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Abstract

Different performance measures are used to assess the behaviour, and to carry out the

comparison, of classifiers in Machine Learning. Many measures have been defined on the

literature, and among them, a measure inspired by Shannon’s entropy named the Confusion

Entropy (CEN). In this work we introduce a new measure, MCEN, by modifying CEN to

avoid its unwanted behaviour in the binary case, that disables it as a suitable performance

measure in classification. We compare MCEN with CEN and other performance measures,

presenting analytical results in some particularly interesting cases, as well as some heuristic

computational experimentation.

Introduction

Machine Learning is the subfield of Computer Science, as well as the branch of Artificial Intel-

ligence, whose objective is to develop techniques that allow computers to learn. It has a wide

range of applications, such as search engines or pattern recognition. Examples are: medical

diagnosis, fraud detection, stock market analysis, classification of DNA sequences, recognition

of speech and written language, images, games and robotics.

Machine learning tasks are typically grouped into two broad categories: Supervised and

Unsupervised Learning. Classification falls in the former, since it deals with some input vari-

ables (features or characteristics) and an output variable (the class), and uses an algorithm to

infer the class of (that is, to classify) a new case from its known features. Different models are

used to build classifiers. Decision Trees (J48, Random Forest), Rules (Decision Table, JRip,

ZeroR), Neural Networks (Multilayer Perceptron, Extreme Learning Machines, RBFN), Sup-

port Vector Machines, and Bayesian Networks (Naive Bayes, TAN) are some, although not the

only ones, approximations to supervised classification.

Once a classifier is built, a performance measure is needed in order to assess its behaviour

and to compare it with other classifiers. In the binary case, in which the class variable has

only two labels or classes, there are several classical measures that have been widely used:

Accuracy, Sensitivity, Specificity and F-score, only to mention some of the most commonly

used. Not of all them allow a natural extension to the multi-class case (more than two labels),

and only few measures have been specially designed for multi-class classification, which is a

more complex scenario. Accuracy, by far the simplest and widespread performance measure

PLOS ONE | https://doi.org/10.1371/journal.pone.0210264 January 14, 2019 1 / 30

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Delgado R, Núñez-González JD (2019)
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in classification, extends seamlessly its definition in the binary case to multi-class classifica-

tion. Another well known performance measure, formerly introduced in the binary case but

that extends without problems, is Matthew’s Correlation Coefficient (MCC), introduced by

Matthews in [1].

In this work, whose seed is [2], we focus on a different performance measure, named Con-

fusion Entropy (CEN), which measures the uncertainty generated by classification, and has

been recently introduced by Wang et al. in [3] as a novel measure for evaluating classifiers

based on the concept of Shannon’s entropy. CEN measures generated entropy from misclassi-

fied cases considering not only how the cases of each fixed class have been misclassified into

other classes, but also how the cases of the other classes have been misclassified as belonging

to this class, as well as entropy inside well-classified cases. Given a set of non-negative num-

bers, say {n1, . . ., nr}, the Shannon’s entropy generated by the set can be defined as the sum
Pr

i¼1
� pi log ðpiÞ, with pi ¼

ni
n if n ¼

Pr
i¼1

ni, where log can be, as usual, the logarithm in

base 2.

CEN is compared in [3] with Accuracy and other measures, showing a relative consistency

with them: higher Accuracy tends to result in lower Confusion Entropy. This performance

measure, which is more discriminating for evaluating classifiers than Accuracy, specially when

the number or cases grows, has also been studied in [4], where the authors show the strong

monotone relation between CEN and MCC, and that both, MCC and CEN, improve over

Accuracy.

There are some works in the recent literature using Confusion Entropy. For example, in [5]

the authors propose a novel splitting criterion based on CEN for learning decision trees with

higher performance; experimental results on some data sets show that this criterion leads to

trees with better CEN value without reducing accuracy. The authors of [6] and [7] use CEN,

among other performance measures, to compare several common data mining methods used

with highly imbalanced data sets where the class of interest is rare. Other works propose modi-

fications of this measure, as [8], in which a Confusion Entropy measure based on a probabilis-

tic confusion matrix is introduced, measuring if cases are classified into true classes and

separated from others with high probabilities. A similar approach to that of [8] is followed in

[9] to analyze the probability sensitivity of the Gaussian processes in a bankruptcy prediction

context, by means of a probabilistic confusion entropy matrix based on the model estimated

probabilities. In the context of horizontal collaboration, the system global entropy is intro-

duced in [10] analogously to CEN (see also [11] and [12]), and it is used in the collaborative

part of a clustering algorithm, which is iterative with the optimization process continuing as

long as the system global entropy is not stable.

It is remarkable that CEN shows to have a weakness in the binary case that invalidates it

as a suitable performance measure: in some situations CEN gets values larger than one,

unlike what happens in the multi-class case, in which CEN ranges between zero and one.

CEN is a measure of the “overall” entropy associated to the confusion matrix, that can be

thought as generated by two sources: entropy within the main diagonal, and the one gener-

ated by the values outside it, corresponding to misclassification. We will show that CEN is

more sensible to the later. A second but not least important point in the weakness of the

behaviour of CEN is its lack of monotonicity when the overall entropy does increase (or

decrease) monotonously. Along the paper we will show different situations to stand out

these items.

Our aim is to introduce an enhanced CEN measure, that we denote by MCEN, and com-

pare it with CEN, MCC and Accuracy. This new measure will show to be highly correlated

with CEN. Two aspects deserve to be highlighted:

CEN for classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0210264 January 14, 2019 2 / 30

https://doi.org/10.1371/journal.pone.0210264


1. definitions of probabilities involved in the construction of CEN have been modified in

MCEN to improve interpretability as real probabilities,

2. weakness of CEN in the binary case (out-of-range and lack of monotonicity) are overcome

with MCEN.

The paper is structured as follows: first we introduce the Modified Confusion Entropy

MCEN and deal with the multi-dimensional perfectly symmetric and balanced case, which is

deeply studied, performing a cross comparison between CEN, MCEN, Accuracy and MCC.

The general binary case is treated next, focusing on different families of matrices and carrying

out the corresponding cross comparisons. Next part is devoted to study the ZA family of confu-

sion matrices. Then, we compare CEN, MCEN, Accuracy and MCC with two recently intro-

duced measures: the Probabilistic Acuracy PACC ([13]) and the Entropy-Modulated Accuracy

EMA ([14]). Finally, some experiments performed in the binary setting to compare CEN with

MCEN through four real database sets are included in the Supporting Information file. These

experiments show that their behaviour is mostly analog, but when it is not the case, MCEN is

the one that behaves more according to entropy generated by misclassification. The paper fin-

ishes with a conclusion section.

Methods

Given a multi-class classifier learned from a training dataset, with N� 2 classes labelled {1,

2, . . ., N}, we apply it in order to classify cases from a testing dataset, that is, to infer the class of

the cases from their known features or characteristics. Since for the cases in the testing dataset

we actually know the class to which they belong, we can construct the N × N confusion matrix

C = (Ci,j)i,j=1, . . ., N, which collects the results issued by the classifier over the testing dataset. Ci,j

is the number of cases of class i that have been classified as belonging to class j. We denote by S
the sum of values of the matrix, that is, the total number of cases in the testing dataset,

S ¼
PN

i¼1

PN
j¼1

Ci;j.

We introduce notations OUT(C) and IN(C), respectively, to denote the Shannon’s entropy

generated by the elements of outside (respectively, inside) the main diagonal of matrix C.

That is, while IN is the entropy generated by the well classified cases, OUT is generated by

misclassification.

In [3] the misclassification probability of classifying class-i cases as being of class j “subject

to class j”, denoted by P j
i;j, is introduced as:

P j
i;j ¼

Ci;j
PN

k¼1
ðCj;k þ Ck;jÞ

; i; j ¼ 1; :::;N; i 6¼ j ; ð1Þ

that is, Pj
i;j is “almost” the relative frequency class-i cases that are classified as being of class j

among all cases that are of class j or that have been classified as being of class j. But not exactly.

The reason is that class-j cases that have been correctly classified, whose number is Cj,j, are

counted twice in the denominator.

