the flexure devices. The axisymmetric arrangement 
of a 3-PRS causes that it is a common solution among the compliant parallel mechanisms for precision 
operations. 

As a function of the kinematics of the device and the geometry of the joints, it is possible to create a large 
number of combinations. An example of a 1 degree of freedom (dof) compliant device is presented by Kim and 
Choi in [7], that consists of a single-axis flexure-based nano-positioning stage with a range of motion up to a 
millimeter and a compact stage. A reduction of the parasitic movements and an increase of the accuracy are 
achieved by means of their process design, providing an optimization of the structure. Others examples of 1 dof 
compliant devices can be observed in [8–11]. In the same way, it is possible to develop mechanisms with 2 dof, 
as for example the stage presented by Wang and Han in [12], where the design of a planar motion stage based 
on flexure elements allows large ranges of motion along x and y direction without causing over-constraint or 
significant errors. Also, the authors provide some useful steps for designing and analyze by FEM compliant 
devices. Another case of 2 dof compliant mechanism is presented in [13], where the design of a flexure-based 
XY stage tries to obtain a relatively large range and high scanning speed device. Its experimental setup and 
characterization is shown based on the FEM analysis performed. Also, large number of 3 dof mechanisms have 
been developed in the current literature. For example, an ultra-precision XYθz flexure stage with nanometer 
accuracy is presented by Kim et al. in [14]. Other sample of this type of devices is shown in [15], where a high-
performance three-axis serial-kinematic nano-positioning stage for high-bandwidth applications is presented by 
Kenton and Leang. Moreover, the necessary steps to achieve a good design, characterization and control are 
presented. Another 3 dof mechanism is presented in [16], where a XYZ compliant parallel manipulator 
composed by identical spatial double four-beam modules, is presented. Additional examples of this type of 
devices are presented in [2,17]. To conclude, some examples of 6 dof mechanisms are indicated. A micro-scale 
manipulator based on a six-DOF compliant parallel mechanism is presented by Liang et al. [18]. This design is 
featured by piezo-driven actuators and integrated force sensor capable of delivering six-DOF motions with high 
precision and providing real-time force information for feedback control. On the other hand, a low stiffness six 
degrees of freedom compliant precision stage is given in [19]. In it, Dunning et al detail the dimensional 
optimization of the design and the process of experimental validation of the prototype. Further instances of 6 
dof devices are shown in [20,21]. 

The present work will be focused on the kinematics study, design process, construction and experimental 
validation of the kinematics of a prototype of the 3-PRS compliant mechanism. Firstly, the proposed design 
approach is explained and developed in Sections 2 to 5, where the rigid body kinematics of the 3-PRS will be 
developed, the kinematic requirements for the actuators and joints will be calculated and the design process of 
the flexible joints by FEM will be explained. Finally, the experimental procedure to verify the kinematics of a 
developed prototype will be shown. To end up, a discussion about the results reached by the ideal kinematics 
of a 3-PRS, the FEM kinematics and the prototype will be made.   

2. PROCEDURE FOR THE KINEMATIC DESIGN 
The background of the present work is the development of a hybrid milling machine of 5 degrees of 

freedom for milling moulds for microlenses, where the spindle is fixed to a portal and the workpiece is 
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manipulated by a XY stage under a 3-PRS compliant parallel mechanism with direct measurement of the 
platform position. The milling of microlenses consists on milling a matrix of NxN concave aspherical cavities 
on one face of a cylindrical workpiece of diameters ranging from 10 to 20 mm. The lenses have diameters from 
0.5 mm to 2 mm and a sagittal depth less than 1 mm. Hence, in the hybrid manipulator, the XY stage carries 
out the long travel range in X and Y while the parallel kinematics stage has to provide mainly the Z motion and, 
if possible, two rotations around X and Y to improve the tool orientation, see Fig. 1. The XY stage also 
compensates the parasitic motions in X and Y of the parallel kinematics stage.  

To obtain the kinematic requirements in terms of displacements needed, a standard milling process has 
been designed, with a matrix of 4x4 cavities in a cylindrical mould of 18 mm. The cavities are spherical with a 
diameter of 2 mm, and are machined in down-milling with a spiral down strategy in counter-clock direction. 
The offset between the part and the tool tip for the motions between cavities is of 1mm. As a conclusion, the 
needed range in X and Y is ±10mm and in Z ±2mm, with the objective of maximize the two rotations as much 
as possible. As there exists commercial solutions for the XY stage, the final purpose of this work is the design 
of the compliant parallel stage. A compliant solution has been considered as the structural requirements are not 
very demanding, given the fact that the estimated cutting forces of the micromilling process are below 1 N, and 
the travel range can be reached with enough precision. The selection of a 3-PRS is due to its stiffness and 
thermal properties due to its axisymmetric configuration.  

 
FIGURE 1. WORKPIECE AND SCHEMATIC OF THE HYBRID MANIPULATOR. 

