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Abstract

Stochastic optimization problems of practical applications lead, in general, to some large

models. The size of those models is linked to the number of scenarios that defines the sce-

nario tree. This number of scenarios can be so large that decomposition strategies are required

for problem solving in reasonable computing time. Methodologies such as Branch-and-Fix

Coordination and Lagrangean Relaxation make use of these decomposition approaches, where

independent scenario clusters are given. In this work, we present a technique to generate clus-

ter submodel structures from the decomposition of a general two-stage stochastic mixed integer

optimization model. Scenario cluster submodels are generated from the original stochastic prob-

lem by combining the compact and splitting variable representations in some of the variables

related to the nodes that belong to the first stage. We consider a two-stage stochastic capacity

expansion problem as illustrative example where several decompositions are provided.
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1 Introduction

Stochastic optimization problems of practical applications lead, in general, to some large models.

The size of those models is linked to the number of scenarios that define the scenario tree. This

number of scenarios can be so large that decomposition strategies are required for problem solving in

reasonable time. For theory, methodologies and algorithms in relation with stochastic optimization

see [4, 6, 25, 29]and [30], among many others.

Most of the optimization problems require integer variables, mainly 0-1 variables besides con-

tinuous ones. The advantage of a mixed 0-1 approach is that it provides a general framework for

modeling a large variety of problems.

The traditional aim in this type of problems is to solve the Deterministic Equivalent Model (for

short, DEM), which usually is a mixed 0-1 problem with a special structure. Exact decomposition

algorithms for solving the DEM have been studied for different types of problems, see [21, 32].

Some of them combining with a Branch-and-Bound method to deal with the integer variables, see

our work in [8, 10, 12] as well as [26], among others.

Some approaches for multistage problems where appear most promising to use the information

about the separability of the problem are presented in [24, 27, 28], just for naming a few works.

Specifically, see in [8, 9, 10, 11, 12, 15, 31, 32, 35], among others, some decomposition approaches

that consider scenario clustering or grouping for solving large-scale multistage stochastic mixed

integer problems. The so-named Branch-and-Fix Coordination (BFC) methodology is used in the

decomposition approaches presented in [8, 10, 12, 15] to generate independent scenario clusters

such that multiplicity of any scenario is not allowed among the clusters. Moreover, Lagrangean

Decomposition (for short, LD) [13, 14, 16, 17, 18] can be used as part of a solution methodology. In

a first step, consists of relaxing the so-called nonanticipativity constraints (for short, NAC) for some

of the stages. Then, scenario cluster submodels are generated from the original stochastic problem

by dualizing the NAC related to the nodes that belong to the stages up to the break one. Subgradient

Method (SM)[19, 20], Volume Algorithm (VA) [3], Lagrangean Progressive Hedging Algorithm

(LPHA) [30, 13] and Dynamic Constrained Cutting Plane (DCCP) algorithm [22] can then be used

in the Lagrangean multipliers updating scheme, while solving multi-stage mixed 0-1 submodels

based on scenario cluster decomposition, see [14]. The proximal bundle method presented in [23]

can be also used as a Lagrangean multipliers updating scheme. In all these cases it is proved that the

tightness of the bounds can be increased “by grouping together scenarios”.

In general, for any multi-stage stochastic problem with T stages and |Ω| scenarios, the infor-

mation about until what stage the scenario submodels have common information, is saved in the

scenario tree. See in [2], for the details of the general procedure of scenario cluster partitioning,

based in the break stage concept in case of general multi-stage problems.

In the case of two-stage problems the simpler structure of the scenario tree allows to use an easy

procedure to decompose the full model. About scenario cluster partitioning in two-stage models,

see [13]. In this paper, a scenario clustering is presented where the number of clusters can be chosen

from the set of divisors of the number of scenarios, |Ω|. Now, we propose the generalization of

this procedure such that be possible to choose the number of clusters as any value from the set

C = {1,2, · · · , |Ω|}.
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The rest of the paper is organized as follows. Section 2 deals with the main concepts and related

notation of a two-stage optimization model. Section 3 presents the scenario clustering scheme.

Section 4 presents an example as illustrative case. Section 5 introduces the files required for the

decomposition. Section 6 reports the results of the decomposition procedure over the illustrative

case; and, Section 7 concludes.

Some Appendices present the detail of some MPS files, a part of the C++ code, and some other

information.

2 Two-stage model

Let us consider the following two-stage stochastic mixed 0-1 model in compact representation:

(MIP) : zMIP = min a1x1 +b1y1 +Eψ [a
ω
2 xω

2 +bω
2 yω

2 ]
s.t.

A

(

x1

y1

)

≤ h1

T

(

x1

y1

)

+W ω

(

xω
2

yω
2

)

≤ hω
2 , ∀ω ∈ Ω

y1,y
ω
2 ≥ 0, ∀ω ∈ Ω

x1,x
ω
2 ∈ {0,1}, ∀ω ∈ Ω

(1)

where a1 and b1 are known vectors of the objective function coefficients for the 0-1 and continuous

variables in the first stage x1 and y1, respectively, h1 is the right hand side vector for the first stage

constraints, and A is the known matrix of coefficients for the first stage constraints. For each scenario

ω , hω
2 is the right hand side vector for the second stage constraints; and aω

2 and bω
2 are the objective

function coefficients for the second stage variables 0-1 and continuous, xω
2 and yω

2 respectively.

