
The Aperiodic Nature of Mullite

A dissertation by

Paul Klar

supervised by

Gotzon Madariaga

Department of Condensed Matter Physics
Faculty of Science and Technology

University of the Basque Country UPV/EHU

2018

(cc)2018 PAUL BENJAMIN KLAR (cc by 4.0)



This dissertation was submitted in partial fulfilment of the requirements for the degree
of Doctor of Philosophy in Physics. Further requirements include some signatures,
several bureaucratic steps and the public thesis defence in front of a doctorate
committee of three or five scientists.

tl;dr

A unified superspace model for the crystal structure of mullite is developed based on
diffraction and computational methods.

This work is licensed under a Creative Commons Attribution 4.0 International License.
The generation of this document was powered by LYX 2.2.3, TEX 3.14159265, LATEX2ε
and pdfTEX 1.40.18.
Figures and illustrations were generated withGIMP (gimp.org), INKSCAPE (inkscape.org),
VESTA (jp-minerals.org/vesta) and Wolfram Mathematica (wolfram.com).
This page is dedicated to Donald Ervin Knuth, Leslie Lamport, Timothy John Berners-
Lee, the Creative Commons organisation and all contributors to open source software.



AUTHORISATION OF THE THESIS SUPERVISOR

FOR THE PRESENTATION OF THE THESIS

Dr. Gotzon Madariaga Menéndez with National ID Card number 14946688T in his capacity
as Supervisor of the Doctoral Thesis The Aperiodic Nature of Mullite completed within the Doc-
toral Programme of Physics by the PhD student Mr Paul Benjamin Klar, hereby authorises the
presentation of the mentioned Doctoral Thesis, given that it fulfils the conditions necessary for its
viva.

Leioa, 24th October, 2018

THE THESIS SUPERVISOR

Signed: Gotzon Madariaga Menéndez





AUTHORISATION OF THE DOCTORAL PROGRAMME’S

ACADEMIC COMMISSION

The Academic Commission of the Doctoral Programme in Physics during its meeting held on 24th
October, 2018, agreed to authorise the presentation of the Doctoral Thesis entitled The Aperiodic
Nature of Mullite supervised by Dr. Gotzon Madariaga and presented by Mr. Paul Benjamin
Klar and registered with the Department of Condensed Matter Physics.

Leioa, 24th October, 2018

THE COORDINATOR OF THE DOCTORAL PROGRAMME

Signed: Francisco Javier Zúñiga Lagares





DEPARTMENT AUTHORISATION

The Board of the Department of Condensed Matter Physics during its meeting held on 24th October,
2018, agreed to authorise the processing of the Doctoral Thesis entitled The Aperiodic Nature of
Mullite supervised by Dr. Gotzon Madariaga and presented by Mr. Paul Benjamin Klar to
this Department.

Leioa, 24th October, 2018

DIRECTOR OF THE DEPARTMENT SECRETARY OF THE DEPARTMENT

Signed: Gotzon Madariaga Menéndez Signed: César Luis Folcia Basa





PHD DEGREE CERTIFICATE

DOCTORAL THESIS VIVA CERTIFICATE

PhD Student: Mr. Paul Benjamin Klar (born 18th February, 1988, in Munich, Germany)

Title of the Thesis: The Aperiodic Nature of Mullite
After having witnessed the completion of the viva by the PhD student and his response to any
objections and/or suggestions made, the Panel appointed by the Postgraduate Commission of the
University of the Basque Country to examine the Doctoral Thesis, meeting on the indicated date,
agreed unanimously / by majority vote to award the following grade:

( distinction / merit / pass / fail )

Viva languages:  Spanish ___%  Basque ___%  English ___%

Leioa, _________________

CHAIRPERSON SECRETARY

Signed: Dr. Signed: Dr.

MEMBER 1 MEMBER 2 MEMBER 3

Signed: Dr. Signed: Dr. Signed: Dr.

PHD STUDENT

Signed: Paul Benjamin Klar





This thesis is dedicated to my parents Walter and Gönke.



Abstract

Mullites (Al4+2δSi2–2δO10–δ) are one of the most important components of ceramic mate-
rials including traditional porcelain, furnace windows and heat shields for space vehicles.
Despite the broad interest of the ceramic industry and a large record of research on the
crystalline state and applications, the crystal structure of mullite is not well understood
from a fundamental point of view. The presence of a composition dependent structural
modulation alongside diffuse scattering indicates that ordering mechanisms of different
length scales are present. The objective of this thesis is to understand these phenomena
by developing a unified superspace model to characterise and understand the aperiodic
nature of mullite.
Different methods were applied to investigate the vacancy and Al/Si order in mullite. At
first the symmetry was analysed thoroughly to derive constraints on the vacancy distribu-
tion based on crystal chemical premises. On this basis a superspace model was developed
that defines the polyhedra network consisting of octahedra, tetrahedral tricluster units
and tetrahedral dicluster units as a function of the modulation wave vector q and the
vacancy concentration δ. Refinements of superspace models based on synchrotron single
crystal X-ray diffraction measurements indicate that in the real structure the identified
pattern is present, but with a decreased degree of order. Different samples exhibit different
degrees of order suggesting that mainly disordered and fully ordered mullite crystals exist.
The Al/Si ordering could not be derived from symmetry constraints and the occupancy
of Si could not be refined. Nevertheless, an Al/Si ordering pattern could be identified
from the analysis of the displacive modulation.
The dependence of the satellite reflections on the chemical composition was studied with
two complementary methods. Electron diffraction measurements were carried out on a
broad range of different samples to investigate the dependence of the modulation wave
vector q = (α 0 γ) on the vacancy concentration δ. The dependence could be explained
based on the symmetry analysis by implementing additional constraints on the tricluster
distribution leading to the relationship α = 1−δ

2 , which defines a unified superspace model
for the composition range 0 ≤ δ ≤ 0.5. Commensurate superstructures based on the
superspace model were investigated with a set of pioneering atomistic simulations applying
density functional theory. This allowed to characterise the structural modulation on a
new level and reveal the fundamental ordering patterns that define the crystal structure
of mullite in terms of vacancy and Al/Si order. The understanding of the crystal structure
forms a new basis for future research on the properties of mullite and related applications.
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Resumen

At the University of the Basque Country is is obligatory to present a summary of the
thesis in Spanish or in Basque if the thesis is not written or defended in one of the two
languages (Article 13 of the Academic Regulations for Doctoral Studies). It is my pleasure
to present this Spanish summary on the following pages.

Contenido de la tesis

El Capítulo 1 da una introducción a varios aspectos de las mullita. El Capítulo 2 in-
troduce los fundamentos relevantes de cristalografía, difracción, superespacio y métodos
computacionales. Las muestras, los experimentos y los parámetros de las simulaciones se
describen en el Capítulo 3. Nuevos modelos de la estructura cristalina de las mullitas se
presentan en el Capítulo 4, incluyendo el análisis de la simetría. Los modelos se extien-
den a un rango de composición más amplio basado en la difracción de electrones. En el
capítulo 5 los resultados se presentan en un contexto más amplio comparando modelos
diferentes entre si con modelos anteriores para aumentar la comprensión de los fenómenos
de ordenamiento. El capítulo 6 resume el trabajo de tesis. En las siguientes páginas se
presentan los aspectos más relevantes de la tesis.

Introducción

Las mullitas son minerales con composición flexible (Al4+2δSi2–2δO10–δ), que forman el
componente principal en porcelana tradicional o cerámicas de alta tecnología como, por
ejemplo, ventanas para hornos o ladrillos refractarios, que se emplean, entre otros, como
escudos en recubrimiento de transbordadores espaciales [1]. La mayor parte del trabajo
realizado en los últimos siglos concierne más a las aplicaciones tecnológicas de estos mate-
riales que a la explicación, desde un punto de vista más fundamental, de sus propiedades y
la relación de éstas con aspectos estructurales. La estructura cristalina consiste en colum-
nas de octaedros interconectadas por tetraedros de AlO4 y SiO4. Los tetraedros forman
unidades de dos tetraedros (dicluster) o de tres tetraedros (tricluster). Las componentes
claves de la estructura son la presencia de vacantes de oxígeno que determinan la dis-
tribución de diclusters y triclusters y la distribución de los tetraedros de SiO4. Entonces,
la definición de la estructura requiere el conocimiento de la distribución de vacantes y los
átomos de sílice. La concentración de vacantes δ y obviamente también la concentración
de sílice depende de la composición. Reflexiones satélites en el patrón de difracción de
las mullitas indican claramente una modulación estructural, lo cual es un orden de largo
alcance. El orden máximo de las reflexiones satélites es entre uno y siete, pero en la gran
mayoría de las muestras satélites de bajo orden y diffuse scattering indican la presencia
de desordenamiento estructural. Cameron (1977) ha observado que el vector de modu-
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lación depende de la composición [2]. Además, se indica una reducción de simetría para
mullitas más aluminosas. Aunque las mullitas constituyen una familia de compuestos
extensamente estudiados que se descubrieron hace casi 100 años, todavía no se ha en-
contrado un modelo estructural que permite entender y describir fundamentalmente la
modulación y el ordenamiento de las vacantes y Al/Si. Objetivos El objetivo de esta
tesis doctoral es desarrollar un modelo superespacial unificado que describe cuantitativa
y cualitativamente los fenómenos de ordenamiento en las mullitas para comprender la
naturaleza de la modulación en función de la composición. Se requiere el desarrollo de
modelos ordenados y desordenados a cara del diffuse scattering y las reflexiones satélites
de alto orden observadas en algunas muestras con difracción de electrones. Antecedentes
En las últimas décadas se ha investigado la estructura de la mullite por varias maneras
diferentes. Modelos desordenados han determinado la distribución de vacantes que es
capaz reproducir muchos detalles del diffuse scattering, pero no se ha establecido una
relación con ordenamiento de largo alcance y por lo tanto no reproducen la intensidad de
las reflexiones satélites [3, 4]. Medidas resonancia magnética nuclear indican que en las
mullitas átomos de sílice prefieren un entorno de átomos de aluminio, pero que es nece-
sario implementar entornos diferentes. De todas formas, estos resultados no permiten
analizar una relación entre el ordenamiento de sílice y el ordenamiento de vacantes [5].
Birkenstock et al. (2015) ha publicado el primer modelo estructural usando el formalismo
del superespacio [6]. Los autores concluyen que los modelos establecidos por Freimann &
Rahman (2001) son básicamente correctos, es decir que las vacantes casi no muestran or-
den de largo alcance. Aunque también se han incluido medidas de difracción de neutrones,
no se he revelado un ordenamiento de sílice [6]. Una investigación basada en el análisis
de la simetría aplicando la teoría de grupos ha identificado dos celdas estructurales. La
superposición de estas celdas con una contribución modulada forma cuantitativamente un
modelo estructural que incluye una descripción de la distribución de vacantes y sílice, y
también del desplazamiento de ciertos átomos [7]. Sin embargo, el estudio no refina los
parámetros del modelo en base de medidas de difracción y ciertos presupuestos sobre la
simetría no son válidos porque están en conflicto con la simetría superespacial.

Metodología

Para proporcionar una visión unificada de la familia de las mullitas, se requiere la investi-
gación de la modulación y su dependencia de la composición e igualmente su implicación
para la estructura, sobre todo la distribución de vacantes. El modelo superespacial con-
stituye, en este caso, la herramienta más apropiada para el análisis estructural de estos
compuestos permitiendo modelos sencillos que contemplen distribuciones uniformes de
vacantes. Algunos resultados claves de la tesis están basados en el análisis de la simetría
usando el formalismo superespacial y requisitos de la naturaleza química [8]. Predicciones
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del análisis se han verificado medidas de difracción y con simulaciones computacionales.
Para la tesis se han analizado muestras industriales, muestras sol-gel y muestras de quench-
ing. Se han medido cuatro muestras monocristalinas con radiación de sincrotrón con los
instrumentos de BM01 e ID28 de la European Synchrotron Radiation Facility en Grenoble,
Francia. Es un sitio muy bonito y adecuado para realizar medidas revolucionarias. Se han
realizado algunas cien medidas de un gran número de muestras distintas con difracción de
electrones en colaboración con el Dr. Lukáš Palatinus en su ’Laboratorio de difracción de
electrones’ en Praga, Chequia. Es un sitio muy bonito y adecuado para realizar medidas
revolucionarias. Experimentos de difracción de polvo, microscopía de electrones y espec-
troscopía de rayos X amplían la caracterización de las muestras. Además, se han ejecutado
cálculos de fuerza [9] y cálculos basados en la teoría del funcional de la densidad (DFT)
para analizar detalles de la modulación como el ordenamiento de sílice, el desplazamiento
de los átomos y la dependencia en la concentración de vacantes. La disponibilidad de
un propio cluster moderno ha permitido realizar simulaciones de superestructuras muy
grandes (hasta 500 átomos por celda unidad) con el código ’Vienna Ab Initio Simulation
Package’ (VASP) [10, 11]. Análisis de la simetría superespacial Actualmente el formal-
ismo del superespacio en cuatro dimensiones es un concepto estándar y necesario para la
investigación, descripción y análisis de estructuras moduladas [12]. Con las medidas de
difracción de monocristales se ha determinado que el grupo superespacial Pbam(α01

2)0ss
describe la estructura de las mullitas con una concentración de vacantes δ ≤ 0.5. Esto
conduce a un pequeño conjunto de posibles distribuciones de vacantes para una composi-
ción química determinada y un vector de onda de modulación respectivo. A partir de esto
se han derivado las restricciones para la descripción de la estructura cristalina de mullita
en el superespacio.

Modelo desordenado

En base de las medidas de monocristal con difracción de rayos X y las restricciones
derivadas de la simetría se han desarrollado modelos estructurales con funciones har-
mónicas de modulación que describe el ordenamiento de diclusters, triclusters y vacantes.
El análisis cuantitativo de las medidas en el superespacio se ha realizado mediante el
programa Jana2006, destinado al refinamiento de modelos de estructuras moduladas en
4 dimensiones [13, 14]. Se han analizado aspectos cristaloquímocos como la geometría
de la red de poliedros y la distancia modulada entre los átomos. Todos los refinamien-
tos describen básicamente el mismo modelo, pero las amplitudes de modulación de los
refinamientos cambian notablemente en función de la muestra analizada. Entonces, las
vacantes siguen el mismo patrón de ordenamiento, pero el grado de ordenamiento de largo
alcance es diferente en cada muestra. Según estos resultados las mullitas existen no solo en
un rango amplio de composiciones químicos, sino también con un rango amplio de grados
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de ordenamiento. La distribución de sílice no se ha podido implementar en el refinamiento
porque experimentos con difracción de rayos X no son capaces de distinguir bien entre
Si4+ y Al3+. Para la tesis se ha desarrollado un nuevo método con el fin de determinar
la distribución de sílice mediante la combinación de la teoría de la densidad funcional
con los volúmenes modulados de los tetraedros. Con este enfoque se ha identificado la
presencia de diclusters de Si2O7 y AlSiO7. La presencia de Si2O7 propone una revisión
de la clasificación de mullita como mineral, porque en la actualidad está clasificado como
mineral sin unidades diclusters del tipo Si2O7.

Modelo ordenado

El modelo ordenado derivado de la simetría y en acuerdo con una interpolación del patrón
de ordenamiento del modelo desordenado consiste en una estructura definida por una
distribución de dicluster, tricluster y vacantes. Los diclusters forman bloques denominadas
’bloques sin vacantes’ (vacancy-free blocks) y los triclusters juntos con las vacantes forman
bloques denominadas ’bloques de vacantes’ (vacancy blocks). El ordenamiento de sílice
en los tetraedros no se puede determinar a partir del análisis de simetría. Por eso la
distribución de sílice se ha investigado sistemáticamente con cálculos de fuerza. A partir
de un modelo ordenado de la mullita 2/1 (δ = 0.4) se han generado 38760 estructuras
que representan todas las distribuciones de sílice permitidos por la simetría. Con las
simulaciones computacionales se han identificado los candidatos más estables para cálculos
más precisos aplicando la teoría del funcional de la densidad. Los resultados, por un lado,
han confirmado que los modelos derivados a partir de la simetría superespacial son estables
y, por otro, también han relevado patrones generales del ordenamiento de sílice. El model
final representa el ordenamiento ideal en la mullita 2/1.

Modelo unificado

El tamaño de las muestras de sol-gel y de quenching no es adecuado para investigaciones
estructurales con difracción de Rayos X. Para establecer una relación experimental entre
el vector de onda de modulación y la composición se han refinado modelos estructurales
en base de las medidas de difracción de electrones. El análisis propone que la relación
es α = 1−δ

2 . La misma relación resulta si en las restricciones derivada de la simetría se
implementa un patrón que prohíbe la formación de pilas de triclusters. Esta relación
describe precisamente la distribución de diclusters, triclusters, y vacantes para mullitas
con composición 0 ≤ δ ≤ 0.5, pero no está uncluido el ordenamiento de los átomos sílice.
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Cálculos de fuerza

Los modelos desarrollados se han usado para generar varias estructuras que representan
caso comensurables del modelo unificado. Los cálculos han relevado el ordenamiento de los
átomos sílice para un rango largo de composiciones. La comparación de los resultados de
composiciones diferentes indica que hay un patrón del ordenamiento de a aluminio y sílice,
que también se ha incluido en el modelo unificado. Este modelo describe precisamente
la distribución de los átomos de oxígeno, aluminio y sílice en la mullita ordenada de
cualquiera composición con δ ≤ 0.5. Además, un análisis más profundo indica que también
se puede describir la modulación del desplazamiento con un modelo unificado. Eso es una
idea para un trabajo en el futuro. Si lo conseguimos, sería la hostia.

Simulación de diffuse scattering

Se han analizado varios modelos en base de los resultados de los últimos párrafos. El
modelo desordenado explica bien el patrón difuso en la sección hk0, pero no es capaz
de reproducir la forma básica que se observa en las secciones 0k` y h0`. Resulta que
es necesario excluir, como en el modelo unificado, la formación de pilas de triclusters.
El modelo todavía requiere el refinamiento de algunos detalles. Estamos trabajando con
Prof. Reinhard Neder y Ella Schmidt del ’Instituto de Física de la Materia Condensada’
en la Universidad de Erlangen, Alemania. Es un sitio muy bonito y adecuado para realizar
simulaciones revolucionarias.

Conclusión

Todas las investigaciones computacionales sobre la mullita han usado una distribución
aleatoria de vacantes para investigar aspectos diferentes de la mullita y su dinámica.
Parece que los modelos estructurales anteriores no han convencido a la comunidad cien-
tífica o se ha asumido que la diferencia entre una distribución aleatoria y la distribución
verdadera es despreciable. Los resultados de esta tesis ofrecen un modelo que está ex-
actamente definido y que sirve como base para investigaciones tanto para una mejor
comprensión de sus propiedades, como para la mejora de sus actuales y futuras aplica-
ciones. Todos los modelos de las últimas décadas se han concentrado en las interacciones
entre las vacantes, pero resulta que la interacción entre los triclusters es la clave para
entender y describir la naturaleza aperiódica de la mullita.

Figuras claves

Las figuras claves de esta tésis son las siguientes (la primera cifra indica el número del
capítulo en la que se encuentra la figura): 1.2, 4.1, 4.4, 4.5, 4.7, 4.14, 4.18, 4.19, 4.22, 5.2,
5.6, CD4.P2.18, 5.10.
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Preface

This PhD thesis on the crystal structure of mullite was written between winter 2014 and
autumn 2018 under the supervision of Professor Gotzon Madariaga at the ’Department of
Condensed Matter Physics’, Faculty of Science and Technology, University of the Basque
Country UPV/EHU at the campus of Leioa close to Bilbao, Spain. This document is
composed of an introduction to mullite and its structural aspects (Chapter 1), a chapter
on selected foundations of crystallography and diffraction (Chapter 2), the experimental
and computational part (Chapter 3) and chapters presenting the results, discussion and a
summary (Chapters 4–6). A more detailed overview of the scheme of this thesis is given
in § 1.4.2. In this preface I want to describe the environment in which this thesis was
written.

First of all, I had the privilege to work in an exceptional research group. Any question
in my mind was quickly answered by one of the great minds in this department, usu-
ally my supervisor, and for any kind of problem there was someone around with a hint.
Modern experimental equipment with the appropriate software allowed to easily perform
measurements by pushing a few buttons. Apart from the resources of the Department of
Condensed Matter Physics I had the opportunity to work with other research groups. In
November 2015 I visited the ’Glass and Ceramics Institute’ (ICV-CSIC) of the Spanish
National Research Council in Madrid, Spain, to get insights into the synthesis of mullite
under the supervision of Doctor Luis Sanchez Muñoz. In 2017 I spent 5 months at the
’Institute of Physics’ (FZU), Czech Academy of Sciences in Prague, Czechia, under the
supervision of Doctor Lukáš Palatinus to carry out electron diffraction measurements. In
March 2018 I visited the ’Chair of Crystallography and Structural Physics’, Friedrich-
Alexander University in Erlangen, Germany, under the supervision of Professor Reinhard
Neder and his amazing PhD student Ella Schmidt to work on diffuse scattering. Fur-
thermore, I participated in several summer schools, courses and conferences. All this was
possible due to the generous funding of the Basque Government (PhD Grant, support
of my stay in Prague, project IT-779-13) and the Spanish Government (FEDER funds,
project MAT2015-66441-P). The University of the Basque Country, the Spanish Crystal-
lographic Association (GE3C), the European Crystallographic Association (ECA) and the
International Union of Crystallography (IUCr) supported many of the different meetings
with travel grants and accommodation grants. In many occasions I had the opportunity
to present ideas and results of my research as poster, oral presentation or both. A list of
scientific activities and publications is given on page 163.

I want to highlight one peculiarity: Pedro Miguel Echenique emphasised in his talk ’Con-
sejos a un(a) joven científico(a)’ at a PhD symposium (’I Jornadas Doctorales de la
UPV/EHU’, July 2016) that young scientists should be conscious about the opportun-
ities of modern computers. Back then I did not understand what he meant, but maybe
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I do so now. About a year later the department bought a new computer cluster which
allowed to carry out sophisticated calculations that took between a few hours and a few
weeks. The obtained results are very important for this thesis, but such a super computer
did not exist until a few years ago. Hence, the results could not have been obtained
without the available computational power. Apart from the hardware, also the software
is very important because modern programs allow to generate a lot of valuable data in
very little time using a simple input file. Many programs I wrote for the thesis were
mainly analysing a batch of output files because the manual analysis would have taken
too long. Considering that two decades ago my laptop would have been among the 100
most powerful computers in the world and that I used many sophisticated programs writ-
ten by others, I am not exaggerating when I claim, that this thesis could have never
achieved the current state without the hardware and programs of this decade. One might
ask the question, if Moore’s law also holds for the scope of a PhD thesis. Independent of
the computational power, the power of human resources that supported the thesis may
not be underestimated.
Paul Klar in Bilbao, 8th October 2018
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Chapter 1

Introduction to mullite

“The crystalline phase, which causes the X-ray pattern of mullite,
cannot have the composition 3Al2O3·2SiO2”
Hermann Franz Mark & Paul Rosbaud (1926)1

“Yes, it can.”
Paul Klar (2018)

1Translated from German by the author of the thesis [15].
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1.1 Mullite research: history and overview

1.1 Mullite research: history and overview

1.1.1 Mullite: more applied than understood

“Phases of the SiO2–Al2O3 [...] system have had, and will continue to have, a
significant role in the development of traditional and advanced ceramics.”

İlhan A. Aksay, Daniel M. Dabbs & Mehmet Sarikaya (1991)

“Mullite has achieved outstanding importance as a material for both
traditional and advanced ceramics [...]”

Hartmut Schneider, Jürgen Schreuer & Bernd Hildmann (2008)

The authors quoted are convinced, that mullite is a unique material, that satisfies many
needs of the ceramics industry and bears the potential for new technologies and applica-
tions [16, 17]. Many ceramics requiring structural stability at elevated temperatures and
chemical resistance, like furnace windows or heat shields for space vehicles, are based on
mullite [18].

“[It] stresses the need of a deeper understanding of the relationships between
crystal structure and properties of mullite.”

Hartmut Schneider, Reinhard Fischer & Jürgen Schreuer (2015)

Despite its highly praised status in the world of ceramics [1], from a fundamental point
of view, the structural details of mullite are only little understood. The aim of this thesis
is to develop crystal structure models of mullite as a basis for a better understanding of
the properties on a fundamental level. This chapter outlines the relevant research on the
mullite structure from its discovery to the most recent models.

1.1.2 The discovery of mullite

The investigation of mullite has a long history of ambiguity, which began 100 years before
the actual discovery of mullite. In 1824 the rock-forming mineral sillimanite (Al2SiO5) was
discovered [19] and subsequently identified as one of the main components in porcelain
[20, 21, 22]. It was stated that sillimanite exhibits congruent melting behaviour [23],
but exactly 100 years after the first description of sillimanite2, the phase diagram of
the system SiO2–Al2O3 was reinvestigated by Bowen & Greig in 1924. The melting of
sillimanite crystals and subsequent slow cooling led to the initial formation of α -Al2O3

corresponding to incongruent melting behaviour, although the formation of Al2O3 could be
avoided by changing the growth conditions [24]. Nevertheless, there was no way to obtain

2Interestingly, sillimanite was discovered in 1824 by G. T. Bowen, and mullite in 1924 by N. L. Bowen.
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a sample consisting of a single phase with composition Al2SiO5 as there was always a glassy
phase forming alongside needle shaped crystals. The glass phase formation decreased by
enriching the synthesis with Al2O3 until a single crystalline phase resulted for a nominal
composition of 3Al2O3·2SiO2. The name ’mullite’ was suggested based on the discovery
of a new mineral on the Isle of Mull, Scotland, with the same properties as the artificial
samples of 3 Al2O3·2 SiO2 [24]. Two years before it was reported that at the same
location “well-crystallised minerals, such as [...] sillimanite” [25] were found. Therefore,
the discovery of mullite required to verify carefully the classification of other ’sillimanite’
samples. Needle shaped crystals in porcelain, glass pots, tank blocks, refractories and
many other ceramics turned out to be mullite and not sillimanite as anticipated earlier
[26, 27, 28].

X-ray diffraction patterns of mullite and sillimanite appeared to be virtually identical with
tiny differences in the lattice parameters close to the experimental error [29]. Only few
reflections showed different intensities, which was difficult to quantify in the early days
of X-ray crystallography. The determination of the lattice parameters and the chemical
composition led to the conclusion that the unit cell contains a non-integer number of
atoms. As such a case had never been observed before, other researchers brought the
existence of mullite into question. For example, Mark & Rosbaud (1926) stated that
mullite must necessarily have an integer number of atoms in the unit cell and therefore
the composition must be identical to that of sillimanite [15]. Wyckoff (1926) concluded
that the determined non-integer number of atoms is correct and that the true cell must
be larger [29].

1.1.3 Structural elements of sillimanite and mullite

Taylor (1928) solved the crystal structure of sillimanite (Tab. 1.1) in the orthorhombic
space group Pbnm with lattice parameters a = 7.43 (3)Å, b = 7.58 (4)Å, c = 5.74 (2)Å
[30]. The model consists of octahedra chains extending along the c direction interlinked
by chains of AlSiO7 double tetrahedra named diclusters (Fig. 1.1).

The crystal structure of mullite was solved at a much later stage, and initially the structure
of sillimanite was taken as a basis to derive the structural elements of mullite. Due to
the chemical composition, oxygen vacancies must be present in the crystal structure of
mullite [31]. It was suspected that with respect to sillimanite, oxygen atoms are removed
from the OC site and the cations of the broken dicluster shift apart to form triclusters as
shown in Figure 1.1. The prediction of this vacancy position and environment was based
on considerations on the coordination numbers (CN). In sillimanite there are four different
oxygen sites: OA and OB with CN = 3 are each bonded to two octahedral sites and one
tetrahedral site. OD also with CN = 3 is bonded to one octahedral and two tetrahedral
sites. OC is bonded to two tetrahedral sites (CN = 2). Removing an oxygen atom from
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Site label
(Sillimanite)

Respective
label in
mullite

CN Wyckoff
site

x y z

AlI Al1 6 4a 0 0 0
AlII Al2 4 4c -0.14 0.33 0.25
Si Si2 4 4c 0.18 -0.35 0.25
OA O1 3 4c 0.11 0.12 0.25
OB O1 3 4c -0.10 -0.16 0.25
OC O3 2 4c 0.08 0.46 0.25
OD O2 3 8d 0.15 -0.18 0

Table 1.1: Fractional coordinates of initial crystal structure solution of sillimanite in space
group Pbnm. All sites have a structurally similar site in the mullite crystal structure with
a different label. CN is the number of atoms coordinating the respective site.

Site
label

Obsolete labels CN Wyckoff
site

Description

Al1 Al 6 2a Cation at the origin of the unit cell
coordinated by four O1 and two O2
atoms.

Al2 or
T

Al, MI 4 4h Al2 and Si2 are statistically distributed
on the T site.

Si2 or
T

Si, MI 4 4h

Al3 or
T*

Al*, MII 4 4h Two T sites and a T* site form a
tricluster with O4 at the central corner.

Si3 or
T*

Si* 4 4h Si on the T* site is not considered in the
majority of models.

O1 Oab, OI 3 4h O1 is bonded to two octahedral sites and
one tetrahedral site.

O2 Od, OII 3 4g O2 is bonded to one octahedral site and
two tetrahedral sites.

O3 Oc, OIII 2 2c O3 links two corner-sharing T sites
forming a dicluster.

O4 Oc*, O*, OIV 3 4h O4 links two T sites and one T* site.
Vacancy 14 2c The void of a vacancy is a distorted

tetrakis hexahedron.

Table 1.2: Description and labels of atom sites in the average structure of mullite. Ob-
solete labels refer to labels that were used in the (less recent) literature.
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Figure 1.1: Crystal structure model of sillimanite (left) and mullite with one vacancy
(right). The removal of an Oc atom alongside a shift of two cations as indicated by the
orange arrows introduces a vacancy into the sillimanite structure. The Si distribution on
the right is preserved and thus the shown model is not charge balanced. Al tetrahedra in
grey blue, Si tetrahedra in dark blue.

the octahedra, i.e. OA, OB or OD, requires the rearrangement of two tetrahedral sites and
one octahedral site. Removing an oxygen atom from the OC site, in contrast, requires
that only two tetrahedral sites adapt and that the overall CN of the anion substructure
increases by two. In that case, two cations have to find a new environment to retain
the tetrahedral coordination. If both cations bond to the same OA, OB or OD oxygen
that oxygen is the coordinated by five cations and is strongly overbonded. Similarly,
bonding both cations to the same OC leads to CN = 4. The least increase of the CN is
achieved by bonding the two cations to two different OC sites, which thus become three-
fold coordinated oxygen atoms [31]. The structural unit consisting of three connected
tetrahedra is denominated ’tricluster’. In total, the introduction of a vacancy affects two
oxygen sites and two cation sites, apart from the oxygen that is removed. From crystal
chemical considerations it is easy to see, that the triclusters must be located directly
next to the vacancy. Otherwise one tetrahedron of the tricluster would necessarily share
a face with a tetrahedron of a neighbouring dicluster. This is only avoided if the third
tetrahedron of each tricluster ’shares’ a face with the void of the vacancy (Fig. 1.1).

Atom site labels of mullite are based on the initial structure solution of sillimanite but
using numbers instead of letters. In the average structure of mullite Al2 and Si2 are
disordered on a common tetrahedral site labelled ’T site’. The presence of triclusters
introduces two additional sites, Al3 and O4, with respect to the structure of sillimanite.
The Al3 site is also labelled T* because it can be considered as a split site of T. The
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central oxygen atom of triclusters is labelled O4 and is slightly displaced towards the
bonding atom on the T* site. Thus, in the average structure O4 appears as a split site
of O3. The coordinates of the geometric centre of the void around the vacancy are the
same as the coordinates of the O3 site, which is therefore also called ’vacancy site’. The
terminology will be further clarified in § 1.1.5. A description of all sites and labels is given
in Table 1.2.

1.1.4 Chemical formula

The removal of an O2– from a model sillimanite structure requires the replacement of
two Si4+ by two Al3+. In the literature, this replacement scheme with a focus on the
charge balance is often expressed as 2Si4+ + O2– 
 2Al3+ + � [16, 17]. The square
symbols � represents a vacancy. The chemical formula of mullite as a solid solution is ex-
pressed correspondingly as Al4+2δSi2–2δO10–δ with δ being the vacancy concentration. The
replacement scheme can be extended to account for the coordination number indicated
by superscript Roman numbers: 2SiIV + 3OII 
 2AlIV + 2OIII + �XIV. The respective
chemical formula, separating the octahedra backbone and the interconnecting tetrahedra
is (AlVI2 OIII

8 )(AlIV2+2δSiIV2–2δOII
2–3δOIII

2δ ). Due to the term 2− 3δOII this chemical formula and
replacement scheme are only valid in the range 0 ≤ δ ≤ 2

3 because higher vacancy con-
centrations would correspond to a negative concentration of diclusters. The replacement
schemes are useful to describe how a structural model of mullite is obtained starting from
a structural model of sillimanite, but they should not be regarded as a chemical reaction
or a process which takes place during the formation of mullite.
In few cases the chemical formula was expressed as Al4+2δSi2–2δO10–δ�δ, which specific-
ally accounts for the presence of vacancies represented by the square symbol � [32, 33].
However, in a void of a vacancy two T, two T*, one O3 and two O4 sites are vacant
and can also be described as vacancy sites. To avoid ambiguity with the assignment
of the vacancy site in this thesis the chemical formula is expressed as Al4+2δSi2–2δO10–δ

without the square symbol. The vast majority of studies on mullite expresses the chem-
ical formula in this way. In the literature the vacancy concentration is represented by the
symbol x. Throughout this thesis the symbol δ is used to avoid confusion with coordinate
parameters.

1.1.5 Vacancies, voids and defects

“The crystal structure of mullite is a modified defect structure of sillimanite”
İlhan A. Aksay, Daniel M. Dabbs & Mehmet Sarikaya (1991)

Vacancies play a crucial role for the characterisation of the crystal structure of mullite [16].
This section defines the terms ’vacancy’ and ’void’ and a few other terms are discussed.
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Figure 1.2: Geometric shape of of voids in mullite (left) and in andalusite (right). The
coordination sphere of vacancies in mullite is a strongly distorted tetrakis hexahedron.
The subsequent layer in the andalusite (Al2SiO5) model is shown with decreased opacity.

In mullite there are voids in the crystal structure with a diameter of about 5 to 6 Å that
are completely surrounded by a tetrahedra network (Fig. 1.2). According to Michele
Catti a vacancy is a point defect described by “the absence of an atom from its expected
position” (Chapter 9 in [34]). According to this definition every absent T, T*, O3 or O4
atom is a vacancy, which makes the description of the vacancy distribution unnecessarily
complicated. For example, the simple description of a dicluster requires to describe two
T* vacancies and two O4 vacancies. According to Gary Gladysz a void with a size between
10−10 m to 10−8 m is a ’free volume’ [35]. Hence, the voids in mullite should rather be
termed ’free volume’ instead of ’vacancy’. Nevertheless, the scientific community silently
agreed on using the term ’vacancy’ to refer to the void or free volume in the polyhedra
network. Therefore, the following definitions will be used throughout this thesis:

• ’Vacancy’ refers to a crystallographic site characterised by the simultaneous absence
of one O3, two O4, two T and two T* site atoms in mullite. The position of the
vacancy is at the vacant O3 site with site symmetry 2

m
in the average structure.

• ’Void’ refers to the unoccupied volume of approximately 80 Å3 in the vicinity of the
vacancy.

Are these voids defects? The andalusite crystal structure consists of the same octahedra
backbone like mullite and sillimanite, but in andalusite voids are regularly placed on well
defined crystallographic sites and the geometry of the voids is very similar to the voids in
mullite (Fig. 1.2). It was reported that in highly ordered mullite samples the vacancies
are also perfectly ordered [36]. In these cases, the term ’defect’ is clearly not appropriate.

7
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On the other hand, the majority of mullite samples show characteristic diffuse scattering
indicating that correlated disorder is present. As the diffuse scattering seems to be inde-
pendent of the temperature an in situ single crystal X-ray diffraction study concluded,
that the vacancy distribution in mullite is independent of the temperature [37]. Taking
into account that the quantity of voids is uniquely determined by the chemical composition
and not by other parameters like the temperature, the term ’defect’ might be misleading
because in many materials the concentration and distribution of defects is highly temper-
ature dependent [38]. Nevertheless, the voids may be regarded as volume defects and thus
the term defect is not wrong, but in certain cases not suitable. Throughout this thesis
the term defect is avoided to describe the crystal structure of mullite.

1.1.6 Nomenclature of mullite compounds

Mullite forms a solid solution range [39, 16, 1]. The chemical composition can be expressed
in different ways and depending on the focus of the study, one way or the other is preferred.
For the description of phase diagrams and synthesis experiments the mullite composition
is mainly expressed as the concentration [Al2O3] in units of mol% or wt%. The sample
composition is also defined by the molar ratio RAS = [Al2O3] : [SiO2]. Mullite with an
Al2O3:SiO2 ratio of 3:2 is named 3/2-mullite and the ratio 2:1 corresponds to 2/1-mullite.
However, in the literature these labels are often used with an undefined flexibility, i.e. the
terms often refer to a composition close to the theoretical composition but not necessarily
to the exact composition. A more abstract way is to represent the chemical composition
by the vacancy concentration δ. The chemical composition can be exactly calculated with
δ = (RAS−1)/(RAS+ 1

2) or δ = (4·[Al2O3]−2)/([Al2O3]+1). Table 1.3 lists some members
of the solid solution range with the ideal composition expressed in different ways. Here,
only rational values of δ and RAS are mentioned, but intermediate compositions with
irrational δ are possible as well. However, in experiments rational and irrational numbers
cannot be distinguished due to the experimental uncertainty.

The term ’mullite’ is part of a large family of compounds that are structurally derived
from a tetragonal aristotype with space group P4/mbm and a characteristic backbone
of edge-sharing octahedra chains. This family of so-called ’mullite-type’ structures in-
cludes many different groups that are classified by different symmetries and subgroup
relationships [18]. In this thesis the term mullite exclusively refers to compounds with
chemical composition Al4+2δSi2–2δO10–δ. This mullite corresponds to the mullite group II.3
according to Schneider & Komarneni (2005) [18].
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Label vacancy
concentration δ

Al2O3:SiO2
ratio

[Al2O3]
in mol%

[Al2O3]
in wt%

0.20 = 1
5 11:8 57.89 70.00

3/2-mullite 0.25 = 1
4 3:2 60.00 71.79

7/4-mullite 0.33 ≈ 1
3 7:4 63.64 74.81

2/1-mullite 0.40 = 2
5 2:1 66.67 77.24

9/4-mullite 0.45 ≈ 5
11 9:4 69.23 79.24

7/3-mullite 0.47 ≈ 8
17 7:3 70.00 79.83

5/2-mullite 0.50 = 1
2 5:2 71.43 80.92

3/1-mullite 0.57 ≈ 4
7 3:1 75.00 83.58

4/1-mullite 0.67 ≈ 2
3 4:1 80.00 87.16

9/1-mullite 0.84 ≈ 16
19 9:1 90.00 93.85

Table 1.3: Labels of selected members of the mullite solid solution and the respective
composition. The concentration [Al2O3] is given in weight% and in mol%.

1.1.7 Phase diagram(s) of the system SiO2–Al2O3

Mullite is made of the three most abundant elements of the earth crust, which are oxy-
gen, silicon and aluminium [40]. The binary phase diagram of the oxide components silica
SiO2 and alumina Al2O3 was a matter of controversy for several decades as contradict-
ing findings on the solid solution range and melting behaviour were reported. The first
noteworthy phase diagram was published by Bowen & Greig (1924) with the discovery of
mullite and included 3/2-mullite as the only stable intermediate phase with incongruent
melting behaviour [24]. In 1959 a phase diagram was published, based on a study with a
series of quenching experiments, which included a solid solution range from 60 mol% <
[Al2O3] < 63 mol% (71.8 wt% < [Al2O3] < 74.3 wt%, corresponds to 0.25 < δ < 0.32) and
congruent melting behaviour [41, 42]. In 1974 a phase diagram with incongruent melting
behaviour and with a solid solution range from 58.5 mol% < [Al2O3] < 62.7 mol% (70.5
wt% < [Al2O3] < 74.0 wt%, corresponds to 0.21 < δ < 0.32) was published based on ex-
periments applying the diffusion couple technique [43] at temperatures below the melting
point between 1678 °C and 1813 °C [44]. Additional quenching experiments revealed a
metastable extension of the solid solution range to about 74.5 mol% Al2O3 [45]. These
findings were mostly confirmed by another extensive study (Fig. 1.3), which also repor-
ted incongruent melting behaviour but a different solid solution range [46]. Differences
between the studies from 1974 and 1987 were attributed to the different experimental
approaches, i.e. both studies are considered to be valid with respect to the experimental
conditions [16]. Especially the presence and absence of alumina nuclei has a crucial influ-
ence on the phases that crystallise and the observed borders of the solid solution range of
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Figure 1.3: Part of SiO2–Al2O3 phase diagram in the range 0 < δ < 0.65 adapted from
[46]. The metastable range indicated by [16] is not included.

mullite [47]. Highly crystalline and inclusion-free single crystals of mullite can be grown
with the Czochralski method despite the incongruent melting behaviaour [48].