Hence, the aim of this study is to achieve the kinematic design of a 3-PRS compliant parallel manipulator 
capable of performing displacements in Z direction as well as two rotations around X and Y axes. To reach this 
objective, the following procedure has been developed. Firstly, the rigid body kinematics of the 3-PRS is solved, 
assuming that under small displacements, there will not appear parasitic translations in the compliant joints that 
change the rotation center location, hence, the kinematics of the rigid body mechanism will be similar to the 
compliant one. This assumption is a common practice designing compliant mechanisms [7,17-18]. The rigid 
body kinematics provides the necessary displacements in the actuators as well as the displacements that the 
flexure joints must fulfill. Once these requirements are stablished, it is possible to design the flexure joints by 
means of an iterative process based on FEM calculations, where the stress in the joints becomes a crucial design 
parameter. First, the FEM study is applied to an isolated flexure joint, to analyze if provides the demanded 
displacements, and the behavior of those joints in the whole manipulator are again analyzed by FEM, to reach 
a homogenous distribution of the stress in all the joints. In the following sections, each of these points will be 
widely explained, providing the achieved relations, the developments for the design and the validation, and the 
obtained results, both theoretical as experimental ones.    

3. RIGID BODY KINEMATICS OF THE 3-PRS 
The rigid body kinematics have been solved following the work from [22]. The notation P, R, S denotes 

prismatic, revolute and spherical joint, respectively. Each limb connects the base to the moving platform by a P 
joint, an R joint and an S joint in sequence, where the P joint is actuated by a linear actuator. Thus, the moving 
platform is attached to the base by three identical PRS linkages, CiBi, whose length is L, see Fig.2. The points 
Bi are located in the moving platform in a circumference of radius b, whose center is defined as point P. The 
angles between the legs and the horizontal plane are αi. which are equal to 45º in the default position. Three 
prismatic actuators at 120º are used; being the joint space coordinates si. The location of the actuators in the 
zero position is defined by the points Ai, placed on a circle of radius a, whose center is defined by the point O.  

Two reference systems are defined to solve the kinematics. A fixed frame {x,y,z} is located at point O, 
whose X axis is coincident with the slider direction OA1 and its Z axis is placed vertically. In the same way, a 



4 
 

moving frame {u, v, w} is laid at point P, whose U axis is coincident with the direction PB1 and its W axis is 
perpendicular to the moving platform.  

 

 
FIGURE 2. SCHEMATIC OF THE 3-PRS MANIPULATOR ANALYZED. 

 
In the following subsections, the motion capabilities and the main parameters of the mechanism will be 

displayed for a better understanding. 
 

3.1 Parasitic movements 
The 3-PRS mechanism belongs to the zero torsion parallel mechanisms group [23], and although it is 

commonly considered as a three degrees of freedom manipulator, that is, translation in Z and rotations around 
X and Y, the truth is that once a set of input displacements is introduced, in the platform there appear three small 
coupled motions, two translations in X and Y and a rotation around Z. As they are not the desired degrees of 
freedom, they are usually called parasitic motions. In this section, these parasitic movements will be calculated 
as they will be compensated by the XY stage below the parallel manipulator.  

To begin with, the position of the center of the moving platform is described by the coordinates px, py, and 
pz, and its orientation is given by three angles Ψ, θ and ϕ, which are defined as rotations around the X, Y and Z 
axes of the fixed frame. Therefore, the position of the center of the moving platform can be expressed as: 
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On the other hand, the zero position of the actuators in the fixed frame {x,y,z} is defined by: 
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Also, it is possible to define the position of the spherical joints in the moving frame {u,v,w} by means of 

the following relations; where the sub-index ‘m’ denotes that the vectors are expressed in the moving frame. 
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To transform any vector from the moving frame to the fixed frame, it is necessary to know the rotation 

matrix R that relates both systems, which is expressed as follows: 
 

( ) ( ) ( )
x x x

y y y

z z z

u v w c c s s s c s s s c c s
u v w c s c c s
u v w s c s c s s s s c c c c

θ φ ψ θ φ θ φ ψ θ φ ψ θ
θ ψ φ ψ φ ψ φ ψ

θ φ ψ θ φ θ φ ψ θ φ ψ θ

+ − +   
   = = = −   
   − + +   

y x zR R R R  (4) 

 
Where c stands for to cosine and s refers to the sine. Also, u, v and w are defined as three unit vectors along 

the U, V and W axes of the moving reference system P. 
The position of each spherical joint regarding to the fixed reference system can be expressed as: 

 
1 2 3· i , ,= + =i imOB OP R PB  (5) 

 
Developing OBi for each limb, the following three equations are obtained: 
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(6) 

 
The revolute hinges set that the spherical joints can only move in the fixed planes defined by the linear 

actuators OAi and the legs of the manipulator CiBi. Therefore, the following three mechanical constraints are 
imposed to the mechanism: 

 
1 0yOB =  (7) 

2 23y xOB OB= −  (8) 

3 33y xOB OB=  (9) 

 
Substituting the expressions of OBi from the Eq. (6) into the Eqs. (7)-(9), and developing these expressions, 

the following equivalences are reached: 
 

y yp u b= −  (10) 

( )
2x x y
bp u v= −  (11) 

y xu v=  (12) 
 

Substituting the expressions of ui and vi from the rotation matrix R, in Eq. (4), into Eqs. (10) and (11), the 
3-PRS dependent variables or parasitic motions are obtained: 
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sin sinatan
cos cos

ψ θφ
ψ θ

 
=  + 

 (13) 

( )cos cos sin sin sin cos cos
2x
bp θ φ ψ θ φ ψ φ= + −  (14) 

cos sinyp b ψ φ= −  (15) 
 
From Eq. (13) it can be stated that for small rotations around Z and Y, the parasitic rotation φ will be negligible.  
 