Furthermore, T and W ω are the technology matrices, this second under scenario ω , for ω ∈Ω, where

Ω is the set of scenarios to consider. Piecing together the stochastic components of the problem,

we have a vector ψω = (aω
2 ,b

ω
2 ,h

ω
2 ,W

ω), with ω ∈ Ω. Finally, Eψ represents the mathematical

expectation with respect to ψ over the set of scenarios Ω.

All this information can be represented as a tree in which each path from the root to the leaf

corresponds to a specific scenario ω . In addition, each node of the tree can be associated with a group

of scenarios g where G denotes the set of scenario groups (i.e. nodes in the underlying scenario tree),

and Gt , the subset of scenario groups that belong to stage t ∈ T , such that G = ∪t∈T Gt and Ωg is

the set of the scenarios related to group g. Finally, T denotes the set of stages and in our particular

case, |T |= 2.

Sometimes it can be useful to work with scenarios instead of with nodes or groups, for example

if you want to split the set of scenarios into different subsets. Ωg denotes the set of scenarios that

belong to group g, for g ∈ G .
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Figure 1: Scenarios tree

The left part of Figure 1 corresponds to the compact representation of the problem in which

there is only one copy of each first stage variable. In this part, the concept of scenario group is used

to represent the nonanticipativity constrains implicitly. It corresponds to the representation given in

model (1).

The right part of Figure 1 corresponds to the splitting variable representation of the problem,

given in model (4), in which there is a replica of each first stage variable for each scenario. In this

way, in the first stage we must impose the nonanticipativity constrains in the variables xω
1 and yω

1 for

the scenarios ω that belong the same group Ωg, g ∈ G1 = {1}, i.e., for all scenarios, ω ∈ Ω.

Following the nonanticipativity principle stated in [34] and restated in [30] see also [4], among

many others, both scenarios should have the same value for the related variables with the same

index up to the given stage. The conditions called Non-Anticipativity Constrains (NAC) establish

in particular in the two-stage models that the decisions of the first stage must be independent of the

scenario in which they occur and, therefore, be the same under the different scenarios. So that

xω = xω ′
, ∀ω ,ω ′ ∈ Ω,ω 6= ω ′ (2)

yω = yω ′
, ∀ω ,ω ′ ∈ Ω,ω 6= ω ′ (3)

Similar the NAC must be satisfied by all the coefficients vectors and matrices of the first stage

(aω
1 ,b

ω
1 ,h

ω
1 ,A

ω
,T ω).

Then, the splitting variable representation of a two-stage model is given by:
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(MIP) : zMIP = min∑ω∈Ω ∑2
t=1 wω(aω

t xω
t +bω

t yω
t )

s.t.

Aω

(

xω
1

yω
1

)

≤ hω
1 , ∀ω ∈ Ω

T ω

(

xω
1

yω
1

)

+W ω

(

xω
2

yω
2

)

≤ hω
2 , ∀ω ∈ Ω

xω = xω ′
, ∀ω ,ω ′ ∈ Ω,ω 6= ω ′

yω = yω ′
, ∀ω ,ω ′ ∈ Ω,ω 6= ω ′

yω ≥ 0, ∀ω ∈ Ω

xω ∈ {0,1}, ∀ω ∈ Ω

(4)

where wω is the likelihood attributed to each scenario ω .

Throughout the following sections we will describe a procedure to generate the cluster submodel

structures from the descomposition of a general full model.

3 Scenario Cluster Partitioning

In order to combine the compact and the splitting variable representation, we propose a cluster

scenario partition of the full model, being a scenario cluster a set of scenarios where the NAC

constrains are implicitly considered.

In general, for any multi-stage stochastic problem with T stages and |Ω| scenarios, the informa-

tion about until what stage the scenario submodels have common information, and when the NAC

must be explicit, is saved in the subsets Gt and Ωg, g ∈ Gt , t ∈ T , i.e., in the scenario tree. Then,

a general procedure of scenario cluster partitioning based in the break stage concept is developped.

See [10], [12] and [2], for the definition of this concept and related topics.

In the case of two-stage problems the simple structure of the scenario tree allows to use an

easy procedure to decompose the whole model. See [13] a scenario cluster partitioning of two-

stage models,where the number of clusters can be chosen from the set of divisors of the number of

scenarios, |Ω|. In this work , we propose the generalization of this procedure such that is possible to

choose the number of clusters as any value from the set C = {1,2, · · · , |Ω|}.