1.1.8 Characteristic features in reciprocal space

“Prolonged exposures, together with shorter ranges of rotation of the
crystal, result in the appearance of a few extremely faint spots lying on the

layer lines [...] corresponding to an index ` = 1 or 3 referred to a unit cell the
same size as sillimanite. There appears to be no doubt about the reality of
these faint reflections [...]. The weakness of the spots makes it difficult to

measure their positions exactly, but it does not seem to be possible to assign
to them indices based on the unit cell of the same size as sillimanite.”

William H. Taylor (1928)

Despite the structural similarities between sillimanite and mullite, their diffraction pat-
terns show profound differences. Reciprocal space sections of sillimanite show regularly
spaced diffraction spots, the so-called ’main reflections’. Between the main reflections re-
ciprocal space is empty. Taylor (1928) identified “extremely faint spots” in mullite known
as ’satellite reflections’ which, as he presumed correctly, cannot be indexed in a straight
forward manner taking a simple multiple or fraction of the unit cell of sillimanite [30].
Agrell & Smith (1960) investigated a broad range of samples and confirmed the existence
of sharp satellite reflections in some samples, for which the term ’S-mullite’ was suggested.
Other samples only showed diffuse satellite reflections as maxima of a diffuse scattering.
These samples were labelled ’D-mullite’ [39]. Examples of the different features in recip-
rocal space are shown in Figure 1.4 with different saturation settings to emphasise that
main reflections are significantly stronger than satellite reflections and that the diffuse
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Figure 1.4: Details of different reciprocal space sections of mullite based on X-ray dif-
fraction measurements (ESRF ID28, sample SA1, § 3.3.2) . Each section is shown with
two different greyscale settings to distinguish between weak and strong features. a) 2kl
section with main reflections and diffuse scattering. b) h3l section with main reflections,
sharp satellite reflections and diffuse scattering. c) hk 1

5 with diffuse scattering only.

Figure 1.5: Dependence of α and γ on chemical composition expressed as vacancy con-
centration δ. Data based on Table A.1 described in the appendix.

scattering is relatively weak. Average crystal structure models were developed based on
the main reflections (§ 1.3.2) and also the diffuse scattering was investigated in detail
[3, 4].

Several electron diffraction studies revealed that the nature of the satellite reflections is
very complex: The sharpness, highest observed order, position and symmetry of satellite
reflections depends strongly on the synthesis conditions of the sample. The position of
satellite reflections is characterised by the distance vector q = (αβ γ) between main and
satellite reflections. The dependence of q on the chemical composition was first indicated
by Smith and McConnell (1966) and systematically studied by Cameron (1977) [49, 2].
A comprehensive literature survey (details given in the appendix in § A.1) analysed 18
published diffraction patterns to analyse how α and γ change with the composition.

11
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According to Figure 1.5 α decreases with increasing vacancy concentration with a short
plateau δ > 0.5. γ is constantly 1

2 for δ < 0.5 indicating orthorhombic symmetry. For
higher vacancy concentrations δ > 0.5, though the exact turnover composition is not
known, the symmetry is lowered to monoclinic as γ ≈ 0.46. The monoclinic symmetry
is clearly visible in the diffraction patterns of [50, 36, 51]. Furthermore, some samples
exhibit high order satellite reflections whereas other samples show only first order satellite
reflections. These features in reciprocal space sections of mullite lack an explanation,
which initiated this thesis.
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Ion CN Mullite sites Ion radius rc/ra

Al3+ 4 Al2, Al3 0.39 0.29
Al3+ 6 Al1 0.535 0.39
Si4+ 4 Si2 0.26 0.19
Si4+ 6 – 0.40 0.29
O2– 2 O3 1.35 –
O2– 3 O1, O2, O4 1.36 –
O2– 4 – 1.38 –

Table 1.4: Radii of relevant ions in mullite. For the calculation of the ratio of cation
radius rc/ra the value of three-fold coordinated O2– is used. Radii are taken from [52]

1.2 Crystal chemical foreword: Pauling’s heritage

Linus Pauling defined a set of empirical rules which are useful to estimate the stability of
a certain configuration of atoms [8]. These rules are applied here to the average structure
of mullite to derive restrictions on the possible vacancy and Al/Si ordering. The anion
radius ra of O2– increases slightly with the coordination number (CN), but the dependence
is very weak in contrast to the dependence of the cation radii rc of Al3+ and Si4+ on the
CN (Tab. 1.4). The ideal rc : ra ratio is

√
3
2 − 1 ≈ 0.225 for tetrahedral coordination

and
√

2 − 1 ≈ 0.414 for octahedral coordination. These numbers suggest that in oxides
Si4+ favours a tetrahedral coordination and Al3+ an octahedral coordination. It can be
expected that SiO4 and AlO6 units are rather rigid because the coordinating oxygen
atoms are in close contact to each other. Al3+ is rather large for tetrahedral coordination
allowing a more flexible tetrahedra shape as the coordinating oxygen atoms are not in
close contact. These trends indicate that the octahedral site in mullite is only occupied
by Al and the distorted larger tetrahedra of the T* site is avoided by Si. All average
structure refinements of this thesis and of cited work apply this scheme, which is also in
agreement with a neutron diffraction study on sillimanite [54].

In section 1.1.3 it was explained that the most likely structural adjustment of a sillimanite
model structure to the presence of a vacancy is the introduction of two triclusters next to
the vacancy. If triclusters were located anywhere but next to the void of the vacancy, then
the T* tetrahedron must share a face with a T tetrahedron. This must be avoided ac-
cording to Pauling’s rule on ’Sharing Edges and Faces’. The requirement for this tricluster
environment introduces constraints on the vacancy distribution to avoid the overlap of
triclusters with vacancies or with other triclusters. This constraint does not affect vacan-
cies in different layers and also the joined stacking of vacancies and triclusters along c is
not forbidden. Pauling’s ’Rule of Parsimony’ states that a structure tends to minimise the
number of different constituents and to keep, if possible, each atom in one environment

13



1.2 Crystal chemical foreword: Pauling’s heritage

Site label Coordinating cations ζ
Hypothetical concentration

0 ≤ δ ≤ 1
2

1
2 < δ ≤ 2

3
2
3 < δ ≤ 1

O1 AlVI, AlVI, AlIV 1.75 2 + 2δ 2 + 2δ 2 + 2δ
O1 AlVI, AlVI, SiIV 2.00 2− 2δ 2− 2δ 2− 2δ
O2 AlVI, AlIV, AlIV 2.00 4δ 4δ 4δ
O2 AlVI, AlIV, SiIV 2.25 4− 4δ 4− 4δ 4− 4δ
O2 AlVI, SiIV, SiIV 2.50 0 0 0
O3 AlIV, AlIV 1.50 0 0 0
O3 AlIV, SiIV 1.75 2− 4δ 0 0
O3 SiIV, SiIV 2.00 δ 2− 3δ 0
O4 AlIV, AlIV, AlIV 2.25 2δ 2− 2δ 2− 2δ
O4 AlIV, SiIV, AlIV 2.50 0 4δ − 2 2− 2δ
O4 SiIV, SiIV, AlIV 2.75 0 0 0
O4* AlIV, AlIV, AlIV, AlIV 3.00 0 0 3δ − 2

Table 1.5: Electrostatic bond strength ζ of oxygen atoms in mullite. Roman numbers
indicate the number of coordinating oxygen atoms. The hypothetical concentration of
atoms with the described environment was determined in a such way to minimize the
concentration of oxygen atoms with |ζ − 2| ≥ 0.5. This table is partly based on work of
[53]. For δ > 2

3 tetraclusters with ζ = 3 cannot be avoided.

corresponding to the most stable one. This rule suggests that the stacking of vacancies
and triclusters is either preferred or avoided, but it is unlikely that stacked vacancies
are present alongside single vacancies. The void structure of andalusite may be taken as
indication that stacking of vacancies is not preferred. There are numerous ordered and
disordered ways to implement this set of rules in the description of a mullite structure and
thus Pauling’s rules are not sufficient to derive a general vacancy ordering pattern. There
are two exceptions: For the special case of 4/1-mullite (δ = 2

3) the vacancy distribution is
strongly constrained because each layer is saturated with vacancies and triclusters. The
description of the structure is thus simplified to the description of a stacking pattern. A
similar description holds for the hypothetical structure of ι -Al2O3 (δ = 1, [2]) but with
layers saturated with vacancies and tetraclusters instead of triclusters.

Concerning the distribution of Si atoms, Pauling’s rule on the ’Nature of Contiguous
Polyhedra’ states that Si4+ cations try to maximise the distance to other cations and
therefore SiO4 tetrahedra never share faces or edges. If two SiO4 tetrahedra share one
corner, this specific corner is not shared with a third polyhedra. The ’Electrostatic Valence
Principle’ postulates that if an anion is bonded to i cations, then the sum over the strength
of the electrostatic valence bond ζ = ∑ Zi

vi
tends to compensate the electric charge of the

anion, with Zi being the cation charge and vi the coordination number of the ith cation.
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Table 1.5 lists the resulting values of ζ for all possible environments of O1, O2, O3 and
O4 of mullite without Si occupying the T* site. The table also includes the concentration
of each oxygen with the given environment as a function of the vacancy concentration
δ. Three different ranges must be distinguished because for δ > 0.5 Si atoms must be
present in triclusters [36] and for δ > 2

3 tetraclusters must be present [53]. O1 prefers
to be bonded to a Si tetrahedron over an Al tetrahedron but this does not impose any
constraints on the Al/Si ordering. O1 favours a stacking of AlO4 tetrahedra whereas O3
favours Si-Si dicluster units (Si2O7) and strongly avoids Al-Al dicluster units (Al2O7).
The best possible environment of O4 is made of three Al cations. From this analysis an
ideal Al/Si ordering cannot be derived because the optimal environments exclude each
other. An interesting observation is that the concentration of oxygen atoms in the ideal
environment (ζ = 2) increases in the range 0 ≤ δ ≤ 0.5 from 2 to 3.5 oxygen atoms
per unit cell. This trend indicates that the distribution of Si favours higher vacancy
concentrations up to δ = 0.5.
In conclusion, the application of Pauling’s rules allows to evaluate the crystal chemistry of
a local arrangement of tetrahedra, but it is impossible to derive meaningful distribution
patterns for vacancies and Si. More structural information is required to describe the
ordering phenomena in the crystal structure of mullite.
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1.3 Antecedent structural models

1.3 Antecedent structural models

1.3.1 Nuclear magnetic resonance studies

Magic angle spinning nuclear magnetic resonance spectroscopy (MAS-NMR) studies on
sillimanite are straight forward to interpret. A single peak in the NMR signal of 29

14Si
indicates that Si occupies a single site and is completely ordered. The NMR signal of
27
13Al shows two peaks, that are attributed to an octahedral and a tetrahedral site. The
29
14Si signal of mullite contains a peak as in sillimanite, but it is broader and shows two
additional peaks indicating that there are (at least) two additional chemical environments
of Si in mullite. Simulations based on simple dicluster chains of 3/2-mullite with different
Si environments agree qualitatively with measurements if a moderate tendency for Si
ordering is introduced to the model, i.e. Si atoms rather repel each other and most
Si atoms have 0 or 1 Si neighbour [5]. Another MAS-NMR study concluded that in
the basically disordered structure less than 5 % of the overall Si is present in tricluster
tetrahedra [55, Section 6.3.3].

The 27
13Al signal shows an additional peak, that was attributed to Al on the T* site. The

fraction of Al in the different environments was determined from the NMR signals, but
the agreement with the expected values does not allow a reliable interpretation of the
data due to the high uncertainties, i.e. a broad range of samples was investigated but
especially the concentration of triclusters is not in agreement with the expected tricluster
concentration [56]. So far, NMR studies could not establish a clear Al/Si ordering pattern
and its relationship with the distribution of vacancies could not be identified.

1.3.2 Average structure of mullite

The average structure of mullite was first solved in 1962 starting with a difference Fourier
map based on the known model of sillimanite and the measured structure factor amp-
litudes from an X-ray diffraction experiment of 2/1-mullite. From the map the split sites
T* and O4 were identified (Fig. 1.6). The occupancies of Al2, Si2, Al3, O3 and O4 were
fixed to values corresponding to a vacancy concentration δ = 0.4 and were not refined [57].
The model is in full agreement with the presence of oxygen vacancies at the O3 site and
triclusters accompanying the vacancy. A similar study was presented with the refinement
of the occupancies, resulting in a vacancy concentration slightly above 0.4 [58, 59]. The
refinement of different samples with different compositions resulted in the same structure
model with different occupancies for the T, T*, O3 and O4 sites [60, 61]. These models
only take main reflections into account and no information on the distribution of vacan-
cies or Si are included, though usually Si is excluded from the T* site as indicated by the
NMR results.
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Figure 1.6: Average structure model of mullite with atom site labels. Coordinates and
occupancies taken from [57]. An origin shift of (1

2 ,
1
2 , 0) was applied.

The average static displacement of O1 and O2 due to Al/Si disorder was investigated
based on a high resolution single crystal diffraction experiment (Mo Kα, 2θ < 110°,
sin(θmax)

λ
≈ 1.15). In the refinement third and fourth order tensors for anisotropic displace-

ment parameters were determined. The interpretation of difference Fourier maps allowed
to identify coordinates of O1 and O2, that could be consistently related to expected bond
lengths of either Al or Si on the bonded tetrahedral sites. It was concluded, that Al and Si
are present on the T site, but Si is probably not present on the T* site [62]. These results
suggest that the anisotropic displacement parameters of the average structure represent
a superposition of thermal motion, static displacement due to Al/Si disorder and static
displacement due to a displacive modulation.

Single crystal neutron diffraction studies of samples with a vacancy concentration close to
0.4 could not clarify whether Si occupies the T* site or not. In all cases, the occupancy
is 0 within 3σ, and thus the presence of Si was neither confirmed nor excluded [7, 6].

1.3.3 Models with full vacancy ordering

Two models were published that exhibit a fully ordered vacancy distribution, but both
models were not refined, and the distribution of Si atoms was not addressed.

1.3.3.1 Superstructure model from difference Patterson functions

Saalfeld (1979) suggested a vacancy distribution for 2/1-mullite from a Patterson syn-
thesis including main and satellite reflections. The model consists of alternating units
of sillimanite-like blocks and tricluster blocks. These blocks extend along b and c, and

17



1.3 Antecedent structural models

Figure 1.7: Models with full vacancy ordering. Voids are represented by greed polyhedra.
Octahedra and tricluster tetrahedra are shown as faint blue tetrahedra. Dicluster tetra-
hedra are shown in grey blue. Black lines define the borders of the unit cell. Top: Vacancy
distribution (δ = 0.4) suggested by Saalfeld (1979). Bottom: Model (δ = 0.5) suggested
by Ylä-Jääski & Nissen (1983). Similar units (orange and blue frames) can be identified
in both models, but the stacking pattern is different.

alternate periodically along a. In the same study it was mentioned that “satellite re-
flections of higher orders should appear, but they never were observed” [60]. It is worth
mentioning that this model was the first model with a defined pattern for the vacancy
distribution. The space group of the superstructure (Fig. 1.7) was not determined in the
paper, but an inspection of preserved and broken symmetry elements points to the space
group B11 2

m
.

1.3.3.2 Superstructure model from transmission electron microscopy

Superstructure models were developed from high-resolution transmission electron micro-
scopy (HRTEM) images of samples (δ ≈ 0.48) with a diffraction pattern showing at least
fifth order satellite reflections by Ylä-Jääski & Nissen (1983). The model (δ = 0.5) is fully
ordered (Fig. 1.7) and simulated HRTEM images are in remarkable agreement with the
experimental observations [36]. The model was only published as image indicating the
vacancy distribution, but a corresponding structural description3 in space group Bb21m

was presented in an independent study [63].

3In the ’Inorganic Crystal Structure Database’ the model has the collection code 41146.
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1.3.4 Models with partial vacancy ordering

1.3.4.1 Incommensurate structure from difference Patterson functions

According to a theoretical approach derived from Landau theory [64, 65] the modulation
in insulators originates from two competing structural components. A group theoretical
analysis of the symmetry of mullite identified that the first component is vacancy ordering
and the second component is the ordering of Si on the tetrahedral sites. For the determ-
ination of the component symmetry the vacancy ordering of the hypothetical ι -Al2O3 and
the Al/Si ordering of sillimanite were considered [32].
Qualitative atom shifts and changes in the occupancies for the components were determ-
ined from difference Patterson functions based on X-ray and neutron diffraction experi-
ments [66, 7]. However, structural parameters were not refined. The model is discussed
and compared with the results of this thesis applying group theory in § 5.1.2. In modern
crystallography modulated structures are not investigated by means of component struc-
tures because the superspace approach proved to be more powerful and more convenient
to describe and characterise structural modulations.

1.3.4.2 Models of disorder from diffuse scattering analysis

The short-range ordering of vacancy was investigated from the diffuse scattering [3, 4].
The studies confirm the tricluster environment and that tetraclusters are avoided [67].
Models based on a large set of parameters describing the probability that a certain vector
links two vacancies agree well with the experimentally observed streak pattern. The
diffuse scattering of 3/2 and 2/1-mullite was revisited in detail in [18]. However, the
models do not account for sharp satellite reflections and a relationship with a superspace
description was not established.

1.3.4.3 Superspace model

The superspace approach (cf. § 2.4) allows to describe and investigate structures with
satellite reflections and was developed in the 1970s and 1980s. The first crystal structure
model based on this approach was published recently in 2015. Birkenstock et alii conduc-
ted single crystal X-ray diffraction experiments with a Czochralski-grown single crystal
[6]. The refinement was carried out in the superspace group Pbam(α01

2)0ss and describes
a mainly disordered structure (δ = 0.41) with little tendency to order vacancies. Al/Si
ordering is not addressed and a relationship with the observations in reciprocal space
described in § 1.1.8 was not established. The model will be discussed in detail in § 5.1.5
pointing out similarities and differences to the results of this thesis.
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1.4 Thesis overview

1.4.1 Objectives

The introduction has shown that mullite was investigated by many different approaches
within the last decades. Furthermore, there were five dedicated conferences and work-
shops about all aspects of mullite and related structures4. Despite this large record of
investigations and the enormous interest by the ceramics industry, our understanding of
the crystal structure of mullite is by no means complete and there are still many questions
that are not answered at all or at least not satisfactorily.

1. What is the underlying vacancy distribution pattern in mullite?

2. To what degree does Al/Si ordering take place? Does Si occupy the T* site in
triclusters?

3. What is the fundamental explanation for the dependence of the modulation on the
vacancy concentration?

4. Can structural models explain the borders of the solid-solution range?

The main objective of this thesis was to develop a modulated crystal structure model of
mullite which explains the dependence of the modulation wave vector on the composition.
Some results of the antecedent investigations appear somewhat contradicting, for example
highly ordered and highly disordered vacancy distributions were suggested [60, 36, 6]. It
is also the aim of this thesis to compare different results reported in the literature and to
identify a unifying model that accounts for the broad range of observations. 90 years after
the first observation of satellite reflections as “extremely faint spots on the layer-lines”
[30] it is time to fundamentally explain the aperiodic nature of mullite.

1.4.2 Content scheme

In Chapter 2 relevant foundations of crystallography, diffraction, higher-dimensional su-
perspace and computational methods are introduced. The samples, diffraction experi-
ments and calculation parameters are described in Chapter 3. The results of Chapter 4
focus on the new findings on several aspects of the crystal structure of mullite. At first,
the symmetry and its implications are analysed. A disordered and an ordered model of
the crystal structure of mullite are developed for a specific chemical composition. These

4“First International Workshop on Mullite”, Tokyo, Japan (1987); "Mullite Processing, Structure,
and Properties", American Ceramic Society Pacific Coast Regional Meeting, Seattle, Washington, USA
(1990); “Mullite ’94, International Workshop”, Irsee, Germany (1994); “Mullite 2000, Conference”, Oban,
Scotland (2000); “Mullite 2006, International Workshop”, Vienna, Austria (2011); “Mullite 2011, Con-
ference”, Áviles, Spain (2011)
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models are then extended to a broader composition range based on electron diffraction
measurements, symmetry considerations and computational methods. In Chapter 5 many
different aspects of the work are discussed and compared to round up the understanding
of ordering phenomena in mullite. Chapter 6 summarises the thesis work and gives an
outlook.
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Chapter 2

Theoretical background:
Tools to solve a crystallographic
problem

Due to the nature of atoms and visible light, it is impossible to optically ’see’ single atoms
with the naked eye or visible-light microscopes. The determination of the arrangement
of the atoms in mullite crystals therefore must be determined with other methods. X-
ray diffraction techniques allow to reconstruct the electron density and thus the crystal
structure. This requires understanding the principles of diffraction and how diffraction
patterns are related to the diffracting object. Computational methods provide a com-
pletely different approach to determine atomic arrangements by simulations based on the
fundamental knowledge on atoms and their interactions. Mullite represents a special case
of crystal structures due to the presence of the structural modulation. Its characterisa-
tion requires to embed the crystal structure of mullite in a higher-dimensional space called
’superspace’.
This chapter introduces parts of the fundamental concepts of crystallography, superspace
crystallography and computational methods with a focus on relevant topics for the thesis.
For detailed introductions the reader is referred to modern textbooks [34, 68, 69, 70, 71].
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2.1 Lattices and coordinates

2.1 Lattices and coordinates

The concepts of the direct lattice and the reciprocal lattice are fundamentally important
for crystallography as they represent the essential symmetry of crystals. A lattice Λ(r)
in R3 is spanned by three basis vectors a, b and c. The lattice exhibits translational
symmetry and a translation by L = ua+vb+wc leaves the lattice invariant (u, v, w ∈ Z).
A position vector r is defined by three coordinates x, y, and z according to the definition
r = xa + yb + zc.

Λ(r) =
∞∑

u,v,w=−∞
δ(r− L)

For each lattice in R3 there is a corresponding reciprocal lattice in R3 spanned by three
basis vectors a∗ = b×c

V
, b∗ = c×a

V
and c∗ = a×b

V
. V = a · (b× c) is the volume of the unit

cell. A position vector H is defined by three coordinates h, k and ` in reciprocal space
[72]. Relevant vectors in higher-dimensional superspace are defined later.

2.2 Scattering and diffraction

Louis de Broglie (1924) discovered the particle-wave duality, stating that particles can be
described as waves and vice versa [73, 74]. The description of a particle as wave has a
corresponding wavelength λ = h

mv
. The wavelength is the quotient of Planck’s constant h

and the momentum p = mv of the particle with mass m and velocity v. This relationship
is not observable in macroscopic cases, because λ for heavy objects is negligible small
in comparison to the size of the object1. In the case of particles like neutrons, protons,
electrons and even atoms or small molecules, the description as a wave is applicable. Vice
versa, electromagnetic waves can be described as particles called ’photons’. According to
the special theory of relativity, the mass of a particle depends on its velocity [75]. This
can be neglected for ’non-relativistic’ velocities of about less than 10% of the speed of
light.

The principles of scattering are the same for all waves that are scattered by an object.
In crystallography, the scattering of photons, electrons and neutrons is the basis for the
diffraction by crystals. In this section the basics of X-ray diffraction are described and
extended for the case of electron diffraction.

1For example, the de Broglie wavelength of the author of this thesis, running at a speed of 5 m/s, is
about 2 · 10−34 m.
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Theoretical background

2.2.1 Elastic scattering of X-rays by charged particles: Thom-
son scattering

X-ray diffraction is based on the scattering of electromagnetic waves by electrons. To
my knowledge, there is no unique and sharp definition of the wavelength range of X-
rays, but in crystallography the typical wavelength λ is between 0.4 Å and 2.5 Å [34].
Let us consider a plane monochromatic X-ray wave Ein traveling along the x axis of an
orthogonal coordinate system. The magnetic field component B0 is parallel to the y axis
and the electric field component E0 is parallel to the z axis. The amplitude of both fields
oscillates in space and in time, i.e. they depend on the position x and the time t.

Ein = E0e2πi c
λ

(t−x/c)

c is the speed of light. At the origin of the coordinate system we place a charged particle
with charge q and mass m. The electric field accelerates this particle with a = qE0

m

leading to an oscillating movement of the particle. An accelerated charge is the source
of electromagnetic radiation and hence the oscillation causes the emission of secondary
radiation [76, 77]. This scattering process is called ’Thomson scattering’. The amplitude
of Es of the scattered wave observed at position r is Es = E0e2πi c

λ
(t−r/c)−iξ q2

mc2
1
r

sin(φ) and
depends on the distance r = |r| from the scatterer and on the angle φ between E0 and
r. For positions r on the z axis |Es| is 0. The phase shift between the incident radiation
and the scattered radiation ξ is π for electrons, i.e. the scattering is coherent [34]. The
detection of X-rays is possible by measuring the effect of the absorption of X-rays by a
detector material. The dominating absorption mechanism is the photoelectric effect which
emits a photo electron with a kinetic energy that depends on the energy of the incoming
photon [78]. The energy density and intensity of electromagnetic radiation is proportional2

to the squared amplitude of the electric field component |Es|2. For experiments it is
therefore important to know the intensity of the radiation scattered by one electron. In
general it can be written as

IThomson = I0
q4

m2r2c4 [Ky +Kz sin2(φ)]

whereKy andKz are the fraction of incoming radiation with E0 parallel to the y axis and z
axis, respectively. If Ky = Kz = 1

2 then the incoming wave is not polarised and Ein points
uniformly into all directions perpendicular to the x axis. The factor [Ky + Kz sin2(φ)] is

2The energy density of an electromagnetic wave η in units of J/m3 depends on the amplitudes of the
electric field component and magnetic field component. η = 1

2ε0|E|
2 + 1

2µ0
|B|2, which can be simplified

to η = ε0|E|2 using the relations |B| = |E|
c and c2 = 1

ε0µ0
. The intensity I in units of W/m2 is I = 〈η〉 c =

1
2ε0c|E|

2. The constants ε0, µ0, c are the vacuum permittivity, vacuum permeability and the speed of
light, respectively.
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2.2 Scattering and diffraction

also called ’polarisation factor’.

Protons and electrons have the same modulus of the charge, but protons are much heavier
than electrons by a factor of about 1836 [79]. As IThomson ∝ 1

m2 the Thomson scattering
from protons can be neglected. Magnetic X-ray scattering due to magnetic interactions
takes place, but again the contribution is weaker by several orders of magnitude so that
the contribution to the scattered intensity can be neglected [80, 81].

2.2.2 Interference and the importance of the Fourier transform

Let us consider that there is a second charged particle at position r in addition to the
charged particle at the origin. The direction and wavelength of the incoming X-ray beam
is described by the wave vector s0 with |s0| = 1

λ
. The waves scattered by the two particles

into the same direction have the same wave vector s, but they exhibit a phase shift
2πr∗ · r with r∗ = s − s0. A very small phase shift means that the scattered waves are
mostly in phase and there is little deconstructive interference. In an extreme case if λ is
much larger than the distance between the scattering particles the interference becomes
negligible, which explains why the diffraction of visible light by crystals does not show
noticeable interference effects.

The scattering power F (r∗) of an object made of N point scatterers is calculated by
summing over the scattering factors fj and a phase shift term. If fj is defined in such a
way that it expresses the number of electrons, the expression for F (r∗) can be generalised
to account for any object described by an electron density ρo(r) by integrating over the
volume V of the object.

F (r∗) =
N∑
j=1

fje2πir∗·rj

F (r∗) =
∫
V
ρo(r)e2πir∗·rdr

The latter formula indicates that F (r∗) is the Fourier transform of ρo(r) [82]. The Fourier
transform operator F acting on a function (’Fourier analysis’) decomposes a periodic func-
tion into a sum of simple harmonic functions, each defined by a frequency, an amplitude
and a phase. The inverse Fourier transform operation F−1 (’Fourier synthesis’) constructs
a periodic function by summing over these simple harmonic functions with the respective
amplitude and phase. Hence, the mathematical relationship between the spaces of r and
r∗ can be defined with F [ρo(r)] = F (r∗) and F−1[F (r∗)] = ρo(r) which was first pointed
out by Ewald (1921) [83]. In crystallography r is a vector in direct space, the space in
which the positions of atoms are described, and r∗ is a vector in reciprocal space, in which
diffraction patterns are described. The scattering angle θ is defined by |r∗| = 2 sin(θ)

λ
.
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2.2.3 Scattering of X-rays by a single atom

In a simplified picture an atom consists of protons and neutrons in the nucleus, and
electrons in a cloud around it. If an incoming X-ray beam is scattered by an atom,
the main contribution to the scattered beam originates from the interaction between the
electric field of the incoming beam and the charge of the electrons. Thus, the scattering of
X-rays by atoms can be approximated by Thomson scattering from the electron density
of the atom.

A major result of quantum mechanics is that the state of an atomic electron can be
described by a wave function ψ(r) [84] from which the distribution of the probability that
an electron is located at a certain position in space can be calculated as ρe(r) = |ψ(r)|2

[85]. The electron density ρa(r) of an atom is then described as the superposition of
the electron densities of all electrons of the atom. The scattering power of a single
atom f , the so-called ’atomic form factor’ or simply ’form factor’, can be calculated as
f(r∗) = F [ρa(r)] =

∫
V ρa(r)e2πir∗·rdr. By convention, the phase shift is expressed relative

to an electron at the nucleus of the atom [72].

For the description of crystal structures with the main objective to describe the position
of atoms it is convenient to model the electron density of a crystal using spherical, inde-
pendent atoms. Then, the electron density of an atom ρa(r) only depends on the distance
r from the nucleus and is independent of the chemical environment. The corresponding
atomic form factor fa(θ, λ) depends on the scattering angle 2θ and the wavelength λ.
Values of fa for different sin(θ)

λ
are tabulated for all atoms [72]. The advantage is that this

reduces significantly the number of parameters that are needed to describe the electron
density of a crystal because it allows to use pre-defined atoms as the main scattering ob-
jects instead of individual electrons. This ’independent atom model’ is used throughout
this thesis.

2.2.4 Diffraction of X-rays by crystals

Each electron within an arrangement of atoms scatters electromagnetic radiation into all
directions and the constructive and destructive interference of scattered waves causes a
variation in the scattered intensity. The coherent elastic scattering of in general a large
number of scatterers is called ’diffraction’. The observed pattern of varying intensities
caused by diffraction is called a ’diffraction pattern’ and is observed at a distance far from
the diffracting object, i.e. the wave front originating from the object is approximately a
plane. We assume that a diffracted wave is not diffracted again as if it was a primary
beam of its own (no multiple scattering) and the intensity of the primary beam is constant,
which is known as the ’kinematic approximation’.

Crystals are a very special case of solid structures due to their periodic arrangement of
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2.2 Scattering and diffraction

atoms. A perfect defect-free crystal structure is described by an infinite lattice L(r) with
lattice vectors {a, b, c} and a motif of atoms ρM(r) located on each lattice node (u, v, w).
The basic repeating unit with volume V = a · (b× c) is called ’unit cell’. The calculation
of the scattering power FX(r∗) of the entire crystal is possible with the formulas of § 2.2.2.
However, there are several billions of atoms in a small crystal and the consideration of
each single atom is computationally time-consuming. The convolution theorem allows to
decompose FX(r∗) into the product of a motif-dependent factor and a lattice-dependent
factor.

FX(r∗) = F [ρM(r)] · F [Λ(r)] = 1
V
FM(r∗)

∞∑
h,k,l=−∞

δ(r∗ − (ha∗ + kb∗ + `c∗))

The δ function is 1 and thus the diffracted intensity not 0 only if the ’Laue conditions’
are fulfilled, which is the case if h, k and ` are integer [86]:

a · r∗ = h

b · r∗ = k

c · r∗ = `

As a consequence, the diffraction pattern of perfect crystals is made of diffraction points
as constructive interference only takes place if r∗ = s − s0 is a reciprocal lattice vector
H = ha∗ + kb∗ + `c∗ (h, k, l ∈ Z). The scattering power of one unit cell FM(H) =
F [ρM(r)] =

∫
V ρ(r)e−2πiH·rdr depends on the electron density ρM, i.e. the atomic structure

in the unit cell. Therefore, FM(H) is called ’structure factor’. Crystal structure models
are commonly not described by a continuous electron density, but by a set of atoms with
discrete positions xj = xja+yjb+zjc with fractional coordinates xj, yj and zj within the
unit cell. The structure factor can then be calculated by a sum of all form factors with
the respective phase shift of the atom. A broadly used shorthand notation of FM(H) is
Fhk`.

Fhkl =
N∑
j=1

fj(θ, λ)e2πi(hxj+kyj+`zj)

The structure factor Fhk` = |Fhk`|eiφhk` is a complex number with amplitude |Fhk`| and
phase φhk`. The calculation of the electron density at a point (x, y, z) requires summing
over the infinite number of structure factors.

ρ(x, y, z) = 1
V

∞∑
h,k,l=−∞

Fhkle−2πi(hx+ky+`z) (2.1)

A diffraction spot with indices h, k and ` of a measured diffraction pattern is called
’reflection’ hk` originating from the geometric interpretation of the Laue conditions known
as ’Bragg’s law’ [87].
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2.2.5 Real crystals

Many assumptions of the last sections are very useful for the description and theoretical
explanation of X-ray diffraction, but their validity is limited. First of all, real crystals have
a limited volume and a specific shape. Therefore, the diffraction pattern does not consist
of points but of spots with a certain volume. Defects in crystals like point defects, line
defects and volume defects (cf. § 1.1.5) break the translational symmetry of the crystal.
As a consequence, the discreteness of the diffraction pattern is violated. Few, randomly
distributed defects contribute to a diffuse background which is extremely weak and can
be neglected in diffraction experiments. Correlated disorder causes a non-isotropic diffuse
scattering of significant intensity, often with the shape of (partly) continuous streaks or
planes [88].

Compton scattering, which is inelastic and incoherent, also contributes to a smooth back-
ground of diffraction patterns [89]. The Compton effect becomes more significant if there
are very few scatterers, which is not the case in common X-ray experiments. For example,
a very small sillimanite crystal with a volume of 1 µm3 = 1012 Å3 contains about 100 bil-
lion atoms. Typical crystals for X-ray crystallography are significantly larger than in this
example and thus the Compton effect can be ignored [34].

Atoms are displaced from their equilibrium position due to their kinetic energy of the
atoms, but also because disorder may be present. This displacement decreases the con-
structive interference of electrons of the same atom due to an increased phase shift, i.e.
the form factor decreases with the scattering angle. The mean square displacement can
be described mathematically with a ’displacement factor’ U = 〈∆r2〉 in units of Å2. If
the displacement is isotropic the factor for the form factor is e−8π2U( sin θ

λ
)2 [90, 91]. An-

isotropic displacement3 is described by six direction-dependent and symmetry-dependent
displacement factors Uij. This displacement also causes diffuse scattering which is mostly
centred around the diffraction spots.

2.2.6 Electron diffraction

The description of electron diffraction is similar to X-ray diffraction, but the interaction is
different. The incoming wave hitting the crystal consists of electrons, which interact with
the electrostatic potential field ϕX(r) of the crystal. This potential can be approximated
by a sum of the electrostatic potential fields ϕa of independent, spherical atoms from
which atomic scattering factors fae can be calculated as

fae(θ, λ) = 4πσ
λ

∫ ∞
0

r2ϕa(r)
sin(sr)
sr

dr

3The factor for the form factor is e−2π2[U11(ha∗)2+U22(kb∗)2+U33(`c∗)2+U12hka
∗b∗+U23k`b

∗c∗+U13h`a
∗c∗].
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where s = 4π sin(θ)
λ

. Respective form factors fae are tabulated for different sin(θ)
λ

for all
atoms [72]. The concepts of scattering as described in § 2.2.2 and subsequent sections
also hold for electron diffraction by replacing fa by fae. The interaction between electrons
and matter is much stronger than the interaction between X-rays and matter which leads
to significant multiple scattering described by dynamical diffraction theory [92]. On the
other hand, the strong interaction allows to obtain diffraction patterns from crystals with
very small volumes [93].

Due to dynamical diffraction the relationship Ihk` ∝ |Fhk`|2 is strongly violated. The
calculation of structure factors based on dynamical diffraction theory is computationally
very challenging from a practical point of view, which makes it desirable to decrease
the dynamical affects and work with the kinematical approximation. The application of
precessing electron diffraction is a quite successful approach to decrease multiple scat-
tering and obtain quasi-kinematical intensities [94]. The electron beam is tilted relative
to the microscope column axis by typically 1° and then rotated so that the beam de-
scribes a precession movement while the centre of the beam stays at the same sample
position. Recording a series of diffraction patterns in analogy to common single crys-
tal X-ray diffraction experiments has become a standard method to investigate crystal
structures, known as automated diffraction tomography or precession electron diffraction
tomography (PEDT) [95, 96, 97]. Low energy electrons with a typical wavelength λ ≈ 1Å
have a penetration depth of a few Å. Electron diffraction studies therefore use high energy
electrons with a corresponding λ ≈ 0.05Å. If large single crystals are available, single
crystal X-ray diffraction is usually the method of choice. Electron diffraction has the
unique advantage, that in a transmission electron microscope (TEM) single nanocrystals
can be used for diffraction experiments. Different diffraction methods can be combined
to investigate complicated crystal structures [98].

2.3 Structure solution and refinement of crystal struc-
ture models

2.3.1 From experiment to data reduction

The main application of X-ray diffraction experiments for this thesis is to obtain a model
that represents the crystal structure of the diffracting crystal. A full description of the
atomic distribution in real crystals with this technique is impossible because this requires
for example to include every single defect which only causes a negligibly weak signal
in diffraction patterns. The concept of the unit cell can still be used, but instead of
representing a strictly repeating unit it is an average unit cell. On this basis the so-
called ’average structure’ can be described and structural details on correlated disorder
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and defects are not included in the model, though the disorder and correlations can be
characterised and analysed quantitatively based on the diffuse scattering [99, 100].
A basic experimental setup for single crystal X-ray diffraction consists of an X-ray source,
a goniometer that controls the position of a single crystal and a detector that records
a diffraction pattern. The primary beam of an X-ray source has a certain size, shape,
divergence and is not strictly monochromatic, which results in a broadening of the diffrac-
tion spots of the diffraction pattern. Only a fraction of reciprocal space can be measured
which is limited by a maximum sin(θmax)

λ
. This limit determines the so-called ’resolution’

of the measurement. For example, a Fourier synthesis truncated a low sin(θmax)
λ

≈ 0.5Å−1

gives an electron density in which at most the average coordinates of atoms can be re-
solved, whereas the identification of fine details like chemical bonds requires a minimum
resolution of about sin(θmax)

λ
= 1.0Å−1. Another effect of using a truncated list of Fhk`

for the Fourier synthesis is the presence of a wavy background in the resulting electron
density maps4.
With X-ray detectors the reciprocal space can be measured by assigning an intensity
amplitude to reciprocal space coordinates. The orientation and metrics of the reciprocal
lattice are determined from reflection positions, from which the orientation matrix of the
unit cell in direct space is derived. If the detectors were able to measure all structure
factors Fhk` within a certain resolution, the electron density of the unit cell content could
be directly determined, but the measurements only contain intensities Ihk` which are
related to the structure factor amplitudes |Fhk`|. The phases φhk` must be determined
by other means. To obtain reliable amplitudes |Fhk`| the experimental conditions and
correction factors must be considered because the reconstructed reciprocal space from
the measurement is mathematically not identical to the Fourier transform of the electron
density of the crystal. Reflections have a certain size determined by the mosaicity, the
size and the shape of the diffracting crystal and the characteristics of the primary beam.
The intensity Ihk` is therefore obtained by integrating over a certain volume around the
reflection. Some experimental characteristics like the intensity of the primary beam, the
exposure time for a diffraction pattern or the overall volume of the crystal affect the
intensities of all reflections in approximately the same way. Absorption and extinction
depend on the shape and size of the crystal. The Lorentz correction, which considers that
different reflections fulfil the Laue conditions for different periods of time, and Polarisation
correction depend on the scattering angle θ. If all these factors and corrections are
applied correctly the resulting intensities are proportional to the squared structure factor
amplitudes |Fhk`|2. The processing of diffraction patterns to obtain a list of structure
factor amplitudes |Fhk`|2 and an estimate of the respective uncertainties σhk` is called
’data reduction’. The listed values of |Fhk`|2 contain a common scale factor ks which is
not known a priori and is determined during the structure solution or refinement.

