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1. GENERAL INTRODUCTION 

1.1. CONTEXT OF THE THESIS 

The current work involves the use of metal complexes based on ligands 

containing sulfur donor atoms to prepare nanostructured materials built from metal-

sulfur bonds. Precisely, the research has focused on obtaining two classes of 

nanomaterials with different dimensionality and chemical nature. On the one hand, 

metal-thiocarboxylato complexes have been used as direct precursors of metal(II) 

sulfide nanoparticles through a route known as dry thermolysis. On the other hand, 

metal-dithiooxamidato gels and aerogels (three-dimensional nanoarchitectures) have 

been synthesized by controlling polymerization kinetics and performing the supercritical 

drying of the parent gels, respectively.  

Keeping all this in mind, the introductory section describes first the 

coordination chemistry of metal complexes based on organosulfur ligands, also known 

as S-ligands. Thereafter, it deals with the relevance of compounds built from metal-

sulfur bonds in the field of nanoscience, to finish up with an introduction to gels, 

aerogels and porous coordination polymers.  

1.2. COORDINATION CHEMISTRY OF METAL 

COMPLEXES BASED ON ORGANOSULFUR LIGANDS 

The sulfur donor atom is able to coordinate relatively strong to soft metal ions 

such as silver, cadmium, gold, mercury, lead, etc.1 Besides, the highly diffuse orbitals 

of the sulfur atoms provide a good overlap with metal d orbitals giving rise to extended 

molecular orbitals in which electrons are delocalized, and as a result, electrical 

properties are notoriously improved with respect to less polarizable M–O and M–N 

bonds.  

The strength of the M–S bond in metal-organosulfur compounds lies between 

100–250 KJ∙mol-1,2 a value that is far greater than that of the supramolecular 
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interactions (hydrogen-bonds, aromatic π-π stacking, dipole-dipole interactions and 

other dispersive forces) and it is close to the lower edge of the covalent bonds (Figure 

1.1).  

Figure 1.1 Energy intervals for each force type. 2, 3 

In nature, there are many examples of sulfur-containing biomolecules such as 

cysteine, cystine, and methionine amino acids; and biotin and thiamine vitamins. Many 

cofactors also contain sulfur including glutathione, thioredoxin and iron–sulfur proteins. 

On the other hand, disulfides (S–S bonds) confer mechanical strength and insolubility 

to protein structures as keratin, which is found in outer skin, hair, and feathers. In 

Figure 1.2 there are depicted some of these molecules.  

These sulfur-biomolecules have also been employed as ligands towards 

different metal centers to provide model systems for a wide number of active catalytic 

sites of enzymes and also to developed new drugs for medical applications. For 

instance, some thiouracil-containing complexes have been found to be effective 

antitumor, anti-thyroid and anti-arthritic compounds in vitro and in vivo (Figure 1.3).5 

Organosulfur ligands also stand out for providing materials with interesting 

physicochemical properties such as luminescence, chemical sensing, catalysis, 

conductivity, and magnetism.6 Among the most resourced organosulfur ligands we 

have thiols, thiocarboxylic acids, dithiocarboxylic acids, thioamides, thiocarbamates, 

dithiocarbamates, thioureas and sulfur donor heterocycles like thiophenes, 

tetrahydrothiophenes, dithianes, dithiepanes as well as sulfur-containing nucleobases 

such as 6-mercaptopurine and thioguanine (Figure 1.4).7 
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Figure 1.2 Molecular structures of (a) L-cysteine, (b) L-cystine, (c) methionine, (d) biotin, (e) 
thiamine and (f) glutathione. (g) Tertiary structure of thioredoxin protein. (h) Iron-sulfur 
structures found in different proteins. (i) Tertiary structure (left) and molecular scheme 
(right) of α-keratin and types of crosslinks that can form.4

 

Figure 1.3 (a) Complex unit of [CuI(ptu)2] (ptu: 6-n-propylthiouracil), a compound which has 
in its structure a thiouracil derivative with anti-thyroid activity and which catalyzes the 
cycloaddition of benzo[b]furans, organic precursors of a large number of drugs. (b) 
Dinuclear unit of [Pd2(Tu)(PPh3)3Cl2] (Tu: thiouracil, PPh3: triphenylphosphine) complex, a 
compound that has been screened against human tumor cell lines and has shown 
promising in vitro cytotoxicity. Hydrogen atoms were omitted for clarity.
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Figure 1.4 Molecular structures of some sulfur ligands: (a) thiols, (b) thiocarboxylic acids, 
(c) dithiocarboxylic acids, (d) thioamides, (e) S-thiocarbamates, (f) O-thiocarbamates, (g) 
dithiocarbamates, (h) thioureas, (i) thiophene, (j) tetrahydrothiophene, (k) 1,4-dithiane, (l) 
1,4-dithiepane, (m) 6-thiopurine, and (n) 6-thioguanine.  

In order to clearly show the feasibility of these organosulfur molecules to act 

as ligands a perusal in the Cambridge Structural Database (CSD)8 has been performed 

(Figure 1.5). It provides a total amount of 14,146 hits with the greater ratio of results 

belonging to thiolato (76.9%) based coordination compounds. It can be also observed 

that the functional groups relevant for the current work (thioacids and thioamides) 

represent a 4% of the total hits. The compounds that have emerged in the above-

mentioned perusal range from monomeric and polynuclear discrete entities to 1D, 2D 

and 3D coordination polymers. 
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Figure 1.5 Number of crystal structures found in the CSD for each family of sulfur-
containing ligands. A: thiols, B: thiocarboxylic acids, C: dithiocarboxylic acids, D: 
thioamides, E: thiocarbamates, F: thioureas, G: 5-membered heterocycles; H: 6-membered 
heterocycles, I: 7-membered heterocycles, J: sulfur-containing nucleobases. The inset 
graphic shows the enhanced area of the minor components. The different columns 
appearing for each coordination mode correspond to the soft, hard, and intermediate nature 
of the metal center according to Pearson’s Hard-Soft Acid-Base classification.1  

1.2.1. Thiocarboxylato ligands 

Thiocarboxylates9 have donor atoms of different Pearson hardness (S is soft 

and O hard) which extends the type of target metal center at which they can be 

coordinated. The CSD database provides again an insight into the coordination modes 

of this ligand (Figure 1.6). The more usual coordination mode involves the sulfur donor 

atom in a monodentate mode (A mode). The second more frequent coordination mode 

implies the bridging of two metal centers through S and O donor atoms (D mode). The 

structural search has also revealed that softest metal centers do mostly coordinate only 

to the sulfur donor atom, the medium hardness ones trend to coordinate 

simultaneously to the sulfur and oxygen donor atoms, and finally the harder ones do 

preferentially coordinate the oxygen atom. 
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Figure 1.6 Coordination modes of thiocarboxylates (left) and CSD data with the number of 
structures published for each mode of coordination as well as the percentage they 
represent (right). O: Structures containing two or more different coordination modes. 

These coordination modes give rise to a great diversity of crystal structures. 

However, most cases correspond to monomeric entities. As an example, the 

monomeric compound (PPh4)[Cd(TAc)3] (TAc: thioacetato) synthesized by Sampanthar 

and coworkers presents three thioacetates chelating the cadmium(II) ion in a bidentate 

fashion to provide a distorted CdO3S3 octahedral geometry (Figure 1.7a).10 The three 

sulfur atoms are strongly bound to Cd giving a pyramidal CdS3 kernel.  

Dinuclear, trinuclear and tetranuclear complexes can be also found in which 

thiocarboxylato-κO:κS bridges two adjacent metal center to usually provide a paddle-

wheel arrangement (Figure 1.7b-c), analogous to that reported for carboxylates. We 

have selected as an illustrative example of this kind of complexes, a Rh(II)-

thiobenzoato dimers capped by pyridine ligands [Rh2(TBn)4(C5H5N)2] (TBn: 

thiobenzoato) in which the [Rh2(TBn)4] core is centrosymmetric with each metal ion 

coordinated by two oxygen and two sulfur donor atoms acquiring a paddle-wheel 

configuration (Figure 1.7b).11 An example of a more extended oligomer was reported by 

D. K. Joshi and S. Bhattacharya, who succeeded in synthesizing a dimeric assembly of 

dinuclear Ni entities giving rise to a complex of the formula [Ni4(TBn)8(AcCN)2].12 The 

two dinuclear units are joined to each other by bridging through S atoms. Two 
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molecules of acetonitrile are coordinated to the two outer Ni(II) centers of the complex 

assembly. Each dinuclear unit has a four bladed paddle wheel structure and the 

coordinated acetonitrile appears like a shaft. Interestingly, the paddle-wheel structure is 

not symmetric (Figure 1.7c), leading to rather different coordination environments (O4N 

and S5 for outer and inner Ni atoms, respectively). 

Figure 1.7 Examples of thiocarboxylato discrete complexes: (a) (PPh4)[Cd(TAc)3], (b) 
[Rh2(TBn)4(C5H5N)2], (c) [Ni4(TBn)8(AcCN)2].  

In addition, the different nature of the donor atoms promotes the isolation of 

heteronuclear complexes. M. Gennari et al. have prepared discrete bimetallic (Pt/Ni) 

compounds of formula [(H2O)Ni(µ-TBn)4PtCl] with interesting redox properties (Figure 

1.8a).13 F. G. Baddour and colleagues have studied the magnetic behavior of bimetallic 

paddle-wheel complexes of platinum, with formula [PtM(TAc)4(OH2)] (where M: Co and 

Ni), in which an antiferromagnetic coupling has been observed between d metal ions 

through non-covalent metallophilic interactions (Figure 1.8b).14  

Among the polymeric structures, J. Troyano and coauthors have synthesized a 

silver two-dimensional coordination polymer [Ag(TBn)]n which shows semiconductivity 

and an intense luminescent emission that undergoes a thermochromic effect when the 

crystals are cooled (Figure 1.8c).15  
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Figure 1.8 Examples of thiobenzoato complexes: (a) [(H2O)Ni(µ-TBn)4PtCl], (b) 
[PtCo(TAc)4(OH2)], and (c) [Ag(TBn)]n. 

1.2.2. Dithiooxamidato ligand 

Dithiooxamidato (DTA) or rubeanato ligand is similar to oxalato but with 

oxygens replaced by two nitrogens and two sulfur atoms. It is a planar molecule in 

which two thioamide groups are fused. The presence of both nitrogen and sulfur donor 

atoms enables dithiooxamidato to bind to a metal in different ways, and can in 

principle, give rise to a variety of structural motifs. The dibasic-acid character and the 

proton-coupled redox properties of the ligand favor the proton conduction of 

dithiooxamidato based transition metal compounds.16 

There are relatively few examples of crystalline structures based on the 

dithiooxamidato ligand because it is a molecule that prompt the polymerization of metal 

complexes very easily, being difficult to slow down enough the nucleation to obtain 

crystals suitable for structural elucidation. Dithiooxamide (H2DTA) is a complexing 



GENERAL INTRODUCTION  CHAPTER 1 

11 
 

agent that is generally used in the spectrometric determination of certain metals in 

solution, including copper, iron, nickel, and cobalt, among others.18 Dithiooxamidato 

ligand has a simple C–C bond that allows it to rotate to adopt a cis or trans 

conformation upon coordination. There are very few examples gathered in CSD in 

which dithiooxamidato act as bis(bidentate) ligand, and in most cases, the ligand is 

disordered in two positions making difficult to subtract a statistic on the cis/trans 

coordination modes. Even so, two clear crystal structures of trans coordination can be 

observed. H. C. Hofmans et al. have successfully isolated a monomer of Pd(II) with a 

DTA derivative in cis conformation of formula [Pd(DCPDTA)2] (DCPDTA: N,N'-

dicyclopentyldithiooxamidato) by adding a Pd+2 solution to the ligand dissolved in a 

mixture of acetone and water, buffered at pH 7 (Figure 1.9a).18 An example of a 

discrete polynuclear entity is presented by P. Kopel and coauthors; a Cu/Ni trimer 

bridged by dithiooxamidato ligands in cis fashion (Figure 1.9b) with Cu(II) ends capped 

by two triphenylphosphine terminal ligands.19 

Despite most of the reported crystal structures correspond to discrete 

complexes in which capping ligands have been employed to prevent the 

polymerization, there are some few cases of polymeric structures. For instance, A. 

Mosset and coworkers have been able to crystallize the coordination compound 

{[CuCl(H2DTA)1.5]∙0.45H2O}n which consists of a 2D-coordination network in which 

neutral dithiooxamide ligand links together three Cu(I) ions through sulfur atoms in a 

syn,syn,anti-mode (Figure 1.9c).20 Furthermore, A. Castiñeiras and coauthors have 

prepared a 3D porous structure of formula [Mn(H2GLYDTA)(H2O)2]n with N,N’-

bis(carboxymethyl)dithiooxamide (H2GLYDTA), a substituted dithiooxamide.21 Each 

Mn(II) ion is six-coordinated to four carboxylate oxygen atoms from four different 

H2GLYDTA ligands and two symmetrically related water oxygen atoms (Figure 1.9d). 

The carboxylate groups link the neighboring manganese centers to form infinite one-

dimensional helical chains that run along the crystallographic b-axis. These Mn atoms 
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are shared by neighboring helical chains that are alternately left- and right-handed. In 

addition, these channels are interconnected by the O2C–C–N–C–C–N–C–CO2 groups 

of H2GLYDTA to form a three-dimensional framework. 

Figure 1.9 Examples of dithiooxamidato based complexes: (a) [Pd(DCPDTA)2], (b) 
[(PPh3)2Cu(DTA)Ni(DTA)Cu(PPh3)2], (c) {[CuCl(H2DTA)1.5]∙0.45H2O}n, and (d) 
[Mn(H2GLYDTA)(H2O)2]n. 

1.3. NANOSCIENCE 

Nanoscience studies the physicochemical behavior of substances with at least 

one dimension ranging from 1 to 100 nm. At nanoscale, the laws of physics operate in 

an unfamiliar way because of two important reasons: high surface-to-volume ratio and 

quantum effect. Precisely, the properties of the material become strongly dependent on 

the surface of the material since the amount of surface is now at the same level as the 

amount of bulk. Therefore, the surface derived quantum mechanical properties can 

dominate over bulk properties, providing a completely new method to tune the 

properties of materials.  
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Scientists have made great progress in constructing numerous nanoobjects 

with dimensionalities that range from discrete (zero-dimensional, 0D) to extended (1D, 

2D, and 3D) systems based on very different materials: from inorganic to pure organic 

components, from amorphous to ordered materials, and from nonporous to porous 

networks (Figure 1.10a-k).23 

 
Figure 1.10 Schematic classification of nanostructures in terms of their dimensionality (a: 
nanoparticles, b: fullerene, c: metal cluster, d: carbon nanotubes, e: nanorods, f: nanowires, g: 
graphene, h: thin film, i: metal-organic framework, j: zeolite, and k: covalent organic framework). 
(l) Graphical representation of the quantum confinement according to the dimensionality of the 
nanostructure (0D, 1D, 2D and 3D).24 

Among the 0D nanoobjects the best well known materials comprise quantum 

dots,25 single molecular magnets,26 superparamagnetic and metal nanoparticles,27 and 

fullerenes.28 They present a wide range of applications in areas such as optics, 

medicine, quantum computation, hyperthermia, and catalysis.29 The most 

representative example of 1D nanoobjects are carbon nanotubes30 but there are also 



Daniel Vallejo Sánchez UPV/EHU 

14 
 

some other examples of linear nanostructures such as nanowires, nanotubes, 

nanobelts, or nanorods that can be generated from metals, semiconductors, organic 

and coordination polymers.31 Thin films32 and graphene33 are the best known 2D 

nanomaterials which are being subjected to an intense research due to their potential 

application in electronic and solar cell technologies, among others.  

Finally, the most conceptually striking nanomaterials are the 3D ones, in which 

the confined dimension does not correspond to the material but to the pores present 

within it. Based on the pore size, IUPAC classifies porous materials into 

ultramicroporous (< 0.7 nm), supermicroporous (0.7–2 nm), mesoporous (2–50 nm) 

and macroporous (> 50 nm).34 Materials with nanometer-scale pores (basically micro- 

and mesoporous materials) exhibit specific properties and functions that would be 

impossible to attain in non-porous materials. Progress in chemistry and materials 

science has given rise to several distinct classes of porous materials, which are 

characterized by general trends in structural evolution: from inorganic to organic 

components; from small to large pores; from rigid frameworks to soft dynamic 

skeletons. The behavior and performance of such materials can be determined by 

many characteristics such as surface area, porosity, and pore size distribution. Porous 

materials, such as zeolites,35 activated carbons,36 pillared clays,37 metal-organic 

frameworks (MOFs),38 covalent organic frameworks (COFs),39 gels,40 aerogels,41 and 

foams42 have a broad range of applications that include catalysis, thermal insulation, 

electrode materials, environmental filters and membranes as well as controlled release 

of drugs.43 

Attending to the many synthesis methods that have been reported to afford 

nanomaterials (0D−3D), they can be classified as bottom-up or top-down approaches. 

Top-down approaches44 (i.e. milling, mechanochemical route, sputtering, laser ablation, 

nanolithography, etc) start with a bulk material and then break it into smaller pieces 

using mechanical, chemical, or any other form of energy. On the other hand, the 
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bottom-up approach (i.e. sol-gel method, chemical reduction, chemical vapor 

deposition, solvothermal synthesis, etc),45 synthesizes nanomaterials from atomic or 

molecular species via chemical reaction or self-assembly.  

In order to provide the necessary background to fully understand the following 

chapters, we will get a deeper insight into nanosystems based on materials containing 

metal-sulfur bonds and also into gels and aerogels.   

1.3.1. Metal sulfide quantum dots, quantum wires and quantum 

wells 

Metal sulfides are a group of highly valued materials mainly due to their 

catalytic and optoelectronic characteristics.46 In particular, 12 group transition metal 

sulfides are compounds appreciated by properties derived from their direct and wide-

bandgap semiconduction.47 Photodetection, photocatalysis and cathodoluminiscence 

are their best-known applications.48 However, thanks to the development of 

nanostructuring, its range of applicability has been extended to the field of medicine 

(biolabeling and contrast agents), energy (solar cells and fuel cells) as well as other 

more exotic applications (diluted semiconductor magnets).49 Currently, both quantum 

dots and quantum wires of ZnS and CdS are prepared through wet routes starting from 

precursors with metal-sulfur bonds available in their structure.50 They are usually 

accompanied by coordinating agents that limit the excessive growth of the particle and 

its agglomeration. To provoke decomposition of the precursor, the synthesis is 

performed in the presence of a heat source or irradiation (commonly under closed 

conditions).51 For the formation of quantum wells or thin layers it is preferred to work 

with Chemical Vapor Deposition (CVD), using gaseous reagents or aerosols as starting 

materials.52 

To date, a large number of metal-organic precursors have been tested for the 

production of cadmium and zinc chalcogenides, among them stand out xanthates, 
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dithiocarbamates and thiocarboxylates.53 Metal-thiocarboxylates undergo facile 

thiocarboxylic anhydride elimination, and hence they can be used as single molecular 

precursors for metal sulfide materials.54 Anionic thiocarboxylate complexes55 have 

been exploited as metalloligands and a good number of bimetallic complexes have 

been prepared during recent years which have also been used as precursors for 

ternary chalcogenides.56 

In this work, we are focused on the synthesis of quantum dots of cadmium and 

zinc sulfides. Thus, we will provide some additional details on the characteristics and 

theoretical background of these nanoobjects.  

Quantum dots (QDs) are crystalline semiconductor nanoparticles with sizes 

ranging from 1 to 30 nm. Due to their small size, electrons in quantum dots are 

confined in a small space (quantum box), and when the radii of the semiconductor 

nanocrystal is smaller than the exciton Bohr radius,57 there is quantization of the 

energy levels according to Pauli’s exclusion principle. 

Generally, as the size of the crystal decreases, the difference in energy 

between the highest valence band and the lowest conduction band increases. More 

energy is then needed to excite the dot, and concurrently, more energy is released 

when the crystal returns to its ground state, resulting in a color shift from red to blue in 

the emitted light (Figure 1.11a-c). Additionally, it is possible to control over the bandgap 

of the nanocrystals by changing the composition of semiconductors; therefore, 

emission color of quantum dots can also be tuned by changing dopant during 

synthesis.58  
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Figure 1.11 (a) Schematic representation of bandgap variation with nanoparticle size; (b) 
photograph of quantum dots dispersions irradiated by UV light; (c) TEM image of a cubic 
quantum dot.59 

The main method of preparation of semiconductor nanoparticles was, until 

recently, classical colloid chemistry, involving controlled arrested precipitation from 

colloidal solutions.60 However, it could be problematic due to air sensitivity and/or poor 

crystallinity of the material. Another approach for preparing semiconductor 

nanoparticles is to decompose organometallic and/or metal-organic compounds under 

anaerobic conditions (known as single-source precursor route).61 In this case, the 

precursor is injected into a hot solution (150–350ºC) of trioctylphosphine oxide (TOPO) 

or a similar solvent in the presence of a surfactant (especially long chain amines, thiols 

or carboxylic acids). Varying the temperature and time of the reaction one can control 

the particle size of the resulting nanoparticle. 

A less widespread alternative is the thermal decomposition of a metal-organic 

or organometallic precursor under solvent-free conditions and in absence of 

surfactants. This route is called dry thermolysis and it is performed under an inert 

atmosphere.62 If temperatures are moderate and exposure times are brief, it is possible 

to obtain non-sintered nanoparticles. The organic substituents on the precursor migrate 

upon thermolysis and act as capping agents on the surface of the nanoparticle. 

Usually, nanoparticles produced through dry thermolysis present a good crystallinity 
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degree and low polydispersion. A negative aspect is that the resulting products are 

prone to show high impurity contents from poor combustion of the precursor. 

There are some other few examples of nanosized porous materials but due to 

their relevance to this work, they would be described separately in the next section. 

1.3.2. Metal-sulfide based porous materials 

3D porous structures based on metal-sulfide bonds constitute an important 

part of the current thesis. Despite we will focus on those built from organosulfur 

ligands, at this point, it deserves to note that there exist some appealing cases of 

metal-sulfide based nanoporous materials with structure dimensionality ranging from 

0D to 3D. For instance, recently ZnS porous nanospheres have been prepared by 

hydrothermal and colloidal routes (Figure 1.12a).63 ZnS hollow nanotubes prepared 

from the reaction of ZnO nanorods with Na2S or thioamide constitute an example of 

one-dimensional metal-sulfide porous materials (Figure 1.12b).64 Likewise, it has been 

possible to obtain porous CdS nanofibers using a cholesterol-derived organogel as a 

template (Figure 1.12c).65 In the case of two-dimensional sulfides, quantum-size CdS 

porous membranes have been reported by L. Spanhel and M. A. Anderson.66 

Regarding to 3D architectures, in 2004, J. L. Mohanan and S. L. Brock published a 

completely different type of metal-sulfur based porous materials based on sol-gel 

chemistry.67 The sol-gel process can shortly be defined as the conversion of a 

precursor solution (sol) into a three-dimensional (3D) open network structure (gel) via 

polymerization reactions (commonly in water).68 The reported aerogel is constituted by 

interconnected networks of CdS building blocks and have been prepared from 

controlled aggregation of discrete nanoparticles to create a gel which is later 

supercritically dried (Figure 1.12d).69 The nature and structural features of gels and 

aerogels will be thoroughly discussed in the following section. 
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Figure 1.12 Electron microscopy images of porous metal sulfides with different dimensionality: 
(a) ZnS nanospheres, (b) ZnS nanotubes, and (c) CdS nanofibers. (d) Optical image of a CdS 
xerogel (left), gel (center) and aerogel (right). 

1.3.3. Nanoporous coordination materials: gels, aerogels and metal-

organic frameworks 

In the current work, we will pursue an alternative way to generate 3D 

nanostructures provided with metal-sulfur bonds, precisely, nanoporous architectures 

will be built based on metal-organosulfur coordination complex entities. In this sense, 

there are two way to prepare porous coordination materials. The first way, the most 

conventional and popular one, is based in crystal engineering principles to synthesize 

open coordination networks known as metal-organic frameworks (MOFs), whose 

porosity is related to the crystal structure. The second option for achieving nanoporous 

metal-organic structures is the gelation of a coordination complex and its processing as 

aerogel, whose porosity is ascribed to the microstructural features. It must be 

emphasized that, metal-organic gels and aerogels constitute an emerging area within 

the coordination chemistry and materials science.  
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Herein, to define well the limits between two types of porous materials, a brief 

introduction to MOFs precedes to a section dealing with gels, aerogels and metal-

organic examples of these materials.  

1.3.3.1. Metal-organic frameworks 

MOFs represent a class of hybrid organic-inorganic materials comprised of 

ordered networks formed from organic electron donor linkers and metal cations.70 The 

self-assembly of these components creates rigid pores that do not collapse upon 

removal of solvent. The presence of inorganic and organic components enables the 

pore size and chemical environment to be tailored to achieve specific properties.71 The 

topology of MOFs is intimately related to both the coordination environment favored by 

the metal ion and to the geometry of the organic “linker” groups, which together form 

so-called secondary building units (SBUs) that establish the network symmetry (Figure 

1.13).72 

MOFs have properties that extend their potential range of use far beyond 

traditional microporous materials. These include: extremely high surface areas ( > 3000 

m2∙g −1),73 luminosity resulting from conjugated organic linkers;74 structural flexibility in 

response to molecular adsorption or changing environmental conditions;75 charge 

transfer (ligand-to-metal or metal-to-ligand);76 high thermal stability relative to many 

organic polymers;77 conducting properties;78 and pH-sensitive stability.79 

Since first examples of MOFs at mid-90s of last century,80 they have 

experienced an extensive exploration, with applications in gas capture81 and 

separation,82 catalysis,83 drug delivery,84 optical, magnetic and electronic applications,85 

and sensing.86 
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Figure 1.13. (a) Some secondary building units (SBUs) commonly employed in crystal 
engineering; (b) three examples of MOFs.88 

1.3.3.2. Gels and aerogels 

Gels are three-dimensional polymeric structures with a high degree of 

crosslinking that expands during polymerization to entrap the solvent within. As a 

result, gels behave as viscoelastic substances that can acquire the size and shape of 

the recipient that contains it.  

Gels can be classified according to the chemical nature of the polymer formed 

in organic,89 inorganic90 (Figure 1.14a) or metal-organic (MOGs).91 Likewise, gels are 

classified as either physical or chemical gels according to the nature of the interactions 

involved in their formation. Supramolecular gels formed by weak non-covalent 
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interactions such as hydrogen bonding, π–π stacking and hydrophobic interactions are 

physical gels, and their formation is generally reversible92 whereas chemical gels are 

formed by strong covalent bonds; these ones cannot be re-dissolved and are thermally 

irreversible.93 Gels are also termed either colloidal (particulate structure) or polymeric 

(fibrillar structure) depending on the nature of the building blocks of the network (Figure 

1.14b-c). 

Figure 1.14 (a) Silica gels doped with transition metals; (b) TEM image of a gel showing a 
particulated microstructure; (c) TEM image of a gel with nanofibrillar microstructure.94 

At the forefront of gel research are metallogels (metal-organic gels: MOGs), 

which are gels formed from gelators containing complexed metals or clusters.95 Gels 

based on coordination polymer complexes can be endowed with other physicochemical 

properties of metals, such as magnetism,96 color change and luminescence,97 stimuli-

tunable rheological properties,98 sorption capability,99 self-healing properties,100 

catalytic activity,101 and redox behavior.102 Therefore metal-containing gels react to a 

broader range of chemical and physical stimuli compared to inorganic or organic gels. 

Furthermore, the strength of metal–ligand coordination interaction lies between that of 

strong covalent bonding interaction and that of other non-covalent interactions. Thus, 

MOGs may display properties of either physical or chemical gels in different situations.  
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If a gel is dried by evaporation, then capillary forces provoke the shrinkage of 

the gel, the solid network collapses and a material of reduced porosity named as 

xerogel is formed (Figure 1.15).103 

If a gel is dried supercritically, ideally, the solvent is replaced by air without 

affecting the microstructure resulting in a highly porous material called aerogel (Figure 

1.15). However, in most cases, the structure tends to suffer a certain degree of 

contraction until it is fully consolidated. Other drying methods have been satisfactorily 

tested in the preparation of aerogels, including solvent-replaced ambient drying, 

surface-modified ambient drying, freezing drying (criogel), etc.104 However, latter 

methods are less efficient and/or more time consuming than the supercritical drying 

process. 

 

Figure 1.15 Graphic diagram of sol-gel process showing products that can be obtained from 
the gel. 

Aerogels are low-density solid materials (Figure 1.16) with a fine open-pore 

structure. An aerogel is composed of individual primary particles or fibers only a few 

nanometers in size which are linked in a three-dimensional structure. This 

microstructure causes characteristic properties of aerogel materials: meso- and 

macroporosity (5–100 nm), high surface areas (200–2400 m2∙g-1)105 and ultralow 

densities (0.003–0.15 g∙cm-3).106 
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Figure 1.16 (a) Silica aerogel; (b) graphene aerogel; (c) lanthanide doped aerogel exhibiting 
luminescence; (d) visual demonstration of the low thermal conductivity exhibited by a silica 
aerogel.107 

An aerogel should possess the below described characteristics: 

 Structure characteristics: gel-like structure, normally with nanoscale coherent 

skeletons and pores; hierarchical and fractal microstructure (primary structure 

coexists and is related with larger-scale structure); able to form macroscopic 

monolith; randomly cross-linked network, normally composed of non-

crystalline matter. 

 Property characteristics: unique bulk properties different from solid matter, gas 

matter or normal foam, such as ultralow thermal conductivity, ultralow elastic 

modulus, ultralow refractive index, etc.  

In this way, aerogels of different chemical nature have been synthesized: 

inorganic,108 organic and polymeric,109 peptidic,110 metallic,111 carbon based,112 hybrid113 

and metal-organic (metal-organic aerogels: MOAs).114 

Thanks to the attractive properties presented by aerogels today, their 

exploitation is being investigated as thermal and sound insulation materials,115 

supercapacitors,116 ultralight structures for the aerospace industry,117 desiccants or 
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absorbents for environmental remediation,118 and Cherenkov counters,119 among 

others. 

As a concluding remark, synthesis of metal-organic gels (MOGs) and aerogels 

(MOAs) constitute a route that allows preparing porous materials from coordination 

compounds not being subjected to their crystal structure. This feature markedly 

enhances the possibility of obtaining multifunctional porous materials when compared 

to conventional MOFs, which need to meet reticular chemistry principles to provide an 

open framework. Furthermore, processing and shaping of MOFs implies still nowadays 

a challenge that requires facing some problems (post-processing optimization, binder 

removal, loss of porosity and pore blocking). In this regard, MOGs and MOAs can be 

shaped as desired during the synthesis process by simple molding, not requiring post-

processing neither use of binders. Besides, the greater pore-size of MOGs and MOAs 

improves the molecular diffusion processes and allow dealing with big-sized guest 

molecules (i.e. macromolecules, nanoparticle, etc). 

1.4. OBJECTIVES AND STRUCTURE OF THE WORK 

The present work is encompassed within one of the research lines of the 

Department of Inorganic Chemistry of the Science and Technology Faculty (Leioa 

Campus) of the University of the Basque Country (UPV/EHU). The thesis is mainly 

focused on the synthesis and chemical and structural characterization of metal-

organosulfur coordination compounds for their subsequent use as precursors of zero- 

and three-dimensional nanostructures. 

Accordingly, the work is divided into two parts. The first one (chapter 2 and 3) 

emphasizes on the use of metal-thiocarboxylato complexes for the production of 

metallic sulfide nanoparticles of scientific and technological interest such as ZnS and 

CdS.120 The selected thiocarboxylic acids (acetic and thiobenzoic acids) will be 

responsible for providing a sulfur source to the system. Although this class of 
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organosulfur molecules sometimes show the ability to bridge metal centers, given the 

chemical nature of the elements of 12 group, it is expected that the ligands will be 

coordinated in a terminal manner through the sulfur atom. In order to complete the 

coordination sphere of the metal, heterocycles with two or more donor nitrogen atoms 

will be employed as secondary ligands or co-ligands. Some of these co-ligands have a 

high predisposition to chelate the metal (2,2’-bipyridine, 1,10-phenanthroline, 

neocuproine) producing monomeric entities while others have the ability to bridge 

metals (1,2-di(4-pyridil)ethylene and adenine). It has been decide to use nitrogenous 

co-ligands because in their decomposition they do not leave behind fragments that may 

hinder the formation of the corresponding sulfide (i.e. the formation of oxides or 

sulfates). Likewise, the selected heterocycles have the robustness necessary to obtain 

chemically stable precursors and direct the decomposition of the precursor towards a 

specific polymorph. 

The synthetic procedure that will follow to obtain this kind of nanoparticles is a 

variation of the single-source precursor route. Metal-organic precursors will be 

decomposed in solid state without the addition of solvents or surfactants, at relative 

moderate temperatures (300−500°C) and in air atmosphere. The influence of ligands 

on the distribution of nanoparticle sizes will be analyzed. Also, we will try to find a 

possible correlation between the average particle diameter and the structural variability 

of the compounds (i.e. effect of distance M∙∙∙M, dimensionality of the complex, etc.). On 

the other hand, experiments will be made to understand which operational parameters 

related to the decomposition (temperature, time, heating rate, etc) are the most critical. 

The second part of the work (chapter 4 and 5) will pursue the synthesis of 

nanoporous metal-organic gels (MOGs) and their processing as aerogels (MOAs) and 

xerogels (MOXs) based on metal-dithiooxamidato complexes. The linear coordination 

geometry of dithiooxamidato and the possibility of forming hydrogen bonds are two 

propitious characteristics for the creation of anisotropic coordination structures. 
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Additionally, the presence of sulfur atoms in the structure, a more voluminous element 

than oxygen or nitrogen with a greater capacity of overlapping, can confer a significant 

electrical conductivity to the material. 

In chapter 4 a screening will be performed to understand the influence of the 

synthetic parameters on the gelation of the metal-dithioxamidato compounds. The 

process of preparing their respective aerogels will be optimized in order to obtain well 

defined monoliths. Metal-organic aerogels will be chemically characterized by infrared 

spectroscopy, elemental analysis and thermogravimetric analysis. Additionally, 

microstructure of the aerogels will be studied by electron microscopy and porosity 

through gas physisorption. Finally, the electrical properties of these materials will be 

analyzed through DC and AC conductivity measurements as well as the variation of 

conductivity in response to an external chemical stimulus. 

In last chapter (chapter 5) we will discuss the applicability of the obtained 

metal-organosulfur gels among other metal-organic materials (basically MOFs) into the 

methanol synthesis by carbon dioxide electroreduction. It must be emphasized that 

methanol synthesis from CO2 and H2O can be considered in line with the policy of the 

future of the chemical industry.121 This process could be an option for attenuating the 

greenhouse effect by transforming CO2 into valuable chemicals and fuels, such as 

alcohols. Note that methanol is a potential alternative energy source to fossil fuels and 

a medium for the transport of hydrogen. 

Potentiostatic techniques will be used to verify the catalytic activity of the 

metal-organic porous materials (MOPMs) deposited on carbon electrodes. On the other 

hand, the evolution of the catalytic activity will be assessed as a function of the time of 

use. The stability of the materials after the electroreduction of carbon dioxide to 

alcohols will be checked by means of X-ray diffraction and vibrational analysis.  

Chapters 2−5 have been edited in article format, following the text structure of 

the journal in which each one has been published. The instrumental techniques have 
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been detailed in the experimental section of each chapter. The bibliography cited can 

be found at the end of each chapter. The bibliographic style used is that of the 

corresponding journal while the introduction of the thesis obeys to the style of the 

WILEY-VCH editorial which includes journals representative for the scope of this 

doctoral thesis (European Journal of Inorganic Chemistry, Angewandte Chemie 

International Edition, Advanced Materials, among others.). Accordingly, in this section 

references to articles have been arranged by authors, journal name, publication date, 

volume and pages. The cited books have been referenced following this scheme: 

authors, title of the book, year of publication and editorial. Internet links have been 

abbreviated for the reader's convenience and they have been last reviewed on May 20 

of 2017.  
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2.1. SUMMARY 
As detailed in section 1.4 of the general introduction, chapter two describes 

the first approach to obtain metal sulfide nanoparticles from the aerobic combustion 

of zinc-thiocarboxylato complexes with N,N’-heterocycles as secondary ligands. The 

first part is devoted to the synthesis, chemical and structural characterization of six 

new compounds with the formula [Zn(SCOR)2(N–N)] [R = –CH3 (TAc), –C6H5 (TBn); 

N–N = 2,2’-bipyridine (BPY), 1,10-phenanthroline (PHEN), 1,2-bis(4-pyridyl)ethylene 

(BPE), neocuproine (NEO)] obtained by the reaction of Zn(CH3COO)2·2H2O with the 

corresponding pyridine derivative and thiocarboxylate in methanol in the ratio 

Zn/SCOR/N–N = 1:2:1. In all compounds, the metal atom is bonded to sulfur atoms 

of two thiocarboxylato ligands and to two nitrogen atoms from one pyridine derivative 

imposing a distorted-tetrahedral ZnS2N2 coordination sphere. The use of chelating 

dipyridine ligands leads to discrete monomeric entities in compounds 

[Zn(TAc)2(BPY)] (1), [Zn(TBn)2(BPY)] (2), [Zn(TAc)2(NEO)] (3), and 

[Zn(TBn)2(PHEN)] (4). On the contrary, the bridging capability of the dipyridine BPE 

ligand gives rise to the polymeric chains observed in compounds [Zn(TAc)2(μ-BPE)]n 

(5) and [Zn(TBn)2(μ-BPE)]n (6).  

Numerous complexes of organosulfur ligands have been studied as 

precursors for the deposition of II/VI type semiconductor materials. In this sense, the 

presence of direct zinc–sulfur bonds is a key factor to use these compounds as 

single-source precursors for the synthesis of nanometric metal sulfide particles. 

Thiocarboxylates fulfill the above mentioned requirement and have demonstrated an 

enormous potential as single-source precursors. However, despite works reported to 

date requiring an inert gas to prepare the metal–chalcogenide NPs from single-

source precursors, we make use of dry thermolysis under aerobic conditions to 

achieve ZnS nanoparticles. The second part of this chapter deals with these 

decomposition studies under different atmospheres and the subsequent analysis of 
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the produced ZnS nanoparticles (purity, average size, crystalline phase, degree of 

agglomeration, etc.). These studies have demonstrated the feasibility of soft 

thermolysis treatment (300ºC) under air atmosphere conditions to achieve ZnS 

nanoparticles. The crystallite size measurements indicate the suitability of this 

method to obtain particles with a diameter below 10 nm. Semiconductor 

nanoparticles with a diameter of 1–20 nm are of particular interest since they 

represent the transition regime between solid-state and molecular or cluster physics. 

On the other hand, the nature of the starting zinc(II)-thiocarboxylato 

precursor seems to exert a crucial influence on the final blende or wurtzite crystalline 

phase of the resulting ZnS nanoparticles, as compounds with π-extended systems 

such as phenanthroline or neocuproine give rise to a wurtzite phase, whereas the 

less extended 2,2’-bipyridine provides the blende phase. The 1,2-bis(4-

pyridyl)ethylene ligand seems to be midway, since depending on the thiocarboxylate 

it provides blende (for thioacetate) or wurtzite (for thiobenzoate). 

The results, which demonstrate the feasibility of the soft thermolysis under 

aerobic conditions to afford metal sulfide nanoparticles, were published in the 

European Journal of Inorganic Chemistry (year 2013, pp. 5592–5602). The 

corresponding article and its supporting material are gathered below. They also 

provide the basis for a further study in chapter 3.  
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Six new compounds with the formula [Zn(SCOR)2(N–N)]
[R = –CH3 (TAc), –C6H5 (TBn); N–N = 2,2�-bipyridine (BPY),
1,10-phenanthroline (PHEN), 1,2-bis(4-pyridyl)ethylene
(BPE), neocuproine (NEO)] have been obtained by the reac-
tion of Zn(CH3COO)2·2H2O with the corresponding pyridine
derivative and thiocarboxylate in methanol in the ratio Zn/
SCOR/N–N = 1:2:1. In all compounds, the metal atom is
bonded to sulfur atoms of two thiocarboxylato ligands and to
two nitrogen atoms from one pyridine derivative imposing a
distorted-tetrahedral geometry. The use of chelating dipyr-
idine ligands leads to discrete monomeric entities in com-
pounds [Zn(TAc)2(BPY)] (1), [Zn(TBn)2(BPY)] (2), [Zn(TAc)2-
(NEO)] (3), and [Zn(TBn)2(PHEN)] (4). On the contrary, the
bridging capability of the dipyridine BPE ligand gives rise

Introduction
Thiocarboxylates are an interesting class of ligands that

exhibit a large variety of coordination modes due to the
presence of both soft sulfur and hard oxygen donor sites
(Figure 1).[1] Thus, with group XII metals, as they are rela-
tively soft ions, the sulfur atom is typically joined in a
monodentate fashion to the metal center. Despite the
zinc(II) ion being a borderline case and possessing an inter-
mediate hardness, given its small size it generally binds
through the bulkier sulfur atom.[2]

Nanocrystalline semiconductors with a particle size be-
low 20 nm, also referred to as quantum dots (QDs), have
gained considerable interest over the last decades due to
their countless technological applications in different fields
of chemistry and physics.[3] The small size of quantum dots
results in the three-dimensional confinement of the charge
carriers and the corresponding transformation of the bulk
energy bands into discrete energy states.[4] This bulk-to-mo-
lecule transition is continuous, such that the band gap of
the nanocrystalline material can be tuned to a desired en-
ergy controlling the particle size, and, thus, materials with
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to the polymeric chains observed in compounds [Zn(TAc)2(μ-
BPE)] (5) and [Zn(TBn)2(μ-BPE)] (6). The occurrence of Zn···O
weak interactions is rationalized on the basis of the νC=O shift
and continuous shape measurements. Additionally, the pres-
ent work demonstrates how ZnS nanoparticles can be ob-
tained by dry thermolysis of the prepared thiocarboxylate
complexes under aerobic conditions and moderate tempera-
tures (300 °C). The analysis of the X-ray diffraction pattern
and SEM/TEM images reveals the presence of ZnS crystal-
lites below 10 nm. The influence of the N-heterocycle and
thiocarboxylato ligands on the crystalline phase (blende or
wurtzite), size, and purity of the resulting zinc sulfide nano-
particles is discussed.

Figure 1. CSD database[8] coordination mode statistics for thio-
carboxylato ligands coordinated to metals classified according to
Pearson’s hardness.[9]

customized optoelectronic properties can be created.[5] An
important class of QDs are metal sulfides. Nanosized ZnS
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particles, especially, exhibit a wide band gap and excellent
optical properties.[6] These attributes make ZnS nanopar-
ticles an excellent candidate for a wide range of applications
in sensors, displays, electronic devices, laser devices, nonlin-
ear optical devices, etc.[7]

To date, many techniques for preparing transition-metal
sulfide nanoparticles (NPs) have been developed. Among
them those that stand out are solvothermal processes,[10]

metal–organic chemical vapor deposition (MOCVD),[11]

microemulsions,[12] sol–gel methods,[13] spray pyrolysis,[14]

and single-source precursor routes.[15] The last technique
consists of employing coordination compounds as starting
material with metal–chalcogenide bonds already available
in the structure. The starting material is dispersed in a coor-
dinating solvent (usually amines or amides) for later injec-
tion onto a hot solution containing a surfactant.[16] The role
of the surfactant is to stabilize these nanoparticles and con-
trol their growth. This synthetic route has the advantage
of being simple and allows nanoparticles with narrow size
distributions to be obtained. However, several studies have
shown that it can go further using a dry thermolysis under
an inert gas to obtain NPs and avoiding, in this way, the use
of surfactant molecules. The use of moderate temperatures
during the decomposition of the precursor prevents the sin-
tering of the NPs.[17] This solvent-free synthesis has a rela-
tively low cost and precludes the use of toxic and environ-
mentally unfriendly organic solvents and/or surfactant mo-
lecules. During the dry thermolysis, it was found that in
the heating process the ligands passivate the surface of the
particle limiting its growth and – as a consequence – de-
termining its size.[18] The kind of ligand also influences the
final phase and crystallinity of the achieved metal chalco-
genide.[19] However, when working at relatively low tem-
peratures the percentage of impurities is generally quite
high because of the lack of sufficient energy to complete
the elimination of the ligands.