Analogously, the misclassification probability of classifying class-i cases as being of class-j
“subject to class i”, with analogous interpretation, denoted by Pi

i;j, is defined in the same paper

by:

Pi
i;j ¼

Ci;j
PN

k¼1
ðCi;k þ Ck;iÞ

; i; j ¼ 1; :::;N; i 6¼ j : ð2Þ

CEN for classification
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Then, the Confusion Entropy associated to class j is defined in [3] by:

CENj ¼ �
XN

k¼1;k6¼j

ðP j
j;k log 2ðN� 1ÞðP

j
j;kÞ þ P j

k;j log 2ðN� 1ÞðP
j
k;jÞÞ ð3Þ

with the convention a logb(a) = 0 if a = 0. Finally, the overall Confusion Entropy associated to

the confusion matrix C is defined as a convex combination of the Confusion Entropy of the

classes as follows:

CEN ¼
XN

j¼1

Pj CENj ; ð4Þ

where the non-negative weights Pj, summing 1, are

Pj ¼

PN
k¼1
ðCj;k þ Ck;jÞ

2
PN

k;‘¼1
Ck;‘

: ð5Þ

Note that CEN is an invariant measure; if we multiply all elements of the confusion matrix

by a constant we obtain the same result. The same convenient and useful property holds with

Accuracy, MCC and the modified Confusion Entropy measure MCEN, that we will introduce

below. As MCC lives in [−1, 1] while Accuracy, CEN and MCEN range in [0, 1], we scale

MCC and introduce MCC� ¼ 1� MCC
2
2 ½0; 1�. Besides, since Accuracy usually has an inverse

relationship with both CEN and MCEN, we choose to consider ACC� = 1–Accuracy instead of

Accuracy itself.

For N> 2, CEN ranges between 0 and 1, 0 is attained with perfect classification (the off-

diagonal elements of matrix C being zero), while 1 under complete misclassification, symmetry

and balance in C, that is, if all diagonal elements in C are zero, and the off-diagonal elements

take all the same value. In the binary case (N = 2), although CEN remains to be 0 with perfect

classification, and is 1 under complete misclassification with symmetry, in intermediate sce-

narios we can also obtain CEN = 1 and even higher values. That is, in some cases CEN is out-

of-range. See, for example, the confusion matrices in Table 1, which have already been consid-

ered in [4]. The lack of monotonicity when the situation monotonously goes from perfect clas-

sification to completely symmetric and balanced misclassification, as showed by the sequence

of matrices in Table 1, represents a great inconvenience of CEN in the binary case, and is our

main motivation for introducing a modified version of it.

Definition

Instead of (1), we propose to introduce the probability of classifying class-i cases in class j “sub-

ject to class j”, as

~Pj
i;j ¼

Ci;j
PN

k¼1
ðCj;k þ Ck;jÞ � Cj;j

; i; j ¼ 1; :::;N; i 6¼ j :

Table 1. Examples in the perfectly symmetric and balanced binary case with S = 12. Only CEN values.

6 0

0 6

 !
5 1

1 5

 !
4 2

2 4

 !
3 3

3 3

 !
2 4

4 2

 !
1 5

5 1

 !
0 6

6 0

 !

CEN = 0.0000 0.5975 0.8617 1.0000 1.0566 1.0525 1.0000

https://doi.org/10.1371/journal.pone.0210264.t001

CEN for classification
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that is, we overcome the fact that in (1) correctly classified class-j cases are counted twice in

the denominator. With this definition, ~Pj
i;j is really the relative frequency of class-i cases classi-

fied as belonging to class j among all cases that are of class j or that have been classified as

being of class j. Analogously, we modify definition (2) in the same sense:

~Pi
i;j ¼

Ci;j
PN

k¼1
ðCi;k þ Ck;iÞ � Ci;i

; ; i; j ¼ 1; :::;N; i 6¼ j ;

and ~Pi
i;j is really the relative frequency of class-i cases classified in class j among all cases that

are of class i or that have been classified as being of class i.
Next, we modify definition of the weights in (5) in the following way:

~Pj ¼

PN
k¼1
ðCj;k þ Ck;jÞ � Cj;j

2
PN

k;‘¼1
Ck;‘ � a

PN
k¼1

Ck;k

;

where

a ¼
1=2 if N ¼ 2

1 if N > 2 :

(

Then, we define the Confusion Entropy associated to class j as in (3) by

MCENj ¼ �
XN

k¼1;k6¼j

ð~Pj
j;k log 2ðN� 1Þð

~Pj
j;kÞ þ

~Pj
k;j log 2ðN� 1Þð

~Pj
k;jÞÞ ;

and the modified Confusion Entropy as in formula (4), that is,

MCEN ¼
XN

j¼1

~Pj MCENj : ð6Þ

Note that when N > 2;
PN

j¼1
~Pj ¼ 1, so the modified overall Confusion Entropy is also

defined as a convex combination of the modified Confusion Entropy corresponding to the

classes, while in the binary case (N = 2), it is just defined as a conical combination since

although the weights ~Pj are non-negative, they do not necessarily sum up to 1 (indeed, their

sum is 1 if and only if all the diagonal elements of the confusion matrix C are zero, that is, if all

cases have been misclassified).

We see from (4) and (6) that both measures CEN and MCEN, are decomposable along clas-

ses, which makes it easy to assess the effect on the behaviour of the classifier of a simple modifi-

cation affecting just one class.

We can start performing a preliminary comparison of the behaviour of ACC�, MCC�, CEN

and MCEN in the toy example in dimension 2 of Table 2. In this example, the baseline confu-

sion matrix is constant with all its entries equal to 3. First, maintaining the total sum equal to

S = 12 and the out-diagonal invariant, we reduce the entropy IN in Table 2(a). In the baseline

case, the diagonal elements are the set {3, 3}, whose entropy is 1 (maximum value). The corre-

sponding values of IN in case (a) are consigned in Table 2, in a decreasing order. Analogously

for Table 2(b) but in this case changes have been introduced outside the main diagonal. We

observe that while ACC� remains insensitive to changes in the arrangement of the elements of

the matrix, since the sum of the main diagonal remains constant, MCC� only decreases with

decreasing entropy OUT, while when IN decreases, its value increases. As far as their interpre-

tation is concerned, both CEN and MCEN measure the overall entropy of the confusion

CEN for classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0210264 January 14, 2019 5 / 30

https://doi.org/10.1371/journal.pone.0210264


matrix, giving less weight to the IN entropy, that is, that generated by the well classified cases,

than to OUT entropy, corresponding to misclassification. In this example we observe how

their values are reduced when IN decreases, maintaining its constant sum, or when the one

that is reduced is OUT, but in this second case the reduction is much more drastic, both for

CEN and MCEN, and more sharply for the second. The main difference between CEN and

MCEN in this sense is that the former is more sensitive to changes of IN entropy than MCEN,

while less than CEN to that of OUT (observe the percentages in brackets in Table 2, which are

the relative reduction in the measure with respect to that of the baseline case).

We can extend this comparison to matrices of type MA ¼
1 50

A 1

 !

, with A = 1, . . ., 100,

for example. Their main diagonal stays constant. Fig 1 shows the behaviour of CEN, MCEN,

ACC� and MCC� as OUT increases. We can observe that indeed, CEN is less correlated with

this entropy than MCEN. The same can be observed from the correlations matrix given in

Table 3.

Instead, if we consider matrices WA ¼
50 1

1 A

 !

, with A = 1, . . ., 100, the values outside

the main diagonal stay constant. Fig 2 shows the behaviour of CEN, MCEN, ACC� and MCC�

as IN increases. CEN shows more correlation with this entropy than MCEN (see Table 4),

although IN is less correlated (and in an inverse sense that could not be appreciated in the toy

example of Table 2) than OUT, both with CEN and MCEN.

The perfectly symmetric and balanced case

In this section we consider the case in which Ci,j = F for all i, j = 1, . . ., N, i 6¼ j and Ci,i = T,

with T� 0, F> 0, that is, C ¼

T F . . . F F

F T . . . F F

..

. ..
.

. . . ..
. ..

.

F F . . . T F

F F . . . F T

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

.