4The wavy background is also known as Fourier nipples.

31



2.3 Structure solution and refinement of crystal structure models

2.3.2 The phase problem and methods to solve it

As pointed out in § 2.2.4 the reconstruction of the exact electron density requires to know
the amplitudes |Fhk`| and the phases φhk` of an infinite number of structure factors Fhk`,
but X-ray diffraction experiments only give the |Fhk`| for a limited number of reflections
hk`. In crystallography this challenge is known as the ’phase problem’. Fortunately,
the electron density of any crystal structure exhibits some very basic properties that
allow to estimate the phase: 1) ρ(r) is positive for any r. 2) ρ(r) consists mainly of
discrete peaks at the position of the atoms. As crystal chemical constraints exclude a
lot of unrealistic atom distributions, simple structures with known chemical composition
and few atoms in the unit cell can thus be solved with an educated guess. The careful
analysis of a few reflections can then be used to validate, correct or exclude a certain
model. However, these methods quickly become impractical with increasing number of
atoms in the unit cell. Over the decades several approaches were developed to estimate
initial phases and solve the crystal structure, like the ’Patterson method’ [101] or ’direct
methods’ [102, 103, 104]. The latter calculates estimated phases φhk` based on a statistical
analysis of a set of strong and weak amplitudes |Fhk`|.

Here, the basics of the ’charge flipping’ method to solve crystal structures are introduced
[105, 106] because the algorithm also works in higher dimensional superspace and thus
can solve modulated structures in R3+n [107]. This algorithm developed much later than
the other methods because charge flipping without the use of computers, e.g. with pen
and paper, is very time consuming and impractical. The algorithm starts with a random
electron density ρ0(r) in the unit cell with which phases φhk` are calculated for an input
set of |Fhk`|. With F [ρ0(r)] values for |F0,hk`| and φ0,hk` are obtained. For the subsequent
Fourier synthesis the phases φ0,hk` are combined with |Fhk`| to calculate a new electron
density ρ1(r). The key of charge flipping is to modify ρ1(r) according to certain criteria,
usually to change the sign of a point r if ρ1(r) < D. The threshold D > 0 must be
determined empirically for each structure solution, but it is always positive so that neg-
ative charge density becomes positive and weak charge density becomes negative. The
modified ρ1(r) is then the new starting model, like ρ0(r), and the algorithm repeats until
convergence is observed.

An input files with quasi-kinematic structure factor amplitudes |Fhk`|2 based on elec-
tron diffraction experiments often allows to solve the crystal structure even though the
amplitudes are a very rough representation of the kinematic |Fhk`| [93].

2.3.3 Refinement of crystal structure models

All structure solution methods provide estimated phases φhk` with which an electron
density ρ(r) of the unit cell is obtained. The interpretation of the electron density in
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terms of atoms and molecules is often not trivial. The modelling of disordered sites, weak
scatters and the correct atom assignment if two present atom types have a comparable
form factor is part of the structure model refinement during which the initial structure
model is completed (and, if necessary, corrected).
Refinement algorithms are based on the analysis of so-called ’difference Fourier maps’ and
the implementation of the method of least squares to maximise the agreement between
calculated |F calc

hk` | from the model and measured |F exp
hk` | from the experiment. The main

refinement parameters are the scale factor ks, the coordinates of the atoms and anisotropic
displacement parameters (ADP). In the case of modulated structures there are additional
refinement parameters for the modulation functions of the atoms. If an atom site is not
occupied in all unit cells, then the corresponding site of the average structure has an
occupancy s < 1. A wrong identification of atoms in most cases has a visible effect on the
displacement parameters, but the list of pit falls and possible mistakes during structure
solution and refinement is much longer. The agreement between a measurement and
a refined model is assessed by so-called ’R factors’. A low R factor indicates that the
calculated structure factor amplitudes from the model agree well with the experimentally
determined structure factor amplitudes. Weighting factors w may be implemented, or a
subset of reflections may be chosen to account for the uncertainties σhk`. In this thesis
Robs is based on a subset of ’observed reflections’ and wR takes all unique reflections into
account. Reflections with Ihk` > 3σhk` are considered observed.

Robs(F ) =

∑
hk`
|F exp
hk` | − |F calc

hk` |∑
hk`
|F exp
hk` |

wR(F 2) =
∑
whk`|F exp

hk` |2 − |F calc
hk` |2∑

whk`|F exp
hk` |2

R factors may also be calculated for differently defined subsets, e.g. Robs(F, m = 0) is the
R factor of all observed main reflections and wR(F, m > 0) is the weighted R factor of all
unique satellite reflections. Individual R factors may also be calculated for the observed
reflections of a chosen part of a diffraction pattern. If the R factor of single frame of a
single crystal diffraction experiment is noticeably high this might indicate problems with
the experimental conditions in the instance when the frame was recorded. A low R factor
does not necessarily indicate a correct model. The final model must always be checked
carefully if it is physically and chemically meaningful and consistent with experimental
observations obtained e.g. from spectroscopy studies [108].
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2.4 Superspace crystallography of modulated struc-
tures

“A crystal is an anisotropic, homogeneous body consisting of a
three-dimensional periodic ordering of atoms, ions or molecules.”

Walter Borchardt-Ott [109]

This definition is found in the third edition of the text book ’Crystallography: An Intro-
duction’ (2011) and is in perfect agreement with the three-dimensional lattice description
of § 2.1. However, this definition has a critical flaw because it excludes quasicrystals, in-
commensurately modulated structures and incommensurate composite structures. These
structure classes are anisotropic, homogeneous and consist of a (3+n)-dimensional peri-
odic arrangement of atomic surfaces, but their three-dimensional structure is aperiodic
and lacks lattice periodicity. Their diffraction patterns consist of essentially sharp reflec-
tions, but the indexation with integer indices hk` fails indicating that three lattice vectors
are not enough. Shortly after the discovery of quasicrystals [110] a review titled ’Aperiodic
crystals: A contradictio in terminis?’ was published [111], but the fact that the stricter
traditional definition cited above is still printed in recent text books already indicates
that not everybody of the scientific community immediately accepted the existence of
aperiodic materials. One of the most famous opponents was Linus Pauling:

“Danny Shechtman is talking nonsense.
There is no such thing as quasicrystals, only quasi-scientists.”

Linus Pauling
quoted by Dan Shechtman [112]

The last sections have shown that the periodicity of crystals is very advantageous for the
description of crystal structures in real and reciprocal space (e.g. Eqn. 2.1), but a three-
dimensional unit cell cannot be defined for aperiodic crystals and thus this advantage is
lost in R3. Fortunately, the concept of periodicity can be extended to higher-dimensional
superspace in R3+n. The relevant aspects for the description, analysis and understand-
ing of modulated structures in (3+n)d superspace are introduced in the next sections.
Quasicrystals and incommensurate composite structures are outside the scope of this in-
troduction as they are not relevant for the thesis. Although an alternative formalism was
suggested to describe modulated structures [65], the superspace formalism has become the
de facto standard for the description of aperiodic structures. The alternative formalism
was applied to mullite [32, 7], which will be discussed in § 5.1.2.
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x1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
swhite(x1) 1 - 1 - 1 - 1 - 1 - 1 - 1 -
sblack(x1) - 1 - 0 - 1 - 1 - 1 - 0 - 1

Table 2.1: Description of the one-dimensional unit cell of a piano with black and white
keys defined by a discrete occupancy functions of the position x1.

Figure 2.1: Top: Two-dimensional superspace description of the one-dimensional pattern
of black and white keys of a piano. Relevant parameters describing the unit cell (black
parallelogram) of the superspace model, like α (blue), are illustrated. Bottom: Piano
model representing a one-dimensional subspace of the superspace model indicated by the
red horizontal line. The one-dimensional pattern is not represented in one dimension to
make it optically look like a piano. ’White’ is represented by ’grey’ for better visibility.
More detailed description in the text.

2.4.1 The superspace piano

The first contact with superspace is often rather abstract, especially if the mind gets
twisted by the additional dimensions. All superspace dimensions are spatial dimensions
and independent of time5. To avoid the challenge of imagining four spatial dimensions
here an example is presented how a one-dimensional structure, namely the description of
black and white keys of a piano, can be described in two-dimensional superspace.
Ignoring the beautiful power of each key to play a different tone, a piano is an instrument
that visually consists of evenly spaced white keys and black keys in between. There are less
black keys than white keys, i.e. some interstitial sites between two white keys are vacant
and not occupied by a black key. For a simplified description we assume that all white keys
are equal ignoring the fact that the shape of white keys of a real piano depends on the local
environment. The repeating pattern including the coordinate and occupancy of black and
white keys can be described by a unit cell with lattice parameter a1 = 7 (Tab. 2.1). We
here define the distance between two white keys to be 1 (arbitrary units). White keys
with coordinates xwhite1 = N (N ∈ Z) are always occupied. Black keys with coordinates

5During several poster sessions I often had to clarify that the variable t, which will be introduced
later, is not the time.
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2.4 Superspace crystallography of modulated structures

Figure 2.2: Superspace piano with α = 0.404 corresponding to an incommensurate mod-
ulation. As 0.404 ≈ 2

5 the repeating pattern of black and white keys is approximately 5,
but the periodicity will be broken at some point. The Figure is too small to show the
broken translational symmetry and thus it represents a commensurate approximation.

xblack1 = N + 0.5 are occupied except if xblack1 = 1.5 + 7N or xblack1 = 5.5 + 7N . These
rules describe two different periodicities along the a1 direction as the pattern of white
and black keys exhibit periodicities of 1 and 7, respectively. The two periodicities can be
described in a two-dimensional space. In Figure 2.1 the top model is a two-dimensional
superspace model and the bottom represents a one-dimensional cut (red line) through
superspace, which results in an equivalent description of the piano pattern. The vertical
white domains represent the occupancy of white keys, which is always 1 if xwhites1 = N .
The black domains at xblacks1 = N + 0.5 have a vertical length of 5

7 corresponding to
the average occupancy of the black keys. If the horizontal section cuts through a black
domain where the occupancy is defined to be 1, the corresponding black key is occupied
in the one-dimensional subspace. The vectors as1 and as2 describe a repeating unit cell
as the two-dimensional space exhibits translational symmetry. as1 is chosen in such a
way that |7as1 + 2as2| = a1. For arbitrary angles φ between as1 and the horizontal section
perpendicular to as2 with 0° < φ < 90° there are two possible cases. If there is a superspace
lattice vector that is perpendicular to as2, then the one-dimensional subspace is periodic,
and the pattern of black and white keys can be equivalently described as a one-dimensional
superstructure. These cases are denominated ’commensurately modulated structures’. If
there is no lattice vector perpendicular to as2 then a one-dimensional description will
be strictly aperiodic and a periodic description in one-dimensional space is impossible.
These cases are denominated ’incommensurately modulated’. The length of as2 can be
chosen arbitrarily without physical meaning and therefore the angle φ is not suitable to
define a unit cell in superspace. Here the lattice parameters are defined by as1 = (a1,−α)
and as2 = (0, 1). The parameter α = −as1 · as2 defines the periodicity of the space
perpendicular to as2. If α ∈ Q then the structure is commensurate, and incommensurate
if α /∈ Q. In Figure 2.1 α = 2

7 and thus is a commensurate case.
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Figure 2.3: Superspace piano with additional, displacive modulation. The coordinates of
the black keys are modulated by a sine function with amplitude A = 0.15.

If we change α to 0.404 = 101
250 then the model can be equivalently described in a 250-fold

cell. A commensurate approximation with α = 0.4 is helpful for visualisation purposes
(Figure 2.2), but the description in two dimensions is more accurate and more elegant than
a description of a very large supercell. The experimental determination of the modulation
wave vector q is always subject to uncertainties and thus commensurate and incommen-
surate cases cannot be distinguished. Structural details are lost if truly incommensurate
cases with e.g. α =

√
1
6 ≈ 0.408 are described as commensurate approximation because a

precise one-dimensional description would require an infinite number of parameters.

If there was some kind of interaction between the black keys, then their coordinates
would be displaced depending on the interaction and on the local environment of each
key. This displacement can be introduced in the two-dimensional description by changing
the shape of the black and white domains. In this example a sine function is used for
the domain defining the black keys (Fig. 2.3). In the one-dimensional representation the
displacive modulation increases the spacing between black keys as if there was a repelling
interaction. Any one-dimensional section or subspace perpendicular to as2 describes an
alternating pattern of black and white keys and each section corresponds to a different
piano. For incommensurate cases different one-dimensional sections are related to each
other by an origin shift, but different t-sections of commensurate cases are in general not
equivalent.

The examples of the superspace piano describing a one-dimensional pattern in two-
dimensional space show that periodic patterns can be described with modulation func-
tions implemented in a higher-dimensional space. This principle can be applied to three-
dimensional crystal structures with n = 1, 2 or 3 modulation waves which are then
described in (3+n)d superspace.
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2.4.2 Lattice vectors in superspace

The history of superspace began with the discovery that satellite reflections in the diffrac-
tion patterns of the room temperature structure of Na2CO3 could be indexed using four
integer indices hk`m and a fourth lattice vector q [113]. Subsequent studies and a gen-
eralisation of the concept of additional dimensions established the superspace formalism
for the description of modulated structures [114, 115, 116, 117, 118, 119]. A reflection H
of a modulated structure in reciprocal space can be indexed with 3 + n integers based on
n modulation wave vectors qi (i = 1, ..., n) with irrational components (αi, βi, γi ∈ R).

H = ha∗ + kb∗ + lc∗ +m1q1 + ...+mnqn
qi = αia∗ + βib∗ + γic∗

In the following we focus on the case n = 1, which is most relevant for this thesis. Direct
(3+1)d superspace is spanned by four basis vectors asi (i = 1, 2, 3, 4) in R4 [72].

as1 = (a,−α)
as2 = (b,−β)
as3 = (c,−γ)
as4 = (0, 1)

0 is the null vector. Coordinates in (3+1)d superspace are defined by a vector xs with
coordinates xs1, xs2, xs3 and xs4 with respect to the lattice vectors asi (i = 1, 2, 3, 4).

xs = xs1as1 + xs2as2 + xs3as3 + xs4as4

Note that H is a vector in R3. Reciprocal superspace in R3+n can be constructed from the
condition a∗si ·asj = δij with δij = 1 if i = j and δij = 0 if i 6= j. A reciprocal lattice vector
Hs in R3+n can be projected into reciprocal space in R3 leading to the above definition of
H.

2.4.3 Description of crystal structures in (3+1)d superspace

Crystals are three-dimensional objects consisting of atoms at coordinates x with respect to
a basis {a, b, c}. For incommensurate structures these vectors do not describe a periodic
lattice because of the modulation. The atoms of a modulated structure are embedded in
(3+1)d superspace by assigning superspace coordinates xsi (i = 1, 2, 3, 4) with respect to
lattice vectors asi (i = 1, 2, 3, 4). For i = 1, 2, 3 this is trivial, i.e. xs1 = x, xs2 = y,
xs3 = z. The fourth coordinate depends on the first three coodinates and the modulation
wave vector q.
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xs4 = q · x

With this definition the crystal structure is represented within a three-dimensional sec-
tion through the origin, the physical space section, of (3+1)d superspace and superspace
itself is empty apart from this single section. The application of superspace translational
symmetry fills the space and the superspace unit cell then comprises all structural in-
formation. In the unit cell the atoms of site µ are represented as ’atomic domains’ that
run about parallel to as4 and are defined by three coordinates x̄µs1, x̄µs2, x̄µs3 and a set of
modulation functions gµp (x̄s4). These functions of structural parameter p must be periodic
and satisfy the condition gµp (x̄s4) = gµp (x̄s4 + N) with N ∈ Z. x̄s4 = q · x̄ + t is the
argument of the modulation functions. x̄ describes the average coordinates of an atom
site in an average description of a modulated structure and t describes the initial phase of
the modulation function. t can also be described as the distance from the initial physical
space section going through the origin. As each value represents one crystal structure, t
is often referred to as the physical space section. The most frequent type of modulation is
displacive modulation described by functions gµx1(x̄s4), gµx2(x̄s4) and gµx3(x̄s4). The atomic
domains are then described by xµsi = x̄µsi+gµxi(x̄s4) (i = 1, 2, 3). The modulation functions
are conveniently expressed as a finite set of harmonic functions.

gµp (x̄s4) =
nmax∑
n=1

Aµp,n sin(2πnx̄s4) +Bµ
p,n cos(2πnx̄s4) (2.2)

Aµp,n and Bµ
p,n are the amplitudes of the sine and cosine component of the harmonic of

order n. In general, nmax is chosen to be equal to the highest observed order of satellite
reflections mmax. For example, in Figure 2.3 the displacive modulation function for the
black key is described by nmax = 1, Ablack

x,1 = 0.15 and Bblack
x,1 = 0. Apart from a displacive

modulation the description of domains may require to include an occupational modulation
function gµs (x̄s4) if the occupancy is modulated or functions gµUij(x̄s4) if the anisotropic
displacement parameters Uij (i, j = 1, 2, 3) are modulated.

There are cases where the approximation of the modulation function with a few harmonic
functions is inconvenient, especially if the function is not continuous. For example, the
occupancy of the black key is either 0 or 1. This is accurately modelled by a block wave
function6 (Eqn. 2.3) described by a coordinate xµBW, which marks the centre of the block
wave function, and the block length ∆µ

BW [14]. xblackBW = 0 and ∆black
BW = 5

7 in the example

6An alternative term for block wave function is ’crenel function’.
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of the superspace piano.

sµ(x̄s4) =

1 if |x̄s4 − xµBW| <
∆µ

BW
2

0 elsewhere
(2.3)

2.4.4 t-plots

The physical space section t is constant for a structure model in physical space and
represents one subspace of the superspace model. The analysis of crystal chemical aspects
of the model requires to consider all different environments of a selected site, which is
an infinite amount in the case of incommensurate structures. Instead of analysing the
crystal chemistry of all sites in one crystal, the crystal chemistry of that site in different
subspaces, i.e. different values of t, gives the same overview. Similar values of t usually
describe a similar environment, but in physical space they describe two sites that are not
close to each other. Therefore, t-plots give an overview of all possible crystal chemical
environments, but for the analysis of a specific situation like the distance between two
atoms it is necessary to compare the coordinates of two atoms at the same value of t and
not at the same value of xs4.

2.4.5 Superspace symmetry

In analogy to space groups that describe the symmetry of three-dimensional crystal struc-
tures there are superspace groups that describe the symmetry of modulated structures in
superspace. Superspace group operators Rs in (3+1)d superspace are 4× 4 matrices with
three sub-components. R is the rotational part in full analogy to space group operators.
ε = −1 if R turns q into −q and is ε = 1 otherwise. It can be determined by applying
R : q → n∗ + εq. The term n∗ depends on the choice of q and the unit cell [120].

Rs =



R11 R12 R13 0

R21 R22 R23 0

R31 R32 R33 0

n∗1 n∗2 n∗3 ε


n∗ = (n∗1n∗2n∗3) = σR− εσ

σ = (αβ γ) a 1 × 3 matrix containing the components of q. Rs is the rotational part
of a symmetry element {Rs|vs} with translational components vs = (vs1 vs2 vs3 vs4). The
values vs1, vs2 and vs3 are identical to the corresponding space group symmetry element.
vs4 is the phase shift between modulation functions of atomic domains that are related
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by the respective symmetry element. The values of vs4 are determined from reflection
conditions for reflections with |m| > 0.
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2.5 Computational methods

If there was an algorithm that predicted accurately the crystal structure, metastable
transition states, optical or electrical properties and so forth for any composition of atoms,
then a lot of (expensive and time-consuming) work in the laboratory could be replaced by
a computer that would systematically search for better and novel materials. A wonderful
discovery would be, for example, a superconductor with a resistivity of 0 Ωm at room
temperature consisting of environmentally hazard-free and easily available elements. This
ideal algorithm does not exist. However, several methods are available to simulate crystal
structures, to calculate their physical properties and evaluate the stability based on the
forces acting between the atoms. However, these methods strongly depend on the starting
point and the prediction of a structure and its properties only as a function of the chemical
composition is still extremely challenging. For all calculations of this thesis an initial
structure model was provided that was developed with other methods. These models
were then optimised, completed and tested with computational methods.
In this section the basics of force field methods7 and density functional theory are intro-
duced. With both approaches an initial three-dimensional crystal structure model can
be geometrically optimised, i.e. the unit cell size and the atom coordinates are relaxed
according to the calculated forces acting between the atoms leading to a structure model
that corresponds to the minimal energy. Special aspects like relativistic effects or the
presence of external perturbations like pressure, a magnetic field or an electric field are
not covered in this brief introduction.

2.5.1 Hamiltonian mechanics

Isaac Newton developed the laws of motion, which are still broadly applied today for
simple systems in classical mechanics [121]. For more complex systems of a larger number
N of particles, each described by a time-dependent position ri(t) and a velocity vi(t), the
well-known formula Fi = miai = mi

dr2
i

d2t
is still valid but is rather painful to solve. William

Rowan Hamilton used the fact, that the force is a function of the energy of the system to
derive a set of equations, which are easier to solve for many-body systems [122].

H(p, r) = T (p) + V (r) =
N∑
i=1

p2
i

2mi

+ V (r1, ..., rN)

H, T , V are the Hamiltonian, the kinetic energy and the potential energy, respectively.
ri and pi = mivi are the vectors describing the position and the momentum, respectively.
The forces acting on each particle are calculated with Fi = − ∂U

∂ri . If the system is allowed
to develop with time, the equations of motion of the system can be calculated with the

7Force field methods are also often denominated ’molecular mechanics’.
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following derivates [123]:

dri
dt = ∂H

∂pi
= pi
mi

dpi
dt = −∂H

∂ri
= −∂V

∂ri
= Fi(r1, ..., rN)

With Hamiltonian mechanics a crystal structure can be simulated as a system of electrons
and nuclei or as a system of atoms. In any case, the interactions between the particles
must be described, which is the basis to calculate the forces between them.

2.5.2 Force field methods

Crystal structures can be simulated by representing atoms by interatomic potentials of
the Buckingham type [124]. The parameters of the force fields (FF) are either based
on empirical observations or on different kinds of quantum mechanical calculations. The
quality of the force field model is the key for a representative simulation of the crystal
structure [70], but the accuracy is difficult to evaluate a priori. The total energy of a
structure obtained with FF calculations should not be considered as a quantity with a
corresponding physical observable that can be experimentally measured. The total energy
becomes meaningful on a scale relative to a chosen reference structure with the same
chemical composition. The great advantage of FF calculations is that the computational
cost is extremely low in comparison to quantum mechanical calculations. With modern
desktop computers the static relaxation of a structure with hundreds of atoms lasts a few
seconds. This allows to geometrically optimise thousands of candidate structure models
and compare their relative stability. The term ’simulations’ usually refers to Monte Carlo
simulations or to molecular dynamics. These methods were not applied in this thesis and
all calculations refer to a static arrangement of atoms.

2.5.3 Quantum mechanics

In quantum mechanics the time-independent state of a stationary system with one or
more particles is described by a wave function Ψ(r) which is not known a priori. Its
determination is one of the main challenges of quantum mechanical calculations. It can
be determined with the time-independent Schrödinger equation (Eqn. 2.4), which poses
an eigenvalue problem. Its solutions give the wave function Ψ(r) as an eigenfunction of
the Hamiltonian Ĥ and the energy E as eigenvalue [84].

ĤΨ = T̂Ψ + V̂Ψ = EΨ (2.4)
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Analytical exact solutions are only possible for very simple systems like the Hydrogen
atom. Wave function-based calculations of more complex systems like atoms with more
than one electron, arrangements of several atoms and crystal structures must solve a many-
body problem to determine numerically the wave function. The interacting particles are
electrons (subscript e) and nuclei (subscript n) with the following contributions to the
Hamiltonian.

T̂ =T̂e + T̂n = −
Ne∑
i=1

~2

2me
∇̂2

i −
Nn∑
k=1

h2

2mk

∇̂2

k

V̂ =
Nn∑
k=1

Nn∑
l<k

V̂ nn
kl +

Ne∑
i=1

Nn∑
k=1

V̂ en
ik +

Ne∑
i=1

Ne∑
j<i

V̂ ee
ij

The kinetic energy T of the system is thus the sum of the kinetic energies of Ne electrons
and Nn nuclei. The potential energy V of the system depends on the electron-electron
Coulomb interaction V ee, the nucleus-nucleus Coulomb interaction V nn and the electron-
nucleus Coulomb interaction V en. The electron mass is me ≈ 9.11 ·10−31 kg and the mass
of the nuclei mk depends on the isotope. Over the decades, different methods developed
and different approximations were implemented to make the numerical calculation of more
complex systems possible. With the ’Born-Oppenheimer approximation’ the coordinates
of the nuclei are fixed. Then, Tn = 0 and the distances between nuclei are constant, which
makes the sum of all V nn a constant term. This simplifies the Schrödinger equation a
lot because only the electronic wave function ψe must be solved for electrons in a static
potential described by the fixed nuclei [125].

− Ne∑
i=1

~2

2me

∇̂2

i +
Ne∑
i=1

V̂ en
i +

Ne∑
i=1

Ne∑
j<i

V̂ ee
ij

ψe = Eeψe

ψe = ψe(r1, r2, ..., rN) is a function with 3Ne dimensions, which still makes the calculation
computationally very challenging for larger systems. With the ’mean field approximation’
the electronic wave function ψe can be approximated as a so-called ’Hartree-product’ of
non-interacting single particle wave functions χi(r) [126].

ψe =
Ne∏
i=1

χi(r)

This approximation neglects that electrons are Fermions which requires that the wave
function must fulfil the antisymmetry principle. It states that the sign of ψe must change
by exchanging two electrons. This is accurately described by expressing ψe in the form of
a Slater determinant which is part of the ’Hartree-Fock’ method [127, 128, 71].
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2.5.4 Density functional theory

The Born interpretation of the wave function is related to the probability to find a particle
at a certain coordinate. In the present case with electronic wave functions it describes
the electron density ρ(r) = ψ∗(r)ψ(r) = |ψ(r)|2 [85]. The origin of density functional
theory (DFT) is the Hohenberg-Kohn theorem: There is a functional E[ρ(r)] with which
the true ground state energy can be determined using the variational principle [129]. In
subsequent work it was shown that the corresponding electron density ρ(r) can be found
by solving a set of so-called ’Kohn-Sham equations’ [130].

[
− h2

2me
∇̂2 + V̂ en(r) + V̂H(r) + V̂XC(r)

]
ψi(r) = εiψi(r) (2.5)

Equation 2.5 is similar to the Schrödinger equation (Eqn. 2.4), but the solutions of the
Kohn-Sham equation are three-dimensional single electron wave functions ψi. The index
i indicates that for each of the Ne electrons the equation must be solved. The energy
eigenvalues εi are not of importance here. The terms on the left side are the kinetic en-
ergy of the single electron, the Coulomb interaction V̂ en(r) between that electron and the
nuclei, the Hartree potential V̂H(r) = e2 ∫ ρ(r′)

|r−r′|dr′ and the exchange-correlation potential
V̂XC(r) = δEXC(r)

δρ(r) . The Hartree potential accounts for the Coulomb repulsion of the single
electron by the overall electron density based on the mean field approximation. The cru-
cial aspects of DFT deal with the unknown exchange-correlation potential VXC(r), which
is not straight forward to determine. Different functionals use different degrees of simpli-
fications, which affects the accuracy of the calculations. The introduced error is difficult to
quantify a priori, and therefore the use of a certain approximation is often justified by its
agreement with experimental observations [71]. The simplest model for which V̂XC(r) can
be determined exactly is the uniform electron gas, which is a rather rough approximation.
A better approximation is to express V̂XC(r) based on the local electron density, which is
called the ’local density approximation’ (LDA). Another approach is to include the elec-
tron density gradient within the so called ’generalised gradient approximation’ (GGA).
Many different algorithms have developed, and it is therefore essential to describe how
V̂XC(r) was calculated by the used DFT method. In any case, the Kohn-Sham equations
for all electrons in the system must be solved iteratively as many terms depend on each
other. For example, the calculation of ρ(r) depends on ψi and on VXC(r), which in turn
depends on ρ(r). The iteration steps are approximately as follows:

1. Define an initial ρ(r), e.g. a refined structure model from X-ray diffraction

2. Calculate ψi of all electrons by solving the Kohn-Sham equation (Eqn. 2.5)

3. Calculate ρnew(r) from all occupied Kohn-Sham orbitals ψi
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4. Compare ρnew(r) with ρ(r). If they are the same, the solution has converged to
the ground-state. Otherwise ρ(r) must be adapted with information gained from
ρnew(r). The adapted electron density is the new input for step 2.

It is important to point out that the Kohn-Sham system describes a system of non-
interacting electrons, but the converged density is the same as that of the real system
with interacting electrons. Due to the Born-Oppenheimer approximation, the iterations
converge to the ground state electron density for the fixed distribution of nuclei. The sta-
bility of this distribution can be evaluated from the converged calculations. The forces Fk

acting on a nucleus at position rk are determined using the ’Hellmann-Feynman Theorem’
[131, 132]:

Fk = −
∫
ρ(r)∂V

en

∂rk
dr− ∂V nn

∂rk
This allows to determine new coordinates for the nuclei (ionic relaxation), for which again
the corresponding ground state ρ(r) must be determined following the iteration steps
described above. The geometric optimisation with DFT thus consists of several ionic
relaxation steps and each ionic relaxation step consists of several electronic relaxation
steps. Convergence is achieved once the forces on each atom are below a certain threshold
value. It is not straight forward to estimate standard uncertainties for the parameters of
geometrically optimised structures from the calculation alone [133, 134]. It is common
practice to present results from computational methods without uncertainties and evaluate
the accuracy of selected parameters based on the literature and experience.

2.5.5 Plane wave basis sets and pseudopotentials

Wave functions ψ(r) are complex functions in C3, which can be represented in many ways.
The Bloch theorem states that the wave function of an electron in the periodic potential
of a crystal must have the same periodicity like the potential itself [135]. Hence, the wave
function must fulfil the equation ψ(r) = ψ(r + L), where L is a lattice vector (cf. Λ(r) as
described in § 2.1). For DFT calculations it is convenient to express ψ(r) based on plane
waves in reciprocal space (k space) [10].

ψk
i (r) =

∑
G
ai,k+Gei(k+G)·r

G is a reciprocal lattice vector and k is a vector in reciprocal space within the first
Brillouin zone. The task to determine the wave functions thus becomes the task to
determine the coefficients ai,k+G. An exact description requires to include an infinite
number of vectors k and G. Due to the limited life time of DFT users and for other
practical reasons a set of discrete points in k space must be chosen.G can be interpreted
in terms of resolution. Large values of |G| correspond to short-wavelength oscillations of
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the wave function. Hence, the description of the fine details of ψi require a high resolution,
but the details become negligible above a certain cut-off radius Gmax. This allows to limit
the summation to reciprocal lattice vectors with |G| ≤ Gmax. The wave function of less
localised valence electrons can be accurately described with a relatively small Gmax, but
the strongly localised core electrons require a large Gmax. As the chemical environment has
almost no influence on the core electrons, they can be represented by ’pseudopotentials’
in analogy to the potential of the fixed nuclei. With this simplification the calculation
times are significantly reduced by excluding core electrons from the Kohn-Sham equations
and by allowing a lower Gmax [11]. The cut-off radius Gmax can be interpreted in terms
of a cut-off kinetic energy Ecut = ~2

2me
G2

max. Then, Ecut describes the electron state with
the highest kinetic energy that is considered for the Kohn-Sham calculations.
An infinite number of k vectors must not be considered based on the observation that two
discrete points in the Brillouin zone, that are close to each other, contribute in almost
the same way to the wave function. This allows to define a grid of k points and assign
each k point a weight. In practice several test calculations with increasing number of k
points are carried out until convergence is observed and a higher k point density does not
further improve the results [70].

2.5.6 Dispersion correction

Nonpolar molecules may form liquids and solids due to the ’Van der Waals’ attraction
that can be described by London dispersion forces [136]. Spontaneous polarisation of one
molecule may induce the polarisation of a neighbouring molecule resulting in an attractive
interaction. This interaction is a priori not included in the above described DFT method.
Empirical potentials can be applied to each atom type to correct for this shortcoming [137].
Several studies have shown that dispersion correction improves the accuracy of the lattice
parameters and the total energy resulting from DFT calculations [138, 139, 140].
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Chapter 3

Experiments and calculations:
Probing the real and reciprocal space
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3.1 Samples and synthesis

Label δ RAS EDX pXRD BM01 ID28 PEDT
SA 0.25 3:2 × × ×
SA1 0.25 3:2 × × ×
SA2 0.25 3:2 ×
SA3 0.25 3:2 ×

VSG.40 0.40 2:1 ×
VSG.50 0.50 5:2 × ×
VSG.57 0.57 3:1 × × ×
VSG.62 0.62 6.9:2 × ×
VSG.64 0.64 7.3:2 × ×
Qa.09 0.09 2.3:2 ×
Qa.50 0.50 5:2 × ×
Qg.50 0.50 5:2 × ×
Qg1 0.50 5:2 ×
QSA 0.25 3:2 ×

Table 3.1: List of samples and experiments. δ refers to the nominal vacancy concentration
of mullite expected from synthesis or as stated by the supplier.
EDX = energy-dispersive X-ray emission spectroscopy, pXRD = powder X-ray diffraction,
BM01/ID28 = Synchrotron single crystal X-ray diffraction, PEDT = precession electron
diffraction tomography

3.1 Samples and synthesis

Contact metamorphism of clay minerals at low pressures may lead to the formation of
mullite. Therefore, mullite occurs rarely as mineral in nature [16]. The first synthetic
crystals of mullite were unknowingly produced in China as component of porcelain around
620 BC [18]. In Europe the first ’synthesis’ of mullite took place in the region of Hesse,
Germany, in the middle ages [141].
The first single phase synthesis of mullite was reported in 1924 from quenching experi-
ments [24]. A broad range of synthesis methods developed since then, including flame
fusion synthesis [142], Czochralski method [48], sol-gel methods [143, 144, 145, 146] and
chemical vapour deposition [147, 51]. The formation of mullite from kaolinite decompos-
ition was investigated in detail motivated by its relevance for the ceramics industry and
manufacturing of porcelain [148, 149, 150].
For this thesis commercial, quenched and sol-gel samples were used. From the samples
SA and Qg.50 single crystals appropriate for single crystal X-ray diffraction could be
obtained. These specific crystals are labelled SA1, SA2, SA3 and Qg1. All other labels
refer to a polycrystalline samples. Table 3.1 gives an overview on all samples and the
conducted experiments.
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3.1.1 Sample SA: Commercial mullite

Commercial aluminium silicate samples labelled ’Aluminum silicate - powder’ with com-
position Al6O13Si2 (3/2-mullite) were obtained from Sigma-Aldrich. No details are given
on the synthesis as they are considered confidential by the producer. From the analysis
in § 3.2 and § 3.3.1 it can be suspected that the sample was probably synthesised in an
electric arc furnace at temperatures of 2000 °C or higher. Electro melting is a standard
method for the industrial production of mullite which commonly contains α -Al2O3 and
trace amounts of Fe2O3 and Na2O as impurity phases together with an amorphous phase
[18, Sect. 4.1.2.2]. Although the sample is declared as ’powder’, single crystalline grains
with diameters up to approximately 50 µm are easily identified under a light microscope.

3.1.2 Sample VSG: Sol-gel

Synthesised sol-gel samples of different compositions were provided by Dr. Javier Alarcón
(Department of Inorganic Chemistry, University of Valencia, Spain). The precursors for
the synthesis were tetraethyl orthosilicate Si(OC2H5)4 mixed with water and aluminium
ethoxide Al(OC2H5)3 dissolved in ethanol. For more aluminous samples tri-sec-butylate
C12H27AlO3 instead of aluminium ethoxide was used. The recipe contains several drying
and annealing steps at different temperatures, which are described in a series of papers
published by the group of Dr. Alarcón [145, 146].

3.1.3 Samples Qa and Qg: Quenching

Another set of samples was obtained by quenching experiments carried out by Dr. Noelia
de la Pinta and Prof. Tomasz Breczewski (Department of Condensed Matter Physics and
Department of Applied Physics II, University of the Basque Country UPV/EHU). Pressed
ceramic bars of cylindrical shape with a length of 50 mm and a diameter of 4 mm were
prepared with different concentrations of α -Al2O3 and α -SiO2 by ’Nanoker Research’ in
Oviedo, Spain. Samples based on these ceramic bars are labelled Qa. Similar precursors
were prepared by pressing γ -Al2O3 (Alfa Aesar) and amorphous SiO2 (Alfa) into a pellet
(Samples Qg). Another sample was prepared by pressing the commercial powder into a
pellet (QSA). The precursors were kept in a flame of about 2000 °C for a couple of minutes
until melting was visually observed and then quenched in air to room temperature.
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3.2 Scanning electron microscopy and X-ray emis-
sion spectroscopy

The experiments of this section were performed together with Prof. Gabriel Lopez (De-
partment of Applied Physics II, University of the Basque Country UPV/EHU) on a ’JEOL
JSM6400’ scanning electron microscope (SEM). The electron source is a tungsten filament
operated at an accelerating voltage of 20 kV and a beam current of 1 nA. Samples SA,
VSG.57 and VSG.62 were finely dispersed on a graphite holder using double-sided carbon
tape. In addition, the sample holder with the single crystal SA1 was fixed on the graphite
holder. A graphite film of about 15 nm was deposited on the samples to make them
conductive.
The electron beam hitting the sample interacts with the atoms and induces the emission of
several signals that allow to characterise the sample. The intensity of secondary electrons,
which is sensitive to the sample topography, was used to construct images of the samples
(Fig. 3.1). The chemical composition of the samples was determined by analysing the
intensity and energy of characteristic X-rays. The energy dispersive X-ray (EDX) emission
spectra were recorded with with an ’Oxford PentaFETx3’ detector while the beam was not
in scanning mode and only a selected spot on the sample was illuminated by the electron
beam. The measurement time was 60 s for each EDX spectrum. The number of recorded
spectra Nm is given in Table 3.2. The chemical composition of sample SA was determined
by measuring 22 EDX spectra from 17 different crystallites. Of most crystallites only
one spectrum was obtained, but the single crystal SA1 was studied separately with five
spectra. For a random crystallite, here labelled SAr, two spectra were obtained to estimate
the homogeneity of individual crystallites. The relative concentration of cations was
determined with an automated quantitative analysis of the spectra and the oxygen content
was derived by stoichiometry.
The average vacancy concentration 〈δ〉 is calculated from RAS (§ 1.1.6) assuming that the
mullite sample does not contain significant amounts of crystalline or amorphous impurity
phases and that impurity elements do not affect the vacancy concentration (Tab. 3.2).
However, this method does not distinguish between different crystalline and amorphous
phases and therefore the 〈δ〉 must not necessarily be representative for the mullite crystals
in the sample. Minor impurities, mainly Na2O and P2O5, amount to less than 1 mol%. In
a few crystallites of SA trace amounts of K2O and Fe2O3 were detected, but not included
in Table 3.2.
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Figure 3.1: SEM micrographs. The white bar has a length of 50 µm in all cases. a) SAr,
a random crystallite of the SA sample. Measurement spots for elemental analysis are
marked. b) SA1 with single crystal sample holder loop. Measurement spots are marked
in the inset. c) Different crystallites of SA sample. Different grains appear mostly single
crystalline under a light microscope. d) VSG.57 grains. e) VSG.62. Larger grains are not
single crystalline, which was checked with light microscopy. f) VSG.62.