Definition 1 The scenario tree matrix, ST ∈M|Ω|x|G |, is a matrix where the corresponding value for

the pair (ω ,g) gives the related stage t,such that,

ST (ω ,g) =

{

t, i f ω ∈ Ωg, g ∈ Gt

0, otherwise
(5)

Notice that the scenario tree matrix reproduces the structure given by the scenario tree. This

matrix can be built using the sets Ωg and Gt , i.e., the scenario tree, but these sets can be also generated
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from the matrix. For each stage t ∈T , the sets of scenario groups in such stage, Gt , can be identified

as the column of the position (ω ,g) for which the corresponding element in the scenario tree matrix

is equal to t; then Gt = {g ∈ G : ∃ω ∈ Ω : ST (ω ,g) = t}. See also that the set of scenarios related to

group g is Ωg = {ω ∈ Ω : ST (ω ,g) 6= 0}.

Then, given the choice of the number of clusters, C = |C |, we will decompose the scenario tree

into a subset of scenario clusters subtrees, each one for each scenario cluster in the set denoted as

C = {1, ...,C}.

Let Ωc denote the set of scenarios that belongs to cluster c, where c ∈ C and ∑C
c=1 |Ω

c| = |Ω|.
Notice that Ωc

⋂

Ωc′ = /0, c,c′ = 1, . . . ,C : c 6= c′ and Ω = ∪C
c=1Ωc.

Let also G c ⊂ G denote the set of scenario groups for cluster c, such that Ωg ∩Ωc 6= /0 means

that g ∈ G c, and let G c
t = Gt ∩G c denote the set of scenario groups for cluster c ∈ C in stage t ∈ T .

Definition 2 The scenario cluster models are those that result from the relaxation of some of the

NAC in model (1).

In the same way that for the full scenario tree, for a cluster subtree, we can reproduce its structure

by using a matrix.

Definition 3 The cluster tree matrix associated with a partition into C clusters, CT ∈ MCx|G |, is a

matrix where the corresponding value for the pair (c,g) gives the related stage t,such that,

CT (c,g) =

{

t, i f g ∈ G c
t

0, otherwise
(6)

Once decided the number of clusters C, the corresponding cluster partition is obtained, and its struc-

ture is defined by the related cluster tree matrix. In two-stage models, and from the definition of

cluster submodels, a way to create each partition is to consider the integer division of the number of

scenarios over the desired number of clusters,
|Ω|
C

, and if this quotient is not equal to zero, distribute

the remaining scenarios among the different clusters, starting by the first cluster and continuing un-

til the remaining scenarios are finished. The implementation in C++ of this procedure is shown in

Appendix B. See also the example of scenario cluster partitioning in Section 6.

Notice that G c
t = Gt ∩G c, is the set of scenario groups for cluster c ∈ C , in stage t ∈ T . The

subsets G c and Gt and, consequently G c
t can be obtained from the cluster tree matrix defined above.

For each cluster c ∈ C (i.e., c−row in the CT matrix), the set of scenario groups G c can be obtained

as the set of columns in the cluster tree matrix with a nonzero element, i.e., G c = {g ∈ G : ∃c ∈ C :

CT (c,g) = t}.

Then, we can decompose the whole model into splitting variable representation between the

cluster models and add explicitly the nonanticipativity constraints into the diferent clusters. Notice

also that we consider compact representation into each cluster model.
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The submodel to consider for each scenario cluster c ∈ C , can be expressed as:

(MIPc) : zc = min ∑ω∈Ωc wω [aT
1 xc

1 +bT
1 yc

1 +aωT
2 xω

2 +bωT
2 yω

2 ]
s.t.

A

(

xc
1

yc
1

)

≤ h1

T

(

xc
1

yc
1

)

+W ω

(

xω
2

yω
2

)

≤ hω
2 , ∀ω ∈ Ωc

xc
1,x

ω
2 ∈ {0,1}, ∀ω ∈ Ωc

yc
1,y

ω
2 ≥ 0, ∀ω ∈ Ωc

(7)

The following figure illustrates the cluster generation proposed depending on whether the num-

ber of scenarios of the problem is even or odd.

t = 1

1c = 2

|Ω|+1

|Ω|
2 +3

|Ω|
2 +2

1c = 1

|Ω|
2 +1

3

2

t = 2

ω = |Ω|

ω = |Ω|
2
+2

ω = |Ω|
2
+1

ω = |Ω|
2

ω = 2

ω = 1

t = 1

1c = 2

|Ω|+1

⌊
|Ω|
2 ⌋+4

⌊
|Ω|
2 ⌋+3

1c = 1

⌊
|Ω|
2 ⌋+2

⌊
|Ω|
2 ⌋+1

3

2

t = 2

ω = |Ω|

ω = ⌊ |Ω|
2
⌋+3

ω = ⌊ |Ω|
2
⌋+2

ω = ⌊ |Ω|
2
⌋+1

ω = ⌊ |Ω|
2
⌋

ω = 2

ω = 1

⌊ |Ω|
2
⌋= |Ω|

2
⌊ |Ω|

2
⌋ 6= |Ω|

2

Figure 2: Scenario cluster partitioning
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4 Illustrative example

Consider the following two-stage stochastic capacity expansion problem based on the multistage

one presented in [1].