Table 2. Toy example: Binary case with S = 12. (a): Entropy reduction within the main diagonal, IN. (b) Entropy reduction outside the main diagonal, OUT. In brackets

the relative reduction in each measure with respect to the baseline case. Entropy refers to IN in (a) and to OUT in (b).

Baseline (a) (b)

3 3

3 3

 !
2 3

3 4

 !
1 3

3 5

 !
0 3

3 6

 !
3 2

4 3

 !
3 1

5 3

 !
3 0

6 3

 !

Entropy = 1.0000 0.9183 0.6500 0.0000 0.9183 0.6500 0.0000

(8.17%) (35.00%) (100.00%) (8.17%) (35.00%) (100.00%)

ACC� = 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

MCC� = 0.5000 0.5130 0.5625 0.6667 0.4881 0.4375 0.3333

CEN = 1.0000 0.9898 0.9575 0.8962 0.9591 0.8250 0.5000

(1.02%) (4.25%) (10.38%) (4.09%) (17.50%) (50.00%)

MCEN = 0.9057 0.9006 0.8848 0.8571 0.8590 0.7057 0.3343

(0.56%) (2.31%) (5.37%) (5.16%) (22.08%) (63.09%)

https://doi.org/10.1371/journal.pone.0210264.t002

CEN for classification
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Proposition 1 In the perfectly symmetric and balanced case,

If N > 2; CEN ¼
2 ðN � 1Þ

d
log 2ðN� 1ÞðdÞ; MCEN ¼ 2 ðN � 1Þ~d log 2ðN� 1Þð

~dÞ;

If N ¼ 2; CEN ¼
1

1þ g
log 2ðdÞ; MCEN ¼

1

1þ
3

4
g

log 2ð
~dÞ;

ð7Þ

where

g ¼
T
F
� 0; d ¼ 2 ðN � 1Þ þ 2 g > 0 and ~d ¼ 2 ðN � 1Þ þ g > 0 ;

ACC� ¼
N � 1

gþ ðN � 1Þ
and MCC� ¼

N
2 ðgþ ðN � 1ÞÞ

¼
N

2 ðN � 1Þ
ACC� :

Fig 1. CEN, MCEN, ACC� and MCC� for matrix MA, as function of entropy outside the diagonal.

https://doi.org/10.1371/journal.pone.0210264.g001

Table 3. Correlation matrix (Pearson) for the measures of the family of matrices MA, A = 1, . . ., 100.

CEN MCEN MCC� ACC� OUT

CEN 1.0000000 0.9999334 0.9229026 0.7783573 0.9999320

MCEN 1.0000000 0.9233945 0.7855300 0.9999963

MCC� 1.0000000 0.7340543 0.9241870

ACC� 1.0000000 0.7852756

OUT 1.0000000

https://doi.org/10.1371/journal.pone.0210264.t003

CEN for classification
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Note that ACC�, MCC�, CEN and MCEN depend on the matrix values T and F only

through its ratio γ. In (7) (case N> 2), CEN and MCEN have the same expression except that

CEN depends on δ, which is function of 2γ, while MCEN does on ~d ¼ d � g, which is the

same function but of γ. Therefore,

if N > 2; MCENð2 gÞ ¼ CENðgÞ ;

where in the notation we highlight the dependency of CEN and MCEN on γ.

Corollary 1 In the perfectly symmetric and balanced case, we have that:

Fig 2. CEN, MCEN, ACC� and MCC� for matrix WA, as function of entropy inside the diagonal.

https://doi.org/10.1371/journal.pone.0210264.g002

Table 4. Correlation matrix (Pearson) for the measures of the family of matrices WA, A = 1, . . ., 100.

CEN MCEN MCC� ACC� IN

CEN 1.0000000 0.9995962 0.5499231 0.9672182 -0.6062876

MCEN 1.0000000 0.5355098 0.9609698 -0.5857654

MCC� 1.0000000 0.7340543 -0.9241870

ACC� 1.0000000 -0.7852756

IN 1.0000000

https://doi.org/10.1371/journal.pone.0210264.t004

CEN for classification
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• For any N> 2, CEN, MCEN, ACC� and MCC� are monotonically decreasing functions of γ�
0, with

lim
g!þ1

CENðgÞ ¼ lim
g!þ1

MCENðgÞ ¼ lim
g!þ1

ACC�ðgÞ ¼ lim
g!þ1

MCC�ðgÞ ¼ 0 ;

CENð0Þ ¼ MCENð0Þ ¼ ACC�ð0Þ ¼ 1; MCC�ð0Þ ¼
N

2 ðN � 1Þ
!

1

2
as N ! þ1;

and if γ> 0, MCC� < ACC� < CEN < MCEN.

• Nevertheless, when N = 2, we have that although MCEN and ACC� = MCC� remain to be
monotonically decreasing as functions of γ� 0, CEN does not. Indeed, CEN achieves its global
maximum when g ¼ e

2
� 1, which is CEN e

2
� 1

� �
� 1:06148 > 1. More specifically,

CENð0Þ ¼ CENð1Þ ¼ 1; CENðgÞ > 1 ; for all 0 < g < 1; lim
g!þ1

CENðgÞ ¼ 0;

MCENð0Þ ¼ 1 ; lim
g!þ1

MCENðgÞ ¼ 0 ;

ACC�ð0Þ ¼ MCC�ð0Þ ¼ 1 ; lim
g!þ1

ACC�ðgÞ ¼ lim
g!þ1

MCC�ðgÞ ¼ 0 :

Moreover, there exists γ0� 5.78 such that

MCC� ¼ ACC� < MCEN < CEN if 0 < g < g0;

MCC� ¼ ACC� < MCEN ¼ CEN if g ¼ g0; and

MCC� ¼ ACC� < CEN < MCEN if g > g0 :

Proof 1 The proofs of both Proposition 1 and Corollary 1 are straightforward, and then
omitted. However, it is worth mentioning that in order to prove CEN < MCEN in case N> 2

we use that function f ðxÞ ¼ 1

x log bðxÞ is strictly decreasing for any base b> 1 (in our case, b =

2(N − 1)� 4), and x> e. We apply that fact to see that f(x0)> f(x1) with x0 = 2(N − 1) + γ<
x1 = 2(N − 1) + 2γ, since x0� 4> e.

The same property of function f allows to prove that both CEN and MCEN are monotonically
decreasing as functions of γ, with x = δ = 2(N − 1) + 2γ and x ¼ ~d ¼ 2 ðN � 1Þ þ g, respectively,
being both> e for any γ� 0. Note that since for N = 2 the expression of CEN as function of δ is
as in case N> 2, the monotonous decrease fails since x = δ = 2 + 2γ< e for g < e

2
� 1.

The rest of proofs are also omitted.

Remark 1 Note that if N = 2, CEN exhibits the unwanted behaviour, not showed by MCEN,

of being out-of-range [0, 1], which despairs for N> 2 (see Figs 3 and 4).

Remark 2 Consider the particular case in which T = F, that is, γ = 1. In other words, the con-

fusion matrix is constant, say

1 1 . . . 1

..

. ..
.

. . . ..
.

1 1 . . . 1

0

B
B
@

1

C
C
A. Then, ACC� ¼ N� 1

N andMCC� ¼ 1

2
. More-

over, δ = 2N and ~d ¼ 2N � 1.

If N> 2, CEN ¼ 1 � 1

N

� �
log 2ðN� 1Þð2NÞ andMCEN ¼ 1 � 1

2N� 1

� �
log 2ðN� 1Þð2N � 1Þ:

If N = 2, CEN = 1 andMCEN ¼ 4

7
log 2ð3Þ < 1 :

As a consequence, we can easily check that if N> 2, MCC� < ACC� < CEN <MCEN, with
limN!+1 ACC� = limN!+1 CEN = limN!+1MCEN = 1, while if N = 2, MCC� = ACC� <

MCEN< CEN.

CEN for classification
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Fig 3. The symmetric case. CEN, MCEN, ACC� and MCC� for γ 2 [0, 10], with N = 2.

https://doi.org/10.1371/journal.pone.0210264.g003

Fig 4. The symmetric case. CEN, MCEN, ACC� and MCC� for γ 2 [0, 10], with N = 3.

https://doi.org/10.1371/journal.pone.0210264.g004
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The particular pathological case of matrices ZA will be studied in the multi-class setting, but

before we consider in some detail the binary case.