Sample 〈δ〉 Nm [Al2O3] [SiO2] [Na2O] [P2O5]
SAr 0.299 (4) 2 61.93± 0.09 37.75± 0.06 0.32± 0.15 0.0
SA1 0.323 (13) 5 62.8± 0.5 36.6± 0.6 0.38± 0.10 0.21± 0.00
SA 0.33 (5) 17 63.2± 5.3 36.4± 5.1 0.2± 0.2 0.09± 0.11
VSG.57 0.56 (3) 10 74.7± 1.4 25.3± 1.4 0.0 0.0
VSG.62 0.60 (3) 17 76.6± 1.7 23.4± 1.7 0.0 0.0

Table 3.2: Elemental analysis of commercial and sol-gel samples. Oxide concentrations
given in mol%. Nm refers to the number of different measurement spots. The measure-
ments of crystallites SA1 and SAr were each included as one averaged measurement for
the statistics of sample SA.
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3.3 X-ray diffraction

3.3.1 Powder diffraction measurements

The introductory sections on diffraction (§ 2.2) are based on a monochromatic beam and a
fixed orientation of one crystal lattice. In powder diffraction experiments a polycrystalline
sample is analysed, and each crystallite diffracts if the Laue conditions for a reflection
are fulfilled. The superposition of the diffraction patterns of a lot of crystallites results
in a powder diffraction pattern made of rings instead of spots. Assuming a statistical
distribution of the crystallite orientations it is sufficient to measure the diffracted intensity
as a function of the diffraction angle 2θ.

Sample VSG25 was measured by Dr. Inmal Peral at the ’Materials Science and Powder
Diffraction Beamline’ BL04 at the synchrotron ALBA1 located in Cerdanyola del Vallès
close to Barcelona, Spain. The other samples were measured with a ’STOE STADI-P’
powder diffractometer. An X-ray tube with a Cu anode generates a polychromatic X-ray
beam with intensity maxima at the characteristic wavelengths. A Ge single crystal is
used as a monochromator by orienting it in such a way so that the Laue conditions of the
111 reflection are only fulfilled for X-rays with λ = 1.54059Å corresponding to the Kα1

line of Cu. This monochromatic primary beam points to a sample holder stage located
in the centre of a circle on which an X-ray detector can be moved at a constant distance
to the sample. The detector is made of a conducting wire in an ionisation chamber filled
with gas, which allows to measure the intensity of the incoming ionising radiation as a
function of the diffraction angle 2θ with a resolution of about 0.02°. Samples were ground
with a mortar before they were filled into a thin glass capillary and fixed in the sample
stage of the diffractometer. During the measurement the capillary is spinning along the
axis around which the detector is moving. Diffraction intensities were recorded in a range
between 10° < 2θ < 90°.

For single crystal measurements data reduction and modelling are separate steps whereas
the parameters describing the powder diffraction pattern like the lattice parameters or
the shape of reflections are refined together with the structure model parameters. A re-
finement of this type is called ’Rietveld refinement’ [151]. Refinements were carried out
using the software ’Jana2006’ [13]. The strategy was to initially find approximate para-
meters for the reflection profile shape and the lattice parameters before structural phases
were identified from the presence of reflections that cannot be explained with the lattice
parameters of mullite. In SA, Qa.50 and Qg.50 about 1.1 (2), 9.5 (2) and 9.47 (15) vol%
α -Al2O3 are present. In all VSG samples except VSG.40 very broad additional reflections
corresponding to highly disordered γ -Al2O3 are present. A refinement including γ -Al2O3

as second phase was not successful and therefore selected sections of the diffractograms
1ALBA translates to ’dawn’ or ’sunrise’ in the Catalan and Spanish language. It is not an acronym.
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Site label s̄µ(s̄Al3) s̄µ(s̄O3)
Al2 1

2
1
2

Si2 1
2 − s̄

Al3 1
6(1 + 2s̄O3)

Al3 refinement parameter 1
3(1− s̄O3)

Si3 0 0
O3 1− 3s̄Al3 refinement parameter
O4 s̄Al3 1

3(1− s̄O3)

Table 3.3: Occupancy constraints by stoichiometry

were ignored and not fitted. Hence, the amount of γ -Al2O3 was not determined, but
qualitatively it is increasing with the alumina content used in the synthesis. In the dif-
fractogram of Qa.50 an additional impurity of 2.48 (13) vol% α -SiO2 is present. Satellite
reflections could not be identified in any of the powder diffraction patterns and therefore
only average structure models were refined. Measured and calculated diffractograms of
SA and VSG.50 are shown in Figures 3.2 and 3.3.

The refinement of the occupancy parameters was constrained to guarantee a stoichiometric
composition. In Table 3.3 two constraint schemes are presented. For average structure
refinements based on powder diffraction measurements the parameter s̄Al3 was chosen as
refinement parameter. The refinement of anisotropic displacement parameters (ADPs)
failed in most cases except for Al1 in the case of SA. Selected results that are relevant
to evaluate the refinements are presented in Table 3.4. The refined compositions deviate
significantly from the EDX analyses (Tab. 3.2). The refinement of the diffractogram of
the SA sample indicates a lower concentration of SiO2 relative to the EDX results. The
presence of an amorphous silica-rich phase is very common for the synthesis of mullite (e.g.
[47], Fig. 16 in [16], Sect. 4.1.1 in [18]) and thus may explain the discrepancy. In the case
of the VSG samples EDX indicates a higher concentration of Al2O3, which is explained by
the presence of γ -Al2O3. In VSG.40 the diffraction pattern does not indicate the presence
of γ -Al2O3 and the nominal composition agrees well with the refined composition within
2σ. This is taken as indication that structural models derived from X-ray diffraction
experiments provide a reliable composition, which is important for the later investigation
of the dependence of the modulation wave vector q on the vacancy concentration δ.

3.3.2 Single crystal diffraction measurements at synchrotron fa-
cilities

Appropriate samples for single crystal diffraction were selected with the aid of light mi-
croscopy. Crystals that appear inclusion-free and show uniform extinction with crossed
polarisers were mounted on a ’MiTeGen’ polymer loop with a drop of oil to fix the crys-

55



3.3 X-ray diffraction

Sample δ wR(F 2) wRp a (Å) b (Å) c (Å)
SA 0.427 (4) 0.045 0.100 7.58442 (17) 7.68360 (17) 2.88727 (6)
Qa.50 0.470 (4) 0.035 0.089 7.6227 (2) 7.6762 (2) 2.89509 (7)
Qg.50 0.407 (3) 0.035 0.112 7.5753 (2) 7.6806 (2) 2.8858 (4)
VSG.40 0.412 (7) 0.029 0.107 7.5977 (2) 7.6984 (2) 2.89033 (6)
VSG.50 0.460 (3) 0.056 0.053 7.60314 (11) 7.67743 (11) 2.89039 (4)
VSG.57 0.526 (6) 0.039 0.145 7.6374 (4) 7.6738 (3) 2.89846 (10)
VSG.62 0.532 (6) 0.036 0.108 7.6601 (5) 7.6654 (5) 2.90322 (11)
VSG.64 0.494 (13) 0.033 0.073 7.6591 (6) 7.6402 (6) 2.89894 (17)

Table 3.4: Rietveld refinement and investigation of the average composition. wRp is the
agreement factor between the measured and the calculated diffraction pattern.

Figure 3.2: Powder diffraction pattern of sample SA. Difference curve between measured
and calculated line shown at the bottom in blue. The position of the expected reflec-
tion positions of α -Al2O3 and mullite are indicated by vertical bars in pink and black,
respectively.
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Figure 3.3: Diffraction patterns of sample VSG.50 recorded with synchrotron radiation
(λ = 0.61988Å). The 2θ ranges marked by dark grey blocks where broad reflections from
γ-Al2O3 are observed were excluded from the refinement.

tal. The loop is attached to the head of a needle pin which is fixed on a magnetic mount
optimised for modern goniometers. Measurements were carried out at the ’European Syn-
chrotron Radiation Facility’ (ESRF) in Grenoble, France. The synchrotron has a diameter
of 300 m with a circumference of 844 m. Electrons are accelerated to velocities close to
the speed of light with a final energy of 6 GeV. A dipole bending magnet deflects the
path of the electrons, which emit electromagnetic radiation depending on their speed and
acceleration due to the curvature of their path. The optical hutch of the ’Swiss-Norwegian
beamline’ BM01 has the purpose to manipulate the incoming polychromatic radiation so
that the outgoing beam is optimised for single crystal X-ray diffraction measurements.
A Rh coated X-ray mirror with reflection angle 3mrad ≈ 0.17° vertically collimates the
beam. The (111) lattice planes of a pair of two parallel Si single crystals result in a highly
monochromatic beam. One of the monochromators is bent to focus the beam on another
X-ray mirror which further focuses the beam on the single crystal. The monochromators
are oriented so that the outgoing X-rays have a wavelength λ = 0.7231Å. The beam size
at the sample during the measurements was about 150 × 150 µm2. Samples SA1, SA2,
SA3 and Qg1 were measured with a simple ϕ-scan during which the crystal is rotated
about the vertical axis by 360°. A ’Dectris Pilatus 6M’ detector is programmed to record
frames during the rotation with a step size of usually ≤ 1°. The experiment is controlled
with an in-house software package called ’Pylatus’ and the frames of the measurement
were processed with the SNBL-toolbox [152].

Sample SA1 was also measured at beamline ID28 of the ESRF. In comparison to BM01, X-
rays of ID28 originate from an undulator. On the path through the undulator the electrons
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are oscillating in a plane due to a precisely chosen arrangement of several magnets leading
to the interference of the synchrotron radiation of each oscillation. The intensity of the
beam is very high for wavelengths at which the waves interfere constructively. The X-
ray optics of ID28 with several monochromators and X-ray mirrors of different types
result in a highly brilliant X-ray beam with a spot size of 20× 40 µm2 and a wavelength
λ = 0.6968Å. During the measurement the sample was rotated about one axis (ϕ-scan)
by 360° and frames were recorded with a ’Dectris Pilatus 1M detector’ in steps of 0.1°.
The software package ’CrysAlisPro’ was used for the data reduction of the measurements
[153]. An empirical absorption correction based on spherical harmonics was performed us-
ing the ’SCALE3 ABSPACK’ scaling algorithm as implemented in CrysAlisPro. Undistor-
ted reciprocal space sections were reconstructed with the unpublished program ’rec2D3D’
written by the ID28 beam line scientist Dr. Alexei Bossak. The experimental conditions,
parameters of the data reduction and details on the crystal structure model refinement
are given in Table 4.6 (§ 4.2.1)
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3.4 Precession electron diffraction tomography

The experimental setup of electron diffraction experiments is very different from X-ray
diffraction setups. Up to now there is no dedicated ’electron diffractometer’ and electron
diffraction experiments are carried in transmission electron microscopes (TEM). The main
components of a TEM are an electron gun, a sequence of electron lenses above and below a
sample stage and an electron detector. These parts a placed in a vertical column structure
in which an ultra-high vacuum is maintained. Samples must be very thin in the range of
several nanometres to be electron-transparent.

3.4.1 Sample preparation

The VSG samples are fine powders with crystallites of appropriate size, i.e. they are
electron transparent. Nevertheless, the samples were briefly ground with a mortar and
then dispersed in ethanol. A single drop of the dispersion was then trickled on a Cu grid
covered with a holey carbon film (’SPI supplies’). Each square of the grid has a width
of 58 µm and is separated from neighbouring squares by Cu bars with a width of 25 µm.
The bar thickness is about 20 µm. The ethanol quickly evaporates while the crystallites
remain on the carbon film.

The preparation of Qa and Qg samples was more challenging as the quenched samples
were in direct contact with the precursor. Special care was taken to separate the molten
part of the sample from the part which did not melt during the synthesis in order to avoid
the presence of any precursor components in the further sample preparation. After this
step the sample was ground for several minutes, dispersed in ethanol and trickled on a
Cu grid.

3.4.2 Electron diffraction experiments

Each Cu grid was fixed on a specimen holder and slowly introduced into the sample stage
of a ’Philips CM120’ transmission electron microscope (TEM). A mechanical vacuum
pump establishes pre-vacuum conditions in the TEM column. An oil diffusion pump is
located close to the sample stage to reduce the amount of contaminating gas originating
from the sample. Ultra-high vacuum conditions (< 10−7 Pa) are achieved and maintained
with an ion-getter pump. The microscope is equipped with an LaB6 thermionic cathode
operated at an acceleration voltage of 120 kV. The accelerated electrons travel at relativ-
istic velocities of around 176×106 m/s. The corresponding wavelength λ is 0.0335 Å [154].
The path of the electrons through the column is controlled by an overall of eight magnetic
lenses, three stigmators, different scan coils and piezo-mechanical alignment controls for
e.g. the gun tilt. The stigmators are used to correct the elliptical shape of the beam and
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maintain a symmetric, circular beam on the sample. The condenser lens system focuses
the beam on the sample. The objective lens magnifies the image formed by the transmit-
ted electrons. In imaging mode, the lenses below the objective lens magnify the image
plane of the objective lens. In diffraction mode, the back focal plane is magnified and the
diffraction pattern of the sample is projected onto the screen or onto the camera.
A key part of this TEM is the ’NanoMegas SpinningStar’ precession device, which controls
shift-tilt coils within the illumination system to generate a precessing electron beam on
the sample. Descan coils in the imaging system of the microscope are controlled in a
synchronized way so that the projected image is not moving or rotating. The precession
frequency is set to 100 Hz so that the detector shows a static image representing the
superposition of all diffraction patterns of the different beam orientations on the sample.
All components for standard operation, including the precession device, are controlled
electronically via computers. The TEM operator controls the position of the sample
stage and the current through the lenses to manipulate the magnification and focus or
to switch between imaging and diffraction mode. The projected image is either shown
on a fluorescent screen at the bottom of the microscope column or it is recorded with an
’Olympus SIS Veleta’ Camera with a charge-coupled device (CCD) chip. At the beginning
of each session the microscope was aligned, including the electron gun tilt, condenser
system, imaging system and the precession device. The alignment was checked before
every diffraction experiment.
For each measurement a crystallite on the grid was chosen according to the single crys-
talline appearance in imaging mode and an initial check of the diffraction pattern. The
sample stage can be rotated about one axis perpendicular to the primary beam from
approximately −60° to +60°. Thus, the experimental setup is comparable to X-ray dif-
fraction experiments that perform a ϕ-scan by 360°, but here the angular range is limited.
The experimental conditions often further limited the range to less than 120° due to over-
lapping contributions of surrounding crystallites or the blocking of the beam by the Cu
grid. A software was used to control the CCD camera and the microscope to automat-
ically tilt the sample by 1° (or less) and then record a diffraction pattern with typical
exposure times between 2 and 4 seconds per frame. Data reduction was carried out with
the software PETS [155, 97]. The main steps include the identification of reflections po-
sitions in reciprocal space, the determination of the orientation matrix, determination of
the modulation wave vector q and extraction of integrated intensities. For kinematical
refinement one integrated intensity is determined per reflection hk` combining the intens-
ity of a reflection with the same index on subsequent frames and finally the merging of
symmetrically equivalent reflections. For dynamical refinement the integrated intensities
are determined without merging because dynamical diffraction intensities depend on the
frame orientation. A broad range of different samples was measured to investigate the re-
ciprocal space and refine structural models. Details on the measurements and the average
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structure refinements are given in Tables 4.13 and 4.14 in § 4.4.3.

3.4.3 Refinements based on electron diffraction data

The input files generated with PETS were used to refine the average structure of mullite
using ’Jana2006’ [13]. The parameters for dynamical refinement were set as recommended
by the authors of PETS [97]. The calculation of the dynamical diffraction intensities
depends on the crystal structure, the crystallite thickness, the orientation of the sample,
a scale factor and the experimental geometry like the precession angle. There are many
parameters that could be refined independently for each frame, which would drastically
increase the number of refinement parameters. The recommended approach is to refine one
common sample thickness parameter for all frames, fix the orientation of each frame and
refine one scale factor for each frame. With this approach there is only one additional
refinement parameter per frame. If the ratio between the number of observed unique
reflections and the number of refinement parameters was less than 10, the parameter
Rmax
Sg was increased until the ratio was close to 10 or larger. Rmax

Sg is the ratio between the
excitation error and the maximum amplitude of the precession motion and thus defines
which reflections on a frame are considered to be fully covered by the precessing Ewald
sphere and which reflections should be neglected. If this increase was not enough to
achieve the desired reflections to parameter ratio, frames with the smallest number of
observed reflections were removed from the refinement. Once convergence was achieved,
the orientation of each frame was optimised, i.e. for one refinement cycle only the frame
orientations are refined. The orientation is defined by the experimental setup and a
deviation from the expected orientation described by an inclination Θ towards a direction
Φ. Frames with refined Θ larger than half the tilt step between two subsequent frames
were removed as the orientation clearly deviates from the expected orientation. The most
frequent reason to remove a frame was to increase the reflections to parameters ratio. In
very few cases frames were also removed if the R factor for all reflections on a frame was
significantly higher relative to all other frames indicating problems with the experimental
conditions.

For the refinement of the average structure the occupancy of Al3 was chosen as refinement
parameter and the occupancies of Si2, O3 and O4 were constrained to meet the require-
ments of stoichiometry (Tab. 3.3 in § 3.3.1). The refinement of anisotropic displacement
parameters in most cases resulted in non-positive definite tensors and sometimes even the
refinement of isotropic displacement parameters resulted in negative values of Uiso. This
mostly concerned Al3 and O4. If necessary the refinement was constrained so that Al3,
Al2 and Si2 are refined with a common Uiso and likewise O4 and O3 have the same Uiso.
After convergence of the refinement the orientation of the frames was optimised before
the final refinement cycles.
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HRTEM studies showed that mullites with δ > 1
2 and monoclinic modulation wave vector

q = (α 0 γ) with γ < 1
2 are twinned [50, 36]. Single twin domains thus exhibit monoclinic

symmetry with the space group P121
a

1 or possibly even lower symmetry. However, in
several studies on Al-rich mullite a deviation of the angles between unit cell vectors from
90° was not observed as no splitting of reflections, typical for unit cell angles close to 90°,
could be detected [53, 2, 51]. Here, it is assumed that PEDT experiments of samples
with γ < 1

2 are twinned as suggested in the literature. The symmetry of reciprocal
space reconstructions from the measured diffraction patterns exhibits in all cases point
symmetry 2

m
2
m

2
m
. Therefore, all average structure model refinements were carried out in

space group Pbam. The results are presented in Tables 4.13 and 4.14 in § 4.4.3.
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Structure
GULP X-ray diffraction [160]

a (Å) b (Å) c (Å) E (eV) a (Å) b (Å) c (Å)
Sillimanite 7.5193 7.5358 5.7695 –323.77 7.4883 (7) 7.6808 (7) 5.7774 (5)
Andalusite 7.7802 7.9892 5.4773 –321.54 7.7980 (7) 7.9031 (10) 5.5566 (5)
Kyanite 7.1374 7.8006 5.4964 –324.23 7.1262 (12) 7.8520 (10) 5.5724 (10)

Table 3.5: Test of force field model with Al2SiO5 polymorphs. Angles of the lattice
parameters of the triclinic kyanite structure are not compared.

3.5 Calculations with empirical force fields

The initial models used as input structures were developed during the thesis and are
presented in Chapter 4. Therefore, in this and the following section the general approach
and the used programs are described. The ’General Utility Lattice Program’ GULP
version 4.3.5 [9] was used to statically relax different models of the mullite crystal structure
and the Al2SiO5 polymorphs. The Buckingham-type potentials describing the interactions
between Al, Si and O were taken from a molecular dynamics study by Matsui (1996),
in which a broad range of silicates including sillimanite, andalusite and kyanite could
be successfully simulated with acceptable accuracy [156]. All previous computational
studies on mullite applying force field methods used the potentials from the cited study
[157, 158, 159]. An example GULP input file including the parameters describing the
Buckingham potentials is included in the appendix (§ A.2).

Structures of the Al2SiO5 polymorphs sillimanite, andalusite and kyanite were geomet-
rically optimised for test purposes (Tab. 3.5). Some lattice parameters differ by more
than 0.1 Å from the corresponding value determined by X-ray diffraction. The overall
performance of the force field model gives acceptable results and the geometry of the
relaxed structures looks reasonable, but the accuracy for the study of structural details
and their influence on the overall stability is rather considered as a rough indicator.

Crystal structures of mullite with different Si distributions were statically relaxed with
GULP to estimate the relative stability. 46814 structures were geometrically optimised
in total. The generation of input files and the analysis of output files was automated.
Different algorithms implemented in the GULP code were tested to determine the relaxed
atom distribution. The default convergence criteria were not always achieved. However,
in test cases the energetic difference between the converged ground state and a local
minimum was negligible so that the application of the default relaxation algorithm is
considered to give representative results. Details on the generation of input structures
and their analysis are described in § 4.3 and § 4.4.
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3.6 Calculations applying density functional theory

Density functional theory (DFT) calculations were carried out using the commercial ’Vi-
enna Ab initio Simulation Package’ program VASP version 5.4.4 [10, 11] running on a
Linux-based cluster with 96 cores (’Intel Xeon CPU E7-8890’) and 1 TB of memory. Ex-
change and correlation effects were treated within the generalized gradient approximation
(GGA) as suggested in [161] and [162]. The respective functionals are labelled PBE and
PBEsol, respectively. If dispersion correction was included the suffix ’D’ is added to the
label (PBE-D, PBEsol-D) [138]. Wave functions were represented in a plane-wave basis
truncated at 520 eV. The same set of ultrasoft pseudopotentials provided by the VASP
program was used. The k grid was chosen as recommended in [163] except for calculations
with hexagonal lattices (α -SiO2 and α -Al2O3) for which a Γ centred grid was chosen. The
spacing between k points was less than 0.02 Å−1 in all cases. The electronic relaxation was
considered as converged if the total free energy and the eigenvalues εi of the Kohn-Sham
equations (Eqn. 2.5) changed by less than 10−4 eV in two consecutive cycles. If the forces
acting on the atoms based on an electronically relaxed model were less than 0.02 eV/Å
the ionic relaxation was stopped, and the result accepted as the geometrically optimised
structure. Apart from the forces on the atoms also the stress tensor was calculated to re-
lax the lattice parameters. No kinetic energy or external forces were added to the system
and so the temperature2 and pressure in the calculations are 0 K and 0 bar, respectively.
All the described parameters were controlled with three input files (INCAR, KPOINTS,
POTCAR) and the initial structures were provided as VASP-specific structure format
file (POSCAR). Relevant lines of the INCAR file for calculations based on PBEsol-D are
given in the appendix (§ A.2).
For benchmark tests of different functionals the structures of the Al2SiO5 polymorphs
sillimanite, andalusite and kyanite were geometrically optimised and compared with values
from the literature (Tab. A.2, A.3, A.4 in § A.3 of the appendix). The structures of α -SiO2

[164] and α -Al2O3 [165] were studied with DFT to evaluate the stability of mullite with
respect to a system with the same composition but made of quartz and corundum. The
results of these calculations are listed together with published values from the literature in
Tables 3.6 and 3.7. It was reported that DFT calculations on the SiO2 polymorphs without
dispersion correction indicated that cristobalite was more stable than quartz in contrast to
experimental observations, and that the implementation of dispersion correction results in
the expected relative stabilities [140]. Demichelis et al. (2010) reported that the relative
stability of the Al2SiO5 polymorphs is correctly calculated with the PBEsol functional
but not in the case using PBE [166]. The benchmark tests confirm the latter results
and the best agreement with experiments is achieved with PBEsol-D. For this thesis

2In fact the atoms do not move at all which should not be the case due to the zero-point energy
at T = 0 K. Therefore, one may argue that the model does not qualify to correspond to an absolute
temperature.
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the PBE functional was applied to evaluate a large set of mullite superstructures with
different Al/Si ordering and more accurate calculations using the PBEsol-D functional
were carried out for final structure optimisations for comparisons with experimentally
determined results.

Functional a (Å) c (Å) V (Å3) d(SiIV–O) E (eV)
PBE 5.0203 5.5084 120.23 1.6274 -71.14
PBE-D 4.9509 5.4581 115.86 1.6264 -71.99
PBEsol 4.9489 5.4441 115.47 1.6229 -74.01
PBEsol-D 4.8956 5.4027 112.14 1.6222 -74.69
Experimental powder XRD references:
NIST 1878b[167] 4.91378 (30) 5.40536 (30) 113.03
[168] 4.9070 (6) 5.3997 (4) 112.60 1.5999
Antecedent calculations:
PBE [140] 5.031 5.514 120.84 1.616
TS [140] 4.928 5.428 114.15 1.616

Table 3.6: Comparison of calculated and reported structure parameters of α -SiO2. Dis-
tances are given in units of Å.

Functional a (Å) c (Å) V (Å3) d(AlVI–O) E (eV)
PBE 4.8100 13.1231 262.94 1.9330 -224.45
PBE-D 4.7874 13.0612 259.25 1.9240 -229.09
PBEsol 4.7757 13.0158 257.09 1.9182 -236.00
PBEsol-D 4.7600 12.9656 254.41 1.9116 -239.74
Experimental powder XRD references:
NIST 676a [169] 4.759355 (80) 12.99231 (15) 254.87
[168] 4.7585 (6) 12.9824 (6) 254.58 1.9133
Antecedent calculation:
PBE [170] 4.807 13.115 262.45

Table 3.7: Comparison of calculated and reported structure parameters of α -Al2O3. Dis-
tances are given in units of Å.
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Chapter 4

Results:
The crystal structure of mullite

The crystal structure of mullite was characterised in detail based on diffraction exper-
iments and computational methods. First, the synchrotron measurements are analysed
to explore the symmetry of mullite and to build constraints on the vacancy distribu-
tion considering the superspace symmetry. In the subsequent parts structure models for
δ ≈ 0.4 are developed for different degrees of order. The models are subsequently exten-
ded to a unified superspace model in the range 0 ≤ δ ≤ 0.5 based on electron diffraction
measurements, force field calculations and DFT calculations.
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4.1 Symmetry of mullite

Reflection
group

Reflection
condition

Symmetry element

00`0 – { 2z, –1 | – – 0 – }
0k00 k = 2n { 2y, –1 | – 1

2 – – }
h000 h = 2n { 2x, 1 | 1

2 – – – }
hk00 – {mz, 1 | 0 0 – – }
h0`m1 h+m1 = 2n {my, 1 | 1

2 – 0 1
2 }

0k`0 k = 2n {mx, –1 | – 1
2 0 – }

Table 4.1: Reflection conditions and derived symmetry elements. Note that the reflection
conditions of h000 and 0k00 are not sufficient to identify 21 screw axes parallel to a and
b, respectively, because the presence of the glide planes already includes the reflection
conditions for the screw axes.

Seitz symbol Symmetry operation
{ E, 1 | 0 0 0 0 } ( xs1 xs2 xs3 xs4 )
{ 2z, –1 | 0 0 0 1

2 + x3 } ( −xs1 −xs2 xs3 −xs4 + 1
2 + xs3 )

{ 2y, –1 | 1
2

1
2 0 1

2 } ( −xs1 + 1
2 xs2 + 1

2 −xs3 −xs4 + 1
2 )

{ 2x, 1 | 1
2

1
2 0 −x3} ( xs1 + 1

2 −xs2 + 1
2 −xs3 xs4 − xs3 )

{ i, –1 | 0 0 0 0 } ( −xs1 −xs2 −xs3 −xs4 )
{mz, 1 | 0 0 0 1

2 − x3 } ( xs1 xs2 −xs3 xs4 + 1
2 − xs3 )

{my, 1 | 1
2

1
2 0 1

2 } ( xs1 + 1
2 −xs2 + 1

2 xs3 xs4 + 1
2 )

{mx, –1 | 1
2

1
2 0 x3 } ( −xs1 + 1

2 xs2 + 1
2 xs3 −xs4 + xs3 )

Table 4.2: Symmetry elements and superspace group operators of Pbam(α01
2)0ss

4.1 Symmetry of mullite

The features in reciprocal space can be divided into three categories: main reflections,
satellite reflections and diffuse scattering. In the literature the orthorhombic space group
Pbam and the superspace group Pbam(α01

2)0ss were applied [57, 6]. In this section the
symmetry of reciprocal space is reinvestigated with a focus on the superspace symmetry to
derive constraints on the vacancy distribution. The determination of symmetry elements
from electron diffraction measurements is not straight forward because reflections that
are forbidden by symmetry are often present due to dynamical diffraction effects. The
measurement that provided the greatest level of detail and contrast is the measurement
of sample SA1 on beamline ID28 at the ESRF, which is therefore used for the subsequent
symmetry analysis.
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Figure 4.1: Reciprocal space sections reconstructed from the measurement of SA1 on
ID28 (ESRF). Green and red arrows indicate the direction and length of b∗ and a∗,
respectively. In the h0` section systematic absences of satellite reflections are observed:
For the reflection group h0`m1 the reflection condition is h + m1 = 2n. Pixel saturation
limit represented by black pixels is 64000 counts.
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Figure 4.2: Reciprocal space sections perpendicular to c∗. Pixel saturation limit repres-
ented by white pixels is 16000 counts. Th extinction conditions for h0`m1 also hold for
the diffuse discs visible in hk0.4 and hk0.5.

Figure 4.3: Reciprocal space sections perpendicular to a∗. Pixel saturation limit repres-
ented by white pixels is 16000 counts.
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4.1.1 Reciprocal space analysis and reflection conditions

Figure 4.1 shows reciprocal space sections from which the reflection conditions for main
and satellite reflections were determined. Figures 4.2 and 4.3 show details of the diffuse
scattering and the relationship with satellite reflections. The overall point symmetry of
reciprocal space is described by the point group 2

m
2
m

2
m
. Tetragonal symmetry, which once

was suggested for certain compositions [2], is incompatible with the satellite reflections
and the diffuse features (see appendix § A.4).

In sections perpendicular to c∗ a diffuse streak pattern forming a diamond grid is visible.
The streaks appear as continuous and well-defined lines in sections where ` is close to
integer values N ∈ Z. For an increasing fractional part of the reciprocal space coordinate
` the streak pattern dissociates into separate and more localised features. In sections
with ` = N + 1

2 sharp first order satellite reflections defined by a modulation wave vector
q1 = [0.2978 (8) 0.0000 (11) 0.5000 (5)] are present. Diffuse discs are located around these
satellite reflections with an intensity that is approximately proportional to the intensity
of the corresponding satellite reflection. These diffuse discs are the strongest diffuse
features in the entire reciprocal space. The presence of a b glide plane perpendicular
to a and an a glide plane perpendicular to b was derived from extinction conditions
in the 0k` and h0` plane, respectively. A few main reflections violating the extinction
conditions are present, but this can be explained with dynamical diffraction effects due to
the extraordinary brilliance of the primary beam. The extinction conditions are perfectly
fulfilled in the measurement of the same sample on BM01. With increasing diffraction
angle a splitting of main reflections is observed, indicating that the sample SA1 is not
strictly single crystalline but contains at least two grains with almost the same orientation.
However, no splitting of first and second order satellite reflections is observed.

In the h0`, h1` and h2` sections first and second order satellite reflections of q1 are
present, but the first order satellites are much more intense by about two orders of mag-
nitude. Diffuse discs are located around the strongest first order satellites and are slightly
elongated along c∗. The reflection condition for reflections h0`m1 is h+m1 = 2n (n ∈ Z).
Diffuse streaks are observed that run approximately parallel to q1 or mx:q1 from intense
first order to second order satellites, but the intensity approaches 0 towards integer values
of `.

Similar streaks are observed in the sections 0k`, 1k` and 2k`, but here the streaks interpen-
etrate so that they resemble the shape of a cross1. The height of the cross is approximately
0.8c∗. The termini of the streaks forming the cross are significantly more intense then the
crossing region. These more intense spots can be treated as satellite reflections corres-
ponding to a second and third modulation wave vector, although satellite reflections of q2

1Interestingly, this X-shape or saltire is also part of many flags of the region around the Isle of Mull
after which mullite is named, e.g. the flag of Scotland.
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and q3 are clearly diffuse whereas the satellite reflections of q1 are sharp. The respective
modulation wave vectors were determined to be q2 = [0.000 (3) 0.397 (4) 0.1834 (19)] and
q3 = [0.000 (3) 0.403 (5) − 0.181 (2)]. A comparison of q2 and q3 indicates that they
are related by symmetry due to the similarity of the component amplitudes, which was
also pointed out by [6] and is further analysed in § 5.1.5. In the 0k` section systematic
extinctions of the cross-shapes with the corresponding satellites are observed. Reflections
0k`m2 and 0k`m3 are present if k + m2 = 2n and k + m3 = 2n, respectively. Similar
reflection conditions can be defined for the presence of the cross-shapes themselves, which
are absent in the 0k` plane if the respective satellites are absent. Some of the cross-shapes
are relatively weak and mainly the satellites are visible whereas the trace of the cross is
only faintly visible.
The combination of the cross-shapes in the 0k` plane, the streaks in the h0` plane and
the diffuse features in Figures 4.2 and 4.3 resembles approximately the three-dimensional
shape of a sand clock. The streaks in 0k` and h0` define the edges of the bulbs, the
middle of the crosses define the necks of each sand clock viewing along a∗ and two sharp
satellites of q1 define an extended neck viewing along b∗. The cross section of the sand
glasses are of circular shape close to the necks and become rather square-shaped with
increasing distance from the satellite reflections defining the neck (Fig. 4.2). The contact
plane of two stacked sand clocks are the sections perpendicular to c∗ with integer `, i.e.
the planes showing a weak trace of the diffuse diamond streaks. The diffuse scattering
seems to originate from the q1 satellite reflections, which form the strongest signal in
reciprocal space after the main reflections. None of the diffuse features passes through
main reflections.
The reflection conditions for main reflections and satellite reflections of q1 are summarised
in Table 4.1. The centrosymmetric space group Pbam (full symbol: P 21

b
21
a

2
m
) or the polar

space group Pba2 can be derived from the extinction conditions of the main reflections.
Mark & Rosbaud (1926) determined that the space group is Pbam, although no reason
was given why Pba2 was not considered [15]. In both space groups the coordinates x and y
of all oxygen sites are not constrained by symmetry elements with respect to the average
structure of mullite. The presence of a mirror plane perpendicular to c requires that
all atoms lie on a mirror plane forcing tetrahedra and octahedra to be more symmetric.
It is very likely that the mirror plane is present because it relates atoms that in the
average structure are in exactly the same environment and no reason for a distortion of
the polyhedra can be identified. All structural studies since then assumed that the space
group is Pbam.
A crystal structure with three modulation wave vectors may be described in (3+3)d
superspace. However, the intensities of q1 satellite reflections are significantly stronger
than the diffuse satellites of q2 and q3. Furthermore, it cannot be excluded that mullite
is twinned as it is also observed for q1 satellites of mullites with δ > 0.5 [50, 36] with
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a mirror plane mz being the twin law. If there are domains in mullite in which either
q2 or q3 are present, then the structure of each domain could be described in (3+2)d
superspace considering q1 and one of the other modulation wave vectors. Nevertheless,
in all cases a (3+1)d superspace group can be defined for a structural description that
neglects the other two modulations. In the case of q2 and q3 the superspace group is
P 21

b
(0βγ)ss. In the case of q1 the superspace group could either be Pbam(α01

2)0s0 or
Pbam(α01

2)0ss. The description of mullite in its standard setting with Al1 at the origin
does not allow first order harmonic terms in the modulation functions of Al2, Si2, Al3,
O3 and O4. In the superspace group Pbam(α01

2)0ss this restriction holds for Al1 and
O2, which are not expected to show an occupational modulation. Hence, Pbam(α01

2)0ss
seems more appropriate. All superspace models of this thesis are described and refined in
this superspace group. The symmetry operators are listed in Table 4.2. The superspace
groups that allow an equivalent description in a different setting are listed in the appendix
in § A.5.

4.1.2 Superspace symmetry restrictions on the distribution of
vacancies

Based on the assumption that vacancies are fully ordered and each vacancy is accom-
panied by the specific tricluster environment, a basic vacancy distribution scheme can be
derived from the superspace symmetry. Let us consider a vacancy with label Q centred
at coordinates (0, 1

2 ,
1
2). The Wyckoff position of that site in the space group Pbam is

2d with a symmetrically equivalent site with coordinates (1
2 , 0, 1

2). The average vacancy
concentration on both sites is s̄Q = δ

2 . In superspace the distribution of vacancies can be
represented by an occupational modulation function like a block wave function (Eqn. 2.3)
in analogy to the description of the black keys of the superspace piano in § 2.4.1. Let us
call the respective atomic domain the ’vacancy domain’. An ordered vacancy distribution
can be described by defining ∆Q

BW and xQBW. Constraints on xQBW can be derived consider-
ing the symmetry elements of Pbam(α01

2)0ss. Only cases with 0 ≤ xQBW ≤ 0.25 must be
considered because all other cases are symmetrically related. The two-fold rotation axis
2z acting on a point (0, 1

2 ,
1
2 , xs4) gives a point (0, −1

2 ,
1
2 , −xs4). If x

Q
BW = 0 or xQBW = 1

2

then ∆Q
BW = s̄Q = δ

2 because the vacancy domain is on a special position as the two-fold
rotation axis maps the domain on itself. In the case xQBW > 0 and ∆Q

BW = s̄Q

2 = δ
4 an

overlap of the domain with itself must be avoided by fulfilling the condition xQBW > 1
2∆Q

BW.
The a glide plane of the superspace group Pbam(α01

2)0ss defines that if there is a va-
cancy at (0, 1

2 ,
1
2 , xs4) then there is also a vacancy at (1

2 , 0, 1
2 , xs4 + 1

2). In the same
t-section these two positions may not be simultaneously occupied by vacancies because
each vacancy requires its own tricluster environment. Likewise, a vacancy at (0, 1

2 ,
1
2 , xs4)

excludes a vacancy at (1, 1
2 ,

1
2 , xs4 +α) because otherwise their triclusters overlap corres-
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4.1 Symmetry of mullite

Requirement Conditions for xQBW ∈ [0, 0.25]

no tetraclusters
xQBW <

α−∆Q
BW

2 or
xQBW >

α+∆Q
BW

2

no superposition of triclusters and vacancies
xQBW < 1

4(1− α− 2∆Q
BW) or

xQBW > 1
4(1− α + 2∆Q

BW)
no stacking of vacancies along c xQBW < 1

4(1− 2∆Q
BW)

Table 4.3: Constraints on xQBW to avoid the specified crystal chemical environments. If
0 < xQBW ≤ 0.25 then xQBW > 1

2∆Q
BW must be fulfilled to avoid a partial overlap of

symmetrically related domains.

ponding to the presence of a tetracluster. The modulation functions of Q at (0, 1
2 ,

1
2 , xs4)

and mz : Q at (0, 1
2 , −

1
2 , xs4) exhibit a phase shift of 1

2 in t-space because γ = 1
2 . If the

vacancy domain is occupied at (0, 1
2 ,

1
2 , xs4) and at (0, 1

2 ,
1
2 , xs4 + 1

2), then two vacancies
are stacked along c. Although this is crystal chemically not forbidden it can be assumed
that it is avoided as indicated by investigations of the diffuse scattering [3, 4]. A summary
of the conditions is given in Table 4.3.
In Figure 4.4 superspace models with xQBW = 0, 0.07, 0.15 and 0.25 are shown for 2/1-
mullite with δ = 0.4 and α = 0.3. This set of simplified parameters was also used in
other structural studies [60, 7]. The model with xQBW = 0.25 can be excluded due to the
presence of vacancy channels. The model with xQBW = 0.15 can also be excluded due to
the presence of tetraclusters and vacancies that are too close to each other so that there
is no space for triclusters (blue model in Fig. 4.4). The model with xQBW = 0.07 fulfils
all the conditions of Table 4.3 and thus describes a plausible mullite structure. In fact,
this vacancy distribution is identical to the distribution derived by Saalfeld (1979) from
difference Patterson maps (cf. Fig. 1.7). The model with Q at a special position, i.e.
xQBW = 0, also fulfils the established requirements and results in blocks that have a length
of four vacancies (bottom model in Fig. 4.4). Saalfeld’s model as well as the model with
xQBW = 0 are promising candidates, but the symmetry of the physical space sections is
different. Saalfeld’s model is described in the monoclinic space group B11 2

m
, whereas

the vacancy distribution of a mullite model with xQBW = 0 allows a description in the
orthorhombic space group Bb21m. Pauling’s Rule of Parsimony is an additional argument
that favours the model with xQBW = 0 because it contains less different environments.
Therefore, all superspace models of the subsequent sections are based on mullite in which
vacancies occupy a special position. Different models with xQBW = 0 and xQBW = 0.07,
respectively, will be further compared and discussed in § 5.1.3.
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Figure 4.4: Hypothetical superspace models with different xQBW in the superspace group
Pbam(α01

2)0ss from which different vacancy distributions of 2/1-mullite (α = 0.3, δ =
0.4) can be derived. The physical space sections of an arbitrary t are indicated by a solid
horizontal line. Vacancy domains with z = 1

2 that are ’occupied’ are marked in black. As
the vacancy domains of vacancies at z = 3

2 are related to those at z = 1
2 by an origin shift

of ∆t = 0.5, the dashed horizontal lines indicate where vacancies with z = 3
2 are present

(marked in yellow). A physical space model of the bottom model (xQBW = 0) is shown
below. Vacancies with z = 1

2 are represented by red hexagons and octahedra are shown
for better orientation (not included in the superspace models). The vacancies V1 and V2
in the upper model (xQBW = 0.25) indicate that vacancies are stacked along c. Vacancies
V3, V4 and V5 (xQBW = 0.15) are too close to each other so that there is no space for all
the required triclusters. V4 occupies the space required for a tricluster of V3 and between
V4 and V5 there is only space for a tricluster of V4 or V5 but not for both.
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4.1 Symmetry of mullite

4.1.3 Constraints for block wave occupational modulation func-
tions

The last section has shown that meaningful vacancy distributions can be derived from the
superspace group Pbam(α01

2)0ss. As each vacancy is accompanied by two triclusters and
the octahedra chains are interlinked by either triclusters or diclusters the distribution of
octahedra and tetrahedra is fully determined by the vacancy distribution. In this section
the symmetrical relationships between different atomic domains are used to define the
corresponding constraint scheme for the respective occupational modulation functions
gµs (x̄µs4) for the atom sites Al2, Si2, Al3, O3 and O4 based on the closeness condition [171].
To clearly identify an atom site µ the superscripts R, B, A andM are used to reference
a site that is related to the respective site of the asymmetric unit (0 ≤ x̄si < 0.5, i = 1, 2)
by the following symmetry operators:

R = { 2z,−1 | 0 1 0 1
2 + x̄s3 }

B = {mx,−1 | 1
2

1
2 0 x̄s3 }

A = {my, 1 | −1
2

1
2 0 1

2 }

M = {mz, 1 | 0 0 0 1
2 − x̄s3 }

Note that additional translational parts were included in R and A with respect to Table
4.2. The starting point is a vacancy domain Q defined by a block wave function with
parameters ∆Q

BW = δ
2 and xQBW = 0, as derived in the last section. At this stage Al/Si is

not considered and it is assumed that Si is randomly distributed on the T site but not
present on the T ∗site. The presence of a vacancy requires that the sites T , TR, Al3A,
Al3B, O4A, O4B and O3 are not occupied (Fig. 4.5). Al3, O4, Al3R and O4R must
be occupied to form the tricluster environment. The T site is occupied if there is no
vacancy. Consequently, the block wave functions of T and Q are shifted in phase by 1

2

and ∆Q
BW = ∆O4

BW = ∆Al3
BW = 1 − ∆T

BW. Thus, the definition of the block waves of T ,
Al3 and O4 can be directly derived from the parameters of Q. O3 is present if the T
site is occupied but the triclusters with O4A and O4B are not present. This is expressed
as gO3

s (t) = gAl2s (t) − gO4A
s (t) − gO4B

s (t). It turns out that the atomic domain of O3 is
split into three parts described by the block wave functions of O3a, O3b and O3bR. The
position of O3a is a special site with xO3a

BW = 0.5. As an origin shift by (0, 0, 0, 1
2) leaves

the structure invariant, a setting with xO3a
BW = 0 is preferred (Fig. 4.5).