The mixed 0-1 model has the following form:

min ∑
i∈I

(a1i x1i + e1i y1i)+ ∑
ω∈Ω

wω ∑
i∈I

(aω
2i xω

2i + eω
2i yω

2i)

s.t. y1i ≤ M1i x1i ∀i ∈ I

yω
2i ≤ Mω

2i xω
2i ∀i ∈ I , ∀ω ∈ Ω

∑
i∈I

y1i ≥ d1

∑
i∈I

(yω
2i + y1i)≥ dω

2 ∀ω ∈ Ω

x1i, xω
2i ∈ {0,1}, y1i, yω

2i ∈ R
+ ∀i ∈ I , ∀ω ∈ Ω

(8)

where I denotes the set of resources or technology types.The goal is to determine a schedule of tim-

ing and level of capacity acquisitions of set I to satisfy the demands d1 and dω
2 , while minimizing

the expected discounted cost over the set of scenarios along the time horizon. The decision continu-

ous variables y1i and yω
2i denote the capacity expansion of resource type i ∈I and x1i and xω

2i denote

the 0-1 decision variables for the corresponding capacity expansion decision for i∈I . Without loss

of generality, we assume zero initial capacities. Moreover, a1i and aω
2i are the discounted fixedand

for resource i ∈ I ; e1i and eω
2i are the variable investment cost for resource i ∈ I and M1i and Mω

2i

are the variable upper bound on the capacity additions for i ∈ I .

Table 1 gives the problem data. It is assumed that the uncertain parameters given in Table 1 refer

to the scenario tree structure depicted in Figure 3, being the solution value z = 78.841185.

Notice that the number of scenarios in the example is seven and there are three 0-1 variables and three

continuous variables in each scenario group and each stage, all of them with the same probability.

Moreover, the order of these variables in the input data is exactly the given in Figure 3, as it can be

seen in the MPS format of Appendix A.

Table 1: Illustrative example parameters

a11 a12 a13 e11 e12 e13 M11 M12 M13 d1 w1

t = 1 10 15 5 2 1 2 4.5 2.8 2.7 5 1

ω aω
21 aω

22 aω
23 eω

21 eω
22 eω

23 Mω
21 Mω

22 Mω
23 dω

2 wω
2

t = 2

1 10 5 3 1 3 2 3.8 3.5 4.7 15 0.14285

2 10 30 20 2 1 2 4 3.7 3.8 20 0.14285

3 11 5 10 1 1 1 4.8 4.9 4.3 20 0.14285

4 5 10 3 3 1 2 4.4 5.3 5.6 20 0.14285

5 10 3 5 1 2 1 4.5 3.5 3.6 15 0.14285

6 3 10 5 2 1 1 4.5 4.7 4.5 20 0.14285

7 4 10 5 2 1 3 4 4 4 15 0.14285
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6
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6
21,y

6
22,y

6
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Figure 3: Scenarios tree

The problem can be formulated as follows:
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min 10x11 +15x12 +5x13 +1.4285x1
21 +0.71425x1

22 +0.42855x1
23

+ 1.4285x2
21 +4.2855x2

22 +2.857x2
23 +1.57135x3

21 +0.71425x3
22 +1.4285x3

23

+ 0.71425x4
21 +1.4285x4

22 +0.42855x4
23 +1.4285x5

21 +0.42855x5
22 +0.71425x5

23

+ 0.42855x6
21 +1.4285x6

22 +0.71425x6
23 +0.5714x7

21 +1.4285x7
22 +0.71425x7

23

+ 2y11 + y12 +2y13 +0.14285y1
21 +0.42855y1

22 +0.2857y1
23

+ 0.2857y2
21 +0.14285y2

22 +0.2857y2
23 +0.14285y3

21 +0.14285y3
22 +0.14285y3

23

+ 0.42855y4
21 +0.14285y4

22 +0.2857y4
23 +0.14285y5

21 +0.2857y5
22 +0.14285y5

23

+ 0.2857y6
21 +0.14285y6

22 +0.14285y6
23 +0.2857y7

21 +0.14285y7
22 +0.42855y7

23

s.t.