The general binary case

The binary case (N = 2) can be studied in more detail. We will use the following notation for

the confusion matrix in the most general setting, taking class 1 as reference:

C ¼
TP FN

FP TN

 !

; ð8Þ

where TP is the true positive or number of class-1 cases that have been correctly classified, and

the same for the true negative number of cases TN with class 2. On the other hand, FP denotes

false positives or number of class-2 cases that have been miscllassified, and FN false negatives.

Proposition 2 If the confusion matrix C is given by (8), we have that with S = TP + TN + FP
+ FN,

CEN ¼
ðFN þ FPÞ log 2ðS2 � ðTP � TNÞ2Þ

2 S
�

FN log 2ðFNÞ þ FP log 2ðFPÞ
S

;

MCEN ¼
2ðFN þ FPÞ log 2ððS � TNÞðS � TPÞÞ

3Sþ ðFN þ FPÞ
�

4ðFN log 2ðFNÞ þ FP log 2ðFPÞÞ
3Sþ ðFN þ FPÞ

;

ACC� ¼
FP þ FN

S
and MCC� ¼

1 � MCC
2

;

with MCC ¼
TPTN � FP FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FNÞ ðFP þ TNÞ ðTP þ FPÞ ðTN þ FNÞ

p :

ð9Þ

To carry out a deeper study, we have to consider particular situations; is what we do in the

subsections below, where different particular scenarios have been introduced and developed.

The perfectly symmetric and balanced case. Table 5 below shows some examples of

2 × 2 confusion matrices of type
T F

F T

 !

, that is, in which TP = TN = T and FP = FN = F.

All of them correspond to S = 12 and have already been considered in [4]. This is a particular

case of the previously considered setting, and Proposition 1 and Corollary 1 apply here. We

can observe again the anomalous behaviour of CEN, in contrast with the other measures.

The symmetric but unbalanced family UA. Consider the particular case of a confusion

matrix of type UA ¼
1 A

A 0

 !

, with A> 0. Both class-1 and class-2 cases are mainly misclas-

sified if A> 1. Entropy out of the main diagonal is 1 and within the diagonal is 0, regardless of

the value of A. When 0< A< 1, say for example that A = 1/B with B> 1, then matrix UA is

equivalent to
B 1

1 0

 !

, that is, corresponds to an unbalanced scenario in which class 2 is

Table 5. Examples in the perfectly symmetric and balanced binary case with S = 12.

6 0

0 6

 !
5 1

1 5

 !
4 2

2 4

 !
3 3

3 3

 !
2 4

4 2

 !
1 5

5 1

 !
0 6

6 0

 !

ACC� = MCC� = 0.0000 0.1667 0.3333 0.5000 0.6667 0.8333 1.0000

CEN = 0.0000 0.5975 0.8617 1.0000 1.0566 1.0525 1.0000

MCEN = 0.0000 0.5910 0.8000 0.9057 0.9614 0.9891 1.0000

https://doi.org/10.1371/journal.pone.0210264.t005
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underrepresented and class-1 cases are mainly well classified. We can observe some properties

of CEN, MCEN, ACC� and MCC� (see Fig 5) in Proposition 3, which is derived from Proposi-

tion 2.

Proposition 3 For confusion matrix UA with A> 0, we have:

CENðAÞ ¼
A log 2ðð2Aþ 1Þ

2
� 1Þ � 2A log 2ðAÞ

2Aþ 1
;

MCENðAÞ ¼
4A log 2ð2A ð2Aþ 1ÞÞ � 8A log 2ðAÞ

3 ð2Aþ 1Þ þ 2A
;

ACC�ðAÞ ¼
2A

2Aþ 1
; MCC�ðAÞ ¼

2Aþ 1

2 ðAþ 1Þ
:

As a consequence:
CEN(A) < 1 if A< 1, CEN(1) = 1, CEN(A) > 1 if A> 1, MCEN(A) < 1 and ACC�(A) <

MCC�(A)< 1, for all A> 0, MCEN, ACC� and MCC� are monotonically increasing functions
of A> 0, CEN is not, and achieves its global maximum when A� 2.54, which is> 1,

lim
A!0

CENðAÞ ¼ lim
A!0

MCENðAÞ ¼ lim
A!0

ACC�ðAÞ ¼ 0 < lim
A!0

MCC�ðAÞ ¼ 0:5,

lim
A!þ1

CENðAÞ ¼ lim
A!þ1

MCENðAÞ ¼ lim
A!þ1

ACC�ðAÞ ¼ lim
A!þ1

MCC�ðAÞ ¼ 1:

Fig 5. Famlily UA. CEN, MCEN, ACC� and MCC� for A 2 (0, 10].

https://doi.org/10.1371/journal.pone.0210264.g005
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Moreover, there exists A0 2 (0, 1) (indeed, A0� 0.24) such that

MCENðAÞ < CENðAÞ if A > A0;

MCENðA0Þ ¼ CENðA0Þ;

MCENðAÞ > CENðAÞ if 0 < A < A0:

The overall entropy associated to the four elements of the confusion matrix, which results

to be � 2 A
2 Aþ1

log A
2 Aþ1

� �
, increases to 1 when A! +1 and decreases to 0 when A! 0, and

both CEN and MCEN, are sensible to this fact. Note that the lack of monotonicity of CEN(A)

as A (and then, as the overall entropy) monotonically increases, is an anomalous behaviour

that MCEN has managed to overcome. Moreover, MCEN ranges between 0 and 1. We can

also observe this phenomenon in the examples in Table 6.

The asymmetric family VA. Consider the particular case of confusion matrices of type

VA ¼
1 A

1 0

 !

, with A> 0. This is an asymmetric and unbalanced case in which class 2 is

systematically misclassified and is underrepresented if A> 1. Class 1 is also mainly misclassi-

fied if A> 1. As A! +1, entropy out the diagonal, which is � A
Aþ1

log ð A
Aþ1
Þ, decreases to

zero. Entropy within diagonal is zero, while the overall entropy of the elements of matrix VA is

log ðAþ 2Þ � A
Aþ2

log ðAÞ, which tends to 0 as A! +1. When 0< A< 1 with A = 1/B,

B> 1, matrix VA is equivalent to
B 1

B 0

 !

, which corresponds to an almost balanced but

asymmetric scenario in which class 1 is mainly well classified but class 2 is not. As B increases

(A! 0), entropy out the diagonal also drops to zero. Some properties of CEN, MCEN, ACC�

and MCC� are given in Proposition 4 (see also Fig 6).

Proposition 4 For confusion matrix VA with A> 0, we have:

CENðAÞ ¼
ðAþ 1Þ log 2ððAþ 2Þ

2
� 1Þ � 2A log 2ðAÞ

2 ðAþ 2Þ
;

MCENðAÞ ¼
2 ðAþ 1Þ log 2ððAþ 1Þ ðAþ 2ÞÞ � 4A log 2ðAÞ

3 ðAþ 2Þ þ ðAþ 1Þ
;

ACC�ðAÞ ¼
Aþ 1

Aþ 2
; MCC�ðAÞ ¼

1þ
ffiffiffiffiffiffiffiffiffiffiffi

A
2 ðAþ1Þ

q

2
:

As a consequence, there exists A1 2 (1, 2) (A1� 1.414) such that:
CEN(A) > 1 if 1< A< A1, CEN(1) = CEN(A1) = 1, CEN(A) < 1 if A =2 [1, A1], MCEN(A)

< 1, ACC�(A) < 1, MCC�(A)< 1 and MCEN(A) < CEN(A) for all A> 0,

Table 6. Examples in the binary case for famlily UA.

103 1

1 0

 !
102 1

1 0

 !
10 1

1 0

 !
1 1

1 0

 !
1 10

10 0

 !
1 102

102 0

 !
1 103

103 0

 !