An important symmetry consideration to derive constraints on xµBW is the site symmetry
2
m

of the vacancy site and hence also of the O3 site. If the T site is occupied in a certain
t–section, then TR must be occupied as well. As a consequence, gTs (t) must be identical
to gTRs (t).
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Figure 4.5: Top: Average structure model of mullite with split sites and its decomposition
into diclusters and triclusters. Unit-cell borders are marked by black lines. Atoms forming
octahedra are not shown. Relevant sites are labelled. The coloured polyhedra indicate
how the split sites represent the superposition of diclusters, triclusters and vacancies.
Bottom: Superspace model for tetrahedral sites and O3 and O4 derived from a vacancy
domain Q (only one is shown) from which the block wave parameters of O4, T* and T
are trivial to deduce.
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4.1 Symmetry of mullite

µ ∆µ
BW xµBW sµ

Al2 1− δ
2 αx̄Al2s1

1
2−δ

Si2 1− δ
2 αx̄Si2s1

1−δ
2−δ

Al3 δ
2

1
2 + αx̄Al3s1 1

O3a α− δ
2 0 1

O3b 1
2(1− α− δ) 1

4(1 + α) 1

O4 δ
2

1
2 + αx̄O4

s1 1

Table 4.4: Constraints on the block wave modulation functions expressed as functions of
the α component of q, the vacancy concentration δ and coordinates x̄µs1.

gTs (t) = gT
R

s (t)

xTBW − q · x̄T = (−xTBW − 1
2 + x̄s3)− q · x̄TR

xTBW = αx̄Ts1

In analogy, the presence of a tricluster with Al3 and O4 requires the presence of a tricluster
with Al3R and O4R in the same t-section. The block wave length ∆O3a

BW is defined by the
symmetry relationships between O4 and { 2z,−1 | 1, 0, 0, 1

2 + xs3 } : O4→ O4′.

xO4
BW = αx̄O4

s1 + 1
2

xO4’
BW = 1

2 − α(1− x̄O4
s1 )

xO4
BW − xO4’

BW = ∆O3a
BW + ∆O4

BW

∆O3a
BW = α−∆O4

BW = α− δ

2
∆O3b

BW = 1
2(∆T

BW − 2∆O4
BW −∆O3a

BW)

The full list of constraints is given in Table 4.4.

4.1.4 Constraints for harmonic occupational modulation func-
tions

If the probability to encounter a vacancy is not just 0 or 1 but is described by a harmonic
function sQ(t) = δ

2 + gQs (t) then a similar constraint scheme for the occupational modu-
lation functions of T , Al3, O3 and O4 can be derived. Again, we start with an atomic
domain Q representing the probability to find a vacancy at coordinates (0, 1

2 ,
1
2 , xs4).
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Symmetry restrictions require that the occupational modulation function gQs (t) consists
of cosine terms only as sine terms are forbidden.

gµs (t) =
∑
n

Aµs,n sin[2πn(αx̄µs1 + γx̄µs3 + t)] +Bµ
s,n cos[2πn(αx̄µ1 + γx̄µs3 + t)]

gQs (t) =
∑
n

BQ
s,n cos[2πn(αx̄Qs1 + γx̄Qs3 + t)] =

∑
n

BQ
s,n cos

[
2πn

(1
4 + t

)]

The presence of a vacancy requires the well-defined tricluster environment and therefore
the occupancy of Al3 and O4 must be modulated like Q.

sQ(t) = sO4(t) = sAl3(t)

The terms Aµs,n of Al3 and O4 are calculated from the phase shift between the modulation
functions in t-space originating from the different coordinates.

Aµs,n =BQ
s,n sin(2πnαx̄µ1)

Bµ
s,n =BQ

s,n cos(2πnαx̄µ1)

If there is no vacancy the T and TR site are always occupied together, either forming
a dicluster or as part of a tricluster. The occupational modulation of T is therefore in
anti-phase relationship to the modulation of Q.

ATs,n =−BQ
s,n sin(2πnαx̄T1 )

BT
s,n =−BQ

s,n cos(2πnαx̄T1 )

The O3 site is occupied if T and TR form a dicluster, but not if the split sites O4A and
O4B with the respective triclusters are occupied.

sO3(t) = sT (t)− sO4A(t)− sO4B(t) =
∑
n

BO3
s,n cos

[
2πn

(1
4 + t

)]

sO4(t) and sT (t) are already known. As the O3 site also exhibits site symmetry 2
m
, sine

terms are forbidden (AO3
s,n = 0) and only cosine terms must be considered. The calculation

of BO3
s,n must consider the amplitudes of gO4A

s (t = 3
4) and gO4B

s (t = 3
4) because at t = 3

4 the
amplitude of gTs (t) is at its maximum. At this t-section the phase shift between gO4

s and
gO4A
s is identical to the phase shift between gO4B

s and gO4
s .

x̄O4
s4 − x̄O4A

s4 = 1 + α

2
gO4A
s (t = 3

4 , n = 1) = gO4
s (t = 3

4 , n = 1) cos
(

2π1 + α

2

)

79



4.1 Symmetry of mullite

Site ζµn =
√

(Aµs,n)2 + (Bµ
s,n)2 Aµs,n/ζ

µ
n Bµ

s,n/ζ
µ
n

O3 ζO3
n = BO3

s,n sin(2πnαx̄O3
s1 ) = 0 cos(2πnαx̄O3

s1 ) = 1

O4 −ζO3
n /{1 + 2 cos[πn(1 + α)]} sin(2πnαx̄O4

s1 ) cos(2πnαx̄O4
s1 )

T ζO3
n /{1 + 2 cos[πn(1 + α)]} sin(2πnαx̄Ts1) cos(2πnαx̄Ts1)

Al3 −ζO3
n /{1 + 2 cos[πn(1 + α)]} sin(2πnαx̄Al3s1 ) cos(2πnαx̄Al3s1 )

Table 4.5: Constraints on occupational modulation functions. ζµn expresses the amplitude
of the nth harmonic term of the occupational modulation function.

In the general case the amplitude of gO4A
s and gO4B

s at t = 3
4 is BQ

s,n cos[πn(1 + α)]. The
anti-phase relationship between gO4

s and gTs leads to

BO3
s,n =BQ

s,n{1 + 2 cos[πn(1 + α)]} .

In Table 4.5 the constraint scheme is summarised. Note that in all refinements BO3
s,1 <

0 to make sure that all models can be compared without the necessity of additional
origin shifts. A simple way to implement occupational modulation functions of Al2 and
Si2 assumes that Al2 and Si2 are modulated identically and in phase with T , which
corresponds to AAl2

s,n = ASi2
s,n = 1

2A
T
s,n and BAl2

s,n = BSi2
s,n = 1

2B
T
s,n. These modulation functions

are based on pure simplicity and it is very unlikely that in mullite Al and Si behave
identically due to their different cation radius and different oxidation state.
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Figure 4.6: Electron density of the structure solution for different t-sections within one
unit cell. Solid yellow surfaces correspond to electron density level of about 7 electrons/Å3

and the semi-transparent yellow surfaces correspond to about 2 electrons/Å3.

4.2 Disordered SSM: Superspace model with partial
vacancy ordering

The models and constraints of the last sections were mainly based on the analysis of
the superspace symmetry. In the following sections these predictions are experimentally
tested. The reciprocal space of a mullite crystal structure with a fully ordered vacancy dis-
tribution exhibits high order satellite reflections, independent of Al/Si ordering. The dif-
fraction patterns obtained by single crystal X-ray diffraction experiments mainly showed
first order satellite reflections alongside diffuse scattering. From this observation it can
be expected that the mullite samples are not fully ordered. The ’disordered superspace
model’ (disordered SSM) uses harmonic functions for the description of the occupational
modulation. ’Disordered’ here means that the Si and vacancy distribution is described by
short-range and long-range order which gives rise to diffuse scattering and satellite reflec-
tions. In the disordered SSM only the long-range ordered component is implemented, and
the short-range ordered component requires a separate analysis of the diffuse scattering.
The structure solution and initial refinement is based on the sample SA1 measured on
BM01 at the ESRF.

4.2.1 Structure solution and refinement

The program ’Superflip’ [107] based on the charge flipping method (§ 2.3.2) was used to
obtain an initial structure solution based on main reflections and first order satellite re-
flections. Superflip confirms the superspace group Pbam(α01

2)0ss. The resulting electron
density directly reveals the sites of the octahedron and the T site. The electron density
of the T* site is significantly weaker than that around the T site, which is not surprising
because the expected ratio of s̄T to s̄T ∗ is about 0.8 to 0.2. The electron density around
the O3 and O4 split site does not allow to resolve the atom sites from the initial solution
as the electron density forms an elongated bulge. The comparison of the electron density
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4.2 Disordered SSM: Superspace model with partial vacancy ordering

Label SA1 SA2 SA3 Qg1
Experimental

Radiation type X-ray, λ = 0.7231Å
Crystal size (µm) 60× 50× 30 70× 50× 30 50× 50× 20 diameter < 80
Diffractometer Four-circle diffractometer, ESRF beamline BM01, T = 273K

sin(θmax)
λ

0.733 0.730 0.724 0.731
Data reduction

a (Å) 7.5787 (7) 7.577 (2) 7.5768 (13) 7.577 (2)
b (Å) 7.6707 (4) 7.6727 (18) 7.6760 (16) 7.6738 (19)
c (Å) 2.88360 (10) 2.8804 (10) 2.8833 (12) 2.8823 (10)
V (Å3) 167.64 (2) 167.46 (8) 167.67 (8) 167.59 (8)

Superspace group Pbam(α01
2)0ss

α 0.2988 (9) 0.301 (2) 0.3068 (19) 0.2948 (19)
Absorption correction Empirical with SCALE3 ABSPACK (CrysAlisPro)

Reflection statistics
Measured 3363 3079 3299 3567

Independent 678 768 667 797
Ihkl > 3σhkl 555 544 382 454

hmax, kmax, lmax, mmax 8, 11, 4, 1 10, 10, 4, 1 11, 10, 3, 1 11, 10, 4, 1
Rint 0.014 0.020 0.030 0.014

Refinement
R(Ihkl > 3σhkl) 0.037 0.031 0.037 0.025

wR(F 2) 0.104 0.089 0.111 0.097
No. of reflections 678 768 667 797
No. or parameters 101 101 101 101
No. of constraints 33 33 33 33

∆ρmax, ∆ρmin (eÅ−3) 0.37, −0.33 0.35, −0.39 0.43, −0.46 0.28, −0.30
Chemical composition Al4.856Si1.144O9.572 Al4.832Si1.168O9.584 Al4.868Si1.132O9.566 Al4.852Si1.148O9.574

Vacancy concentration 0.428 (4) 0.416 (4) 0.434 (6) 0.426 (3)

Table 4.6: Relevant parameters of the diffraction experiments on BM01, data reduction
and refinement. Rint is a residual factor of the averaged intensities of symmetry-equivalent
reflections. ∆ρmax and ∆ρmin are the global maximum and minimum electron density,
respectively, in the difference Fourier map.
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ȳ
A
l3

0.
20

56
(3
)

0.
20

43
(2
)

0.
20

58
(2
)

0.
20

54
(2
)

–0
.0
00

89
(1
3)

–0
.0
00

81
(9
)

–0
.0
00
26

(9
)

–0
.0
00

60
(1
2)

0.
00

05
2
(1
8)

–0
.0
00

08
(1
0)

0.
00

02
9
(8
)

0.
00

01
6
(1
3)

z̄A
l3

0.
5

0.
5

0.
5

0.
5

0
0

0
0

0
0

0
0

s̄A
l3

0.
21

4
(2
)

0.
20

80
(1
9)

0.
21

7
(3
)

0.
21

32
(1
7)

–0
.0
47

9
(5
)

–0
.0
33

9
(3
)

–0
.0
13

1
(2
)

–0
.0
19

1
(2
)

–0
.0
89

1
(9
)

–0
.0
62

5
(5
)

–0
.0
23

6
(4
)

–0
.0
36

2
(5
)

U
A
l3

eq
0.
01

12
(7
)

0.
00

86
(4
)

0.
01

05
(6
)

0.
01

21
(4
)

0.
00

12
(3
)

0.
00

00
3
(1
9)

0.
00

16
(3
)

0.
00

13
(3
)

0.
00

23
(4
)

0.
00

01
(2
)

0.
00

19
(3
)

0.
00

18
(3
)

O1

x̄
O
1

0.
35

89
4
(1
5)

0.
35

91
2
(1
0)

0.
35

84
1
(1
1)

0.
35

87
9
(9
)

–0
.0
02

30
(5
)

–0
.0
01

57
(4
)

–0
.0
00

72
(8
)

–0
.0
01

04
(7
)

–0
.0
01

80
(6
)

–0
.0
01

21
(4
)

–0
.0
00

58
(8
)

–0
.0
00

79
(6
)

ȳ
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Table 4.7: Modulated structure model parameters from the refinement of the disordered
SSM based on the measurements of samples SA1, SA2, SA3 and Qg1 on BM01 (ESRF).
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4.2 Disordered SSM: Superspace model with partial vacancy ordering

Figure 4.7: Occupational modulation functions and its interpretation in terms of the
presence of diclusters, triclusters and vacancies occupying the volume around (0 1

2
1
2).

Functions shown on the left were not constrained. The graph on the right represents the
final model with constraints. The probability for the presence of a tricluster is represented
by the function sO4A(t) + sO4B(t), that of a dicluster by sO3(t).

of different t-sections provides a first idea of the modulated structure of mullite (Fig.
4.6). The T* site clearly indicates an occupational modulation that seems to be coupled
with an occupational modulation of the O4 site. A strong displacive modulation is not
observed, but it seems that O1 moves slightly as a function of t.

The implemented algorithm that interprets the structure solution in terms of atomic
domains and modulation functions does not determine partial occupancies, occupational
modulation functions, ADPs or ADP modulation functions and the structural model
resulting from the solution gives a very high Robs(F ) = 0.30 after refining the suggested
parameters. The completion of the average structure with partial occupancies of Al2, Si2,
Al3, O3 and O4 with the respective constraints by stoichiometry improves the R factor
for main reflections a lot, but without including occupational modulation functions the
overall R factor still is very high. A free refinement of the occupancies s̄µ is unstable
and results in high standard uncertainties. Only the refinement of the occupancy of
Al3 is stable independent from the other atoms. A refinement of s̄Si2, s̄Al3, s̄O3 and
s̄O4 is possible by fixing s̄Al2 = 0.5 and leads to an acceptable composition close to a
stoichiometric composition, but again with large uncertainties. Therefore, only s̄O3 was
refined and the other occupancies s̄µ were constrained using the scheme of Table 3.3. A
free refinement of the occupancies and occupational modulation parameters of Al2 and
Si2 failed which is explained by the similar form factors of Al3+ and Si4+. Different
models, many of them physically meaningless, hardly affect the R factors. Therefore, the
refinement parameters of Al2 and Si2 were constrained to be equal except for the average
occupancies s̄Al2 and s̄Si2. The refinement of this model without further constraints on
the occupational modulation function parameters converges to a physically meaningful
model with acceptable R factors for main and satellite reflections. However, within one
standard uncertainty the requirements established by the constraint scheme in § 4.1.4 are
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fulfilled. This confirms the derived constraint scheme and the tricluster environment for
vacancies (Fig. 4.7). The standard uncertainties improve significantly by implementing
the constraint scheme, which was therefore used in all subsequent refinements of the
disordered SSM. Displacive modulation parameters, anisotropic displacement parameters
(ADP), and ADP modulation parameters of all atoms were refined. Strong correlations
between refinement parameters of O3 and O4 were observed. Apparently, the resolution
of the measurement was not sufficient to resolve the details of the electron density of O3
and O4 due to the very short distance of less than 0.6 Å between both sites. Disabling the
modulation of U12 strongly decreased the correlations and resulted in realistic ADPs of O3
and O4 after the final refinement cycles with wR(F 2) = 0.104. Details on the experimental
conditions, data reduction and refinement are given in Table 4.6. Refined parameters of
the structural model are given in Table 4.7. In the tables also the measurements and
results of samples SA2, SA3 and Qg1 are included, which are described and compared in
§ 4.2.5. Digital CIF files are available (§ A.9).

4.2.2 Vacancy distribution

The probability to find a vacancy at (0 1
2

1
2) is described by sQ(t), which is equal to

sAl3(t). Likewise, sQB(t) is the probability to find a vacancy at (1
2 , 1, 1

2) and (1
2 , 0, 1

2).
This probability ranges between 11.3 % and 31.5 % and thus vacancies can be present
at all sites with a certain probability. The probability functions sQ(t) and sQ

B(t) are
shifted in phase by 1−α

2 according to superspace symmetry. As sQ(t) is described by
first order harmonics relatively small values of α correspond approximately to an anti-
phase relationship and large values to an in-phase relationship. Here, α ≈ 0.3 and thus a
maximum of sQ(t) corresponds to a small value of sQg(t) and vice versa. The modulation
functions of two vacancies upon each other, e.g. at (0, 1

2 ,
1
2) and (0, 1

2 ,
3
2), are shifted in

phase by exactly 1
2 . Hence, a probability maximum of sQ(t) means that the probability

to find a vacancy stacked below or above it is rather small. The vacancy distribution
in physical space sections of the disordered SSM is depicted in Figure 4.8. The refined
superspace model describes a probability distribution of vacancies with a small tendency
to long-range vacancy ordering. The driving force for ordering seems to be the avoidance
of close contacts of vacancies themselves and the avoidance of an overlap of the tricluster
environments of the vacancies.

4.2.3 Displacive modulation and bond lengths

The displacive modulation of most atomic domains is not strong resulting in an absolute
displacement from the average position by less than 0.02 Å (Fig. 4.9). The largest
displacement occurs for O1 within the ab-plane by about 0.04 Å. In the case of Al1 and
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4.2 Disordered SSM: Superspace model with partial vacancy ordering

Figure 4.8: ab section (top) and ac section (bottom) through the disordered SSM showing
the distribution of vacancies. The probability for the presence of a vacancy is represented
by the size of red hexagons. Large and small hexagons correspond to 31.5% and 11.3%,
respectively. Note that at each site only one of two vacancy orientations is possible.
The distribution of triclusters and diclusters is thus fully defined by the distribution of
vacancies and tetrahedra are omitted for clarity. In the bottom view also octahedra are
not shown.

O2 the displacement within the ab-plane is forbidden by symmetry as only first order
harmonics were used. Correlations are clearly visible as O1 and Al1 exhibit the strongest
displacement for t ≈ 1

4 and t ≈ 3
4 , though in the case of Al1 it is a consequence of

symmetry constraints. All the other atoms exhibit the displacement maximum at t ≈ 0
and t ≈ 1

2 . The displacive modulation of O4 exhibits the displacement minimum at t ≈ 1
3 ,

i.e. it is most off-phase relative to the other atoms. However, uncertainty in the refined
displacive modulation parameters of O4 are noticeably large. The details of the displacive
modulation should thus be analysed with care.

Despite the displacive modulation of Al1, O1 and O2, the bond lengths within the octa-
hedra are almost constant for any value of t (Fig. 4.10). The modulations of the bond
lengths of the tetrahedral cations are more pronounced. The distance Al3–O1 is correl-
ated with the occupancy of Al3, i.e. O1 is closest to Al3 for t ≈ ¼, when sAl3(t) is at
its maximum. The amplitude of the bond length modulation of T–O3 is larger than that
of T–O1 or T–O2. It is most likely that the bond length modulation of T–O3 mainly
originates from Al/Si ordering on the T site, whereas that of T–O1 and T–O2 is a su-
perposition of the contributions of Al/Si ordering and the overall tetrahedra distribution.
The average bond lengths of Al3 are significantly larger than that of the T site supporting
the assumption that Si is exclusively, or at least predominantly, present on T sites. In
the next section the displacive modulation functions are used to derive an Al/Si ordering
pattern based on the observed modulation of the volume of the T site tetrahedron.
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Figure 4.9: Absolute displacement from average position due to the displacive modulation
functions. The phases of the displacive modulation functions of Al1 and O3 are fixed due
to their site symmetry 2

m
. Note that the horizontal axis goes from 0 ≤ t ≤ 0.5.

Figure 4.10: Cation-oxygen bond lengths.
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4.2 Disordered SSM: Superspace model with partial vacancy ordering

Reference Structure Method V Al
Ref V Si

Ref s̄Al2V

Tab. 1.4 [52] many geometry 2.75 2.18 0.51
[173] Sillimanite sXRD 2.782 (3) 2.192 (3) 0.477 (4)
[54] Sillimanite sND 2.7677 (18) 2.1890 (15) 0.491 (3)
§ 4.3.3 (FFID 3) 2/1-mullite FF 2.62 (6) 2.23 (5) 0.65 (10)
§ 4.3.3 (#1) 2/1-mullite PBE 2.70 (4) 2.26 (4) 0.51 (7)
§ 4.4.6 (M40 AS1) 2/1-mullite PBEsol-D 2.69 (5) 2.26 (4) 0.53 (7)

Table 4.8: Candidates for V Al
Ref and V Si

Ref from different sources. The reference volumes
calculated geometrically assume that the tetrahedron is a regular tetrahedron. Reference
volumes from geometrically optimised structures (FF, PBE, PBEsol-D) are calculated as
average of ten independent Al2 tetrahedra and six independent Si2 tetrahedra, respect-
ively. In the ideal case s̄Al2V gives 0.5 assuming that the T* site is only occupied by Al.
sXRD = single crystal X-ray diffraction, sND = single crystal neutron diffraction, FF =
force field calculations

4.2.4 Al/Si ordering

The occupational modulation functions of Al2 and Si2 could not be determined in the re-
finement. A relationship can be established between the volume of the T site tetrahedron
V
T
r , that can be directly calculated from the refined average coordinates of the atoms, and

the occupancies s̄Al2 and s̄Si2. At first the approach is checked with the average structure.

V
T
r = 1

6
∑
µ

s̄µ

s̄T
|(xO1 − xµ) · ((xO1 − xO2)× (xO1 − xO2M))|

The sum goes over O3, O4A or O4B because the observed volume is the superposition of
three tetrahedra (cf. Fig. 4.5). The occupancy s̄T is related to the other occupancies as
s̄T = s̄O3 + s̄O4A + s̄O4B = s̄Al2 + s̄Si2 = 1− δ

2 . The radius of the Al3+ cation is about 50%
larger than the Si4+ cation in tetrahedral coordination (Tab. 1.4) and thus the volume of
the T site tetrahedron can be calculated from the Al/Si ratio on the T site in analogy
to Vegard’s law [172] if the volumes of pure SiO4 and AlO4 tetrahedra V Al

Ref and V Si
Ref are

known.
V
T
s = s̄Al2

s̄T
V Al
Ref + s̄Si2

s̄T
V Si
Ref

In a consistent model V T

s must be equal to V T

r and thus the occupancies s̄Al2V and s̄Si2V can
be calculated from V

T
r which directly results from the refinement.

s̄Al2V = |V Si
Ref−V

T
r |

V Al
Ref−V

Si
Ref
s̄T

s̄Si2V = V Al
Ref−V

T
r

V Al
Ref−V

Si
Ref
s̄T = s̄T − s̄Al2V

(4.1)

One problem is that the reference volumes V Al
Ref and V Si

Ref are not known as they cannot
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be derived from the refinement itself and hence must be determined by other means. In
a first approximation they can be calculated by constructing a regular tetrahedron based
on empirical ionic radii or from refined models of sillimanite. Another possibility is to
analyse geometrically optimised models of mullite based on computational methods. As
the expected occupancy of Al2 is s̄Al2V = 0.5 based on the assumption that Si does not
occupy the T* site, the eligibility of of a source of V Al

Ref and V Si
Ref can be evaluated (Tab.

4.8). The force field calculations are neither accurate nor precise enough to determine
representative structural details of the structural geometry like the volumes of polyhedra.
V Al
Ref and V Si

Ref of the DFT calculations are both suitable as s̄Al2V is close to 0.5 within less
than 1

2σ, but the standard uncertainty is rather high with a relative uncertainty of about
14 %. On the other hand, the calculations may be an indication that some Si atoms
occupy the T* site. The refined structural model of sillimanite based on single crystal
X-ray diffraction [173] provides precise volumes with a low standard uncertainty, but
the resulting s̄Al2V deviates from 0.5 by more than 3σ. The neutron diffraction study [54]
performs very good as the standard uncertainties for V Al

Ref, V Si
Ref and s̄Al2V are small and with

s̄Al2V = 0.491 (3) the result is within 3σ from the expected value. For the determination of
corrected occupational modulation functions the subsequent steps used either reference
volumes of sillimanite (sND, [54]) or of a DFT calculation (M40 AS1, PBEsol-D, § 4.4.6).
According to Table 4.8 the DFT calculations using the PBE functional provides better
reference volumes than dispersion corrected calculations using on the PBEsol functional,
but § 3.6, § 4.4.6 and § A.3 indicate that calculations using PBEsol-D are in better
agreement with experimental observations especially concerning the lattice parameters.
Therefore, PBEsol-D calculations were chosen for this section.

The test of the reference volumes with the average structure confirms that with this
method the occupancy of Al2 and Si2 can be determined from the coordinates of the
coordinating oxygen atoms. The method presented in this section also can be applied to
the modulated structure of mullite by implementing the respective modulation functions
so that V T

r (t) is calculated from xµ(t). The occupational modulation functions sAl2V (t) and
sSi2V (t) are the determined with Equation 4.1. The steps are visualised in Figure 4.11. The
trivial modulation functions used in the refinement are clearly not consistent with V T

r (t).
With the new determined sAl2V (t) and sSi2V (t) the functions V T

r (t) and V T
s (t) perfectly

overlap, but s̄Al2V and s̄Si2V slightly deviate from the occupancies of the refinement (Tab.
4.9). For the plot of V T

s (t) in Figure 4.11 s̄Al2V and s̄Si2V were replaced by the occupancies
of the refinement and only the new values of Aµs,1 and Bµ

s,1 (µ = Al2, Si2) were taken
(Tab. 4.9) leading to an offset between V T

s (t) and V T
r (t). The deviation is within the

uncertainty. Implementing the corrected modulation function amplitudes for Al2 and Si2
based either on the sillimanite reference volumes or the DFT reference volumes in the
refinement of SA1 improves in both cases the overall wR(F 2) from 0.104 to 0.103 and
the wR(F 2, m = 1) of first order satellite reflections from 0.083 to 0.080. This little
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4.2 Disordered SSM: Superspace model with partial vacancy ordering

source for V Al
Ref,V Si

Ref s̄Al2V AAl2
s,1 BAl2

s,1 s̄Si2V ASi2
s,1 BSi2

s,1

Peterson & McMullan (1986) [54] 0.490 0.063 0.031 0.296 −0.035 0.066
DFT (PBEsol-D) 0.530 0.079 0.027 0.256 −0.051 0.070

Table 4.9: Modulation function parameters of Al2 and Si2 derived from the displacive
modulation of SA1. Note that sAl2V (t) and sSi2V (t) are functions of coordinates, reference
volumes and occupational modulation functions and not simple harmonic functions like
Equation 2.2. The parameters listed in this table were determined with a numerical fitting
procedure.

Figure 4.11: Occupational modulation functions of Al2 and Si2 (left) and volume of the
tetrahedral T site (right). A ’P’ in the labels means that the reference volumes V Al

Ref
and V Si

Ref were taken from the study by Peterson & McMullan (1986) [54]. A ’D’ in the
label indicates that they were taken from the DFT calculation (PBEsol-D). Modulation
functions (faint solid lines, label R) correspond to the initial refinement of § 4.2.1 and
the expected volume modulation shown on the right (faint blue dotted line for label RSP,
faint greed dot-dashed line for label RSD) clearly deviates from the observed volume
modulation calculated from the refined displacive modulation parameters (red solid line,
label RX). From the curve RX corrected modulation functions were calculated which lead
to a consistent description of the displacive and the occupational modulation.

improvement is rather negligible because the consistency of the overall model is more
relevant. With the corrected occupational modulation functions the disordered SSM is
complete in the sense that the occupational modulation functions describe vacancy and
Al/Si ordering.

4.2.5 Modulation amplitudes

The refinement as described above for the sample SA1 was also carried out for the samples
SA2, SA3 and Qg1. The same constraint schemes were applied. The final wR(F 2) are
0.089, 0.111 and 0.097 for SA2, SA3 and Qg1, respectively. Details on the experimental
conditions, data reduction and refinement are given in Table 4.6. The average structures
are basically the same with refined compositions corresponding to vacancy concentra-
tions of 0.416 (4), 0.434 (6) and 0.426 (3), respectively. The composition determined
with the Rietveld refinement based on the SA sample resulted in a vacancy concentration
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Figure 4.12: Comparison of modulation functions of SA2, Qg1 and SA3.

δ = 0.429 (5) in good agreement with the refinements based on SA1, SA2 and SA3. The
average coordinates are identical within the limits of the standard uncertainty indicating
a consistent refinement for all of mullite samples with a comparable composition. The
largest uncertainty concerns the coordinates of O4, probably due to the lack of sufficient
resolution as already mentioned in § 4.2.1. The refinement of the modulation functions
yields qualitatively the same model. Again, some uncertainty concerns the displacive
modulations of O3 and O4. There is, however, a remarkable difference between the re-
finements concerning the amplitudes of the modulation functions. A comparison of sAl3(t)
of different measurements shows that the relative occupational modulation amplitude ra-
tio is about 3.7:2.6:1.5:1 for the refinements of SA1:SA2:Qg1:SA3. The same trend is
observed for displacive modulation functions (Fig. 4.12). In different samples the modu-
lation is qualitatively the same indicating that there is an underlying long-range ordering
pattern, but it is only partially maintained in the different structures. In samples with
larger modulation amplitudes the ordering probably adheres more to the underlying or-
dering pattern, and in samples with lower modulation amplitudes the range within which
the ordering pattern is maintained is rather limited. Thus, the modulation amplitudes
can be interpreted as an indicator for the degree of order. This raises the question how a
model representing the highest degree of order looks like, which is addressed in the next
sections.
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4.3 Ordered SSM: Superspace model with full va-
cancy and Al/Si ordering

The refinement based on harmonic occupational modulation functions revealed that the
tendency to long-range vacancy and Al/Si ordering is not very strong and thus the dis-
ordered SSM describes at which coordinates in superspace it is more likely or less likely
to encounter a vacancy or a specific dicluster type like Si-Si diclusters. It is, however,
not straight forward to define a precise ordering pattern from it. In the next sections an
’ordered superspace model’ (ordered SSM) of 2/1-mullite (δ = 0.4) is presented based on
the constraints of § 4.1.3. The distribution of Si on the tetrahedral sites is not imple-
mented in this constraint scheme. Therefore, the Al/Si ordering was investigated with
computational methods.

4.3.1 Refinement with different scale factors

Block wave functions can be approximated with a large set of harmonic functions. The
refinement of superspace models with block wave functions are usually based on crystals
that show high order satellite reflections on the diffraction patterns [174, 175]. In most
measurements of this thesis only first order satellite reflections were observed indicating
that the occupational modulation functions are adequately described by the disordered
SSM. On the other hand, the simultaneous presence of sharp satellite reflections and
diffuse scattering in combination with the observation of different degrees of order in dif-
ferent samples suggest that two polymorphs may exist and are simultaneously present.
An ordered polymorph then accounts for sharp satellite reflections and a disordered poly-
morph for the diffuse scattering. The dominance of one polymorph or the other then
mimics different degrees of order. Based on this assumption a refinement with two phases
can bet set up. The first phase is an average structure model representing the disordered
polymorph. The second phase is an ordered (3+1)d superspace model which requires to
refine the phase fraction νordered. Assuming that for both fractions the average position
and ADPs of the atoms are identical, the first phase can be eliminated from the refine-
ment by using independent scale factors Smain and Ssat for main and satellite reflections,
respectively, based on the relationship νordered = (Ssat/Smain)2.
The latter approach was used for the refinement of the ordered SSM based on the meas-
urements of SA1, SA2, SA3 and Qg1 on BM01 at the ESRF. The disordered SSM without
occupational modulation functions served as a starting model. As expected, difference
Fourier maps show clear maxima along the atomic domains of T, T*, O3 and O4 which
at first glance is in agreement with the constraint scheme of § 4.1.3. A free refinement of
the parameters of displacive modulation, ADPs and ADP modulation was partly unstable
and results in unrealistic ADPs. This affects mainly the atomic domains with short ∆µ

BW,
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Figure 4.13: Expected intensity distribution of main and satellite reflections (unique scale)
based on the refined model (different scale factors). Thus, only the occupational modu-
lation contributes to higher order satellite reflections because only first order harmonics
were used for the displacive modulation.

i.e. Al3, O3a, O3b and O4. The refinement converges smoothly if the respective ADP
modulation parameters are set to 0, the displacive modulation of Al3 and O4 is deactiv-
ated and the displacive modulation of O3a and O3b is constrained to be equal. The data
sets of SA1, SA2, SA3 and Qg1 give acceptable values for wR(F 2) of 0.138, 0.124, 0.149
and 0.113, respectively

A refinement including second order satellite reflections of the measurement of SA1 was
not successful. Structure factor calculations indicate that increasing the satellite reflection
order m by two approximately decreases the intensity by one order of magnitude. The
ratio of the mean intensity of first and second order satellite reflections in the measurement
of SA1 on ID28 is about 100:1. Hence, the ordered SSM cannot explain the presence of
weak second order satellite reflections. The initial assumption that disordered mullite
consists of an ordered polymorph within a disordered polymorph is not supported. If
there are ordered domains, they must be very small as suggested in [63].

4.3.2 Vacancy distribution

Although the refinement indicates that the ordered SSM does not represent the samples
or ordered domains of the samples, the model is very valuable for the understanding of
the crystal structure and ordering phenomena in mullite. Physical space sections of a
commensurate approximation with δ = 0.4 and q = ( 3

10 0 1
2) are suitable to analyse the

structural units and building blocks. The backbone of the 10× 1× 2 superstructure are
the octahedra chains in which tetrahedral dicluster units and triclusters around vacancies
are embedded. As γ = 1

2 the repeating distance along the c direction is 2c and hence
an alternating pattern of triclusters, diclusters and vacancies emerge. Two identical units
never stack upon each other, i.e. vacancy channels, dicluster chains and tricluster chains
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Figure 4.14: Physical space section of the ordered superspace model with q = ( 3
10 0 1

2) and
δ = 0.4. O4 atoms are represented by blue and O3 atoms by red spheres so that diclusters
and tricluster can be easily distinguished by the colour code. Other atoms are omitted.
In the top view octahedra are shown in dark blue and tetrahedra in grey blue. In the
bottom view the tetrahedra network is omitted and the octahedra backbone is shown as
skeleton. Vacancies are represented by thick blue squares.

are not present. Both vacancies and diclusters group together into block-like units (Fig.
4.14), which are here called ’vacancy blocks’ (VBs) and ’vacancy-free blocks’ (VFBs).
VFBs consist of diclusters only, and VBs consist of a dense packing of triclusters with the
corresponding vacancies. The blocks alternate along a and c resulting in a brick pattern.
The block size in both cases is 5a × 1b× 1c, though the extension along the a direction
depends on the definition whether or not the outermost T site tetrahedra of triclusters
belong to the VBs or VFBs. If they are considered as part of the VBs then the VBs are
longer as the VFBs and overlap as shown in Figure 4.14.

In physical space sections of the refined ordered SSM of SA1 (α = 0.2988, δ ≈ 0.41)
the brick pattern of VBs and VFBs is maintained, but the block lengths change. VBs
consists of either four or five vacancies. VFBs consist of either five or eight diclusters.
On average, VBs are extended and VFBs are shortened resulting in an increased vacancy
concentration which corresponds to the refined composition. As a consequence, tricluster-
tricluster chains are present. In the latter case the two triclusters are not of the same
orientation, i.e. if in one tricluster Al3A and O4A are occupied then the subsequent
tricluster contains Al3B andO4B.
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4.3.3 Determination of ideal Al/Si ordering pattern of 2/1-mullite

In the last section it was shown that the vacancy concentration and the modulation wave
vector are sufficient to define an ordered vacancy distribution for mullite, from which the
polyhedra structure can be fully derived. However, it is not known how Al and Si atoms
are distributed over the T sites. Furthermore, the assumption that Si does not occupy the
T* site must not necessarily be true. Al/Si ordering can be implemented in the ordered
superspace model by replacing the atomic domains of the T and T* site by a set of block
wave functions that define that either Al or Si occupies a certain place in super space. As
there is no restriction on the number of domains and the respective length the investigation
of Al/Si ordering in superspace of incommensurate mullite was not tried. Instead, the
Al/Si ordering was investigated with computational methods applied to a superstructure
based on physical space sections of the ordered SSM with δ = 0.4 and q = ( 3

10 0 1
2).

The space group symmetry of the commensurate structure of 2/1-mullite depends on the
physical space section t because an arbitrary t will brake all symmetry elements except
for mz leading to the space group B11m. If t = 3

40 + n
10 (n ∈ Z) the displacive modulation

preserves the symmetry of the b glide plane perpendicular to a and the 21 screw axis
parallel to b. However, due to the occupational modulation only physical space sections
with t = 3

40 + 2
10 or t = 3

40 + 7
10 comply with the space group Bb21m. Throughout this

thesis commensurate superstructures of 2/1-mullite are represented with t = 0.275. The
chemical formula with Z = 4 is Al10(Al14Si6)O48. In the asymmetric unit there are 20
tetrahedral sites for 14 Al and 6 Si atoms. The number of Al/Si permutations on all
tetrahedral sites, including T* sites, is

(
20
6

)
= 38760 and each represents a different Al/Si

ordering pattern in physical space as well as in superspace. In order to systematically
evaluate which Al/Si ordering is energetically favourable corresponding 10×1×2 supercells
with 312 atoms were generated. With the available computer power it is not possible
to perform accurate DFT calculations with all of the generated structures2. The chosen
strategy was to run force field (FF) calculations with all 38760 structures and then perform
DFT calculations with the most promising candidates.