−4.5x11 + y11 ≤ 0

−2.8x12 + y12 ≤ 0

−2.7x13 + y13 ≤ 0

−3.8x1
21 + y1

21 ≤ 0

−3.5x1
22 + y1

22 ≤ 0

−4.7x1
23 + y1

23 ≤ 0

−4x2
21 + y2

21 ≤ 0

−3.7x2
22 + y2

22 ≤ 0

−3.8x2
23 + y2

23 ≤ 0

−4.8x3
21 + y3

21 ≤ 0

−4.9x3
22 + y3

22 ≤ 0

−4.3x3
23 + y3

23 ≤ 0

−4.4x4
21 + y4

21 ≤ 0

−5.3x4
22 + y4

22 ≤ 0

−5.6x4
23 + y4

23 ≤ 0

−4.5x5
21 + y5

21 ≤ 0

−3.5x5
22 + y5

22 ≤ 0

−3.6x5
23 + y5

23 ≤ 0

−4.5x6
21 + y6

21 ≤ 0

−4.7x6
22 + y6

22 ≤ 0

−4.5x6
23 + y6

23 ≤ 0

−4x7
21 + y7

21 ≤ 0

−4x7
22 + y7

22 ≤ 0

−4x7
23 + y7

23 ≤ 0

y11 + y12 + y13 ≥ 5

y11 + y12 + y13 + y1
21 + y1

22 + y1
23 ≥ 15

y11 + y12 + y13 + y2
21 + y2

22 + y2
23 ≥ 20

y11 + y12 + y13 + y3
21 + y3

22 + y3
23 ≥ 20

y11 + y12 + y13 + y4
21 + y4

22 + y4
23 ≥ 20

y11 + y12 + y13 + y5
21 + y5

22 + y5
23 ≥ 15

y11 + y12 + y13 + y6
21 + y6

22 + y6
23 ≥ 20

y11 + y12 + y13 + y7
21 + y7

22 + y7
23 ≥ 15

y1i,y
ω
2i ≥ 0, ∀i ∈ I , ∀ω ∈ Ω

x1i,x
ω
2i ∈ {0,1}, ∀i ∈ I , ∀ω ∈ Ω

(9)
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5 Basic requeriments

Given a two-stage stochastic mixed integer optimization model, and for the aim of obtaining the sce-

nario cluster partition, some additional information is required. This information has been organized

in two files:

1. A file (in this case called total.mps, see Appendix A) with the two-stage model in compact

representation (4) in MPS format.

2. An input file so-called inputData.dat with the following information:

• C, number of clusters in which the model is going to be descomposed

• Number of scenario groups in each stage

• nxt , t = 1,2, number of 0-1 variables by stage (number of 0-1 variables in any scenario

group)

• nyt , t = 1,2, number of continuous variables by stage (number of continuous variables

in any scenario group)

• wω , ω ∈ Ω, vector of likelihood for scenarios. If all scenarios have the same probability

of occurrence, 0 value appears in the corresponding line.

• γ , parameter that takes value 1 if the order of variables is the expected one, and 0 in other

case. The order of variables is the expected one when first all the 0-1 variables, and then,

all the continuous one are stored. Moreover, in each variable type, they are ordered by

stage and in each stage, ordered by scenario.

• oxi, i = 1, · · · ,nx; oyi, i = 1, · · · ,ny, position of the variables such they are included in

the model, being nx and ny the number of 0-1 and continuous variables respectively. If

the original order of variables in the MPS file is the expected one, 0 value appears in this

line.

1 4

1 2 4 8

3 2 2 2 2 2 2 2

0 0 0 0

5 2 2 2 2

16 23 17 24 18 25 19 26 20 27 21 28 22 29 0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15

inputData.dat

The first data in file inputData.dat corresponds to the number of clusters, C, that in this ex-

ample is 2. There are |G1| = 1, |G2| = |Ω| = 7 scenario groups. Then, in both stages, there are

(nx1,ny1)=(nx2,ny2) = (3,3) variables in each scenario group. So, in the first stage there are 3 binary

variables and 3 continuos ones, while in the second stage there are 21 binary and 21 continuous,

respectively.

The likelihood for each scenario is the same, equal to 1
7
, and then, the corresponding data in the

file is a 0.

11



Finally, the 0-1 variables in the model (total.mps file) appear in the following order:

0 1 2 6 7 8, ...

While the order for the continuos ones, is:

3 4 5 9 10 11, ...

This means, that these variables (0-1 and continuos) appear mixed at each stage and scenario

group:

x11,x12,x13,y11,y12,y13,x
1
21,x

1
22,x

1
23,y

1
21,y

1
22,y

1
23, ...,x

7
21,x

7
22,x

7
23,y

7
21,y

7
22,y

7
23

while the expected or required order in the model, needed to start the decomposition is, first all the

binaries and after, all the continuos:

x11,x12,x13,x
1
21,x

1
22,x

1
23, ...,x

7
21,x

7
22,x

7
23

y11,y12,y13,y
1
21,y

1
22,y

1
23, ...,y

7
21,y

7
22,y

7
23

In this way, they are saved in the model after the first steps of the procedure, see below.

6 Example. Scenario Cluster Partitioning

The scenario tree matrix ST (ω ,g) corresponding to the illustrative example is given in (10).

ST (ω ,g) =





















1 2 0 0 0 0 0 0

1 0 2 0 0 0 0 0

1 0 0 2 0 0 0 0

1 0 0 0 2 0 0 0

1 0 0 0 0 2 0 0

1 0 0 0 0 0 2 0

1 0 0 0 0 0 0 2





















(10)

In the ilustrative example depicted in Figure 3, firstly, we are going to consider in a first partition

that C = 2. As
|Ω|
C

= 7
2
= 3.5, the integer division is equal to 3, and, then, the rest is equal to 1. As

output of the procedure, we obtain that the first cluster is given by the scenarios among minwc[0] = 1

and maxwc[0] = 4 and the second one, by the scenarios among minwc[1] = 5 and maxwc[1] = 7. See

the left part of Figure 4.

Then, the cluster tree matrix associated to this partition is given in (11).