A = 1/103 1/102 1/10 1 10 102 103

ACC� = 0.00200 0.01961 0.16667 0.66667 0.952381 0.995025 0.9995002

MCC� = 0.50050 0.50495 0.54545 0.75000 0.954545 0.995050 0.9995005

CEN = 0.01194 0.08488 0.45495 1.00000 1.017859 1.002167 1.0002210

MCEN = 0.01459 0.09964 0.48263 0.93999 0.997778 0.9998483 0.9999856

https://doi.org/10.1371/journal.pone.0210264.t006
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lim
A!0

MCC�ðAÞ ¼ lim
A!0

ACC�ðAÞ ¼
1

2
> lim

A!0
CENðAÞ ¼

log
2
ð3Þ

4
> lim

A!0
MCENðAÞ ¼

2

7
,

lim
A!þ1

ACC�ðAÞ ¼ 1 > lim
A!þ1

MCC�ðAÞ ¼
2þ

ffiffiffi
2
p

4
> lim

A!þ1
CENðAÞ ¼ lim

A!þ1
MCENðAÞ ¼ 0:

Note that as in previous cases, CEN(A) does not stay always (that is, for any A> 0)

restricted to [0, 1], while MCEN does. See Fig 6 and some examples in Table 7.

Apart from the fact that CEN is out-of-range for some values of A, its behaviour is similar

to that of MCEN, both decreasing with entropy, while nor ACC� nor MCC� are sensitive to

the decrease of entropy when A! +1.

Fig 6. Family VA. CEN, MCEN, ACC� and MCC� for A 2 (0, 10].

https://doi.org/10.1371/journal.pone.0210264.g006

Table 7. Examples in the binary case for famlily VA.

103 1

103 0

 !
102 1

102 0

 !
10 1

10 0

 !
1 1

1 0

 !
5 6

5 0

 !
1 10

1 0

 !
1 102

1 0

 !
1 103

1 0

 !

A = 1/103 1/102 1/10 1 1.2 10 102 103

ACC� = 0.5002 0.5025 0.5238 0.6667 0.6875 0.9167 0.9902 0.9990

MCC� = 0.5112 0.5352 0.6066 0.7500 0.7611 0.8371 0.8518 0.8535

CEN = 0.4019 0.4361 0.6217 1.0000 1.0041 0.5133 0.0934 0.0128

MCEN = 0.2921 0.3309 0.5387 0.9400 0.9429 0.4702 0.0866 0.0121

https://doi.org/10.1371/journal.pone.0210264.t007
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The symmetric but unbalanced family XA, r. Now we introduce the family of confusion

matrices XA; r ¼
A r A

r A 1

 !

, with A, r> 0. Both class-1 and class-2 cases are mainly misclassi-

fied if A, r> 1. Overall entropy of XA, r is � A
ð2 rþ1Þ Aþ1

log ð A
ð2 rþ1Þ Aþ1

Þ � 2 r A
ð2 rþ1Þ Aþ1

log ð r A
ð2 rþ1Þ Aþ1

Þ,

which drops to 0 when A! 0, and when A! +1 converges to log ð2 r þ 1Þ � 2 r
2 rþ1

log ðrÞ,
which in turn converges to 1 as r! +1. Fixed A> 0, overall entropy converges to 1 as

r! +1, and as r! 0, it converges to � A
Aþ1

log A
Aþ1

� �
, which in turn converges to 0 both when

A! 0 and when A! +1.

When 0< A< 1, A = 1/B with B> 1, matrix XA, r is equivalent to
1 r

r B

 !

. We have

some properties of CEN, MCEN, ACC� and MCC� in Proposition 5 below. Moreover, for

r = 0.5, 5 Figs 7 and 8 show how the measures evolve as function of A, while Figs 9 and 10

show their plots as function of r, fixed A = 0.5, 10.

Proposition 5 For confusion matrix XA, r with A, r> 0 we have:

CENðAÞ ¼ �
r A

ð2 r þ 1ÞAþ 1
log 2

r2 A
4 ðr þ 1Þ ðr Aþ 1Þ

� �

;

MCENðAÞ ¼ �
4 r A

ð8 r þ 3ÞAþ 3
log 2

r2 A
ð2 r þ 1Þ ð2 r Aþ 1Þ

� �

;

ACC�ðAÞ ¼
2 r A

ð2 r þ 1ÞAþ 1
; MCC�ðAÞ ¼

2 r2 Aþ r Aþ r
2 ðr þ 1Þ ðr Aþ 1Þ

:

Fig 7. Family XA, r. CEN, MCEN, ACC� and MCC� as function of A> 0 for r = 0.5.

https://doi.org/10.1371/journal.pone.0210264.g007
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As a consequence, ‘CENðrÞ ¼ limA!þ1CENðAÞ ¼ r
2 rþ1

log 2

4 ðrþ1Þ

r

� �
> 0, and there exists r0 < 1

(r0� 0.8) such that for any r> r0, there exists Ar> 0 such that CEN(A) < 1 if A< Ar, CEN

(Ar) = 1, CEN(A) > 1 if A> Ar and

‘CENðrÞ

> 1 if r > 1;

¼ 1 if r ¼ 1;

< 1 if r0 < r < 1:

8
>>><

>>>:

If r� r0, CEN(A)� 1 for any A> 0 and ℓCEN(r) < 1.

On the other hand, for any r> 0,

MCEN(A) < 1, ACC�(A)< 1 and MCC�(A) < 1, for all A> 0, MCEN, ACC � and MCC �

are monotonically increasing functions of A, CEN is not, and has a global maximum, which is>

1 if r> r0, lim
A!0

CENðAÞ ¼ lim
A!0

MCENðAÞ ¼ lim
A!0

ACC�ðAÞ ¼ 0; lim
A!0

MCC�ðAÞ ¼
r

2ðr þ 1Þ
,

0 < lim
A!þ1

ACC�ðAÞ ¼
2r

2r þ 1
< lim

A!þ1
MCC� ¼

2r þ 1

2ðr þ 1Þ
¼ ‘MCC� ðrÞ < 1,

0 < lim
A!þ1

MCENðAÞ ¼
4r

8r þ 3
log

2

2ð2r þ 1Þ

r

� �

¼ ‘MCENðrÞ < 1; lim
r!þ1

‘MCENðrÞ ¼ 1.

Fig 8. Family XA, r. CEN, MCEN, ACC� and MCC� as function of A> 0 for r = 5.

https://doi.org/10.1371/journal.pone.0210264.g008
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Moreover, there exist 0< r3 < r2 < r1 < r0 < 1 (r3� 0.13, r2� 0.15, r1� 0.23) such that:

‘MCCðrÞ > ‘MCENðrÞ > ‘CENðrÞ if 0 < r < r3;

‘MCCðrÞ ¼ ‘MCENðrÞ > ‘CENðrÞ if r ¼ r3;

‘MCENðrÞ > ‘MCCðrÞ > ‘CENðrÞ if r3 < r < r2;

‘MCENðrÞ > ‘MCCðrÞ ¼ ‘CENðrÞ if r ¼ r2;

‘MCENðrÞ > ‘CENðrÞ > ‘MCCðrÞ if r2 < r < r1;

‘MCENðrÞ ¼ ‘CENðrÞ > ‘MCCðrÞ if r ¼ r1;

‘CENðrÞ > ‘MCENðrÞ > ‘MCCðrÞ if r > r1:

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

Finally, for any fixed, A> 0, while MCEN, ACC� and MCC� are monotonically increasing func-
tions of r, CEN is not, as can be seen in Figs 9 and 10, for two values of A. Given A> 0, there
exists rA> r0 such that CEN(A) > 1 for all r> rA.

Note that although we do not specify it in the notations so as not to complicate them, the

performance measures depend on both A and r in the case of this doubly indexed family XA, r.

The asymmetric family YA, r. Finally, we consider another particular doubly indexed

family of confusion matrices in the binary case, with the same overall entropy as XA, r,

denoted by YA, r, with A, r> 0. We define this family by YA; r ¼
r A r A

A 1

 !

. Class-2 is

Fig 9. Family XA, r. CEN, MCEN, ACC� and MCC� as function of r> 0 for A = 0.5.

https://doi.org/10.1371/journal.pone.0210264.g009
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underrepresented and mainly misclassified if A, r> 1, while class-1 cases are classified “at ran-

dom”, that is, a class-1 case has the same probability to be classified into any of the two classes.