Numerous complexes of chalcogenide-containing ligands
have been studied as precursors for the deposition of II/VI-
type semiconductor materials.[20] These include thiocarbox-
ylates, which have demonstrated an enormous potential as
single-source precursors because of their high volatility at
moderate temperatures and their ability to establish direct
metal–chalcogenide bonds.[21]

In the present work we have synthesized and structurally
characterized six new ZnII compounds based on thiocar-
boxylato ligands and pyridine derivatives with a ZnS2N2

coordination sphere. Despite works reported to date requir-
ing an inert gas to prepare the metal–chalcogenide NPs
from single-source precursors, we make use of dry thermol-
ysis under aerobic conditions to achieve the ZnS nanopar-
ticles.

Results and Discussion

Mononuclear ZnII complexes are obtained when thio-
carboxylate is used in the presence of chelating N-heterocy-
cles, while polymeric complexes are grown when bridging

Eur. J. Inorg. Chem. 2013, 5592–5602 © 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim5593

N-heterocycles are employed. A common feature of all the
complexes is the N2S2 coordination environment that re-
sembles a distorted tetrahedron (Table 1). However, there
are also weaker interactions between the metal center and
the oxygen atom of the thiocarboxylato groups, with Zn···O
distances (2.74–3.26 Å) close, and in some cases shorter
than the sum of the van der Waals radii (2.91 Å). Further
evidence of this interaction is that compounds with shorter
Zn···O contacts also present the more elongated C=O bond
length, an effect that is also reflected in the IR spectra by
a displacement of ν(C=O) towards longer wavelengths
(Table 2). This interaction also affects the coordination ge-
ometry as compounds with closer Zn···O contacts present

Table 1. Selected bond lengths [Å] for compounds 1–6.

Compound 1 2 3 5 6

Zn(1)–N(1) 2.078(1) 2.095(2) 2.076(2) 2.057(2) 2.064(1)
Zn(1)–S(1) 2.2970(4) 2.2959(5) 2.2859(5) 2.072(2) 2.052(2)
Zn(1)–N(2) 2.098(2) 2.052(2) 2.2932(8) 2.2780(5)
Zn(1)–S(2) 2.2989(5) 2.2937(5) 2.3024(8) 2.3136(5)

Compound 4[a] Dmax Dmin Dmean

Zn(1)–N(1) 2.109(3) 2.104(3) 2.106(3)
Zn(1)–S(1) 2.297(5) 2.291(5) 2.294(5)

[a] Compound 4 presents an incommensurate crystal structure (see
Experimental Section).

Table 2. Correlation between the Zn···O distance [Å], the C=O ten-
sion vibration wavenumber [cm–1], and deviations from the ideal
geometries.

Compound Zn···O [Å] νC=O [cm–1] STET
[a] SOC

[a]

Thioacetato-based compounds

1 2.880(1) 1615 3.5 16.7
3 3.122(1)/3.156(1) 1624/1635 2.9 27.6
5 3.066(3)/3.257(3) 1612/1627 1.3 17.5

Thiobenzoato-based compounds

2 2.792(1) 1605 3.8 13.9
4 2.740(2) 1620 4.1 12.5
6 3.035(2) 1612 1.3 18.3

[a] Deviations from ideal tetrahedral (Td) and octahedral (Oh) geo-
metries calculated from continuous shape measurements.[22]

Figure 2. Correlation between the Zn···O distance and the devia-
tion from the octahedral geometry determined from continuous
shape measurements for zinc thiocarboxylate complexes with a
ZnS2N2(O2) coordination sphere.
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larger deviations with regard to the ideal tetrahedral geome-
try, while the trend is inverted for an octahedral geometry
when a hexacoordination is assumed. In fact, a perusal of
the CSD database for other thioacetate/thiobenzoate com-
plexes with aromatic diazines that present a ZnS2N2(O2)
coordination environment corroborates this trend as can be
observed in Figure 2.

Structures of Compounds 1–3

Compounds 1–3 contain monomeric entities in which the
metal center is tetrahedrally coordinated to two sulfur
atoms belonging to two thiocarboxylato ligands and to two
N atoms of the chelating pyridine derivative (Figure 3). The
main difference of the coordination environment of the ZnII

center is the semicoordination distance with the oxygen
atom of the thiocarboxylate. The steric hindrance of the
chelating diimine ligand clearly affects the resulting Zn···O
approach. The methyl groups of the neocuproine ligand
weaken this interaction giving rise to a weaker contact for
compound 3 (3.12 Å) than for compounds containing the
nonsubstituted 2,2�-bipyridine ligand (2.88 and 2.79 Å for
compounds 1 and 2, respectively). In any case, the bond
length values found here are similar to those observed for
analogous compounds.

Obviously, the different nature of the N-heterocyclic and
thiocarboxylato ligands leads to supramolecular crystal
structures that differ considerably. The cohesiveness of the
crystal structure of compound 1 is sustained by a combina-
tion of weak hydrogen-bonding interactions involving the
aromatic C–H groups as donors and the oxygen and sulfur
atoms of the thiocarboxylate as acceptors. The symmetri-
cally related double hydrogen bond between the C(6) –H
groups and the sulfur atoms of an adjacent entity generates
a supramolecular chain of monomers running along the b
axis. These chains are further connected by means of C(4)–
H···O hydrogen bonds. There is no evidence of π–π interac-
tions between pyridine rings of the 2,2�-bipyridine mo-
lecules. In compound 2, non-classic C–H···S and C–H···O
hydrogen-bonding interactions appear along with the π–π

Figure 3. ORTEP diagrams of compounds 1 (a), 2 (b), and 3 (c); hydrogen atoms are omitted for clarity.

Eur. J. Inorg. Chem. 2013, 5592–5602 © 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim5594

interactions. The hydrogen-bonding interactions lead to
supramolecular sheets spreading along the ac plane. These
layers pile up one above the other interacting by means of
edge-to-face π–π interactions involving the aromatic rings
of the thiobenzoato and 2,2�-bipyridine ligands. In com-
pound 3, the steric hindrance of the neocuproine ligand
avoids the presence of C–H···S hydrogen-bonding interac-
tions. The overall cohesiveness of the compound is therefore
achieved through C(9)–H···O1 and C(12)–H···O2 hydrogen
bonds that give rise to sheets parallel to the bc plane. Sur-
prisingly, although the sulfur atoms of the thioacetato li-
gand are pointing outwards of the sheets, these are held
together only by means of weak van der Waals interactions.

Structure of Compound 4

Given the incommensurable nature of compound 4, we
proceed to describe its average structure, for subsequently,
analyze the structural fluctuations induced by the modula-
tion vector. The compound consists of monomeric
axiosymmetric entities, where the metal center shows a
slightly distorted tetrahedral coordination environment
formed by the two nitrogen atoms of a PHEN ligand and
two sulfur atoms from two thiobenzoato ligands (Figure 4).
The values of the coordination bond lengths are within the
range observed in complexes 1–3. The crystal structure is
stabilized by π–π interactions between pyridine rings from
PHEN ligands of adjoining monomeric entities (shorter dis-
tances: ca. 3.50 Å) and through C–H···O-type hydrogen
bonds between the aromatic carbon atoms of PHEN (C6)
and the oxygen atoms of the thiobenzoato ligands (O1).

Induced modulation incommensurability translates into
a change in relative position and orientation of the mono-
mers, as shown in Figures 4a, b, and c, which, moreover,
also affects the bond lengths and angles. This variation is
most pronounced in the case of the semi-coordinating oxy-
gen atom (2.74–2.85 Å). Figure 3e shows the modulation of
the electron density in the vicinity of the metal center.
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Figure 4. Maximum discrepancy between the two boundary orientations of the mononuclear entity projected along the crystallographic
axes a (a), b (b), and c (c). (d) Monomeric complex of compound 4. (e) Electron density cuts around the Zn atom in compound 4.

Structures of Compounds 5 and 6

Compounds 5 and 6 present a polymeric structure where
neutral units [Zn(RCOS)2] (R: methyl and phenyl, respec-
tively) are joined through BPE ligands forming zigzag
chains (Figure 5). The N2S2 distorted tetrahedral coordina-
tion environment of ZnII is composed of the sulfur atoms
of two thiocarboxylate ligands and the nitrogen atoms of
two symmetrically equivalent BPE ligands. As is the case
for monomeric complexes, despite the fact that the RCOS–

anion is bonded in a monodentate manner through its sul-
fur atom, a weak semi-coordination of its oxygen atoms
with Zn···O distances ranging from 3.03 to 3.26 Å is pres-
ent. In compound 5 the Zn atom is displaced by 0.54 and
0.79 Å from the mean plane of the thioacetato ligand due
to the steric hindrance between its methyl group and the
pyridine group of the BPE ligand. On the other hand, the
rotation of the phenyl group of the thiobenzoato ligand
overcomes the cited steric hindrance, and the ZnII atom
only deviates slightly from the ligand plane (0.22 and
0.50 Å). With regard to the intramolecular Zn···Zn dis-
tance, both compounds show a similar value (13.458 and
13.454 Å, respectively).
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Polymeric chains of compound 5 run along the [111̄] and
[011] crystallographic directions with an intersecting angle
of 71.73°, while in compound 6 they spread along the [1̄11]
and [111] directions with an almost perpendicular crossing
angle (86.09°). In addition, whenever chains intersect they
establish two C–H···O hydrogen bonds involving a pyridine
C–H group and the ethylene group as hydrogen donors and
the oxygen atom of the thiocarboxylate as the acceptor of
both hydrogen bonds. Likewise, π–π interactions are present
between the ethylene group and pyridine ring of adjacent
chains (closest contacts: 3.36–3.48 Å). All these supra-
molecular interactions provide the necessary cohesion to
the crystal structure.

Dry Thermolysis Experiments

The thermal degradation in a synthetic air environment
shows (Figure 6) that all the compounds start their decom-
position at relatively low temperatures (1: 157 °C; 2: 177 °C;
3: 200 °C; 4: 175 °C; 5: 140 °C; 6: 175 °C). The two lower
values correspond to those containing the thioacetato li-
gand, all with BPY or BPE (compounds 1 and 5). This
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Figure 5. ORTEP diagrams of the asymmetric units of compounds 5 (a) and 6 (b). Cross-linking chain fragments in compounds 5 (c) and
6 (d).

Figure 6. Thermogravimetric analysis of zinc thiocarboxylate com-
pounds under a synthetic air environment.
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observation is relatively common, because the thioacetate
salts are usually less stable than the thiobenzoate ones.[23]

However, it is worth noting that for compound 3 the use of
neocuproine, a bulkier chelating ligand with methyl groups
adjacent to the nitrogen donor atoms, protects the thiocar-
boxylate functional group increasing its thermal stability to
temperatures higher than those found for the thiobenzoate
ones (compounds 2, 4, and 6). After the first mass loss all
compounds achieve a more or less stable plateau that corre-
sponds to a variable mixture of ZnS and amorphous car-
bon. The amount of carbon accompanying the ZnS, rang-
ing from 5 to 32%, depends on the starting material. Com-
pounds 3 and 4, containing the ligands with the most ex-
tended π-systems, neocuproine and phenanthroline, respec-
tively, are notorious for needing a larger amount of carbon.
At temperatures between 450 and 650 °C these intermedi-
ates are further oxidized to give ZnO (JCPDS No. 89-0511)
as the final product. Additional thermoanalytical data are
available in the Supporting Information.

Therefore, these thermogravimetric (TG) measurements
show that by controlling the decomposition process it is
possible to obtain ZnS even under aerobic conditions. It is
worth noting that, as far as we are concerned, all the dry
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thermolysis processes reported to date make use of an inert
gas in order to isolate the corresponding metal chalcogenide
and to avoid the presence of undesired oxide compounds.
Taking into account the results of the TG analyses, the ZnS
samples were prepared by heating at a rate of 5 °C min–1 up
to 300 °C and maintaining this temperature for 2 h, with
the exception of compound 4 for which the temperature
plateau was extended up to 24 h. The X-ray diffraction pro-
files, with very broad peaks, clearly reveal the nanometric
nature of the crystalline domains (Figure 7). The resulting
ZnS obtained from compounds 1, 2, and 6 correspond to
blende (JCPDS: 80-0020; F4̄3m; a = 5.420 Å), whereas
those obtained from compounds 3 and 4 correspond to the
wurtzite polymorph (JCPDS: 80-0007; P63mc; a = 3.82 Å
and c = 6.26 Å). For the thermolysis product of compound
5 the shape and asymmetry of the diffraction peaks suggest
a wurtzite main contribution, although the minor presence
of a blende phase cannot be disregarded.

Figure 7. X-ray diffraction patterns of dry thermolysis products ob-
tained at 300 °C under aerobic conditions. Blende (cubes); wurtzite
(hexagons).

At 298 K and 1 atm, bulk ZnS polymorphs of wurtzite
and blende have a Gibbs free-energy difference of
10.25 kJmol–1,[24] which reflects the higher stability of
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blende compared with wurtzite. The transformation from
the blende to the wurtzite phase occurs at 1020 °C.[25] How-
ever, with decreasing particle size, surface energy starts to

Table 3. Scherrer expression-based crystallite size analysis.[a]

Precursor Phase/JDPS Reflection β Lv Dv

(hkl) [rad] [nm] [nm]

1 B/80-0020 (111) 0.0787 1.7 2.3
2 B/80-0020 (111) 0.0513 2.6 3.4
3 W/80-0007 (110) 0.0234 5.3 7.1
4 W/80-0007 (110) 0.0563 2.5 3.3
6 B/80-0020 (111) 0.0861 1.6 2.1

[a] LV = K·λ/β·cosθ, where LV is the volume-weighted average crys-
tallite size measured in a direction perpendicular to the surface of
the specimen, λ is the average wavelength, in nanometers, of the Kα

radiation of Cu (0.154252 nm), θ is the Bragg angle in radians, β
(2θ) is the integral width of the diffraction peak in radians dis-
counting the instrumental contribution, and K is the Scherrer con-
stant, considered as 0.89 for spherical particles with cubic sym-
metry. The average diameter of particles (Dv) has been calculated
from the Dv = (4/3)·Lv expression. The crystallite size for com-
pound 5 could not be estimated because of the great overlap of the
(110) reflection with the neighboring peaks; however, the width of
the diffraction peaks clearly indicates the presence of very small
nanoparticles.

Figure 8. Diffractograms of ZnS nanoparticles obtained at dif-
ferent temperatures for compounds 1 (a) and 2 (b).
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play an increasingly dominant role in determining struc-
tural stability. Therefore, the synthesis of the wurtzite phase
nanoparticles at mild temperatures (far below its bulk tran-
sition temperature) becomes feasible as evidenced from the
dry thermolysis of compounds 3–5 and by the examples
reported by other research groups.[26]

The average crystal domain size of the as-synthesized
nanoparticles was estimated from the Scherrer formula,[27]

using the integral breadth[28] of the (111) reflection for the
blende phase and (110) for the wurtzite one (Table 3). The
results show average crystallite sizes in the range 1–7 nm.

In order to explore the influence of the dry thermolysis
conditions in the nanoparticle, the size, time, and tempera-
ture parameters were modified. While the lengthening of
the thermal-treatment time has no noticeable effect on the
particle size, it allowed for purer metal chalcogenide sam-
ples to be obtained. On the other hand, higher temperatures
promote a slight increase of the particle size and purity, but
care must be taken, because some of the compounds show
the presence of zinc oxide when higher temperatures are
applied (Figure 8).

SEM images performed over the ZnS samples show nano-
metric conglomerates (below 100 nm) with a nanotexture
that indicates the presence of extremely small crystallites
(Figure 9a). TEM was employed to obtain a better insight
into the conglomerates (Figure 9b, c, and d). Transmission
micrographs show very tiny crystallites well below 10 nm
embedded into an amorphous carbonaceous matrix. Statis-
tical analysis of the TEM images provides the following
ZnS particle sizes: 5.3� 1.1 (1), 3.2�0.5 (2), 5.1 �1.3 (3),
5.2� 1.1 (4), 3.1�0.5 (5), and 3.9 �0.9 nm (6). The mea-
sured interplanar distances match those expected for the

Figure 9. Thermolysis residues of compound 1 [SEM (a) and
TEM (b,c)] and of compound 3 [TEM (d)].
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blende and wurtzite structures, respectively. EDX analyses
indicate the equimolar presence of zinc and sulfur atoms in
addition to a relevant carbon contribution (ranging from 5
to 28% depending on the examined area; zones near nano-
particles present lower carbon content than those on the
amorphous matrix).

Conclusions

We have obtained six different air-stable compounds
based on thiocarboxylato ligands all with N-heterocycles to
complete the coordination sphere of the ZnII ion. The pres-
ence of direct zinc–sulfur bonds is a key factor to use these
compounds as single-source precursors for the synthesis of
nanometric chalcogenide particles. We have also demon-
strated the feasibility of soft thermolysis treatment under
open atmosphere conditions to achieve ZnS nanoparticles.
Semiconductor nanoparticles with a diameter of 1–20 nm
are of particular interest since they represent the transition
regime between solid-state and molecular or cluster physics.
The crystallite size measurements indicate the suitability of
this method to obtain particles with a diameter below
10 nm.

On the other hand, the nature of the starting zinc thio-
carboxylate precursor seems to exert a crucial influence on
the final blende or wurtzite crystalline phase of the resulting
ZnS nanoparticles, as compounds with π-extended systems
such as phenanthroline or neocuproine give rise to a wurtz-
ite phase, whereas the less extended 2,2�-bipyridine provides
the blende phase. The 1,2-bis(4-pyridyl)ethylene ligand
seems to be midway, since depending on the thiocarboxylate
it provides blende (for thioacetate) or wurtzite (for thio-
benzoate).

Experimental Section
General Information: Commercially available thioacetic acid
(HTAc), thiobenzoic acid (HTBn), zinc acetate dihydrate, 2,2-bi-
pyridine (BPY), 1,10-phenanthroline (PHEN), neocuproine
(NEO), 1,2-bis(4-pyridyl)ethylene (BPE), and all the solvents were
used as received. The new compounds are stable in air at room
temperature. The yields calculated are based on the metal salt.

[Zn(TAc)2(BPY)] (1): BPY (0.0937 g, 0.6 mmol) dissolved in
MeOH (10 mL) was added slowly to a methanol solution (15 mL)
containing zinc acetate (0.1317 g, 0.6 mmol). HTAc (84.4 μL,
1.2 mmol) was added to the reaction mixture to give a clear pale-
yellow solution. Several minutes later, a whitish precipitate was ob-
tained. The mixture was stirred for 2 h. The product was filtered
in vacuo and washed with MeOH. The mother liquors were al-
lowed to concentrate at room temperature to obtain colorless single
crystals. Yield: 0.07454 g (33%). Main IR features of compound 1
(KBr pellet): ν̃ = 3435 (sh), 3108 (m), 3057 (m), 3036 (m), 1718
(w), 1616 (vs), 1597 (sh), 1567 (w), 1492 (w), 1478 (m), 1444 (s),
1400 (sh), 1384 (vs), 1344 (w), 1323 (m), 1248 (w), 1179 (w), 1160
(m), 1119 (s), 1059 (w), 1041 (w), 1027 (m), 1016 (sh), 1004 (w),
995 (m), 976 (sh), 956 (w), 766 (s), 735 (m), 658 (s), 634 (w), 562
(w), 535 (w), 500 (w), 436 (w), 417 (m) cm–1. C14H14N2O2S2Zn
(371.78): calcd. C 45.23, H 3.80, N 7.53, S 17.25, Zn 17.59; found
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C 45.07, H 3.82, N 7.37, S 17.10, Zn 17.51. The compound is solu-
ble in acetone, DMF, DMSO, CH2Cl2, and warm water.

[Zn(TBn)2(BPY)] (2): The synthetic procedure was similar to that
of 1, except that HTBn (141.1 μL, 1.2 mmol) was used instead of
HTAc. The polycrystalline product was washed with MeOH and
acetone. The filtrate was left undisturbed at room temperature to
obtain pale-yellow single crystals. Yield: 0.22843 g (77%). Main IR
features of compound 2 (KBr pellet): ν̃ = 3435 (sh), 3107 (m), 3056
(m), 3033 (sh), 1715 (w), 1605 (s), 1597 (sh), 1589 (s), 1576 (m),
1565 (s), 1489 (w), 1474 (m), 1442 (s), 1400 (m), 1385 (s), 1322 (m),
1249 (w), 1208 (vs), 1169 (s), 1159 (sh), 1120 (w), 1103 (w), 1078
(w), 1058 (w), 1040 (w), 1024 (m), 1015 (sh), 1002 (w), 994 (w), 975
(w), 940 (sh), 932 (vs), 903 (sh), 778 (sh), 770 (s), 735 (m), 702 (sh),
693 (s), 654 (s), 632 (w), 617 (w), 550 (w), 533 (w), 424 (sh), 415
(w) cm–1. C24H18N2O2S2Zn (495.92): calcd. C 58.12, H 3.66, N
5.65, S 12.93, Zn 13.18; found C 58.05, H 3.59, N 5.67, S 12.99,
Zn 13.19. The compound is soluble in DMF, DMSO, and CH2Cl2.

[Zn(TAc)2(NEO)] (3): The synthetic procedure was similar to that
of 1, except that NEO (0.1250 g, 0.6 mmol) was used instead of
BPY, and the polycrystalline product was additionally washed with
acetone. The filtrate was left undisturbed at room temperature to
obtain colorless single crystals. Yield: 0.08482 g (33%). Main IR
features of compound 3 (KBr pellet): ν̃ = 3434 (w), 3139 (w), 3068
(sh), 3019 (sh), 1721 (w), 1636 (s), 1625 (sh), 1594 (m), 1571 (w),
1509 (m), 1424 (sh), 1400 (sh), 1385 (s), 1349 (w), 1295 (w), 1222
(w), 1149 (m), 1117 (m), 1033 (w), 1003 (w), 953 (m), 858 (m), 813
(w), 783 (w), 730 (w), 680 (w), 653 (m), 623 (sh), 550 (w), 538 (sh),
494 (w), 449 (w), 436 (w), 417 (w) cm–1. C18H18N2O2S2Zn (423.85):
calcd. C 51.00, H 4.28, N 6.61, S 15.13, Zn 15.43; found C 51.07,
H 4.30, N 6.75, S 15.21, Zn 15.35. The compound is soluble in
DMF, DMSO, and CH2Cl2.

[Zn(TBn)2(PHEN)] (4): The synthetic procedure was similar to that
of 2, except that PHEN (0.1081 g, 0.6 mmol) was used instead of
BPY. Yield: 0.25283 g (80%). Main IR features of compound 4
(KBr pellet): ν̃ = 3435 (m), 3133 (m), 3063 (sh), 3027 (sh), 1620
(m), 1589 (vs), 1579 (sh), 1567 (vs), 1516 (m), 1492 (w), 1446 (m),
1429 (s), 1420 (s), 1400 (s), 1385 (vs), 1348 (w), 1207 (vs), 1171 (w),
1151 (w), 1140 (w), 1101 (w), 1076 (w), 1028 (w), 1003 (w), 993
(w), 932 (vs), 868 (w), 854 (s), 777 (m), 729 (s), 704 (m), 694 (s),
669 (w), 654 (m), 644 (w), 619 (w), 562 (w), 552 (w), 424 (w) cm–1.
C26H18N2O2S2Zn (519.94): calcd. C 60.05, H 3.49, N 5.39, S 12.33,
Zn 12.58; found C 59.97, H 3.54, N 5.42, S 12.42, Zn 12.64. The
compound is soluble in DMF, DMSO, and CH2Cl2.

[Zn(TAc)2(μ-BPE)] (5): HTAc (141.1 μL, 1.2 mmol) was added to
a solution of zinc acetate (0.1317 g, 0.6 mmol) in MeOH (15 mL)
to obtain a clear yellow solution. A methanol solution (10 mL) of
BPE (0.1093 g, 0.6 mmol) was added dropwise, and the mixture
was stirred for 2 h. The light yellowish precipitate was filtered,
washed with MeOH and acetone and dried in vacuo. In order to
obtain single crystals, the synthesis was carried out by using DMF,
a more coordinating solvent that prevents the immediate precipi-
tation of the complex. Several days later, yellow crystals of com-
pound 5, mixed with a polycrystalline powder, were observed.
Yield: 0.20022 g (84%). Main IR features of compound 5 (KBr
pellet): ν̃ = 3435 (m), 3133 (m), 3017 (sh), 1627 (vs), 1612 (vs), 1506
(w), 1430 (sh), 1401 (sh), 1385 (s), 1354 (w), 1300 (w), 1260 (w),
1212 (w), 1148 (m), 1110 (m), 1070 (m), 1023 (m), 1003 (m), 988
(m), 952 (m), 845 (m), 832 (m), 652 (m), 624 (sh), 565 (m), 552 (m),
492 (w) cm–1. C16H16N2O2S2Zn (397.81): calcd. C 48.30, H 4.05,
N 7.04, S 16.12, Zn 16.44; found C 48.22, H 4.12, N 7.04, S 16.07,
Zn 16.15. The compound is soluble in DMF, DMSO, and hot
water.
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[Zn(TBn)2(μ-BPE)] (6): The synthetic procedure for the prepara-
tion of the polycrystalline sample was similar to that of 5, except
that HTBn (141.1 μL, 1.2 mmol) was used instead of HTAc. Yel-
lowish single crystals were obtained by slow diffusion of a meth-
anol solution containing zinc acetate and HTBn into a solution of
BPE in DMF. Yield: 0.28488 g (90%). Main IR features of com-
pound 6 (KBr pellet): ν̃ = 3446 (m), 3129 (m), 3090 (sh), 3057 (sh),
1612 (vs), 1604 (sh), 1574 (s), 1505 (w), 1484 (sh), 1446 (m), 1432
(m), 1400 (sh), 1385 (vs), 1352 (sh), 1303 (w), 1250 (w), 1222 (sh),
1204 (s), 1171 (m), 1158 (m), 1068 (m), 1026 (m), 1003 (m), 994
(w), 979 (w), 962 (w), 923 (s), 873 (w), 838 (m), 782 (m), 692 (s),
673 (w), 652 (m), 618 (w), 570 (m), 553 (m) cm–1. C26H20N2O2S2Zn
(521.96): calcd. C 59.83, H 3.86, N 5.37, S 12.29, Zn 12.53; found
C 59.76, H 3.94, N 5.32, S 12.35, Zn 12.48. The compound is solu-
ble in DMF and DMSO and sparingly soluble in hot CH2Cl2 and
water.

Physical Measurements: Elemental analyses (C, H, N, S) were per-
formed with a Euro EA Elemental Analyzer, whereas the metal
content, determined by inductively coupled plasma (ICP-AES),
was obtained with a Horiba Yobin Yvon Activa spectrometer. In-
frared spectra were recorded with a Nicolet 740 FTIR spectrometer
as KBr disks. Thermal analysis (TG/DTG/DTA) was performed
with a TA Instruments SDT 2960 thermal analyzer in a synthetic
air environment (79 % N2, 21% O2) with a heating rate of
5 °Cmin–1 and a sample size of about 10–20 mg per run. The X-
ray powder diffraction patterns (XRPD) were collected with an X-
Pert PRO, PAN analytical machine by employing a Cu-Kα radia-
tion source at a scanning rate of 0.026 ° s–1. The morphology of the
zinc sulfide NPs was examined by using a JEOL JSM-7000F scan-
ning electron microscope (SEM) and a Philips CM200 transmission
electron microscope (TEM) equipped with an EDXS collection
unit. The samples for SEM were prepared by deposition of the
product onto a carbon tape, while those for TEM were dispersed
on ethanol and placed on a carbon-coated copper grid followed by
drying under vacuum.

X-ray Structure Determination: The single crystals were mounted
at the end of a glass fiber by using epoxy glue. Diffraction experi-
ments were carried out with an Xcalibur diffractometer equipped
with graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å)
at 100(2) K. Data were processed and corrected for Lorentz and
polarization effects with the CrysAlis RED program.[29] The struc-
tures of all compounds except 4 were solved by direct methods
using the SIR92 program.[30] Full-matrix least-squares refinements
were performed on F2 by using SHELXL97.[31] All non-hydrogen
atoms were refined anisotropically. All calculations for these struc-
tures were performed by using the WINGX crystallographic soft-
ware package.[32] In the case of compound 4, careful examination
of the positions of the peaks extracted from the CCD images ob-
tained at 100 K showed that in addition to the main reflections the
diffraction pattern also contained strong satellite reflections that
could be indexed with four integers as H = ha* + kb* + lc* + mq

with q = (00.296820). Thus, this structure was solved directly in
superspace with the charge-flipping algorithm, while the initial
structure models were refined by full-matrix least squares on F by
using the JANA2006 program.[33] After averaging the electron den-
sity according to the superspace symmetry, we obtained a good
estimate of both the basic positions of the atoms and their modula-
tion functions. Crystallographic details are listed in Tables 4 and 5.

Supporting Information (see footnote on the first page of this arti-
cle): TG, XRPD, FTIR spectra, SEM/TEM images, UV/Vis spec-
tra, TG-MS results, tables of hydrogen-bonding interactions, fig-
ures of crystal packing, and thermolysis optimization experiments.
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Table 4. Crystal data and structure refinement of the compounds 1–3, 5, and 6.

Compound 1 2 3 5 6

Empirical formula C14H14N2O2S2Zn C24H18N2O2S2Zn C18H18N2O2S2Zn C16H16N2O2S2Zn C26H20N2O2S2Zn
Mr [gmol–1] 371.76 495.89 423.83 397.80 521.97
T [K] 100(2) 100(2) 100(2) 100(2) 100(2)
Crystal system monoclinic triclinic monoclinic orthorhombic monoclinic
Space group C2/c (No.15) P1̄ (No.2) P21/c (No.14) Pna21 (No.33) P21/c (No.14)
a [Å] 15.5829(3) 8.4262(5) 10.5150(2) 9.9015(3) 11.6106(2)
b [Å] 8.1768(2) 11.6138(8) 11.0576(2) 11.4738(4) 13.0890(2)
c [Å] 12.4330(3) 11.6237(6) 15.6367(3) 15.8722(6) 19.7024(4)
α [°] 90 77.704(5) 90 90 90
β [°] 98.223(2) 84.897(4) 92.402(2) 90 123.209(2)
γ [°] 90 76.201(5) 90 90 90
V [Å3] 1567.90(6) 1078.45(11) 1816.48(6) 1803.21(11) 2505.18(10)
Z 4 2 4 4 4
Dcalcd. [g cm–3] 1.575 1.527 1.550 1.465 1.384
μ [mm–1] 1.836 1.357 1.596 1.602 1.172
F(000) 760 508 872 816 1072
θ range [°] 2.82–29.00 1.79–26.60 2.26–27.99 2.72–28.96 2.92–30.00
Reflections collected 12870 7524 14949 14421 24110
Independent reflections 2080 [Rint = 0.0362] 4510 [Rint = 0.0227] 4240[Rint = 0.0352] 4157 [Rint = 0.042] 7311[Rint = 0.030]
Parameters/restraints 97/0 280/0 247/0 208/1 298/0
R [I � 2σ(I)][a] R1 = 0.0243 R1 = 0.0288 R1 = 0.0302 R1 = 0.0333 R1 = 0.0403

wR2 = 0.0616 wR2 = 0.0607 wR2 = 0.0717 wR2 = 0.0767 wR2 = 0.0969
R (all data) R1 = 0.0271 R1 = 0.0325 R1 = 0.0357 R1 = 0.0372 R1 = 0.0588

wR2 = 0.0623 wR2 = 0.0637 wR2 = 0.0749 wR2 = 0.0787 wR2 = 0.1014
GOF on F2 (S)[b] 1.022 1.056 1.064 1.079 0.962
Weighting scheme[c] SHELX SHELX SHELX SHELX SHELX

[a] R1 = Σ(|Fo| – |Fc|)/Σ|Fo|; wR2 = {Σ[w(Fo
2 – Fc

2)2]/Σ[w|Fo|2]}1/2. [b] S = [Σw(|Fo| – |Fc|)2/(Nobs – Nparam)]1/2. [c] Scheme = 1/[σ2(Fo
2) +

(aP)2 + bP] where P = (Fo
2 + 2Fc

2)/3; compound (a, b): 1 (0.0420, 0), 2 (0.0196, 0.3497), 3 (0.0360, 0.8273), 5 (0.0417, 0.4334), and 6
(0.0650, 0).

Table 5. Crystallographic data and refinement conditions for com-
pound 4.

Empirical formula C26H18N2O2S2Zn
Mr [gmol–1] 519.96
Crystal system monoclinic
Superspace group C2/c (0\b0)s0
a [Å] 21.72(4)
b [Å] 9.32(5)
c [Å] 11.34(5)
β [°] 101.5(3)
V [Å3] 2251(17)
Q vector 00.296820
Z 4
Dcalcd. [g cm–3] 1.534
F(000) 1064
μ [mm–1] 1.304
Rint 0.0404
Independent reflections 12873
Observed reflections [I� 3/ σ(I)] 6177
θ range [°] 2.97–29.09
Parameters 250
GOF (all) 1.33
GOF [I � 3/σ(I)] 1.86
R1/wR2 [I � 3/σ(I)] 0.0378/0.0426
Main reflections m = 0 0.0337/0.0421
Satellites m = 1 0.0381/0.0406
Satellites m = 2 0.0542/0.0585
R1/wR2 (all) 0.0783/0.0444
Main reflections m = 0 0.0458/0.0428
Satellites m = 1 0.0668/0.0421
Satellites m = 2 0.1949/0.0684
Weighting scheme 1/[σ2(Fo) + 0.0001Fo

2]
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S1. Thermogravimetric measurements 
 
Table S1. Thermogravimetric measurements for the compounds 1–6 in synthetic air. 
 

Compound  Ti
[a] Tf Tpeak 

Δm 
(%) 

ΔH 
ΣΔm 
(%) 

ΣΔmtheor 
(%) 

Residue [b] 
(JCPDS-

No) 

157 268 229 67.7 ENDO 69.6 73.8 
ZnS, B  

(80-0020) 
1 

502 615 584 5.9 EXO 79.5 78.1 
ZnO,W  

(89-0511) 

177 585 234/ 256/ 302/ 465/ 561  ENDO/ EXO/ EXO/ EXO/ EXO  80.3 
ZnS, B 

(80-0020) 
2 

   81.6  83.0 83.6 
ZnO,W  

(89-0511) 

200 655 
218/ 248/ 278/ 341/ 531/ 

624.5 
 

ENDO/ EXO/ EXO/ EXO/ EXO/ 
EXO 

 77.0 
ZnS, W  

(80-0007) 
3 

   81.7  82.8 80.8 
ZnO,W 

(89-0511) 

175 650 
223/ 249/ 280/ 315/ 340/ 

390/ 489/ 578/ 636 
82.1 

ENDO/ ENDO/ EXO/ EXO/ 
EXO/ EXO/ EXO/ EXO/ ENDO 

 81.3 
ZnS, W  

(80-0007) 
4 

     83.4 84.3 
ZnO,W  

(89-0511) 

140 455 
191/ 199.5/ 226/ 390/ 

420 
59.9 ENDO/ EXO/ EXO/ EXO/ EXO 63.5 75.5 

ZnS, B  
(80-0020) 

5 

498 645 560/ 591.5 12.4 EXO/ EXO/ 76.4 79.5 
ZnO,W  

(89-0511) 

175 375 262/ 274.5/ 276.5/ 316  ENDO/ EXO/ EXO/ EXO/  81.3 
ZnS, B  

(80-0020) 
6 

380 605 450/ 513.5/ 561.5 81.2 EXO/ EXO/ EXO 82.4 84.4 
ZnO,W  

(89-0511) 

[a] Ti: Initial temperature (ºC), Tf: Final temperature (ºC), Tpeak: DTA peak temperature (ºC); Δm(%): Weight loss percent in each process; ΔH: Type process 
according to ATD; ΣΔm(%): percentage of total weight loss after each process; ΣΔmtheor(%).: Theoretically calculated weight loss percent. 

[b] Crystalline phases found in the residues. W: Wurtzite )
_

( mF 34 , B: Blende (P63mc). 
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Figure S1. Thermoanalysis of compounds 1–6: TG curve (blue), differential thermal analysis (red) and derivative weight 

(green). 



 
S2. X-ray powder diffraction patterns 

 

 
Figure S2. X-ray powder diffraction patterns of compounds 1–6. 



 
S3. FTIR spectra 
 

 
Figure S3. FTIR spectra of compounds 1–6. 



 
S4. Hydrogen bonding and coordination angles. 

 
Table S4.1 Hydrogen bonding in compounds 1–6. 

1 

D–H···A H···A D···A D–H···A 

C(4)–H(4)···O(1) a 2.72 3.487(2) 140.2 

C(6)–H(6)···S(1) b 3.03 3.796(2) 141.0 

2 

D–H···A H···A D···A D–H···A 

C(21)–H(21)···O(1) c 2.58 3.349 140 

C(3)–H(3)···O(2) d 2.47 3.341 155 

3 

D–H···A H···A D···A D–H···A 

C(9)–H(9)···O(1) e 2.45 3.284 148 

C(12)–H(12)···O(2) f 2.41 3.213 154 

4 

D–H···A H···A D···A D–H···A 

C(6)–H(6)···O(1) h 2.53 3.370 146.0 

5 

D–H···A H···A D···A D–H···A 

C(4)–H(4)···O(2) i 2.63 3.483(4) 153.6 

C(6)–H(6)···O(2) i 2.57 3.444(4) 156.6 

6 

D–H···A H···A D···A D–H···A 
C(4)–H(4)···O(2) j 2.52 3.327(2) 144.8 

C(6)–H(6)···O(2) j 2.44 3.246(2) 145.5 

C(7)–H(7)···O(1) 2.34 3.143(2) 143.7 

C(8)–H(8)···S(2) k 2.85 3.549(2) 132.6 

C(24)–H(24)···S(1) l 2.91 3.695(3) 143.5 

Symmetry codes: (a) –x+3/2, –y+1/2, –z+1; (b) –x+1, y–1, –z+1/2; (c) 1–x, 1–y, 1–z; (d) 1–x, y–1/2, 3/2–z; (e) –x, y–1/2, 3/2–z;  (f) 1+x, y, z;  (g) 1–x, –y, 

2–z; (h) x, y+1, z; (i) x+1/2, –y+1/2, z; (j) –x+2, y+1/2, –z+1/2; (k) –x+2, y–1/2, –z+1/2; (l) –x+1, y+1/2, –z+1/2. 

 
 
Table S4.2 Coordination bond angles in compounds 1–6. 
 

 2 3 5 6 
N(1)–Zn(1)–S(2) 116.72(5) 115.11(5) 111.11(7) 96.40(4) 
N(1)–Zn(1)–N(2) 78.32(6) 81.68(6) 96.61(9)

 [a] 101.77(6) 
N(1)–Zn(1)–S(1) 107.53(4) 118.11(4) 109.18(7) 111.02(4) 
N(2)–Zn(1)–S(1) 114.16(4) 111.68(4) 121.24(7)

 [a] 115.09(4) 
N(2)–Zn(1)–S(2) 102.80(4) 119.49(4) 103.05(7)

 [a] 107.57(5) 
S(1)–Zn(1)–S(2) 126.76(2) 108.95(2) 114.22(3) 121.69(2) 

 1 4 

  Anglemax Anglemin Anglemean 

N(1)–Zn(1)–S(1) 118.37(3) 114.8(2) 112.8(2) 113.8(2) 
N(1)–Zn(1)–S(1) 106.63(3) [b] 101.9(3) [c] 101.2(3) [c] 101.5(3) [c] 
S(1)–Zn(1)–S(1) 120.70(2) [b] 133.8(3) [c] 133.8(3) [c] 133.8(3) [c] 
N(1)–Zn(1)–N(1) 79.37(6) [b] 79.6(4) [c] 79.6(4) [c] 79.6(4) [c] 

Symmetry codes: [a] –x+5/2, y+1/2, z+1/2, [b] 1–x, y, 1/2 – z, [c] –x1, x2, –x3+1/2, x4+1/2 



Figure S4. Hydrogen bonding in compounds 1–6. 
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S5. Thermolysis optimization under aerobic conditions. 
 

  

(a) (b) 

  

(c) (d) 
Figure S5.1 PXRD patterns of compounds 3–6 after the pyrolysis at different temperatures and times. 
 



 
Figure S5.2 PXRD patterns of compound 1 after the pyrolysis at 300ºC using different times. 
 
 



S6. TG-MS of compound 1 in synthetic air atmosphere. 
 

 
Compound 1 2,2´-bipyridine Thioacetic anhydride S2 
50 50   
51 51   
52 52   
57  57  
58  58  
59  59  
60  60  
61  61  
64   64 
66   66 
74 74   
75 75   
76 76 76  
77 77   
78 78   
79 79   
82    
88    
91    
92    
94    
95    
96    
97    
98    
99    



S7. UV-Vis spectra of the thermolysis products at 300ºC of compounds 1-6 obtained sonicating with an 
ultrasonic tip and filtrating the suspension to remove the bulkier aggregates. 

  

  

  
Table S7.1 Particle size estimated from the effective mass approximation (Brus equation). 
Precursor λonset (nm) Eg (eV) Diameter (nm) 
1 282 4.39 9.0 
2 271 4.58 8.1 
3 282 4.40 10.1 
4 270 4.60 8.9 
5 287 4.32 9.4 
6 269 4.61 8.0 
Brus equation: 
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 from reference: L. E. Brus, Appl. Phys. A, 1991, 53, 465. 

where Eg = 3.68 eV for blende and 3.73 eV for wurtzite from reference: S.M. Sze, Physics of Semiconductor Devices, 2nd ed.; 
John Wiley & Sons: New York, 1981; p. 492.] 
and me* = 0.42 me; mh* = 0.61 me; ε = 8.3 ε0 from reference: P. E. Lippens, M. Lanoo, Phys. Rev. B, 1989, 39, 10935. 
 
Note: The particle size estimated from the Brus equation indicate very small particle sizes, below 10 nm although slightly 
greater than those estimated from Scherrer formula and TEM images. Probably because absorption peaks of the carbonaceous 
matrix are also present in the UV-Vis spectra. Therefore, these results must be taken with care. 
 
S8. FTIR spectra of the thermolysis products at 300ºC of compounds 1-6. 



 
 



S9. SEM images of the thermolysis products at 300ºC of compounds 1-6. 
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S10. TEM images of the thermolysis products at 300ºC of compounds 1-6. 
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S11. ZnS particle size distribution from TEM images of the thermolysis products at 300ºC. 
 

 

 
 

 

 

 
 



S11 (cont.). ZnS particle size distribution from TEM images of the thermolysis products at 300ºC. 
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3.1. SUMMARY 
The third chapter can be considered as a continuation of the research 

carried out in the previous chapter, extending the studies to other metallic systems 

(palladium and cadmium).  