CT (c,g) =

(

1 2 2 2 2 0 0 0

1 0 0 0 0 2 2 2

)

(11)

In this case, the set of scenarios are Ω1 = {1,2,3,4} for cluster c = 1 and Ω2 = {5,6,7} for

cluster c = 2. The related cluster models are linked by the NAC for g = 1 that can be expressed

12



t = 1

y1
1i = y2

1i = y3
1i

i ∈ {1,2,3}

x1
1i = x2

1i = x3
1i

1c = 3

8

7

1c = 2

6

5

1c = 1

4

3

2

t = 2

ω = 7

ω = 6

ω = 5

ω = 4

ω = 3

ω = 2

ω = 1

t = 1

1c = 2

8

y1
1i = y2

1i

i ∈ {1,2,3}

x1
1i = x2

1i

7

6

1c = 1

5

4

3

2

t = 2

ω = 7

ω = 6

ω = 5

ω = 4

ω = 3

ω = 2

ω = 1

C = 2 scenario clusters C = 3 scenario clusters

Figure 4: Scenario cluster partitioning

x1
1i = x2

1i, ∀i ∈ I (12)

y1
1i = y2

1i, ∀i ∈ I (13)

The corresponding model to cluster c = 1 is the following:

13



min 10x1
11 +15x1

12 +5x1
13 +1.4285x1

21 +0.71425x1
22 +0.42855x1

23

+ 1.4285x2
21 +4.2855x2

22 +2.857x2
23 +1.57135x3

21 +0.71425x3
22 +1.4285x3

23

+ 0.71425x4
21 +1.4285x4

22 +0.42855x4
23 +2y1

11 + y1
12 +2y1

13

+ 0.14285y1
21 +0.42855y1

22 +0.2857y1
23 +0.2857y2

21 +0.14285y2
22 +0.2857y2

23

+ 0.14285y3
21 +0.14285y3

22 +0.14285y3
23 +0.42855y4

21 +0.14285y4
22 +0.2857y4

23

s.t.

−4.5x1
11 + y1

11 ≤ 0

−2.8x1
12 + y1

12 ≤ 0

−2.7x1
13 + y1

13 ≤ 0

−3.8x1
21 + y1

21 ≤ 0

−3.5x1
22 + y1

22 ≤ 0

−4.7x1
23 + y1

23 ≤ 0

−4x2
21 + y2

21 ≤ 0

−3.7x2
22 + y2

22 ≤ 0

−3.8x2
23 + y2

23 ≤ 0

−4.8x3
21 + y3

21 ≤ 0

−4.9x3
22 + y3

22 ≤ 0

−4.3x3
23 + y3

23 ≤ 0

−4.4x4
21 + y4

21 ≤ 0

−5.3x4
22 + y4

22 ≤ 0

−5.6x4
23 + y4

23 ≤ 0

y1
11 + y1

12 + y1
13 ≥ 5

y1
11 + y1

12 + y1
13 + y1

21 + y1
22 + y1

23 ≥ 15

y1
11 + y1

12 + y1
13 + y2

21 + y2
22 + y2

23 ≥ 20

y1
11 + y1

12 + y1
13 + y3

21 + y3
22 + y3

23 ≥ 20

y1
11 + y1

12 + y1
13 + y4

21 + y4
22 + y4

23 ≥ 20

y1
1i,y

ω
2i ≥ 0, ∀i ∈ I ,ω ∈ Ω1

x1
1i,x

ω
2i ∈ {0,1}, ∀i ∈ I ,ω ∈ Ω1

(14)

Notice that this cluster has 15 integer variables and 15 continuous variables, 20 constraints, 57

nonzero elements and the value of the objective function is zMIP = 49.5845.

The corresponding model to cluster c = 2 is the following:
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min 10x2
11 +15x2

12 +5x2
13 +1.4285x5

21 +0.42855x5
22 +0.71425x5

23

+ 0.42855x6
21 +1.4285x6

22 +0.71425x6
23 +0.5714x7

21 +1.4285x7
22 +0.71425x7

23

+ 2y2
11 + y2

12 +2y2
13 +0.14285y5

21 +0.2857y5
22 +0.14285y5

23

+ 0.2857y6
21 +0.14285y6

22 +0.14285y6
23 +0.2857y7

21 +0.14285y7
22 +0.42855y7

23

s.t.

−4.5x2
11 + y2

11 ≤ 0

−2.8x2
12 + y2

12 ≤ 0

−2.7x2
13 + y2

13 ≤ 0

−4.5x5
21 + y5

21 ≤ 0

−3.5x5
22 + y5

22 ≤ 0

−3.6x5
23 + y5

23 ≤ 0

−4.5x6
21 + y6

21 ≤ 0

−4.7x6
22 + y6

22 ≤ 0

−4.5x6
23 + y6

23 ≤ 0

−4x7
21 + y7

21 ≤ 0

−4x7
22 + y7

22 ≤ 0

−4x7
23 + y7

23 ≤ 0

y2
11 + y2

12 + y2
13 ≥ 5

y2
11 + y2

12 + y2
13 + y5

21 + y5
22 + y5

23 ≥ 15

y2
11 + y2

12 + y2
13 + y6

21 + y6
22 + y6

23 ≥ 20

y2
11 + y2

12 + y2
13 + y7

21 + y7
22 + y7

23 ≥ 15

y2
1i,y

ω
2i ≥ 0, ∀i ∈ I ,ω ∈ Ω2

x2
1i,x

ω
2i ∈ {0,1}, ∀i ∈ I ,ω ∈ Ω2

(15)

The cluster c= 2 has 12 integer variables and 12 continuous variables, 16 constraints, 45 nonzero

elements and the value of the objective function for this cluster is zMIP = 24.3994.