3.2 Inverse kinematics modeling 
The aim of the inverse kinematic problem is to find the values that should take the active joint coordinates 

of the mechanism si, to reach a given position and orientation of the platform. Firstly, referring to Fig.2, the 
following relationships can be obtained. 
 

1 2 3i , ,= − =i i i iA B OB OA  
 

(16) 

Where OBi and OAi are expressed in Eq. (6) and (2). Also, the expression for CiBi can be written as: 
 

1 2 3iL s i , ,= ⋅ = − = − ⋅ =i i i0 i i i i i i i0C B l A B A C A B s  (17) 
 

Where L is the length of the limbs, li0 represents the unit vector along the direction of each leg and the unit 
vectors sio define the positive direction of motion of the actuators and are written as: 
 

1 2 3
i

i , ,
OA

= − =i
i0

OAs  (18) 

 
Rearranging and squaring the components of the Eq. (17), a quadratic equation is found. 

 
2 22 0 1 2 3i is s L i , ,− ⋅ ⋅ + ⋅ − = =i0 i i i i i is A B A B A B  (19) 

 
Solving Eq. (19) allows us to obtain the solutions for the inverse kinematic problem. 

 

( ) ( )2 2 1 2 3is L i , ,= ⋅ ± ⋅ − ⋅ + =i0 i i i0 i i i i i is A B s A B A B A B  (20) 

 
3.3 Passive coordinates 
In this subsection, the expressions for the angles of the both joints will be developed to calculate the 

rotations that are produced in the hinges while the manipulator is performing a programmed operation. 
 

3.3.1 Rotation at revolute joints 
The rotation in the revolute joints as consequence of a displacement of the manipulator can be obtained 

solving the following development. Referring to Fig.2: 
 

1 2 3i , ,
L

= =i i
i0

C Bl  (21) 

 
Knowing this information, the angles in the revolute joints can be calculated using the dot product of si0 

and li0, which have been shown in Eq. (17) and (18). 
 

0 0
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3.3.2 Rotation at spherical joints 
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To study the rotation at the spherical joints, two sets of moving frames have been used. The first set, Fi={mi 
ni li}, will be fixed to the moving platform, and the other, Fio={mi0 ni0 li0}, will move together with the leg. Both 
have the origin located at the spherical joints Bi and overlap in the default position, with mi0 and mi parallel to 
each revolute joint axis and li0 and li aligned with each limb. A scheme can be seen in Fig. 3 for a pure vertical 
translation of the moving platform. Rotation angles around the m- and n-axes, βmi and βni, will make reference 
to the deflection of the joint and rotation around the l-axis, βli, will be the torsional deformation. 

Let’s consider here the following four rotation matrices: Rim to relate Fi with {u v w}, R mentioned in Eq. 
(4) to relate {u v w} with {x y z}, RiSjoint reflects the spherical joints rotation and relates Fi with Fi0, and RiRjoint 
reflects the revolute joints rotation and relates Fi0 with {x y z}. They meet the following relation: 

 
1 2 3i , ,⋅ = ⋅ =iRjoint iSjoint imR R R R  (23) 

 
Hence, to obtain the spherical joint rotation, the angles between frames Fi and Fi0 must be calculated, which 

means calculating RiSjoint as a function of the other matrices: 
 

1 2 3T i , ,= ⋅ ⋅ =iSjoint iRjoint imR R R R  (24) 
 

 
FIGURE 3. REFERENCE SYSTEMS FOR THE SPHERICAL JOINTS ROTATION STUDY. 

To do that, first, vectors mi0 are developed as the characteristic vectors of the three planes at 120º that 
constrain the motion of each leg to each plane.  
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(25) 

 
Unit vectors lio are calculated as shown in Eq. (21). Finally, the unit vectors ni0 can be obtained by means 

of the cross product of lio and mi0. 
 

1, 2,3i= ∧ =i0 i0 i0n l m  (26) 
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As a result, the rotation matrices RiRjoint that relate the frames of the legs Fio with the global reference 
system {x, y, z} are: 

 
[ ] 1 2 3i , ,= =iRjoint i0 i0 i0R m n l  (27) 

 
On the other hand, the rotation matrices Rim, that relate Fi and {u, v, w} systems, are calculated. The unit 

vectors for each system Fi can be defined by the following expressions in the moving frame: 
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Being α0=45º the default value of αi in the proposed case of study. Hence, each rotation matrix Rim has the 

following expression:  
 

1 2 3i , , = = im im im imR m n l  (31) 
 
Substituting Eq. (31), Eq. (27) and Eq. (4) in Eq. (24), RiSjoint is obtained. On the other hand, this matrix 

can be developed as a function of three rotations around all the axes system Fio: βmi, βni, and βli, see Fig. 4. The 
sequence consists of a rotation around the m-axis, followed by a rotation around the n-axis and ending with a 
rotation around the l-axis. Therefore, the rotation matrix that relates the systems Fi with Fi0 may also be 
expressed as the product of the above rotation matrices. 
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Equaling the terms of the matrices in Eq. (24) and (32), the rotations in the spherical joints are obtained: 
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FIGURE 4. ROTATIONS PERFORMED BETWEEN SYSTEMS Fi AND Fi0. 