The first part of the chapter accounts for the synthesis, chemical and 

structural characterization of six new compounds of formula [M(TBn)2L] [TBn: 

thiobenzoate; M: Cd(II), Pd(II), Zn(II); L: 2,2’-bipyridine (bpy), 1,10-phenantroline 

(phen), 1,2-di-(4-pyridil)-ethylene (bpe), neocuproine (neo), adenine (ade)] that have 

been obtained by the reaction of M(CH3COO)2·2H2O with the corresponding N-

heterocyclic ligand and thiobenzoate (TBn) in methanol or N,N’-dimethylformamide 

(DMF). The use of chelating ligands leads to discrete monomeric entities in 

compounds [Pd(TBn)2(bpy)] (PdBPY), [Pd(TBn)2(phen)] (PdPHEN), [Zn(TBn)2(neo)] 

(ZnNEO) and [Cd(TBn)2(neo)] (CdNEO). In these compounds the metal is bonded to 

sulfur atoms of two thiobenzoate ligands and to two nitrogen atoms from one pyridine 

derivative. On the contrary, the bridging capability of the bipyridinic ligand gives rise 

to the polymeric chains observed in compound [Cd(TBn)2(μ–bpe)]n (CdBPE). The 

synthesis of compound [Cd(TBn)2(ade)(CH3OH)] (CdADE) gives rise to a monomer 

in which cadmium is bound to two sulfur atoms from TBn, to one nitrogen atom from 

Hoogsteen face of ade and to an oxygen from a molecule of methanol. 

The second part of the chapter is devoted to the use of these metal-

thiobenzoate complexes as precursors for the synthesis of metallic (Pd) and metal 

sulfide (ZnS and CdS) nanoparticles. It is achieved through a thermal treatment that 

consist again on a solventless decomposition under aerobic conditions using 

moderate temperatures (300–500ºC) and short exposure times (less than an hour). 

During the heating process ligands passivate the surface of the particle limiting its 

growth, and the resulting crystalline phase. SEM/TEM images reveal the presence of 

these nanoparticles (ZnS: 8–9 nm; CdS: 8–19 nm; Pd: 32–70 nm) embedded in a 
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carbonaceous matrix. In general, during the thermolysis of the precursors, moderate 

temperatures are used to prevent the sintering of the NPs, but it also implies a 

generally quite high percentage of non-volatile carbonaceous residues impurities 

because of the lack of sufficient energy to complete the elimination of the ligands. 

However, it has been observed that the amount of carbon correlates with carbon 

content of the co-ligands employed to stabilize the metal-thiobenzoates in such a 

way that it is possible to obtain from almost carbon free nanoparticles to a 

homogeneous dispersion of them in a thick carbonaceous matrix. 

Although in a first instance the non-volatilized carbonaceous part could be 

considered a disadvantage, numerous studies prove that heterostructures based on 

semiconducting nanoparticles embedded in carbon materials show promising 

features for its implementation in batteries, electrocatalysis and photocatalysis. The 

dispersion of metal nanoparticles on carbon matrix is a common practice in industry 

since this class of hybrid materials are widely employed as electrochemical 

electrodes for fuel cell and battery applications, as well as heterogeneous catalyst for 

organic synthesis, hydrodesulphurization, wastewater treatment, etc. The carbon 

matrix further prevents the agglomeration and sintering of the nanoparticles and in 

the same way it serves as continuous, porous and conductive support. The 

controlled decomposition of metal-organic precursors in solid state opens a new 

synthetic single-stage route for the production of carbon-based nanocomposites 

implying benefits related to solvent use, technical simplicity, and lower manufacturing 

cost. 

The results of this chapter (article plus supporting information) have been 

submitted to European Journal of Inorganic Chemistry scientific journal. 
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Six new compounds of formula [M(TBn)2L] [TBn: thiobenzoato; 
M: Pd(II), Zn(II), Cd(II); L: 2,2’-bipyridine (bpy), 1,10-
phenantroline (phen), 1,2-di-(4-pyridil)-ethylene (bpe), 
neocuproine (neo), adenine (ade)] have been obtained by the 
reaction of M(CH3COO)2·2H2O with the corresponding N-
heterocyclic ligand and thiobenzoato (TBn) in methanol or N,N’-
dimethylformamide (DMF). The use of chelating ligands leads to
discrete monomeric entities in compounds [Pd(TBn)2(bpy)] 
(PdBPY), [Pd(TBn)2(phen)] (PdPHEN), [Zn(TBn)2(neo)]
(ZnNEO) and [Cd(TBn)2(neo)] (CdNEO). In these compounds the
metal is bonded to sulfur atoms of two thiobenzoate ligands and to
two nitrogen atoms from one pyridine derivative. On the contrary,
the bridging capability of the bpe bipyridinic ligand gives rise to 
the polymeric chains observed in compound [Cd(TBn)2(μ–bpe)]n

(CdBPE). The use of adenine as co-ligand gives rise to the
monomeric compound [Cd(TBn)2(ade)(CH3OH)] (CdADE) in 
which cadmium is bound to two sulfur atoms from TBn, to one
nitrogen atom from Hoogsteen face of ade and to an oxygen from
a methanol molecule. 

The presence of sulfur donor atoms and carbon rich co-ligands 
enables these complexes yielding a set of metallic and metal 
sulfide nanoparticles embedded into a carbonaceous support. 
Precisely, the thermal treatment process to produce the latter 
materials consist of a solventless decomposition under aerobic 
conditions using moderate temperatures (300–500ºC) and short 
exposure times (less than an hour). The analysis of the X-ray 
diffraction pattern and SEM/TEM images reveal that the 
carbonaceous matrix hosts well dispersed nanocrystallites. The 
influence of metal(II) ion and the N-heterocycle ligand on the 
crystalline phase, size and purity of the resulting carbon 
supported nanoparticles is discussed.  
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Introduction 

Thiocarboxylato ligands provide a valuable tool to design and 
synthesise metal-complexes as the presence of both soft sulfur and 
hard oxygen donor sites implies not only the ability to bind metals 
of rather different nature,[1] but it also endorses appealing 
electronic properties such as luminescence and conductivity.[2] 
Apart from that, complexes of chalcogenide have been studied as 
precursors for the deposition of II/VI type semiconductor 
nanoparticles through single-source precursor routes,[3] which 
makes this kind of coordination compounds of particular interest 
due to the increasing demand of quantum dots (QDs) for 
technological applications.[4] Precisely, the single-source precursor 
routes employ sulfur containing coordination compounds as 
starting material since metal-chalcogenide bonds are already 
present in the structure. In this approach, the metal-organic 
precursor is dispersed in a coordinating solvent (usually amines or 

amides) and injected into a hot solution containing a surfactant in 
order to stabilize the chalcogenide particles and to limit their 
growth. Thus, nanoparticles (NPs) with narrow size distributions 
are achievable. More recently, an alternative procedure called 
solventless thermolysis have been the focus of several research 
works,[5] as it allows to prepare nanostructures by using solely 
metal-organic precursors. In comparison to solvent assisted single-
source precursor route, dry thermolysis implies lower costs as 
diminishes the use of toxic and environmentally unfriendly organic 
solvents and hardly extractable surfactants. In this solventless 
approach, during the heating process the ligands passivate the 
surface of the particle limiting its growth, and as consequence, 
determine its size. The nature of the ligand influences also on the 
final phase and crystallinity of the achieved metal chalcogenide.[6] 
In general, during the thermolysis of the precursor, moderate 
temperatures are used to prevent the sintering of the NPs, but it also 
implies a generally quite high percentage of carbon impurities 
because of the lack of sufficient energy to complete the elimination 
of the ligands.[7] 

Although in a first instance the non-volatilized carbonaceous 
part could be considered a disadvantage, numerous studies prove 
that heterostructures based on semiconducting nanoparticles 
embedded in carbon materials show promising features for its 
implementation in batteries, electrocatalysis and photocatalysis.[8] 
In fact, the dispersion of metal nanoparticles on carbon matrix is a 
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common practice in industry since this class of hybrid materials are 
widely employed as electrochemical electrodes for fuel cell[9] and 
battery applications,[10] as well as heterogeneous catalyst for 
organic synthesis,[11] hydrodesulfurization,[12] wastewater 
treatment,[13] etc. Furthermore, the carbon matrix prevents the 
agglomeration and sintering of the nanoparticles and in the same 
way it serves as continuous, porous and conductive support. 
Conventional methods for the preparation of heterogeneous 
catalysts focus on impregnation or dip-coating techniques that 
require long optimization times to achieve reproducible and 
homogeneous results.[14] The controlled decomposition of metal-
organic precursors in solid state opens a new synthetic single-stage 
route for the production of carbon-based nanocomposites implying 
benefits related to solvent dispensal, technical simplicity, and 
lower manufacturing cost. 

In a previous work[15] we demonstrated that thiocarboxylato 
complexes can be employed as single-source precursors for the 
synthesis of zinc sulfide nanoparticles. It was concluded that dry 
thermolysis, under aerobic conditions, of thioacetato complexes 
favoured the formation of highly pure sulfides. In this work we are 
focused on replacing the thioacetato ligand by the more stable 
thiobenzoato ligand in combination with N-heterocycle ligands of 
different C/N ratio and aromaticity degree to provide a 
carbonaceous matrix for the resulting nanoparticles. In particular, 
six new MII (Pd, Cd, and Zn) thiobenzoate compounds containing 
additional bidentated nitrogen ligands (phen, neo, bpy, bpe and 
ade) were prepared and structuraly characterized, after which they 
were subjected to dry thermolysis under aerobic conditions and 
moderate temperatures to provide Pd@C, ZnS@C and CdS@C 
composites. 

Results and Discussion 

This section describes first the chemical and crystal structures of 
metal-organic precursors, as these data will support the discussion 
regarding the formation of carbonaceous composites of metal and 
metal sulfide nanoparticles (M@C and MS@C, respectively). Prior 
to the dry thermolysis experiments, a sub-section devoted to 
preliminary thermogravimetric analyses is presented in which 
decomposition mechanistics and optimum treatment temperature 
ranges will be set. Thereafter, results on the dry thermolysis 
experiments are thoroughly discussed, detailing microstructures 
and particle sizes obtained in each case, to end up with the 
influence of the thermal treatment parameters.  

Crystal structures of precursors. At first glance, the 
coordination sphere of these complexes (Figures 1 and 2) involves 
two sulfur bonded thiobenzoate ligands and the remaining 
coordination positions are occupied by two nitrogen donor atoms 
from a chelating N,N´-heterocyclic ligand in compounds PdBPY, 
PdPHEN, ZnNEO and CdNEO and from two N,N´-pillared 
bridging ligands in compound CdBPE. In the case of CdADE, 
apart from the two S atoms, the coordination sphere is completed 
by a nitrogen atom from an adenine molecule and the oxygen atom 
of a methanol molecule. At deeper insight, coordination sphere and 
corresponding polyhedron can be affected by the semicoordination 
of thiocarboxylate O atoms which is dependent of the ion type and 
size as well as the bulkiness of the co-ligands of each compound. 
As expected from its electronic configuration PdII (d8) does not 
present such semicoordination (Pd···O: 3.32–3.39 Å; distances 
larger than the sum of the van der Waals radii) and it sets in all 
cases a square planar coordination geometry [S(sp)=0.70–0.81] 

(Table 1). On the contrary, the semicoordination of O atoms in ZnII 
and CdII (d10) complexes leads to coordination numbers that range 
from 4 to 6. Initially, ruling out the semicoordination of oxygen 
atoms, the coordination polyhedron (MN2S2) of ZnNEO, CdBPE, 
CdNEO and CdADE can be described as a distorted tetrahedron. 
When considering higher coordination numbers, the small ionic 
radii of ZnII imposes great steric hindrances that implies long 
Zn···O contacts (3.06 Å) and results into a coordination 
environment closer to the ideal tetrahedral geometry. On the other 
hand, the bigger CdII size allows to set shorter Cd···O contacts 
(2.55–2.85 Å) and it leads to a smaller deviation respect to 
polyhedrons of higher coordination number.  

Table 1. Continuous shape measures (CShM) calculation 
results.[16] 

Compound Geometries [a] 
 C.N. = 4 C.N. = 5 C.N. = 6 
 SP T TBPY SPY OC TPR 

PdBPY 0.70 30.73 — — — — 
PdPHEN 0.81 28.56 — — — — 
ZnNEO 29.12 2.80 8.05 8.09 25.62 13.78 
CdBPE 26.14 2.67 2.86 7.32 6.61 11.26 
CdNEO 29.12 5.46 3.41 6.27 8.40 12.10 
CdADE 28.23 2.06 3.29 3.89 11.78 4.53 

[a] SP: square-planar, T: tetrahedron, TBPY: trigonal bipyramid, SPY: 
spherical square pyramid, OC: octahedron, TPR: trigonal prism. 

All compounds, except CdBPE, consist of discrete monomeric 
entities in which the supramolecular assembly is strongly 
determined by the interactions ocurring between TBn and the N-
donor co-ligand, as described below. Bpy and phen ligands in 
compounds PdBPY and PdPHEN are able to link complex entities 
through T-shaped aromatic interactions and weak C–H···O and C–
H···S hydrogen bonds. On the contrary, the more extended neo 
ligand in compound ZnNEO establishes π-π parallel stacking 
interactions that assisted by C–H···O hydrogen bonds assemble the 
monomeric entities into 1D supramolecular chains. The neo ligand 
in compound CdNEO, establishes again π-π parallel stacking 
interactions between them to arrange monomeric entities into 
supramolecular dimers that are held together by means of T-shaped 
aromatic interactions and weak C–H···O and C–H···S hydrogen 
bonds. The presence of the bridging bpe ligand in compound 
CdBPE, affords a zig-zag 1D polymeric complex entity with 
Cd···Cd distances of 14.057 and 13.851 Å. These chains are held 
together by means of T-shaped aromatic interactions among the 
benzene aromatic rings and weak C–H···O and C–H···S hydrogen 
bonds. 

In compound CdADE, the adenine molecule is coordinated to 
the cadmium atom through its N7 donor position. This 
coordination mode is reinforced by an additional intramolecular 
hydrogen bond between the N6–H amino group and the oxygen 
atom of the coordinated methanol molecule. Consequently, the 
Watson-Crick and sugar edges of the adenine are ready to prompt 
the self-assembly of the complex entities by means of further 
supramolecular interactions. Sugar edges of two adjacent adenines 
assemble together by complementary hydrogen bonding, but the 
Watson-Crick edge also selectively recognise the thiol and 
methanol oxygen atoms from an adjacent monomeric entity. Both 
interactions generate a supramolecular 2D arrangement of the 
monomeric entities in which the aromatic ring of the thiobenzoate 
ligands establishes π-π parallel stacking interactions that held 
together the sheets among them. Further details on the crystal 
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structures, including packing views and bond distances, are 
gathered in the supporting information. 

 

 

Figure 1. ORTEP diagrams of compounds (a) PdBPY, (b) PdPHEN, and (c) ZnNEO showing the labelling scheme. Hydrogen atoms are omitted for clarity. 
Symmetry codes: (i) -x+1, y, -z+1/2; (ii) -x+3/2, y, -z+1; (iii) -x+1, y, -z+3/2. 

 

Figure 2. ORTEP diagrams of compounds (a) CdBPE, (b) CdNEO, and (c) CdADE showing the labelling scheme. Hydrogen atoms are omitted for clarity.  

Decomposition mechanism and optimum treatment 
temperature. The evaluation of synthesized compounds as single-
source precursors for carbon supported nanomaterials was initially 
checked by thermogravimetric measurements in order to define an 
optimum range to afford desired products. The thermal degradation 
under synthetic air atmosphere shows (Figure 3a) that all the 
compounds start their decomposition at relatively low temperatures 
(PdBPY: 198ºC; PdPHEN: 230ºC; ZnNEO: 239ºC; CdBPE: 220ºC; 
CdNEO: 237ºC; CdADE: 151ºC). Apparently, the decomposition 
temperatures are more dependent on the nature of the co-ligands 
than on the type of the metal centers. In fact, compounds 
containing a chelating ligand with three fused aromatic hexagonal 
rings (phen and neo), provide thermally more robust products 
(230–240ºC) whereas the remaining compounds are notoriously 
less stable. The analysis of DTA curves (Figure 3b) indicates the 
occurrence of an endothermic event possibly related to a pyrolytic 
partial fragmentation of the ligands. After this first mass loss all 
compounds achieve a more or less stable plateau that corresponds 
to a variable mixture of PdSO4 or MIIS (MII: Zn, Cd) nanoparticles 
and amorphous carbon, as confirmed by PXRD and microanalysis 
of these intermediates (see Table S3.1 in the supporting 
information). On the other hand, precursors provided with non-

fused pyridine ligands such as bpe and bpy generate samples with 
low carbon content (2–4 %) as the fragments formed during the 
thermolysis (i.e. pyridine, methylamine, H2CN, H2O, NH3) are 
more volatile in nature.[17] In precursors PdBPY and PdPHEN, the 
previously formed PdSO4 decomposes around 330–350 °C to form 
elemental palladium. Prior to the pyrolytic stage, the methanol 
molecule of compound CdADE is released without providing any 
stable product as successive decomposition processes take place.  

At greater temperatures, between 295 and 485 ºC, there is a 
second weight drop consisting of an overlapped set of exothermic 
stages related to the oxidation of the carbonaceous phase. 
Amorphous carbon typically burns at temperatures ranging from 
550 to 610°C under aerobic conditions.[18] Nevertheless, in certain 
precursors (PdBPY, PdPHEN) a substantial lowering in the 
combustion temperature is noticed implying a decrease of ca. 
300ºC respect to the typical onset temperature. This fact is 
explained by the catalytic activity of palladium prompting the 
oxidation of soot.[19] In group 12 transition metal precursors, the 
metal sulfide is further oxidized to give ZnO (JPDS: 01-075-0576; 
P63mc; a= 3.243 Å and c= 5.1948 Å) in the case of ZnNEO or a 
mixture of CdO (JPDS: 00-001-1049; Fm-3m; a= 4.689 Å) and 
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cadmium oxysulfate (JPDS: 00-032-0140; Cm2a; a= 6.976 Å, b= 
23.343 Å, c= 6.853 Å) for CdBPE, CdNEO and CdADE. In 
PdBPY and PdPHEN, at this temperature range, the previously 
formed elemental palladium undergoes a passivation with the 
consequent formation of a thin layer of PdO (JCPDS: 01-075-0584; 
P-4n2; a= 3.036 Å and c= 5.327 Å). Additional thermoanalytic 
data are available in the supporting information.  

Dry thermolysis experiments. The aforementioned results 
indicate that by controlling the decomposition process it is possible 
to access metal and metal sulfides even under aerobic conditions. It 
deserves to note that, as far as we are concerned, all the dry 
thermolysis processes reported up to date, except our previous 
work,[15] make use of an inert atmosphere in order to yield the 
corresponding metal chalcogenide. Taking into account the results 
of the thermogravimetric analyses, precursor powders were 
introduced for 15 minutes in a tubular oven open to air and 
preheated to a temperature at which intermediate sulfides or metal 
are expected to be formed (see Table 2).  

The X-ray diffraction profiles taken on thermolysis products 
prove their crystalline nature (Figure 4) and confirm the 
achievement of the pursued phase. In the residues of compounds 
PdBPY and PdPHEN the cubic phase of elemental palladium is 
found (JCPDS: 01-087-0638; Fm-3m; a= 3.879 Å). Additionally, 
in compound PdPHEN a small peak corresponding to the plane 
(110) of tetragonal PdO is glimpsed. The resulting ZnS obtained 
from compound ZnNEO corresponds to the wurtzite phase 
(JCPDS: 00-036-1450; P63mc; a= 3.821 Å and c= 6.257 Å). This 
polymorph is metastable at standard conditions in bulk state (the 
transformation from blende to wurtzite occurs at 1020 ºC)[20] and it 
is more interesting than the blende cubic phase in terms of 
optoelectronic properties.[21] CdS obtained from compound CdBPE 
corresponds to a mixture of wurtzite (JCPDS: 01-077-2306; 
P63mc; a= 4.136 Å and c= 6.713 Å) and blende (JCPDS: 00-042-
1411; F-43m; a= 5.818 Å) polymorphs, but CdNEO and CdADE 
precursors render the pure CdS wurtzite and blende phases, 
respectively. Thus, it can be concluded that the correct choice of 
the N-donor co-ligand allows stabilizing a specific crystalline 
phase. 

The amount of carbon accompanying nanoparticles, ranging 
from 2 to 43 %wt (see Table 2), depends on the starting material, 
being notorious the presence of a greater percentage of carbon in 
compounds containing molecules with fused aromatic rings as 
ancillary ligand (PdPHEN, ZnNEO, CdADE and CdNEO).  

Figure 3. (a) Thermogravimetric analysis of metal(II)-thiobenzoate 
compounds under synthetic air atmosphere and (b) their corresponding 
DTA curves. 

Table 2. Main characteristics of the dry thermolysis products obtained under aerobic conditions. 

Precursor T (ºC) Products (JPDS Card) [a] DXRD (nm) [b] DTEM (nm) [c] C.V. (%) [d] C (% wt) [e] 
PdBPY 345 Pd (01-087-0638) 60 3±1 / 119±52 33.3 / 43.7 1.6 

PdPHEN 480 
Pd (01-087-0638) 

PdO (01-075-0584) 
70 21±6 / 78±26 28.6 / 33.3 38.4 

ZnNEO 400 w-ZnS (00-036-1450) 9 8±2 25.0 41.8 

CdBPE 400 
c-CdS (00-042-1411) 
w-CdS (01-077-2306) 

13 (blende) 
8 (wurtzite) 

28±8 28.6 3.9 

CdNEO 480 w-CdS (01-077-2306) 19 (wurtzite) 35±9 25.7 42.7 
CdADE 400 c-CdS (00-042-1411) 11 (blende) 16±4 25.0 22.2 

[a] JPDS card number. [b] Mean particle size estimated from Debye-Scherrer equation. Diffraction peaks chosen for each crystalline phase: (111) for Pd, 
(110) for w-ZnS, (110) for w-CdS and (200) for c-CdS. [c] Mean particle size along with its standard deviation calculated from the statistical analysis of 
TEM images. [d] C.V.: coefficient of variation. [e] Carbon mass percentage range calculated by gravimetry. 
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The average crystallite size of the as-synthesized nanoparticles 
was estimated from Debye-Scherrer[22] equation (Table 2). The 
great widening of diffraction peaks observed in ZnS and CdS 
samples reveals the nanometric nature of the crystalline domains 
for which size estimate ranges from 8 to 19 nm. In contrast, full 
widths at half maximum (FWHM) of the measured signals for 
metal palladium samples are markedly thinner, and lead to 
crystallite size of 60–70 nm. Note that particle size obtained from 
XRD analyses corresponds to the statistic of the bulk sample, and 
the contribution of the smallest particles is masked. This fact will 
be further discussed in TEM (transmission electron microscopy) 
analyses.  

 

Figure 4. X-ray diffraction patterns of dry thermolysis products obtained 
under aerobic conditions after having been subjected to 345–480°C for 15 
minutes.  

SEM images were performed over combustion samples in order 
to inquire into their microstructural characteristics (Figure 5). 
Thermolysis products of PdBPY and PdPHEN consist of compact 
microsized aggregates with smooth surfaces. At high 
magnifications, the nanoparticles embedded in the carbon matrix 
are hardly discerned, despite they will become clear in below 
described TEM analysis. In the case of ZnNEO, the obtained 
product shows greater compositional heterogeneities at nanometric 
scale since ZnS nanoparticles tend to aggregate forming clusters of 
approximately 1–3 micron size. Thermolysis of CdBPE generates 
an agglomerated granular nanotexture indicative of the presence of 
partially sintered nanocrystallites. CdS@C nanocomposite 

prepared from compound CdNEO presents a higher surface 
rugosity in comparison to the product of ZnNEO (despite both 
precursors contain neocuproine ligand). The dispersed CdS 
nanoparticles exhibit a well-defined spherical shape and are better 
distributed along the carbon matrix at nanoscale. Like carbon-rich 
precursors (PdPHEN, ZnNEO and CdNEO), compound CdADE 
degrades creating completely compact and glassy surfaces. 
However, the compositional arrangement of the material is just the 
reverse: carbon is grouped forming microparticles and these are 
surrounded by a matrix composed of CdS nanoparticles linked to 
each other through a thin carbon coating (Figure 6a-d). This 
unexpected phenomenon will be discussed later when analyzing 
the TEM images of samples. 

 

Figure 5. SEM images (10 kX of magnification on the left and 100 kX 
rightwards) of decomposition products synthetized from (a) PdBPY, (b) 
PdPHEN, (c) ZnNEO, (d) CdBPE and (e) CdNEO after having been 
subjected to 345–480°C for 15 minutes.  
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Figure 6. SEM images at different magnifications obtained for thermolysis 
product of compound CdADE (400ºC for 15 min).  

TEM was employed to get a better insight into the generated 
nanocomposites (Figure 7). Transmission micrographs confirm the 
existence of nanoparticles dispersed into an amorphous 

carbonaceous matrix. Data on statistical particle size analysis of the 
TEM images are provided in Table 2. Accordingly, elemental 
palladium nanoparticles display a bimodal size distribution in 
which fine particles (3–21 nm) (Figure 7a-b) and coarse particles 
(>40 nm) (Figure S4.8) can be distinguished. With regard to 
particle morphology, spherical particles and low aspect ratio 
nanorods are obtained for PdBPY and PdPHEN, respectively. This 
clue suggests that the heterocyclic co-ligand plays a key role in 
both size and morphology of the resulting Pd nanoparticles. 

On the contrary, the sizes found for metal sulfide nanoparticles 
show smaller polydispersion (coefficients of variation less than 
29 %) and generally, smaller than 60 nm (Figure 8). The resulting 
sizes are comparable to those obtained by wet routes in which 
surfactants are employed to control particle growth kinetics.[23] All 
them have monomodal curves except CdS nanoparticles prepared 
from CdNEO which describe a bimodal behavior with maxima 
around 25–30 nm and 35–40 nm. The effect of the metal center on 
particle size also becomes evident by observing the size 
distributions of sulfide obtained from ZnNEO and CdNEO; ZnS 
obtained from ZnNEO is composed of nanoparticles lower than 15 
nm whereas all CdS nanoparticles generated from CdNEO exceed 
this limit. 

 

 

Figure 7. TEM images of thermolysis products: (a) PdBPY, (b) PdPHEN, (c) ZnNEO, (d) CdBPE, (e) CdNEO and (f) CdADE. 
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TEM images taken on thermolysis product of CdADE will serve 
to enlighten about the mechanism of formation of the 
aforementioned micrometric carbon clusters (Figure 6). During dry 
thermolysis, the first nucleation points appear at the surface of the 
precursor grains and they grow by incorporating the newly formed 
cadmium and sulfur atoms that diffuse from inner core of the grain. 
As semiconducting nanoparticles are formed, they tend to diffuse 
towards grain boundaries and accumulate therein creating a species 
of halos for greater carbonaceous agglomerates (Figure S4.10) but 
a more homogeneus dispersion is obtained for smaller ones. When 
the grain size is relatively small (< 1 μm) this phenomenon is not 
observable because nanoparticles do not have enough space to 
move and well dispersed agglomerates are generated.  

On the other hand, decomposition products show a low degree of 
agglomeration of nanoparticles within the carbon matrix, being 
appreciable the individual morphology of themselves along the 
solid. In MS@C samples, it has even been possible to identify 
certain crystallographic orientations (Figure S4.9) in contrast to 
Pd@C nanocomposites. The interplanar distances measured match 

those expected for each decomposition product: 0.1977 nm for 
sample ZnNEO which corresponds to the plane (110) of ZnS 
wurtzite phase, 0.1743 nm for sample CdBPE which coincides with 
the plane (331) of the CdS cubic phase, 0.2474 nm for sample 
CdNEO which adjusts to (102) reflection of CdS wurtzite phase 
and 0.2086 nm for sample CdADE which is consistent with (220) 
index of CdS cubic polymorph. Each decomposition product has 
been subjected to qualitative compositional measurements using 
EDX analysis (Figure S4.11). In zones with lower contrast (i.e. 
matrix rich zone) the carbon ratio is substantially higher, being this 
increment more abrupt in carbon rich products obtained from 
PdPHEN, ZnNEO, CdNEO and CdADE. In the case of Pd@C 
nanocomposites, spectra realized over these brighter areas also 
show an additional peak corresponding to S element with a Pd/S 
ratio close to the unity. Thus, the carbonaceous matrix in palladium 
products contains also amorphous phase of sulfide or palladium 
sulphate which has not yet been reduced to metal (note, that 
according to thermogravimetric analysis PdSO4 precedes to the 
formation of elemental Pd). This sulfur impurities together with the 
small particle size in PdBPY and high carbon content in PdPHEN 
seems to hinder the recognition of crystallographic planes. 

Figure 8. Particle size histograms estimated from TEM images acquired for different decomposition products. 
 

Influence of thermal treatment parameters. In order to 
understand the degree of influence of the main thermolysis 
variables on the particle size, crystallinity and the final carbon 
content of the product, different thermogravimetric tests were 
performed on the precursor PdBPY. Despite particle size 
polydispersion found in elemental Pd samples, Debye-Scherrer 
analysis and TEM images will allow to monitor how coarse and 
fine particles evolve, respectively. When fixing the onset 
temperature at 345ºC, TEM images (Figure 9) show how finest 
particles trend to grow progressively from 3–5 nm at five minutes 
of treatment time to 80–200 nm after sixty minutes. Considering 
that the carbon matrix prevents the particle sintering, its 
elimination as the exposure time increases, prompts the nuclei 
grow by following Ostwald's maturation but also their aggregation 
into bigger sized cumules (500–1000 nm). Accordingly, the 
flattening of PXRD profiles (Figure S1.14) as the treatment time 

increased is also consistent with the decrease of the amorphous 
carbon amount. Similarly carbonaceous matrix is also reduced 
when increasing the onset temperature (at fixed exposure time and 
heating rate; Figure S1.15) and lowering heating rate (at fixed 
exposure time and onset temperature; Figure S1.16). Again, 
Debye-Scherrer analysis (Table 3) does not allow to follow the 
evolution of finest particles, but it indicates that after fifteen 
minutes the sintering of small particles into coarse crystallites 
reaches a limit close to 60 nm. Regarding influence of thermal 
treatment parameters on the formation of metal sulfides, ZnNEO 
and CdNEO have been selected as representaive cases. Unlike Pd 
particles, the size of ZnS and CdS particles is not affected by the 
exposure temperature and time within the analysed range (400–
480ºC; < 60 min).  
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Figure 9. TEM images of the products obtained from compound PdBPY at different combustion times: (a) 5 min, (b) 15 min, (c) 30 min, and (b) 60 min. 

Table 3. Debye-Scherrer expression based crystallite size analysis of 
cadmium and zinc based compounds. 

Precursor T (ºC) [a] rH (ºC·min-1)
 [b] t (min) (hkl) Dv (nm) 

PdBPY 

345 5 5 (111) 41 
345 5 15 (111) 60 
345 5 30 (111) 66 
345 5 60 (111) 57 
345 15 5 (111) 32
345 15 15 (111) 69 
345 30 5 (111) [c] 
360 15 5 (111) 67 

ZnNEO 
400 [d] 15 (110)-w 9 
480 [d] 15 (110)-w 9 
480 [d] 60 (110)-w 8 

CdNEO 
400 [d] 15 (110)-w 15 
480 [d] 15 (110)-w 19 
480 [d] 60 (110)-w 17 

[a] Combustion temperature. [b] Heating rate. [c] The crystallite size could 
not be estimated due to the large background level exhibited that partially 
obscures the diffraction peaks. [d] The precursor was introduced into a 
preheated oven. 

Conclusions 

We have obtained 6 different air-stable metal-thiobenzoato 
compounds (M: Pd, Zn, Cd) altogether with N-heterocycles (bpy, 
phen, neo, bpe and ade) to complete the coordination sphere of the 
metal(II) ion. The presence of direct metal-sulfur bonds is a key 
factor to use these compounds as single-source precursors for the 
synthesis of nanometric chalcogenide particles. Despite 
thiocarboxylate based compounds are characterized by 
experiencing clean decompositions at relatively low 
temperatures,[24] the use of ligands containing aromatic rings make 
feasible to afford through a mild thermolysis treatment in air 
atmosphere carbon supported metal and metal sulfide 
nanocrystallites. The nature of the starting metal-thiobenzoato 
precursor seems to exert a crucial influence on the final 
blende/sphalerite or wurtzite crystalline phase of the resulting 
metal(II) sulfide nanoparticles, as neocuproine based compounds 
with π-extended systems give rise to wurtzite phase, adenine favors 
blende phase whereas less extended 1,2-di-(4-pyridil)-ethylene 
ligand provides a mixture of both polymorphic phases. The carbon 

content in each sample is also strongly influenced by the nature of 
the co-ligand. Phen, neo and ade form non-volatile byproducts 
during pyrolysis resulting in carbonaceous matrices, whereas less 
fused ligands such as bpy and bpe practically generate pure 
samples. 

Zn(II) and Cd(II) metal-organic precursors render metal(II) 
sulfides nanoparticles with a fine size distributions and mean size 
values ranging from 8 to 19 nm. On the contrary, Pd(II) complexes 
lead to metal nanoparticles with a significant polydispersion, where 
fine particles (3–20 nm) and coarser ones (< 40 nm) can be 
distinguished. Accordingly, the analysis of thermal treatment 
parameters shows that the formation of Pd nanoparticles is highly 
sensitive to exposure time, heating rates and onset temperature, in 
such a way that sintering and nuclei growth can be notably affected. 
On the other hand, size of the formed metal(II) sulfide 
nanoparticles is not notably influenced by aforementioned 
parameters, which makes them more reliable product for a 
hypothetic upscaling. Thus, the single-step method for obtaining 
nanostructures does not require expensive equipment and 
production times are brief. Furthermore, the possibility of working 
under aerobic conditions reduces costs substantially. All these 
reasons make dry thermolysis an interesting synthetic method in 
order to satisfy the industrial demand of this new class of materials. 

Experimental Section 

General information. Commercially available zinc acetate dihydrate 

(ZnOAc), cadmium acetate dihydrate (CdOAc), palladium acetate dihydrate 

(PdOAc), thiobenzoic acid (HTBn), 2,2’-bipyridine (bpy), 1,10-

phenantroline (phen), neocuproine (neo), 1,2-di-(4-pyridil)-ethylene (bpe), 

adenine (ade) and all the solvents were of analytical grade and they were 

used without further purification. The new compounds are stable in air at 

room temperature. The yields calculated are based on metal salt. 

[Pd(TBn)2(bpy)] (PdBPY): 2.5 mmol of PdOAc was dissolved in 45 mL of 

N,N’-dimethylformamide (DMF). In another beaker, 2.5 mmol of bpy and 5 

mmol of HTBn were dissolved in 5 mL DMF. The resulting solution was 

added over the solution containing the metal salt while it was subjected to 

magnetic stirring. In few seconds the dark reddish solution became opaque 
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by the appearance of a yellowish polycrystalline powder of PdBPY. One 

hour later the obtained product was filtered and then washed several times 

with methanol (MeOH) to finally be dried at room temperature for one day. 

The filtrate was left undisturbed at room temperature to obtain yellow 

single crystals of PdBPY suitable for X-ray diffraction analysis. Yield 

(based on metal salt): 0.8993 g (67%). Main IR features of compound 

PdBPY (cm–1): 3163(vw), 3104(w), 3093(vw), 3078(w), 3058(w), 

3029(vw), 2995(vw), 1671(w), 1609(vs), 1595(vs), 1573(s), 1491(w), 

1483(w), 1464(w), 1441(s), 1415(w), 1387(vw), 1318(w), 1313(w), 

1303(m), 1290(w), 1277(vw), 1263(vw), 1257(vw), 1245(w), 1201(s), 

1175(m), 1119(vw), 1104(w), 1096(vw), 1080(w), 1066(w), 1044(vw), 

1030(w), 1020(w), 1005(vw), 992(vw), 972(vw), 931(m), 907(s), 846(vw), 

800(vw), 775(m), 763(s), 725(m), 702(m), 695(s), 660(m). Anal. Found 

(%): C, 53.79; H, 3.45; N, 5.42; O, 5.91; Pd, 19.55; S, 11.88. Calc. for 

C24H18N2O2PdS2 (%): C, 53.68; H, 3.38; N, 5.22; O, 5.96; Pd, 19.82; S, 

11.94.  

[Pd(TBn)2(phen)] (PdPHEN): The synthetic procedure was similar to that 

of PdBPY, except that phen (2.5 mmol) was used instead of bpy. In this 

case ligands were added sequentially onto the solution containing the 

dissolved metal salt (first HTBn and then phen). The polycrystalline 

product of PdPHEN was washed with MeOH. The mother liquors were left 

undisturbed at room temperature to obtain yellow single crystals. Yield: 

1.1503 g (82%). Main IR features of compound PdPHEN (cm–1): 3158(vw), 

3143(vw), 3067(w), 3024(w), 2992(w), 2926(vw), 2856(vw), 1674(m), 

1608(vs), 1595(vs), 1570(vs), 1513(m), 1496(w), 1481(w), 1449(sh), 

1444(m), 1421(s), 1413(w), 1403(w), 1387(w), 1338(m), 1318(w), 1309(w), 

1290(w), 1253(vw), 1218(vw), 1193(s), 1167(s), 1143(w), 1106(m), 

1093(w), 1076(w), 1056(vw), 1036(vw), 1024(vw), 1000(vw), 987(vw), 

931(m), 908(vs), 875(w), 847(s), 813(vw), 797(vw), 776(s), 739(w), 

723(vw), 718(s), 691(s).  

Anal. Found (%): C, 55.58; H, 3.16; N, 5.04; O, 5.76; Pd, 19.09; S, 11.37. 

Calc. for C26H18N2O2PdS2 (%): C, 55.67; H, 3.23; N, 4.99; O, 5.70; Pd, 

18.97; S, 11.43.  

[Zn(TBn)2(neo)] (ZnNEO): The procedure is similar to that of compound 

PdBPY. ZnOAc (2.5 mmol) was used instead of PdOAc and bpy was 

replaced by neo (2.5 mmol). The solvent selected for the reaction was 

MeOH. In few seconds the colorless solution became opaque by the 

appearance of a whitish polycrystalline powder of ZnNEO. One hour later 

the obtained product was filtered and then washed several times with 

methanol (MeOH) to finally be dried at room temperature for one day. The 

filtrate was left undisturbed at room temperature to obtain colourless single 

crystals. Yield: 1.2052 g (88 %). Main IR features of compound ZnNEO 

(cm–1): 3065(w), 3022(w), 1619(w), 1596(vs), 1567(vs), 1500(m), 1481(w), 

1441(m), 1426(w), 1375(w), 1337(vw), 1325(vw), 1299(w), 1245(vw), 

1220(w), 1194(vs), 1164(s), 1151(sh), 1130(sh), 1098(vw), 1071(vw), 

1054(vw), 1026(w), 1001(vw), 987(vw), 970(vw), 920(vs), 853(m), 843(w), 

813(vw), 791(sh), 781(sh), 774(m), 729(w), 691(s), 683(m), 663(vw). Anal. 

Found (%): C, 61.45; H, 3.92; N, 5.08; O, 5.86; S, 11.75; Zn: 11.94. Calc. 

for C28H22N2O2S2Zn (%): C, 61.37; H, 4.05; N, 5.11; O, 5.84; S, 11.70; Zn, 

11.93. 

[Cd(TBn)2(μ-bpe)] (CdBPE): The synthetic procedure was similar to that 

of ZnNEO, except that CdOAc was used as metal source, bpe (2.5 mmol) 

was used instead of neo and HTBn was added firstly onto metal solution. 

After one hour of reaction a yellowish powder of CdBPE was recovered. 

The filtrate was left undisturbed at room temperature to obtain yellow 

single crystals. Yield: 1.1239 g (79 %). Main IR features of compound 

CdBPE (cm–1): 3068(vw), 3050(vw), 3024(vw), 1601(vs), 1555(s), 1537(s), 

1501(m), 1483(w), 1445(w), 1426(s), 1351(w), 1304(w), 1259(vw), 

1247(vw), 1204(vs), 1168(s), 1155(sh), 1115(vw), 1097(vw), 1068(m), 

1019(w), 1011(m), 1001(w), 982(m), 961(w), 938(s), 923(s), 866(w), 

845(sh), 833(s), 799(sh), 775(s), 742(vw), 721(vw), 689(vs), 675(sh), 

652(w). Anal. Found (%): C, 54.92; H, 3.57; Cd, 19.70; N, 4.87; O, 5.73; S, 

11.21. Calc. for C26H20CdN2O2S2 (%): C, 54.88; H, 3.54; Cd, 19.76; N, 

4.92; O, 5.62; S, 11.27.  

[Cd(TBn)2(neo)] (CdNEO): The synthetic procedure was similar to that of 

CdBPE, except that neo (2.5 mmol) was used instead of bpe. The 

polycrystalline product of CdNEO was washed with MeOH. The mother 

liquors were left undisturbed at room temperature to obtain pale-yellow 

single crystals. Yield: 1.3831 g (93 %). Main IR features of compound 

CdNEO (cm–1): 3053(w), 3022(w), 2999(vw), 2966(vw), 2922(vw), 

1616(w), 1590(m), 1539(s), 1502(s), 1441(m), 1410(w), 1376(w), 1364(w), 

1305(w), 1291(w), 1251(vw), 1207(vs), 1172(m), 1152(m), 1118(sh), 

1102(vw), 1075(w), 1025(w), 994(vw), 931(vs), 858(m), 844(w), 810(vw), 

793(vw), 773(m), 728(w), 691(vs), 654(w). Anal. Found (%): C, 56.50; H, 

3.62; Cd, 18.78; N, 4.80; O, 5.44; S: 10.86. Calc. for C28H22CdN2O2S2 (%): 

C, 56.52; H, 3.72; Cd, 18.89; N, 4.71; O, 5.38; S, 10.79.  

[Cd(TBn)2(ade)] (CdADE): 2.5 mmol of CdOAc was dissolved in 40 mL 

MeOH and allowed to stirrer at room temperature. In another beaker, 2.5 

mmol of ade and 5 mmol of HTBn were mixed in 8 mL of hot MeOH. 

Immediately, the mixture becomes clear and after one hour of stirring at 

room temperature the yellow solution is kept in a refrigerator at about 5 ºC. 

Several days after CdADE appeared as colourless single-crystals mixed 

with a whitish polycrystalline powder. Yield: 0.7614 g (55 %). Main IR 

features of compound CdADE (cm–1): 3240(m), 3154(m), 3053(s), 

2963(m), 2814(m), 2714(w), 2668(w), 1678(vs), 1647(w), 1599(w), 

1585(m), 1545(sh), 1524(s), 1512(s), 1445(s), 1427(m), 1414(m), 1337(m), 

1308(w), 1230(sh), 1204(vs), 1167(s), 1119(w), 1101(w), 1076(w), 

1059(sh), 1026(vw), 999(vw), 937(s), 916(s), 895(m), 843(w), 824(w), 

775(m), 716(vw), 690(s), 656(w). Anal. Found (%): C, 43.33; H, 3.49; Cd, 

20.31; N, 12.67; O, 8.58; S: 11.62. Calc. for C20H19CdN5O3S2 (%): C, 

43.36; H, 3.46; Cd, 20.29; N, 12.64; O, 8.66; S, 11.58.  

Physical measurements. Elemental analyses (C, H, N, S) were performed 

on a Euro EA Elemental Analyzer, whereas the metal content, determined 

by inductively coupled plasma (ICP-AES), was quantified using a Horiba 

Yobin Yvon Activa spectrometer Infrared spectra (ATR mode) were 

recorded at a resolution of 4 cm-1 on a FTIR 8400S Shimadzu 

spectrophotometer for a total of 40 scans in the 4000–650 cm–1 spectral 

region by using a horizontal single-reflection ATR ZnSe prism. Thermal 

analysis (TG/DTG/DTA) were carried out on a Mettler Toledo TGA/SDTA 

851e thermal analyser employing a synthetic air (79% N2, 21% O2) flux of 

150 cm3·min-1 with heating rates of 5–30 ºC·min-1 and a sample size of 

about 10–25 mg per run. Combustions of precursors were performed under 

aerobic conditions within a Carbolite 3216 tubular furnace. 