If we choose, C = 3, i.e., a partition into three clusters, folowing the same procedure (
|Ω|
C

= 7
3
=

2.33, and rest equal to 1) we obtain that the first cluster is given by the scenarios among minwc[0] = 1

and maxwc[0] = 3, the second one by the scenarios among minwc[1] = 4 and maxwc[1] = 5, and the

third one by the scenarios among minwc[2] = 6 and maxwc[2] = 7. Then, the corresponded cluster

tree matrix will be,

CT (c,g) =





1 2 2 2 0 0 0 0

1 0 0 0 2 2 0 0

1 0 0 0 0 0 2 2



 (16)

In this partition, the set of scenarios are Ω1 = {1,2,3} for cluster c = 1, Ω2 = {4,5} for cluster

c = 2 and Ω3 = {6,7} for cluster c = 3. The related cluster models are linked by the NAC for g = 1

that can be expressed

x1
1i = x2

1i = x3
1i, ∀i ∈ I (17)

y1
1i = y2

1i = y3
1i, ∀i ∈ I (18)
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The cluster c= 1 has 12 integer variables and 12 continuous variables, 16 constraints, 45 nonzero

elements and the value of the objective function is zMIP = 38.799. The cluster c = 2 has 9 integer

variables and 9 continuous variables, 12 constraints, 33 nonzero elements and the value of the objec-

tive function is zMIP = 17.3995 and the cluster c = 3 has 9 integer variables and 9 continuous vari-

ables, 12 constraints, 33 nonzero elements and the value of the objective function is zMIP = 16.971.

7 Conclusions

In this brief note we have presented a general scenario cluster partitioning procedure for two-stage

models. To generate the new structure and representation of the two-stage model some information

is required, like the whole model in compact representation and mps format, the number of clusters

in which the model is going to be decomposed, the number of scenarios, the number and the order

of the variables (binary and continuous) at each stage and scenario group and the likelihood of each

scenario.

The use of this procedure embedded in a cluster based Lagrangian decomposition scheme, and

for a choice of a small number of clusters, will allow to obtain strong (lower) bounds to the solution

value of the original two-stage stochastic problem.

Appendix A Illustrative stochastic example in MPS format

The model corresponding to the example presented in (9) can be represented with MPS format as

follows:

NAME BLANK

2 ROWS

N OBJROW

4 L R0000000

L R0000001

6 L R0000002

L R0000003

8 L R0000004

L R0000005

10 L R0000006

L R0000007

12 L R0000008

L R0000009

14 L R0000010

L R0000011

16 L R0000012

L R0000013

18 L R0000014

L R0000015

20 L R0000016

L R0000017

22 L R0000018

L R0000019

24 L R0000020
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L R0000021

26 L R0000022

L R0000023

28 G R0000024

G R0000025

30 G R0000026

G R0000027

32 G R0000028

G R0000029

34 G R0000030

G R0000031

36 COLUMNS

C0000000 OBJROW 1 0 . R0000000 −4.5

38 C0000001 OBJROW 1 5 . R0000001 −2.8

C0000002 OBJROW 5 . R0000002 −2.7

40 C0000003 OBJROW 2 . R0000000 1 .

C0000003 R0000024 1 . R0000025 1 .

42 C0000003 R0000026 1 . R0000027 1 .

C0000003 R0000028 1 . R0000029 1 .

44 C0000003 R0000030 1 . R0000031 1 .

C0000004 OBJROW 1 . R0000001 1 .

46 C0000004 R0000024 1 . R0000025 1 .

C0000004 R0000026 1 . R0000027 1 .

48 C0000004 R0000028 1 . R0000029 1 .

C0000004 R0000030 1 . R0000031 1 .

50 C0000005 OBJROW 2 . R0000002 1 .

C0000005 R0000024 1 . R0000025 1 .

52 C0000005 R0000026 1 . R0000027 1 .

C0000005 R0000028 1 . R0000029 1 .

54 C0000005 R0000030 1 . R0000031 1 .

C0000006 OBJROW 1.4285 R0000003 −3.8

56 C0000007 OBJROW 0.71425 R0000004 −3.5

C0000008 OBJROW 0.42855 R0000005 −4.7

58 C0000009 OBJROW 0.14285 R0000003 1 .

C0000009 R0000025 1 .

60 C0000010 OBJROW 0.42855 R0000004 1 .

C0000010 R0000025 1 .

62 C0000011 OBJROW 0.2857 R0000005 1 .

C0000011 R0000025 1 .

64 C0000012 OBJROW 1.4285 R0000006 −4.

C0000013 OBJROW 4.2855 R0000007 −3.7

66 C0000014 OBJROW 2.857 R0000008 −3.8

C0000015 OBJROW 0.2857 R0000006 1 .