 
 

3.4 Forward kinematics modeling 
The forward kinematic problem determines the position and orientation of the platform with respect to the 

fixed frame, when the values of the actuated joints are known. Referring to Fig.2, the following equivalences 
can be obtained by imposing a fixed length, L, for each limb of the mechanism: 

 
( ) 1, 2,3i− = − = =i i i i i i iOB OC OB OA + AC C B  (34) 

 
2 2L− =i iOB OC  

(35) 

 
The developed expressions can be observed in the Appendix A. The previous calculated relationships 

together with the equations Eq.(13)-(15) form a system of six equations which must be solved. As inputs for 
the system, the displacements of the actuators, si, and the initial position of the platform {px0, py0, ϕ0} are 
introduced. By means of an algebraic-loop solver in Matlab Simulink, the real position of the platform pz, Ψ, θ 
is calculated. These solutions will be used as direct feedback to the resolution process, see Fig. 5.  
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FIGURE 5. FORWARD KINEMATIC RESOLUTION SCHEME. 

4. JOINT REQUIREMENTS  
 
As stated in Section 2, the compliant 3-PRS must be able to achieve a Z travel of ±2mm. With regard to 

the rotations around the X and Y axes, an objective has been set in ensuring minimum values of ±0.2º over the 
entire range of Z. After taking into account the whole footprint of the hybrid manipulator, the modal frequencies 
and the minimum static stiffness needed in the platform to minimize the legs deflection due to the cutting forces, 
the dimensions selected for the prototype are a length L of the legs of 109.215 mm, measured between the center 
points of the two flexure stages, a distance b from the platform axis to the center of the spherical joints of 
47.91mm, and a value of 45º for the three passive angles α in the default position. With 45º, no amplification 
happens, so the prismatic joints actuators must provide at least a travel range of ±2mm. The section of the legs 
is 10x10 mm2. An aluminum alloy 7075 with a Young modulus of 72 GPa, a Poisson’s ratio of 0.33 and a 
density of 2.81g/cm3 has been used for the first prototype.  

  These requirements have been introduced in the inverse kinematics problem (IKP) and the displacements 
on the actuators and the passive angles in the joints have been calculated. In Fig. 6, the studied positions are 
shown. As it can be seen in the first three graphs, the IKP has been solved with all the possible combinations of 
a Z displacement of ±2mm and rotations ψ and θ of ±0.2º. As a result, the required displacements of the actuated 
joints, si, are achieved. They are comprised between -2.15mm and 2.30mm, see the fourth graph of Fig. 6. With 
regard to the rotation of the revolute joints, αi must reach a variation of ±1.7º and regarding the rotations in the 
spherical hinges, the angles that must be reached are βm=±1.9º, βn=±0.2º and βl=±0.2º, see Fig. 7. 
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FIGURE 6. MOVEMENTS ON THE PLATFORM (z, ψ, θ) AND DISPLACEMENTS IN THE 

ACTUATORS (si). 
 

 
FIGURE 7. ROTATIONS IN REVOLUTE JOINTS (αi) AND IN SPHERICAL JOINTS (βmi, βni, βli). 

5. FEM BASED DESIGN OF THE 3-PRS COMPLIANT MECHANISM JOINTS 
To design and analyze the performance of the prototype, simulations using ANSYS Workbench FEM 

software have been made and the main features of the flexure stage have been obtained. In Fig. 8 an example 
of the designed stage and the mesh is shown. The mesh applied to the mechanism consists of a tetrahedral mesh. 
The nodes size in the flexure joints has been reduced with a ratio 10:1 respect to the whole structure to obtain 
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more accurate results in the areas with a high deformation and stress concentration. Quadratic tetrahedrons have 
been used for the mesh.  

 

 
FIGURE 8. 3-PRS COMPLIANT MECHANISM MODEL. 

 
To obtain the final dimensions of the flexure joints, an optimization process has been developed. The first 

step has been to know the displacement requirements of the joints by means of the inverse kinematics, as 
explained in section 3. Once this information is known, the design of the joints can be done[24], attending to 
the following conditions: a) the joints must be able to achieve the required movements, and b) the maximum 
stress has to be controlled to not enter in the plastic zone. The Al 7075 tensile yield strength is equal to 503 
MPa. A safety factor has been established, so a stress greater than 400 MPa has not been overcome. 

To characterize the revolute hinge, one side has been fixed and a moment has been applied in the other 
side. For the spherical joint, as in the previous case, one side has been fixed and two moments have been applied 
in the other side. In both cases, the fixed side and the applied loads have been located at a distance of 20mm 
from the compliant bodies [25]. The aim is to avoid local disturbances by the boundary conditions in the points 
where the measurements have been performed and therefore, a reduction in the accuracy of the results. With 
these configurations, it is possible to measure both the maximum stresses and displacements supported in the 
joints, see Fig. 9. 

 

 
FIGURE 9. LOADING AND DEFORMATION OF THE JOINTS. ABOVE: BENDING OF THE 

REVOLUTE JOINT; MIDDLE AND BELOW: BENDING AND TORSION OF THE SPHERICAL JOINT. 
 