The X-ray powder diffraction patterns (XRPD) were collected on a X-Pert 

PRO PAN analytical machine employing a Cu Kα radiation source at a 

scanning rate of 0.026°·s–1. The average diameter of particles (Dv) has been 

calculated from Dv = (4/3)·Lv expression. LV = K·λ/β·cosθ, where LV is the 

volume-weighted average crystallite size measured in a direction 

perpendicular to surface of the specimen, λ is the average wavelength, in 

nanometers, of the Kα radiation of Cu (0.154252 nm), θ is the Bragg angle 

in radians, β (2θ) is the Full Width at Half Maximum (FWHM) of the 

diffraction peak in radians discounting instrumental contribution 

[FWHM(º) = 0.0755 + 4 x 10-4·2θ] and K is the shape factor constant, 

considered as 0.9. 

The morphology of carbon supported nanoparticles was examined using a 

JEOL JSM-7000F scanning electron microscope (SEM) and a Philips 

CM200 transmission electron microscope (TEM) equipped with an EDXS 

collection unit. The samples for SEM were prepared just by deposition of 

the product on a carbon tape while those for TEM were dispersed on 

ethanol solution containing 5 %wt of n-decylamine and placed on a carbon-

coated copper grid followed by drying under vacuum. 
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X-ray structure determination. Diffraction experiments were carried out 

on an Agilent Technologies SuperNova diffractometers (λCu−Kα = 1.54184 Å 

for PdBPY, PdPHEN and CdNEO; λMο−Kα = 0.71073 Å for ZnNEO, CdBPE 

and CdADE). Data were processed and corrected for Lorentz and 

polarization effects with the CrysAlisPro program.[25] The structures of all 

compounds were solved by direct methods using the SIR92 program (Table 

4 and 5).[26] Full matrix least-squares refinements were performed on F2 

using SHELXL97.[27] All non-hydrogen atoms were refined anisotropically. 

All calculations for these structures were performed using the WINGX 

crystallographic software package.[28]  During the data reduction process of 

PdPHEN, CdNEO and CdADE, it became clear that the crystal specimens 

were twinned with twin laws: (-0.9999 0.0002 -0.0000 / -0.0002 -1.0002 -

0.0002 / 0.3008 -0.0007 0.9996) for PdPHEN; (-1.0000 -0.0005 0.0001 / 

0.0159 0.0828 -0.9106 / -0.0160 -1.0899 -0.0850) for CdNEO; (-0.4089 

0.0003 -0.5927 / -0.0003 -1.0000 -0.0001 / -1.4040 0.0010 0.4094) for 

CdADE. The final result showed a percentage for minor component of 

45.9% (PdPHEN), 36.7% (CdNEO), 41.6% (CdADE). In compound 

CdBPE, one of the crystallographically independent thiobenzoate ligands is 

disordered over two almost coplanar arrangements with 50% occupation 

factors. The internal carboxylate bond distances in the disordered 

thiocarboxylate were imposed to be nearly equal using SADI command. 

 

Table 4. Crystal data and structure refinement of the compounds PdBPY, PdPHEN and ZnNEO. 

Compound PdBPY PdPHEN ZnNEO 
Empirical formula C24H18N2O2PdS2 C26H18N2O2PdS2 C28H22N2O2S2Zn 
Mr [g mol-1] 536.92 560.94 547.96 
T [K] 100(2) 100(2) 293(2) 
Crystal system monoclinic monoclinic Orthorhombic 
Space group C2/c (No.15) I2/a (No.15) Pbcn (No.60) 
a [Å] 23.9837(14) 10.1891(3) 20.8924(6) 
b [Å] 9.4545(3) 10.4666(3) 13.3194(6) 
c [Å] 9.8614(6) 20.3093(6) 9.1806(3) 
α [°] 90 90 90 
β [°] 112.358(7) 94.328(3) 90 
γ [°] 90 90 90 
V [Å3] 2068.0(2) 2159.71(11) 2554.72(16) 
Z 4 4 4 
ρcalcd [g cm-3] 1.725 1.725 1.425 
μ [mm-1] 9.335 8.972 1.153 
F(000) 1080 1128 1128 
θ range [°] 3.99–73.98 4.37–73.97 2.87–26.00 
Reflections collected 2074 5464 2508 
Independent reflections 2021 5159 1550 
Parameters/restraints 141/0 151/0 160/0 
R[I > 2σ(I)][a] R1 = 0.0363 

wR2 = 0.1015 
R1 = 0.0428 
wR2 = 0.1190 

R1 = 0.0478 
wR2 = 0.1164 

R (all data) R1 = 0.0370 
wR2 = 0.1019 

R1 = 0.0443 
wR2 = 0.1200 

R1 = 0.0802 
wR2 = 0.1317 

GOF on F2 (S)[b] 1.178 1.024 0.905 
Weighting scheme[c] SHELX SHELX SHELX 
[a] R1 = Σ(|F0| – |Fc|)/Σ|F0|; wR2 = {Σ[w(F0

2 – Fc
2)2]/Σ[w|F0|

2]}1/2. [b] S = [Σw(|F0| – |Fc|)
2/(Nobs – Nparam)]1/2. [c] Scheme = I/[σ2(F0

2) + (aP)2 + bP] where P = 
(F0

2 + 2Fc
2)/3; compound (a,b): PdBPY (0.0426, 16.6867), PdPHEN (0.1028, 0), and ZnNEO (0.0543, 0). 

Table 5. Crystal data and structure refinement of the compounds CdBPE, CdNEO and CdADE. 

Compound CdBPE CdNEO CdADE 
Empirical formula C26H20CdN2O2S2 C28H22CdN2O2S2 C20H19CdN5O3S2 
Mr [g mol-1] 568.96 594.99 553.92 
T [K] 100(2) 100(2) 100(2) 
Crystal system monoclinic triclinic monoclinic 
Space group C2/c (No.15) P-1 (No.2) P21/n (No.14) 
a [Å] 25.0653(5) 9.0970(7) 11.2499(5) 
b [Å] 12.3273(2) 11.1808(10) 10.7383(5) 
c [Å] 16.1337(3) 12.4222(9) 18.2771(7) 
α [°] 90 81.599(7) 90 
β [°] 105.714(2) 83.998(6) 96.992(4) 
γ [°] 90 85.110(7) 90 
V [Å3] 4798.79(16) 1239.93(17) 2191.54(17) 
Z 8 2 4 
ρcalcd [g cm-3] 1.575 1.594 1.679 
μ [mm-1] 1.110 8.859 1.219 
F(000) 2288 600 1112 
θ range [°] 1.69–28.30 3.61–74.00 2.02–28.35 
Reflections collected 5488 8573 8763 
Independent reflections 4917 6970 7085 
Parameters/restraints 289/5 317/0 286/0 
R[I > 2σ(I)][a] R1 = 0.0425 

wR2 = 0.1000  
R1 = 0.0476 
wR2 = 0.1181  

R1 = 0.0285 
wR2 = 0.0718 

R (all data) R1 = 0.0482 
wR2 = 0.1044 

R1 = 0.0578 
wR2 = 0.1214 

R1 = 0.0359 
wR2 = 0.0733 

GOF on F2 (S)[b] 1.039 0.959 0.975 
Weighting scheme[c] SHELX SHELX SHELX 
[a] R1 = Σ(|F0| – |Fc|)/Σ|F0|; wR2 = {Σ[w(F0

2 – Fc
2)2]/Σ[w|F0|

2]}1/2. [b] S = [Σw(|F0| – |Fc|)
2/(Nobs – Nparam)]1/2. [c] Scheme = I/[σ2(F0

2) + (aP)2 + bP] where P 
= (F0

2 + 2Fc
2)/3; compound (a,b): CdBPE (0.0390, 33.3626 ), CdNEO (0.0819, 0) and CdADE (0.0472, 0). 
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Supporting Information (see footnote on the first page of this article): 

Thermoanalytic data, PXRD patterns, FTIR spectra, SEM/TEM images, 

bond distances and angles, figures of crystal packings and thermolysis 

optimization experiments. 
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S1: X‐RAY DIFFRACTION MEASUREMENTS 
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Figure S1.1 Crystallographic views of compound PdBPY along (a) a axis, (b) b axis and (c) c 
axis. 
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Figure S1.2 Crystallographic views of compound PdPHEN along (a) a axis, (b) b axis and (c) 
c axis. 
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Figure S1.3 Crystallographic views of compound ZnNEO along (a) a axis, (b) b axis and (c) c 
axis. 
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Figure S1.4 Crystallographic views of compound CdBPE along (a) a axis, (b) b axis and (c) c 
axis. 
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Figure S1.5 Crystallographic views of compound CdNEO along (a) a axis, (b) b axis and (c) c 
axis. 
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Figure S1.6 Crystallographic views of compound CdADE along (a) a axis, (b) b axis and (c) c 
axis. 
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Figure S1.7 (a) Simulated and (b) experimental powder diffraction patterns of compound 
PdBPY. 
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Figure S1.8 (a) Simulated and (b) experimental powder diffraction patterns of compound 
PdPHEN. 
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Figure S1.9 (a) Simulated and (b) experimental powder diffraction patterns of compound 
ZnNEO. 
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Figure S1.10 (a) Simulated and (b) experimental powder diffraction patterns of compound 
CdBPE. 
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Figure S1.11 (a) Simulated and (b) experimental powder diffraction patterns of compound 
CdNEO. 
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Figure S1.12 (a) Simulated and (b) experimental powder diffraction patterns of compound 
CdADE. 
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Table S1.1 Bond distances and angles of precursors. 

PdBPY 
Distances  Angles 

Pd(1)–N(21) 2.082(3)[a] N(21)–Pd(1)–N(21)i 79.79(19)[a] 
Pd(1)–S(10) 2.2797(10)[a] N(21)i–Pd(1)–S(10) 96.51(10)[a] 
S(10)–C(10) 1.751(4) N(21)i–Pd(1)–S(10)i 174.86(9)[a] 
O(10)–C(10) 1.223(5) S(10)–Pd(1)–S(10)i 87.40(5)[a] 

PdPHEN 
Distances  Angles 

Pd(1)–N(21) 2.085(3)[b] N(21)–Pd(1)–N(21)i 80.49(17)[b] 
Pd(1)–S(10) 2.2773(10)[b] N(21)i–Pd(1)–S(10) 94.88(9)[b] 
S(10)–C(10) 1.748(4) N(21)i–Pd(1)–S(10)i 172.13(9)[b] 
O(10)–C(10) 1.214(5) S(10)–Pd(1)–S(10)i 90.41(6)[b] 

ZnNEO 
Distances  Angles 

Zn(1)–N(21) 2.069(3)[c] N(21)–Zn(1)–N(21)i 81.32(15)[c] 
Zn(1)–S(10) 2.2951(11)[c] N(21)i–Zn(1)–S(10) 115.54(8)[c] 
S(10)–C(10) 1.743(4) N(21)i–Zn(1)–S(10)i 115.36(8)[c] 
O(10)–C(10) 1.212(4) S(10)–Zn(1)–S(10)i 111.00(6)[c] 

CdBPE 
Distances  Angles 

Cd(1)–N(41) 2.346(3) 
N(52)–Cd(1)–N(41) 
N(52)–Cd(1)–S(20) 
N(41)–Cd(1)–S(20) 
N(52)–Cd(1)–S(10) 
N(41)–Cd(1)–S(10) 
S(20)–Cd(1)–S(10) 

96.01(10) 
138.56(9) 
102.99(9) 
95.11(8) 
101.16(8) 
116.34(6) 

Cd(1)–N(52) 2.271(3) 
Cd(1)–S(10) 2.5302(11) 
Cd(1)–S(20) 2.473(2) 
S(10)–C(10) 1.740(4) 
O(10)–C(10) 1.215(4) 
S(20)–C(20) 1.689(6) 
O(20)–C(20) 1.297(6) 

CdNEO 
Distances  Angles 

Cd(1)–N(31) 2.307(4) 
N(31)–Cd(1)–N(43) 
N(31)–Cd(1)–S(20) 
N(43)–Cd(1)–S(20) 
N(31)–Cd(1)–S(10) 
N(43)–Cd(1)–S(10) 
S(20)–Cd(1)–S(10) 

72.72(15) 
136.18(11) 
109.67(11) 
107.00(11) 
93.82(11) 
116.25(5) 

Cd(1)–N(43) 2.350(4) 
Cd(1)–S(10) 2.5638(13) 
Cd(1)–S(20) 2.4711(13) 
S(10)–C(10) 1.736(5) 
O(10)–C(10) 1.236(7) 
S(20)–C(20) 1.723(6) 
O(20)–C(20) 1.237(7) 

CdADE 
Distances  Angles 

Cd(1)–N(37) 2.276(2) 
N(37)–Cd(1)–O(1) 
N(37)–Cd(1)–S(20) 
O(1)–Cd(1)–S(20) 
N(37)–Cd(1)–S(10) 
O(1)–Cd(1)–S(10) 
S(20)–Cd(1)–S(10) 

89.27(7) 
110.92(5) 
112.49(5) 
117.70(6) 
98.98(5) 
121.51(2) 

Cd(1)–O(1) 2.3568(19) 
Cd(1)–S(10) 2.5252(7) 
Cd(1)–S(20) 2.5001(7) 
S(10)–C(10) 1.743(3) 
O(10)–C(10) 1.234(3) 
S(20)–C(20) 1.740(3) 
O(20)–C(20) 1.234(3) 
[a] –x+1, y, ‐z+1/2. [b] –x+3/2, y, ‐z+1. [c]‐x+1, y, ‐z+3/2.
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Figure S1.13 PXRD patterns of thermogravimetric residues in synthetic air atmosphere at 
700ºC with a heating rate of 5 ºC·min-1.
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Figure S1.14 PXRD patterns of decomposition products of compound PdBPY at 345°C, with a 
heating rate of 5 ºC·min-1and varying the time of the isothermal step.
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Figure S1.15 PXRD patterns of decomposition products of compound PdBPY at different 
combustion temperatures and a heating rate of 5 ºC·min-1.
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Figure S1.16 PXRD patterns of decomposition products of compound PdBPY at different 
heating rates (5 minutes at 345ºC). 
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Figure S1.17 PXRD patterns of dry thermolysis products of compound CdNEO at different 
combustion conditions. 
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Figure S1.18 PXRD patterns of dry thermolysis products of compound ZnNEO at different 
combustion conditions. 
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S2: VIBRATIONAL SPECTROSCOPY 
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Figure S2.1 FTIR spectra of MTBnL precursors.
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Figure S2.2 FTIR spectra of thermolysis products.
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S3: THERMAL ANALYSIS 



25 
 

Table S3.1 Thermoanalytic data for precursors in synthetic air. 

 

Compound Stages Tpeak (ΔH)[a] Δm[b] Σ Δm[c] Product [d] 

PdBPY 
I) RT–280 °C 

II) 280–351 °C 
III) 351–700 °C 

I) 251(+) 
II) 324(–), 339(–) 

I) 59.0 
II) 20.1 
III) -2.3 

II) 59.0 
III) 79.1 
IV) 76.8  

PdSO4 + C (3.3 %wt) 
Pd + C (1.1 %wt) 

Pd + PdO  

PdPHEN 
I) RT–379 °C 

II) 379–506 °C 
III) 506–700 °C 

I) 241(+), 255(+) 
II) 439(–), 458 (–), 461(–) 

I) 48.7 
II) 30.2 
III) -0.8 

I) 48.7 
II) 78.9 
III) 78.1 

PdSO4 + C (32.3 %wt) 
Pd + C (2.1 % wt) 

Pd + PdO  

ZnNEO 
I) RT–70 °C 

II) 70–411 °C 
III) 411–700 °C 

I) 53 (+) 
II) 128 (+), 187 (+), 211 (+), 261 
(+), 289 (+), 303 (+), 310 (+), 332 

(+) 
III) 535(–) 

I) 10.7 
II) 33.5 
III) 41.7 

I) 10.7 
II) 44.2 
III) 85.9 

-2 CH3OH 
ZnS + C (38 %wt) 

ZnO 

CdBPE 

I) RT–137 °C 
II) 137–403 °C 
III) 403–452 °C 
IV) 452–700 °C 

I) 50 (+) 
II) 210(+), 220(+), 254(–) 

III) 408(–), 448(–) 

I) 2.6 
II) 65.7 
III) 2.8 
IV) -0.4 

I) 2.6 
II) 68.3 
III) 71.1 
IV) 70.7 

- 0.5 CH3OH 
CdS + C (6.3 %wt) 

CdO + CdSO4·2CdO 
CdO + CdSO4·2CdO  

CdNEO 

I) RT–208 °C 
II) 208–483 °C 
III) 483–607 °C 
IV) 607–700 °C 

I) 206 (+) 
II) 246 (+) 
III) 539 (+) 

I) 0.5 
II) 33.7 
III) 38.5 
IV) -0.9 

I) 0.5 
II) 34.2 
III) 72.7 
IV) 71.8 

Phase transformation 
CdS + C (41.5 %wt) 
CdO + CdSO4·2CdO 
CdO + CdSO4·2CdO 

CdADE 
I) RT–413 °C 

II) 413–615 °C 
III) 615–700 °C 

I) 106 (+), 154 (+) 
II) 465 (–), 524 (–), 555 (–) 

I) 56.4 
II) 18.3 
III) -0.6 

I) 56.4 
II) 74.7 
III) 74.1 

CdS + C (17.5 %wt) 
CdO + CdSO4·2CdO 
CdO + CdSO4·2CdO 

[a] Tpeak (ΔH) = DTA peak temperature (energy process type in the basis of DTA: + or endothermic and – or exothermic); [b] mass loss percentage for each 
stage; [c] total mass loss percentage; [d] crystalline phases detected by PXRD. 
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S4: MICROSTRUCTURAL ANALYSIS 
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Figure S4.1 SEM images of powder precursors: (a) PdBPY, (b) PdPHEN, (c) CdBPE, (d) 
CdNEO, (e) CdADE, and (f) ZnNEO. 
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Figure S4.2 SEM images of PdBPY: (a) 10 kX, and (b) 100 kX. 
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Figure S4.3 SEM images of PdPHEN: (a) 10 kX, and (b) 100 kX. 
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Figure S4.4 SEM images of ZnNEO: (a) 10 kX, and (b) 100 kX. 
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Figure S4.5 SEM images of CdBPE: (a) 10 kX, and (b) 100 kX. 
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Figure S4.6 SEM images of CdNEO: (a) 25 kX, and (b) 100 kX. 
 

   



33 
 

 

Figure S4.7 SEM images of CdADE: (a) 10 kX, and (b) 100 kX. 
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Figure S4.8 TEM images of some particles obtained from the decomposition of PdBPY at 
345°C for 15 min. It is noticed that some nuclei have grown much more than the rest. 

Figure S4.9 Determination of the interplanar distance and crystallographic direction of the 
decomposition products: (a) ZnNEO, (b) CdNEO, (c) CdBPE, and (d) CdADE. 
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Figure S4.10 TEM images of some partially combusted fragments of CdADE precursor (15 min at 400°C). It can be seen that in the internal part of the 
microparticles there are dark and diffused areas corresponding to nanoscale nuclei (< 2 nm) of CdS that have begun to form. The thermal effect causes the 
nuclei to migrate towards the boundary of the microparticle where they agglomerate giving rise to nanoparticles of larger size (10–30 nm).  
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Figure S4.11 TEM images of dry thermolysis products and their respective EDX spectra in two distinct areas of the sample: (a) PdBPY, (b) PdPHEN, (c) 
ZnNEO, (d) CdBPE, (e) CdNEO, and (f) CdADE.
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Figure S4.12 TEM images of PdBPY thermolysis products obtained by varying the heating 
rate: (a) 5 ºC·min-1, (b) 15 ºC·min-1, and (c) 30 ºC·min-1. 
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4.1. SUMMARY 

Chapters 2 and 3 conclude the first part of the PhD thesis that was focused 

on the synthesis of pure or carbon supported nanoparticles through the thermal 

decomposition of coordination complexes under air atmosphere. The next two 

chapters address another very different class of nanomaterials: metal-organic gels 

and aerogels (MOGs and MOAs, respectively).  

Metal-organic gels (MOGs) appear as a blooming alternative to well-known 

metal-organic frameworks (MOFs). MOFs are 3D periodic porous structures based 

on the assembly of metal centers or clusters through multidentate ligands, with 

cavities generally located in the microporous regime (< 2 nm). Their hybrid nature 

allows combining porous characteristics with prominent physicochemical properties 

(magnetism, luminescence, conductivity, catalysis, etc.). However, the industrial 

presence of MOFs currently remains scarce due largely to problems associated with 

low chemical stability and poor shaping and processability. Coordination bond 

strength of a common organic linker containing carboxylate and/or σ-donor nitrogen 

groups is not sufficient in most cases to withstand the exposure to acid pHs or 

coordinating solvents, and even some of them are moisture sensitive. Moreover, 

MOFs are generally obtained as powder but applications such as catalysis, 

separation, or adsorption often require molding into monoliths or pellets which 

involve the addition of binders that reduce the surface area of the material. 

In the last few years, metal-organic gels (MOGs), also called metallogels, 

have emerged as an alternative material to MOFs. Ideally, during the gel formation, 

the coordination polymer grows as nanoscopic primary particles that crosslink 

stochastically into the reaction media, creating a 3D solid network that entraps all 

synthesis solvent within. Gel drying by evaporation of the solvent induces a severe 

shrinkage of the microstructure and leads to a material called xerogel (MOX, metal-
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organic xerogel) with reduced porosity. Contrarily, supercritical drying of MOGs 

removes the solvent without collapsing their microstructure, and it leads to metal-

organic aerogels (MOAs) that are hundreds of times lighter than MOFs. Therefore, 

porosity in MOGs and MOAs has a microstructural origin and not a strictly 

crystallographic one like in MOFs. Thus, the gelation approach enables the 

preparation of porous materials from metal-organic systems that do not necessarily 

render an open framework. Keeping in mind that the examples of MOGs and MOAs 

are still relatively rare, there is an exciting chance to prepare metal-organic porous 

materials from coordination polymers that lack crystalline origin porosity but gather 

striking electrical, magnetic, and optical properties.  

The stochastic nature of the gelling process generates open voids of 

random shape and size with distribution modes usually located in the mesopore 

range (2–50 nm). Larger pores facilitate migration and diffusion of chemical species 

and allow even the passage of macromolecules. The augmentation of MOF channel 

sizes to the mesoporous range still poses a great challenge. Ligand extension is an 

apparent option, but MOFs built from large ligands tend to collapse upon guest 

removal and often are accompanied by framework interpenetration. Last but not 

least, MOGs solve the aforementioned shaping drawbacks of MOFs because they 

are viscoelastic fluids that adopt the geometry of mold without requiring a post-

synthetic processing and/or the use of any binder or additive. 

However, MOGs described to date are based on easily reversible metal-

ligand bonds which make them unsuitable to be used in extreme environments. 

Moreover, none of the reported MOGs encompass notable electrical conductivity; a 

property that combined with porosity provides the opportunity to build chemical 

sensors. In this chapter, a series of MOGs based on the assembly of 1D-

coordination polymer nanofibers of formula [M(DTA)]n (MII: Ni, Cu, Pd; DTA: 
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dithiooxamidato) are  reported, in which properties such as porosity, chemical 

inertness, mechanical robustness, and stimuli-responsive electrical conductivity are 

brought together into an unprecedented material.  

The selection of DTA ligand and cited metal(II) centers is due to three main 

reasons: (1) the affinity of N,S-moiety toward medium/soft metal ions render strong 

covalent bonds; (2) the trend of the selected M(II) centers to adopt a square-planar 

geometry, in combination with a bis-chelating coordination mode of the ligand, can 

promote an anisotropic growth of the colloidal particles favoring their entangling and 

gelation; and (3) the presence of S-donor atoms with diffuse orbitals can promote 

electron delocalization and electrical conductivity through the polymeric chain. 

The 1D nature of the [M(DTA)]n coordination system is the key to promote 

the fibrillar growth of the particles, but only under well-selected synthesis conditions 

the gelation succeeded, being remarkable the role that the metal salt and solvent 

play. Supercritical drying of the gels renders ultralight MOAs (ρ: 0.03–0.06 g·cm−3; 

porosity: 98–99% for NiDTA and CuDTA) that preserve the intertwined nanofibrillar 

structure (diameter: 8–20 nm). Microstructural parameters, such as the aspect ratio 

of the nanofibers and their spatial concentration, govern the surface area, pore 

diameter, and mechanical properties. Accordingly, the highest surface area and pore 

diameter values correspond to MOAs presenting highest aspect ratios (NiDTA, 

NiCuDTA). Despite the surface area of MDTA, MOAs is far away from most 

outstanding MOFs; it is comparable to many MOFs and zeolites with moderate 

surface area values and to organic and inorganic aerogels. On the contrary, pore 

size can be considered as relatively high (7−23 nm). In fact, almost all mean, 

median, and mode pore diameters far exceed the maximum value reported for MOFs 

up to date (< 10 nm). Moreover, it should be stressed that the maximum pore volume 

values obtained for MDTA MOAs (4.25 cm3·g−1) are comparable to the record values 
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reported for MOFs (up to 4.40 cm3·g−1). Regarding the mechanical properties, Pd(II) 

MOAs, with the lowest aspect ratio fibers, exhibit a brittle behavior, and Ni(II) MOAs, 

containing highest aspect ratio fibers, behave as a plastic material. Such plastic 

behavior has not been previously reported for a material based on a coordination 

polymer and it allows processing them as films by simply applying pressure. Room-

temperature conductivity measurements yielded values ranging from 10−7 to 10−12 S 

cm−1 that, combined with its fibrillar porous network, results in a stimuli-response 

material that shows reversible conductivity increase (up to 10−5 S cm−1) when 

subjected to acetic acid vapors. Considering all the above, to the best of our 

knowledge the reported material implies an unprecedented case within the area of 

coordination polymers (including MOFs), since it successfully brings together 

porosity with outstanding chemical inertness, mechanical robustness, and stimuli-

responsive electrical conductivity. 

The results have been published in Advanced Functional Materials journal 

(year 2017, vol. 27, pp. 1605448). It has been also selected to illustrate the back 

cover of the corresponding issue. A copy of the corresponding article and its 

supporting material are gathered below. 
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than other porous materials such as 
zeolites,[4] covalent-organic frameworks 
(COFs),[5,6] or activated carbons.[7] MOFs 
are 3D periodic porous structures based 
on the assembly of metal centers or clus-
ters through multidentate ligands, with 
cavities generally located in the micropo-
rous regime (<2 nm). Their hybrid nature 
allows combining porous characteristics  
with prominent physicochemical properties 
(magnetism, luminescence, conductivity, 
catalysis, etc.).[8–13] However, the indus-
trial presence of MOFs currently remains 
scarce due largely to problems associ-
ated with low chemical stability and poor 
shaping and processability.[14–16] Coordina-
tion bond strength of a common organic 
linker containing carboxylate and/or  
σ-donor nitrogen groups is not sufficient 
in most cases to withstand the exposure 
to acid pHs or coordinating solvents, and 
even some of them are moisture sensitive. 
Moreover, MOFs are generally obtained as 
powder but applications such as catalysis, 

separation, or adsorption often require molding into monoliths 
or pellets which involve the addition of binders that reduce the 
surface area of the material.[17,18]

In the last few years, metal-organic gels (MOGs),[19,20] also 
called metallogels, have emerged as an alternative material 
to MOFs. Ideally, during the gel formation, the coordination 
polymer grows as nanoscopic primary particles that crosslink 
stochastically into the reaction media, creating a 3D solid net-
work that entraps all synthesis solvent within. Gel drying by 
evaporation of the solvent induces a severe shrinkage of the 
microstructure and leads to a material called xerogel (MOX, 
metal-organic xerogel) with reduced porosity. Contrarily, super-
critical drying of MOGs removes the solvent without collapsing 
their microstructure, and it leads to metal-organic aerogels 
(MOAs)[21,22] that are hundred of times lighter than MOFs. 
Therefore, porosity in MOGs and MOAs has a microstructural 
origin and not a strictly crystallographic one like in MOFs. 
Thus, the gelation approach enables the preparation of porous 
materials from metal-organic systems that do not necessarily 
render an open framework. Keeping in mind that the exam-
ples of MOGs and MOAs are still relatively rare, there is an 
exciting chance to prepare metal-organic porous materials from 
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1. Introduction

In the field of porous materials science, metal-organic frame-
works (MOFs)[1–3] are recognized to exhibit elevated specific sur-
face areas (up to 7000 m2 g−1) and a higher chemical versatility 
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coordination polymers that lack crystalline origin porosity but 
gather striking electrical, magnetic, and optical properties.[23–25]

The stochastic nature of the gelling process generates open 
voids of random shape and size with distribution modes usu-
ally located in the mesopore range (2–50 nm). Larger pores 
facilitate migration and diffusion of chemical species and allow 
even the passage of macromolecules.[26–28] The augmentation of 
MOF channel sizes to the mesoporous range still poses a great 
challenge. Ligand extension is an apparent option, but MOFs 
built from large ligands tend to collapse upon guest removal 
and often are accompanied by framework interpenetration.[29] 
Last but not least, MOGs solve the aforementioned shaping 
drawbacks of MOFs because they are viscoelastic fluids that 
adopt the geometry of mold without requiring a postsynthetic 
processing and/or the use of any binder or additive.

However, MOGs described to date are based on easily revers-
ible metalligand bonds which make them unsuitable to be 
used in extreme environments.[30,31] Moreover, none of the 
reported MOGs encompass notable electrical conductivity,  
a property that combined with porosity provides the opportunity 
to build chemical sensors. In this paper, a series of MOGs based 
on the assembly of 1D-coordination polymer nanofibers of for-
mula [M(DTA)]n (MII: Ni, Cu, Pd; DTA: dithiooxamidato) are 
reported, in which properties such as porosity, chemical inert-
ness, mechanical robustness, and stimuli-responsive electrical 
conductivity are brought together into an unprecedented mate-
rial. The selection of DTA ligand and cited metal(II) centers is 
due to three main reasons: (1) the affinity of N,S-moiety toward 
medium/soft metal ions render strong covalent bonds; (2) the 
trend of the selected M(II) centers to adopt a square-planar 
geometry, in combination with a bis-chelating coordination 
mode of the ligand, can promote an anisotropic growth of the 
colloidal particles favoring their entangling and gelation; and 
(3) the presence of S-donor atoms with diffuse orbitals can pro-
mote electron delocalization and electrical conductivity through 
the polymeric chain.[32,33]

2. Results and Discussion

2.1. Gelation Studies

Conditions required for gel formation demand a fine control of 
the kinetics of the process to scrutinize several physicochemical 
factors: solvent, basifying agent, metal salt type, reagent ratio, 
addition order, concentration, and temperature. A detailed 
description of the screening is gathered in the Supporting 
Information (Table S1.1 and Figures S1.1 and S1.2, Supporting 
Information), while optimum conditions are defined in the 
Experimental Section. The most relevant parameters to gel the 
system were solvent and metal salt type, despite other factors’ 
influence in the final stiffness of the gel. Among all the tested 
solvents, only those with greater coordinative capacity and 
sterically hindered were able to promote the gelation, specifi-
cally N,N-dimethylformamide (DMF), N,N-dimethylacetamide 
(DMA), DMSO (dimethylsulfoxide), and DEA (N,N-diethylacet-
amide). Regarding the explored metal salts (bromides, hydrox-
ides, nitrates, perchlorates, etc.) only acetates promote the 
gelation. The gelation process seems to involve an initial stage 

in which a sudden and massive nucleation event occurs in the 
entire reaction volume which depletes at the same time the 
concentration of dissociated M(II) ions. However, the relatively 
low dissociation value of the acetate salt provides a reservoir of 
additional M(II) ions that are slowly released. It allows nuclei 
growth to create a branching in such a way that a semicoherent 
3D solid lattice is formed. As a result, the entrapped solvent 
represents about 88%–99% of the total mass. Regarding gel 
shaping, it must be noted that monoliths of different volumes 
and shapes are easily achievable (Figure 1).

Moreover, supercritical drying shrinks gel volume around 
50%–82%, being more pronounced in compounds based on 
Pd(II), but retaining their shape. Ambient pressure gel drying 
produced MOXs with greater shrinkages (95%–98%) and defor-
mation (Figure 1b).

Adv. Funct. Mater. 2017, 27, 1605448
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Figure 1.  Cylinders made of NiDTA in different solid states: a) gel, 
b) xerogel, and c) aerogel. d) The system allows creating complex geom-
etries by molding.
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2.2. Structural and Microstructural Characterization

The oxalato ligand and its derivatives (oxamidato, dithiooxalato, 
and dithiooxamidato) are expected to sequentially bridge transi-
tion metal ions in a bis-bidentate coordination mode, and as a 
result, to yield 1D-coordination polymers when combined with 
metal centers with square-planar coordination geometry.[34] The 
synthesis of the dithiooxamidato polymeric species provides 
scarcely crystalline products[35] that preclude the elucidation of 
their structure based on X-ray diffraction data. However, their 
powder X-ray diffraction (PXRD) patterns exhibit two weak and 
broad signals sited at 2θ values of 15.5°–16.1° and 25.1°–27.2° 
(see Figure S2.5 in the Supporting Information). The former 
corresponds to d-spacings of 5.5–5.7 Å, which fit fairly well 
the MM distances found in the Cambridge Structural Data-
base for bis-bidentate dithiooxamidato discrete complexes 
(5.7–5.9 Å).[36] Additionally, Fourier transform infrared (FTIR) 
and Raman spectroscopy studies support a structure con-
sisting of a 1D polymeric chain (Scheme 1) in which the metal 
centers are sequentially bridged by dithiooxamidato ligands in a 
μ2-κ2N,S:κ2N′,S′ coordination mode (see Section S.2 of the Sup-
porting Information).

Transmission electron microscopy (TEM) analysis of MOGs 
shows extended fibrillar networks of intertwined strands with 
mean diameters in the range of 8–20 nm that give rise to 
cobweb-like structures (Figure 2). These results agree quite well 
with the fiber-height values measured by atomic force micros-
copy (see Figure S3.7 in the Supporting Information).

Scanning electron microscopy (SEM) images of MOAs 
(Figure 3) show fibers with similar average diameters (3–8 nm) 
that differ widely in length (30–800 nm). SEM observations over 
xerogels indicate that fibers collapse, creating surfaces lacking 
porosity (Figures S3.4–3.6). Returning to aerogel samples, it is 
possible to make a classification based on textural similarities 
(Figures S3.8–3.16): PdDTA and NiPdDTA possess the lowest 
aspect ratios, PdCuDTA and CuDTA exhibit intermediate 
values, while NiCuDTA and NiDTA hold the highest ratios.

Thus, in comparison to Pd(II), the presence of Cu(II) or 
Ni(II) in the compound seems to encourage the growth of the 
chain. The differences in mean fiber size can be explained on 
the basis of the interaction that the solvent establishes with the 
polymeric chains and how this interaction governs kinetics of 

lateral and longitudinal growth. (1) Coordination of the solvent 
to the end of the chain influences the 1D growth rate in such 
a way that the length of the fibers is inversely proportional to 
the coordination strength of the amidic solvent (Pd > Cu ≈ Ni). 
(2) Side interactions of the chain with the solvent (coordination 
to the apical positions of the M(II) and noncovalent interac-
tions) determine the chain packing: the weaker the interaction 
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Scheme 1.  Scheme of the polymerization process and a fragment of the 
MDTA polymer chain.

Figure 2.  TEM images of a) NiDTA, b) NiPdDTA, and c) PdDTA MOGs 
dispersed in ethanol in the presence of n-decylamine.
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with the solvent the thicker the fiber. Although the strength of 
the noncovalent contacts is difficult to guess, it can be stated 
that the apical coordinative interaction of the solvent is disfa-
vored for Pd(II) due to its marked trend to adopt square-planar 
geometry, which is in good agreement with the smaller aspect 
ratio values found for Pd-containing compounds. On the other 
hand, Ni(II) and Cu(II) are likely to display higher coordination 
numbers, but the Jahn–Teller effect of Cu(II) imposes longer 
distances through the apical position (semicoordination) and 
weakens the interactions with the solvent, which would favor 
the thickening of the chains resulting in a slightly smaller 
aspect ratio for Cu(II)- than for Ni(II)-based materials. In any 
case, considering all the above stated, the nature of the sol-
vent is crucial to prompt the fibrillary growth and the gelation 
(see Section S.1 of the Supporting Information); only coordi-
nating solvents such as DMF or DMSO with hydrogen bonding 
acceptor capability worked.

SEM images were also used to estimate the density of the 
fibrillar network (Table S3.1, Supporting Information). The 
number of fibers per unit area of MOAs oscillates between 100 
and 800 fibers µm−2 except for PdDTA, which shows a surface 
density higher than 1400 fibers µm−2. It is deserving of note 
that aspect ratio as well as fibrillar density play a key role in the 
below-described porosity and mechanical behavior.

2.3. Density and Porosity in MOAs

Apparent density of aerogels (Table 1) ranged between 0.03 
and 0.11 g cm−3, except for the PdDTA sample whose higher 
density value (0.49 g cm−3) is in concordance with the textural 
observations (Figure 3f; Figure S3.12, Supporting Informa-
tion). Density of lighter monoliths obtained for NiDTA system 
(see Video S.1 in the Supporting Information) is comparable 

to many metal-free aerogels[37–39] and slightly lower than typ-
ical organic polymeric foams.[40–42] The final density of NiDTA 
aerogels seems to be quite insensitive to the initial reagent 
concentration, at least at high values (50 × 10−3–100 × 10−3 m), 
providing densities around 0.05–0.06 g cm−3. Framework den-
sities estimated by helium pycnometric measurements ranged 
around 2.4–3.0 g cm−3. Curiously, Pd(II)-constituted MOAs pre-
sent the lowest framework density value, probably due to differ-
ences in the molecular packing. The degree of porosity exceeds 
95% in all MOAs except for PdDTA, which shows a more 
moderate value of 79%.

The porosity of the aerogels was further analyzed by adsorp-
tion isotherms of N2 measured at 77 K (Figures S4.1–4.4, Sup-
porting Information). Subtracted porosity data is gathered in 
Table 2. Specific surface areas obtained by fitting the adsorption 

Adv. Funct. Mater. 2017, 27, 1605448

www.afm-journal.de www.advancedsciencenews.com

Figure 3.  SEM images of MDTA MOAs with a magnification of 100 kX: a) NiDTA, b) PdDTA, c) CuDTA, d) NiPdDTA, e) NiCuDTA, and f) PdCuDTA.

Table 1.  Density and porosity values of MOAs.

Samplea) ρA
b)  

[g cm−3]
ρF

c)  
[g cm−3]

Pd)  
[%]

NiDTA-25 0.03(1) 2.99(31) 99.0

NiDTA-50 0.06(1) – 98.0

NiDTA-75 0.06(1) – 98.0

NiDTA-100 0.05(1) – 98.3

PdDTA 0.49(8) 2.42(10) 79.7

CuDTA 0.05(2) 3.02(30) 98.3

NiPdDTA 0.08(1) 2.57(9) 96.9

NiCuDTA 0.04(2) 2.38(7) 97.9

PdCuDTA 0.11(1) 2.54(7) 95.7

a)Sample code indicates compound name and, for NiDTA, synthesis concentration 
(×10−3 m); b)Apparent density; c)Framework density measured by helium; d)Porosity 
percentage of MOAs calculated from true and apparent density.
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data to the Brunauer–Emmett–Teller (BET) equation ranged 
from 189 to 427 m2 g−1. Pore volumes varied between 0.44 and 
4.25 cm3 g−1 in agreement with the trend observed for apparent 
density. All of them have isotherms of type II/IV according to 
the IUPAC classification,[43] with a hysteresis loop that antici-
pates a significant meso/macroporous contribution, except for 
PdDTA, which fits better to a pure type IV isotherm, indicating 
the predominance of mesopores. In most of them, capillary 
condensation implies a sharp increase of the isotherm above 
0.80 P P0

−1. In PdDTA this phenomenon begins at lower rela-
tive pressures, which is in concordance with the smaller pore 
size revealed by the Barret-Joyner-Halenda (BJH) distribution 
(Table 2).

All of them show a wide monomodal pore size distribution 
centered at the mesoporous region with a tail that in most 
cases extends into the macroporous regime. Note that despite 
the fact that the fibrillar network is formed in a stochastic pro-
cess, the degree of pore size polydispersity in most MOAs is 
relatively moderate, achieving at best a coefficient of variation 
of ≈20%.

2.4. Chemical and Mechanical Resistance

NiDTA MOG was expressly subjected to chemical inertness 
tests based on the immersion of 1−2 g of gel for a week in 
a series of solutions covering the most problematic scenes 
(see Table S5.1 in the Supporting Information). The samples 
were filtered, thoroughly washed, dried at room temperature, 
and analyzed by attenuated total reflection FTIR to check the 
possible existence of chemical modifications. In contrast to 

metallogels reported in the literature that are primarily of 
supramolecular nature,[44–46] NiDTA MOG showed unusual 
stability to be based on a coordination polymer. It is due to the 
strength of the metalsulfur bond and to the presence of the 
double chelating coordination mode of the DTA ligand. The 
affinity of the N,S-moiety toward medium/soft metal ions ren-
ders strong covalent bonds. At room temperature its structure 
remains unchanged upon acid and base aqueous solutions 
(pH = 0–14) (Figure 4; Video S.1, Supporting Information). 
The gel was also stable under hydrothermal conditions,  
pH = 2–12, at least up to 373 K for 24 h. Apart from that, 
the gel is stable when subjected to mechanical agitation, sur-
factants, and saline solutions, which points to a chemical gel 
with irreversible crosslinks. Nevertheless, concentrated inor-
ganic acids (H2SO4, HNO3, HCl) and strong oxidizing agents 
(H2O2, KMnO4) cause the breakdown of the polymer network. 
However, it is remarkable that the gel is stable under the oxi-
dant conditions exerted by HNO3 at moderate concentrations 
(0.5 m), where elemental copper and some stainless steels 
are easily oxidized. In the case of coordinating agents, such 
as trimesic acid, bipyridines, and ethylenediamine tetraacetic 
acid, the infrared spectra collected on the recovered solids 
indicate that the overall gel structure is retained, but the pres-
ence of some extra peaks points to the coordination of the 
test chemicals to a significant fraction of exposed Ni(II) ions 
(i.e., those located at the surface of the fiber). This observation 
suggests the feasibility of performing postsynthetic function-
alization while retaining the overall porous framework.[47–49] 
To complete the chemical stability studies, thermogravimetric 
analyses were conducted on MOAs under synthetic air con-
ditions (Figure S5.10, Supporting Information). The samples 
were stable up to 538, 603, and 648 K for Cu, Ni, and Pd, 
respectively.

Stiffness of Ni/Pd-based gels and aerogels was suitable 
to accomplish with uniaxial quasistatic compression tests. 
First, measurements were performed over NiDTA gels and 
aerogels obtained at different concentrations (25 × 10−3, 
50 × 10−3, 75 × 10−3, and 100 × 10−3 m) in order to relate the 
mechanical properties with their microstructural parameters 
(Table 3). Gels behave elastically below 2.5% of strain and can 
be plastically compressed to values around 19%−35%, after 
which fractures propagate and the material yields further. An 
increased concentration gives rise to materials with a greater 
rigidity and brittleness with an increase in Young modulus, 
although the maximum compressive strength is reached for 
the sample prepared at 50 × 10−3 m (Figure 5a). In regard to 
MOAs, their compression–strain curves follow the basic form 
of classical rigid cellular foams:[50,51] a linear elastic deforma-
tion in a first stage, then a nonlinear region until reaching 
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Table 2.  Most relevant adsorption parameters of MOAs.

Sample SBET  
[m2 g-1]a)

VP  
[cm3 g-1]b)

D  
[nm]c)

Dmode  
[nm]

C.V.d)

NiDTA-25 407 1.406 8.6 11.1 20.6

NiDTA-50 427 4.250 11.0 23.2 43.2

NiDTA-75 406 3.002 18.6 18.2 37.8

NiDTA-100 418 2.192 9.1 9.0 39.1

PdDTA 189 0.441 6.8 6.8 38.3

CuDTA 211 2.243 21.0 22.6 110.9

NiPdDTA 307 3.917 23.4 23.0 38.9

NiCuDTA 372 2.508 16.0 18.0 97.7

PdCuDTA 248 1.742 13.4 15.0 108.4

a)BET specific surface; b)Total pore volume calculated from N2 isotherm at 77 K at 
relative pressures of ≈0.99; c)Mean pore diameter; d)Variation coefficient [%].