The force field calculations were carried out using the GULP code [9]. The default con-
vergence criteria were fully achieved for 18394 structures and partly for 20159 structures.
The structural relaxation failed for 207 structures. Nevertheless, the energy of the last
optimisation cycle in all cases yields an energy value that is sufficiently accurate for the
present purpose. The energy of the most and least stable structures are −2996.60 eV
(FFID 1) and −2943.12 eV (FFID 38760), respectively (Fig. 4.15). For a better compar-
ison each permutation is assigned a number (FFID) which indicates the relative stability.
The superstructure with FFID 1 corresponds to the lowest energy and represents the

2DFT calculations of all 38760 superstructures take more than 200 years with 48 cores of the available
computer facilities. The 38760 relaxations with force field calculations require less than 24 hours.
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Figure 4.15: Relative energy/atom of the statically relaxed supercells of 2/1-mullite with
different Si distributions sorted by FFID. Blue circles correspond to FF calculations,
orange diamonds to DFT calculations. The left plot gives the complete overview on
the energy range, the right plot only shows the details of the most promising structures
for which DFT calculations were performed. The most stable Al/Si ordering pattern
according to DFT calculations (#1, FFID 3) is marked with a red circle.

most stable Al/Si ordering according the force field calculations. FFID 10, 20, 50 and
100 have relative energy differences with respect to FFID 1 of 2.22, 2.89, 4.84 and 6.06
meV/atom. If we assume that the accuracy of the total energy calculations is approxim-
ately 2 meV/atom then it is sufficient to perform more accurate calculations on the best
10 to 20 candidates.

DFT calculations were carried out with the structures of FFIDs 1 to 14, 17, 18, 21, 24, 29,
86 and 4022 using the PBE functional, standard accuracy and a k point grid with 1×10×13
points. Each optimised superstructure was assigned a rank indicated by the hashtag
symbol in analogy to the FFID. The total energy3 of the most stable structure (rank #1)
is −2363.83 eV. The comparison of FF energies versus DFT energies suggests that the FF
ranking is a good estimate and therefore it can be expected that the ideal Al/Si ordering
is one of the candidates that was investigated with DFT (Fig. 4.15). Selected results of
the calculations are given in Table 4.10. In Figure 4.16 the Al/Si ordering patterns of
the five most stable superstructures are represented. The four most stable Al/Si ordering
patterns only differ in the position of one Si atom, that is either in a tricluster or in a
dicluster. Consequently, five of six Si positions are determined with high certainty and
some doubt remains concerning the position of the sixth Si. Furthermore, from the Al/Si
ordering a few simple ordering patterns can be derived, which are analysed in more detail
in § 4.4 considering different compositions. It turns out that a full parametrisation of
the Al/Si ordering of a certain supercell is rather cumbersome to set up, to analyse and
to describe. This becomes even more complicated if different compositions with different
cell sizes are compared. Hence, the used approach to identify the ideal Al/Si ordering in
physical space with computational methods is effective, but the characterisation of the
Al/Si ordering is more efficient and elegant in (3+1)d superspace based on modulation

3In § 2.5.2 it was mentioned that only relative energies are significant. Total energies are provided so
that the interested reader may reproduce the results.
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DFT E/atom FF E/atom
Rank (meV) a (Å) b (Å) c (Å) FFID (meV)
#1 –7576.39 7.6513 7.7134 2.9270 3 -9604.49
#2 1.24 7.6782 7.7232 2.9228 10 1.88
#3 1.34 7.6822 7.7011 2.9268 2 -0.17
#4 3.05 7.6760 7.7160 2.9241 1 -0.33
#5 3.50 7.6924 7.6957 2.9234 12 2.00
#6 3.99 7.6712 7.7293 2.9217 7 1.42
#7 4.26 7.6428 7.7206 2.9250 29 3.59
#8 4.33 7.6641 7.7207 2.9251 18 2.36
#9 4.35 7.6502 7.7342 2.9265 24 2.79
#10 4.67 7.6807 7.7207 2.9268 9 1.73
#11 4.89 7.6797 7.7209 2.9269 17 2.33
#12 5.11 7.6893 7.7216 2.9261 6 1.42
#13 5.13 7.6734 7.7366 2.9239 8 1.71
#14 5.17 7.6740 7.7375 2.9237 13 2.06

11.52 7.6796 7.7038 2.9225 86 5.38
25.32 7.6673 7.7220 2.9229 4022 18.90

Table 4.10: Rank refers to the relative stability of the supercell according to DFT calcu-
lations. The FFID is an analogue ranking according to the FF calculations. E/atom is
the absolute value for #1 (FFID 3) and in all other cases the relative energy per atom
with respect to #1.

functions. In the next section the geometrically optimised superstructures are used to
establish superspace models by embedding the atoms in a (3+1)d unit cell.

4.3.4 Ideal superspace model of 2/1-mullite

As explained in § 2.4.3 a superstructure model can be embedded in (3+1)d superspace
based on an average structure model and a modulation wave vector q. To determine
the modulation functions of the different sites, for example the occupational modulation
functions of Al2 and Si2, it is convenient to represent the atoms that belong to the same
atomic domain in a t-plot. In order to relate the setting of the 10× 1× 2 superstructure
described in the space group Bb21m to a superspace description in Pbam(α01

2)0ss with
Al1 at the origin it is necessary to consider the physical space section t0 = 0.275 and an
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4.3 Ordered SSM: Superspace model with full vacancy and Al/Si ordering

Figure 4.16: Al/Si ordering patterns of ranks #1 to #5. The top view shows a model of
#1 perpendicular to c. The red frame marks the section that is shown for #1 to #5 with
subsequent layers. The distribution of most Si atoms in structures #1 to #4 is identical
and only the Si atom marked with a white ’X’ changes position with an Al site.
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origin shift p.

x′ =


10 0 0

0 1 0

0 0 2

x + p

xs4 = q · x′ + t0

Here, p1 = 3
4 and p3 = 1

4 . During the geometric optimisation the atoms may shift along the
b direction because the structure is described in the polar space group Bb21m. Therefore,
p2 was determined by averaging over a set of atoms with the expectation value 0.5 and the
difference from this value was used as p2. Translational symmetry and the application of
the symmetry operators of Pbam(α01

2)0ss finish the embedding of the superstructure in
superspace. At this stage, atomic domains are represented by up to 20 points, depending
on the average occupancy of the respective site.

To determine the occupational modulation functions that define the Al/Si ordering in
mullite the geometrically optimised superstructure with the lowest energy (DFT rank
#1) was embedded in superspace (Fig. 4.17). The inspection of the atomic domain of
the T site shows that four block wave functions, here labelled Al21, Al22, Si21 and Si22,
are required to describe the occupational modulation of Al2 and Si2. Without external
constraints, the precision for the determination of ∆µ

BW and xµBW is limited because the
atomic domains are not continuous. In the case of mullite the block wave parameters of
O3a, O3b and O4 are already known from the constraint scheme of Table 4.4 and the
borders of these known block wave functions can be used to fix reference points for the
definition of the unknown occupational modulation functions. The parameters of Si22
and Al22 are straight forward to determine because Si22 is always bonded to O3b and
Al22 only occurs in triclusters together with Al3. The other parameters can be derived
by simple arithmetic operations because ∆Al21

BW = 2∆O3b
BW and ∆Si21

BW = ∆Si22
BW . A scheme of

the determined superspace model is shown in Figure 4.18.

The displacive modulation functions of the refinement of § 4.3.1 based on first order har-
monics do not adequately describe the atomic positions in the ordered SSM as Figure 4.17
clearly indicates that higher order harmonics play an important role for the description of
the displacive modulation. From the t-plots the parameters Aµxi,n and Bµ

xi,n
of displacive

modulation functions as defined by Equation 2.2 can be determined with the method of
least-squares. The maximum order of harmonics n to be used for the fit depends on the
parameters to observables ratio. Symmetry restrictions decrease the number of paramet-
ers for atoms occupying special positions. For example, a modulation of xs3 is forbidden
for all atomic domains except Al1 and O2. The atomic domains of Al1, O1 and O2 are
represented by 20 coordinate points in t-space and thus fifth order or higher harmonics
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Figure 4.17: Superspace model obtained by embedding the geometrically optimised su-
perstructure. The left, middle and right column plot the xs1, xs2 and xs3 coordinate,
respectively. The horizontal axis is the physical space section t. Points are coordinates of
the supercell description embedded in superspace. Solid lines represent displacive mod-
ulation functions with up to fifth order harmonic terms determined by the fit procedure
described in the text. For O3 first and second harmonics were used. For Al3 and O4 only
first order harmonics were used. Dark blue points in the atomic domains of T (second
row) indicate t sections for which Si occupies the T site. The T* site is only occupied by
Al3.
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can be determined. The atomic domains of Al3 and O4, in contrast, only consist of four
points in a limited range in t-space. Therefore, only first order harmonics can be de-
termined. In Figure 4.17 modulation functions including up to fifth order harmonics are
shown.
With the presented approach superspace models can be established from geometrically
optimised superstructures of commensurate cases. ADPs are not included here, but a
method was presented to use phonon calculations to estimate the displacement parameters
that can be expected from the thermal motion of the atoms [176].

Figure 4.18: Section of superspace model showing atomic domains relevant for Al/Si
ordering. Displacive modulations are not included. Al1, O1 and O2 and not shown as
these atomic domains are not relevant to describe the vacancy and Al/Si ordering. Atomic
domains belonging to the same dicluster or tricluster are linked by the same background
colour.
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Parameter Examples 0 ≤ δ ≤ 1
3

1
3 ≤ δ ≤ 1

2 Examples
δ 0 1

7 0.2 0.25 nV
3nV+2

1
3

nV
3nV−2 0.4 3

7
5
11 0.5

α 0.5 3
7 0.4 0.375 1−δ

2
1
3

1−δ
2 0.3 2

7
3
11 0.25

nV 0 0.5 1 2 2δ
1−3δ ∞ 2δ

3δ−1 4 3 2.5 2
LVB
a 0 0.75 0.5 2 3

2nV ∞ 3
2nV 6 4.5 3.75 3

nD 4 5.5 7 10 3nV + 4 ∞ 3nV − 4 8 5 3.5 2
LVFB
a 2 2.75 4.5 6 3

2nV + 2 ∞ 3
2nV − 2 4 2.5 1.75 1

LVB
a + LVFB

a 2 3.5 5 8 3nV + 2 ∞ 3nV − 2 10 7 5.5 4

Table 4.11: Characteristics of example cases and the general block model of mullite.
Formulas are valid for nV ∈ R. LVB

a and LVFB
a are the lengths of vacancy blocks and

vacancy-free blocks, respectively. If (LVB
a + LVFB

a ) ∈ N then this number expresses the
length of the periodic superstructure in units of a.

4.4 Unified SSM: Ordering mechanisms in ordered
mullite

4.4.1 Block model in the range 0 < δ ≤ 0.5

From Figure 1.5 in § 1.1.8 it is clear that the modulation wave vector q depends on the
composition. In this section it is analysed how the block pattern describing the ordered
SSM can be maintained for different vacancy concentrations. In § 4.3.2 it was already
indicated that the lengths of vacancy blocks (VB) and vacancy-free blocks (VFB) depends
on q and the vacancy concentration δ. In the commensurate case of 2/1-mullite (δ = 0.4)
each vacancy block contains four vacancies. However, alternative block models can be
easily developed. For example, in a 20×1×2 supercell with 16 vacancies in total (δ = 0.4)
the VBs contain eight vacancies and VFBs contain 16 diclusters. In the latter example
VBs overlap and tricluster chains cannot be avoided. In the ordered SSM as described
in § 4.3.2 VBs and VFBs have approximately the same length minimising the overlap of
VBs and avoiding the formation of tricluster chains. Based on the empirical rule that
tricluster chains must be avoided a set of mullite structures with different compositions
can be constructed. A shortening of the blocks increases the vacancy concentration and
a lengthening decreases the vacancy concentration. For example, a 7 × 1 × 2 supercell
with three vacancies in the VBs has a vacancy concentration δ = 3

7 ≈ 0.429. A 13× 1× 2
supercell with five vacancies in the VBs has a vacancy concentration δ = 5

13 ≈ 0.385.

This procedure can be generalised so that a mullite structure of any vacancy concentration
in the range 1

3 ≤ δ ≤ 0.5 can be described by the stacking of VBs and VFBs defined by
nV, the number of vacancies per VB. From this number several characteristics of the block
model can be derived like nD, the number of diclusters per VFB, and the block lengths
LVFB
a and LFB

a along the a direction. If nV →∞ the block model consists of infinite layers

102



Results

of VBs and VFBs stacked along the c direction resulting in a vacancy concentration of
1
3 . A description of block structures with δ < 1

3 is possible by increasing the length of
the VFBs relative to the VBs so that stacked VFBs overlap. This effectively introduces a
’sillimanite-like block’ as in the overlapping regions two dicluster chains emerge. Tricluster
chains are still avoided in the overall structure. Several examples and general formulas to
describe characteristics of the block models are given in Table 4.11.

With the limitation nV ∈ N the model cannot describe an arbitrary vacancy concentration.
If that was the case, then there would be only 13 allowed compositions for mullite in the
range 0.35 ≤ δ ≤ 0.5. However, block models can be constructed in which VBs with
two different lengths are present and then nV expresses the average number of vacancies
per VB. A comprehensive example is mullite with nV = 2.5, which can be described
as mullite with half of the VBs containing two vacancies and the other half containing
three vacancies. The overall vacancy concentration is δ = 5

11 ≈ 0.455. In this example
LVB
a +LVFB

a = 5.5. In the same way the parameters nD, LVB
a and LVFB

a are not limited to
integer values (Tab. 4.11).

Apart from δ = 1
3 two special cases must be considered. If δ < 0.2 and nV < 1 then

the block structure contains VFBs with nD = 4 and nD = 7, and VBs with nV = 0 and
nV = 1. The presence of VBs with nV = 0 means that neighbouring VFBs merge together
so that the effective length of VFBs is different from the calculated length in Table 4.11.
As δ → 0 the length of the overlapping region of VFBs approaches ∞, i.e. the fraction of
the model that consists of dicluster chains like in sillimanite also approaches∞. If δ > 0.5
and nV < 2 then the block structure contains VFBs with nD = −1 and nD = 2, and VBs
with nV = 1 and nV = 2. The presence of VFBs with nD = −1 is physically not possible
and means that the triclusters of neighbouring VBs overlap. Therefore, the described
block model is limited to the range 0 ≤ δ ≤ 0.5 and higher vacancy concentrations cannot
be described by the described orthorhombic stacking of VBs and VFBs.

4.4.2 q–δ relationship derived from the block model

The constraint scheme of Table 4.4 used for the description of the occupational modulation
of T, Al3, O3a, O3b and O4 does not exclude the presence of tricluster chains. It was
also not considered in § 4.1.2. The implementation of a respective constraint on xO4

BW

can be implemented so that tricluster chains are strictly avoided. The atomic domains
of O4A and O4B with x̄s3 = 1

2 are occupied if |34 −
α
2 − t| < δ

2 and |14 −
α
2 + t| < δ

2 ,
respectively. The respective domains with x̄s3 = −1

2 , symmetrically related by the mirror
plane {mz −1 | 0, 0, 0, 1

2 }, are occupied if |14−
α
2 − t| <

δ
2 and |34−

α
2 + t| < δ

2 , respectively.
The condition that none of the four symmetrically related atomic domains of O4 maybe
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simultaneously occupied in any physical space section t is fulfilled if

∆O3b
BW + ∆Q

BW + ∆O3b
BW ≥

1
2

∆O4
BW + ∆O3a

BW + ∆O4
BW ≤

1
2

This establishes a relationship between the modulation wave vector component α and the
vacancy concentration δ.

2α + δ = 1 (4.2)

If the block pattern of § 4.4.1 describes the underlying vacancy ordering mechanism for
orthorhombic mullite, including not fully ordered mullite structures, then the expected
modulation wave vector component is α = 1

2 −
1
2δ. A fit based on the literature analysis

(Fig. 1.5) in the range 0 < δ < 0.5 results in the relationship α = 0.550 (17)− δ · 0.57 (4).
This is in agreement with Equation 4.2 within 3σ, but the standard uncertainty is re-
latively high and a systematic offset with respect to α = 1

2 −
1
2δ cannot be excluded.

However, the vacancy concentration of the samples of this dataset was mostly determ-
ined with X-ray spectroscopic methods [2, 36, 47]. In § 3.3.1 and in § 4.2.5 it has been
shown that the EDX analyses may result in a composition that does not correctly repres-
ent the vacancy concentration due to the presence of impurity phases. Structure model
refinements provide a more reliable estimate of the vacancy concentration. Therefore,
the q–δ relationship was investigated with electron diffraction to assess if the predicted
relationship α = 1

2−
1
2δ represents the experimental dependence or if there is a systematic

deviation which requires a different or an additional explanation.

4.4.3 q–δ relationship derived from experiments

A large set of refinements from single crystal X-ray diffraction (sXRD) experiments and
precession electron diffraction tomography (PEDT) measurements was combined to es-
tablish an experimental relationship between the modulation wave vector q and the va-
cancy concentration δ. In the powder X-ray diffraction (pXRD) patterns, satellite re-
flections could not be detected. However, the Rietveld refinements are useful to support
the electron diffraction measurements as the uncertainty of refinement parameters based
on electron diffraction measurements is in general slightly higher in comparison to X-ray
diffraction measurements [93]. Furthermore, pXRD provides an average model that rep-
resents a large sample volume, whereas the volume that is investigated with PEDT is
smaller by many orders of magnitude. Hence, the combination allows to evaluate if the
measurement is representative for the overall sample or if it is rather an exception.

Tables 4.13 and 4.14 list details on the PEDT measurements and refinements. In Table
4.12 a concise list is given of the refined vacancy concentrations from different refinements

104



Results

SA Qa.09 Qa.50 Qg.50 VSG.50 VSG.57 VSG.64
# 0.429 (5) ♦ 0.331 (7) # 0.470 (4) # 0.407 (3) # 0.460 (3) # 0.526 (6) # 0.494 (13)
\ 0.416 (4) ♦ 0.441 (9) ♦ 0.418 (6) \ 0.426 (3) ♦ 0.456 (5) ♦ 0.570 (6) ♦ 0.650 (10)
\ 0.428 (4) ♦ 0.459 (5) ♦ 0.315 (7)
\ 0.434 (6) ♦ 0.490 (9) ♦ 0.403 (5)
♦ 0.373 (6) ♦ 0.528 (7)

Table 4.12: Overview of refined vacancy concentrations for different samples from Tables
4.6, 3.4, 4.13 and 4.14. Symbols indicate the type of measurement: # pXRD, \ sXRD, ♦
PEDT

Sample type Commercial Sol-Gel Quenched
Crystallite origin SA QSA VSG.50 VSG.57 VSG.64 Qg.50 Qg.50
a (Å) 7.63 * 7.63 * 7.60 7.64 7.39 7.54 7.55
b (Å) 7.73 * 7.77 * 7.68 7.67 7.63 7.68 7.65
c (Å) 2.90 * 2.90 * 2.89 2.90 2.88 2.87 2.87
V (Å3) 164.4 184.9 168.8 169.8 162.0 166.3 166.1
α 0.326 (7) 0.289 (2) 0.272 (3) 0.251 (2) 0.2470 (14) 0.345 (3) 0.318 (4)
γ 0.500 (3) 0.4997 (8) 0.4963 (10) 0.456 (3) 0.4606 (4) 0.500 (2) 0.5000 (12)
Precession angle (°) 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Tilt step (°) 0.5 1.0 1.0 1.0 1.0 1.0 1.0
Recorded frames 210 111 106 88 100 93 105
Used frames 159 104 106 85 77 91 102
Measured
reflections

8747 5190 5163 4066 3489 3755 3779

Unique reflections
(obs.)

1732 1252 1642 1102 1031 1192 1221

Unique reflections
(all)

2281 1519 1995 1951 1115 1376 1442

sin(θmax)/λ [Å−1] 0.70 0.70 0.71 0.71 0.70 0.70 0.70
Data completeness 0.88 0.93 0.91 0.66 0.77 0.60 0.54
Refinement parameters
Parameters 177 122 124 103 95 109 120
Constraints 7 7 7 7 7 7 7
Rmax
Sg 0.50 0.45 0.55 0.7 0.55 0.55 0.55

Robs(F ) 0.084 0.072 0.075 0.070 0.088 0.064 0.060
wR(F ) 0.093 0.081 0.086 0.068 0.115 0.074 0.076
refined thickness
(Å)

287 (3) 268 (3) 262 (3) 242 (3) 272 (7) 549 (5) 374 (5)

refined vacancy
concentration

0.373 (6) 0.456 (6) 0.456 (5) 0.570 (6) 0.650 (10) 0.315 (7) 0.403 (5)

Table 4.13: Electron diffraction measurements. Used frames refer to the number of frames
used in the final refinement of the average structure. Lattice parameters marked with a
* were corrected after the measurement due to wrong calibration parameters during the
measurement.
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Crystallite origin Qa.09 Qa.09 Qa.50 Qa.50 Qa.50 Qa.50 Qa.57
a (Å) 7.63 * 7.61 7.61 7.63 * 7.60 7.54 7.55
b (Å) 7.78 * 7.80 7.69 7.73 * 7.66 7.57 7.65
c (Å) 2.90 * 2.89 2.89 2.90 * 2.87 2.87 2.87
V (Å3) 187.2 171.7 169.3 162.6 167.2 163.9 166.1
α 0.2902 (12) 0.341 (5) 0.286 (1) 0.3038 (15) 0.2677 (12) 0.2668 (7) 0.2701 (11)
γ 0.5009 (5) 0.5007 (15) 0.4992 (6) 0.4986 (6) 0.4593 (5) 0.4606 (3) 0.4553 (4)
Precession angle (°) 1.0 1.0 1.0 0.6 1.0 0.6 1.0
Tilt step (°) 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Recorded frames 90 117 94 99 88 107 112
Used frames 80 103 93 99 80 103 111
Measured
reflections

4157 5077 4224 4039 4191 4962 4561

Unique reflections
(obs.)

1044 1276 1298 1157 951 1223 1343

Unique reflections
(all)

1268 1356 1319 1180 1091 1245 2146

sin(θmax)/λ [Å−1] 0.70 0.70 0.70 0.70 0.70 0.70 0.70
Data completeness 0.79 0.99 0.79 0.74 0.86 0.91 0.76
Refinement parameters
Parameters 98 119 111 116 96 121 130
Constraints 7 7 7 7 7 7 6
Rmax
Sg 0.50 0.45 0.45 0.70 0.45 0.60 0.70

Robs(F ) 0.096 0.089 0.089 0.075 0.092 0.089 0.061
wR(F ) 0.102 0.111 0.113 0.097 0.110 0.113 0.070
refined thickness
(Å)

623 (7) 603 (5) 631 (7) 619 (7) 400 (6) 879 (5) 406 (3)

refined vacancy
concentration

0.441 (9) 0.331 (7) 0.459 (5) 0.418 (6) 0.528 (7) 0.490 (9) 0.511 (7)

Table 4.14: Electron diffraction measurements of Qa samples. Used frames refer to the
number of frames used in the final refinement. Lattice parameters marked with a *
were corrected after the measurement due to wrong calibration parameters during the
measurement.
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sorted by sample and measurement type. In all the listed cases with a nominal composition
corresponding to δ > 0.4 the refined vacancy concentration determined with pXRD is
lower than expected from the synthesis. In the case of the VSG samples this can be
explained with the formation of γ -Al2O3, but it must also be considered that the presence
of γ -Al2O3 could not be adequately modelled (cf. Fig. 3.3) and thus the refinement
might contain systematic errors making the refinement of the composition of the VSG
samples less reliable. Apart from that, within the same synthesis batch a broad range of
compositions is observed which cannot be explained by the standard uncertainty. With
respect to the phase diagram (Fig. 1.1.7) the composition range of the samples must
be considered metastable, i.e. during the synthesis different compositions may form and
the formation of a homogeneous, single-phase mullite sample is not likely. Fischer et
al. (1994) reported that in very aluminous mullite samples synthesised with the sol-gel
method a broad composition range was observed for different crystallites of the same
synthesis batch [53]. Ylä-Jääski & Nissen (1983) also observed the presence of different
vacancy concentrations between δ ≈ 0.48 and δ ≈ 0.54 in the same mullite sample with
a nominal composition of δ = 0.58 [36]. All in all the refined vacancy concentrations are
considered to be a reliable estimate for the chemical composition of the sample for which
the modulation wave vectors q were determined (Tab. 4.13 and 4.14), although a higher
standard uncertainty could be anticipated.

In Figure 4.19 α and γ are plotted against the vacancy concentration δ. Two composition
ranges with different symmetry and different q–δ relationship can be clearly identified.
The plot suggests that the turnover vacancy concentration is around 0.5. Mullite with δ <
0.5 (’orthorhombic mullite’) has a modulation wave vector q = (α 0 1

2). For higher vacancy
concentrations a reduction of the symmetry is observed because γ is approximately 0.46
and seems to be constant independent of the vacancy concentration (’monoclinic mullite’).
A linear least squares fit (Fig. 4.19) considering all model refinements of orthorhombic
mullite including the results from this section, Table 4.6 and [6] leads to the relationship
α = 0.494 (16)− δ · 0.46 (4). This is in good agreement (1σ) with the prediction α = 1−δ

2 .
The experimental q–δ relationship also deviates clearly, but within the 3σ limit, from the
initial analysis based only on the literature α = 0.550 (17) − δ · 0.57 (4). However, there
are two aspects that require a deeper examination: Most PEDT and XRD data points in
Figure 4.19 are located slightly above the prediction and thus a systematic offset cannot
be excluded. Furthermore, for δ < 0.55 the minimum α is clearly not 0.25 in contrast to
the prediction by Equation 4.2. The experimental results thus suggest that the validity
of the established relationship only holds up to δ ≈ 0.45 and not up to δ = 0.5. On the
other hand, the block model predicts that a new ordering pattern is required for δ > 0.5
in perfect agreement with the observation that mullite exhibits a different symmetry for
δ > 0.5. Another interesting observation is that Equation 4.2 was derived from the
symmetry of a completely ordered model, but the experiments were exclusively based
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4.4 Unified SSM: Ordering mechanisms in ordered mullite

Figure 4.19: Experimental relationship between q and the vacancy concentration δ (cf.
Fig. 4 in [2] and Fig. 9 in [36]). α (cold colours) and γ (warm colours) of the literature
(small dots without error bars, § A.1), PEDT measurements (circles with error bars) and
sXRD (green diamonds, § 4.2.1, [6]) are shown. The blue dashed line is the interpolated
least-squares fit using results of samples with refined compositions and q = (α 0 1

2). The
red dashed line represents the relationship α = 1−δ

2 derived from the block model.

on disordered samples without high order satellite reflections. The degree of order might
influence the q–δ relationship and the range for which Equation 4.2 is valid. Nevertheless,
the overall agreement is a strong indicator that the block model describes the fundamental
vacancy ordering pattern of orthorhombic mullite. For the upcoming sections, in which
fully ordered commensurate cases of the unified SSM are statically relaxed, it will be
assumed that Equation 4.2 describes the q–δ relationship in the range 0 ≤ δ ≤ 0.5. A
detailed analysis of monoclinic mullite is outside the scope of this chapter, but it will be
revisited in § 5.3.2 and § 6.3.3.

4.4.4 Determination of the ideal Al/Si ordering with computa-
tional methods

The examples in Table 4.11 can be described as superstructures of mullite corresponding
to commensurate cases with α ∈ Q. In these superstructures the vacancy distribution and
thus the distribution of oxygen atoms is exactly defined, but the distribution of Si atoms
is not known. In analogy to the computational approach of § 4.3.3 the ideal distributions
of Si atoms for different compositions in the range 0 ≤ δ ≤ 0.5 were determined by a
combination of FF calculations and DFT calculations. An overview on the input super-
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Label RAS δ α Supercell
size

Space
group

〈nV〉 Natoms Al/Si per-
mutations

FF
cells

DFT
cells

M0 1/1 0 1/2 2× 1× 2 Bb21m 0 64 3 3 3
M11 19/16 1/9 4/9 9× 1× 2 Pnnm 1

3 286 43758 0 2
M14 5/4 1/7 3/7 7× 1× 2 Pbam 1

2 222 3003 0 2
M20 11/8 1/5 2/5 5× 1× 2 Pnnm 1 158 210 0 2
M25 3/2 1/4 3/8 8× 1× 2 Bb21m 2 252 8008 8008 15
M27 25/16 3/11 4/11 11× 1× 2 Pnnm 3 346 319770 0 2
M33 7/4 1/3 1/3 3× 1× 2 Pbam ∞ 94 15 15 15
M37 15/8 7/19 6/19 19× 1× 2 Pnnm 7 594 2.7× 109 0 1
M40 2/1 2/5 3/10 10× 1× 2 Bb21m 4 312 38760 38760 21
M43 17/8 3/7 2/7 7× 1× 2 Pnnm 3 218 1001 0 2
M45 9/4 5/11 3/11 11× 1× 2 Pbam 5

2 342 74613 0 1
M50 5/2 1/2 1/4 4× 1× 2 Bb21m 2 124 28 28 28

Table 4.15: Superstructures for computational study on the solid solution range of mullite.
Natoms is the total number of atoms in the supercell. The number of Al/Si permutations
is calculated considering only space group compliant Al/Si distributions. Si on the T*
site is not forbidden. FF supercells and DFT supercells refer to the number of structures
with different Al/Si permutations for which FF and DFT calculations were carried out,
respectively.

structures is given in Table 4.15. Each composition is labelled as capital letter M followed
by the first two decimal places of the rounded vacancy concentration, e.g. the vacancy
distribution of the ordered SSM investigated in § 4.3.3 is M40. Initial structure models
were generated based on the coordinates of the ordered SSM (§ 4.3.1) and a systematic
adaptation of the Si distribution, which automatically also defines the distribution of Al
atoms. It was tested that small variations of the initial coordinates have no influence on
the optimised structure and the result is independent of an initial displacive modulation.
The total energy of all symmetry compliant Al/Si ordering patterns of M0, M33 and M50
were determined with FF and DFT calculations (PBE). For M25 all Al/Si permutations
were investigated with FF calculations and, in analogy to § 4.3.3, the most promising can-
didates were further investigated with DFT calculations (PBE). Each Al/Si permutation
is assigned an FFID corresponding to its stability according to the FF calculations and a
rank corresponding to its stability according to the DFT calculations (Fig. 4.20).

The FFID ranking of M33 deviates by about 1 position relative to the DFT ranking.
However, the first and last FFID correctly represent the most and least stable supercell,
respectively. In the case of M50 the uncertainty of the ranking is about 2 positions and
neither the first nor the last rank are correctly identified. The geometric optimisation
of the least stable structures with DFT in many cases results in a strong deformation
and larger deviation from the bond lengths expected from X-ray diffraction studies. In
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4.4 Unified SSM: Ordering mechanisms in ordered mullite

Figure 4.20: Total energies E/atom (meV) of FF calculations (blue circled) and DFT
calculations (orange diamonds) relative to the most stable superstructure of M25, M33
and M50.

contrast, the coordinates of the most stable structures are only slightly displaced from the
expected coordinates. These results are taken as indication that a qualitative assessment
of the relative stability of a certain supercell is possible with the FF calculations, but for
the determination of the ideal Al/Si ordering more accurate DFT calculations must be
carried out. This also supports the results of § 4.3.3 because it could not be excluded
that a more stable Al/Si ordering was ’hidden’ behind the lack of accuracy of the FF
calculations, but apparently the FF rankings are reliable enough as estimated in § 4.3.3.

The qualitative analysis of the most stable and the least stable Al/Si permutations allows
to evaluate the stability of certain structural units. M0 #3, the least stable supercell,
contains Al2O7 units (O3 bonded to two Al atoms), which is an unstable configuration ac-
cording to Pauling’s bond valence rules (§ 1.2). M0 #2 contains chains of Si-Si diclusters
(Si2O7) which is avoided according to Pauling’s bond valence rules and nature of contigu-
ous polyhedra because O2 atoms are shared by two Si atoms and one Al atom. These
bonding situations are also avoided in the other superstructures of all compositions and
the structures containing equally overbonded O2 atoms or underbonded O3 atoms are
relatively unstable. In M25, M33 and M40 there are dicluster-vacancy columns, which in
the most stable structures are consistently of the Si-Si type. M40 #1 and M50 #1 con-
tain Si in the triclusters indicating that Si in triclusters is favoured over Si-Si diclusters
in dicluster-tricluster chains (Fig. 4.21). Si occupies the T* site in the structures of M25
#8 (FFID 32), M33 #3 (FFID 6), M40 #2 (FFID 10, Fig. 4.16) and M50 #2 (FFID 6).
Hence, the presence of Si3 atoms is energetically stable and the energetic cost of such a
configuration is very low with respect to the most stable configuration. Structural studies
should not generally exclude the presence of Si on the T* site.

4.4.5 Al/Si ordering of unified SSM

A comparison of M0 #1, M25 #2, M33 #1, M40 #1 and M50 #1 indicates that the
global Al/Si ordering pattern follows the same rules (Fig. 4.21):

1. Diclusters stacked between vacancies are always of the type Si-Si.
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Site label O3a O3b O4 T T* Al21 Al22 Si21 Si22
∆µ

BW
1
2 − δ

1
4(1− δ) δ

2 1− δ
2

δ
2

1
2(1− δ) δ

2
1
4(1− δ) 1

4(1− δ)
xµBW 0 1

4(1 + α) 1
2 + αx̄O4

s1 αx̄Ts1
1
2 + αx̄Al3s1

1
4 + αx̄Ts1 α(x̄Ts1 − 1

2) δ
4 + α(x̄Ts1 − 1

4) −1
4 + α(x̄Ts1 − 1

4)
tµBW −1

4
1
8(1− δ) 1

4 −1
4

1
4 0 1

4(2− δ) 3
8(δ − 1) 1

8(δ − 5)

Table 4.16: Constraints on block wave functions including Al/Si ordering. tµBW is the
centre of the block wave function in t space. The relationship α = 1−δ

2 is presumed.

2. In dicluster-tricluster chains triclusters contain no Si atoms and diclusters one Si
atom. The orientation of the Al-Si diclusters is uniquely defined by the tricluster
orientation.

3. If δ > 1
3 then triclusters in tricluster-vacancy chains host one Si atom on the T site

that forms the border to the neighbouring VFB.

4. If δ < 1
3 then dicluster-dicluster chains are made of Al-Si diclusters with alternating

orientations so that each Si is linked to three Al tetrahedra and each Al is linked to
three Si tetrahedra.

The list of rules to describe the Al/Si ordering could be further expanded, but a full para-
metrisation is rather inconvenient. Embedding the structures in superspace as described
in § 4.3.4 allows an easier comparison by means of the block wave parameters describing
the occupational modulation of Al2 and Si2. The analysis of the embedded structures sug-
gests that the displacive modulation and the occupational modulation can be described
by one set of composition-dependent modulation functions (Fig. 4.22). Here, the focus
is on the occupational modulation, for which the constraints for a unified description are
given in Table 4.16. The resulting superspace model is similar to that of M40 #1 depicted
in Figure 4.18.
The unification of the Al/Si ordering is possible for 0 ≤ δ ≤ 0.5 assuming that M25 #2
represents the ideal Al/Si ordering and not M25 #1. This is justified by the following
observations: (1) The total energy difference between M25 #1 and M25 #2 is 0.085 eV
or 0.68 meV/atom. It is difficult to estimate the accuracy of these calculations, but the
scale can be appreciated by comparing similar calculations. The total energy difference
of (PBE) between sillimanite and andalusite is 7.00 meV/atom, it is 16.54 meV/atom
between M33 #1 and M33 #2, 1.24 meV/atom between M40 #1 and M40 #2 and 2.69
meV/atom between M50 #1 and M50 #2. Hence, 0.68 meV/atom is a very small amount
of energy which might be in the range of the uncertainty. (2) The essential difference
between M25 #1 and M25 #2 is the orientation of Al-Si diclusters in dicluster chains (Fig.
4.21). Hence, both Al/Si ordering patterns are almost the same and the ambiguity only
concerns the block borders at which the vacancy-free blocks overlap. (3) The embedding
of M25 #1 in superspace reveals a more complex Al/Si ordering scheme as six instead
of four block wave functions are needed to describe the occupancy of Al2 and Si2. If
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4.4 Unified SSM: Ordering mechanisms in ordered mullite

Figure 4.21: Relaxed superstructures (PBE) of M0, M25, M33, and M50. The two most
stable Al/Si ordering patterns of M25 are shown, which only differ in the orientation of
two Al-Si diclusters at the border of the VFBs. Two subsequent layers of M33 are shown
representing the infinitely repeating unit of the VB and VFB, respectively.

Figure 4.22: Coordinate xs1 of tetrahedral Al2 (light blue) and Si2 (dark blue) atoms
of M25 #2 (circles), M33 #1 (diamonds), M40 #1 (squares) and M50 #1 (triangles)
embedded in superspace. The displacive and occupational modulation functions follow
the same trend allowing a description of the solid solution range by a unified superspace
model. Dashed lines indicate trend lines fitted by hand.
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Figure 4.23: Alternative Al/Si ordering patterns of M43 AS3 and M50 AS3. In each
model the two Al-Si pairs that are exchanged with respect to AS1 are marked by white
crosses. Symmetrically related pairs are not marked. Geometries correspond to the re-
laxed structures resulting from the DFT calculations (PBEsol-D)

Pauling’s rule of parsimony can be applied to superspace, then a description with less
parameters would be favoured. (4) Furthermore, the Al/Si ordering scheme can only be
extended to the range 0 ≤ δ ≤ 1

3 because the two extra domains needed to describe the
Al/Si ordering in diclusters disappear if 1

3 < δ. At δ = 0 and δ = 1
3 the ordering schemes

derived from M25 #1 and M25 #2 are identical. In the appendix a superspace model of
the Al/Si ordering pattern of M25 #1 is shown (§ A.7).

4.4.6 Sophisticated calculations of commensurate cases of the
unified SSM

So far, the calculations were based on M0, M25, M33, M40 and M50 using the PBE
functional without dispersion correction. The last section presented strong evidence that
a unified description of the ordered mullite structure in the composition range 0 ≤ δ ≤ 0.5
is possible in superspace by implementing the constraints of Table 4.16 and Equation
4.2. In § 3.6 it was pointed out that dispersion corrected DFT calculations achieve a
better agreement with experimental lattice parameters and bond lengths. Therefore,
more accurate dispersion corrected DFT calculations based on the PBEsol functional
(PBEsol-D) were performed on eleven superstructures of mullite with the ideal Al/Si
ordering pattern derived in the last section (label AS1). For selected superstructures with
0 < δ < 1

3 also the Al/Si ordering pattern of M25 #1 was investigated (label AS2). For
M43 and M50 a second Al/Si ordering scheme was tested (Fig. 4.23). With respect to
the force field calculations this scheme corresponds to M40 FFID 86 and M50 FFID 12
(M50 # 11). This Al/Si ordering pattern will be labelled AS3 and is related to M25 #1
because the only difference is that if 1

3 < δ the outermost Si atoms, with respect to the
middle of the vacancy-free block, occupy tricluster T sites instead of dicluster T sites as
in M25 #1. To avoid confusion with the labels of the FF calculations, the labels of other
DFT calculations and the different Al/Si ordering patterns, an overview of the labels is
given in 4.17 including the total energies of the calculations based on PBEsol-D.
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Ideal Al/Si ordering (§ 4.4.5) Alternative Al/Si ordering
FFID PBE PBEsol-D E/atom (meV) FFID PBE PBEsol-D ∆E/atom (meV)

M0 1 #1 AS1 −8084.88 – – – –
M11 – – AS1 −8066.59 – – AS2 0.05
M14 – – AS1 −8061.29 – – AS2 0.04
M20 – – AS1 −8051.74 – – AS2 −0.44
M25 1 #2 AS1 −8043.15 2 #1 AS2 −0.09
M33 1 #1 AS1 −8028.80 – – – –
M40 3 #1 AS1 −8015.72 86 – – –
M43 – – AS1 −8010.16 – – AS3 15.17
M45 – – AS1 −8005.17 – – – –
M50 3 #1 AS1 −7996.55 12 #11 AS3 28.73

Table 4.17: List of labels of relevant calculations. E/atom refers to the total energy of
AS1 resulting from the calculations with the PBEsol-D functional. ∆E/atom (meV) of
the alternative Al/Si ordering (AS2 if δ < 1

3 , AS3 otherwise) is expressed relative to AS1
of the ideal mullite structure with the same vacancy concentration.