Although entropy is as for XA, r, we will see that performance measures behave in a different

way for this family of confusion matrices. When 0< A< 1, A = 1/B with B> 1, then matrix

YA, r is equivalent to
r r

1 B

 !

. In Proposition 6 we give some properties of CEN, MCEN,

ACC� and MCC�. See in Fig 11 for r = 0.1, in Fig 12 for r = 0.8, and see Fig 13 for a plot of

them as function of r, fixed A = 10.

Proposition 6 For confusion matrix YA, r with A, r> 0 we have:

CENðAÞ ¼
ðr þ 1ÞA log 2ðððr þ 1ÞAþ 2Þð3r þ 1ÞÞ þ ðr � 1ÞA log 2ðAÞ � 2rA log 2ðrAÞ

2ðð2r þ 1ÞAþ 1Þ
;

MCENðAÞ ¼
2ððr þ 1ÞA log 2ðððr þ 1ÞAþ 1Þð2r þ 1ÞÞ þ ðr � 1ÞA log 2ðAÞ � 2rA log 2ðrAÞÞ

3ðð2r þ 1ÞAþ 1Þ þ ðr þ 1ÞA
;

ACC�ðAÞ ¼
ðr þ 1ÞA

ð2 r þ 1ÞAþ 1
; MCC�ðAÞ ¼

1 �
r ð1� AÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 r ðAþ1Þ ðrþ1Þ ðr Aþ1Þ
p

2
:

As a consequence, LCENðrÞ ¼ limA!þ1CENðAÞ ¼ 1

2 ð2 rþ1Þ
log 2ð

ðð3 rþ1Þ ðrþ1ÞÞrþ1

r2 r Þ > 0, and there

exists R0 < 1(R0� 0.71) such that LCENðrÞ

> 1 if R0 < r < 1;

¼ 1 if r ¼ R0; 1;

< 1 if r < R0 or r > 1:

8
><

>:
Moreover, there exist 0

Fig 10. Family XA, r. CEN, MCEN, ACC� and MCC� as function of r> 0 for A = 10.

https://doi.org/10.1371/journal.pone.0210264.g010
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< R1 < R0 < 1< R2(R1� 0.5, R2� 1.4) such that

if r 2 ½R0; 1�; there exists Ar > 0 such that CENðAÞ < 1 if A < Ar;

CENðArÞ ¼ 1; CENðAÞ > 1 if A > Ar;

if r 2 ðR1; R0Þ [ ð1; R2Þ; there exist 0 < Ar < Br such that CENðAÞ < 1 if A < Ar

orA > Br; CENðArÞ ¼ CENðBrÞ ¼ 1;

CENðAÞ > 1 if A 2 ðAr; BrÞ;

if r =2 ðR1; R2Þ; CENðAÞ � 1 for any A > 0:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

On the other hand, for any r> 0,

MCEN(A) < 1, ACC�(A)< 1 and MCC�(A) < 1, for all A> 0, ACC� and MCC� are mono-
tonically increasing functions of A, CEN is not, and MCEN is or not, depending on the value of r,

lim
A!0

CENðAÞ ¼ lim
A!0

MCENðAÞ ¼ lim
A!0

ACC�ðAÞ ¼ 0; lim
A!0

MCC�ðAÞ ¼
1 �

ffiffiffiffiffiffiffiffiffi
r

2ðrþ1Þ

q

2
,

lim
A!þ1

ACC�ðAÞ ¼
r þ 1

2r þ 1
¼ LACC� ðrÞ; lim

A!þ1
MCC� ¼

1þ 1ffiffiffiffiffiffiffiffiffi
2ðrþ1Þ
p

2
¼ LMCC� ðrÞ, LMCENðrÞ ¼

lim
A!þ1

MCENðAÞ ¼
2

3ð2r þ 1Þ þ ðr þ 1Þ
log

2
ð
ðð2r þ 1Þðr þ 1ÞÞ

rþ1

r2 r
Þ < 1; LMCEN(r) < LCEN(r)

for all r> 0.

Fig 11. Family YA, r. CEN, MCEN, ACC� and MCC� as function of A> 0 for r = 0.1.

https://doi.org/10.1371/journal.pone.0210264.g011

CEN for classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0210264 January 14, 2019 19 / 30

https://doi.org/10.1371/journal.pone.0210264.g011
https://doi.org/10.1371/journal.pone.0210264


Note that LACC�(r) < LMCC�(r) if and only if r > � 1þ
ffiffi
5
p

4
> 0.

Improving classification of the minority class while maintaining the imbalance between

the classes. Up to now, we have evaluated binary confusion matrices with different balances

of the two classes but not different classification results. Now let’s do just the opposite. To help

clarify the utility of MCEN in the evaluation of improvements in classification of the minority

class while maintaining the same amount of imbalance, we consider two different examples.

Example 1: We introduce the family of confusion matrices Xa
50; 2
¼

50 100

101 � a a

 !

,

with α = 1, 2, . . ., 101. Note that when α = 1, the corresponding matrix belongs to the family

{XA, r} with A = 50 and r = 2. Imbalance in classes stays fix. When α = 1, the minority class is

classified very badly, improving classification as α increases and reaching the perfect classifica-

tion when α = 101. Is MCEN able to detect this behaviour? Yes, it is. Unlike what happens

with CEN, MCEN (as well as ACC� and MCC�) monotonically decreases when classification

of the minority class improves (α increases). CEN incongruously first increases up to α = 18

and then starts to decrease and behave like the other performance measures (see Fig 14).

Example 2: A similar phenomenon can be observed with family Yb

100; 1 ¼
100 100

101 � b b

 !

,

with β = 1, 2, . . ., 101 (with β = 1 the corresponding matrix belongs to the family {YA, r} with

A = 100 and r = 1. As in Example 1, imbalance in classes is constant and when β = 1, the

Fig 12. Family YA, r. CEN, MCEN, ACC� and MCC� as function of A> 0 for r = 0.8.

https://doi.org/10.1371/journal.pone.0210264.g012
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minority class is classified very badly, improving classification as β increases up to 101, when

perfect classification is reached. MCEN as well as ACC� and MCC�, monotonically decrease

when β increases, while CEN increases up to β = 14 and then starts to decrease and behave

like the other performance measures (see Fig 15).

The ZA family

As noted in [4], the behaviour of the Confusion Entropy CEN is rather diverse from

that of MCC� and ACC� for the pathological case of the family of confusion matrices

ZA = (ai,j)i,j = 1, . . ., N, defined by ai;j ¼
A if i ¼ N; j ¼ 1

1 otherwise;

(

, with A> 0. That is,

ZA ¼

1 1 . . . 1

1 1 . . . 1

..

. ..
.

. . . ..
.

1 1 . . . 1

A 1 . . . 1

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

. We want to study how MCEN behaves when applied to elements of

this family.

Fig 13. Family YA, r. CEN, MCEN, ACC� and MCC� as function of r for A = 10.

https://doi.org/10.1371/journal.pone.0210264.g013
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Proposition 7

If N > 2; CENðZAÞ ¼
1

N2 þ A � 1

�

ðN � 1Þ ðN � 2Þ log 2ðN� 1Þð2NÞ

þð2N þ A � 3Þ log 2ðN� 1Þ ð2N þ A � 1Þ � A log 2ðN� 1ÞðAÞ
�

;

MCEN ¼
2

2ðN2 þ A � 1Þ � N

�

N � 1ð Þ N � 2ð Þ log 2ðN� 1Þ 2N � 1ð Þ

þð2N þ A � 3Þ log 2ðN� 1Þð2N þ A � 2Þ � A log 2ðN� 1ÞðAÞ
�

;

if N ¼ 2; CENðZAÞ ¼
1

Aþ 3
ðAþ 1Þ log 2ðAþ 3Þ � A log 2ðAÞð Þ;

MCEN ¼
2

2Aþ 5
ðAþ 1Þ log 2ðAþ 2Þ � A log 2ðAÞð Þ:

In general (N� 2),

MCC�ðZAÞ ¼
N ðN2 þ 2 ðA � 1ÞÞ � ðN2 þ ðA � 1ÞÞ

2 ðN � 1Þ ðN2 þ 2 ðA � 1ÞÞ
;