Figure 4.  Gel fragments subjected to different pH solutions.
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the yield point, and finally a densification regime beyond the 
yield point as the void space collapses. Aerogels exhibit sig-
nificantly higher modulus of elasticity than their respective 
MOGs due to the shrinkage of the fibrillar network taking 
place during supercritical treatment (maximum Young’s mod-
ulus being 74.6 kPa for samples prepared at 100 × 10−3 m). 
The marked difference between NiDTA-100 and other aero-
gels can be attributed to a greater crosslinking of the fibers 
in the former (see Figures S3.8.–S3.11 in the Supporting 
Information). In any case, these values are far below those 
reported for inorganic aerogels of particulate nature like SiO2 
or Al2O3.[52,53] Noticeably, after the elastic regime (ε < 5%), 
NiDTA aerogels exhibit a plastic behavior all along the com-
pression test, which enables this material to be malleable and 
processable, for example, as films by simply applying pres-
sure. To the best of our knowledge, none of the porous coor-
dination polymers (including MOFs and MOAs) reported to 
date exhibits such behavior.

On the other hand, the comparison of aerogels based on dif-
ferent metals (NiDTA, PdDTA, and NiPdDTA) shows that fiber 
aspect ratio is an influencing factor on the mechanical prop-
erties of the material. MOA with the shortest fibers (PdDTA) 
present more points of contact (related to a higher fiber con-
centration; see Table S3.1 in the Supporting Information) for 
cracks to propagate, resulting in a brittle and friable solid. On 
the contrary, MOAs with long aspect ratio fibers render a larger 
amount of empty areas, thus preventing breakage and confer-
ring plasticity upon material. Specific compressive strength 
measured for the toughest MOAs (NiDTA-100: 12725 J kg−1; 
NiDTA-50: 1662 J kg−1; and PdDTA: 258 J kg−1) is far higher 
than that found for the unique MOF-aerogel mechanically 
characterized,[54] and somewhat higher than many carbon,[55] 
organic,[56,57] ceramic,[58] and metal[59] aerogels, and comparable 
to some conventional polymeric foams[40,60–64] like polystyrene, 
polyurethane, etc. (Figure 5b).

Finally, as a proof of concept (Figure 6a,b), NiDTA-50 MOG 
(44 g) and MOA (0.37 g) monoliths were allowed to hold up 
2 kg of dumbbell weights (i.e., around 45 and 5550 times their 

weight). After removing the dumbbell weights, the exhibited 
strain values were 2.3% and 5.0%, respectively, which fit rather 
well with the values expected from the compression–strain test 
curves.

2.5. Conductivity Measurements

Considering the 1D molecular structure of the polymer, it may 
be assumed that the electronic conduction of these systems, 
possessing a conjugated organic molecule with sulfur and 
nitrogen atoms as donors of electrons, is determined by the 
transition of the electrons over the metal bridges.[65] Previously 
reported ab initio calculations propose that the lowest unoccu-
pied and highest occupied (ndx2−y2 from metal transition and 
ligand pσ) molecular orbitals contribute to the electrical con-
duction.[65,66] Herein, DC electrical conductivity measurements 
were initially made at 298 K by the two probe techniques, 
using pressed disks of each MOA, including the heterome-
tallic samples to assess the influence of combining different 
metal ions. The results show conductivity values between 10−7 
and 10−12 S cm−1 (Table 4), with CuDTA and NiCuDTA sam-
ples being the most conductive ones. The homometallic Cu(II) 
sample renders conductivity values three orders of magnitude 
higher than the Ni(II) and Pd(II) counterparts. Moreover, the 
inclusion of a second metal ion (i.e., heterometallic samples) 
does not have a synergetic effect, but worsens in all cases the 
conductivity with respect to the homometallic counterpart with 
the maximum value. The lower conductivity presented by the 
Ni, PdDTA, and heterometallic polymers may be rationalized 
by a lower charge density as a result of replacement of d9 Cu(II) 
with the d8 Ni(II) or Pd(II). In fact, it has been reported that 
Ni(II) centers do not provide high energy electrons as effective 
charge carriers.[67]

Conductivity measurements at variable temperature 
(298–373 K) carried out for the compounds with the best perfor-
mance, NiCuDTA and CuDTA, allowed calculating their activa-
tion energies (0.16 eV and 0.37 meV, respectively; Figure S6.3, 
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Table 3.  Most relevant mechanical parameters of MDTA gels and aerogels.

Sample ρa) l/Db) Ec) σ10
d) σbreak

e) σTS
f) εbreak

g) UT
h)

MOGs

NiDTA-25 – 1.05 0.3 6.6 10.6 49.0 21.9 0.01

NiDTA-50 – 0.93 1.0 25.8 48.8 123.6 18.0 0.04

NiDTA-75 – 1.06 1.7 22.3 31.1 148.2 18.7 0.04

NiDTA-100 – 1.13 2.3 28.3 26.1 138.0 42.1 0.09

MOAs

NiDTA-25 0.078 1.83 1.4 15.5 – 186.1 – 0.56

NiDTA-50 0.063 0.96 2.4 89.5 – 1100.1 – 4.65

NiDTA-75 0.057 1.13 3.1 104.7 – 813.4 – 3.73

NiDTA-100 0.059 1.01 74.6 750.8 – 8152.6 – 84.22

NiPdDTA 0.062 1.18 3.7 24.1 – 455.0 – 1.42

PdDTA 0.386 1.09 11.5 88.3 99.5 99.5 10.7 0.03

a)Apparent density in g cm−3; b)Aspect ratio of the specimens; c)Compressive Young modulus in kPa; d)Compressive strength at 10% of deformation in kPa; e)Crushing 
strength in kPa; f)Ultimate compressive strength in kPa; g)Fracture strain in %; h)Specific energy absorption in J g−1.
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Supporting Information). These measurements showed in 
both cases that the conductivity increases with the temperature 
and decreases on cooling, in agreement with semiconducting 
behavior (see Section S6 in the Supporting Information).

Doping experiments with I2 vapor were also carried out on 
the most conductive CuDTA and NiCuDTA samples (before 
doping: 3.0 × 10−7 and 2.8 × 10−8 S cm−1, respectively). The con-
ductivity values of the doped samples increase by two and three 
orders of magnitude (Table 4). I2 is usually employed as a mild 
oxidizing agent to seize electrons from the valence band of the 
semiconducting materials, in order to enhance their conduc-
tivity.[68] In the current case, it can be assumed that the conduc-
tivity enhancement takes place through a similar mechanism 
involving an electronic charge transfer from the ligand to the 
oxidant.

The stimuli-response electrical conductivity of CuDTA 
and NiCuDTA MOAs was studied at room temperature by 
subjecting the samples to the chemical stimuli of acetic acid 
(AcOH) vapor. Conductivity values were determined from the 
Nyquist plot by arc extrapolation to the Z′-axis. The obtained 
impedance measurements were analyzed by means of the 
equivalent circuit method, which simulates the behavior of 
metal-organic materials in an electronic circuit. The Nyquist 
plot for compound CuDTA after 8 h of exposure to AcOH 
vapor in the frequency range of 1 Hz to 1 MHz (Figure 7a) 
shows the presence of a depressed semicircular arc at high 
frequencies (1 kHz to 1 MHz), which is attributed to the bulk 
properties of the compound. In the low-frequency region, 
another arc/line is observed which is typical of materials 
with capacitive behavior between the mobile ions (that 
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Figure 5.  a) Experimental compression–strain curves of Pd/Ni system MOAs. b) Comparison of NiDTA-50 and PdDTA specific compressive strengths 
with others aerogels, polymeric materials, and foams found in the literature. F: fracturable material; P: plastic material; PE: polyethylene; PS: polysty-
rene; PU: polyurethane; PVC: polyvinyl chloride; RF: resorcinol–formaldehyde. Crushing compressive strength had been used for brittle materials, while 
for plastic ones, compressive strength has been defined at 10% of deformation.
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are blocked by the electrode–electrolyte interphase). The 
Nyquist plots recorded for CuDTA after different exposure 
times (0, 1, 2.5, 24, and 48 h) are similar to those obtained 
at 8 h of exposure; however, the intercept of the semicircle 
with the Z′-axis shifts toward higher values. Nyquist plots 
for NiCuDTA sample shows a comparable behavior, how-
ever, the intercept of the semicircle with the Z′-axis shifts 
toward a low value with increased exposure time (Figure 7b). 
At low exposure times, the conductivity increases sharply 
for both samples (Figure S6.4, Supporting Information), 
reaching values almost 2 orders of magnitude higher than 

the t = 0 h. Thereafter, in the case of CuDTA sample, the 
electrical conductivity reaches a plateau (≈10−5 S cm−1) at 
8 h, while the NiCuDTA sample, after the initial acute step, 
exhibits a monotonic enhancement of conductivity up to 
3.8 × 10−5 S cm−1 after 48 h of exposure.

The remarkable change in the specific conductivity of 
CuDTA and NiCuDTA, could be related to the establishment 
of a favorable pathway for proton transportation provided by 
the interaction between guest AcOH molecules and probably 
the grain boundary of the hosting fibrillar porous network. 
When saturated acetic acid pellets were exposed to ambient 
conditions, the Nyquist plot and the conductivity (≈10−7 S cm−1) 
retrieve the shape and the values of the corresponding pris-
tine material, ratifying the reversibility of the AcOH capture/
release process. Cycling data experiments have been performed 
on CuDTA at 4 h intervals and NiCuDTA at 12 h intervals 
(Figure 8). NiCuDTA was subjected to longer cycling time to 
obtain comparable conductivity change to that of CuDTA. 
The cycling provides reproducible changes in conductivity 
upon exposure to acetic acid, which endows these materials of 
sensing capability.
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Figure 6.  a) MOG (44 g) and b) MOA (0.37 g) monoliths holding up 2 kg 
of dumbbell weights.

Table 4.  Conductivity values obtained for MOA samples at 298 K, using 
two contact method and pressed pellets.

Sample Conductivity [S cm−1] at 298 K

As-prepared samples I2-doped samples

NiDTA 4.4 × 10−10 –

PdDTA 7.1 × 10−10 –

CuDTA 3.0 × 10−7 1.0 × 10−5

NiCuDTA 2.8 × 10−8 2.4 × 10−5

NiPdDTA 3.4 × 10−12 –

PdCuDTA 1.4 × 10−11 –

Figure 7.  Nyquist plots at 298 K of a) CuDTA and b) NiCuDTA at repre-
sentative exposure times (0, 2.5, 8, and 24 h) to AcOH vapor (experi-
mental values (■), fitting values (−)).
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3. Conclusion

The 1D nature of the [M(DTA)]n coordination system is the 
key to promote the fibrillar growth of the particles, but only 
under well-selected synthesis conditions the gelation suc-
ceeded, being remarkable the role that the metal salt and 
solvent play. Supercritical drying of the gels renders ultralight 
MOAs (ρ: 0.03–0.06 g cm−3; porosity: 98%–99% for NiDTA and 
CuDTA) that preserve the intertwined nanofibrillar structure 
(diameter: 8–20 nm). Microstructural parameters, such as the 
aspect ratio of the nanofibers and their spatial concentration, 
govern the surface area, pore diameter, and mechanical prop-
erties. Accordingly, the highest surface area and pore diameter 
values correspond to MOAs presenting highest aspect ratios 
(NiDTA, NiCuDTA). Despite the surface area of MDTA, MOAs 
is far away from most outstanding MOFs; it is comparable to 
many MOFs and zeolites with moderate surface area values[69] 
and to organic and inorganic aerogels.[70] On the contrary, pore 
size can be considered as relatively high (7−23 nm), in fact, 
almost all mean, median, and mode pore diameters far exceed 
the maximum value reported for MOFs up to date (<10 nm). 
Moreover, it should be stressed that the maximum pore volume 
values obtained for MDTA MOAs (4.25 cm3 g−1) are comparable 
to the record values reported for MOFs (up to 4.40 cm3 g−1). 
Regarding the mechanical properties, Pd(II) MOAs, with the 
lowest aspect ratio fibers, exhibit a brittle behavior, and Ni(II) 

MOAs, containing highest aspect ratio fibers, behave as a 
plastic material. Such plastic behavior has not been previously 
reported for a material based on a coordination polymer and it 
allows processing them as films by simply applying pressure. 
Room-temperature conductivity measurements yielded values 
ranging from 10−7 to 10−12 S cm−1 that, combined with its 
fibrillar porous network, results in a stimuli-response material 
that shows reversible conductivity increase (up to 10−5 S cm−1) 
when subjected to acetic acid vapors. Considering all the above, 
to the best of our knowledge the reported material implies an 
unprecedented case within the area of coordination polymers 
(including MOFs), since it successfully brings together porosity 
with outstanding chemical inertness, mechanical robustness, 
and stimuli-responsive electrical conductivity.

4. Experimental Section
Physical Measurements: Details are provided in Section S8 of the 

Supporting Information.
Chemicals: All the chemicals were of reagent grade and were used as 

commercially obtained.
Synthesis of MOGs: In a general procedure, the corresponding 

metal acetate was dissolved in a mixture of DMA and DMF of 60:40 
volumetric ratio, aided by an ultrasonic tip (Vibra-Cell VCX130 20 kHz 
and 130 W, Sonics) working at 80% of its power for 2 min. Then, an 
equimolar amount of dithiooxamide (H2DTA) ligand basified with 
triethylamine and dissolved in the same DMF/DMA solvent mixture 
was added all at once on the aforementioned metal salt solution (or in 
some cases, dispersion) while it was maintained in an ultrasound bath 
(ULTRASONS-H, Selecta) at a temperature of 288 K until a change of 
viscosity took place (depending on the metal and the concentration, 
the process lasts from few seconds to several minutes). Once the 
metallogel had reached certain consistency, it was allowed to age at 
room temperature for one day. Thereafter, successive solvent exchanges 
were performed to replace the synthesis solvent by ethanol. Optimum 
metal salts and dithiooxamide concentrations used on the synthesis for 
obtaining metallogels were set at 85 × 10−3 m for PdDTA, 25 × 10−3 m 
for CuDTA, 75 × 10−3 m for NiDTA, and 50 × 10−3 m for heteronuclear 
NiPdDTA, NiCuDTA, and PdCuDTA. For comparative purposes, NiDTA 
samples were also prepared at 25 × 10−3, 50 × 10−3, and 100 × 10−3 m. 
Stiffest gels were obtained for NiDTA, PdDTA, and NiPdDTA, which 
well-retained the shape of the molds and/or were easily processed by 
cutting into regular geometries. All the MOGs were found to be stable 
for several months at room temperature. The absolute amounts can be 
scaled to fit shape and volume of the mold or flask, specifically; herein, 
samples with volumes ranging from 5 to 200 mL were prepared.

Synthesis of MOXs and MOAs: Metal-organic xerogels were prepared 
subjecting the metallogels to open-atmosphere drying. To prepare the 
metal-organic aerogels, an E3100 critical point dryer from Quorum 
Technologies equipped with gas inlet, vent, and purge valves, and with a 
thermal bath was employed. First, the metallogel was immersed in liquid 
CO2 at 293 K and 50 bar for one hour. Then, the exchanged ethanol was 
removed through the purge valve. This process was repeated five times. 
Subsequently, the sample was dried under supercritical conditions, 
increasing the temperature and pressure to 313 K and 85−95 bar. Finally, 
under constant temperature (313 K), the chamber was slowly vented up 
to atmospheric pressure.

We have also tested the freeze-drying of gels. However, the results are 
quite discouraging (see Section S7 of the Supporting Information). The 
monoliths retain their shape and the shrinkage is comparable to that 
of supercritical drying, but the growth of the water crystals during the 
cooling with N2(l) promotes the fusing of the nanofibers into a lamellar 
structure. As a result, the solid is mainly macroporous with an almost 
negligible surface area (10 m2 g−1) and extremely brittle.

Figure 8.  Cycling data at 18 °C of a) CuDTA at 4 h intervals and b) 
NiCuDTA at 12 h intervals.
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Figure 1. Cylinders made of NiDTA in different solid states: a) gel, b) xerogel and c) aerogel. 
d) The system allows creating complex geometries by molding. 
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Scheme 1. Scheme of the polymerization process and a fragment of the MDTA polymer chain.
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Figure 2. TEM micrographs of a) NiDTA, b) NiPdDTA and c) PdDTA MOGs dispersed in 
ethanol in the presence of n-decylamine.
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Figure 3. SEM images of MDTA MOAs with a magnification of 100 kX: a) NiDTA; b) PdDTA; c) CuDTA; d) NiPdDTA; e) NiCuDTA and f) PdCuDTA. 
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Figure 4. Gel fragments subjected to different pH solutions.
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Figure 5. a) Experimental compression-strain curves of Pd/Ni system MOAs. b) Comparison of 
NiDTA-50 and PdDTA specific compressive strengths with others aerogels, polymeric 
materials and foams found in the literature. F: fracturable material, P: plastic material. PE: 
polyethylene, PS: polystyrene, PU: polyurethane, PVC: polyvinyl chloride, and RF: resorcinol-
formaldehyde. Crushing compressive strength had been used for brittle materials, while for 
plastic ones, compressive strength has been defined at 10 % of deformation.
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Figure 6. a) MOG (44 g) and b) MOA (0.37 g) monoliths holding up 2 kg of dumbbell weights.
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Figure 7. Nyquist plots at 298 K of a) CuDTA and b) NiCuDTA at representative exposure 
times (0, 2.5, 8 and 24 h) to AcOH vapor (experimental values (■), fitting values (−).). 
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Figure 8. Cycling data at 18ºC of a) CuDTA at 4 h intervals and b) NiCuDTA at 12 h intervals. 
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S1. GELATION STUDIES
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The gelation was checked by the test-tube inversion method in which a material is

considered a gel if it does not suffer deformity after inverting the vial where it is

contained.

In first instance, 11 common solvents were checked by using the stoichiometric ligand-

to-metal ratio of 1:1 and by adding triethylamine as basifying agent. Among all the

solvents tested, only those with greater coordinative capacity (DMF: N,N’-

dimethylformamide, DMA: N,N’-dimethylacetamide, DMSO: dimethylsulfoxide, DEA:

N,N’-diethylacetamide) showed tendency to gel. However, such gels lacked the

necessary mechanical consistency to be manipulated. After conducting a screening with

different binary mixtures of these solvents, we were able to obtain optimum gels in a

mixture of DMF/DMA in 40:60 ratio. Once chosen a suitable solvent mixture, the order

of addition of the reactants was varied. Deprotonated ligand addition onto metal salt

resulted in stiffer gel compared with the product formed following the opposite

sequence, whereas the addition of base to a solution containing both ligand and metal

salt produced a viscous granular solid. On the other hand, it was found that a ligand

excess (> 4 ligand to metal ratio) precludes the gelation, probably due to the formation

of soluble complexes of higher stoichiometry. Conversely, an increase of metal ratio

results in an improvement in rigidity and a depletion at the rate of polymerization. Base

promotes the creation of intermolecular crosslinks through the deprotonation of amino

groups of the ligand since both its absence and the presence of acetic acid give rise to

particulate precipitate or slimy samples, respectively. Likewise, gelation occurs even

without adding the stoichiometric amount of base while an excess of triethylamine

accelerates the process.

Furthermore, various nickel(II) salts were tested in order to study the influence of the

counter-anion. Interestingly, this system also displayed a marked anion-specific
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behavior, because no gelation was observed when other nickel(II) salts were employed

instead of Ni(OAc)2. The remaining salts (Ni(OH)2, NiBr2, Ni(NO3)2, and Ni(ClO4)2)

precipitate or are soluble, suggesting that the chelating effect of acetate ion is key when

it comes to slowing down polymerization. Apparently, a low dissociation constant

prevents the number of nuclei to be high, giving the system enough time to create semi-

organized branching. In addition, it was noted that the higher concentration of the

system the greater the stiffness of the gels, as long as no threshold concentration was

exceeded, which in the case of NiDTAwas of 0.1 M. As for external physical factors are

concerned, working at low temperatures improves the stiffness of gels and equally, the

application of ultrasound during ligand addition helps to consolidate the final structure.

These results suggest that the control of nucleation kinetics is crucial for producing

these gels. The polymerization must be sufficiently slow to promote a crosslinking of

the nucleous in such a way that a semi-coherent three-dimensional lattice is formed and

not a precipitate, but at the same time the crosslinkage needs to be speedy enough to

retain inside solvent molecules and to prevent the coordination polymer from organizing

itself, thus forming a polycrystalline powder.
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Table S1.1. Gelation study results for NiDTA system. Ø: solution, P: precipitate, C:
colloidal suspension, S: slurry, UC: unconsolidated gel, O: optimum gel. The rest of
acronyms are DMF: N,N-dimethylformamide, DMSO: dimethylsulfoxide, DEA: N,N-
diethylacetamide, DMA: N,N-dimethylacetamide, M: nickel(II) acetate, L:
dithiooxamide and B: triethylamine.
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Figure S1.1. Photographs of the results obtained in gelation studies (part 1). It is
considered as reference the synthetic procedure described in the experimental section
for MOGs. Form: formamide, DMF: N,N-dimethylformamide, DMSO:
dimethylsulfoxide, DEA: N,N-diethylacetamide, DMA: N,N-dimethylacetamide, M:
nickel(II) acetate, L: dithiooxamide and B: triethylamine.
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Figure S1.2. Photographs of the results obtained in gelation studies (part 2). It is
considered as reference the synthetic procedure described in the experimental section
for MOGs. M: nickel(II) acetate, H2DTA: dithiooxamide, B: base and A: acid.
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S2. STRUCTURAL ANALYSIS
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Table S2.1.Vibrational and elemental analysis of MDTA compounds.

Compound
MW

[g/mol]
Formula Elemental analysis [%] FT─IR [cm-1] Raman [cm-1]

NiDTA 176.88 C2H2N2S2Ni

Theo: C, 13.64; H, 1.15; N, 15.92;
S, 36.35; Ni, 32.9.

Found: C, 13.58; H, 1.17; N,
15.80; S, 36.26; Ni, 33.18.

773(w), 856(s), 1047(vw),
1107(w), 1285(m), 1347(w),
1371(vw), 1497(vs), 1618(vw),
1652(vw), 2925(vw), 2972(vw),
3261(m), 3398(sh).

164(vw), 244(vw), 397(vw), 600(vw), 711(vw),
783(sh), 875(vw), 1107(m), 1359(sh), 1398(vs),
1521(vs), 1764(sh), 1811(vw), 1917(vw),
1994(vw), 2117(w), 2269(sh), 2400(sh),
2503(w), 2627(w), 2793(w), 2917(m), 3037(w),
3283(w).

PdDTA 224.60 C2H2N2S2Pd

Theo: C, 10.72; H, 0.90; N, 12.51;
S, 28.56; Pd, 47.30.

Found: C, 10.77; H, 1.04; N,
12.60; S, 28.69; Pd, 46.90.

757(w), 859(vw), 974(sh),
1046(sh), 1088(m), 1283(w),
1338(m), 1481(vs), 1610(vw),
2926(sh), 2977(vw), 3257(m),
3455(sh).

207(vw), 353(vw), 376(sh), 574(vw), 654(vw),
704(sh), 774(vw), 862(vw), 965(vw), 1107(m),
1352(m), 1372(vs), 2217(m), 2463(m), 2600(m),
2860(m), 2976(m).

CuDTA 181.73 C2H2N2S2Cu

Theo: C, 13.27; H, 1.11; N, 15.48;
S, 35.35; Cu, 34.79.

Found: C, 13.17; H, 1.19; N,
15.41; S, 35.26; Cu, 34.97.

780(w), 861(w), 960(vw),
1052(vw), 1128(vw), 1270(w),
1310(m), 1489(vs), 1610(vw),
3257(w).

296(sh), 316(vs), 354(vs), 565(vs), 624(m),
689(w), 719(sh), 789(w), 864(s), 953(vw),
1058(m), 1144(vw), 1225(vw), 1275(vw),
1316(m), 1351(w), 1374(sh), 1513(vs),
1662(vw), 1787(vw), 1873(vw).

NiPdDTA 200.74 C2H2N2S2Ni0.5Pd0.5

Theo: C, 12.00; H, 1.01; N, 14.01;
S, 31.99; Ni, 14.49; Pd, 26.49.

Found: C, 12.03; H, 1.06; N,
14.05; S, 32.08; Ni, 14.57; Pd
26.21.

683(sh), 765(w), 855(w),
1044(w), 1099(m), 1317(sh),
1338(s), 1477(vs), 1605(vw),
2894(sh), 2932(sh), 3264(m),
3420(sh).

193(vw), 275(vw), 343(vw), 386(vw), 594(vw),
642(vw), 683(sh), 702(sh),1097(sh), 1117(m),
1360(m), 1381(s), 1494(vs), 1713(vw),
1763(vw), 2003(sh), 2140(w), 2227(w), 2490(w),
2613(m), 2758(sh), 2872(s), 2986(s), 3260(m).

NiCuDTA 179.30 C2H2N2S2Cu0.5Ni0.5

Theo: C, 13.45; H, 1.13; N, 15.70;
S, 35.84; Cu 17.64; Ni, 16.24.
Found: C, 13.35; H, 1.06; N,
15.67; S, 35.75; Cu 17.56; Ni,
16.61.

778(w), 858(m), 973(sh),
1093(w), 1280(w), 1347(vw),
1371(vw), 1503(vs), 1600(vw),
1652(vw), 2913(sh), 2990(sh),
3250(m), 3453(sh).

PdCuDTA 203.17 C2H2N2S2Cu0.5Pd0.5

Theo: C, 11.86; H, 0.99; N, 13.84;
S, 31.60; Cu, 15.55; Pd 26.16.

Found: C, 11.93; H, 1.07; N,
13.82; S, 31.67; Cu, 15.48; Pd
26.03.

681(sh), 783(w), 860(vw),
954(vw), 1066(w), 1281(sh),
1318(vs), 1362(w), 1483(vs),
1589(sh), 1621(sh), 1660(sh),
2974(vw), 3264(s), 3447(sh).
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Figure S2.1. FTIR spectra of MOAs recorded on ATR mode.
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Figure S2.2. FTIR spectra of MOXs recorded on ATR mode.
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Figure S2.3. Raman spectra of homonuclear MOXs and H2DTA.
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Table S2.2. Experimental and simulated vibrational signals of NiDTA for cis and trans dispositions.

NiDTA Simulation trans-DTA Simulation cis-DTA
Mode

Character

IR [cm-1] Raman [cm-1] IR [cm-1] Raman [cm-1] IR [cm-1] Raman [cm-1] trans /cis a)

3555 3357 3354 νas (N─H)

3347 3341 3342 νs (N─H)

1515 1520 1549 1548 νs (C─N) Ag / A1

1496 1502 1504 1503 νas (C─N) Bu / B2

1393 1405 1381 1380 δip-s (N─H)

1284 1334 1346 1346 δip-as (N─H)
1104 977 1000

872 927 883 882 δop-s (N─H)

857 880 865 866 δop-as (N─H)

773 753 814 815 νas (C─S) Ag / A1

705 736 721 720 νs (C─S) Bu / B2

a) Characters were estimated for trans and cis dispositions in ideal C2h and C2v symmetries respectively. νs:
symmetric tension mode, νas: asymmetric tension mode, δip: in-plane bending mode, δop: out of plane bending
mode.
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Figure S2.4. XPS spectra of MOXs based on Ni/Pd system.

Table S2.3. Summary of results obtained from XPS measurements for Ni/Pd system:

Sample C N S Ni Pd M:S C:N N:S M1:M2

NiDTA-A
38.37a)

21.29b)

19.57a)

12.67b)

21.60a)

32.04b)

9.55a)

25.92b)
─ 0.44 1.96 0.91 ─

NiDTA-X
34.73a)

18.07b)

23.99a)

14.56b)

24.60a)

33.87b)

11.75a)

29.91b)
─ 0.48 1.45 0.99 ─

NiPdDTA-X
48.51a)

25.40b)

16.29a)

9.95b)

16.79a)

23.49b)

4.44a)

11.37b)

5.08a)

3.58b)
0.57 2.98 0.97 0.88

PdDTA-X
52.83a)

23.73b)

14.74a)

7.73b)

18.77a)

22.53b)
─

11.18a)

44.53b)
0.60 3.58 0.78 ─

a) Atomic percentage. b) Mass percentage.
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Figure S2.5. XRD patterns of pelletized MOXs.
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Computational details and discussion

Computational analysis of the vibrational modes and IR/Raman spectra simulation was
performed using density-functional theory (DFT) calculations were performed using the
code DMOL3 included in the Accelrys “Materials Studio” package (Materials Studio, v.
5.5; Accelrys Inc., 2011.). Prior to the vibrational analysis DFT geometry optimization
was performed on molecular models for DTA ligand on cis and trans conformations using
B3LYP exchange-correlation functional and DNP type (double numerical plus
polarization) atomic basis set.

Coordination mode of dithiooxamidato ligand

Additionally, the Cambridge structural database survey also indicates that the majority of
complexes show a trans configuration of the heteroatoms of DTA. The coordination
mode that dithiooxamidato ligand adopts in the herein reported complexes has been
elucidated by FTIR and Raman spectroscopy, supported by a computational analysis of
the vibration modes using DFT optimized structures of DTA ligand in cis and trans
conformations (Figure S2.6). Due to the poor resolution at low wavenumbers, the focus
of the analysis was set on the most intense IR and Raman peaks of the ligand which are
located at 1480─1580 cm-1 and correspond to C─N stretching modes (Figure 2a).

According to group theory analysis, in an ideal C2h symmetry the trans conformation of
the ligand give rise to one IR active C–N stretching mode noted as Bu or antisymmetric
vibration, and its Raman active symmetric counterpart corresponding to Ag mode. cis
disposition of the ligand (C2v point symmetry) allows to envisage two IR and Raman
active C–N stretching mode identified as A1 and B2 characters. In a good agreement with
the latter, the simulated IR and Raman spectra show one or two peaks for trans and cis
configurations, respectively, being always the symmetric vibrational mode sited at higher
wavenumbers (Figure 2b). Consequently, the presence of a unique C–N stretching peak
in the IR and Raman spectra of all the MDTA complexes, allows to postulate a structure
consisting of a one-dimensional polymeric chain (Scheme 1) in which the metal centers
are sequentially bridged by dithiooxamidato ligands in a μ2-κ2N,S:κ2N',S' coordination
mode. The shift of the C–N vibrational peak towards lower frequencies observed for the
series PdDTA (1482 cm-1), CuDTA (1490 cm-1) and NiDTA (1497 cm-1) stands for a
strengthening of the metal-ligand coordination bond (Pd > Cu > Ni).
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Figure S2.6. a) Experimental and b) simulated FTIR and Raman spectra at 1580−1420
cm-1 corresponding to C–N stretching mode. Simulated spectra show the peaks
corresponding to the vibration modes of trans and cis conformers of free DTA
molecules.

Simulation of the DMF and metal-DTA interaction

Geometry optimization of a model consisting on 1D–[Ni(μ–DTA)]n chain with side-
interacting DMF molecules were performed by dispersion-corrected density-functional
theory DFT calculations using the code CASTEP, included also in the Accelrys
“Materials Studio” package, which employs a plane-wave basis set and
pseudopotentials.[1] The calculations employed a plane-wave cutoff of 380 eV and
ultrasoft pseudopotentials. The PBE exchange-correlation functional was used in the
calculations,[2] together with the “D2” flavor of the dispersion correction scheme
proposed by Grimme.[3] Together with the atomic positions cell parameters were also
optimized. To save computational time, the calculations were carried out for the primitive,
using one k-point located at the Γ-point.

All the intramolecular bond and angles of the optimized structure are similar to the values
found in the Cambridge Structural Database (CSD)[4] for crystal structures containing
DMF and metal-DTA complexes. Furthermore, hydrogen bonding distances of the
optimized structure are consistent with the values found for “N–H···O=C” and “Ccarbonyl–
H···S”.

[1] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Z. Payne,
Kristallogr.2005, 220, 567–570.
[2] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
[3] S. Grimme, J. Comput. Chem.2006, 27, 1787–1799.
[4] F. H. Allen, Acta Crystallogr.2002, B58, 380–388.
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The best gelation conditions were obtained using DMF as solvent, which holds adjacent
hydrogen bond acceptor/donor groups (aldehyde O and H atoms, respectively) ready to
supramolecularly assemble with the dithiooxamidato bridge. According to DFT
calculations DMF is capable to establish with the dithiooxamidato a synthon consisting of
two donors and two acceptors in a seven-membered ring (R22(7)) with relatively short
hydrogen bond distances (Figure S2.7). Such interaction, together with steric hindrance
that the two methyl groups of the solvent entail, can be considered as a key factor to
promote a longitudinal growth of fibers.

Figure S2.7. Result of DFT geometry optimization on a model consisting of 1D–[Ni(μ–

DTA)]n chain with side-interacting DMF molecules. Distances set in Å units.
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S3.TEXTURAL ANALYSIS
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Figure S3.1. Photographs MOGs fragments taken by loupe to 1kX: a) NiDTA. b)
PdDTA. c) PdCuDTA. d) NiPdDTA. e) CuDTA. f) NiCuDTA.
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Figure S3.2. Photographs of MOXs (left: taken by loupe to 1 kX magnification, central: no magnification and right: pressed pellets with a
pressure of 104 kg cm-2: a) NiDTA. b) CuDTA. c) PdCuDTA. d) NiPdDTA. e) NiCuDTA. f) PdDTA.
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Figure S3.3. TEM images of Ni/Pd based metallogels dispersed in ethanol: a) NiDTA.
b) NiDTA + surfactant. c) PdDTA. d) PdDTA + surfactant. e) NiPdDTA. f) NiPdDTA
+ surfactant. Surfactant: n-decylamine.
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Figure S3.4. SEM images of NiDTA xerogel: a) 1 kX. b) 2.5 kX. c) 10 kX. d) 25 kX.
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Figure S3.5. SEM images of PdDTA xerogel: a) 1 kX. b) 2.5 kX. c) 10 kX. d) 25 kX.
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Figure S3.6. SEM images of NiPdDTA xerogel: a) 1 kX. b) 2.5 kX. c) 10 kX. d) 25 kX.
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Figure S3.7. AFM topographic image of NiDTA 50 mM aerogel fibers on SiO2. Heights profiles along the green and red lines.
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Figure S3.8. SEM images of NiDTA 25 mM aerogel: a) 2.5 kX. b) 10 kX. c) 25 kX. d) 100 kX.
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Figure S3.9. SEM images of NiDTA 50 mM aerogel: a) 2.5 kX. b) 10 kX. c) 25 kX. d) 100 kX.
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Figure S3.10. SEM images of NiDTA 75 mM aerogel: a) 2.5 kX. b) 10 kX. c) 25 kX. d) 100 kX.
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Figure S3.11. SEM images of NiDTA 100 mM aerogel: a) 2.5 kX. b) 10 kX. c) 25 kX. d) 100 kX.
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Figure S3.12. SEM images of PdDTA aerogel: a) 2.5 kX. b) 10 kX. c) 25 kX. d) 100 kX.
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Figure S3.13. SEM images of CuDTA aerogel: a) 2.5 kX. b) 10 kX. c) 25 kX. d) 100 kX.
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Figure S3.14. SEM images of PdCuDTA aerogel: a) 2.5 kX. b) 10 kX. c) 25 kX. d) 100 kX.
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Figure S3.15. SEM images of NiCuDTA aerogel: a) 2.5 kX. b) 10 kX. c) 25 kX. d) 100 kX.
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Figure S3.16. SEM images of NiPdDTA aerogel: a) 2.5 kX. b) 10 kX. c) 25 kX. d) 100 kX.
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Table S3.1Main textural parameters of MOAs.
DF.A [nm]a DF.G [nm]b Length [nm] Aspect ratio cF [fiber μm-2]

NiDTA-25 7.1 ± 2.9 ─ 150─410 21─58 420─780

NiDTA-50 11.9 ± 2.0 ─ 140─180 12─15 400─500

NiDTA-75 2.8 ± 1.6
20.4 ± 6.5c

13.4 ± 2.8d 150─450 54─161 250─500

NiDTA-100 3.9 ± 1.1 ─ 80─110 20─28 950─1400

CuDTA 7.5 ± 2.2 ─ 135─270 18─36 400─700

PdDTA 5.3 ± 1.7
7.9 ± 3.9c

14.3 ± 2.7d
30─

0 6─11 1400─1900

NiCuDTA 4.7 ± 1.8 ─ 350─800 75─170 600─750

NiPdDTA 8.2 ± 2.0
13.0 ± 3.3c

7.2 ± 1.6d 65─120 8─15 600─800

PdCuDTA 4.3 ± 2.2 ─ 80─150 19─35 80─170

a) Mean diameter and standard deviation of aerogel fibers calculated from SEM images and
using a population of 20 measurements. b) Mean diameter and standard deviation of gel fibers
dispersed in ethanol calculated from the TEM images and using a population of 20
measurements: c) without surfactant and d) adding 200 μL of n-decylamine in 10 mL of ethanol.

Figure S3.17. Correlation between fiber diameter (DF) and length (lF) for MDTA
aerogels.
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Figure S3.18. Correlation between: a) concentration of fibers and apparent density for
MDTA aerogels, b) fiber length and diameter for NiDTA aerogels prepared at different
molarities, and c) concentration of fibers and apparent density for NiDTA aerogels
prepared at different molarities.
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S4. ADSORPTION MEASUREMENTS
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Figure S4.1. N2 adsorption isotherms at 77 K.
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Figure S4.2. Pore size distributions of MOAs determined by BJH method.
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Figure S4.3. N2 adsorption isotherms at 77 K and pore size distributions (inset
graphics) of a) homonuclear and b) heteronuclear MOAs.
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Figure S4.4. N2 adsorption isotherms at 77 K and pore size distributions of NiDTA
MOAs synthesized at different concentrations.
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Table S4.1Most relevant adsorptive parameters of MOAs.

C R2 SBET

[m2 g-1]
VP,77 K a

[cm3 g-1]

q b

[mmol g-1]
c [nm]

Dmed d

[nm]
Dmod e

[nm]
S f [nm] C.V g [%]

NiDTA-25 131.36 0.9999 407 1.406 ─ 8.6 13.5 11.1 8.6 20.6

NiDTA-50 149.77 0.9998 427 4.250 ─ 11.0 18.0 23.2 4.8 43.2

NiDTA-75 156.0 0.9999 406 3.002
515.3 (273 K)

292.3 (298 K)
18.6 15.6 18.2 3.5 37.8

NiDTA-100 246.00 0.9999 418 2.192 ─ 9.1 15.0 9.0 3.6 39.1

PdDTA 68.69 0.9999 189 0.441
433.1 (273 K)

277.2 (298 K)
6.8 6.4 6.8 1.3 38.3

CuDTA 129.67 0.9999 211 2.243
360.8 (273 K)

241.5 (298 K)
21.0 15.0 22.6 11.6 110.9

NiPdDTA 61.91 0.9999 307 3.917 ─ 23.4 19.6 23.0 4.6 38.9

NiCuDTA 165.16 0.9999 372 2.508 ─ 16.0 12.6 18.0 7.8 97.7

PdCuDTA 90.49 0.9999 248 1.742 ─ 13.4 9.4 15.0 7.2 108.4

a) Total pore volume calculated from N2 isotherm at 77 K at relative pressures of ca. 0.99. b) CO2 uptake at 273 and 298 K. c) Mean pore
diameter. d) Median pore diameter. e) Mode pore diameter. f) Standard deviation. g) Variation coefficient.
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Regarding the correlation with the microstructural parameters, it can be concluded that fibers

exhibiting a more pronounced longitudinal growth present larger values of surface area and pore

size (Figure S4.4). Again, when retaining invariable the metal ion and varying the reagent

molarities, materials of similar surface area are obtained (see NiDTA prepared at 25–100 mM in

Table 2).

Figure S4.5. Correlation between the aspect ratio and a) surface area, b) pore size.
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CO2 adsorption isotherms

With the aim of completing the characterization of the porosity, CO2 adsorption isotherms were

collected at 273 and 298 K on homonuclear aerogel samples in order to estimate the isosteric

heats of adsorption (Qst) that render this kind of materials (Figure S4.6). The Qst values has been

calculated using modified Clausius Clapeyron equation,[5,6] which in the limit of zero loading

approach to 19.7 kJ mol-1, 24.2 kJ mol-1 and 25.0 kJ mol-1 for NiDTA, PdDTA, and CuDTA,

respectively. These values are lower than those reported for most strongly interacting MOFs such

as Cr-MIL-100 (62 kJ mol-1),[7] Cr-MIL-101 (44 kJ mol-1),[7] and Mg-MOF-74 (42 kJ mol-1),[8]

but comparable to well-known Al-MIL-53 (35 kJ mol-1),[9] Ni-STA-12 (35 kJ mol-1),[10]

Zn2(dobdc) (26 kJ mol-1)[11] and Cu-HKUST-1 (29 kJ mol-1).[12] In any case, they can be

regarded as relatively high values for a mesoporous material[13] probably due to the availability

of the not fully saturated centers that render the square-planar geometries around M(II) centers.

5 A. L. Myers, P. A. Monson, Langmuir 2002, 18, 10261–10273.
6 R. Krishna,Microporous Mesoporous Mat. 2012, 156, 217–223.
7 P. L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. D. Weireld, J. -S. Chang, D. -Y.
Hog, Y. K. Hwang, S. H. Jhung, G. Férey, Langmuir 2008, 24, 7245–7250.
8 J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna, J. R. Long, Energy Environ. Sci. 2011, 4, 3030–3040.
9 S. Biswas, T. Ahnfeldt, N. Stock, Inorg. Chem. 2011, 50, 9518–9526.
10 J. A. Groves, S. R. Miller, S. J. Warrender, C. Mellot-Draznieks, P. Lightfoot, P. A. Wright, Chem.
Commun. 2006, 3305–3307.
11 S. R. Caskey, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2008, 130, 10870–10871.
12 L. Grajciar, A. D. Wiersum, P. L. Llewellyn, J. -S. Chang, P. Nachtigall, J. Phys. Chem. C 2011, 115,
17925–17933.
13 J. Zhang, L. Liu, H. Liu, M. Lin, S. Li, G. Ouyang, L. Chen, C. -Y. Su, J. Mater. Chem. A 2015, 3, 10990–
10998.
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Figure S4.6. Experimental adsorption isotherms of homonuclear MOAs in CO2 at 273
K.
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Figure S4.7. Isosteric heats of homonuclear MOAs for CO2.

Figure S4.8.Micro-, meso- and macroporosity contribution to pore volume.
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S5. CHEMICAL AND MECHANICAL
RESISTANCE
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Table S5.1. Chemical stability of NiDTA-MOG under different media and conditions. .
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Figure S5.1. Chemical inertness tests carried out over NiDTA gel employing
concentrated acids and bases.
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Figure S5.2. Chemical inertness tests carried out over NiDTA gel employing oxidants.
Note that KMnO4 dissolves partially the gel since an amount below the
stoichiometrically required was used, and thus, the FTIR corresponds to the undissolved
gel.