The calculations of M20 and M25 confirm that AS2 is energetically more stable than AS1,
but interestingly for M11 and M14 AS1 is more stable than AS2. A property of block
models with δ < 0.2 is that 〈nV〉 < 1 and thus neighbouring VFBs are not separated
leading to extended blocks with more than two neighbouring dicluster chains (Tab. 4.11).
According to the calculations the unified superspace model as described in the last section
(Tab. 4.16) thus is confirmed without ambiguity in the range 0 ≤ δ < 0.2 and 1

3 ≤ δ ≤ 0.5.
In the range 0.2 ≤ δ < 1

3 the distribution of most Si atoms is defined with certainty except
for the orientation of Al-Si diclusters in dicluster chains.

Lattice parameters of all geometrically optimised supercells are plotted in Figure 4.24 for
comparison with lattice parameters determined from X-ray diffraction measurements (see
figure caption). Experimental lattice parameters were measured at ambient conditions,
whereas the calculations correspond to a temperature of 0 K and a pressure of 0 Pa.
No measurements of thermal expansion coefficients or lattice parameters close to these
conditions are available, but the extrapolation of measurements at elevated temperatures
[177] allows to estimate that a temperature correction would decrease the experimental a
and c by less than 0.01 Å and b by less than 0.02 Å. This has no relevant influence on the
present analysis. The dependence of the lattice parameters of AS1 on the composition is
different for the ranges δ < 1

3 and 1
3 < δ, respectively. For lower vacancy concentrations the

parameter a increases linearly with δ resembling experimental observations remarkably
well. In the same region b decreases slightly, but neither the slope nor the absolute
values agree with experimental observations. In the range 1

3 < δ the parameter a slightly
decreases and deviates from the experimental observations, for which the linear behaviour
is not separated into two regions. b increases but still shows a clear offset from the
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Figure 4.24: Lattice parameters of geometrically optimised supercells for Al/Si ordering
patterns AS1, AS2 (δ < 1

3) and AS3 (1
3 < δ). The parameters a and c were divided by

an integer to account for the supercell size. Experimental values of a, b and c of mullite
based on X-ray diffraction measurements are taken from [178, 46, 179]. Sillimanite lattice
parameters are also included with data from [173] for comparison with lattice parameters
of M0. Several experimental values of parameter a are ’hidden’ behind the data points of
the DFT calculations.

reference values. The lattice parameters of AS1 and AS2 (δ < 1
3) are almost identical

and seem to be not affected by the different orientations of the Al-Si dicluster chains.
The lattice parameter c varies very little over the whole composition range independent
of the Al/Si ordering pattern. Despite the good overlap of a for δ < 1

3 , the overall
picture indicates that the model does not account for all relevant structural aspects.
This is not surprising because the calculations are based on fully ordered models with
strict lattice periodicity along the b direction whereas the real structures are disordered.
Investigations of the diffuse scattering revealed that important inter-vacancy vectors are,
among others, [3

2 ,
1
2 , 0] and [1

2 ,
3
2 , 0] [4]. The first also plays a crucial role in all supercells

with nV > 1, but [1
2 ,

3
2 , 0] breaks the lattice periodicity along b. The lattice parameters

of AS3 show that small changes of the Si distribution result in a significant change of the
lattice parameters. The discrepancy of the determined values of a and b thus are likely to
originate from deviations of the Al/Si ordering pattern implemented in the unified SSM.
The lattice parameters a and c of M0 AS1 are almost identical to a and c of sillimanite,
only b deviates a little bit. This is not surprising, because structurally they only differ in
the orientation of Al-Si diclusters. Nevertheless, it must be emphasised that M0 AS1 is
not sillimanite.
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Chapter 5

Discussion

In Chapter 4 different superspace models of mullite in the vacancy concentration range 0 ≤
δ ≤ 0.5 were presented. Based on the symmetry analysis, crystal chemical considerations
and experimental observations an ordered unified superspace model was developed. In
this chapter the results are put into a broader context considering especially the different
degrees of order, antecedent structure models and the experimentally observed phase
diagram.
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5.1 Comparison with antecedent models

Figure 5.1: Electron density maps around the O1 site adapted from Figure 3 of [62]
plotted together with the transformed O1 coordinates from M40 AS1 (green points).
Left: Electron density from a refinement using third and fourth order tensors to describe
the displacement of O1. Right: Difference density map relative to a refinement based on
ADPs. x and y are absolute coordinates in Å as in the published Figure 3.

5.1 Comparison with antecedent models

5.1.1 Displacement parameters of O1 in the average structure

A high resolution single crystal X-ray diffraction study of a disordered 2/1-mullite sample1

analysed the anharmonic displacement parameters of O1 and O2 determined from an
average structure model refinement [62], which was also mentioned in the introduction
(§ 1.3.2). In Figure 5.1 high resolution electron density maps are compared with the O1
coordinates of M40 AS1. The displacement distribution can be approximated considering
the static displacement of O1 atoms relative to the average coordinates. For O2 atoms a
smaller displacement was reported in agreement with the developed superspace models,
in which the amplitude of the displacive modulation of O1 is larger than that of O2. This
comparison indicates that the displacement of atoms in disordered mullite is related to
the displacement of atoms described by the modulation functions of the ordered SSM.

5.1.2 Component structures from group theoretical analysis of
Pbam(α01

2)0ss

McConnell & Heine suggested in 1981 an alternative to the superspace approach to ex-
plain the origin of modulations and describe modulated structures [65] based on group
theory and Landau theory of phase transitions [64]. According to their theory the incom-
mensurate phase can be described by “two independent modulation component structures
[...] C1 and C2 oscillating 90° out of phase with one another” and that the symmetry

1The measured single crystal originates from sample with label ’5’ in the study by Cameron (1977)[2].
Angel et al. used the same sample for their subsequent studies of the modulation (§ 5.1.2) and it was
also used by Welberry et al. to study the diffuse scattering [67, 180].
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R-irep label Displacement
component[181] BCS Affected sites E 2z 2y 2x i mz my mx

X7 Z+
2 Aµx,1 (z = 1

2) T, T*, O1, O3, O4 1 1 −1 −1 1 1 −1 −1
X8 Z−4 Bµ

x,1 (z = 1
2) T, T*, O1, O4 1 −1 1 −1 −1 1 −1 1

X1 Z+
1 Aµy,1 (z = 1

2) T, T*, O1, O3, O4 1 1 1 1 1 1 1 1
X2 Z−3 Bµ

y,1 (z = 1
2) T, T*, O1, O4 1 −1 −1 1 −1 1 1 −1

X7 Z+
2 Aµz,1 (z = 0) Al1, O2 1 1 −1 −1 1 1 −1 −1

X8 Z−4 Bµ
z,1 (z = 0) O2 1 −1 1 −1 −1 1 −1 1

Table 5.1: Character table showing how the displacement amplitudes of first order har-
monics transform under the operations of the superspace group Pbam(α01

2)0ss. Full
symmetry operators are given in Table 4.2. The R-ireps were determined with the tool
’SUBGROUPS’ of the Bilbao Crystallographic Server (BCS) [182]. Labels of R-ireps are
given as found in the work by McConnell & Heine (1984) [181] and as provided by the
BCS.

of C1 and C2 must be subgroups of the space group of the average structure [181]. The
application of this approach to the modulated structure of 2/1-mullite assumed that C1
and C2 represent the competing contribution of vacancy ordering on the one hand and
Al/Si ordering on the other. C1 was expected to resemble the vacancy distribution of
the hypothetical ι -Al2O3 structure [183] and C2 the Al/Si ordering of sillimanite. C1 and
C2 are 1× 1× 2 supercells, that are also called difference structures as they contain the
information in which way the respective component differs from an average double cell.
A symmetry analysis assigned the space group Pnnm to C1 and Pbnm to C2.

Angel & Prewitt (1987) characterised experimentally the component structures. Differ-
ence Patterson maps based on single crystal X-ray diffraction measurements and single
crystal neutron diffraction experiments [66, 7] with crystals originating from the same
sample batch were analysed to determine the atomic displacement directions of O1 and
O2 relative to the average structure in analogy to a displacive modulation. Likewise, a
decrease or increase of the occupancies was determined for the different sites in the com-
ponent structures. However, the amplitudes were not refined, and the structural model
was developed based on the assumption that the structure is maximally ordered. The
symmetry of the component C2 does not allow vacancy ordering and it was assumed
that the vacancies of this component are randomly distributed over the incommensurate
structure. In C1 the vacancy concentration varies within the half cells as a sinusoidal
function between 0 and 0.8 with a relative phase shift of π between vacancies with z = 0
and z = 1

2 . As a consequence, the bottom cell (z = 0) has a maximum vacancy concen-
tration if the top cell (z = 1

2) has a minimum vacancy concentration and vice versa. This
is essentially in agreement with the picture of stacked vacancy blocks and vacancy-free
blocks, but instead with a harmonic modulation of the vacancy concentration like in the
disordered SSM. From the analysis of the displacement Angel et al. (1991) concluded that
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5.1 Comparison with antecedent models

Si does not occupy tricluster sites and that diclusters are either of the AlSiO7 or Si2O7

type [7]. Clear ordering patterns were not presented apart from the indicated trends, but
they qualitatively agree with the results of this thesis.

Component structures can also be derived from the superspace models. For an easier
comparison 1 × 1 × 2 component structures labelled C1s and C2s were analysed based
on the geometrically optimised superstructure of 2/1-mullite (M40 AS1, § 4.4.6). In a
first step the component structures must be identified. This requires to check how the
superspace symmetry operators of Pbam(α01

2)0ss transform the displacement amplitudes
of the coordinates of all atoms in the unit cell. A comparison of the resulting character
table with the irreducible representations (R-irep) of the space group Pbam allows to
determine the symmetry of C1s and C2s (Tab. 5.1). The sine and cosine components
of the displacive modulation of x and z transform according to the R-ireps Z+

2 (X7) and
Z−4 (X8), and of y according to Z+

1 (X1) and Z−3 (X2). McConnell & Heine (1985) rejected
the presence of the distortion modes Z+

1 and Z−3 based on electrostatic considerations, but
the symmetry analysis of superspace symmetry analysis shows that it must be included.
Depending on the origin shift and the t-section the component structures exhibit different
symmetries. Here, an origin shift of 1

4a + 1
2c was applied2. The resulting C1s (Z+

1 , Z−4 )
and C2s (Z+

2 , Z−3 ) are described in space groups Pb21m and Pn21m, respectively. In
Figure 5.2 the superstructure of M40 AS1 is shown with the position of the component
structures. The respective 1 × 1 × 2 subcells of the superstructure are shown with more
details in Figure 5.3 together with the original component structures of C1 and C2 for a
direct comparison [66].

Now that the component structures are identified, they can be compared with C1 and
C2. In the initial symmetry analysis [181] the presence of more than one distortion
mode was not considered. Thus, monoclinic or non-centrosymmetric space groups were
rejected. The component structures C1s and C2s were derived systematically from the
superspace group considering the relevant Wyckoff positions. Nevertheless, in C1 and C2
the approximate displacement directions of O1 and O2 atoms agree with those of C1s
and C2s (Fig. 5.3), although the displacement amplitudes exhibit different symmetry
relationships because the distortion modes Z+

1 and Z−3 were not included in C1 and C2.
Despite this minor difference, it can be concluded that both models describe the same
underlying displacement pattern. The indicated trends of the occupancies in C1 and C2
agree well with the absence and presence of diclusters and triclusters in C1s and C2s, but
the description of the latter is more accurate as atoms are either present or absent. An
analogue description is not possible under the symmetry constraints of C1 and C2.

2The origin shift is expressed relative to the average structure. The shift component along c was
included for easier comparison with the setting of C1 and C2 used in the other studies. Also note that
McConnell & Heine (1985) assigned the labels C1 (X8) to the ’sillimanite’ component (Pbnm) and C2
(X7) to the ’ι -Al2O3’ component (Pnnm) [32]. Angel & Prewitt (1987) used a reversed enumeration for
ρ1 (’ι -Al2O3’) and ρ2 (’sillimanite’) [66]. Here, the labels of McConnell & Heine are used.
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Figure 5.2: Model of ordered 2/1-mullite in space group Bb21m with ideal Al/Si ordering
(§ 4.3.3) based on the ordered SSM at t = 0.275. Only tetrahedra of cations (Al polyhedra
in grey blue, Si tetrahedra in dark blue) with z = 1 are shown with the interconnecting
octahedra. The coloured boxes indicate the positions of the component structures. C1s
and C2s describe the structural difference with respect to the average structure. Here, the
resulting structure is shown and the boxes do not show the component structures. The
sign of the label indicates if the respective component structure was added or subtracted
from the average structure. In the superspace approach the difference with respect to an
average structure is described by modulation functions.

Figure 5.3: Component structures C1 and C2 in comparison to the atomic displacements
and occupancies caused by the component structures C1s and C2s. In C1 and C2 a
decreased (open circles or ’–’) and increased (filled circles or ’+’) occupancy of the T,
T*, O3 and O4 sites (z = 1

2) is indicated together with the displacements of O1 (z = 1
2)

and O2 (z = 1
4). In C1s and C2s the atoms occupying the sites described in C1 and C2

are shown (0.2 < z ≤ 1
2) together with the subsequent layer (−0.3 < z ≤ 0, decreased

opacity). In all cases the displacement of O2 along the c direction is indicated by 	 and
⊕. A comparison of C1 with C1s and C2 with C2s reveals that the displacement directions
agree qualitatively, but there are differences concerning the occupancies. O4 atoms with
an increased occupancy in C1 and C2 that coincide with an occupancy of 1 in C1s and
C2s are marked with a green circle. Occupancy trends that are not in agreement with C1s
and C2s are marked with a red cross. Component structures of C1 and C2 are adapted
from Figure 9 in [66]. Note that the original figures were rotated and therefore minus
signs in C1 and C2 are vertical bars. Also note the origin shift of 1

4a.
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5.1 Comparison with antecedent models

Initially it was assumed that one component structure defines the vacancy ordering and
the other the Al/Si ordering. This picture is not supported by C1s and C2s. Both
components are important for vacancy ordering and Al/Si ordering and a separation of
the Si distribution from the vacancy distribution is not possible in terms of 1 × 1 × 2
subcells. C1s describes the stacking of VBs and VFBs in agreement with C1. The first
component is thus responsible for the vacancy ordering within VBs and for the Al/Si
ordering within the VFBs. C2s describes the tetrahedra distribution at the block borders.
The component structures derived from the ordered SSM thus emphasises the importance
of the block structure and the stacking pattern of the blocks for the description of the
underlying ordering mechanisms.

The comparison has shown that the alternative description of modulated structures in
terms of component structures can be easily derived from a superspace model. The step
into the opposite direction, i.e. the construction of a superspace model, is not straight
forward from the component structures. A comparison of the component structures C1
and C2 with C1s and C2s contains minor differences concerning the displacement of atoms
and significant differences concerning the occupancies of diclusters and triclusters (Fig.
5.3). These disagreements can be attributed to the different space groups and partly to
the fact that the parameters of C1 and C2 were not refined. The superspace description
thus provides a more complete description of the structure of mullite that takes the full
symmetry into account.

5.1.3 Alternative vacancy ordering pattern

Saalfeld (1979) suggested the first model for 2/1-mullite with an ordered vacancy distribu-
tion [60]. In § 4.1.2 (Fig. 4.4) it was shown that this vacancy distribution can be derived
from the superspace group Pbam(α01

2)0ss if the vacancy domain is not on a special posi-
tion, but xQBW = 0.07. In Saalfeld’s model (Fig. 1.7) also vacancy blocks and vacancy-free
blocks can be identified. Using the terminology of § 4.4.1 VBs with nV = 2 alternate with
VFBs with either nD = 3 and nD = 5 along a, which is clearly a different pattern in com-
parison to the ordered SSM of 2/1-mullite described in § 4.3. The stacking along c is also
different because in Saalfeld’s model VBs are stacked upon VBs and VFBs upon VFBs
resulting in the presence of tricluster-tricluster chains and dicluster-dicluster chains. In
§ 4.4 the absence of tricluster-tricluster chains was identified as unifying mechanism, but
this avoidance rule must not necessarily hold for alternative block stacking patterns as in
Saalfeld’s model. However, there is one major drawback of the alternative vacancy dis-
tribution described in the space group B11 2

m
. The 2-fold rotation axis goes through the

O3 atoms of dicluster columns and thus excludes Al-Si diclusters in that column because
only alternating patterns of Si-Si and Al-Al diclusters may be present. Nevertheless, the
limitations on the Si distribution by the symmetry necessarily destabilise the structure
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according to the Al/Si ordering trends identified in § 4.4.4 and also according to Pauling’s
rules.

A few Al/Si ordering patterns were investigated with force field methods by geometrically
optimising the trial structures using the GULP code [9]. This quick survey is by far not
complete and here the focus lies on two structures which are considered to be representat-
ive examples of a stable (’the good’) and an unstable (’the bad’) structure with Saalfeld’s
vacancy distribution. The bad structure was constructed by completely avoiding Si in
triclusters so that all Si atoms are concentrated in VFBs and Al-Al diclusters are not
present (bottom model in Fig. 5.4). A relaxation of the model with GULP leads to
strong distortions, e.g. a single Si tetrahedron without the dicluster partner tetrahedron
or a three-membered ring instead of a tricluster without a central O4 oxygen emerge dur-
ing the relaxation. A geometric optimisation with DFT failed as within four relaxation
cycles the lattice parameters increased by more than 40% and the structure fully decom-
poses. Furthermore, phonon calculations with GULP show several physically meaningless
phonons indicating that the structure is unstable3. The total energy of the distorted re-
laxed structure is −9537.16 meV/atom, which is 67 meV/atom greater than M40 FFID 3
(Tab. 4.10 in § 4.3.3).

The good structure (top model in Fig. 5.4) was obtained by interchanging Al and Si atoms
in a series of relaxation steps until the geometry of the optimised structure did not show
any visible distortions with respect to the expected polyhedra geometry. The important
stabilising elements relative to the bad structure are the presence of Si in the tricluster
chains and Al-Al diclusters alternating with Si-Si diclusters along the 2-fold rotation axis.
According to GULP all phonons are stable and the total energy is −9596.43 meV/atom,
which is 7.72 meV/atom greater than FFID 3 (Tab. 4.10 in § 4.3.3). Preliminary DFT
calculations (PBEsol-D) indicate that the structure is stable with a total energy that is
about 13 meV/atom greater than M40 AS1. The normalised lattice parameters a, b and c
resulting from geometric optimisation are 7.5711 Å, 7.6332 Å and 2.9082 Å, respectively.
These values are slightly above those of M40 AS1. From this it can be deduced that the
vacancy distribution has only a minor effect on the lattice parameters and that mainly
the Si distribution on the tetrahedral sites determines the geometry of the lattice.

The comparison between the ordered SSM and Saalfeld’s model of 2/1-mullite indicates
that different vacancy distributions are stable. It also confirms that Al/Si ordering is
crucial for the successful simulation of mullite structures. The stacking of VFBs on VFBs
and VBs on VBs increases the complexity of the structure in a physical space description
and in a superspace description as well. Hence, the models developed in this thesis

3Phonon calculations of the geometrically optimised 2/1-mullite superstructures were not carried for
the determination of the ideal Al/Si ordering in § 4.3.3. For a set of tested structures all phonons were
stable, including structures with relatively high energy like FFID 30658 and FFID 32337. Highly unstable
structures like FFID 38760 also show unstable phonons according to calculations with GULP.
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5.1 Comparison with antecedent models

Figure 5.4: Two trial Al/Si ordering patterns based on Saalfeld’s vacancy distribution of
2/1-mullite. Two subsequent layers are shown. The upper model shows the ’good’ candid-
ate with Si in the tricluster chains and Si-Si diclusters alternating with Al-Al diclusters
along the 2-fold rotation axis. The bottom model, which is not stable, has no Si in any
tricluster and thus all Si atoms are concentrated in the stacked VFBs. The upper model
shows the geometrically optimised structure, whereas the bottom model shows the input
structure because the geometric optimisation leads to a strong deformation.

are favoured according to Pauling’s rule of parsimony. Although a refinement was not
attempted, a comparison of the simulated diffraction patterns (Fig. 5.7) shows significant
differences of the diffracted intensities. In conclusion, a relationship between Saalfeld’s
model and the ordered SSM can be established in physical space using the description
of block units and also in superspace using different block wave parameters to describe
the vacancy domain. The simulated diffraction patterns, the symmetry analysis with
respect to Al/Si ordering and the DFT calculations indicate that the ordered SSM is the
appropriate description of the underlying ordering mechanisms in mullite.

5.1.4 Full vacancy ordering in 5/2-mullite

Ylä-Jääski & Nissen (1983) developed an ordered structural model of 5/2-mullite based
on high-resolution TEM micrographs of a sample with an approximate vacancy concen-
tration δ ≈ 0.48 [36]. The model was described quantitatively as a 4× 1× 2 supercell by
Kahn-Harari et al. in the space group Bb21m (Tab. 1 and Fig. 8 in [63]). A refinement
was not attempted in the studies. The vacancy distribution of that model is identical to
that of physical space sections of the unified SSM with δ = 0.5 and α = 0.25 shown as
M50 #1 in Figure 4.21 (cf. Fig. 1.7). In the study also selected area electron diffraction
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Figure 5.5: High-resolution TEM micrographs with respected diffraction pattern of highly
ordered mullite (left) and mullite with disorder setting in (right). Each micrograph has
a width of approximately 300 Å corresponding to the size of about 40a × 90c. The
yellow bar represents a scale of 50 Å. The diffraction pattern on the left shows up to
fifth order satellite reflections, the one on the right up to the third order. Work based
on Figures 3 and 6 of Ylä-Jääski & Nissen (1983) [36]. © 1983 Springer Nature, adapted
with permission.

patterns are presented, that show high order satellite reflections (Fig. 5.5). A modula-
tion wave vector q = (0.291 0 0.5) was determined by analysing Figure 3 in [36] (§ A.1).
The expected composition for α = 0.291 is δ = 0.418, which strongly deviates from the
reported composition δ = 0.48 ± 0.03 based on EDX measurements [36]. However, the
nominal composition of the crystal used for the study corresponds to a vacancy concen-
tration of δ = 0.58 and the composition of other crystallites of the same sample showing
a monoclinic modulation was determined to be δ = 0.54 ± 0.05. This indicates that the
sample is strongly inhomogeneous which might affect the measured value of δ and of α.
Nevertheless, this observation suggests that Equation 4.2 describes the lower limit of the
α and mullite with correspondingly increased LVB

a may form. In this case tricluster chains
are avoided but not forbidden. An alternative explanation is that there is an additional
mechanism that favours a minimum block lengths with nV > 2 and therefore the lower
limit of α is higher than 0.25 as indicated in Figure 4.19, but a reliable conclusion requires
the structural analysis of a larger set of ordered samples.

In the paper by Ylä-Jääski & Nissen (1983) it is stated that the “idealized commensurate
superstructures“ do not “persist in larger areas” and in their Figure 6 a high-resolution
micrograph shows how the structure becomes wavy and seemingly dissolves into a dis-
ordered structure the superstructure can no longer be recognised (Fig. 5.5). The effect on
the electron diffraction pattern is that on the one hand higher order satellite reflections
disappear as only first, second and third order satellite reflections remain, and on the
other hand the satellite reflections are no longer spot-like but become elongated parallel
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5.1 Comparison with antecedent models

to c∗ indicating disorder in the ab plane. Although the observed modulation wave vector
deviates from the prediction, considering the inhomogeneity of the sample and the uncer-
tainty in the composition the high-resolution TEM and electron diffraction study strongly
supports the findings of this thesis: 1. Different degrees of order are directly observed
in real and reciprocal space. 2. Lower degrees of order do not show high order satellite
reflections. 3. Higher degrees of order are described by a structure of vacancy blocks and
vacancy-free blocks. These observations are in very good agreement with the results of the
ordered and the disordered SSM and their interpretation in terms of different degrees of
order. Although in the study it is also mentioned that the characteristic diffuse scattering
observed in other studies could not be detected in the samples with high order satellite
reflections, a careful analysis of Figure 3 in [36] shows a weak trace of streaks running
from first to second order satellite reflections as described in § 4.1.1. This indicates that
very high degrees of order, still not perfectly ordered, contain weak diffuse features that
are also observed in mainly disordered samples. Kahn-Harari et al. (1991) concluded that
disordered samples are composed of “ordered zones within a disordered mullite matrix”,
and that the vacancy distribution in ordered zones corresponds to the model suggested
by Ylä-Jääski & Nissen, hence the block models of VBs and VFBs. This again supports
the importance of the ordered SSM as a basis for the description and understanding of
ordering phenomena in mullite. It is also in agreement with the observation that the main
diffuse features seem to originate from the satellite reflections (§ 4.1.1).

5.1.5 Comparison with the work by Birkenstock et al. (2015)

In 2015 the first superspace description of mullite was published by Johannes Birkenstock
et al. [6] based on a X-ray diffraction measurement of a single crystal grown with the
Czochralski method. In this section the measurement and refinement are labelled BS.
The diffraction patterns showed the characteristic diffuse scattering and rather diffuse
first order satellite reflections. No second order satellite reflections were detected. The
refinement in the superspace group Pbam(α01

2)0ss used harmonic modulation functions
to model the displacive, occupational and ADP modulation. The BS constraint scheme
forced the occupational modulation functions (cf. Fig. 5 in [6]) to fulfil the relationships
gAl3s (t) = gSi2s (t + 1

2) = gAl2s (t + 1
2) = gO3

s (t + 1
2) = gO4

s (t). As Al2 and Si2 occupy the
same T site, the amplitude of the occupational modulation of the T site is twice as large
as that of the T* site. Furthermore, the relationship between O3 and O4 suggests that
the absence of O3 implies the presence of a vacancy. As described in § 1.1.3 and § 1.1.5
this is not true because the absence of O3 only implies that there is no dicluster. As a
consequence the equation gO3

s (t)+gO4A
s (t)+gO4B

s (t) = gTs (t) is not fulfilled (cf. § 4.2.1) and
the structural model is locally not charge balanced. The constraints scheme leads to some
suspicious modulation functions, for example a strong ADP modulation of the atomic
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domains of O3 and O4 leads to non-postive definite ADP tensors for some t-sections.
The amplitude of the displacive modulation of the O4 atom is significantly stronger than
the other displacive modulation functions leading to a strong modulation of the Al3-
O4 and T -O4 bond lengths (cf. Fig. 5 in [6]). Neglecting the displacive modulation
of O4, the bond length modulations are in good agreement with the refinement of the
disordered SSM (cf. Fig. 4.10) and the overall phase relationships between occupational
and displacive modulations indicate that the BS model and the disordered SSM are indeed
very similar despite the mentioned differences that probably originate from the problems
of the constraint scheme. The published dataset [6] was used for a refinement using
the constraint scheme of the disordered SSM (§ 4.1.4) and a unit weight of the structure
factor amplitudes neglecting σhkl. Only one constraint on the ADPs was used (BO3

U22,1 = 0).
The resulting disordered SSM based on the BS dataset is physically meaningful for all
t-sections indicated by a consistent shape of the ADPs and similar amplitudes of all
displacive modulation functions, including O4. The phase of the displacive modulation of
xO4
s1 of this new refinement agrees well with the disordered SSM (§ 4.1.4), but the phase

of the modulation of xO4
s2 is clearly different. The parameters for AO4

xi,1 and BO4
xi,1 (i = 1, 2)

of this new refinement are considered to be more reliable than the parameters determined
in § 4.2.1 because the BS measurement has a better resolution with sin(θmax)

λ
= 0.838, but

the estimated standard uncertainties are in both cases rather large. The Rall(F, m = 1)
improves significantly to 0.213 and wRall(F ) improves from 0.059 (BS) to 0.029 (new BS
refinement). The occupational modulation amplitude of O4 is 0.0590 (13) which is in
between that of SA2 and Qg1.

In the BS data reduction three modulation wave vectors q1, q2 and q3 were determ-
ined. It was reported that a refinement with the latter two was not possible due to the
weakness and diffuse character of the corresponding satellite reflections which inhibited a
successful integration of the reflections, but Birkenstock et al. assumed that a refinement
of a superspace model including q2 and/or q3 would probably result in a similar model
characterised by a soft modulation of the occupancies [6]. From the measurement of SA1
on ID28 at the ESRF (§ 4.1.1) q2 and q3 were also determined and exhibit essentially
the same amplitudes. The different sets of modulation wave vectors are compared in
Table 5.2. Considering the uncertainties, it can be concluded that q2 and q3 are identical
in both measurements (SA1 and BS) and that the respective satellite reflections do not
depend on the chemical composition like it is the case for the satellite reflections of q1.

Birkenstock et al. (2015) concluded that “on a larger scale there is a weak long-range
order within the overall disorder” and that “the driving force for this weak long-range or-
der is probably the tendency for compositional homogeneity” [6]. This suggests that local
variations of the chemical composition are the origin of the disorder in mullite, which
is a plausible explanation as several studies indeed reveal that mullite crystals are not
homogeneous (§ 4.2.5, § 5.1.4, [53]). With respect to the ordered SSM, the question arises
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q1 = (α1 0 1
2) q2 = (0 β2 γ2) q3 = (0 β3 γ3) q2 −mz : q3

Reference α1 β2 γ2 β3 γ3 |β2 − β3| |γ2 + γ3|
BS 0.3137 (2) 0.4021 (5) 0.1834 (2) 0.4009 (5) −0.1834 (2) 0.0011 (7) 0.0000 (4)
SA1 0.2978 (8) 0.397 (4) 0.1834 (19) 0.403 (5) −0.181 (2) 0.006 (11) 0.002 (4)
Difference 0.0159 (10) 0.005 (4) 0.000 (2) 0.002 (6) 0.002 (2)

Table 5.2: Comparison of modulation wave vectors from BS [6] and the measurement of
SA1 (§ 4.1.1).

the other way around: What is the driving force that leads to a disordered vacancy distri-
bution or a certain vacancy concentration? The next section the observation of different
degrees of order is discussed together with the most important ordering mechanisms.
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5.2 Ordering phenomena in mullite

5.2.1 Comparison of geometrically optimised structures with re-
fined structure models

The occupational modulation of the ordered and the disordered SSM are strongly related.
This is not surprising as the respective constraints were derived from the same symmetry
considerations (§ 4.1.3). From § 5.1.1 a structural relationship is expected concerning
not only the occupational modulation, but also the Al/Si ordering and the displacive
modulation. The Al/Si ordering patterns of the disordered SSM and the ordered SSM
were derived independently with different methods. A comparison of the different models
may be used to evaluate the reliability of the Al/Si ordering and displacive modulation
established from DFT calculations and in turn evaluate the consistency of the Al/Si
ordering scheme derived from the displacive modulation of the disordered SSM. In the
following the refinement of § 4.2.1 (SA1) is compared with M40 AS1 (§ 4.4.6).
In § 4.2.4 occupational modulation functions of Al2 and Si2 were determined from the
modulation of the volume of the tetrahedra site. The maxima of s̄Al2V (t) and s̄Si2V (t),
based on the reference volumes derived from [54], are observed at t = 0.88 and t =
0.63, respectively. In M40 AS1 the centre of the ten points defining the Al2 domain is
found at t = 0.84 and that of the six points of the Si2 domain at t = 0.60. This is in
acceptable agreement and thus it is concluded that the Al/Si ordering pattern of M40
AS1 qualitatively describes the underlying Al/Si ordering pattern of the disordered SSM.

The displacive modulation functions of M40 AS1 determined with the method described
in § 4.3.4 are significantly stronger than the modulation functions from the refinement,
which is expected due to the different degrees of order they represent. First order har-
monic terms Aµxi,1 and Bµ

xi,1 and the average coordinate x̄µsi were determined by a least
squares fitting procedure from the embedded coordinates. For Al3 and O4 the fit proced-
ure gives coordinates that strongly deviate from the mean because the four coordinates
are concentrated at similar t-sections. Therefore, the coordinates of Al3 and O4 were de-
termined with x̄µsi = 〈xµsi〉. The modulation functions from the refinement were amplified
by a scale factor ζ to account for the different degrees of order. ζ was determined by
minimising a residual factor

R =
∑
µ

|x̄µsi,DFT − x̄
µ
si,XRD|

x̄µsi,XRD
+
∑
µ

|Aµxi,1,DFT − ζA
µ
xi,1,XRD|

ζAµxi,1,XRD
+
∑
µ

|Bµ
xi,1,DFT − ζB

µ
xi,1,XRD|

ζBµ
xi,1,XRD

.

The minimum R = 0.03 is obtained if ζ = 4.0. In Figure 5.6 the amplified modulation
functions are shown together with the embedded coordinates and the calculated modu-
lation functions from the fitting procedure. An excellent agreement is observed for xAl1s3 ,
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5.2 Ordering phenomena in mullite

Figure 5.6: Amplified modulation functions from the refined disordered SSM (SA1, dashed
lines) are plotted with harmonic fits of first order displacive modulation functions of M40
AS1 (solid lines).
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xTsi, xO1
si , xO2

s3 and xO3
si (i = 1, 2), i.e. the modulation functions almost overlap indicating

a consistent phase, amplitude and average coordinate. The average coordinates of Al3
and O4 are slightly shifted indicating that averaging a set of coordinates over a limited
t-range is not appropriate. The phases of the modulation functions of O4 deviate quite
a lot and also the amplitudes are different. Considering that relevant differences are only
observed for the atomic domains with short block wave functions that are defined over
a small range of t-sections, the comparison as a whole supports both the ordered SSM
represented by the geometrically optimised superstructure and the disordered SSM based
on diffraction experiments. It also supports the view that the underlying ordering pat-
terns of the displacive modulations, Al/Si ordering and vacancy ordering are correctly
described by the ordered SSM.

5.2.2 Different degrees of order

If mullite structures were usually ordered as described by the ordered SSM, then in routine
powder diffraction patterns at least the strongest satellite reflections should be visible. In
Figure 5.7 several simulated powder diffraction patterns are plotted alongside the meas-
ured powder diffraction pattern of sample SA. The comparison shows that the strongest
satellite reflections of the disordered SSM are also the strongest satellite reflections of the
ordered SSM. Nevertheless, in the measured diffraction pattern satellite reflections are
not observed at the expected diffraction angles. The simulated diffraction patterns thus
unequivocally indicate that mullite samples are commonly disordered. This conclusion
was drawn by many other studies before, e.g. by [63, 3, 4, 6], but only the work by Kahn-
Harari et al. (1991) defined the most ordered state of a 5/2-mullite model (§ 5.1.4). A
unifying picture explaining the ordering phenomena in mullite for different compositions
was missing.

The results of this thesis suggest that the characterisation of the crystal structure of
mullite samples must not only consider the chemical composition, but also the intrinsic
degree of order. The refined model for SA1 exhibits the largest modulation amplitudes
indicating a stronger trend to long-range ordering in comparison to the model for SA3
with weaker modulation amplitudes. However, all refinements have in common that the
occupancies are modulated within a small amplitude range. A physically meaningful
model requires the occupancies to be modulated within a range between 0 and 1, which
introduces limitations on the allowed amplitudes depending on the order of harmonics
that are used to describe the modulation function. For example, the occupancy of the
T site is 1 − δ

2 and that of O4 and T* is δ
2 . As a consequence a model limited to first

order harmonics is restricted to modulation amplitudes ≤ δ
2 and stronger amplitudes

require higher order harmonics leading to higher order satellite reflections. There are
several electron diffraction studies that provide a good overview on the order of satellite
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Figure 5.7: Comparison of measured powder diffraction pattern (SA1, cf. Fig. 3.2)
with simulated diffraction pattern of the geometrically optimised M40 AS1 superstructure
representing the ordered SSM (green solid line). In the range 2θ < 31° a simulated
diffraction pattern based on the model suggested by Saalfeld (1979) is included (red
blurred line, § 5.1.3). A simulated diffraction pattern based on a ten-fold superstructure
generated from the refined disordered SSM is also plotted (§ 4.2.1). Diffraction patterns
were calculated with VESTA3 [184] (λ = 1.54059Å) using the refined lattice parameters
of SA for easier comparison. The inset shows the details of the diffractograms between
the main reflections 110 and 120 (16.7° < 2θ < 25.5°). The most pronounced measured
reflection in the inset is the 200 reflection and satellite reflections were not detected at
the expected diffraction angles. Positions of main reflections of mullite and α-Al2O3 are
indicated by vertical bars at the bottom. Some main reflections are indexed with three
indices hk`.

Figure 5.8: Hypothetical occupational modulation functions with first, second and
third order harmonics. The used parameters are δ = 0.4, α = 0.3, BO3

s,1 = −0.044,
BO3
s,2 = −0.057, BO3

s,3 = 0.15 based on the constrain scheme presented in Table 4.5. The
resulting occupational modulation function amplitudes of first, second and third harmonic
of Al3 and O4 are 0.25, −0.15 and 0.05, respectively. The analogy between the function
representing the occupancy of diclusters in this figure and the block wave functions of
O3a, O3b and O3bR can already be grasped.
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reflections present in the diffraction patterns of orthorhombic mullite. The diffractograms
of Cameron (1977) show first (Fig. 3a-d in [2]), second (Fig. 3e-f) and fourth order
satellite reflections (Fig. 3g). Sayir & Farmer (1995) and Nakajima et al. (1975) reported
on mullites with third order satellite reflections [185, 186]. Similar patterns but with fifth
order satellites were reported in [36]. Concerning monoclinic mullite even higher orders
were reported. In [50, 36, 51] at least seventh order satellite reflections were observed,
but in this section only orthorhombic mullite structures are discussed. A structural model
was not refined in any of the studies and only [36] suggested a model based on HRTEM
simulations (§ 5.1.4).

The disordered SSM provides a model that can explain the observed range of satellite
reflection orders. The constraint scheme of § 4.1.4 is valid for any order of harmonics
and for different vacancy concentrations. The refinements in § 4.2.1 are examples of
mainly disordered mullites with first order satellite reflections and only SA1, the sample
with the strongest modulation amplitudes, exhibits weak second order satellite reflections.
The occupational modulation functions of a hypothetical mullite structure with moderate
degree of order is depicted in Figure 5.8. A simulated diffraction pattern based on this
model would show first, second and third order satellite reflections. The similarity of
the occupational modulation between this example and the ordered SSM can already
be identified as three maxima of sO3(t) indicate the t-sections at which the block wave
functions of O3a, O3b and O3bR are defined in the ordered SSM. The degree of order
in mullite structures can thus be characterised by the occupational modulation functions
and in a first approximation by the highest order of satellite reflections on diffraction
patterns. This suggests that with increasing degree of order the disordered SSM develops
into the ordered SSM.

5.2.3 Diffuse scattering simulations based on the disordered SSM

A comparison of the equivalent isotropic displacement parameters Ueq of mullite-type com-
pounds reveals that the average displacement of atoms in mullite is significantly stronger
than in andalusite, sillimanite and sillimullite (Tab. 5.3). The low concentration of vacan-
cies in sillimullite (δ = 0.12) induces some displacements in its local environment leading
to a slight increase of the ADPs with respect to sillimanite. In the case of mullite with δ
between 0.4 and 0.5 the refined displacement parameters are much larger, although a large
range is observed depending on the diffraction method and resolution of the measurement.
Independent of the uncertainty, the trend is clear and the increased displacement para-
meters are only slightly reduced by modelling the displacive modulation. Taking into
account that the thermal motion, static displacement due to short-range order and static
displacement due to the long-range ordered modulation contribute to the displacement
parameters, it can be deduced that the disordered SSM does not give a complete descrip-
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Compound Model Method < Ueq >
of cations

< Ueq >
of anions

Reference

Andalusite average sXRD 0.005 0.007 [187]
Sillimanite average sXRD 0.005 0.008 [173]
Sillimullite average sXRD 0.006* 0.010 [188]
Mullite VSG.50 average pXRD 0.007 0.012 § 3.3.1
Mullite SA average pXRD 0.016 0.021 § 3.3.1
Mullite SA1 average sXRD 0.012 0.019 § 4.2.1
Mullite SA1 disorderd SSM sXRD 0.011 0.018 § 4.2.1
Mullite SA2 disorderd SSM sXRD 0.009 0.016 § 4.2.5
Mullite SA3 disorderd SSM sXRD 0.010 0.016 § 4.2.5
Mullite Qg1 disorderd SSM sXRD 0.011 0.017 § 4.2.5
Mullite BS disorderd SSM sXRD 0.008 0.014 § 5.1.5

Table 5.3: Comparison of average Ueq of cations and oxygens. *Fe atoms were not con-
sidered in the case of sillimullite.

tion of the real crystal structure of mullite. This also raises a question about the meaning
of the ADP modulation implemented in the disordered SSM. Possibly it is related with
the likelihood that a certain site is disordered, which is supported by a clear antiphase
relationship between the ADP modulation and the occupational modulation (§ A.6). If a
site is less occupied for a certain t-section then the ADPs are larger and apparently the
site is more disordered. A deeper analysis and discussion are outside the scope of this
section.