Once the potential joints are obtained, they are introduced in the whole structure. It should be noted that 

their behaviour can vary when they are subjected to the working conditions of the mechanism. For that reason, 
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the next step has been to calculate the features of the whole structure. A static structural analysis has been 
performed, applying several force steps in the place of the actuators. Thanks to this, the relations between the 
applied forces and movements in the actuators and the displacements on the platform have been calculated. 
What is more, the maximum stress in the structure, which occurs in one of the flexure joints, has been controlled 
to avoid exceeding a stress greater than 400 MPa, as in the joints design. Also the maximum stresses supported 
in the hinges have been controlled to achieve similar values in both revolute and spherical joints. The objective 
is to avoid weaknesses in the structure due to higher efforts on specific type of compliant hinge, see Fig.10. A 
relation between the maximum stresses supported in the joints comprised between 1±0.2 has been stablished as 
a design condition. Regarding the computational time, an average joint analysis has taken 384.3 s and an average 
analysis for the whole manipulator has taken 3846.2 s with an Intel-Core i5-2430M with 2.4 GHz and 6GB of 
RAM.  
 

 
FIGURE 10. STRESSED AREAS OF THE JOINTS DURING A Z DISPLACEMENT. 

  
As design parameters, the radius and thickness for the revolute joints, and radius, thickness and length for 

the spherical joints have been chosen. Depending of the variation of any of these items, new features in the 
mechanism can be obtained. From the authors experience designing a compliant 3-PRS, the influences of all of 
them have been determined. Some useful indications to get a new mechanism i+1 starting from a previous case 
design i are shown in Table 1. As can be seen, for instance, an increase in the thickness of the revolute joint 
causes a significant increment in the stiffness of the structure, by a factor greater than 1.5, while the Z 
displacement and the relation of maximum stresses in the joints suffer a slighter reduction with a factor of 0.8. 
By contrast, an increase in the length of the spherical joint causes a tinier reduction of the structural stiffness, 
an important increase of the Z displacement and a notable reduction of the relation of maximum stresses. 

 
 Positive 

increase 
Structural 
 Stiffness 
(ɳi+1/ ɳi) 

Displacement 
Z direction 

(di+1/ di) 

Relation Max. Stress 
in joints (Ti+1/ Ti)  

where T= Tsph/ Trev 

  

Revolute Joint 

 

trev 
     

Rrev 
     ϵ 1 -1.2 

 ϵ 1.2 -1.5 
Spherical Joint 

 

 

tsph      > 1.5 
 ϵ 0.8 -1 

Rsph      ϵ 0.5 -0.8 
 < 0.5 

lsph      

TABLE 1. INFLUENCE OF THE DESIGN PARAMETERS IN THE STRUCTURE. 
 
Different radii, lengths and thicknesses have been applied to the revolute and spherical flexure joints to 

obtain the desired motions in the platform and to fulfill the imposed conditions. An iterative process has been 
developed and as a result, the optimal structure has been obtained. The diagram illustrating the design process 
can be observed in Fig. 11. 
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FIGURE 11. SCHEME OF THE DESIGN PROCESS. 

 
For the revolute hinge, the achieved values have been Rrev=8mm and trev=2mm. Measuring the deformation 

produced in the joint, the rotational stiffness around the Y axis is KRrev = 98.37 Nm/rad. For the spherical joint, 
the selected dimensions have been lsph=5mm, tsph=3mm and Rsph=4mm. Also, the flexural stiffness and the 
torsional stiffness are KRsph=32.67Nm/rad and KTsph=24.46Nm/rad.  

As an example, for a Z displacement of the platform, the obtained results in FEM analysis are shown in 
Table 2. Some force steps have been applied to the actuators and the occurred displacements in them and on the 
platform, and the maximum stress in the mechanism have been measured. Attending to the linear behaviour of 
the values, for a stress of 400MPa, a displacement in z direction equal to 2.205mm should be achieved.  

 

Actuator 1 F1 (N) 20 40 60 

s1 (mm) 0.935 1.899 2.865 

Actuator 2 
F2 (N) 20 40 60 

s2 (mm) 0.935 1.899 2.865 

Actuator 3 
F3 (N) 20 40 60 

s3 (mm) 0.935 1.899 2.865 

Platform z (mm) 0.933 1.896 2.859 

Joints Max. stress (MPa) 169.25 344.01 518.78 

TABLE 2. STATIC FORCES, DISPLACEMENTS AND STRESS AT THE JOINTS. 
 
6. EXPERIMENTAL METHODOLOGY 
To validate experimentally the results obtained in the previous sections, a prototype has been built, see 

Fig.12. The actuation system of the mechanism consists of three identical actuators based on a RE-40 Maxon 
DC motor with a GP-32A gearbox of 14:1 gear ratio. Flexible couplings are used to connect the output shafts 
of the gearboxes to three Igus ZLW-1040-02-S-100 linear belt drives. 
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FIGURE 12. LEFT) DEVELOPED PROTOTYPE; RIGHT) CONTROL ARCHITECTURE FOR THE 

MOTOR OF THE ACTUATION SYSTEM. 
 
Regarding the control of the device, a PID cascaded position, velocity and current control has been used, 

see Fig. 11. The position is controlled in the first stage on a NI-PXIe 1032 with a Real-Time operating system. 
The position control loop is based on a proportional gain with a value of 2.5s-1 and a 5ms cycle time. The 
velocity reference, which is the output of this stage, is sent to the motor driver Maxon EPOS2 50/5 through a 
CANOPEN interface, where the velocity and current regulation is performed. As for the velocity control loop, 
a PI velocity regulator is employed, whose proportional gain value is of 0.9Arad-1 and the integral gain is of 
0.001 Asrad-1, and 1ms has been stablished as cycle time. A current reference, that is the output of the velocity 
controller, is handled by a PI current controller. The torque constant of the RE-40 motors is 30.2 x 10-3 Nm/A. 
The end platform position commands are converted to a θ reference into the motors using the IKP and the θ 
control is performed. To measure the real position of the manipulator, an external position measuring device 
has been used, that is, a coordinate measuring machine (CMM) ZEISS MC850 with software ZEISS CALYPSO. 