Figure S5.3. Chemical inertness tests carried out over NiDTA gel employing reducing
agents.
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Figure S5.4. Chemical inertness tests carried out over NiDTA gel using several
solvents (part 1)
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Figure S5.5. Chemical inertness tests carried out over NiDTA gel using several
solvents (part 2)
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Figure S5.6. Chemical inertness tests carried out over NiDTA gel employing
coordinating agents (part 1).
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Figure S5.7. Chemical inertness tests carried out over NiDTA gel employing
coordinating agents (part 2).
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Figure S5.8. Chemical inertness tests carried out over NiDTA gel employing
surfactants and saline solutions.
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Figure S5.9. Chemical inertness tests carried out over NiDTA gel applying
solvothermal conditions.
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Figure S5.10. Thermogravimetric curves of MOAs in synthetic air: a) NiDTA, b)
CuDTA, c) PdDTA, d) NiPdDTA, e) PdCuDTA and f) NiCuDTA. Prior to pyrolisis
stage, aerogels lose between 8−20% of its mass due to removal of solvent molecules
retained during its preparation (DMF, DMA, EtOH) and the humidity that may have
adsorb from the environment.
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Figure S5.11. Compression-strain curves performed over a) Ni/Pd system based
aerogels and b) NiDTA metallogels and their respective linear fits (inset graphics) for
determining the Young's modulus.
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Figure S5.12. Images taken during compression tests for NiDTA metallogels: a) 25
mM. b) 50 mM. c) 75 mM, d) 100 mM.



62

Figure S5.13. Images acquired during compression tests for NiDTA aerogels: a) 25
mM. b) 50 mM. c) 75 mM, d) 100 mM.
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Figure S5.14. Images acquired during compression tests for MDTA aerogels: a)
NiDTA. b) NiPdDTA. c) PdDTA.
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S6. CONDUCTIVITY MEASUREMENTS
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Figure S6.1. Images acquired during DC measurements for a) CuDTA and b)
NiCuDTA pellets.

Figure S6.2. Conductivity versus temperature curves for a) CuDTA and b) NiCuDTA
pellets.

Figure S6.3. Natural logarithm of the resistivity versus the inverse of temperature
curves for a) CuDTA and b) NiCuDTA pellets.



66

Figure S6.4. Variation of conductivity after different exposure times to AcOH vapors at
298 K for (a) CuDTA and (b) NiCuDTA.

It must be emphasized that in both compounds the greatest conductivity variation occurs

at the initial period of exposure, which is an interesting feature for a sensible stimuli-

response material. Furthermore, the capacity of these materials to reversibly respond to

chemical stimuli provides a chance to explore their application in gas detection.

AC Conductivity measurements:

Through plane ionic conductivities of the MOAs materials CuDTA and CuNiDTA were

determined by means of complex impedance analysis in the temperature range of 298 K.

The two-point technique (through plane) used two stainless steel probes in contact with

opposite sides of the measured material. The probes were used to source current and

measure the voltage drop. The electrochemical measurements were carried out with an

Autolab electrochemical system II PGSTAT30 (Ecochemie, The Netherlands)
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impedance analyzer. The frequencies were swept from 1 MHz to 1 Hz against the open

circuit potential recording ten points per decade with AC signal amplitude of 10 mV.

All the EIS data were fitted employing a ZView 3.1 software (Scribner Association)

using equivalent circuit as shown below:

R1

CPE1

R2

CPE2

Element Freedom Value Error Error %
R1 Free(+) 2,4111E13 1,6047E20 6,6555E08
CPE1-T Free(+) 1,8202E-06 2,2293E-07 12,248
CPE1-P Free(+) 0,26464 0,011807 4,4615
R2 Fixed(X) 0 N/A N/A
CPE2-T Fixed(X) 0 N/A N/A
CPE2-P Fixed(X) 1 N/A N/A

Chi-Squared: 0,24842
Weighted Sum of Squares: 18,88

Data File: D:\Users\Pilar.Ocon\Desktop\Pilar AMO\CuNIDTA50 AcOH throug and in plane\23 junio trough plane 2016\CuNIDTA50 AcOH T=8h 1 30 junio 16
Circuit Model File: d:\Users\Pilar.Ocon\Desktop\CuDTA fino.mdl
Mode: Run Fitting / Freq. Range (0,001 - 1000000)
Maximum Iterations: 100
Optimization Iterations: 0
Type of Fitting: Complex
Type of Weighting: Calc-Modulus

All impedance spectra show two overlapped contributions ascribed to the bulk and the

grain boundary. R1 and CPE1 are considered the bulk resistance and the constant phase

element representing a no ideal capacitance of the pellet and R2 (Ω) and CPE2 are

resistance and no ideal capacitance typical of materials with capacitive behavior

between the mobile ions (that are blocked by the electrode–electrolyte interphase). R1

(Ω) is used to find the specific conductivity, σ (S cm-1) of the sample according to the

equation:

AR
l
·1



Where A (cm2) and l (cm) are the area and the thickness of the pellet.

Figure S6.5. Acquired images of CuDTA pellets during AC measurements after having
been exposed to acetic acid vapor: a) t = 24 h. b) t = 48 h.
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Figure S6.6. Image of MOXs pressed into pellets.
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S7. FREEZE-DRIED SAMPLES
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Freeze-drying of the gels produced monoliths that retain their shape with a radial
shrinkage comparable to that of CO2 supercritical drying. However, the growth of the
water crystals during the cooling with N2(l) promotes the fusing of the nanofibers into a
lamellar structure. As a result the solid is mainly macroporous with an almost negligible
surface area (10 m2/g) and extremely brittle (in fact, it is very difficult to manipulate
without fracturing). Optical and SEM images are provided below.

Figure S7.1. Photographs of brittle freeze dried NiDTA samples.

Figure S7.2. SEM images of freeze-dried NiDTA: a) 0.1 kX; b) 0.25 kX; c) 25 kX and
d) 100 kX.
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Figure S7.3. N2 adsorption isotherms at 77 K for freeze-dried (blue) and supercritically
dried (red) NiDTA-50 mM.
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S8. PHYSICAL MEASUREMENTS
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Physical Measurements: True density of samples was determined by an automatic

helium microultrapycnometer of Quantachrome Instruments. Elemental analyses (C, H,

N) were performed on a Euro EA elemental analyzer, whereas sulfur and metal contents

were determined by inductively coupled plasma atomic emission spectrometer (ICP-

AES) from Optima 8300. Furthermore, chemical quantitative analysis of the samples

was also performed on xerogels using a SPECS X-ray photoemission spectrometer

equipped with Phoibos 150 1D-DLD analyzer and employing Al Kα (1486.6 eV) as

monochromatic radiation source. The C1s peak was set at 284.6 eV to correct charge

effects and the spectrometer was previously calibrated using Ag 3d5/2 peak (368.28 eV).

The spectra were fitted by modeling Gaussian-Lorentzian contributions by CasaXPS

2.3.16 software. Infrared spectra (ATR mode) were recorded at a resolution of 4 cm-1 on

a FTIR 8400S Shimadzu spectrophotometer for a total of 40 scans in the 4000–650 cm–1

spectral region by using a horizontal single-reflection ATR ZnSe prism. Raman spectra

were taken with an Invia Reflex Raman Renishaw microscope employing 785 nm as

excitation wavelength (Torsana laser) and a working power less than 1 %. Raman

signals were collected at an angle of 180° to the incident laser beam in the 150−3500

cm-1 frequency range after making 10 accumulations of 30 s. Glass-sustained xerogel

pellets were used for X-ray diffraction (XRD) measurements on a Phillips X'PERT

powder diffractometer with Cu-Kα radiation (λ = 1.5418 Å) over the range 5 < 2θ < 70º

with a step size of 0.02º, a variable automatic divergence slit and an acquisition time of

2.5 s per step at 298 K.

Transmission Electron Microscopy (TEM) images were acquired using a Philips

CM200 microscope by depositing a drop of a dilute ethanolic dispersion of the

metallogels on a carbon-coated Cu (300 mesh) grid. It deserves to note that a surfactant

(n-decylamine) was required as dispersing agent, since the fibers composing the gel
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showed high predisposition to aggregate as cobwebs-like structures, even at very low

concentrations. Atomic Force Microscope (AFM) images were acquired in dynamic

mode using a Nanotec Electronica system operating at room temperature in ambient air

conditions. Olympus cantilevers with a nominal force constant of 0.75 N m-1 and a

resonance frequency of about 70 kHz were used. The images were processed using the

WSxM software. The substrates employed were SiO2 (300 nm thickness)/Si (IMS

Company). SiO2 surfaces were sonicated in ultrasound bath at 37 KHz and 380 W, for

15 min in acetone and 15 min in 2-propanol and then dried under an argon flow. The

AFM samples were prepared from a suspension of 3 mg NiDTA in 3 mL of ultrapure

EtOH. The mixture was sonicated with a tip during 25 seconds (24 KHz, 80%) to give a

bluish suspension. 20 μL of this suspension were deposited on SiO2 substrates by drop

casting and allowed to adsorb for 4 min at room temperature. The remaining suspension

was removed blowing with an argon flow. Scanning Electron Microscopy (SEM)

studies were carried out on a JEOL JSM-7000F microscope operated at 10–20 kV and

coupled with an energy X-Ray spectrometer (EDX). Specimens were mounted on

conductive carbon adhesive tabs and imaged after chromium sputter coating of 5 nm to

make them conductive. Dinitrogen (77 K) and carbon dioxide (273 and 298 K)

physisorption data were measured on activated samples (vacuum at 423 K for 4 h) with

a Quantachrome Autosorb-iQ-MP. The specific surface area was calculated from the

adsorption branch in the relative pressure interval using the Brunauer–Emmett–Teller

(BET) method.[14] Thermal analyses (TG/DTA) were recorded on a TA Instruments SDT

2960 thermal analyzer from room temperature to 973 K in a synthetic air atmosphere

(79% N2 / 21% O2) with a heating rate of 5 ºC min-1 and with an outflow of 150 cm3

min-1.

[14] S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc. 1938, 60, 309–319
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AMTS Insight testing device with a 2.5 kN load cell was used to record compression-

strain curves. Cylindrical specimens tested had an approximated diameter of 25–28 mm

for gels and 10–18 mm for aerogels. The length of the pieces ranged from 11 to 30 mm.

More than 5 repetitions for each material were made in order to ensure the

reproducibility and test pieces were distracted to failure or to a maximum deformation

of 80 % at a rate of 1 mm min-1.

DC and AC electrical conductivity measurements were performed on sample disks

(area: 1.13 cm2; thickness: 0.025–0.030 cm) pressed at 104 kg cm-2 (Figure 6.1).

Temperature-variable DC measurements (298–373 K) were made under vacuum (10-3

hPa). The contacts were made with tungsten wires (25 μm diameter). The samples were

measured applying an electrical current with voltages from +10 to -10 V, on a Quantum

Design PPMS-9 connected to an external voltage source (Keithley model 2450 source-

meter) and an ammeter (Keithley 6514 electrometer model). Iodine doping was

achieved by placing the pressed pellets in a closed vessel containing some iodine

crystals. Doping occurs by absorption of the iodine vapour. The doping time was 94

hours. To assess the stimuli-response behavior to acetic acid vapours (AcOH), AC

measurements were performed using an Autolab electrochemical system II PGSTAT30

(Ecochemie, The Netherlands) electrochemical impedance analyzer over the frequency

range from 1 Hz to 1 MHz with an applied voltage of 0.01 V. Vapor exposure times

were varied from 1 to 48 h. All measurements were collected at 298 K using a two-

probe method. The electrical contact between the sample and the symmetric stainless

steel (SS) disk electrodes, for the through plane measurements, was made by applying a

pressure of 350 N cm torque with a conductivity cell configuration SS/sample/SS. Each

impedance measurement was repeated three times using a fresh pellet.
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5.1. SUMMARY 
After studying in chapter 4 some of the most outstanding physicochemical 

properties of metal-dithiooxamidato MOGs and MOAs, the following chapter 

evaluates the redox capacities of different porous metal-organic porous materials 

(MOPMs) of Cu(II)  in the catalytic electroreduction of CO2: (1) HKUST-1 metal-

organic framework (MOF), [Cu3(6-C9H3O6)2]n; (2) CuAdeAce MOF, [Cu3(3-

C5H4N5)2]n; (3) CuDTA mesoporous metal-organic aerogel (MOA), [Cu(-

C2H2N2S2)]n; and (4) CuZnDTA MOA, [Cu0.6Zn0.4(-C2H2N2S2)]n. MOFs are hybrid 

materials containing three well-differentiated sites to which the catalytic function can 

be allocated, namely, the metallic component, the organic linker, and the pore space. 

MOFs are considered as ideal candidates for CO2 adsorption, separation, and 

reduction through catalyzed reactions. This is because of their combined favorable 

properties of large surface area, high porosity, tunable pore-size, and shape-

selective character. Indeed, MOFs are particularly suitable for electrochemical 

reactions as a result of these features in addition to their high electronic 

conductivities. On the contrary, examples of metal-organic aerogels (MOAs) are 

relatively scarce compared with the more conventional MOFs and, to the best of our 

knowledge; no studies have dealt with their use as electrocatalysts for CO2 

reduction.  

In this study, each MOPM was deposited on a gas diffusion layer to form a 

characteristic gas–solid–liquid three-phase interface, which allows breaking through 

the mass transfer limitations usually found in electrochemical systems, producing an 

enhanced CO2 reduction performance. SEM images recorded at low magnification 

(5000x) show that homogenous films cover the entire sprayed on the gas diffusion 

electrodes (GDE) surface. At high magnification (25000x), the microstructures of the 

HKUST-1 and CuAdeAce GDEs reveal their polycrystalline nature with strongly 

aggregated sub-micrometric crystals and micrometric octahedral crystals, 
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respectively. SEM images of CuDTA and CuZnDTA GDEs reveal filamentous 

structures composed of highly crosslinked fibers with diameters of 5 to 20 nm, 

comparable to those of the corresponding as-prepared materials. These GDEs were 

characterized using a set of analytical techniques and cyclic voltammetry analyses 

and finally, materials were tested in the electrocatalytical reduction of CO2 using a 

continuous filter-press electrochemical cell under different operating conditions.  

The results indicate the ability of Cu-containing metal-organic porous 

materials (MOPMs) supported in GDEs to promote the electrocatalytic conversion of 

CO2 to alcohols. The electrolysis product analyses show methanol and ethanol to be 

predominately formed as liquid products from CO2 reduction. Going to the detail, an 

enhanced performance for CO2 conversion was achieved when applying HKUST-1 

and CuZnDTA GDEs at j = 10 mA·cm-2, Qe/A = 3 ml·min·cm-2 and Qg/A = 20 

ml·min·cm-2, where moderate formation rates (HKUST-1, rT = 18.58 x 10-6 mol·m-2·s-1; 

CuZnDTA, rT = 11.57 x 10-6 mol·m-2·s-1) and Faradaic efficiencies (HKUST-1, FET = 

15.9%; CuZnDTA, FET = 9.9%) can be obtained. These results denoted that MOPMs 

with unsaturated coordination positions exposed on the pore system are preferred to 

enhance the performance of the CO2 electrocatalytic reduction to alcohols. It is also 

important to note the synergic effect of Cu and Zn in the reduction response, as 

denoted by the remarkably lower current densities at lower onset potentials for 

CuZnDTA compared with those of CuDTA. 

Finally, the stabilities of the MOPM-GDEs were tested over an extended 

period. The electrocatalytic activity (FET) decays to a plateau after 60 min and 

remains almost stable during the rest of the run (pseudo-stationary state), except 

those for the CuDTA GDE, which drops to zero after 120 min, and for CuAdeAce, 

which is almost negligible since the beginning. This deactivation is attributed to the 

decrease of their active-site areas or the degradation of the MOPMs owing to their 

limited stabilities in water, in which they undergo hydrolysis, amorphization, or phase 
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transformations, even at room temperature. ATR-FTIR spectroscopy on used MOF-

GDEs (HKUST-1 and CuAdeAce) show a depletion of the intensity of the main 

reference signal attributed to the MOF-GDE; this suggests that a degradation of the 

material occurs during the run. PXRD analysis performed on 30 min used MOF-

GDEs (HKUST-1 and CuAdeAce) shows a significant reduction of crystallinity, which 

is more acute for HKUST-1. It must be pointed out that the performance loss of 

HKUST-1 is smaller than that expected from the drastic crystallinity loss; thus, the 

remaining efficiency level can be attributed to the preservation of the local structure, 

as suggested by the FTIR spectra. In fact, The FTIR analysis also indicates that the 

loss of intensity for the MOA-GDEs is not so evident; therefore, the initial FET decay 

can be related to a shallow surface degradation/modification of the CuDTA and 

CuZnDTA nanofibers that is not detectable in the FTIR spectra at this stage, as the 

bulk of the material remains unaltered. However, in all cases, the FTIR spectra 

recorded at the end of the run (300 min) reveal a series of emerging peaks that 

evidence the formation of copper(II) hydroxycarbonate (malachite), which is a 

plausible degradation path for all Cu-MOPMs and not detectable at the middle of the 

run. Furthermore, at the end of the run, the decay of the signals corresponding to 

CuDTA is greater than that observed for CuZnDTA, and this explains the differences 

in the FET trend at the last part of the run. In fact both GDEs containing HKUST-1 

and CuZnDTA are able to retain moderate formation rates (HKUST-1, r
T 

= 18.58 x 

10-6 mol·m-2·s-1; CuZnDTA, r
T
 = 11.57 x 10-6 mol·m-2·s-1) and Faradaic efficiencies 

(HKUST-1, FE
T 

= 15.9%; CuZnDTA, FE
T 

= 9.9%) for as long as 12 or 17 h, 

surpassing the previous stability value reached for MOF-GDEs for the 

electrocatalytic transformation of CO2. 
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Copper-Based Metal–Organic Porous Materials for CO2
Electrocatalytic Reduction to Alcohols
Jonathan Albo,*[a] Daniel Vallejo,[b] Garikoitz Beobide,[b] Oscar Castillo,[b] Pedro CastaÇo,[a]

and Angel Irabien[c]

Introduction

The reduction of the CO2 concentration in the atmosphere has
become a critical challenge for sustainable development. There

are different approaches to mitigate CO2 emissions from the
use of fossil fuels, including CO2 capture[1–3] and subsequent

storage or its conversion into valuable chemicals.[4–6] CO2 is

considered to be a carbon source for the synthesis of valuable
chemicals, as it is abundant in the atmosphere and nontoxic

compared with the other C1 source, CO; therefore, the benefi-
cial reuse of CO2 is an interesting approach for the future. To

this end, several methods have been adopted for the conver-
sion and activation of CO2 such as chemical, thermochemical,
photochemical, biochemical, electrochemical, and hydrother-

mal methods.[7] Among them, electrocatalytic valorization ap-
pears to be a promising strategy owing to its simple procedure
and ambient operation conditions. In addition, this technology

coupled to a renewable energy source, such as wind or solar
energy, could generate carbon-neutral fuels or industrial chem-

icals that are derived conventionally from petroleum.[8] In
recent years, many investigators have studied the electrocata-

lytic reduction of CO2 on metallic[9] and modified electrodes in

aqueous, nonaqueous, and ionic-liquid media[10] under differ-
ent operating conditions and system configurations to pro-

duce a range of useful products for industrial chemistry (i.e. ,
formic acid, methane, ethane, ethylene, propylene, methanol,

and ethanol). In particular, the challenges for the conversion of
CO2 into high-energy-density alcohols, such as methanol
(CH3OH), are great, but the potential rewards are even great-

er.[8, 11, 12]

Among the different cathode metals applied, Cu uniquely
produces hydrocarbons at high reaction rates over sustained
periods of time;[9, 13, 14] therefore, it is the strongest candidate

for CO2 electrocatalytic reduction. However, Cu generates
a range of reaction products, and the selectivity of each prod-

uct tends to be low.[15] Thus, to improve the selectivity, other

catalyst structures should be considered to make the electroca-
talytic reduction of CO2 at Cu-based surfaces technically and

economically viable.
In the last decade, metal–organic porous materials (MOPMs)

and, particularly, metal–organic frameworks (MOFs), also
known as porous coordination polymers or porous coordina-

tion networks, have shown many potential applications as new

multifunctional materials. MOFs are hybrid materials containing
three well-differentiated sites to which the catalytic function

can be allocated, namely, the metallic component, the organic
linker, and the pore space. MOFs are considered as ideal candi-

dates for CO2 adsorption, separation,[16] and reduction through
catalyzed reactions.[17] This is because of their combined favor-

The electrocatalytic reduction of CO2 has been investigated
using four Cu-based metal–organic porous materials supported

on gas diffusion electrodes, namely, (1) HKUST-1 metal–organic
framework (MOF), [Cu3(m6-C9H3O6)2]n ; (2) CuAdeAce MOF,
[Cu3(m3-C5H4N5)2]n ; (3) CuDTA mesoporous metal–organic aero-
gel (MOA), [Cu(m-C2H2N2S2)]n ; and (4) CuZnDTA MOA,

[Cu0.6Zn0.4(m-C2H2N2S2)]n. The electrodes show relatively high
surface areas, accessibilities, and exposure of the Cu catalytic

centers as well as favorable electrocatalytic CO2 reduction per-
formance, that is, they have a high efficiency for the produc-

tion of methanol and ethanol in the liquid phase. The maxi-
mum cumulative Faradaic efficiencies for CO2 conversion at

HKUST-1-, CuAdeAce-, CuDTA-, and CuZnDTA-based electrodes
are 15.9, 1.2, 6, and 9.9 %, respectively, at a current density of
10 mA cm@2, an electrolyte-flow/area ratio of 3 mL min cm@2,
and a gas-flow/area ratio of 20 mL min cm@2. We can correlate
these observations with the structural features of the electro-
des. Furthermore, HKUST-1- and CuZnDTA-based electrodes

show stable electrocatalytic performance for 17 and 12 h, re-
spectively.
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able properties of large surface area, high porosity, tunable
pore-size, and shape-selective character. Indeed, MOFs are par-

ticularly suitable for electrochemical reactions as a result of
these features in addition to their high electronic conductivi-

ties.[18–26] For example, Kumar et al.[19] studied the electrocata-
lytic reduction of CO2 on Cu-based MOF (HKUST-1) films with
an electrolyte consisting of a DMF solution of tetrabutylammo-
nium tetrafluoroborate saturated with CO2. Cyclic voltammetry
revealed that the electrochemically generated CuI species were

very selective for CO2 reduction, although the main product
was oxalic acid. In the same year, Hinogami et al.[20] synthesized
a copper rubeanate MOF (CR-MOF) supported on carbon films
as electrodes. The onset potential for CO2 reduction at the CR-

MOF electrode was approximately 0.20 V higher than that ob-
served on a Cu metal electrode. Hod et al.[23] synthesized iron–

porphyrin-based MOFs for the electrocatalytic conversion of

CO2 ; these materials exhibited high active-site exposure
(&1015 sites per cm2) and nearly 100 % Faradaic efficiency (FE)

for the production of CO + H2 mixtures. Kornienko et al.[24] ob-
tained 76 % Faradaic efficiency and high stability for 7 h using

Co–porphyrin MOFs. On the contrary, examples of metal–
organic aerogels (MOAs) are relatively scarce[27–31] compared

with the more conventional MOFs. To the best of our knowl-

edge, no studies have dealt with their use as electrocatalysts
for CO2 reduction.

To face the challenge of synthesizing effective and stable
CO2 reduction electrocatalysts for the continuous production

of alcohols, in this work, we have evaluated four MOPMs (two
MOFs and two MOAs) containing Cu (Figure 1) as gas diffusion

electrodes (GDEs), which are named hereafter MOPM-GDEs:
(1) a benchmark MOF with formula [Cu3(m6-C9H3O6)2(OH2)3]n

(C9H3O6 = benzene-1,3,5-tricarboxylate), commonly known as
MOF-199 or HKUST-1,[32] in which the accessible metallic moiet-
ies are adsorption sites for CO2 ;[33] (2) a microporous

copper(II)–adeninate–acetate coordination framework with for-
mula [Cu2(m3-adeninate)2(m2-OOC(CH3)2)]n (CuAdeAce), in which
the Watson–Crick faces of the adenine are sites for CO2 adsorp-
tion;[34] (3) a Cu MOA built from successive junctions with bis-

bidentate dithiooxamidate (DTA) and named CuDTA; and (4) a
MOA with the same synthetic premise as (3) but with oxides of

Cu and Zn, named CuZnDTA. The coordination frameworks of

MOAs lack intrinsic pore systems; therefore, we have pro-
cessed the materials as nanofibrous aerogels to increase their

surface areas and the accessibility of the catalytic centers. Each
MOPM was deposited on a gas diffusion layer to form a charac-

teristic gas–solid–liquid three-phase interface, which allows the
mass-transfer limitations usually found in electrochemical sys-

tems to be overcome to enhance the CO2 reduction per-

formance.[4] Then, we characterized the GDEs through a set of
analytical techniques and cyclic-voltammetry analyses and fi-

nally tested the materials in the electrocatalytic reduction of
CO2 using a continuous filter-press electrochemical cell under

different operating conditions.

Results and Discussion

Surface characterization of the GDEs

The MOPM-GDEs were characterized by SEM, attenuated total

reflectance (ATR) FTIR spectroscopy, and PXRD to understand

their structural and morphological properties in relation to
their capability for CO2 electrocatalytic reduction. In all cases,

the SEM images recorded at low magnification (5000 V , see
Figure S3.1 of the Supporting Information) show that homoge-

nous films cover the entire sprayed GDE surface. At high mag-
nification (25 000 V), the microstructures of the HKUST-1 and

CuAdeAce GDEs reveal their polycrystalline natures (Figure 2 a
and b) with strongly aggregated sub-micrometric crystals and

micrometric octahedral crystals, respectively. The images of the
CuDTA and CuZnDTA GDEs (Figure 2 c and d) reveal filamen-
tous structures composed of highly crosslinked fibers with di-

ameters of 5 to 20 nm, comparable to those of the corre-
sponding as-prepared materials.

All of the ATR-FTIR spectra feature a set of peaks at ñ= 1305,
1210, 1150, 1060, and 975 cm@1, which corresponds to the anti-

symmetric and symmetric stretching of the sulfonate, perfluori-

nated, and ether groups of the tetrafluoroethylene copolymer
used as the surfactant (NafionS). Although the MOPMs show

less-intense peaks overlapped with those of the surfactant in
the low-energy range, the peaks arising from the coordination

framework can be distinguished at higher wavenumbers (ñ=

1310–1700 cm@1). The detailed spectroscopy of the MOPM-
Figure 1. Structural details of the selected metal–organic porous materials
(MOPMs).
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GDEs and the analysis of the main vibration modes are provid-

ed in the Supporting Information (see Figure S3.3 and
Table S3.1).

As the performance of a MOF is closely related to its crystal-

linity, HKUST-1 and CuAdeAce GDEs were further characterized
by PXRD (Figure 3). Both MOF-GDEs show characteristic (002)

and (004) reflections of the graphite sites at 2 q= 26.5 and
54.68, respectively. Although, the preferred orientation of

graphite gives rise to an outsized peak, the signals correspond-
ing to the MOFs are clearly distinguishable at 2 q<228. As

shown in the inset graphic, all of the observed peaks fit the ex-

pected lattice-plane reflections.

Cyclic-voltammetry characterization

To examine the electrocatalytic behavior of the prepared GDEs,
cyclic voltammetry was performed for the MOPM-GDEs in CO2-

saturated (0.5 m KHCO3) aqueous solutions; the voltammo-
grams after five scans with the current densities (j) normalized

to the geometric area of the MOPM-GDEs are shown in
Figure 4. The results are compared to the current–voltage re-
sponse of a Cu plate.

Large differences between the voltammetric profiles of the

MOPM-GDEs can be seen in Figure 4, and HKUST-1 and CuZnD-

TA are the most promising candidates for the electroreduction
process. All of the voltammetric profiles show a reduction pro-

cess that starts at approximately @1 V versus Ag/AgCl and is
associated with the reduction of CO2. On the other hand, for

the applied voltage, the CuAdeAce GDE shows almost no re-
sponse variation, which reveals a low activity for conducting
electrons. It is also important to note the synergic effect of Cu

and Zn in the reduction response, as denoted by the remarka-
bly lower current densities at lower onset potentials for
CuZnDTA compared with those of CuDTA. This result is in
agreement with those for Cu2O/ZnO and Cu2O GDEs.[5] Further-
more, the oxidative peak at @0.8 V, previously assigned to the
transformation of Zn to ZnO,[5] is assigned in this work to the

formation of oxidized subproducts from the CO2 reduction re-
action because it is present for both CuDTA and CuZnDTA
GDEs, and each voltammetry profile shown in Figure 5 corre-

sponds to the fifth cycle.
To further confirm the reduction of CO2, the voltammetry

profiles of the most promising GDEs (HKUST-1 and CuZnDTA)
in the presence and absence of CO2 (in an Ar-saturated solu-

tion) are shown in Figure 5 a and 5 b. The decrease of the cur-

rent intensity for both GDEs is an indication that CO2 is re-
duced at an onset potential lower than @1 V versus Ag/AgCl.

Thus, the intrinsic oxidation–reduction of the GDEs might be
neglected, particularly for HKUST-1 GDE, for which the reduc-

tion response in the absence of CO2 is close to the response
for a Cu plate in a CO2-saturated KHCO3 aqueous solution.

Figure 2. SEM images at 25 000 V magnification of (a) HKUST-1, (b) CuA-
deAce, (c) CuDTA, and (d) CuZnDTA; not real colors.

Figure 3. PXRD patterns of HKUST-1 and CuAdeAce GDEs.

Figure 4. Cyclic voltammograms for the MOPM-GDEs in a CO2-saturated
0.5 m KHCO3 aqueous solution.
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Influence of current density on CO2 reduction performance

The results for the continuous electrocatalytic reduc-

tion of CO2 in a filter-press electrochemical cell are
presented hereafter. The quantitative reduction per-
formances (production rate, r, and Faradaic efficiency,

FE) regarding the liquid-phase product distribution
at different current densities (j = 5–40 mA cm@2) are

shown in Figure 6 for the prepared MOPM-GDEs. The
electrocatalytic reduction of CO2 with the MOPM-
GDEs leads to the formation of CH3OH and C2H5OH.
It should be noted that the carbon paper without

MOPMs did not produce any measurable liquid prod-
uct. The FEs were calculated for a 6-electron pathway
for CO2 reduction to CH3OH and a 12-electron path-

way to C2H5OH. A constant electrolyte-flow/area ratio
(Qe/A) and gas-flow/area ratio (Qg/A) of 2 and

20 mL min@1 cm@2, respectively, were applied. These
conditions were found previously to be optimal for

the electrocatalytic reduction of CO2.[4]

As shown in Figure 6, the product distribution and
process efficiency are correlated with the current

density applied to the system. The HKUST-1 and
CuZnDTA GDEs are the most active electrocatalysts

for the reduction of CO2, in agreement with the
higher reduction responses observed in the cyclic-

voltammetry profiles (Figure 4). This electrocatalytic per-
formance is partially correlated with the surface area of the
GDEs, as summarized in Table S2.1 in the Supporting Informa-
tion: the HKUST-1 GDE exhibits the highest surface area
(1710 m2 g@1) and the highest electrocatalytic performance,
whereas CuDTA and CuZnDTA GDEs exhibit much lower sur-

face areas (270 and 260 m2 g@1, respectively) and significantly
poorer electrocatalytic performances. Nevertheless, the surface
area is not the only parameter that controls the catalytic per-

formance, as CuAdeAce GDE with an intermediate area
(500 m2 g@1) shows the lowest FE values. The last results could

be anticipated from the cyclic-voltammetry profiles displayed
in Figure 4, which indicated the lowest electron conductivity

for the CuAdeAce GDE. Thus, the electrocatalytic performance
should be related to additional features of the GDEs that re-

quire additional analysis of the Cu active sites, particularly the

accessibility of the pentacoordinate CuII centers, which are hin-
dered sterically by the surrounding ligands. This leads to the

preliminarily conclusion that MOPMs with unsaturated coordi-
nation positions exposed in the pore system are preferred for

the enhancement of the performance of the electrocatalytic re-
duction of CO2 to alcohols.

The maximum CH3OH and C2H5OH production rates for the

HKUST-1 GDEs (rCH3 OH = 5.62 V 10@6 mol m@2 s@1 and rC2H5OH =

5.28 V 10@6 mol m@2 s@1) correspond to product concentrations

in the catholyte of 0.54 and 0.73 mg L@1 for CH3OH and
C2H5OH, respectively. The formation of both alcohols, CH3OH

and C2H5OH, has been reported previously,[4, 15, 35–46] whereas
Cu-based GDEs are more selective towards the formation of

CH3OH over C2H5OH.[4] The maximum FEs of CH3OH and

C2H5OH were 54.8 and 31.4 % for Cu2O and Cu2O/ZnO GDEs, re-
spectively, at applied potentials of @1.39 and @1.16 V versus

Ag/AgCl.[4] Furthermore, the CuO GDE led to a higher selectivi-

Figure 5. Cyclic-voltammetry responses in medium saturated with CO2 (0.5 m
KHCO3) and Ar of (a) HKUST-1 and (b) CuZnDTA.

Figure 6. Rates (r) for CH3OH (*) and C2H5OH (*) formation and Faradaic efficiencies
(FEs) in the electrocatalytic reduction of CO2 as a function of the current density (j) ap-
plied with (a) HKUST-1, (b) CuAdeAce, (c) CuDTA, and (d) CuZnDTA; the lines are only
guides.
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ty for C2H5OH (FE = 15.5 %) in a 0.2 m KHCO3 solution,[39] and
trace amounts of CH3OH and C3H8O were also detected. Anoth-

er example is the recent study conducted by Gutierrez-Guerra
et al.[46] for different Cu-based GDEs, which afforded CH3OH

and C2H5OH with selectivities of 80 and 10 %, respectively, at
an applied current of @30 mA. Kuhl et al.[15] reported a total of

16 different CO2 reduction products (including CH3OH and
C2H5OH) across a range of potentials. They hypothesized that
the chemistry involved in the C@C coupling reactions to form

C2–C3 products occurs through an enol-like surface intermedi-
ate, which desorbs to convert to its diol or ketone form. Cer-
tainly, the C@C bond formation is one of the most critical fac-
tors to be considered in the design of electrocatalysts for the

production of alcohols, and further experimental work is
needed to fully elucidate the CO2 reduction steps to form alco-

hols using Cu-based GDEs.

As shown in Figure 6, the rates for CO2 reduction to CH3OH
and C2H5OH did not improve at j>10 mA cm@2. At this point,

the maximum r values can be obtained for all MOPM-GDEs.
The total Faradaic efficiency (FET, cumulative efficiency for the

formation of CH3OH and C2H5OH) drops drastically as the cur-
rent increases from j = 10 to 40 mA cm@2. This result could be

explained by the consumption of the additional current by

side reactions; hence, the optimal current density is
10 mA cm@2 for all MOPM-GDEs. Under these conditions, the

FET values are 10.9 and 7.3 % for the HKUST-1 and CuZnDTA
GDEs, respectively. The remaining product is expected to be

mainly H2, which competes with the electrocatalytic reduction
of CO2 to alcohols and affects the GDE stability negatively. The

latter observation is caused by the fact that H2 favors the

leaching of the active material from the GDE.[4]

Influence of electrolyte flow rate and gas flow rate

Previous studies demonstrated that variations in Qe and Qg

could lead to significant mass-transfer differences in the cell

and, thus, in the total rate for CO2 transformation, rT, and the
cumulative FET of the process.[4, 5] These effects can be ob-

served even for the application of GDEs,[4] for which mass-
transfer limitations are expected to be overcome partially.[6, 47, 48]

In an attempt to improve the CO2 conversion efficiency, ad-
ditional experiments were conducted at different Qe/A and Qg/

A values. The results are presented in Figure 7. The increase in
Qe/A from 1 to 3 mL min@1 cm–2 led to a significant enhance-
ment in the CO2 electrocatalytic conversion rate (Figure 7 a,

e.g. , from rT = 5.80 V 10@6 to 18.57 V 10@6 mol m@2 s@1 for HKUST-
1 GDE). The use of low Qe/A ratios is preferred as the concen-

tration of alcohols in the liquid would be higher; therefore, for
an optimal process operation, a compromise needs to be met

between the concentration of alcohols in the product and

their formation rate. Further increases in Qe/A led to a drastic
decrease in rT owing to the leaching of the active material

from the GDE.[4] Furthermore, a low Qe/A allows the infiltration
of the catholyte into the GDE structure, which increases the

diffusion time and enhances CO2 electrocatalytic per-
formance.[4, 48, 49]

Moreover, the increases in Qg/A from 10 to 20 mL min@1 cm–2

yields an increase of the CO2 electrocatalytic conversion rate

(Figure 7 b, e.g. , from rT = 13.94 V 10@6 to 18.57 V
10@6 mol m@2 s@1 for HKUST-1 GDE). This observation reveals

that the overall kinetics at Qg/A = 10 mL min@1 are controlled

by the external transport of CO2 to the GDE actives sites. A fur-
ther increase of Qg/A above 20 mL min@1 cm@2 leads to a drastic

decrease in rT, which is then attributed to the leaching of
active material from the GDE, in agreement with previous find-

ings.[4, 48, 50] Thus, the optimal balance point is at Qg/A =

20 mL min@1 cm–2, at which enough CO2 gas supply is provided

for the reaction well before a massive detachment of active
material occurs.

Overall, the optimal conditions for the CO2 electrocatalytic

reduction on MOPM-GDEs is Qe/A = 3 mL min@1 cm@2 and Qg/
A = 20 mL min@1 cm@2. The optimal electrocatalytic performan-

ces, in terms of r and FE, for the MOPM-GDEs are shown in
Table 1. To interpret the electrocatalytic activity further, the

total formation rates were normalized to the active Cu surface

area of each GDE, rT,a. The active Cu area (a) was measured
through pulse chemisorption, as described in the Experimental

Section. The results were compared to those obtained for
a filter-press electrochemical cell equipped with a Cu plate at

an applied potential of @1.3 V versus Ag/AgCl (j =
10.83 mA cm@2).

Figure 7. Total rates (rT) at j = 10 mA cm@2 for the MOPM-GDE with (a) differ-
ent electrolyte flow rates (Qe/A) and (b) CO2 gas flow rates (Qg/A) ; the lines
are only guides.
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The alcohol formation rate after 90 min on-stream varied
from rT = 1.68 V 10@6 to 18.58 V 10@6 mol m@2 s@1 for CuAdeAce

and HKUST-1 GDEs, respectively. The latter GDE also displays

the highest FE (&16 %) among the studied electrodes. These
values, together with those obtained for CuZnDTA GDE, are re-

markably greater than those for a Cu plate and show the great
opportunities brought by MOPMs for the electrocatalytic re-

duction of CO2. This enhanced performance is related to the
demonstrated higher activity for the reduction of protons by

CuOx in comparison with that of Cu0 for the electrocatalytic re-

duction of CO2.[24, 35–37, 51, 52] For example, Lan et al.[37] investigat-
ed the electrocatalytic reduction of CO2 at a Cu/CuO (core–

shell) catalyst in 1 m KHCO3 with a flow reactor. This study
proved that transformations between Cu, CuI, and CuO oc-

curred as a function of applied potential, which at the same
time did not affect CH3OH production severely. Thus, the high

yield of CH3OH obtained at @1.72 V versus Ag/AgCl using

a Cu/CuO (core–shell) electrocatalyst was higher than that ob-
tained using Cu foil. Furthermore, the formation rates reached

using the HKUST-1 GDEs are in the range of those values re-
ported previously for air-oxidized Cu foil and electrochemically

oxidized Cu foil (r&2 V 10@5 mol m@2 s@1) at potentials of @1.2
to @1.5 V versus Ag/AgCl.[53] Nevertheless, the formation rates

are still below those reported for Cu2O GDEs (rT = 11.9 V

10@5 mol m@2 s@1 at @1.05 V versus Ag/AgCl)[54] and also those
achieved with Cu2O/Zn-based GDEs (r = 4.74 V

10@5 mol m@2 s@1).[4] This result is related to the beneficial prop-
erties of CuI for CO2 electrocatalytic reduction processes. Previ-
ous studies demonstrated that CuI presents both intermediate
hydrogen overpotentials and CO adsorption properties, which

promote CO2 reduction in aqueous solutions in comparison
with Cu0 or CuII-based electrocatalysts.[36, 51]

Interestingly, if the formation rates are normalized to the

active Cu surface available, CuAdeAce shows the highest activi-
ty (rT,a = 13.1 V 10@6 mol m@2 s@1). Conversely, the lowest rates

were observed for the HKUST-1 GDEs (rT,a = 0.28 V
10@6 mol m@2 s@1). To explain such unexpected behavior, first it

must be considered that the idealized crystal structure sug-

gests that the coordination framework of CuAdeAce lacks ac-
cessible unsaturated CuII coordination positions, and this leads

to a low Cu active-surface value (0.13 cm2 gCu
@1), which is prob-

ably attributable to the presence of crystal defects that render

some CuII sites unhindered and available for N2O chemisorp-
tion. Therefore, the superior value of the normalized rate

found for CuAdeAce implies that the scarce
amount of accessible CuII sites are highly active

centers and it provides a clue for the design of
more efficient electrocatalysts for CO2 reduction

based on {Cu2(m3-adeninate)2[m2-OOC(CH3)2]}n pad-
dlewheel motifs.

On the other hand, the comparison of the nor-
malized rates for CuDTA and CuZnDTA (0.13 and
6.52 mol m@2 s@1) supports the previously inferred
crucial role that ZnII centers play on the per-
formance of MOF-GDEs.

Long-term stability of MOPM-GDEs

Finally, the stabilities of the MOPM-GDEs were tested over an

extended period. The evolution of the cumulative Faradaic effi-
ciency over 5 h on-stream, FET, for the observed optimal experi-

mental conditions is shown in Figure 8.

As indicated in Figure 8, during the first minutes of the ex-

periment, the electrolyte needs to diffuse through the internal
structure of the GDE to form a typical three-phase interface
throughout the whole GDE and, thus, enlarge the contact
area.[55] The electrocatalytic activity (FET) decays to a plateau

and remains almost stable during the rest of the run (pseudos-
tationary state), except that for the CuDTA GDE, which drops
to zero after 120 min. This deactivation observed for all

MOPM-GDEs is attributed to the decrease of their active-site
areas[48, 49] or the degradation of the MOPMs owing to their lim-

ited stabilities in water, in which they undergo hydrolysis,
amorphization, or phase transformations, even at room tem-

perature.[56, 57] In this sense, the MOPM-GDEs used for 30 min

were analyzed further and compared with the as-prepared
ones. The ATR-FTIR spectroscopy measurements (Figure 9 a

and b) of the MOF-GDEs (HKUST-1 and CuAdeAce) show a de-
pletion of the intensity of the main reference signal attributed

to the MOF-GDE; this suggests that a degradation of the mate-
rial occurs during the run.

Table 1. r and FE for the electrocatalytic conversion of CO2 at MOPM-GDEs. j =
10 mA cm@2, Qe/A = 3 mL min@1 cm@2, Qg/A = 20 mL min@1 cm@2.

GDE E aCu r [10@6 mol m@2 s@1] FE [%]
[V] [cm2] rCH3 OH rC2 H5 OH rT rT,a FECH3 OH FEC2 H5 OH FET

HKUST-1 @0.9 66.48 9.68 8.90 18.58 0.28 5.6 10.3 15.9
CuAdeAce @1.75 0.13 1.25 0.43 1.68 13.1 0.7 0.5 1.2
CuDTA @1.41 53.69 3.28 3.58 6.86 0.13 1.9 4.1 6
CuZnDTA @1.25 1.78 5.93 5.64 11.57 6.52 3.4 6.5 9.9
Cu plate[a] @1.3 – 8.7 – 8.7 – 4.6 – 4.6

[a] Data from Ref. [5] at j = 10.83 mA cm@2 and Qe/A = 2 mL min@1 cm@2.