ACC�ðZAÞ ¼
N2 � N þ ðA � 1Þ

N2 þ ðA � 1Þ

As a consequence,

Fig 14. Family Xa
50; 2

with α = 1, 2, . . ., 101. CEN, MCEN, ACC� and MCC� as function of α.

https://doi.org/10.1371/journal.pone.0210264.g014
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• If N = 2,

MCEN< CEN(ZA) for all A>0,

MCEN< 1 for all A> 0, and there exists A3 2 (1, 2)(A3� 1.85) such that

CENðZ1Þ ¼ CENðZA3
Þ ¼ 1;

CENðZAÞ > 1 if A 2 ð1; A3Þ and CENðZAÞ < 1 if A =2 ½1; A3�;

lim
A!0

MCC�ðAÞ¼
1

4
< lim

A!0
ACC�¼

1

3
< lim

A!0
MCENðAÞ¼

2

5
< lim

A!0
CENðAÞ¼

log 2ð3Þ

3
;

lim
A!þ1

CENðAÞ ¼ lim
A!þ1

MCENðAÞ ¼ 0 < lim
A!þ1

MCC� ¼
3

4
< lim

A!þ1
ACC� ¼ 1 :

• If N = 3 (we take this case as example of what happens with N> 2),

lim
A!0

MCC�ðAÞ ¼
13

28
< lim

A!0
ACC� ¼

5

8
<

< lim
A!0

CENðAÞ¼
2 log 4ð6Þ þ 3 log 4ð5Þ

8
< lim

A!0
MCENðAÞ¼

2

13
ð2 log 4ð5Þ þ 3Þ<1;

lim
A!þ1

CENðAÞ¼ lim
A!þ1

MCENðAÞ¼0< lim
A!þ1

MCC�¼
5

8
< lim

A!þ1
ACC�¼1:

Fig 15. Family Yb
50; 2 with β = 1, 2, . . ., 101. CEN, MCEN, ACC� and MCC� as function of β.

https://doi.org/10.1371/journal.pone.0210264.g015
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In Figs 16 and 17 we can observe this behaviour when N = 2 and N = 3, respectively.

Table 8 shows some examples of confusion matrices of the family ZA, first with N = 2, and

secondly with N = 4.

Note that CEN and MCEN exhibit a very different behaviour comparing with ACC� and

MCC�, since the former are sensitive to the overall entropy associated to the elements of the

matrix, which is log ðN2 þ A � 1Þ � A
N2þA� 1

log ðAÞ. Entropy decreases to log(N2 − 1) when

A! 0, and drops to 0 when A! +1.

Comparing with other performance measures

Several works have considered the question of the introduction and comparison of different

performance measures for classification, inspired, in one way or another, by Shannon’s

entropy. For example, in [13] the authors introduce a novel measure called PACC (Probabilis-

tic Accuracy) in the multi-class setting, making a comparative study of it with other measures

as Accuracy, MCC and CEN, among others.

Besides, Entropy-Modulated Accuracy (EMA), introduced in [14], is a performance mea-

sure of classification tasks based on the concept of perplexity, the latter being defined as the

effective number of classes a classifier sees. The authors also introduce NIT (Normalized Infor-

mation Transfer) factor, which is a correction of EMA. They compare both EMA and NIT fac-

tor with Accuracy and CEN, rejecting rankings of classifiers based in Accuracy and choosing

more meaningful and interpretable classifiers. They show in some examples that MCC is

Fig 16. Family ZA. CEN, MCEN, MCC� and ACC� as function of A> 0 for N = 2.

https://doi.org/10.1371/journal.pone.0210264.g016
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highly correlated with Accuracy, while rankings obtained with CEN, EMA and NIT factor are

comparable in some cases but disagree in others.

Although PACC, EMA and NIT factor are useful measures to assess classifiers, in our opin-

ion none of them is completely satisfactory in grading the effectiveness of the classifier learning

process, since all reflect some concrete feature of the classification process, being insufficient

for covering all the aspects of this complex task, so they should be used cautiously and in a

complementary way. That is, all the measures suffer from certain weaknesses that are evident

in specific, more or less gimmicky situations. This comment extends also to both CEN and

MCEN, although it should be noted that the latter solves the problems showed by CEN in the

binary setting, as well as to MCC and Accuracy, the last one having been widely treated (see,

for example, the Introduction section in [14]).

Let us exemplify this fact by going back to the toy example in Table 2. In Table 9 we add the

calculated values of PACC� = 1-PACC and 1/NIT to that of Table 2. We use NIT factor

(inverted to make it comparable with the other measures) instead of EMA since the probability

distribution of classes in the validation set is not uniform. Note that our confusion matrices

are transposed with respect to that in [14], and also that for the NIT factor we use formula (4).

We have used the corrected definition provided by the authors, which had already acknowl-

edged an erratum in Eq (4) in the comments of https://www.researchgate.net/publication/

259743406_100_Classification_Accuracy_Considered_Harmful_The_Normalized_

Information_Transfer_Factor_Explains_the_Accuracy_Paradox/.

The behaviour of PACC� showed in Table 9 is consistent with that of MCC�, increasing

when IN entropy decreases (a) and decreasing when OUT decreases (b). However, the

Fig 17. Family ZA. CEN, MCEN, MCC� and ACC� as function of A> 0 for N = 3.

https://doi.org/10.1371/journal.pone.0210264.g017
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behaviour of 1/NIT is consistent with that of CEN and MCEN, decreasing in both cases. Nev-

ertheless, unlike what happens with CEN and MCEN, NIT factor does not distinguish among

scenarios (a) and (b). This is because both EMA and NIT factor are invariants to permutations

of the columns.

Another example is that of the MEGmind reading challenge organized by the PASCAL (Pat-

tern Analysis, Statistical modeling and ComputAtional Learning) network in [15], already

considered in [14]. We restrict our comparison to the group of the four most outstanding sys-

tems, denoted C1 (Huttunen et al.), C2 (Santana et al.), C3 (Jylänki et al.) and C4 (Tu & Sun),

since for them, unlike what happens with the rest, we could access to the confusion matrices in

[15]. The results are in Table 10, and from them we see that the most comparable rankings are

that given by the NIT factor, CEN and MCEN, showing clusters {C4, C2} and {C1, C3}, with

very small differences inside the clusters, specially the second. The authors of the report [15]

were specially interested in comparison C1 vs. C4, and 1/NIT factor, as well as CEN and

MCEN, give the same ordering: C4 is better (lower value) than C1, in concordance with

interpretability given in [14].

Table 8. Examples with different matrices ZA in cases N = 2 and N = 4.

10 10

1 10

 !
2 2

1 2

 !
1 1

1 1

 !
1 1

2 1

 !
1 1

10 1

 !

A = 1/10 1/2 1 2 10

ACC� = 0.3548 0.4286 0.5000 0.6000 0.8462

MCC� = 0.2955 0.4167 0.5000 0.5833 0.7045

CEN = 0.6864 0.9174 1.0000 0.9932 0.5758

MCEN = 0.5806 0.8276 0.9057 0.8889 0.4972

ZA = 102 102 102 102

102 102 102 102

102 102 102 102

1 102 102 102

0

B
B
B
B
B
@

1

C
C
C
C
C
A

10 10 10 10

10 10 10 10

10 10 10 10

1 10 10 10

0

B
B
B
B
B
@

1

C
C
C
C
C
A

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0

B
B
B
B
B
@

1

C
C
C
C
C
A

1 1 1 1

1 1 1 1

1 1 1 1

10 1 1 1

0

B
B
B
B
B
@

1

C
C
C
C
C
A

1 1 1 1

1 1 1 1

1 1 1 1

102 1 1 1

0

B
B
B
B
B
@

1

C
C
C
C
C
A

A = 10−2 10−1 1 10 102

ACC� = 0.7335 0.7351 0.7500 0.8400 0.9652

MCC� = 0.4882 0.4894 0.5000 0.5441 0.5771

CEN = 0.8284 0.8391 0.8704 0.7132 0.2068

MCEN = 0.8883 0.9001 0.9309 0.7338 0.2016

https://doi.org/10.1371/journal.pone.0210264.t008

Table 9. Toy example of Table 2 revisited, adding PACC and the NIT factor.