 
6.1 Dimensional verification 
Here, the default position of all components has been measured [26]. The selected measurements to perform 

have been: 1) angles between the guides, Fig.1: OAi-OAi+1; 2) position and orientation of each base, Fig.1: 
points Ci; 3) heights and overhead planes of legs, Fig.1: Li·sinα0; 4) position and orientation of the platform, 
Fig.1: point P; and actuators position, Fig.1: points Ai. In the following paragraphs, the procedure to obtain all 
of them is explained. 

Firstly, the angular position between the guides in XY plane was obtained. To do that, several points on 
each side of the guides were measured at the same height, as can be seen in Fig. 13. With the coordinates of 
these points, two equations for each guide were obtained, providing the angles between the guides. The 
measured angles can be observed in Table 3. 

Secondly, the position and orientation of each base was measured. The purpose was to know if the supports 
where the legs of the prototype were attached were in the same plane, see Fig. 13. The reference plane (RF) to 
measure was placed on the surface of the CMM to avoid possible inclinations. Several points in each base were 
measured to obtain the average height and the plane in which were located. With these planes, tilt and location 
errors could be accounted. In Table 3, the heights and the angles around the X and Y axes of each base are 
shown. The average height of them is 77.472 mm. It will be necessary to calculate the height of the prototype. 
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FIGURE 13. DIMENSIONAL VERIFICATION. 

 
Thirdly, the prototype was assembled without the upper platform and the heights and the overhead planes 

of the legs were measured, see Fig. 13. The average height of each leg can be observed in Table 3. The next 
step was to perform the complete assembly of the prototype and measure both the height and the inclination of 
the platform. To do that, several points were measured in the upper surface and in the contour of the platform, 
see Fig.13, and the plane surface and the axis of the cylinder of the platform were obtained. Intersecting these 
two elements, the coordinate center and the height of this point were obtained. Also, knowing the equation of 
the plane, the inclination of the platform around the X and Y axes is determined. These results are shown in 
Table 3. 

Finally, the position of the actuators relative to the fixed frame was also measured. These values allow 
knowing the real displacements of the actuators when a movement is programmed to the mechanism. To do 
that, the backplane location of each base was measured, see Fig. 13. Knowing the equations of the planes and 
the place of coordinate center, the position of the actuators can be achieved. These magnitudes can be observed 
in Table 3.  
 

GUIDES BASIS 

Axes 
Angles 

Plane 
Height ψ θ 

Design Error Design Error Design Error Design Error 
OA1-OA2 120º -0º 5’ 24’’ C1 77.500 -0.080 0º -0º 0’ 3’’ 0º -0º 0’ 10’’ 
OA2-OA3 120º -0º 1’ 12’’ C2 77.500 -0.343 0º 0º 23’ 49’’ 0º -0º 9’ 21’’ 
OA3-OA1 120º 0º 3’ 0’’ C3 77.500 0.338 0º 0º 17’ 34’’ 0º 0º 15’ 25’’ 

LEGS ACTUATORS 
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Leg 
Height to RF Leg height 

Actuator 
Plane  Ai 

Design Error Design Error Design Error 
Hleg1 189,728 -0.031 112.228 0.049 Act. 1 194.232 0.069 
Hleg2 189,728 0.478 112.228 0.822 Act. 2 194.232 0.069 
Hleg2 189,728 0.822 112.228 0.484 Act. 3 194.232 0.265 

PLATFORM 

Plane 
Height to RF Prototype height ψ θ 

Design Error Design Error Design Error Design Error 
P 197.228 0.136 119.728 0.164 0º 0º 2’ 9’’ 0º 0º 7’ 48’’ 

TABLE 3. DIMENSIONAL VERIFICATION RESULTS. DISTANCES IN MILLIMETERS ANGLES IN 
DMS NOTATION. 

 
In view of the results, the average deviations have been: εOAi-OAi+1= 0º3’12’’ in the angles between the 

guides; εC=0.254mm, εΨc=0º14’3’’ and εθc=0º8’19’’ in the position and orientation of the basis; εL·Sinα=0.452mm 
in the height of the legs; εA=0.134mm in the position of the actuators, and εp=0.164mm, εΨp=0º2’9’’ and 
εθp=0º7’48’’ in the position and orientation of the platform. These differences between the design parameters 
and the real values are due to the introduced errors during the manufacturing and assembly of the prototype. All 
of them will be considered as starting errors in the following developments because a positioning error is 
introduced in the mechanism due to these deviations with regard to the design parameters.  

 
6.2 Kinematics verification 
Here, a series of movements were programmed and the real displacements at the platform and actuators 

were measured by means of the CMM measuring external device. Two movements in the positive direction of 
the actuator and other two movements in the negative direction were scheduled.  

To perform this task, it was necessary to measure several points on the top surface of the end platform and 
in the backplane of each base. Knowing the default position of the prototype and the planes containing these 
measured points and their position, the real displacement and rotation of the platform and the displacements of 
the actuators were achieved.  