Figure 8. Time-dependence of FE for the MOPM-GDEs under the following
conditions: j = 10 mA cm@2, Qe/A = 3 mL min@1 cm@2, and Qg/
A = 20 mL min@1 cm@2 ; the lines are only guides.
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Accordingly, the PXRD analysis of the HKUST-1 and CuA-
deAce GDEs (Figure 10) shows a significant reduction of crys-

tallinity, which is more acute for HKUST-1. It must be pointed
out that the performance loss of HKUST-1 is smaller than that

expected from the drastic crystallinity loss; thus, the remaining
efficiency level can be attributed to the preservation of the

local structure, as suggested by the FTIR spectra. Coming back

to the FTIR analysis (Figure 9), the loss of intensity for the
MOA-GDEs (Figure 9 c and 9 d) is not so evident; therefore, the

initial FET decay can be related to a shallow surface degrada-
tion/modification of the CuDTA and CuZnDTA nanofibers that

is not detectable in the FTIR spectra at this stage, as the bulk
of the material remains unaltered. However, in all cases, the

FTIR spectra recorded at the end of the run (300 min, see Sup-

porting Information) reveal a series of emerging peaks that evi-
dence the formation of copper(II) hydroxycarbonate (mala-

chite), which is a plausible degradation path for all Cu-MOPMs
and not detectable at the middle of the run. Furthermore, at

the end of the run, the decay of the signals corresponding to
CuDTA is greater than that observed for CuZnDTA, and this ex-

plains the differences in the FET trend at the last part of the

run.
The FTIR and PXRD analyses of the fresh and used MOPM-

GDEs give a qualitative clue to the activity loss, whereas
a quantitative one is obtained from the relative FET losses.
After 5 h on-stream, the relative FET drops are 40, 65, 98, and
51 % for HKUST-1, CuAdeAce, CuDTA, and CuZnDTA GDEs, re-

spectively. These relative activity losses indicate that all MOPM-
GDEs (except CuDTA) retain an intermediate efficiency despite
the cited long-term degradation. In a practical sense, a third
reason for the deactivation should be indicated, namely the
leaching of the MOPM from the rest of the GDE structure

(carbon support).[4] In addition, the probable agglomeration of
particles and defects in the catalytic layer during the prepara-

tion of the MOPM-GDE would likely assist tunneling and in-

crease the unwanted H2 formation owing to the easy access of
water to catalytic sites.[51] On the contrary, the GDEs containing

HKUST-1 and CuZnDTA are able to retain moderate formation
rates (KHUST-1, rT = 18.58 V 10@6 mol m@2 s@1; CuZnDTA, rT =

11.57 V 10@6 mol m@2 s@1) and Faradaic efficiencies (KHUST-1,
FET = 15.9 %; CuZnDTA, FET = 9.9 %) for as long as 12 or 17 h

Figure 9. ATR-FTIR spectra for fresh and used (a) HKUST-1, (b) CuAdeAce,
(c) CuDTA, and (d) CuZnDTA.

Figure 10. Comparison of the PXRD patterns of fresh and used (a) HKUST-
1 and (b) CuAdeAce.
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and surpass the stability value reached recently for MOF-GDEs
for the electrocatalytic transformation of CO2.[19]

These results make the use of MOPMs valuable for the CO2

electrocatalytic conversion to alcohols in continuous operation,

although further work is required to design materials with the
same favorable properties and a higher stability for a technoe-

conomically viable CO2 valorization process. The outstanding
challenges remain in the design of catalyst systems featuring
(1) selectivity for CO2 reduction with minimum H2 generation,

(2) high conversion efficiency at low electrochemical overpo-
tentials, and (3) long-term stability. Furthermore, the detailed
mechanisms for the overall catalytic system remain unclear. We
hope to elucidate the reactions steps for CO2 conversion to

value-added products on MOPM-GDEs.

Conclusions

This work demonstrates the ability of Cu-containing metal–or-

ganic porous materials (MOPMs) supported in gas diffusion
electrodes (GDEs) to promote the electrocatalytic conversion

of CO2 to alcohols. We successfully prepared, characterized,

and tested four different MOPM-GDEs. Specifically, two metal–
organic frameworks, (1) [Cu3(m6-C9H3O6)2]n (HKUST-1) and

(2) [Cu3(m3-C5H4N5)2]n (CuAdeAce), and two metal–organic aero-
gels, (3) [Cu(m-C2H2N2S2)]n (CuDTA) and (4) [Cu0.6Zn0.4(m-

C2H2N2S2)]n (CuZnDTA). The characterization involved structural
and cyclic-voltammetry analyses, whereas the testing during

the electrocatalytic reduction of CO2 was performed in a contin-

uous setup consisting of a filter-press electrochemical cell
under ambient conditions.

The analyses of the electrolysis products showed that meth-
anol and ethanol were formed predominately as the liquid

products from CO2 reduction. An enhanced performance for
CO2 conversion was achieved through the application of

HKUST-1 and CuZnDTA GDEs at a current density (j) of

10 mA cm@2, an electrolyte-flow/area ratio (Qe/A) of
3 mL min@1 cm@2, and a gas-flow/area ratio (Qg/A) of

20 mL min@1 cm@2, at which moderate formation rates (KHUST-
1, rT = 18.58 V 10@6 mol m@2 s@1; CuZnDTA, rT = 11.57 V

10@6 mol m@2 s@1) and Faradaic efficiencies (KHUST-1, FET =

15.9 %; CuZnDTA, FET = 9.9 %) could be obtained. These results
denoted that MOPMs with unsaturated coordination positions
exposed in the pore system are preferred for the enhancement

of the performance of the electrocatalytic reduction of CO2 to
alcohols. Interestingly, if the formation rates were normalized
to the active Cu surface available for each MOPM, CuAdeAce

showed a superior activity. This gives a clue for the design of
more-efficient CO2 reduction electrocatalysts including paddle-

wheel motifs built from N-donor ligands that preserve square-
planar coordination geometries around the CuII atoms and, as

a result, produce open metal sites prone to interact strongly

with guest molecules throughout the porous network.
Finally, the stability of the HKUST-1 GDE was confirmed for

as long as 17 h of operation and can be attributed to the pres-
ervation of the local structure, even if a significant reduction in

crystallinity occurred during the experimental time. These re-
sults make the use of MOPMs valuable for the electrocatalytic

conversion of CO2 to alcohols in continuous operation. The
modularity of these systems yields many opportunities for fur-

ther performance improvements and open new directions in
electrocatalysis.

Experimental Section

Preparation of MOPM-GDEs

Synthesis of the MOPMs: HKUST-1 was prepared by a previously
described solvent-free synthetic route.[58] In a first step, stoichio-
metric amounts of benzene-1,3,5-tricarboxylic acid and copper(II)
acetate monohydrate were ground together to ensure a homoge-
neous mixture and placed in the reaction vessel. The reagent mix-
ture was oven-heated for approximately 50 h at a heating rate of
2 8C h@1 to a maximum temperature of 120 8C. Polycrystalline CuA-
deAce material was prepared by the slow addition of acetic acid to
an aqueous solution containing adenine and CuII salt in equimolar
proportions.[59] Both MOFs were washed thoroughly with water to
remove unreacted reagents and remaining byproducts. The gener-
al procedure to prepare the MOAs (CuDTA and CuZnDTA) proceed-
ed as follows. The corresponding metal acetate (or metal salt mix-
ture) was dissolved in a mixture of N,N’-dimethylacetamide (DMA)
and DMF in a 60:40 volumetric ratio, aided by an ultrasonic tip
(Vibra-Cell VCX130 20 kHz and 130 W, Sonics) at 80 % of its power
for 2 min. Then, dithiooxamide (H2DTA) ligand, basified with trie-
thylamine, was dissolved in the same solvent mixture and added
into the metal-ion-containing solution with the system maintained
in an ultrasound bath (ULTRASONS-H, Selecta) at a temperature of
288 K. Once the metal–organic gel reached a certain consistency, it
was allowed to age at room temperature for 1 d. Thereafter, the
materials were washed first through immersion in pure DMF to
remove the unreacted species and then by successive solvent ex-
changes in DMF/ethanol mixtures and pure ethanol to replace the
solvent. In each exchange step, the contact between the solvent
and gel was 24 h to ensure an efficient exchange. To prepare the
aerogels, an E3100 critical-point dryer from Quorum Technologies
equipped with gas-inlet, vent, and purge valves and a thermal
bath was employed. Firstly, the gel was immersed in liquid CO2 at
293 K and 50 bar for 1 h. After this, the exchanged ethanol was re-
moved through the purge valve. This process was repeated five
times. Subsequently, the sample was dried under supercritical con-
ditions at a temperature of 311 K and a pressure of 85–95 bar. Fi-
nally, under constant temperature (311 K), the chamber was vented
slowly to atmospheric pressure. Details on the characterization of
the prepared MOPMs are provided in the Supporting Information
(S2).

Preparation of the GDEs: The MOPM-GDEs were prepared by the
procedure described in a previous study.[4] The GDEs (A = 10 cm2)
were prepared by airbrushing a catalytic ink onto a porous carbon
paper (type TGP-H-60, Toray Inc.). The catalyst loading in the GDEs
was kept at 1 mg cm@2, which is an effective loading for enhanced
CO2 electrocatalytic reduction performance.[5] The catalytic ink was
formed by a mixture of the synthesized MOPMs (HKUST-1, CuA-
deAce, CuDTA, and CuZnDTA) as electrocatalysts, NafionS disper-
sion 5 wt % (Alfa Aesar) as binder, and isopropyl alcohol (IPA,
Sigma–Aldrich) as the vehicle with a 70:30 catalyst/Nafion mass
ratio and 3 % solids (catalyst + Nafion). The mixture was sonicated
for 15 min and then airbrushed onto the carbon papers, and the
resulting MOPM-GDEs were dried and rinsed with deionized water
before use.
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Characterization of the prepared MOPM-GDEs

The electrochemical behavior of the materials was evaluated by
cyclic voltammetry with a PGSTAT 302N potentiostat (Metrohm,
Autolab B.V.) under GPES software control using a conventional
three-electrode electrochemical cell. The current–voltage curves
were obtained with a scan rate of 50 mV s@1 at potentials ranging
from 0 to @1.6 V versus Ag/AgCl in a CO2-saturated 0.5 m KHCO3

(Panreac) aqueous solution as the electrolyte. Portions of the
MOPM-based GDEs were used as working electrodes, and glassy
carbon and Ag/AgCl (sat. KCl) were used as the counter and refer-
ence electrode, respectively. The current density is expressed as
the total current divided by the geometric surface area of the elec-
trodes.

Elemental analyses (C, H, N) were performed with a Euro EA ele-
mental analyzer (Eurovector, Milan, Italy), whereas the metal con-
tent was determined by inductively coupled plasma atomic emis-
sion spectrometry (ICP-AES) with a Horiba Yobin Yvon Activa instru-
ment (Kyoto, Japan). The IR spectra were recorded with an Shimad-
zu FTIR 8400S spectrometer (Shimadzu, Kyoto, Japan) in the 4000–
400 cm@1 wavenumber region with a PIKE MIRacle universal ATR
sampling accessory equipped with a ZnSe crystal. The PXRD pat-
terns were collected using a Phillips X’PERT powder diffractometer
(Panalytical, Eindhoven, The Netherlands) with CuKa radiation (l=
1.54060 a) over the range 5<2 q<708 with a step size of 0.028
and an acquisition time of 2 s per step at 25 8C. The N2 (77 K) phys-
isorption data of the materials (vacuum at 150 8C for 12 h) was re-
corded with a Quantachrome Autosorb-iQ-MP instrument (Quan-
tachrome Instruments, Florida, United States). Field-emission scan-
ning electron microscopy (SEM) studies were performed with
a JEOL JSM-7000F microscope. Before the analysis, all of the GDEs
were coated with 5 nm of chromium.

The Cu exposure (a) of the GDEs was determined by N2O pulse
chemisorption with an AutoChem 2920 analyzer (Micromeritics,
Georgia, USA) coupled to a Omnistar (Balzers Instruments, New
Jersey, USA) mass spectrometer. Part of the N2O can be reduced to
N2 and otherwise chemisorbed or left unreacted. In particular, we
calculated the Cu exposure through the cumulative disappearance
of N2O. The GDEs were first treated at 100 8C in a 50 cm3 min@1

stream of 10 vol % H2 in Ar (Air Liquide, Madrid, Spain) over 2 h.
Then, the GDEs were kept at 35 8C in a 50 cm3 min@1 stream of He,
and 20 pulses (0.25 cm3 each) of 10 vol % N2O in He (Air Liquide,
Madrid, Spain) were applied. The signals of the N2O and N2 were
recorded in the effluent by the mass spectrometer at m/z = 44 and
28, respectively. Cu was assumed to have a density of 1.63 V 1019

Cu atoms per m2.

Electrochemical cell and experimental conditions

The prepared MOPM-GDEs were evaluated for the continuous elec-
trocatalytic reduction of CO2 in a filter-press electrochemical cell
(Micro Flow Cell, ElectroCell A/S) under ambient conditions. A
Nafion 117 cation-exchange membrane was used to separate the
cathode and anode compartments. The MOPM-GDEs were em-
ployed together with a platinized titanium electrode as the anode
and a Ag/AgCl (sat. KCl) reference electrode assembled close to
the cathode. A schematic representation of the experimental plant
is shown in Scheme 1. The cathode side of the reactor was fed
with CO2 gas (99.99 %) at Qg/A = 10 to 40 mL min@1 cm@2. A 0.5 m
KHCO3 (Panreac) aqueous solution was used as both the catholyte
and anolyte at Qe/A = 1–4 mL min@1 cm@2. The electrolytes were
pumped from the catholyte and anolyte tanks to the cell by two

peristaltic pumps (Watson Marlow 320, Watson Marlow Pumps
Group). In this study, the filter-press electrochemical system pos-
sesses three inputs (catholyte, anolyte, and CO2 separately) and
two outputs (catholyte-CO2 and anolyte), which make possible the
formation of a gas–solid–liquid interface for the electrocatalytic re-
duction of CO2 in the gas phase.[4]

All of the experiments were performed under galvanostatic condi-
tions (i.e. , at a constant current density) with an AutoLab PGSTAT
302N potentiostat (Metrohm, Autolab B.V.). The current density
ranged from j = 5 to 40 mA cm@2. The experimental time was
90 min, for which pseudostable conditions are ensured according
to our previous analyses.[4, 5] Liquid samples were taken every
15 min from the catholyte tank. To quantify the concentration of
each product in the liquid phase, the samples were analyzed in du-
plicate in a headspace gas chromatograph (GC–MS QP2010, Ultra
Shimadzu) equipped with a flame ionization detector (FID). The
compounds were separated using a DB-Wax 30 m V 0.25 mm V
0.25 mm column with an injection and detector temperature of 250
and 270 8C, respectively. Helium was used as the carrier gas at
a flow rate of 50 mL min@1. The identification of the obtained prod-
ucts was further confirmed by a headspace GC–MS instrument
(N5975B) equipped with a 60 m V 250 mm V 1.40 mm DB-624 capilla-
ry column. The product concentrations were averaged from at
least three replicates. The standard deviations of all experiments
were below 19.2 %.

The performance of the electrochemical processes were evaluated
through the rate of product formation, r (i.e. , the product obtained
per unit of cathode area and time), and the Faradaic efficiency, FE
(i.e. , the selectivity of the reaction for the formation of the different
products), according to Equation (1):

FE %ð Þ ¼ znFð Þ=q> 100 ð1Þ

z is the theoretical number of electrons exchanged to form the de-
sired product, n is the number of moles produced, F is the Faradaic
constant (96 485 C mol@1), and q is the total charge applied in the
process.
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Scheme 1. Schematic representation of the experimental setup.
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The structure of HKUST-1 is built up by paddle-wheel type binuclear copper(II) entities linked 

among them by the tritopic carboxylic ligand (Figure S1.1a). The resulting micropourous network 

consists of small octahedral cages connected to form two types of large cavities of cubooctahedral 

symmetry with pores of 9 and 6 Å in diameter. Reported specific surface area values range from 

700 to 1900 m2·g-1. The axially coordinated water molecules at the copper sites can be removed 

rendering an unsaturated coordination position (so called open-metal site) which enhances ability to 

interact with guest molecules. It deserves to note that HKUST-1 has been widely studied as CO2 

adsorbent from flue gas. The secondly selected MOF, [Cu2(µ3-adeninate)2(µ2-OOC(CH3)2]3·xH2O 

(CuAdeAce) is built from paddle-wheel shaped copper(II) centrosymmetic dimeric entities (Figure 

S1.1b). The dinuclear units are cross-linked through the apical coordination of the imidazole N7 

atom of the adeninato ligands to four adjacent entities, giving rise to a 3D pore system in which the 

diameter ranges from ca. 0.4 to 0.6 nm and the surface is decorated by the Watson-Crick faces of 

the adenine. The latter structural feature renders a highly selective adsorption towards CO2. 

CuAdeAce presents specific surface areas ranging from 450-570 m2·g-1. Regarding the metal-

organic aerogels (MOAs), one of the most remarkable advantages arises from the possibility of 

dispensing of the prerequisites imposed by the reticular design of MOFs, which implies that this 

approach to prepare porous coordination polymers is in principle extensible to any metal-organic 

system. In this sense, one must consider that there are many polymers with appealing catalytic, 

electrical, magnetic or optic properties whose crystal structures lack any porosity arising from the 

connectivity of the coordination network. Taking this in mind, we have selected a coordination 

polymer named MDTA (M(II) = Cu, Zn; Figure S1.1c), built from the successive junction a M(II) 

and bis-bidentate dithiooxamidate (DTA). However, as the coordination framework lacks of any 

intrinsic pore system, we have processed the material as a nanofibrous aerogel in orther to increase 

the surface area and the accessibility of the catalytic centers.  
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(a) 

 

 

(b) 

 
 

(c) 

Figure S1.1. Molecular building unit and a view of the crystal structure for the microporous 

MOFs: (a) HKUST-1 and (b) CuAdeAce. (c) Polymeric chain and a sketch of the microstrure 

for the mesoporous MDTA aerogel. H atoms were omitted for clarity. 
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The microtexture all the as-prepared samples was analyzed by scanning electron microscopy 

(Figure S2.1). The appearance of HKUST-1 and CuAdeAce samples is that of a polycrystalline one, 

with submicrometric and micrometric crystallite sizes, respectively. The non-crystalline CuDTA 

and CuZnDTA, are featured by a mesoporous microstructure built by the an intricate network of 

crosslinked nanofibers (4-15 nm).  

ATR-FTIR spectra of as prepared HKUST-1, CuAdeAce, CuDTA and CuZnDTA samples are 

shown in Figure S2.2. All the bands, fit the expected vibration modes for the ligand and compared 

to those found on modified electrodes (see Section S3, Table S3.1).  

The permanent porosity was studied by means of the measurements of N2 adsorption isotherms at 

77 K (Figure S2.3) using a Quantachrome Autosorb-iQ analyser. All samples were dried under 

vacuum at 140ºC during six hours to eliminate solvent guest molecules prior to measurements. The 

surface area values were obtained by the fittings of the adsorption data to Braunauer-Emmett-Teller 

(BET) equation. In order to choose the pressure range appropriate and to avoid ambiguity when 

reporting the BET surface area of MOFs, we used the three consistency criteria proposed by Walton 

and Snurr:1 (1) The pressure range selected should have values of V(P0 - P) increasing with P/P0. (2) 

The points used to calculate the BET surface area must be linear with an upward slope. (3) The line 

they form must have a positive y-intercept. This procedure is commonly applied for determining the 

BET surface area values of high/ultrahigh MOFs.2 Mean pore size for CuDTA and CuZnDTA were 

calculated from the BJH fitting of the isotherm, while the pore sizes of the microporous HKUST-1 

and CuAdeAce correspond to crystallographic values. BET fitting data is gathered in Table S.1, 

together with other porous features.  

PXRD experimental patterns of as prepared samples are shown in Figure S2.4. The simulated 

patterns were built on the basis of representative crystal structures obtained from the Cambridge 

Structural Database (CSD)3 for each MOFs (CSD codes: UVIPIZ and DOTSOV01 for HKUST-1 

and CuAdeAce, respectively).  

 

  

                                                                 
1 K. S. Walton, R. Q. Snurr, J. Am. Chem. Soc. 2007, 127, 8552. 

2 (a) O. K. Farha, A. O. Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. 

Snurr, J. T. Hupp, Nat. Chem. 2010, 2, 944. (b) H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. 

Yazaydin, R. Q. Snurr, M. O´Keeffe, J. Kim, O. M. Yaghi, Science 2010, 329, 424. (c) O. K. Farha, I. Eryazici, N. C. 

Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. O. Yazaydin and J. T. Hupp, J. Am. 

Chem. Soc. 2012, 134, 15016. 

3
 F. H. Allen, Acta Crystallogr. 2002, B58, 380. 
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a b 

  

c d 

Figure S2.1. SEM images taken on as-prepared MOPM samples: (a) HKUST-1, (b) CuAdeAce, (c) CuDTA 
y (d) CuZnDTA. 
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Figure S2.2. FTIR spectra performed upon as-prepared MOPMs samples. 
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Figure S2.3. Nitrogen adsorption isotherms at 77 K for as prepared MOPM samples. 
 

 

Table S2.1. BET fitting data, micropore volume and total pore volume. 

Sample Pressure range R
2
 c SBET (m

2
/g) 

Vmicropore (cm
3
/g) Vtotal (cm

3
/g) 

(P/Po < 0.993) 

HKUST-1 0.015–0.040 0.9980 28245 1710 0.649 0.908 

CuAceAde 0.010–0.030 0.9963 22712 500 0.140 0.212 

CuDTA 0.010–0.250 0.9999 130 272 0.004 2.242 

CuZnDTA 0.010–0.250 0.9999 104 260 0.001 3.006 
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(a) (b) 

Figure S2.4. Experimental and simulated PXRD patterns for (a) HKUST-1 and (b) CuAdeAce. 
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Figure S3.1. SEM images taken at 5 kX (left) and 25 kX (right) for fresh electrodes modified with (a) 

HKUST-1, (b) CuAdeAce, (c) CuDTA and (d) CuZnDTA. 
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Figure S3.2. SEM images taken at 25 kX  (right) for electrodes used during 30 minutes and modified with 

(a) HKUST-1, (b) CuAdeAce, (c) CuDTA and (d) CuZnDTA. 
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Figure S3.3. ATR-FTIR spectra for pristine graphite electrode and fresh electrodes modified 

with nafion, HKUST-1, CuAdeAce, CuDTA and CuZnDTA. 
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Table S3.1. Main IR peaks (cm-1) and corresponding vibration modes for pristine graphite electrode and 

fresh electrodes modified with nafion, HKUST-1, CuAdeAce, CuDTA and CuZnDTA 

GC electrode Nafion HKUST-1 CuAdeAce 
CuDTA and 

CuZnDTA 

3393 [νs(OH)] 

2923 [ν(C−H)] 

2850 [ν(C−H)] 

1737 [ν(C=O)] 

1708 [ν(C=O)] 

1652 [ν(C=C)] 

1559 [ν(C=C)] 

 

1303[ν(C−C)] 

1206 [νas(CF2)] 

1147 [νs(CF2)] 

1059[νs(SO)] 

975 [νs(CF)+ νs(COC)] 

 

 

 

 

 

 

 

 

 

 

3320 [νs(OH)] 

2968 [ν(C−H)] 

2845 [ν(C−H)] 

1618 [νs(C=O)] 

1576 [νs(COO)] 

1552 [νs(COO)] 

1440 [νas(COO)] 

1370 [νas(COO)] 

1294 [ν(C−C)] 

1202 [νas(CF2)] 

1143 [νs(CF2)] 

1057 [νs(SO)] 

982[νs(CF)] 

972 [νs(C−O−C)] 

752[ν(phenyl)] 

729[ν(phenyl)] 

 

3348 [νs(OH)] 

3192 [νs(NH2)+δ(NH2)] 

2962 [ν(C8−H)+ ν(C2−H)] 

2933 [ν(NH2)+ ν(C−H)] 

2856 [ν(C−H)] 

1643[νas(O−C−O)] 

1609 [νs(C=C)+ δ(NH2)] 

1584[νs(C4−C5)] 

1549 [νs(N3−C4−C5)] 

1468 

[δ(C2−H)+δ(C8−N9)] 

1431[νs(C8−H)] 

1400 [δ(N1−C6−H6)] 

1379, 1348 

[ν(C5−N7−C8)] 

1300 [ν(C−C)] 

1207 [νas(CF2)] 

1151 [νs(CF2)] 

1057 [νs(SO)] 

982 [νs(CF)] 

972 [νs(C−O−C)] 

796 [δ(O−C−O)] 

743[δ(O−C−O)] 

3489 [νas(NH)] 

3242 [νs(NH)] 

2958 [νs(NH)]  

2924 [ν(C−H)] 

2852 [ν(C−H)] 

1662 [ν(CS)] 

1627 [ν(CS)] 

1485 [ν(CN)] 

1309 [ν(C−C)] 

1224 [νas(CF2)] 

1151 [νs(CF2)] 

1053 [νs(SO)] 

982 [νs(CF)] 

966 [νs(C−O−C)] 

860 [ν(CS)] 

775 [π(NH)] 
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6.1. CONCLUSIONS 

The most relevant results of the present work are summarized in the following points: 

1. A total of 12 new compounds have been synthesized using thiocarboxylate anions as sulfur source 

(thioacetate and thiobenzoate) and nitrogenous heterocycles with at least two donor atoms as 

secondary ligands (2,2'-bipyridine, 1,10-phenanthroline, neocuproine, 1,2-bis(4-pyridyl)ethylene 

and adenine) to complete the coordination sphere of the metal center and to direct the 

dimensionality of the complexes. All of them have been structurally characterized by single crystal 

X-ray diffraction. 

2. In all compounds, the metal is preferentially bonded to the sulfur atom from the thioacetate group. 

In some cases, there is a semi-coordination of the oxygen with distances M–O lower than the sum 

of their respective van der Waals radii. This fact is a common trend in soft metal cations such as 

those herein used (Cd2+, Zn2+ and Pd2+). In all cases, thiocarboxylato ligands behave as terminal 

ligands, in agreement with the trend found in the literature for these class of coordination 

complexes. 

3. Compounds based on N,N’-heterocycles of chelating nature (2,2'-bipyridine, 1,10-phenanthroline, 

and neocuproine) consist of discrete monomeric entities whereas the compound based on 1,2-

bis(4-pyridyl)ethylene polymerize to give rise to zig-zag chains. Despite in the case of adenine a 

polymeric complex was also expected, it coordinates in a monodentate fashion and a methanol 

molecule occupies the remaining coordination position to provide a monomeric entity.  

4. The viability of metal-thiocarboxylato complexes as direct precursors of nanostructures has been 

studied through the dry thermolysis method, a variant of the precursor single-source route that 

eliminates the need for solvents and surfactants. This process is easily scaled to produce large 

quantities of nanoparticles at a relatively low cost. This work describes a new route towards 

obtaining metal sulfide nanoparticles under aerobic conditions (in an open atmosphere).   
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5. It has been analyzed the influence of certain synthetic variables (heating rate, isotherm time, 

temperature, etc.) and the structural features of the compounds (nature of the ligands and the 

metal cations, dimensionality of the structure, etc.) on the characteristics of the resulting 

nanoparticles: purity, crystallinity, polydispersity and mean particle size, polymorphic phase, 

morphology, degree of sintering, etc.  

6. The decomposition temperatures of the synthesized compounds start from 140 to 240°C, although 

it has been worked at higher temperatures (300–480ºC) to improve the combustion. These 

moderate temperatures are easily achievable even with the simple furnaces. Compounds based 

on thioacetato ligand are generally decomposed at lower temperature than those based on 

thiobenzoato. 

7. In general terms, the average diameter of the metal sulfide nanoparticles produced has ranged 

between 2–20 nm and the size distributions obtained did not present a great dispersion. Pd-

thiocarboxylato precursors generate elemental palladium, which according to X-ray diffraction 

measurements and transmission microscopy images, consists of large nuclei (~ 60–150 nm) mixed 

together with smaller nanoparticles (1–25 nm) forming a heterogeneous product. 

8. Complexes with 2,2'-bipyridyl or 1,2-bis(4-pyridyl)ethylene co-ligands generate practically pure 

nanoparticles (a content of carbon impurities lower than 5% by weight) because such ligands 

during decomposition give fragments of a volatile nature. In return, compounds containing 1,10-

phenanthroline, neocuproine or adenine as co-ligands produce samples with  so much mass 

percentage of carbon (it could reach up to 50% of the total weight of the sample) that the resulting 

nanoparticles are actually embedded in a carbonaceous matrix. Therefore, by varying the 

secondary ligand we can adjust the amount of carbonaceous matrix that embeds the 

nanoparticles: from carbon free nanoparticles to carbon supported nanoparticles with tunable 

carbon content. 

 



 

CONCLUSIONS AND FUTURE PROSPECTS  CHAPTER 6 

291 
 

9. In the case of ZnS and CdS nanoparticles, the nature of the co-ligand plays a key role in the 

crystalline phase that occurs after decomposition. Some ligands such as adenine favor the 

thermodynamically stable phase (blende), others such as neocuproine stabilize the metastable 

wurtzite phase and finally, there are ligands that have no obvious preference for either of the two 

phases and result in a polymorphic mixture.   

10. Metal-organic gels (MOGs) based on MII-dithiooxamidato (MDTA) polymeric systems (MII being Ni, 

Cu, Pd and their mixtures) have been achieved. Additionally, a detailed analysis of the most 

important synthetic parameters in the formation of the gels has been done; among which stand out 

the coordinating capability of solvents, the dissociation constant of the metal salt used as starting 

reagent, the presence of a basic catalyst and the concentration of the reagents. 

11. Metal-dithiooxamidato gels show unusual chemical inertia derived from the strong metal-sulfur 

bonds. They are insoluble throughout the 1–14 pH range and they withstand all common organic 

solvents as well as high concentrations of salts or coordinating ligands. They are even kept 

unaltered under strong reducing conditions, the presence of mild oxidizing agents and 

hydrothermal conditions.  

12. Metal-organic aerogels (MOAs) have been obtained by supercritical drying of their respective 

metal-dithioxamidato MOGs. Microstructural characterization of MOAs reveals they correspond to 

meso-/macroporous solids with specific BET areas of 190–430 m2 g-1, pore volumes up to 4 cm3 g-1 

and monolith densitites as low as 0.02 g·cm-3. 

13. The microstructure of MOAs is based on the entanglement of nanofibers of metal-dithiooxamidato 

polymer. These nanofibers present variable aspect ratios depending on the metal cation used. 

Cu(II) and Ni(II) ions favors to a greater degree the longitudinal growth of the fiber while the Pd(II) 

limits its growth, creating more nuclei.  
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14. The microstructure of the resulting aerogels has a considerable influence on the final density and, 

consequently, on its mechanical and textural properties. Aerogels made from higher aspect ratio 

nanofibers appear to be lighter and have a greater polydispersion in pore size (greater 

macroporous contribution). Also, the combination of long fibers with a larger void space translates 

into a plastic behavior similar to that observed in polymer foams. In contrast, the existence of fibers 

with low aspect ratios produces denser aerogels with a smaller and less polydisperse pore size. 

The more compact structure favors the fracture propagation and therefore these latter aerogels 

behave as brittle materials. 

15. NiDTA aerogel has given a maximum value of specific compressive strength of 12725 J·kg-1, 

which is superior to most inorganic, organic and metal aerogels published to date and it is 

comparable to that of conventional polymeric foams. It is also the first report of a plastic behavior 

in a metal-organic aerogel.  

16. Metal(II)-dithiooxamidate compounds exhibit semiconductor behavior with conductivities ranging 

from 10-7 to 10-12 S·cm-1 at room temperature. Cu(II) is the metal cation that offers the best 

conductivity results possibly due to its ability to be reduced. Iodine doping considerably improves 

the conductivity of the compounds, reaching values of 10-5 S·cm-1. 

17. Both CuDTA and CuNiDTA aerogels respond to chemical stimuli (acetic acid vapors) by varying 

their proton conductivity in approximately two orders of magnitude. It has been shown that this 

behavior is totally reversible and that the material does not degrade after acetic acid exposure. 

18. The catalytic behavior of certain metal-organic porous materials (MOFs and MOAs) has been 

studied on the selective electroreduction of carbon dioxide to alcohols. The maximum cumulative 

Faradaic efficiencies for CO2 conversion at HKUST-1-, CuAdeAce-, CuDTA-, and CuZnDTA-

based electrodes are 15.9, 1.2, 6, and 9.9 %, respectively, at a current density of 10 mA·cm-2, an 

electrolyte-flow/area ratio of 3 mL·min·cm-2, and a gas-flow/area ratio of 20 mL·min·cm-2. These 

results denoted that metal-organic porous materials with unsaturated coordination positions 
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exposed in the pore system are preferred for the enhancement of the performance of the 

electrocatalytic reduction of CO2 to alcohols. 

19. The results described in chapters 2, 4 and 5 have been published as three research articles in 

well rated journals in inorganic chemistry and materials science areas (European Journal of 

Inorganic, Advanced Functional Materials and ChemSusChem). The content of chapter three has 

been recently submitted for its peer review. In turn, most of the content of the work has been 

presented in national and international scientific meetings.  

20. Some of the research results have also given rise to a national patent (P201630538) that has now 

been extended to International Patent Cooperation Treaty (PCT). This patent has attracted private 

capital investors to constitute a new technological company called Poretune S.L. of which I am a 

founding member. Accordingly, the use and exploitation rights of the aforementioned patent have 

been licensed to Poretune S.L.  

6.2. FUTURE PROSPECTS  

Future research will focus on the optimization of the synthetic processes used trying to adapt 

routes to new nanostructured systems.  

On the one hand, emphasis will be placed on improving dry thermolysis method applying the 

results obtained to date. The design of precursors will be more oriented towards the desired final 

product (pure or carbon supported nanoparticles) trying to reduce the decomposition temperatures, the 

presence of mixtures of polymorphic phases, polydispersion and sintering of the nanoparticles. New 

mono-and polynuclear metal-thiocarboxylato complexes will be synthesized in order to prepare new 

high-value industrial metal sulfides. In addition, it will intend to investigate in greater depth the effect of 

precursor’s dimensionality on the final nanostructured product by preparing new 1D, 2D and 3D 

coordination compounds.  
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On the other hand, the knowledge acquired in gelation studies of metal(II)-dithiooxamidato 

compounds will be used to produce other metal-organic gels with relevant physicochemical properties. 

The mechanics that govern the formation of MOGs and MOAs and their functionalities for high valued 

applications will be explored. The possibility of growing these materials on different types of substrates 

to obtain thin films or one-dimensional nanostructures will be investigated. It will be tried to find out 

what kind of correlations exist between the different synthetic variables and the physical properties of 

the resulting nanostructures.  

Finally, the philosophy of green chemistry will be strengthened by reducing the use of polluting 

or toxic species as far as possible. New precursors that can be synthesized in aqueous medium will be 

sought. In addition, new ligands that emit less pollutant byproducts will be chosen.  
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7.1. REAGENTS AND SOLVENTS 

Table A.1.1 and A.1.2. gather the reactants or solvents, formula, commercial supplier (CS), 

assay (AS), molecular weight (MW), Chemical Abstracts Service number (CAS), and risk (R) and safety 

(S) statements for their manipulation. 

Table A.1.1 Technical information of the reagents and solvents used in the current work. 

Name Formula CS AS 
MW 

(g·mol-1) 
CAS R S 

Acetic acid C2H4O2 Aldrich ≥99.5% 60.05 64-19-7 10-35 1/2-23-26-
45

Acetone C3H6O Aldrich ≥99% 58.09 67-64-1 11-36-66-67 9-16-26

Acetonitrile C2H3N Aldrich 99.8% 41.05 75-05-8 11-23/24/25 1/2-16-27-
45

Adenine C5H5N5 Aldrich ≥99% 135.13 73-24-5 22 22-26-36

Ammonia NH3 Aldrich 25% 35.04 7664-41-
7 34-50 

26-
36/37/39-

45-61

2,2’-Bipyridine C10H8N2 Aldrich ≥99% 156.19 366-18-7 21-25 22-36/37-
45

4,4’-Bipyridine C₁₀H₈N₂ Aldrich 98% 156.18 553-26-4 25 22-24/25-
37-45

1,2-Bis(4-pyridil)ethylene C12H10N2 Aldrich 97% 182.22 13362-
78-2 36/37/38 26-37/39

Cadmium(II) acetate 
dihydrate Cd(CH3COO)2·2H2O Aldrich ≥98% 266.53 5743-04-

4 
20/21/22-

50/53 60-61 

Chloroform CHCl3 Aldrich ≥99% 119.38 67-66-3 22-38-40-
48/20/22 2-36/37 

Dichloromethane CH₂Cl₂ Aldrich ≥99.8% 84.93 75-09-2 40 3-36/37

Diethanolamine C₄H₁₁NO₂ Aldrich ≥98% 105.14 111-42-2 22-38-41-
48/22-52/53

26-
36/37/39-

46-61
N,N’-Diethylacetamide C6H13NO Aldrich ≥97% 115.17 685-91-6 22 

Diethylenetriamine C₄H₁₃N₃ Aldrich 99% 103.16 111-40-0 21/22-26-
34-37-43 

9-26-28-
36/37/39-

45

Diethyl ether C4H10O Aldrich ≥99.7% 74.12 60-29-7 12-19-22-
66-67 9-16-29-33

N,N’-Dimethylacetamide C4H9NO Aldrich ≥99.9% 87.12 127-19-5 20/21/61 53-45
N,N’-Dimethylformamide C3H7NO Aldrich 99.8% 119.16 68-12-2 61-20/21-36 53-45
Dimethylsulfoxide C2H6OS Aldrich ≥99.7% 78.13 67-68-5 36/37/38 26-37/39

Ethanol C2H5OH Aldrich ≥95% 46.07 200-578-
6 11 2-7-16 

Ethylenediaminetetraacetic 
acid C₁₀H₁₆N₂O₈ Aldrich ≥98% 292.24 60-00-4 36 26 

Hydrochloric acid HCl Aldrich 37% 36.46 7732-18-
5 34-37 

1/2-26-
36/37/39-

45 

Hydrogen peroxide H2O2 Aldrich 30% 34.01 7722-84-
1 22-41 

1/2-26-28-
36/37/39-

45

Iodine I2 Aldrich ≥99.9% 253.81 7553-56-
2 20/21-50 23-25-61

Lithium nitrate LiNO3 Aldrich ≥99% 68.95 7790-69-
4 8 17 
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Table A.1.2 Technical information of the reagents and solvents used in the current work (continuation). 

Name Formula CS AS 
MW 

(g·mol-1) 
CAS R S 

Methanol CH3OH Aldrich ≥99.8% 32.04 67-56-1 
11-23/24/25-
39/23/24/25 

7-16-
36/37-45 

Neocuproine C14H12N2 Aldrich ≥98% 208.26 484-11-7 36/37/38 26 

Nitric acid HNO3 Aldrich 70% 63.01 7697-37-2 35 

26-45-
24/25-

36/37/39-
60 

Palladium(II) acetate 
dihydrate 

Pd(CH3COO)2·2H2O Aldrich ≥99.9% 224.51 3375-31-3 41 22-26-39 

Pentane C5H12 Aldrich ≥99% 72.15 109-66-0 11 
2-9-16-29-

33 

1,10-Phenanthroline C12H8N2 Aldrich ≥99% 180.21 66-71-7 25-50/53 45-60-61 

Potassium permanganate KMnO4 Aldrich ≥99% 158.03 7722-64-7 8-22-50/53 60-61 

Pyridine C5H5N Aldrich ≥99% 79.10 110-86-1 11-20/21/22 2-26-28 

Sodium borohydride NaBH4 Aldrich ≥96% 37.83 
16940-66-

2 
60-61-25-
14/15-34 

14-26-
36/37/39-
43-45-53 

Sodium chloride NaCl Aldrich ≥99.5% 58.44 7647-14-5  24-25 

Sodium sulfite NaSO3 Aldrich ≥98% 126.04 7757-83-7 22-36/37/38 24/25 

Sulfuric acid H2SO4 Aldrich 96% 98.08 7664-93-9 35 26-30-45 

Terephthalic acid C8H6O4 Aldrich 98% 166.13 100-21-0 36/37/38 24/25 

N,N,N’,N’-
Tetramethylethylenediamine 

C₆H₁₆N₂ Aldrich 99% 116.21 110-18-9 11-20/22-34 
16-26-

36/37/39-
45 

Thioacetic acid C2H4OS Aldrich ≥95% 76.09 507-09-5 10-34 
9-16-33-

36/39 

Thiobenzoic acid C7H6OS Aldrich ≥90% 138.19 98-91-9 36/37/38 
26-

36/37/39 

Toluene C7H8 Aldrich 99.8% 92.14 108-88-3 11-20 
16-25-29-

33 

Trimesic acid C9H6O6 Aldrich 95% 210.14 554-95-0 36/37/38 
26/37/38/3

9 

Zinc(II) acetate dihydrate Zn(CH3COO)2·2H2O Aldrich ≥99% 219.51 5970-45-6 22-36-50/53 26-60-61 
   

 

 



299 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2.  PUBLICATIONS RESULTING FROM THIS WORK 

 

 

 

 



 



301 
 

7.2. PUBLICATIONS RESULTING FROM THIS WORK 

This work has led to the publication of some articles in international scientific journals that are 

attached below: 

1. Zinc Thiocarboxylate Complexes as Precursors for Zinc Sulfide Nanoparticles under Aerobic 

Conditions. D. Vallejo-Sánchez, G. Beobide, O. Castillo, M. Lanchas, Eur. J. Inorg. Chem. 

2013, 5592–5602. 

2. Metal-Thiobenzoato Complexes: Synthesis, Structure and Processing as Carbon Supported 

Nanoparticles. D. Vallejo-Sánchez, G. Beobide, O. Castillo, M. Lanchas, A. Luque, S. Pérez-

Yáñez, P. Román, Eur. J. Inorg. Chem. (submitted on May 2017). 

3. Chemically Resistant, Shapeable, and Conducting Metal-Organic Gels and Aerogels Built from 

Dithiooxamidato Ligand. D. Vallejo-Sánchez, P. Amo-Ochoa, G. Beobide, O. Castillo, M. Fröba, 

F. Hoffmann, A. Luque, P. Ocón, S. Pérez-Yáñez, Adv. Funct. Mater. 2017, 27, 1605448. 

4. Copper-Based Metal–Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols. 

J. Albo, D. Vallejo, G. Beobide, O. Castillo, P. Castaño, A. Irabien, ChemSusChem 2017, 10, 

1100–1109. 
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METAL-ORGANIC GELS AND METAL-ORGANIC AEROGELS MADE FROM 

COORDINATION POLYMER NANOFIBERS  

 

Field of the Invention 

The present invention relates to the field of metal-5 

organic gels (MOGs) and metal-organic aerogels (MOAs) of 

coordination polymer, method for preparing thereof and their 

use in the capture of chemical species and/or separation, 

detection, catalysis, environmental cleanup, metal recovery, 

passive sampling, among others. 10 

Background of the Invention  

Porous coordination polymers, also referred to as MOFs 

(metal-organic frameworks), are characterized by having unique 

properties as well as multiple functionalities, therefore they 

have been the focus of countless papers in recent years in the 15 

area of physical chemistry, materials science or similar 

research areas [Zhou, H.C. Chem. Soc. Rev., 2014, 43, 5415-

5418].  

Despite the existence of commercial activity involving 

materials of this type, MOF applications are restricted to 20 

technologies that are still in the demonstration phase 

(gaseous fuel storage in vehicles, catalysis, gas treatment, 

etc.). This is due to a series of limitations that 

coordination polymers still have to date, such as: limited 

pore size, material shaping in a post-synthesis step and a 25 

high production cost. 

Pore size (2-10 nm) depends on the organic ligand 

length, where increasing said size not only entails a 

challenge in terms of synthesis, but also may weaken 

crystalline structure stability or give rise to 30 

interpenetrated structures. The small pore size of the MOFs is 

particularly interesting for the storage and separation of 
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small molecules that weakly interact with one another, where 

the narrowness of the gaps strengthens adsorbate-adsorbent 

interactions. However, in most cases reduced pore sizes entail 

drawbacks such as prolonged diffusion times or limited 

accessibility, particularly in applications that are carried 5 

out with large molecules, such as non-polymeric macromolecule 

or biomolecule separation, catalysis or detection, for example 

[Xuan, W. et al. Chem. Soc. Rev., 2012, 41, 1677-1695].  