Baseline (a) (b)

3 3

3 3

 !
2 3

3 4

 !
1 3

3 5

 !
0 3

3 6

 !
3 2

4 3

 !
3 1

5 3

 !
3 0

6 3

 !

ACC� = 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

MCC� = 0.5000 0.5130 0.5625 0.6667 0.4881 0.4375 0.3333

CEN = 1.0000 0.9898 0.9575 0.8962 0.9591 0.8250 0.5000

MCEN = 0.9057 0.9006 0.8848 0.8571 0.8590 0.7057 0.3343

PACC� = 0.5000 0.5071 0.5312 0.5833 0.4929 0.4687 0.4167

1/NIT = 2.0000 1.9992 1.9840 1.8371 1.9992 1.9840 1.8371

https://doi.org/10.1371/journal.pone.0210264.t009
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One more example to show the variability when performance measures are compared: in

Table 11 we see that the NIT factor (equivalently, EMA), unlike the other measures, is not able

to distinguish between classifiers whose confusion matrices are A and B in the binary case, nor

between C and D in multi-class classification.

Supporting information file: Experiments and results

The advantages of using Modified Confusion Entropy MCEN measure against CEN have been

tested on different binary classifiers, constructed from four available datasets from the UCI

ML Repository (https://archive.ics.uci.edu). From each dataset we construct and assess eight

different classifiers, five of which are Bayesian networks, while the rest are other standard

machine learning procedures used in supervised classification problems.

Because of the comparisons carried out previously with different examples, we have to rec-

ognize the impossibility of deciding what measure of behaviour, of the considered ones, can

allow to decide in the case that the rankings of classifiers obtained with CEN and MCEN were

different. We decided, then, to use OUT entropy as such a reference when there is disparity;

in case of a tie, we will use IN entropy to break it. This is what we will call “the criterion of

entropy”.

To compare rankings obtained from CEN and MCEN and that obtained by the criterion of

entropy, we use both the Hamming distance and the degree of consistency indicator c (see

[16]).

The results obtained with all the considered datasets heuristically reinforce that MCEN is

more correlated with entropy than CEN. (see S1 File and Tables A-F in S1 File).

Conclusion

We introduced MCEN as a modification of the original Confusion Entropy performance mea-

sure CEN introduced in [3], both for binary and multi-class classification, proving some

Table 10. Results for the first four systems of the MEGmind reading challenge. Confusion matrices have been

obtained from [15].

System ACC� MCC� CEN MCEN PACC� 1/NIT

C1 0.3201 0.2010 0.4360 0.5694 0.3230 2.5877

C2 0.3675 0.2286 0.4043 0.4981 0.3668 2.4715

C3 0.3721 0.2319 0.4483 0.5645 0.3667 2.6151

C4 0.3783 0.2369 0.4213 0.5279 0.3737 2.4545

https://doi.org/10.1371/journal.pone.0210264.t010

Table 11. Two toy examples. With S = 30 for N = 2, and with S = 40 for N = 3.

A ¼
10 0

10 10

 !

B ¼
0 10

10 10

 !

C ¼

10 0 0

10 10 0

0 0 10

0

B
B
@

1

C
C
A D ¼

10 0 0

0 10 10

10 0 0

0

B
B
@

1

C
C
A

ACC� = 0.3333 < 0.6667 0.2500 < 0.5000

MCC� = 0.2500 < 0.7500 0.1500 < 0.3500

CEN = 0.5283 < 1.0000 0.1981 < 0.3231

MCEN = 0.4000 < 0.9400 0.2000 < 0.3333

PACC� = 0.2917 < 0.7083 0.1944 < 0.5000

1/NIT = 1.6799 = 1.6799 1.5000 = 1.5000

https://doi.org/10.1371/journal.pone.0210264.t011
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properties. We compared this measure with CEN, MCC and Accuracy, showing that in the

binary case, MCEN overcomes the unreliability of CEN in a twofold sense: the departure of

the range where it should be (the interval [0, 1]), and the lack of monotonicity when the

entropy increases or decreases. These features made CEN an inappropriate measure in the

binary case, proving MCEN to be a good alternative, and we study different scenarios to high-

light this fact. Moreover, while nor Accuracy nor MCC can distinguish among different mis-

classification distributions of cases in the confusion matrix, MCEN and CEN have an high

level of discrimination.

First, we show that in the binary case (see Table 2), both CEN and MCEN are sensitive to

the decreasing in the entropy within the main diagonal IN, an also to that outside the diagonal

OUT, but while CEN is more sensitive than MCEN to IN, the opposite occurs with OUT. By

contrast, ACC is insensitive as long as the sum of the diagonal and the total sum remain con-

stant. Secondly, we consider the multi-class perfectly symmetric and balanced case in which

the main diagonal elements are equal to T and the elements outside the diagonal are equal to

F, which is analytically studied in detail, showing the output-of-range of CEN in the binary

case when γ = T/F 2 (0, 1).

After that, se consider different particular situations in the binary setting, through the study

of some families of confusion matrices. Family UA is symmetric and unbalanced, showing the

out-of-range of CEN for any A> 1, and in addition a lack of monotonicity that contrast with

the behaviour of the overall entropy associated to the elements of the matrix. Family VA is

asymmetric and unbalanced, and also shows the out-of-range of CEN but only for A in the

interval (1, A1), where A1� 1.4.

Two doubly indexed families have been considered in the binary case. CEN has an anoma-

lous behaviour for family XA, r, which is symmetric but unbalanced, for r> r0 (with r0� 0.8)

since it is not only out-of-range from a certain value of A, but its limit when A! +1 is >1 if

r> 1, showing lack of monotonicity. The same happens from a certain value of r, fixed A.

Family YA,r is also unbalanced but asymmetric. When r is in the interval (R0, 1) with R0� 0.71,

CEN is not only out-of-range from a certain value of A, but its limit when A! +1 is >1 if

r> 1, showing lack of monotonicity. But there are other two intervals of values for r in which

CEN>1 for A living in a certain bounded interval.

Besides evaluating binary confusion matrices with the same classification results for the

minority class but different balances of the two classes, we compare through two examples the

behaviour of MCEN with that of CEN, ACC� and MCC�, in evaluating improvements in clas-

sification of the minority class while maintaining the same amount of imbalance. We show

that CEN is the only one that does not show a monotonous decrease as the classification

improves, for which MCEN proves, also in this sense, that it outperforms CEN.

Finally, we also consider the multi-class family ZA, which is asymmetric and unbalanced,

and observe that in the binary case, CEN is out-of-range for A 2 (1, A3), with A3� 1.85.

In all of these examples, MCEN behave appropriately. Comparing with the overall Shan-

non’s entropy associated to the set of elements of the confusion matrix, both CEN and MCEN

are sensitive to it but CEN sometimes does not show the same behaviour in terms of monoto-

nicity than entropy. With respect to Accuracy and MCC, conveniently scaled, they show some-

times a behaviour in contradiction with Shannon’s entropy, as for families VA and ZA.

A further comparison has been carried out with the Probabilistic Accuracy (PACC) intro-

duced in [13], and the Entropy-Modulated-Accuracy EMA and the Normalized Information

Transfer (NIT) factor, both introduced in [15]. We consider different examples in which

sometimes PACC� = 1–PACC behaves consistently with MCC�, increasing when IN entropy

decreases and decreasing when OUT decreases, while 1/NIT behaves in accordance with CEN

and MCEN, decreasing in both cases, but with the handicap that unlike what happens with
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CEN and MCEN, NIT factor does not distinguish between IN and OUT. But not always. Actu-

ally, no measure seems to be completely satisfactory since each one reflects a specific character-

istic of the classification process, so they should be used in a complementary way and none can

be taken as a gold standard to compare the others.

Finally, to make clear the improvement of MCEN over CEN, we carry out experimentation

consisting in the comparison of the rankings of some classifiers obtained from four different

real datasets by using both measures. Mostly the classifiers orderings match, but when they do

not, it is the MCEN that most agrees with the criterion of entropy. To see that, we use both the

Hamming distance and the degree of consistency indicator c. These results heuristically sup-

port the use of MCEN as a better alternative to CEN in the binary case, when a performance

measure based in entropy is required.
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