In Table 4, in the first three columns, the real displacements ∆s1, ∆s2, ∆s3, are shown. These measured 
movements in the actuators were introduced in a FEM analysis of the prototype. As a result, the displacements 
on the platform during the FEM analysis, zFEM, ψFEM, θFEM, were compared with those measured with the CMM, 
zCMM, ψCMM, θCMM. Also, to check the validity of the rigid body kinematics, the real displacements of the actuators 
have also been introduced into the forward kinematic problem (FKP) and its solutions, zFKP, ψFKP, θFKP, have 
been compared with the measurements from the CMM. All the results can be observed in Table 4. 

 
∆s (µm) ∆z (µm) ∆ψ (DMS) ∆θ (DMS) 

∆s1 ∆s2 ∆s3 CMM FEM FKP CMM FEM FKP CMM FEM FKP 

1395 1531 1306 1471 1408 1384 7’47’’ 4’5’’ 8’59’’ 5’13’’ 0’33’’ 1’4’’ 

777 685 725 714 727 722 2’41’’ -0’45’’ -1’38’’ 0’16’’ -1’30’’ -3’23’’ 

-676 -494 -706 -636 -624 -631 -2’17’’ 3’53’’ 8’55’’ -3’34’’ 1’35’’ 3’41’’ 

-1485 -1175 -1781 -1437 -1478 -1511 9’8’’ 11’5’’ 26’6’’ 4’21’’ 0’6’’ 0’11’’ 
TABLE 4. COMPARISON OF CMM, FEM AND FKP MEASUREMENTS. 

 
In Table 5, the absolute errors of the FEM and FKP predictions regarding the CMM measurements are 

shown. Comparing the position of the end platform measured by the CMM and the FEM predictions, the linear 
errors in Z direction are always under 70 microns, and the angular errors are less than 7’, see Table 5. Also, 
while the linear error is somewhat proportional to the displacement, growing for higher displacements, the 
angular error behavior is more erratic. Due to the fact that the deformation of the mechanism is relatively small 
and linear, the Z displacement is a 1,3% of the length of the limbs, the FEM estimations calculated with a static 
analysis should be considered as a good reference, being the main uncertainty the quality of the mesh and the 
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parameters of the material. So, the deviations observed can be attributed mainly to the measured errors in the 
prototype due to the manufacturing and assembling stage.  

Comparing the CMM measurements with the FKP predictions, similar trends are observed. However, it 
must be noted that the linear error in Z grows even higher for larger displacements. It is something predictable, 
as the hypothesis of considering the kinematics of the compliant mechanism as equal to a conventional one is 
known to lose validity for larger deformations of the flexure joints. Due to the length of the spherical joints, 
their deflection in large displacements introduces not only a rotation around their central point, but also a 
translation of the central point itself, which is not considered in the rigid body kinematics. Here, the limit for 
that hypothesis is observed to be around the millimeter in Z displacement, approximately a 0.9% of the length 
of the limbs. Below that limit, it must be noted that the error of the FKP predictions in Z translation is always 
below 10 microns, very close to the predictions of the FEM.  
 

∆z (µm) ∆ψ (DMS) ∆θ (DMS) 

CMM 
FEM FKP 

CMM 
FEM FKP 

CMM 
FEM FKP 

|εabs| |εabs| |εabs| |εabs| |εabs| |εabs| 

1471 63 87 7’47’’ 3’42’’ 1’12’’ 5’13’’ 4’40’’ 4’9’’ 

714 13 8 2’41’’ 3’25’’ 4’18’’ 0’16’’ 1’46’’ 3’39’’ 

-636 12 5 -2’17’’ 6’11’’ 11’12’’ -3’34’’ 5’9’’ 7’15’’ 

-1437 41 74 9’8’’ 1’57’’ 16’58’’ 4’21’’ 4’15’’ 4’10’’ 
TABLE 5. ABSOLUTE ERRORS IN THE CMM MEASUREMENTS COMPARED TO THE FEM AND 

FKP PREDICTIONS. 
 
In order to avoid the prototype imperfections in the calculations, it is possible to consider the FEM 

predictions as optimal results to verify the FKP solutions. The comparison between both cases is shown in Table 
6. As it was commented previously, similar results are obtained for small displacements, with deviations fewer 
than 8µm for Z displacements, increasing these differences when the introduced movements are larger. 
Therefore, the validity of the FKP model for designing a 3-PRS compliant parallel mechanism under small 
displacements is demonstrated, and the limit for its assumptions can be quantified in a 0.9% of the length of the 
limbs. 

 
∆z (µm) ∆ψ (DMS) ∆θ (DMS) 

FEM 
FKP 

FEM 
FKP 

FEM 
FKP 

|εabs| |εabs| |εabs| 

1408 24 4’5’’ 4’54’’ 0’33’’ 0’31’’ 

727 5 -0’45’’ 0’53’’ -1’30’’ 1’53’’ 

-624 7 3’53’’ 5’2’’ 1’35’’ 2’6’’ 

-1478 33 11’5’’ 15’1’’ 0’6’’ 0’5’’ 

TABLE 6. COMPARISON OF FEM AND FKP PREDICTIONS. 

7. CONCLUSIONS 
In the present work, a procedure for the development, validation and evaluation of a 3-PRS compliant 

parallel manipulator has been proposed. To do that, first a study of the solid body kinematics of the mechanism 
has been performed under the assumption of small displacements, solving both the inverse and forward 
kinematic problem. The equations of the parasitic displacements as well as the necessary rotations on the 
revolute and spherical flexure joints are also provided.  