As regards material shaping, MOFs are generally produced 

in powdery form and the processing thereof as a monolith or 10 

tablet involves the use of additives which worsen the porous 

properties [Bazer-Bachi, D. et al., Power Technology, 2014, 

255, 52-29]. Although there is extensive literature on MOF 

synthesis, the shaping thereof has not been widely studied, 

this being one of the points limiting its application at the 15 

industrial level. 

On the other hand, despite the existence of MOFs that 

are produced at competitive costs, many of them still have a 

high cost today, particularly when it comes to MOFs that have 

high porosity and pore size values. 20 

One proposal for increasing pore size is based on the 

preparation of metal-organic gels, also known as metallogels. 

In this aspect, a gel can be defined as a non-fluid polymeric 

or colloidal network which expands over the entire volume 

occupied by a liquid. The solid network is characterized by 25 

having a low density and a large pore volume which is occupied 

by the liquid or solvent in the wet state. Porosity is due to 

the microstructure, i.e., the cross-linking or aggregation of 

the particles forming same. Metal-organic gels can be defined 

as a type of gel in which the solid matrix is formed by metal 30 

ion and organic ligand coordination complexes. 

The metal-organic gel can be used in wet form (with 

solvent) or in dry form (aerogel, xerogel or cryogel). By 
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subjecting the gel to a drying process (air, lyophilization, 

supercritical drying, etc.), solvent molecules are removed 

thereby creating empty pores. This method allows producing 

very porous structures, with pore sizes greater than 20 nm and 

also having a high specific surface area, as well as a 5 

markedly low density (generally less than 0.5 g/cm3).  

Furthermore, the possibility of producing them directly 

in monolithic form without requiring subsequent processing is 

another noteworthy difference of metal-organic gels and metal-

organic aerogels. All this contributes to overcoming the 10 

drawbacks mentioned for MOFs. 

Some examples of MOFs which are processed as gels and/or 

aerogels prepared with different transition metal ions (Fe3+, 

Ni2+, Cu2+, Cr3+) and ligands such as trimesate (benzene-1,3,5-

tricarboxylate), oxalate, 4-aminopyridine or acetylacetonate, 15 

have been described in the prior art. Lohe, M.R. et al. (Chem. 

Commun., 2009, 6056-6058) describe an Fe(III) and benzene-

1,3,5-tricarboxylate aerogel (MIL-100(Fe) aerogel) that is 

proposed as a new route for the application of MOFs as 

catalysts or catalytic supports due to being 20 

microporous/mesoporous or macroporous. Xiang, S. et al (J. 

Mat. Chem., 2012, 22, 1862-1867) refer to Cr3+/Fe3+- and 

carboxylic ligand-based metal-organic aerogels. These 

compounds are made from carboxylic ligands for producing 

structures inspired, once again, in the known MIL compounds. 25 

Yang, Q. et al. (Micropor. Mesopor. Mater., 2014, 187, 108-

113) show the formation process dependency of the Al3+/Cr3+ and 

acetylacetonate aerogel with various synthesis parameters.  

Aerogels have also been prepared from non-porous 

coordination polymers (Angulo-Ibañez, A. et al., Polymers, 30 

2016, 8, 16), where a one-dimensional polymer of general 

formula [M(oxalate)(4-aminopyridine)2]n in a 

mesoporous/macroporous monolithic form (pores > 20 nm) is 

processed.  
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However, the examples listed in the literature lack any 

stability comparable to that of conventional porous materials 

such as zeolites, mesoporous silica or activated carbon. This 

is because the coordination polymers used in metal-organic 

gels are based on readily reversible coordination bonds. 5 

Another prior art example is a Cu(II)-oxalate 

coordination complex-based metal-organic gel (Saha, S., et. 

al., Chem. Eur. J. 2013, 19, 9562–9568) the polymer of which 

adopts the form of nanometric fibers having a size comprised 

between 20 and 45 nm. However, given the acid-base equilibria 10 

of the ligand and the strength of the metal-oxalate bond, this 

metal-organic gel has reduced acid/base stability. 

Other examples in the prior art describe coordination 

polymers based on different transition metals and the DTO 

ligand (DTO: dithiooxamidate, also known as rubeanate and by 15 

its IUPAC name, ethanedithioamidate), but in no case are a gel 

(be it metallogel, xerogel, aerogel, cryogel…) or nanometric 

fibers produced from same. In Japanese and United States 

patents of reference JP5074458 and US2013/0306488, 

respectively, the Cu-DTO coordination complex is produced in 20 

the form of micrometric particles which, once isolated, are 

used in cathode manufacturing for electrochemical purposes. In 

the method used, the reaction is performed by mixing rubeanic 

acid and copper sulfate in an aqueous-ethanolic solution, 

without adding a base, which gives rise to the production of 25 

micrometer-sized particles. Patent GB1006120 discloses 

information about an electrolyte containing a polymer formed 

by the DTO ligand and a transition metal which can be Fe(II), 

Cu(II), Ni(II) or Co(II). Once again, no reference is made to 

the produced product being similar to a gel, or to it being 30 

made up of nanometric fibers. According to the paper by 

Kitagawa H. et al., published in Synthetic Metals, 119 (2001) 

485-486, a copper coordination polymer-based formulation with 

a DTO derivative forms a two-dimensional structure but not in 
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the form of nanometric fibers. 

Brief Description of the Invention 

The authors of the present invention have developed a 

gel based on a metal-organic matrix formed by a framework of 

coordination polymer nanometric fibers, where said metal-5 

organic matrix has a high pore volume and a high specific 

surface area. Furthermore, unlike other metal-organic gels, 

this material is characterized by withstanding well reducing 

environments and by being stable in a wide pH range (1-14) and 

in organic and aqueous solvents. 10 

The metal-organic gel of the present invention is one 

that can be easily produced, chemically and thermally stable 

and insoluble in most solvents. The key factor for producing 

these resistant materials with improved properties is the use 

of the dithiooxamidate ligand which forms particularly strong 15 

coordination bonds with metal ions that are soft or have an 

intermediate hardness and confers a high chemical stability to 

the material. 

On the other hand, controlling metal-organic gel 

synthesis allows the growth of the coordination polymer in the 20 

form of cross-linked nanometric fibers, giving rise to a 

three-dimensional structure characterized by having, as 

mentioned above, high pore volumes and a high specific surface 

area. Furthermore, said synthesis process leads to the 

formation of gels enclosing a large amount of solvent and 25 

allows producing the material with the shape of the container 

in which it has been prepared without requiring subsequent 

processing, so the shape of the end product can be controlled. 

This, along with their high porosity, confers unique 

properties to said gels as alternative candidate to porous 30 

coordination polymers or MOFs. 

Therefore, a first aspect of the present invention 

relates to a metal-organic gel comprising a metal-organic 
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matrix of cross-linked nanometric fibers, wherein said 

nanometric fibers comprise coordination polymer chains of 

general formula (M-DTO)n, where M is a transition metal or a 

mixture of at least two transition metals; DTO is 

dithiooxamidate; and n is the number of M-DTO repeating units 5 

forming the coordination polymer, n being a number greater 

than or equal to 10. 

In a second aspect, the present invention relates to a 

method (hereinafter method of the invention) for preparing a 

metal-organic gel, wherein said method comprises: 10 

a) dissolving or dispersing a transition metal salt or a 

mixture thereof, in an organic solvent or a mixture of 

at least two organic solvents; 

b) dissolving dithiooxamide and a base in an organic 

solvent; 15 

c) mixing the solution or dispersion produced in step a) 

with the solution produced in step b); and 

d) allowing the resulting mixture to stand until formation 

of the metal-organic gel. 

An additional aspect of the present invention consists 20 

of a metal-organic gel obtainable by the method of the 

preceding inventive aspect. 

In a particular embodiment, the method of the invention 

further comprises, after step d), a drying step for drying at 

room pressure and temperature. This process leads to solvent 25 

removal at a speed such that it allows microstructural 

reorganization of the polymer network, thus giving rise to a 

xerogel. 

Accordingly, an additional aspect relates to a xerogel 

obtainable by the method of the preceding paragraph. 30 

In another particular embodiment, the method of the 
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invention further comprises, after step d), a supercritical 

drying step for drying in the presence of a supercritical 

fluid. This step involves exchanging the synthesis solvent 

with a solvent which is soluble in the supercritical fluid and 

then removing same.  5 

During this process, the liquid that is inside the gel 

is extracted, which leads to the formation of an aerogel which 

maintains the three-dimensional structure of cross-linked 

nanometric fibers of the metal-organic gel. 

Accordingly, an additional aspect relates to an aerogel 10 

obtainable by the method of the preceding paragraph. 

The metal-organic gel and aerogel, produced as described 

above, are characterized by having a large pore size and 

volume along with a high accessible surface area. 

Specifically, the large pore size makes them excellent 15 

candidates for applications such as chemical species capture 

and separation or catalysis, given that the species of 

interest can more easily access the active zones of the 

polymer, unlike what is observed in the so-called MOFs where 

the small pores generally complicate diffusion processes. 20 

Furthermore, in any of the forms thereof (gel or 

aerogel), the thiol groups which the metal-organic matrix 

contains on its surface cause the matrix to be highly 

selective to soft metals such as Hg and Ag, this capture 

furthermore being irreversible. This feature is particularly 25 

interesting because it makes them viable as passive samplers 

when determining mercury or its derivatives (methyl-mercury) 

in rivers, lakes, etc. 

Therefore, a final aspect of the invention relates to 

the use of the gel and aerogel as defined in the preceding 30 

paragraph, in chemical species capture, separation and/or 

catalytic processes, contaminated water cleanup or metal 

recovery processes and in analytical passive sampling 
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applications. 

Brief Description of the Drawings 

Figure 1 shows a photograph of the metal-organic gel. 

Figure 2 shows the stability of the metal-organic gels 

in different conditions. a) Polydentate carboxylic acids (1 5 

M): 1. Terephthalic acid; 2. 2,3-pyrazinedicarboxylate acid; 

3. Trimesic acid; 4. Isophthalic acid; 5. Oxalic acid. b) 

Amines (1 M): 1. Pentylamine; 2. Diethanoldiamine; 3. 

Pyridine; 4. N,N,N’,N’-tetramethylethylenediamine; 5. 

Diethylenetriamine. c) Conventional solvents: 1. 10 

Dichloromethane; 2. DMSO; 3. Toluene; 4. Acetonitrile; 5. 

Chloroform; 6. Diethyl ether; 7. Pentane; 8. Acetone. d) pH: 

from 14 to 1, referring to the pH value adjusted with NaOH or 

H2SO4. The vial numbered with 0 is a concentrated 96% H2SO4 

solution. e) Others: 1. 69% HNO3; 2. 37% HCl; 3. pure CH3COOH; 15 

4. 25% NH3; 5. 30% H2O2; 6. 0.2 M I2; 7. 2.8 M NaBH4; 8. 1 M 

KNO3; 9. 1 M NaCl. 

Figure 3 shows the transmission electron microscopy 

image (TEM) of a metal-organic gel fragment. 

Figure 4 shows optical images (left) and transmission 20 

electron microscopy (TEM) images (right) for the metal-organic 

gel (a), metal-organic xerogel (b) and metal-organic aerogel 

(c). 

Figure 5 shows TEM images of several metal-

dithiooxamidate gels: a) CoDTO, b) FeDTO, c) PdDTO, d) RhDTO, 25 

e) NiPdDTO and f) NiCoDTO. 

Figure 6 shows an image showing the metal capture (in 

percentage) in metal-organic gels by means of immersing the 

gel in an aqueous solution with different metal concentrations 

for 24 hours.  30 

Detailed Description of the Invention 



9 

The first aspect of the invention consists of a metal-

organic gel comprising a metal-organic matrix of cross-linked 

nanometric fibers, wherein said nanometric fibers comprise 

coordination polymer chains of general formula (M-DTO)n, where 

M is a transition metal or a mixture of at least two 5 

transition metals; DTO is dithiooxamidate; and n is the number 

of M-DTO repeating units forming the coordination polymer, n 

being a number equal to or greater than 10. 

Throughout this specification and in the attached 

claims, the term “metal-organic gel” must be understood as a 10 

structure comprising a metal-organic matrix dispersed in an 

organic liquid. In the context of the present invention, the 

metal-organic matrix corresponds with a structure formed by a 

framework of cross-linked nanometric fibers, wherein said 

nanometric fibers comprise a one-dimensional coordination 15 

polymer based on repeating units of a transition metal and an 

organic ligand bound by coordinate covalent bonds. 

The term “nanometric fibers” must be understood as 

structures consisting of continuous polymeric filaments the 

diameter of which is equal to or less than 100 nm. 20 

In a preferred embodiment, the nanofibers have a 

diameter comprised between 2 and 300 nm, preferably between 2 

and 200 nm, more preferably between 2 and 100 nm, even more 

preferably between 2 and 50 nm, more preferably between 5 and 

40 nm, and even more preferably between 5 and 20 nm. 25 

In another preferred embodiment, the nanofibers have a 

length comprised between 0.1 and 30 µm, preferably between 0.1 

and 20 µm, more preferably between 0.1 and 10 µm, even more 

preferably between 0.1 and 8 µm, more preferably between 0.1 

and 5 µm, even more preferably between 0.2 and 2 µm. 30 

In the present invention, the organic ligand of the 

coordination polymer, i.e., dithiooxamidate, is the conjugate 

base of dithiooxamide (H2DTO; CAS: 79-40-3), a compound which 
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is also known as rubeanic acid or ethanedithioamide and has 

the chemical formula C2H4N2S2: 

H2N S

S NH2 

Said organic ligand is coordinated in a bis-bidentate 

manner to two transition metals, forming a -κ2N,S:κ2N´,S´ 5 

bridge. The molecular structure of the coordination polymer 

can therefore be described according to the following formula 

(I): 

 

(I) 10 

where M is the transition metal or a mixture of at least two 

transition metals and n are the M-DTO repeating units forming 

the coordination polymer. 

In a particular embodiment, the transition metal is 

selected from Cr, Rh, Ru, Mn, Fe, Co, Ni, Cu, Zn, Pd, Ag, Au, 15 

Cd, Pt and mixtures thereof. Preferably, the transition metal 

is selected from Ni, Cu, Co, Fe, Rh, Pt, Ru, Pd and mixtures 

thereof, more preferably Pd, Ni and Cu. 

Said transition metals are in the coordination polymer 

in the form of metal ions, such as Cr3+, Mn3+, Mn2+, Fe2+, Co3+, 20 

Co2+, Ni2+, Cu2+, Cu+, Zn2+, Pd2+, Ag+, Au+, Cd2+, Pt2+, Rh2+, Ru2+, 

Ru3+. 

In a particular embodiment, n is a number such that the 

molecular weight of the coordination polymer is between 1,769 

and 235,245 kDa, more preferably between 29,361 and 117,976 25 

S

H2N S

M

H
N

N
H

S

S
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kDa. 

Figure 1 shows a photograph of a metal-organic gel 

representative of the present invention. 

The metal-organic gel of the present invention is 

characterized by having improved chemical stability, 5 

particularly against acidic pHs, organic solvents and reducing 

conditions, due to the strength of the coordination bond the 

DTO ligand establishes with the transition metals. Figure 2 

shows the stability of the metal-organic gels in different 

conditions such as in coordinating environments, organic 10 

solvents, pH, weak oxidizing environments, reducing 

environments and saline solutions. 

Furthermore, compared to MOFs, they have the advantages 

mentioned for metal-organic gels given that the metal-organic 

gel of the invention is obtained with large pore volumes and 15 

sizes (> 15 nm), can be prepared in monolithic form without a 

post-synthesis processing, and is synthesized using a simple 

and commercially accessible ligand, the dithiooxamide. 

Therefore, in a particular embodiment the metal-organic 

matrix has a pore volume comprised between 0.5 and 10 cm3/g, 20 

preferably between 1 and 10 cm3/g. In another particular 

embodiment, the metal-organic matrix has an average pore size 

comprised between 2 and 300 nm, preferably between 2 and 100 

nm, more preferably between 2 and 50 nm, even more preferably 

between 2 and 30 nm. 25 

In another particular embodiment, the metal-organic 

matrix making up the metal-organic gel has a high specific 

surface area, more particularly said specific surface area is 

comprised between 100 and 800 m2/g. 

“Specific surface area” must be understood as the 30 

surface area of the metal-organic matrix divided by its mass 

(expressed in m2/g). 
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In a particular embodiment, the metal-organic gel 

comprises between 60 and 99% by weight of solvent in which the 

metal-organic matrix comprising the network of cross-linked 

nanometric fibers is dispersed. 

Said solvent fills the pores formed during the assembly 5 

of the metal-organic matrix made by the framework of cross-

linked nanofibers, as can be seen in Figure 3.  

In a second aspect, the invention relates to a method 

for preparing a metal-organic gel. Said method comprises: 

a) dissolving or dispersing a transition metal salt or a 10 

mixture thereof, in an organic solvent or a mixture of 

at least two organic solvents; 

b) dissolving dithiooxamide and a base in an organic 

solvent; 

c) mixing the solution or dispersion produced in step a) 15 

with the solution produced in step b); and 

d) allowing the resulting mixture to stand until formation 

of the metal-organic gel. 

A solution or dispersion of a transition metal salt or a 

mixture thereof, in an organic solvent or a mixture of at 20 

least two organic solvents, is prepared in step a) of the 

method of the invention. 

In a particular embodiment, the transition metal salt is 

selected from nitrate, chloride, perchlorate, bromide, 

sulfate, acetate and other organic carboxylates, preferably 25 

acetate and other organic carboxylates, more preferably 

acetate. The degree of hydration (water molecules) of the salt 

should not be relevant, provided that the purity of the 

reagent is taken into account when preparing the solution.  

In another particular embodiment, the salt of the metal 30 

used is based on transition metals selected from Cr, Mn, Fe, 
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Co, Ni, Cu, Zn, Pd, Rh, Ru, Ag, Au, Cd, Pt and mixtures 

thereof, more preferably Ni, Cu, Pd, Co, Fe, Pt, Rh, Ru or a 

mixture thereof, and particularly Pd, Ni and Cu. 

The transition metal salt solution or dispersion is 

prepared in an organic medium, without adding water. The 5 

organic solvent is selected based on the best fiber formation 

and gelling conditions. In a particular embodiment, the 

organic solvent is selected from N,N-dimethylformamide (DMF); 

N,N-diethylformamide (DEF); dimethylsulfoxide (DMSO); N,N-

dimethylacetamide (DMA); alcohols such as methanol, ethanol, 10 

iso- or n-propanol, butanol; tetrahydrofuran and a mixture 

thereof.  

The amount of organic solvent will depend on the desired 

concentration. Therefore, in another particular embodiment the 

concentration of transition metal salt in the organic solvent 15 

is comprised between 0.5 and 500 mM, preferably between 25 and 

100 mM. Nevertheless, optimal concentrations differ depending 

on the metal. Therefore, 85 mM are more preferably used for 

Pd-DTO, 25 mM for Cu-DTO, 75 mM for Ni-DTO and 100 mM for 

heterometallic compounds such as NiPd-DTO, NiCu-DTO and PdCu-20 

DTO, for example. In another preferred embodiment, 50 mM are 

used for heterometallic compounds such as NiPd-DTO, NiCu-DTO 

and PdCu-DTO, for example. 

In a preferred embodiment, the transition metal salt is 

a Ni, Cu or Pd acetate and the solvent is DMF. In another 25 

preferred embodiment, the transition metal salt is a Ni, Cu or 

Pd acetate and the solvent is DMSO. 

In step b) of the method of the invention, the 

dithiooxamide ligand (H2DTO) is added to an organic solution 

further comprising a base.  30 

In a particular embodiment, the base is selected from 

sodium hydroxide, potassium hydroxide, sodium methoxide, 

ammonia and alkylamines such as diethylamine and 
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triethylamine, more preferably alkylamines such as 

diethylamine and triethylamine and even more preferably 

triethylamine is used. The base is used to promote ligand 

deprotonation. 

In another particular embodiment, the solvent is 5 

selected from N,N-dimethylformamide (DMF); N,N-

diethylformamide (DEF); dimethylsulfoxide (DMSO); N,N-

dimethylacetamide (DMA); alcohols such as methanol, ethanol, 

iso- or n-propanol, butanol; tetrahydrofuran and a mixture 

thereof. Preferably, the organic solvent is DMF. More 10 

preferably, the organic solvent is DMSO. 

Even more preferably, the organic solvent used in step 

b) is the same as the organic solvent used in step a) of the 

process of the invention. 

Given that the nanometric fibers in the end product 15 

comprise repeating units with a stoichiometric ratio of 1:1 

(metal-ligand), the ligand concentration must be the same as 

that obtained in step a) for the metal solution. Therefore, in 

a particular embodiment the ligand concentration in the 

organic solution is comprised between 0.5 and 500 mM, 20 

preferably between 25 and 100 mM, and even more preferably 85 

mM for Pd-DTO, 25 mM for Cu-DTO, 75 mM for Ni-DTO and 100 mM 

for heterometallic nuclear compounds such as NiPd-DTO, NiCu-

DTO and PdCu-DTO, for example. In another preferred 

embodiment, the ligand concentration in the organic solution 25 

is 50 mM for heterometallic compounds such as NiPd-DTO, NiCu-

DTO and PdCu-DTO, for example. 

If the metal salt used is not soluble in the organic 

solvent, a dispersion will be obtained instead of a solution. 

Nevertheless, this detail is not significant for obtaining the 30 

desired product. 

In step c), the two solutions a) and b) are mixed, or 

the dispersion a) plus the solution b) are mixed if the 
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transition metal salt is not soluble in the organic solvent. 

In a preferred embodiment, the solution containing the 

DTO ligand is added continuously and in a single step to the 

transition metal solution or dispersion. 

Preferably, the resulting mixture is subjected to 5 

stirring or sonication. If stirring is used, a preferable 

embodiment is to stir the mixture between 100 and 2000 rpm, 

more preferably at 800 rpm. In the case of mixing by 

sonication, a preferable embodiment is to use a frequency 

comprised between 5 and 40 kHz, more preferably 16 kHz. The 10 

mixing of a) and b) is preferably done in a temperature range 

comprised between 0 and 50°C, more preferably between 10 and 

30°C.  

In step d) of the method of the invention, the produced 

mixture is allowed to stand until formation of the metal-15 

organic gel. Depending on the starting reagents and on the 

reaction and mixing conditions, the metal-organic gel can be 

formed almost immediately, for example, within less than one 

minute after the mixing process of step c), or it may require 

more time. In a particular embodiment, the mixture is allowed 20 

to stand between 1 and 48 hours, more preferably for 24 hours. 

The synthesis process of the invention leads to the 

formation of a metal-organic gel enclosing a large amount of 

solvent, particularly between 60 and 99% by weight with 

respect to the total weight of the metal-organic gel. 25 

Furthermore, it allows the metal-organic gel to acquire the 

shape of the container in which it has been prepared, so the 

shape of the end product can be controlled, designing it for 

example, in monolithic form, and therefore without requiring a 

post-synthesis shaping process.  30 

The metal-organic gel thus produced is characterized by 

withstanding reducing conditions well and by being stable in a 

wide pH range (1-14) and in organic and aqueous solvents. 
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Furthermore, it has a high porosity. 

Accordingly, an additional aspect of the present 

invention consists of a metal-organic gel that can be produced 

according to the process of the invention described above. 

In a preferred embodiment, the metal-organic gel 5 

produced according to the process of the invention is 

subjected to a first step of washing with organic solvents 

leading to the removal of the remaining reagents and synthesis 

solvents. Preferably, a solvent in which the reagents and the 

by-products are soluble, more preferably, the synthesis 10 

solvent is used. 

In a second step, the metal-organic gel free of 

unreacted species is washed. For this step, the use of 

solvents that are soluble in CO2 is preferred, for example 

alcohols, such as methanol, ethanol or propanol, more 15 

preferably ethanol. 

Additionally, the organic solvent initially incorporated 

in the polymeric matrix can be exchanged with another solvent 

without requiring said solvent to be an organic solvent. In a 

particular embodiment, said exchange solvent can be water. 20 

In another preferred embodiment, the metal-organic gel 

produced according to the method of the invention is subjected 

to a drying process for the purpose of producing a metal-

organic xerogel. Said drying method can be performed at room 

temperature and pressure conditions. In this case, drying can 25 

be performed at ambient temperature at a pressure of about 1 

bar or, to speed up the process, at higher temperatures (50-

150ºC) which are provided by an external source, such as an 

oven, for example. 

Preferably, the temperature ranges between 100 and 30 

120ºC, whereas the pressure is usually about 1 bar. 

Alternatively, or in a combined manner, said drying 
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method can be performed by applying a vacuum. 

Even more preferably, this drying method is performed on 

a metal-organic gel containing a volatile organic solvent such 

as an alcohol, for example, as the organic solvent. Said 

solvent can be the one that was used for preparing precursor 5 

solutions leading to the production of the metal-organic gel 

or the one that is used in a subsequent washing step such as 

the one described above. 

This drying process, at ambient pressure and 

temperatures or by means of providing external heat and/or by 10 

applying a vacuum, allows removing the organic solvent, or 

where appropriate the exchange solvent, and leads to the 

production of a xerogel. By means of this process, the solvent 

present in the metal-organic gel is removed at a rate such 

that it allows reorganizing the microstructure formed by the 15 

nanofibers, causing them to collapse and stack to give rise to 

a framework that virtually lacks porosity but is chemically 

identical to the metal-organic gel and aerogel. 

In another preferred embodiment, the metallogel produced 

according to the method of the invention is subjected to a 20 

supercritical drying process.  

Supercritical drying must be understood as a process of 

removing the solvent contained in the metal-organic gel above 

its critical point, or by means of a process of exchanging 

said solvent with a supercritical fluid followed by 25 

evaporating said fluid at a temperature greater than its 

critical temperature. 

If the solvent contained in the metal-organic gel is not 

soluble in the supercritical fluid, said solvent is firstly 

exchanged with a solvent soluble in said supercritical fluid. 30 

After exchanging the initial solvent (the synthesis 

solvent of the gel), the new solvent is exchanged with a fluid 
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in subcritical conditions. The temperature of the gel immersed 

in the fluid (all the gel being inside an airtight container 

equipped with valves required for correct operation) is then 

raised until exceeding the critical point of the chosen fluid. 

Finally, the pressure is gradually reduced to its ambient 5 

value in isothermal conditions. 

In a preferred embodiment, the supercritical fluid is 

CO2. In this case, supercritical drying is performed by first 

immersing the metal-organic gel in liquid CO2 at a temperature 

comprised between 15 and 30ºC and a pressure between 35 and 60 10 

bar. The resulting material is then dried in supercritical 

conditions, i.e., increasing the temperature above the 

critical temperature of CO2 (above 31ºC) and a pressure 

between 60 and 150 bar. Finally, the pressure is reduced in 

isothermal conditions until reaching ambient pressure. 15 

If the solvent contained in the metal-organic gel is not 

soluble in CO2, said solvent is first exchanged with a solvent 

soluble in CO2, such as an alcohol or an alkane, for example. 

Said solvent is exchanged afterward by CO2in conditions close 

to 20ºC and 50 bar. Supercritical drying is then performed in 20 

the same conditions described above, i.e., if CO2 is used as a 

supercritical fluid, the system is brought to a temperature 

above the critical temperature of CO2 (31ºC) and to a pressure 

between 60 and 150 bar, and the pressure is then reduced in 

isothermal conditions until reaching ambient pressure.  25 

This supercritical drying process allows removing the 

solvent contained in the metal-organic gel, giving rise to the 

production of a metal-organic aerogel.  

Furthermore, it has been observed that supercritical 

drying of the metal-organic gel allows said gel to retain its 30 

initial shape, i.e., to keep the three-dimensional structure 

of the metal-organic matrix formed by the network of cross-

linked nanometric fibers, therefore resulting in a highly 



19 

porous material. 

Therefore, an additional aspect of the present invention 

consists of an aerogel that can be produced according to the 

method described above.  

In the context of the present invention, the term 5 

“metal-organic aerogel” must therefore be understood as a 

porous network of a structure that is identical or similar to 

that of the metal-organic gel from which it originated, but 

without the solvent.  

In a preferred embodiment, the aerogel is characterized 10 

by having pore volumes comprised between 0.5 and 10 cm3/g, 

preferably between 1 and 10 cm3/g. This allows producing a 

material with a high specific surface area, particularly the 

specific surface area of the aerogel can have values ranging 

between 100 and 800 m2/g. The surface area values can be 15 

calculated by means of the BET model [Brunauer, S. et. al. J. 

Am. Chem. Soc. 1938, 60, 309]. 

As a result of this drying, a material with very low 

apparent densities, preferably between 0.5 and 0.01 g/cm3, 

with respect to its actual density (between 2.0 and 3.5 g/cm3) 20 

is produced.  

By means of N2 adsorption isotherm measurements at 77 K, 

it is found that aerogels have a significant meso- and 

macroporous contribution, although the average pore size is 

comprised between 2 and 300 nm, preferably between 2 and 100 25 

nm, more preferably between 2 and 50 nm, even more preferably 

between 2 and 30 nm. 

In a particular embodiment, the nanometric fibers 

comprised in the aerogel have a diameter equal to or less than 

100 nm, preferably comprised between 2 and 100 nm, preferably 30 

between 2 and 50 nm, more preferably between 5 and 40 nm, and 

even more preferably between 5 and 20 nm. 
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In another particular embodiment, the nanometric fibers 

comprised in the aerogel have a length comprised between 0.1 

and 10 µm, preferably between 0.1 and 8 µm, more preferably 

between 0.1 and 5 µm, even more preferably between 0.2 and 2 

µm. 5 

Due to the chemical stability of the gels and aerogels 

of the invention, derived fundamentally from the strength of 

the bonds between the transition metal and the DTO ligand, and 

their large pore size and high specific surface area, gels and 

aerogels are excellent candidates for applications in chemical 10 

species capture, separation and/or catalytic processes, 

contaminated water cleanup or metal recovery processes and in 

analytical passive sampling applications.  

The application thereof for the selective capture of 

soft metals is also particularly relevant. The thiol groups 15 

which the aerogel contains on its surface cause the aerogel to 

be highly selective to soft metals such as Hg and Ag, this 

capture furthermore being irreversible. This feature is 

particularly interesting because it makes them viable as 

passive samplers when determining mercury or its derivatives 20 

(methyl-mercury) in rivers, lakes, etc. 

Accordingly, the aerogel of the present invention can be 

used in processes requiring easy permeability of chemical 

species due to the high specific surface area and mesoporous 

character. In this context, as particular embodiments of the 25 

present invention, the aerogel that can be produced according 

to the method described above can be used in chemical species 

capture, separation and/or chemical catalysis, contaminated 

water cleanup or metal recovery processes and in analytical 

applications such as passive sampling. 30 

Throughout this specification and in the attached 

claims, “chemical species capture” must be understood as the 

irreversible immobilization of chemical species which may 
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include, and are not limited to, free molecules in solution or 

in gaseous phase, solvates and/or salts, cationic or anionic 

species and chemical elements. In this context, “contaminated 

water cleanup processes” must be understood as those processes 

which allows capturing chemical species in water that belong 5 

to the chemical contaminant group, i.e., any organic/inorganic 

substance in an amount which causes an irritating, corrosive, 

suffocating or toxic effect in animals or plants. Likewise, 

“metal recovery” must be understood as the capture of chemical 

species that belong to the metal and metalloid group. 10 

In this specification and in the attached claims, the 

“passive sampling” technique must be understood as the 

collection of chemical species controlled by a physical 

process such as diffusion, or permeability through the metal-

organic framework. 15 

Example 1. Preparation of a Ni-DTO metal-organic gel 

0.933 g of Ni(OAc)2 were dissolved in 48 mL of DMF/DMA 

(60:40 vol:vol) with the help of a sonic tip at 80% its power 

for 2 minutes. The ligand solution was prepared by dissolving 

0.451 g of dithiooxamide in 2 mL of DMF/DMA (60:40 vol:vol) 20 

together with 523 µL of triethylamine. The dithiooxamidate 

ligand solution was added at once to the metal dispersion. 

This addition process was performed in an ultrasonic bath 

(ULTRASONS-H, Selecta) at a temperature of 15ºC until a change 

in the viscosity of the samples was visually observed (5 25 

minutes). Once the metal-organic gel acquired the suitable 

consistency, it was left at room temperature for a day.  

The sample was washed according to the following method: 

first the metal-organic gel was immersed in DMF to remove 

unreacted species (24 h) and washes with DMF/ethanol mixtures 30 

were then performed (every 24 h). Finally, exchange with pure 

ethanol was performed (24 h).  

Figure 4a (left) corresponds to a photograph of the 
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metal-organic gel in which it is observed that the metal-

organic gel keeps the shape of the container where it has been 

synthesized. Figure 4a (right) shows an image of a fragment of 

the metal-organic gel obtained by transmission electron 

microscopy (TEM) taken in a Philips CM200 microscope.  5 

Example 2. Preparation of a Ni-DTO metal-organic xerogel 

The corresponding xerogel was prepared by leaving the 

metallogel produced in Example 1 to dry at room temperature 

and pressure. The results are shown in Figure 4b. 

Example 3. Preparation of a Ni-DTO metal-organic aerogel 10 

The corresponding aerogel was prepared using a Quorum 

Technologies® E3100 supercritical drying equipment equipped 

with gas inlet valves, venting valves and purge valves, and a 

thermal bath. The metal-organic gel produced following the 

method of Example 1 was first immersed in liquid CO2 at 20ºC 15 

and 50 bar for one hour. After that, ethanol was removed 

through the purge valve. This process was repeated five times. 

The sample was then dried in supercritical conditions by 

increasing the temperature and pressure to 38ºC and 85-95 bar, 

respectively. Finally, the chamber was slowly vented to 20 

atmospheric pressure, keeping it at a constant temperature 

(38ºC). 

Figure 4c shows the optical image and the electron 

microscopy image corresponding to a Ni-DTO aerogel synthesized 

according to the method described in this example.  25 

From the images shown in Figure 4, a highly porous 

structure consistent with the high pore volume value (3.0 

cm3/g) and specific surface area value (406 m2/g) can be seen 

in the case of the gel and aerogel. 

Example 4. Stability tests of the metal-organic gel 30 

Different samples of a metal-organic gel produced 
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following the method described in Example 1 were subjected to 

different conditions: 

1) Polydentate carboxylic acid solutions (1 M): 

Terephthalic acid; 2,3-pyrazinedicarboxylic acid; Trimesic 

acid; Isophthalic acid; Oxalic acid. 5 

2) Amine solutions (1 M): 

Pentylamine; Diethanoldiamine; Pyridine; 

N,N,N’,N’-tetramethylethylenediamine; Diethylenetriamine. 

3) Conventional solvents: 

Dichloromethane; DMSO; Toluene; Acetonitrile; Chloroform; 10 

Diethyl ether; Pentane; Acetone. 

4) Solutions at different pH (1-14) adjusted with NaOH or 

H2SO4.  

5) Others: 

69% HNO3; 37% HCl; pure CH3COOH; 25% NH3; 30% H2O2; 0.2 M I2; 15 

2.8 M NaBH4; 1 M KNO3; 1 M NaCl. 

Figure 2 shows how the metal-organic gel is stable in 

any of the conditions to which it has been subjected, without 

the structure thereof being altered. Particularly, the 

remarkable stability presented at different pH values, both 20 

acidic and basic should be highlighted. 

These tests have clearly demonstrated the stability 

shown by the metal-organic gel of the invention at different 

pH values, which broadens its range of actuation as metal 

capturing agents. It must be added that other metal-organic 25 

gels lack stability at a low pH, which makes them unsuitable 

for use thereof in applications imposing extremely acidic 

conditions. 

Example 5. Preparation of other homometallic and bimetallic M-

DTO metal-organic gels 30 

Following a method similar to that of Example 1, but 

changing the metal cation, M-DTO type gels where the metal 

centers used were Cu(II), Co(II), Fe(II), Pd(II) and Rh(II), 
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were produced. Figure 5 shows electron microscopy images for 

M-DTO gels with M = Co(II), Fe(II), Pd(II) and Rh(II). 

Bimetallic compounds were prepared in a similar manner using 

combinations of Fe/Co, Fe/Pd, Fe/Cu, Fe/Ni, Co/Ni, Co/Cu, 

Co/Pd, Ni/Cu, Ni/Pd and Pd/Cu. The atomic content for each 5 

metal is shown in Table 1. Figure 5 shows electron microscopy 

images for M-DTO gels with M = Co(II), Fe(II), Pd(II), Rh(II), 

Ni(II)/Pd(II) and Ni(II)/Co(II). 

 

Table 1 

 
M1 

(atomic %) 

M2 

(atomic %) 

FeCoDTO 46 54 

FePdDTO 72 28 

FeCuDTO 44 56 

FeNiDTO 47 53 

CoNiDTO 47 53 

CoCuDTO 50 50 

CoPdDTO 67 33 

NiCuDTO 55 45 

NiPdDTO 62 38 

PdCuDTO 43 57 

 10 

Example 6. Selective metal capture tests 

Different tests were conducted by immersing 1 g of 

metal-organic gel produced following the method of Example 1 

for 24 h in aqueous solutions containing different 

concentrations of the following metals: Cu, Ag, Hg, Pb, Zn, Cd 15 
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and Co. All the solutions were adjusted to low pH values (1-

3); nevertheless, as clearly demonstrated in the preceding 

example, the metal-organic gel continued to remain stable even 

at such extreme conditions. The concentrations of each metal 

species were determined by ICP-AES (Inductively Coupled Plasma 5 

Atomic Emission Spectroscopy) before and after exposure to the 

metal-organic gel.  

Figure 6 shows the results of the performed capture, 

being particularly effective in the case of Cd2+, Pb2+, Cu2+, 

Hg2+ and Ag+. The x-axis represents the initial concentration 10 

of the metal ion in the solution, whereas the y-axis shows the 

percentage of recovery or removal of the metal ion relative to 

its initial concentration. By way of example, if the 

percentage is 90%, it would indicate that the content of a 10 

ppm metal ion solution is reduced to 1 ppm. 15 
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CLAIMS 

 

1. A metal-organic gel comprising a metal-organic matrix 

of cross-linked nanometric fibers, characterized in that said 

nanometric fibers comprise coordination polymer chains of 5 

general formula (M-DTO)n, where M is a transition metal or a 

mixture of at least two transition metals; DTO is 

dithiooxamidate; and n is the number of M-DTO repeating units 

forming the coordination polymer, n being a number greater 

than or equal to 10. 10 

2. The metal-organic gel according to claim 1, 

characterized in that the nanometric fibers have a diameter 

between 2 and 300 nanometers. 

3. The metal-organic gel according to claim 1 or 2, 

characterized in that the nanometric fibers have a length 15 

comprised between 0.1 and 30 µm. 

4. The metal-organic gel according to any one of claims 

1 to 3, characterized in that M is a transition metal selected 

from Cr, Rh, Ru, Mn, Zn, Fe, Co, Ni, Cu, Pd, Ag, Au, Cd, Pt 

and a mixture thereof. 20 

5. The metal-organic gel according to any of claims 1 to 

4, characterized in that it further comprises between 60 and 

99% by weight of a solvent with respect to the total weight of 

the metal-organic gel. 

6. A method for preparing a metal-organic gel as defined 25 

in claims 1 to 5, characterized in that said method comprises: 

a) dissolving or dispersing a transition metal salt or 

a mixture thereof, in an organic solvent or a 

mixture of at least two organic solvents; 

b) dissolving dithiooxamide and a base in an organic 30 

solvent; 
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c) mixing the solution or dispersion produced in step 

a) with the solution produced in step b); and 

d) allowing the resulting mixture to stand until 

formation of the metal-organic gel. 

7. The method according to claim 6, characterized in 5 

that the transition metal salt is selected from nitrate, 

chloride, perchlorate, bromide, sulfate, acetate and other 

organic carboxylates.  

8. The method according to claim 6 or 7, characterized 

in that the transition metal salt is selected from a Cr, Mn, 10 

Fe, Co, Ni, Cu, Zn, Pd, Rh, Ru, Ag, Au, Cd, Pt salt, and a 

mixture thereof. 

9. The method according to any one of claims 6 to 8, 

characterized in that the organic solvent used in step a) and 

the organic solvent used in step b) are independently selected 15 

from N,N-dimethylformamide (DMF); N,N-diethylformamide (DEF); 

dimethylsulfoxide (DMSO); N,N-dimethylacetamide (DMA); 

alcohols such as methanol, ethanol, iso- or n-propanol, 

butanol; tetrahydrofuran and a mixture thereof.  

10. The method according to any one of claims 6 to 9, 20 

characterized in that the base used in step b) is selected 

from sodium hydroxide, potassium hydroxide, sodium methoxide, 

ammonia and alkylamine. 

11. A metal-organic gel obtainable by the method defined 

in any of claims 6 to 10. 25 

12. The method according to any of claims 6 to 10, 

characterized in that it further comprises at least one 

washing step for washing the metal-organic gel. 

13. The method according to claim 12, characterized in 

that at least one washing step is performed in the presence of 30 

an alcohol. 
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14. The method according to any one of claims 6 to 10 

and 12 to 13, characterized in that it further comprises a 

drying step for drying the metal-organic gel at room 

temperature and pressure conditions or by means of providing 

external heat and/or by applying a vacuum. 5 

15. A metal-organic xerogel obtainable by the method 

defined in claim 14. 

16. The method according to any one of claims 6 to 10 

and 12 to 13, characterized in that it further comprises a 

supercritical drying step for drying the metal-organic gel.  10 

17. The method according to claim 16, characterized in 

that the supercritical drying is performed by first immersing 

the metal-organic gel in liquid CO2, and then imposing 

supercritical conditions for drying at a temperature greater 

than 31ºC and a pressure between 60 and 150 bar. 15 

18. A metal-organic aerogel obtainable by the method 

defined in any of claims 16 to 17. 

19. The metal-organic aerogel according to claim 18, 

characterized in that it has a specific surface area between 

100 and 800 m2/g. 20 

20. The metal-organic aerogel according to claim 18 or 

19, characterized in that it has pore volumes comprised 

between 0.5 and 10 cm3/g. 

21. The metal-organic aerogel according to any one of 

claims 18 to 20, characterized in that it has an average pore 25 

size between 2 and 300 nm. 

22. Use of a gel as defined in any one of claims 1 to 5 

and 11, or of a metal-organic aerogel as defined in any of 

claims 18 to 21, in chemical species capture, separation 

and/or catalytic processes, contaminated water cleanup or 30 

metal recovery processes, and in analytical applications such 
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as passive sampling.  
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ABSTRACT 

 

The present invention relates to metal-organic gels and 

metal-organic aerogels made of dithiooxamidate (DTO) or 

rubeanate ligand-based coordination polymers, method for 5 

preparing thereof and use in chemical species capture, 

separation and/or catalysis, environmental cleanup, metal 

recovery, passive sampling, among others. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6  





 



·
This work presents the synthesis and characterization of a 

series of coordination compounds based on 

metal(II)-organosulfur complexes as precursors of zero- and 

three-dimensional nanomaterials.

OOn the one hand, thiocarboxylato ligands have been used for 

the preparation of metal(II) sulfide nanoparticles both in pure 

form and as homogeneous dispersion within a carbonaceous 

matrix. Dry thermolysis, the synthetic method chosen to achieve 

this goal, is a simple, controllable and economical route that 

allows the scaling of these materials, a requirement that the 

industrial sector demands.

MMoreover, 3D nanoporous structures have been obtained by 

gelation of coordination polymers based on dithiooxamidato 

ligand. The entrapped solvent can be extracted from the gels 

through a supercritical treatment, consolidating the structure 

in the form of aerogels: ultralight mesoporous solids in which 

more than 80% of their volume is made up of air. Throughout 

the text the reader will have the opportunity to discover the 

surprisisurprising physicochemical properties exhibited by this emerging 

class of metal-organic materials.

·
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