68 C0000015 R0000026 1 .

C0000016 OBJROW 0.14285 R0000007 1 .

70 C0000016 R0000026 1 .

C0000017 OBJROW 0.2857 R0000008 1 .

72 C0000017 R0000026 1 .

C0000018 OBJROW 1.57135 R0000009 −4.8

74 C0000019 OBJROW 0.71425 R0000010 −4.9

C0000020 OBJROW 1.4285 R0000011 −4.3

76 C0000021 OBJROW 0.14285 R0000009 1 .

C0000021 R0000027 1 .

78 C0000022 OBJROW 0.14285 R0000010 1 .
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C0000022 R0000027 1 .

80 C0000023 OBJROW 0.14285 R0000011 1 .

C0000023 R0000027 1 .

82 C0000024 OBJROW 0.71425 R0000012 −4.4

C0000025 OBJROW 1.4285 R0000013 −5.3

84 C0000026 OBJROW 0.42855 R0000014 −5.6

C0000027 OBJROW 0.42855 R0000012 1 .

86 C0000027 R0000028 1 .

C0000028 OBJROW 0.14285 R0000013 1 .

88 C0000028 R0000028 1 .

C0000029 OBJROW 0.2857 R0000014 1 .

90 C0000029 R0000028 1 .

C0000030 OBJROW 1.4285 R0000015 −4.5

92 C0000031 OBJROW 0.42855 R0000016 −3.5

C0000032 OBJROW 0.71425 R0000017 −3.6

94 C0000033 OBJROW 0.14285 R0000015 1 .

C0000033 R0000029 1 .

96 C0000034 OBJROW 0.2857 R0000016 1 .

C0000034 R0000029 1 .

98 C0000035 OBJROW 0.14285 R0000017 1 .

C0000035 R0000029 1 .

100 C0000036 OBJROW 0.42855 R0000018 −4.5

C0000037 OBJROW 1.4285 R0000019 −4.7

102 C0000038 OBJROW 0.71425 R0000020 −4.5

C0000039 OBJROW 0.2857 R0000018 1 .

104 C0000039 R0000030 1 .

C0000040 OBJROW 0.14285 R0000019 1 .

106 C0000040 R0000030 1 .

C0000041 OBJROW 0.14285 R0000020 1 .

108 C0000041 R0000030 1 .

C0000042 OBJROW 0.5714 R0000021 −4.

110 C0000043 OBJROW 1.4285 R0000022 −4.

C0000044 OBJROW 0.71425 R0000023 −4.

112 C0000045 OBJROW 0.2857 R0000021 1 .

C0000045 R0000031 1 .

114 C0000046 OBJROW 0.14285 R0000022 1 .

C0000046 R0000031 1 .

116 C0000047 OBJROW 0.42855 R0000023 1 .

C0000047 R0000031 1 .

118 RHS

RHS R0000024 5 . R0000025 1 5 .

120 RHS R0000026 2 0 . R0000027 2 0 .

RHS R0000028 2 0 . R0000029 1 5 .

122 RHS R0000030 2 0 . R0000031 1 5 .

BOUNDS

124 BV BOUND C0000000 1 .

BV BOUND C0000001 1 .

126 BV BOUND C0000002 1 .

BV BOUND C0000006 1 .

128 BV BOUND C0000007 1 .

BV BOUND C0000008 1 .

130 BV BOUND C0000012 1 .

BV BOUND C0000013 1 .

132 BV BOUND C0000014 1 .
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BV BOUND C0000018 1 .

134 BV BOUND C0000019 1 .

BV BOUND C0000020 1 .

136 BV BOUND C0000024 1 .

BV BOUND C0000025 1 .

138 BV BOUND C0000026 1 .

BV BOUND C0000030 1 .

140 BV BOUND C0000031 1 .

BV BOUND C0000032 1 .

142 BV BOUND C0000036 1 .

BV BOUND C0000037 1 .

144 BV BOUND C0000038 1 .

BV BOUND C0000042 1 .

146 BV BOUND C0000043 1 .

BV BOUND C0000044 1 .

148 ENDATA

total.mps

Appendix B C++ implementation for the clusters building

int *minw
; minw
=new int[nmodel℄;

int *maxw
; maxw
=new int[nmodel℄;

nmodel=num
luster;

nomega=ng-1;

int n
=nomega/num
luster;

int rest,i
;

for(i
=0;i
<nmodel;i
++){

minw
[i
℄=i
*n
;

maxwp[i
℄=(i
+1)*n
-1;

}

if(nomega%num
luster!=0){

rest=nomega%num
luster;

for(i
=0;i
<nmodel;i
++){

if(i
<nomega%num
luster){

minw
[i
℄=i
*n
+i
;

maxw
[i
℄=(i
+1)*n
+i
;

}

if(i
>=nomega%num
luster){

minw
[i
℄=i
*n
+rest;

maxw
[i
℄=(i
+1)*n
+rest-1;

}
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}

}

outputData<<"\n\n Cluster number 
: ";

outputData<<"\n Min-max w: ";

for(i
=0;i
<nmodel;i
++) outputData<<" "<<minw
[i
℄<<"-"<<maxw
[i
℄;
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