Then, a design approach based on FEM analysis for the design of compliant parallel manipulators has been 
detailed, dividing the mechanical design in two stages, first, the design of the flexure joints, and then, the 
evaluation of the whole mechanism. The iterative process to achieve the optimal solution for a 3-PRS compliant 
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mechanism has been shown, providing useful guidelines that relate the overall stiffness, displacement and 
stresses with the geometrical parameters of the flexure joints. 

An experimental validation has been done on a prototype, using an external measurement of both the end 
platform and the actuated joints position by means of a coordinate measuring machine, verifying first the 
dimensions of the prototype and then the displacements performed. Those results have been compared with the 
FKP and FEM estimations during the design stage. The hypothesis of using the solid body kinematics for a 
compliant mechanism whenever the displacements are small has been experimentally tested, demonstrating that 
it provides reliable results if the end platform linear displacement is below a 0.9% of the length of the limbs. 
Above that limit, only FEM calculations must be trusted.  
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APPENDIX 

A. Forward Kinematics Modeling 
Developing Eq. (35) for each leg, the resulting expressions can be obtained:  
 
Expressions for Leg 1 
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( ) ( ) ( )2 2 2 2 01 1 1 1 1 1x y z
OB - OC OB - OC OB - OC L+ + − =  (A.1) 

 
The expressions for the components of OB1 can be observed in Eq. (6). On the other hand, the vector OC1 

can be defined as: 
 

1
0
0

a s− 
 =  
  

1OC  (A.2) 

 
Therefore, substituting in Eq(A.1), the following equation is reached: 

 

( ) ( ) ( )22 2 2
1 0x x y y z zp b u a s p b u p b u L+ ⋅ − + + + ⋅ + + ⋅ − =  (A.3) 

 
Finally, substituting the expressions of the components of the rotation matrix showed in Eq. (4), the 

resulting equation for Leg 1 is obtained: 
 

( )( ) ( ) ( )( )22 2 2
1 0x y zp b c c s s s a s p bc s p b s c s c s Lθ φ ψ θ φ ψ φ θ φ ψ θ φ+ + − + + + + + − + − =  (A.4) 

 
Expressions for Leg 2 
 

( ) ( ) ( )2 2 2 2
2 2 2 2 2 2 0

x y z
OB - OC OB - OC OB - OC L+ + − =  (A.5) 

 
The expressions for the components of OB2 can be observed in Eq. (6). On the other hand, the vector OC2 

can be defined as: 
 

( )

( )

2

2

1
2

3
2

0

a s

a s

  − ⋅ −    
  = − ⋅ 
 
 
 
  

2OC  (A.6) 

 
Therefore, substituting in Eq. (A.5), the following equation is reached: 

 

( )
22

22

2

2

33 3
2 2 2 2 2 2

3 0
2 2

x x x y y y

z z z

a sa sb b b bp u v p u v

b bp u v L

   −−
− ⋅ + ⋅ + + − ⋅ + ⋅ − +        

 
+ − ⋅ + ⋅ − =  
 

 (A.7) 

 
Finally, substituting the expressions of the components of the rotation matrix showed in Eq. (4), the 

resulting equation for Leg 2 is obtained: 
 



22 
 

( ) ( )

( ) ( ) ( )

( ) ( )

2

2

2

2

2

2

3
2 2 2

33
2 2 2

3 0
2 2

x

y

z

a sb bp c c s s s c s s s c

a sb bp c s c c

b bp s c s c s s s s c c L

θ φ ψ θ φ θ φ ψ θ φ

ψ φ ψ φ

θ φ ψ θ φ θ φ ψ θ φ

 −
− + + − + + +  

 

 −
+ − + − +  
 

 
+ − − + + + − =  
 

 (A.8) 

 
Expressions for Leg 3 
 

( ) ( ) ( )2 2 2 2
3 3 3 3 3 3 0

x y z
OB - OC OB - OC OB - OC L+ + − =  

 
(A.9) 

The expressions for the components of OB3 can be observed in Eq. (6). On the other hand, the vector OC3 
can be defined as: 
 

( )

( )

3

3

1
2

3
2

0

a s

a s

  − ⋅ −    
   = − ⋅ −   

  
 
 
  

3OC  (A.10) 

 
Therefore, substituting in Eq. (A.9), the following equation is reached: 

 

( )
22

33

2

2

33 3
2 2 2 2 2 2

3 0
2 2

x x x y y y

z z z

a sa sb b b bp u v p u v

b bp u v L

   −−
− ⋅ − ⋅ + + − ⋅ − ⋅ + +        

 
+ − ⋅ − ⋅ − =  
 

 (A.11) 

 
Finally, substituting the expressions of the components of the rotation matrix showed in Eq. (4), the 

resulting equation for Leg 3 is obtained: 
 

( ) ( )

( ) ( ) ( )

( ) ( )

2

3

2

3

2

2

3
2 2 2

33
2 2 2

3 0
2 2

x

y

z

a sb bp c c s s s c s s s c

a sb bp c s c c

b bp s c s c s s s s c c L

θ φ ψ θ φ θ φ ψ θ φ

ψ φ ψ φ

θ φ ψ θ φ θ φ ψ θ φ

 −
− + − − + + +  

 

 −
+ − − + +  
 

 
+ − − + − + − =  
 

 (A.12) 

 
 