Crystal structures with partially occupied sites necessarily show diffuse scattering be-
cause the periodicity of the average structure is violated. The partial occupancies of
Al2, Si2, Al3, O3 and O4 in each unit cell are defined by the disordered SSM, which
describes a long-range ordered modulation of the partial occupancies. Nevertheless, in
each unit cell vacancies are found with a certain probability and the diffuse scattering in
mullite contains information about short-range ordered correlations of atomic displace-
ments and occupancies. In the following the diffuse scattering that is expected from
the disordered SSM is investigated. Al/Si ordering and atom displacements, except for
isotropic thermal displacements, were not considered and thus the modelled short-range
order only considered the occupational modulation function with further constraints on
the local vacancy environment.

Vacancies were distributed in a model crystal with the probabilities defined by the dis-
ordered SSM (§ 4.2.1). Constraints were applied so that that each vacancy is accompanied
by two triclusters, tetraclusters are forbidden and stacking of vacancies is also forbid-
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Figure 5.9: Real structure model of 2/1-mullite and calculated reciprocal space section.
(A) A 64× 64× 64 model crystal was generated, of which a 20× 20× 2 section is shown.
Vacancies at z = 1

2 are represented by faint red spheres, at z = 3
2 as red spheres. Tetra-

hedra are omitted for clarity. The vacancy distribution complies with the occupational
modulation of the disordered SSM of AS1. (B) All sections perpendicular to c∗ show
the characteristic diamond grid similar. (C) The hk0.5 section shows satellite reflections,
which are also visible in the h0` section (D). Arrows indicating the origin of the coordinate
system have the respective length of the reciprocal lattice vector. For (D) and (E) the
origin is at the bottom left corner.

den. For the generation of crystal models and calculation of reciprocal space sections the
DISCUS suite was used [99]. Reciprocal space sections show sharp first order satellite
reflections at the expected positions and sections perpendicular to c∗ are characterised
by streaks resembling a diamond grid. The characteristic streak pattern of crosses in
the 0k` section and the streaks originating from satellite reflections in the h0` section is
not observed. Consequently, the disordered SSM combined with the basic constraints on
the vacancy environment does not result in a crystal structure description that accounts
adequately for all observations in reciprocal space (Fig. 5.9).

The relationship between the modulation wave vector q and the vacancy concentration
δ was explained by superspace symmetry with the additional constraint, that tricluster
chains are forbidden in the ordered SSM (§ 4.4). Diffuse satellite reflections of disordered
mullite crystals also follow the q–δ relationship (§ 4.4.3) indicating that the avoidance of
tricluster chains is independent of the degree of order. Another model crystal (64×64×64)
was generated with the additional constraint that tricluster chains are forbidden. Calcula-
tions of reciprocal space sections show profound differences in comparison to Figure 5.9 as
the diffuse features in the h0` and 0k` sections form crosses (Fig. 5.10). The correspond-
ing streaks are relatively broad and the intensity distribution differs from experimental
observations, for example the intensity maxima described by q2 and q3 in § 4.1.1 cannot
be identified on the calculated sections. Hence, the short-range order parameters used
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Figure 5.10: Real structure model of 2/1-mullite and calculated reciprocal space section,
which show the same region as in Figure 5.9. The only difference between the models is
that tricluster chains were forbidden. However, a stacking of two tricluster was allowed.

here still require further improvement for completion. Nevertheless, this model comprises
qualitatively the most essential features in reciprocal space indicating that the tricluster-
tricluster interactions are crucial for the stability of mullite independent of the degree of
order.
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5.3 Interpretation of the phase diagram

5.3.1 Turnover compositions of the phase diagram

According to the SiO2–Al2O3 phase diagram presented in the introduction (Fig. 1.3) the
width of the solid solution range of stable mullite corresponds to a vacancy concentration
difference of about 0.06. The borders of the range shift to higher vacancy concentrations
with increasing temperature and close to the melting point the width of the solid solu-
tion range becomes very narrow around δ ≈ 0.4. The temperature dependence of the
phase borders agrees with other studies on mullite formation from mineral decomposition
[148, 189, 150, 190] and especially mullite-mullite transformations at higher temperatures
[191, 192], although other phase diagrams were suggested with a negligible dependence of
the mullite composition on the temperature of formation [45]. Composition analyses of
Czochralski-grown mullites suggest that at the melting point the solid solution range is
0.35 < δ < 0.41 and the growth of 3/2-mullite with the Czochralski method was not pos-
sible [193], which clearly supports the temperature dependence of the solid solution range
suggested by Klug et al. (1987) [46]. The synthesis of metastable mullite samples with
higher vacancy concentrations is possible and strongly depends on the method used. The
synthesis from the melt has an upper vacancy concentration limit of δ = 0.57 [47]. The
synthesis with the sol-gel method or chemical vapor deposition (CVD) allows to further
extend the vacancy concentration to about 0.83 [53, 51]. Here the focus is on stable and
metastable mullite without tetraclusters in the range 0 < δ < 2

3 neglecting sol-gel and
CVD samples. Several approximate turnover compositions can be identified:

1. δlow ≈ 0.2 marks the silica-rich border of the solid solution range [1].

2. δhigh ≈ 0.4 marks the alumina-rich border of the phase field of mullite at the melting
point.

3. δmono = 0.5 marks the turnover vacancy concentration between orthorhombic and
monoclinic symmetry of the modulation wave vector.

4. δmeta = 0.57 marks the alumina-rich border of metastable mullite.

Minerals of mullite with intermediate composition between sillimanite and 3/2-mullite
were described, but either a significant concentration of Fe and Ti was present in the
samples [194, 188] or artificial samples were synthesised at increased pressure [195]. Both
cases are thus not part of the discussed phase diagram.

5.3.2 Turnover compositions of the block model

The unified superspace model explains the dependence of the ordering patterns in mullite
on the composition. In § 4.4.1 the block model and a few special cases of the range
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0 ≤ δ ≤ 0.5 were analysed. For δ < 0.2 with nV < 1 some vacancy-free blocks merge
together so that blocks consisting only of dicluster chains form. As mentioned in the
last section, mullite with δ < 0.2 only exists if further stabilisation mechanisms like the
presence of impurities are present indicating that larger ’sillimanite-like’ zones in the
crystal structure are not stable. This is a possible explanation for δlow. A very important
composition of the unified SSM is δ = 1

3 , which describes a layered structure instead of a
block structure. Interestingly, this composition is not important at all for the description
of the phase diagram and mullite with the corresponding composition (7/4-mullite, 63.6
mol% Al2O3) was described in the literature but it is clearly not a special composition
with an outstanding stability or instability [196]. The unified superspace model and the
orthorhombic stacking of blocks collapses if δ > 0.5 because ∆O3a

BW = 1
2 − δ becomes

negative (Tab. 4.16) corresponding to a negative number of diclusters (§ 4.4.1). Thus,
5/2-mullite (δ = 0.5) is special because it describes the endmember of the block model.
However, alternating block patterns can still be constructed. For example, an alternating
pattern of VBs with nV = 2 and nD = 1 leads to a mullite with δ = 4

7 described in a
7a × 1b × 1c block, that can be stacked in many different ways. A trivial orthorhombic
stacking, however, leads in either case to the formation of tricluster chains, which can be
limited to units of two stacked triclusters by choosing an appropriate monoclinic stacking.
For δ > 4

7 neighbouring VBs merge in analogy to merging VFBs for δ < 0.2. Hence, special
cases of the block model coincide with the turnover compositions of δlow, δmono and δmeta.
However, δmono seems to be not relevant for the phase diagram. Furthermore, the block
model of 2/1-mullite does not seem to be an extraordinary member of the solid solution
range. Hence, the stability of 2/1-mullite cannot be explained by block model.

5.3.3 Relative stability of ordered mullite

The total energies of the DFT calculations were analysed to investigate the solid solution
range of mullite. It is not straight forward to compare the energies of different phases
if the chemical composition is not identical. Therefore the total energy of a mullite
superstructure was subtracted from a chemically identical system consisting of α -SiO2

and α -Al2O3 (cf. Tables 3.6, 3.7 and 4.17). This approach allows to estimate the driving
force to form mullite from α -SiO2 and α -Al2O3. In Figure 5.11 this energy difference is
plotted against the vacancy concentration. The main observation is that the stability of
mullite decreases with increasing vacancy concentration. The energies of AS1 and AS2
are essentially identical, whereas AS3 is significantly less stable than AS1. However, all
mullite superstructures as well as sillimanite and andalusite are energetically less stable
than a corresponding mixture of α -SiO2 and α -Al2O3. According to the DFT calculations
the only compound that is more stable is kyanite.

The dependence of the relative stability of mullite superstructures with the ideal Si dis-
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Figure 5.11: Comparison of total energies (PBEsol-D) of aluminium silicates with total
energies of a chemically identical system made of α -SiO2 and α -Al2O3. Energies of different
Si distributions (AS1, AS2, AS3) are included. The energy of the good Saalfeld model
analysed in § 5.1.3 is also included (green diamond). Energies of the Al2SiO5 polymorphs
are given in § A.3.

tribution (AS1) linearly depends on the vacancy concentration and is independent of the
block lengths. In fact, it seems that the vacancy distribution itself has a negligible effect
on the total energy because M0 without any vacancies and M33 with a unique layer struc-
ture follow the same linear dependence as any other vacancy distribution in the analysed
range. The decreased stability of Saalfeld’s model (§ 5.1.3) relative to M40 AS1 is prob-
ably related to the presence of Al-Al diclusters or tricluster chains and less to the vacancy
distribution itself. Consequently, the chemical composition and the Si distribution are
considered to significatnly influence the stability of mullite.

The fact that at elevated temperatures the formation of mullite from SiO2 and Al2O3 is
observed indicates that the structural dynamics at the temperature of formation must
play an important role. All simulations of this thesis described a static system, and
thus we can only speculate about the structural dynamics that may play an important
role. Independent of the temperature, the voids forming around vacancies are an essen-
tially empty volume without an intrinsic equilibrium shape, in contrast to e.g. the AlO6

octahedra. Hence, the presence of vacancies provides structural flexibility because the
polyhedra network can relax and change the geometry of the vacancies. An example unit
that makes use of this mechanism can be identified from the DFT calculations. The SiO4

tetrahedra are probably the most rigid structural units in mullite (cf. § 1.2), which is sup-
ported by the observation that the volume of Si tetrahedra in Si-Si diclusters varies only
between 2.296Å3 and 2.304Å3 in the range between M11 AS1 and M45 AS1. It can then
be expected that the most rigid unit, i.e. Si-Si diclusters, are found in the most flexible
environment. This is exactly what is observed: In the most stable mullite superstructures
Si-Si diclusters are always sandwiched between two vacancies (§ 4.3.3, § 4.4.4).

This mechanism naturally depends on the concentration of vacancies and the temperat-
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ure, but less on the distribution of vacancies. Based on the assumption, that for each
temperature there is an ideal vacancy concentration that stabilises the mullite structure,
the observed borders of the solid solution range may be explained. Mullite with δ < δlow

does not form because the ideal vacancy concentrations correspond to a temperature that
is lower than about 1000 °C and the kinetics of the atoms hinder the formation of mullite,
at least at ambient pressure. With increasing temperature the mechanism stabilises higher
vacancy concentrations until the melting point is reached. In this case, the alumina-rich
border (δhigh) corresponds to the vacancy concentration that stabilises the mullite struc-
ture just below the melting point. Pressure decreases the flexibility of the system and
counter-balances the identified mechanism leading to lower vacancy concentrations. This
is in agreement with the experiments described in [195], in which it is concluded that at
elevated pressures the miscibility gap between 0 < δ < 0.2 disappears. Although this sta-
bilising mechanism based on the flexible geometry of vacancies may explain the borders of
the solid solution range observed in the phase diagram, it should rather be considered as
a potential starting point for further studies to better understand the stability and high
temperature properties of mullite. Molecular dynamics simulations of disordered mullite
structures seem to be a promising approach.

5.3.4 Driving force for order and disorder

Due to its outstanding properties there are numerous investigations of traditional and
potential applications of mullite. In many of them a phase analysis is carried out with
powder X-ray diffraction (pXRD) to confirm the presence of mullite. Some recent ex-
amples can be found in [197, 198, 199, 200]. The vast majority of investigations related to
mullite have in common, that only main reflections are considered and in routine phase
analysis with pXRD the satellite reflections and diffuse scattering are neither mentioned
nor considered. This can be easily explained by the observation, that in pXRD measure-
ments, including those of § 3.3.1, satellite reflections are not observed. Large inclusion-free
single crystals grown with the Czochralski method only show first order satellite reflec-
tions and diffuse scattering [6]. Natural samples of mullite usually exhibit lower vacancy
concentrations around δ ≈ 0.25, but so far it was not reported that any mineral sample
was ordered [39, 49, 2]. It seems that under equilibrium conditions of formation mullite
can be highly crystalline, but with a disordered vacancy and Si distribution. On the
other hand, many structural studies reported on ordered mullites with high order satellite
reflections (§ 5.2.2). The models developed in this thesis are capable to describe the crys-
tal structure of mullite for different compositions and degrees of order, but they cannot
explain why mullite is mostly disordered and what is the underlying driving force. A full
investigation of this question is outside the scope of this chapter, but an answer that is
at least consistent with the presented results shall be sketched here.
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One of the most important findings of the detailed symmetry analysis and the dependence
of the modulation on the composition is expressed by Equation 4.2: α = 1−δ

2 . This rela-
tionship emerges from the ordered SSM if tricluster chains are avoided and it agrees very
well with experimental observation of the q–δ relationship (§ 4.4.3). However, the vast
majority of these samples is only little ordered, but the avoidance of tricluster chains is
also crucial for the short-range order in disordered mullite according to preliminary simu-
lations of the diffuse scattering (§ 5.2.3), which explains why the satellite reflections follow
Equation 4.2 independent of the degree of ordering. The formation of ordered mullite re-
quires that triclusters concentrate in vacancy blocks with a well-defined length and are
not present in vacancy-free blocks. However, the DFT calculations indicate that the en-
ergetic difference between different vacancy distributions is probably negligible and that
the Si distribution has a stronger influence on the stability (§ 4.3.3, § 5.1.3, § 4.4.6). On
the other hand, a disordered distribution of Si on the tetrahedral sites may be stabilised
by the structural flexibility of the vacancies, thus leading to a disordered mullite struc-
ture. Many possible configurations with similar energies are likely to lead to a disordered
structure, especially if the structure crystallises at high temperatures. The comparison of
the ordered SSM and the disordered SSM has shown that the tricluster distribution and
the Si distribution follow the same ordering mechanisms (§ 5.2.1). From that it can be
derived, that the requirements by triclusters and diclusters can be sufficiently fulfilled in
a short-range ordered manner, like the avoidance of tricluster chains or Si-Si diclusters
in the vicinity of vacancies. Ordered mullite probably only forms on the length scale of
a few unit cells or not at all. Thus, the interactions defining the Al/Si ordering in the
structure and the tricluster distribution determine the crystal structure of mullite during
formation.
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Summary and outlook
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6.1 Summary

This thesis was motivated by the observation that the satellite reflections on diffraction
patterns of different mullite samples show remarkable differences concerning the respective
modulation wave vector, highest observable reflection order and sharpness. These aspects
were separately analysed over the last decades, but a model that fundamentally describes
a consistent crystal structure was not developed.
For this thesis the symmetry of mullite was analysed in detail using the superspace ap-
proach. The combination of crystal chemical constraints on the polyhedra environment
of vacancies with the symmetry operators of the superspace group Pbam(α01

2)0ss leads
to a small set of possible vacancy distributions for a certain chemical composition and a
respective modulation wave vector q. On this basis constraints for the description of the
mullite crystal structure in superspace were derived.
Four single crystalline samples were measured with synchrotron radiation. The refinement
of superspace models based on harmonic occupational modulation functions confirm the
constraint scheme from the symmetry analysis and indicate that the samples are mainly
disordered. However, different samples exhibit different modulation amplitudes, which is
interpreted in terms of different degrees of order. Although a completely ordered sample
was not available, a structural model representing the highest degree of order based on
block wave modulation functions to describe the occupancy was developed. Its analysis
allowed to define a general vacancy distribution pattern which agrees with the experiment-
ally observed dependence of q = (α 0 1

2) on the vacancy concentration δ. This dependence
was investigated based on electron diffraction measurements and the refinement of average
structure models, which confirmed that the modulation follows the relationship α = 1−δ

2 .
This equation emerges if the stacking of tricluster units is avoided. This unified superspace
model describes the ordered vacancy distribution in the composition range 0 ≤ δ ≤ 0.5.
The ordering of Al and Si on the tetrahedral sites could not be determined from the
symmetry analysis or the refinements. Nevertheless, harmonic occupational modulation
functions describing Al/Si ordering on the T site were derived from the modulated volume
of the tetrahedra leading to a consistent structure model. In addition to that, the Si dis-
tribution was investigated systematically with force field calculations. For several com-
mensurate cases of the unified superspace model in the range 0 ≤ δ ≤ 0.5, all symmetry
compliant Al/Si permutations were investigated with force field calculations. Promising
structures were then investigated with DFT calculations. The most stable structure model
of each composition was embedded in superspace leading to a unified superspace descrip-
tion that accounts for vacancy ordering and Al/Si ordering as well.
The comparison of different models indicated that the ordering mechanisms accounting
for Al/Si ordering, displacive modulations and vacancy ordering are the same independent
of the degree of order. The analysis of the diffuse scattering emphasises the importance
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of tricluster ordering, which was also identified as the key mechanism to understand and
describe the unified superspace model.

6.2 Conclusion

“The starting structure of mullite is obtained from the sillimanite structure
by removing randomly chosen O2– ions from Oc crystallographic positions,

replacing randomly chosen Si4+ with Al3+ ions for each O2– ion removed, and
randomly distribution the remaining tetrahedrally coordinated cations.”

Daniel J. Lacks, Bernd Hildmann & Hartmut Schneider (2005)

“The mullite structure was constructed by randomly removing oxygen
vacancies at the Oc sites and randomly replacing Si by Al in the supercell.”

Jen-Chang Chen et alii (2008)

“O vacancies were created by removing some O atoms that were close
together [...]”

Sitaram Aryal, Paul Rulis & Wai-Yim Ching (2012)

“[...] removing random O atoms from the Oc positions and replacing two
random Si atoms with two Al [...]”

Esmaeil Adabifiroozjaei et alii (2018)

Structural models of the last decades were usually accepted as valid descriptions of the
crystal structure, but they were mostly not refined or considered for further analysis. This
becomes evident by analysing the literature of computational studies on mullite apply-
ing molecular dynamics or DFT. Without exception, model crystals were generated by
randomly distributing vacancies [157, 158, 201, 202, 159, 203]. In some cases the pres-
ence of Si in triclusters was avoided and constraints originating from the supercell size
were considered, but the results of antecedent models like those described and discussed
in § 1.3 and § 5.1 or constraints by superspace symmetry were not implemented in the
mentioned computational studies. The advantage of the models developed in this thesis
is the more accurate representation of the crystal structure and their capability to fun-
damentally understand and describe different ordering phenomena in mullite accounting
for Al/Si ordering and vacancy ordering. The atomic structure of the most ordered state
was precisely defined and a small set of local rules describing disordered mullite was es-
tablished. Thus, the models can be easily applied in further studies on the structure
and its properties. The ordering mechanisms were investigated with different approaches
leading to a consistent overall picture. The DFT calculations of Chapter 4 demonstrate
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the usefulness of computational methods to characterise the structure of mullite in detail.
The used approach to develop superspace models from ab initio methods is a pioneer-
ing method that was never applied before. Its application enables the investigation of
structural details of modulated and/or disordered structures that are difficult to access
experimentally, for example the Al/Si ordering in minerals or the energetic and structural
analysis of transition states.
The search for publications that contain the words ’mullite’ and ’vacancy’ in the title
scores twelve hits. If the keyword ’vacancy’ is replaced by ’tricluster’ there are no hits in
the database of ’Web of Science’ (Clarivate Analytics) and one hit with ’Google Scholar’
[204]. This suggests that the investigation of the crystal structure of mullite from the
beginning on focused on the characterisation of the vacancies1. The unified superspace
model, the DFT calculations and the analysis of the diffuse scattering jointly emphasise
the importance of triclusters. The vacancies are appropriate and useful to describe the
polyhedra network in mullite, but the understanding of the aperiodic nature of mullite
requires to shift the focus to the triclusters embracing them.

1Fun fact: Two journal publications and two conference contributions presented by Paul B. Klar et
al. contain the word ’vacancy’. The word ’tricluster’ was not considered in their titles.
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6.3 Outlook

6.3.1 Mineral classification and Al/Si order

The mineral classification of silicates is based on the polyhedra network formed by SiO4

tetrahedra. In the current classification of Nickel–Strunz and Dana, the mineral mullite
is classified as a nesosilicate with insular SiO4 units [205, 206]. Pauling’s rules predict
that the bridging O3 site prefers Si-Si dicluster (§ 1.2) and it is highly unlikely that
Si-Si diclusters are systematically avoided in mullite. The models of this thesis clearly
favour the presence of Si-Si diclusters alongside Al-Si diclusters and, to a lesser extent,
Al-Al-Si triclusters. From the DFT calculations it was derived that Si-Si diclusters are a
main component of mullites with a vacancy concentration δ < 0.5 including the case of
3/2-mullite, which is commonly assumed to represent the mineral composition [24, 1]. If
isolated SiO4 tetrahedra are present alongside Si2O7 units, then mullite is a sorosilicate
and not a nesosilicate. In this case mullite should be classified in Dana class 58 (instead
of 52) and Nickel–Strunz class 09.BF (instead of 09.AF). Furthermore, mullite is in the
sillimanite subgroup 52.02.02a in the classification of Dana. Although there is a clear
structural relationship with sillimanite, there is a similar relationship with andalusite,
which in addition contains voids with a very similar geometry to the vacancy voids in
mullite (Fig. 1.2). Therefore, the classification in the sillimanite subgroup has an am-
biguous character, which would be corrected by the suggested reclassification. Future
work on the Si distribution in andalusite, sillimanite, sillimullite and mullite should be
able to classify the nature of Al/Si ordering in these minerals and their relationship.

6.3.2 Details of the crystal structure

The developed models are complete in the sense that they describe the polyhedra distri-
bution and Si distribution for ordered and disordered mullite. Nevertheless, some details
are not satisfactorily described. The experimentally observed q–δ relationship agrees with
Equation 4.2 within the standard uncertainty. Nevertheless, a systematic offset could not
be fully excluded. For example, the short-range order might affect the periodicity of the
modulation. Furthermore, the predicted α for 5/2-mullite is 0.25, but the measurements
with a composition close to δ = 0.5 indicate that α adopts values around 0.28. High
resolution diffraction experiments combined with accurate measurements of the chemical
composition with ordered and disordered samples in the range 0.45 < δ < 0.55 could
clarify the mentioned questions.

The simulations of the diffuse scattering in § 5.2.3 qualitatively show the most essential
features observed in measured diffraction patterns, but the intensity distribution is not
satisfactory. Especially the diffuse maxima that were described by q2 and q3 in § 4.1.1 and
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§ 5.1.5 are completely missing in the simulations. Birkenstock et al. (2015) assumed that
they originate, like q1, from a soft occupational modulation. The fact that the maxima lie
on the diffuse streaks which originate from the interaction between triclusters, suggests
that these diffuse maxima might originate from mid-range ordering of triclusters. The
DFT calculations revealed that the Si atoms in triclusters are less stable than the Si atoms
in the diclusters (Fig. 4.16). This clue might be the starting point for an explanation of q2

and q3. If large single crystals of ordered mullite samples could be obtained, then neutron
diffraction measurements are a promising technique for an experimental characterisation
of the details of the Si distribution. Independent of that, the models of this thesis may
serve as a good starting point for spectroscopic studies to verify the suggested models by
means of other experimental techniques.

6.3.3 Al-rich mullite in superspace

This thesis focused on the composition range 0 ≤ δ ≤ 0.5. Structural models of monoclinic
mullites with δ > 0.5 and γ 6= 1

2 were not presented. In comparison to orthorhombic
mullite the modulation wave vector changes slightly the direction, indicating that the
underlying superspace model is similar. It can be assumed that the description of the
unified superspace model can be extended to vacancy concentrations 0.5 < δ by applying
minor changes to the constraint schemes presented in Chapter 4. The most ordered state
can then be described by a set of three unified superspace models (Fig. 6.1). The first
corresponds to the unified SSM developed in this thesis (Chapter 4). The second, for
which α and γ seem to be constant, describes a monoclinic distribution of diclusters and
triclusters in the range 0.5 < δ ≤ 2

3 and the third unified superspace model in the range
2
3 ≤ δ ≤ 1 describes a monoclinic distribution of triclusters and tetraclusters. If the
ordering mechanisms of triclusters in the first unified superspace model are also valid for
tetraclusters, then a similar dependence of δ on α can be expected. A shift of Equation
4.2 so that α = 7

12 −
δ
2 nicely agrees with experimental observations [18, 51] as shown in

Figure 6.1. Preliminary DFT calculations of mullite structures with δ = 2
3 (3 × 1 × 2,

Pnam) and δ = 5
6 ≈ 0.83 (6 × 1 × 2, B11 2

m
) indicate that ordered structure models are

stable (Fig. 6.2). The latter model exemplifies a member of the third unified superspace
model consisting of ’tricluster blocks’ and ’tetracluster blocks’. These predictions require
a deeper analysis of the symmetry and more experimental work on the synthesis and
structural characterisation. Independent of that, the synthesis parameters that determine
the resulting degree of order seem to be not understood at all. This is one major challenge
for the experimental investigation of the aperiodic nature of mullite in the future.
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Figure 6.1: Extended q–δ relationship based on experimental observations (cf. Fig. 4.19)
and predicted ranges for three unified superspace models to describe the full composition
range 0 ≤ δ ≤ 1.

Figure 6.2: Geometrically optimised superstructures of 4/1-mullte (left, δ = 2
3) and 17/2-

mullite (right, δ = 5
6). Note that a similar vacancy distribution for 4/1-mullite was already

suggested in [53]. According to the experimentally observed q–δ relationship for δ > 0.5
the value of γ is constant around 0.46 ≈ 6

13 suggesting that a 13-fold repeating unit along
the c direction is required for more representative simulations.
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Supplements

A.1 Literature survey: q–δ relationship

Several studies published diffraction patterns of mullite with visible satellite reflections.
In many cases the composition was determined or estimated, but the modulation wave
vector q was not determined. To make use of this wealth of studies using different
samples of different compositions, q was determined by putting a grid on published figures
and extract relevant coordinates for several data points using the tool ’DataThief III’
[209]. This is straight forward in the case of single crystal diffraction patterns: The
indexation of a diffraction pattern and the coordinates of the satellite reflections allows
to determine the average values of α and γ. This approach was checked based on the
samples ’Forster’, ’1’ and ’58480’ as the respective diffraction patterns were published
(Fig. 3 in [2]) alongside a plot of α against the chemical composition (Fig. 4 in [2]), which
indicated that from the diffractograms the modulation wave vector q can be determined
with sufficient accuracy. This approach is also confirmed by the agreement between the
determination of the modulation wave vector of sample ’5’ based on two independent
studies [2, 180]. A single crystal X-ray diffraction study of the same sample ’5’ published
the modulation wave vector to be q = (0.30 0 0.5), which is in agreement with the values
given in Table A.1 within the standard uncertainty. The results of the overall literature
survey are listed chronologically in Table A.1. If the vacancy concentration is marked with
a question mark (?) the uncertainty of the provided composition could not be evaluated.
Either no information on how the composition was determined could be found or the
composition was derived from the mullite label, but for example 2/1-mullite must not
necessarily correspond to a vacancy concentration of exactly 0.4 as described in § 1.1.6.

In one case the modulation wave vector q could be determined from a powder diffracto-
gram. Kriven & Pask (1983) mentioned extra reflections that could not be indexed with
the average unit cell of mullite or any other phase and were expected to be satellite re-
flections, although the corresponding modulation wave vector was not determined [47].
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δ α γ Fitted
satellites

Sample Fig.
type

Reference

0.38 0.348 (10) 0.5 4 58480 EDP Fig. 3c in [2]
0.43 0.299 (10) 0.5 9 Forster EDP Fig. 3d in [2]
0.49 0.292 (7) 0.5 11 1 EDP Fig. 3e in [2]
0.57 0.273 (6) 0.460 (6) 11 Q1 EDP Fig. 3f in [2]
0.59 0.272 (6) 0.455 (4) 11 Q2 EDP Fig. 3g in[2]
0.26 0.396 – – 10 plot Fig. 4 in [2]
0.31 (?) 0.376 – – Rα plot Fig. 4 in [2]
0.32 0.339 – – 9 plot Fig. 4 in [2]
0.34 0.356 – – 7 plot Fig. 4 in [2]
0.36 (?) 0.353 – – Rβ plot Fig. 4 in [2]
0.38 0.337 – – 6 plot Fig. 4 in [2]
0.38 0.332 – – 58480 plot Fig. 4 in [2]
0.40 0.319 – – 5 plot Fig. 4 in [2]
0.43 0.301 – – Forster plot Fig. 4 in [2]
0.46 0.304 – – 3 plot Fig. 4 in [2]
0.47 0.291 – – 2 plot Fig. 4 in [2]
0.49 0.290 – – 1 plot Fig. 4 in [2]
0.372 0.323 (18) 0.5 10 sXRD Fig. 1 in [207]
0.55 0.272 (4) 0.453 (5) 11 EDP Fig. 1a in [50]
0.54 0.274 (4) 0.464 (3) 11 EDP Fig. 2 in [36]
0.48 0.291 (3) 0.5 11 EDP Fig. 3 in [36]
0.54 0.274 (10) 0.468 (3) 2 pXRD Fig. 6 in [47]
0.54 0.27 (3) 0.454 (4) 9 EDP Fig. 2 in [47]
0.4 (?) 0.32 (2) 0.5 7 EDP Fig. 13a in [208]
0.25 (?) 0.362 (13) 0.5 5 EDP Fig. 13b in [208]
0.4 (?) 0.315 (10) 0.5 11 5 sXRD Fig. 4 in [180]
0.5 (?) 0.292 (11) 0.5 26 EDP Fig. 6a in [186]
0.4 (?) 0.301 (14) 0.5 11 sXRD Fig. 4 in [4]
0.83 0.177 (7) 0.471 (4) 11 EDP Fig. 1.1.15 in [18]
0.83 0.173 (9) 0.472 (4) 11 EDP Fig. 2d in [51]

Table A.1: Dependence of q = (α 0 γ) on the composition as reported in the literature. If
the vacancy concentration is marked with a question mark (?) the provided composition
is rather considered as an estimate. The fourth column refers to how many satellites were
used to determine q. The list is chronologically ordered.
EDP = electron diffraction pattern, sXRD = single crystal X-ray diffraction pattern,
pXRD = powder X-ray diffraction pattern
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According to the description in the reference the diffraction pattern was obtained with a
Debye-Scherrer camera using a ground mullite sample with 82.5 wt% Al2O3. The lattice
parameters were determined and are given in the reference, but the diffraction angles of
the two clearly visible extra reflections as well as the X-ray wavelength were not given.
Fortunately a Si standard was mixed to the sample. Diffraction angles 2θ were extracted
with DataThief III from Figure 6 in [47]. The Si lines are present at diffraction angles
corresponding to a wavelength of 1.94Å, which is the wavelength of the Kα line of Fe.
The extracted 2θ values of two additional reflections are 23.1° and 26.0° corresponding
to lattice spacings d of 4.84Å and 4.31Å, respectively. A consistent explanation of these
lines is possible using the superspace formalism with q = (0.2740, 0, 0.4677) and an in-
dexation as satellite reflections with indices 1011̄ and 1001, respectively. Assuming that
the uncertainty of the extracted angles is about 0.1°, the components of q are determined
to be α = 0.274 (10) and γ = 0.468 (3).

A.2 VASP and GULP input parameters

An example INCAR file used for DFT calculations with VASP is shown in the following
box. Calculations based on this input file are labelled PBEsol-D.

Title: Push the button.
IBRION = 1 # Geometric optimisation with quasi-Newton algorithm
ISIF = 3 # Optimise atom coordinates and cell parameters
GGA = PS # Perdew-Burke-Ernzerhof functional optimised for solids
IVDW = 11 # Dispersion correction, DFT-D3 method of Grimme (2006)
ENCUT = 520 eV # energy cut-off of plane wave basis
LREAL = AUTO # Non-local parts of pseudopotentials in real space
ISMEAR = 0 # Gaussian smearing of orbital occupancies
SIGMA = 0.05 # Parameter for Gaussian smearing
EDIFF = 1E-4 # Electronic relaxation convergence criterion
EDIFFG = -0.01 # Ionic relaxation convergence criterion

Running the GULP input file shown in the following box geometrically optimises the
structure as described in § 2.5.2.
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# GULP 4.3.5 (85306 ideas to relax)
optim happiness #alternative: rfo dfp or fbfgs
title

Sillimanite
end
cell

7.519278 7.535828 5.769490 90.0 90.0 90.0 1 1 1 0 0 0
fractional
Al1 core 0.000000 0.000000 0.000000 0.0 1.0 0.0 0 0 0
Al2 core 0.137970 0.330297 0.250000 0.0 1.0 0.0 1 1 1
Si1 core 0.652848 0.166073 0.250000 0.0 1.0 0.0 1 1 1
O11 core 0.856987 0.093914 0.250000 0.0 1.0 0.0 1 1 1
O12 core 0.350500 0.421611 0.250000 0.0 1.0 0.0 1 1 1
O2 core 0.624259 0.282287 0.014575 0.0 1.0 0.0 1 1 1
O3 core 0.980951 0.498031 0.250000 0.0 1.0 0.0 1 1 1
space # space group Pbnm
P b n m
species
Al 1.4175
Si 1.8900
O -0.9450
buckingham
Al core Al core 31570400.0 0.068 14.0507 0.0 10.00 1 0 0
Al core Si core 731927000.0 0.057 18.8132 0.0 10.00 1 0 0
Al core O core 28476.4 0.172 34.5773 0.0 10.00 1 0 0
Si core Si core 79935500000.0 0.046 25.1898 0.0 10.00 1 0 0
Si core O core 50196.9 0.161 46.2972 0.0 10.00 1 0 0
O core O core 6462.56 0.276 85.0910 0.0 10.00 1 0 0
maxcyc opt 200 #42
output cif Sillimanite_gulp.cif

A.3 DFT calculations of sillimanite, andalusite and
kyanite

Distances in the following tables are given in units of Å.
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Functional a (Å) b (Å) c (Å) V (Å3) d(AlVI–O) d(AlIV–O) d(SiIV–O) E (eV)
PBE 7.5718 7.7762 5.8167 342.49 1.933 1.777 1.643 –244.624
PBE-D 7.5428 7.7329 5.8003 338.32 1.924 1.771 1.639 –248.686
PBEsol 7.5164 7.6949 5.7894 334.85 1.915 1.768 1.636 –255.602
PBEsol-D 7.4917 7.6597 5.7755 331.42 1.908 1.764 1.6331 –258.846
Experimental single crystal XRD references:
0.0001 GPa [187] 7.48388 (17) 7.6726 (3) 5.76807 (13) 331.21 (2) 1.91 1.76 1.62
25 °C [160] 7.4883 (7) 7.6808 (7) 5.7774 (5) 332.29 (5) 1.912 1.763 1.627
Antecedent calculations:
PBE [183] 7.4474 7.6014 5.7469 325.34
PBE [201] 7.557 7.768 5.811 341.11 –246.026
PBE [166] 7.5678 7. 7694 5.8453 343.69 1.934 1.782 1.651
PBEsol [166] 7.5061 7.6823 5.8159 335.37 1.916 1.773 1.642
PBE0 [166] 7.4931 7.6791 5.7910 333.22 1.914 1.765 1.633

Table A.2: Comparison of calculated and reported structure parameters of sillimanite.

Functional a (Å) b (Å) c (Å) V (Å3) d(AlVI–O) d(AlV–O) d(SiIV–O) E (eV)
PBE 7.8812 7.9817 5.6129 353.08 1.954 1.853 1.648 –244.866
PBE-D 7.8273 7.9459 5.5965 348.08 1.945 1.846 1.644 –248.646
PBEsol 7.8010 7.9205 5.5830 344.96 1.936 1.840 1.642 –256.085
PBEsol-D 7.7578 7.8917 5.5701 341.01 1.928 1.833 1.639 –259.137
Experimental single crystal XRD references:
0.0001 GPa [187] 7.7930 (3) 7.89734 (17) 5.55583 (14) 341.93 (2) 1.93 1.84 1.63
25 °C [160] 7.7980 (7) 7.9031 (10) 5.5566 (5) 342.45 (6) 1.935 1.836 1.631
Antecedent calculations:
PBE [166] 7.8757 7.9963 5.6311 354.63 1.9547 1.8554 1.6556
PBEsol [166] 7.798 7.9343 5.599 346.42 1.9367 1.8414 1.6486
PBE0 [166] 7.7935 7.9098 5.5733 343.57 1.9337 1.8374 1.6386

Table A.3: Comparison of calculated and reported structure parameters of andalusite

Functional a (Å) b (Å) c (Å) V (Å3) α (°) β (°) γ (°) E (eV)
PBE 7.2035 7.9341 5.6355 303.32 89.90 101.13 106.01 –244.24
PBE-D 7.1695 7.8956 5.6044 298.82 89.96 101.10 105.98 –248.86
PBEsol 7.1438 7.8785 5.5877 296.16 90.00 101.11 106.01 –256.12
PBEsol-D 7.1169 7.8471 5.5636 292.65 90.05 101.08 105.99 –259.86
Experimental single crystal XRD references:
0.001 kbar [210] 7.124 (2) 7.856 (2) 5.577 (2) 293.3 (3) 89.99 (2) 101.15 (2) 105.95 (2)
25 °C [160] 7.1262 (12) 7.8520 (10) 5.5724 (10) 293.60 (9) 89.99 (2) 101.11 (2) 106.03 (1)
Antecedent calculations:
PBE [166] 7.2092 7.9502 5.6516 305.00 89.95 101.14 106.02
PBEsol [166] 7.143 7.8881 5.6012 297.17 90.06 101.12 106.01
PBE0 [166] 7.1279 7.8635 5.5868 294.86 89.99 101.14 106.01

Table A.4: Comparison of calculated and reported structure parameters of kyanite. Here,
α, β and γ are the angles of the lattice parameters.
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A.4 Exclusion of tetragonal symmetry

The lattice parameters a and b are of similar length and in the space group Pbam along
both directions a 21 screw axis is perpendicular to a glide plane. It was therefore suspected
that the symmetry of mullite samples, for which an equal length of a and b is observed,
might be tetragonal [211]. In tetragonal systems the directions a and b are equivalent
and therefore reflection pairs hk0 and kh0 are symmetrically equivalent. In powder dif-
fraction patterns it is easy to see that the corresponding intensities are clearly different.
For example in Figure 3.2a the reflection 210 is weaker than 120 observed at 26.0° and
26.2°, respectively. This indicates that the adaptation of the orthorhombic structure to
tetragonal symmetry requires a strong deformation and it is not likely that this deforma-
tion is induced by changing the composition. The streak pattern of the diffuse scattering
is approximately diamond shaped in mullite, but again the intensity distribution is not
in agreement with tetragonal symmetry. A four-fold rotation axis requires that for any
satellite reflection with indices hk`m with q1 = (α 0 γ) there is a satellite reflection kh`m
with q2 = (0α γ). This was never observed experimentally. Due to these observations tet-
ragonal symmetry was not considered for further investigation in this thesis. The crystal
structure of 9/1-mullite and other high aluminous mullites also suggest that tetragonal
mullite does not exist [53, 143].

A.5 Equivalent settings of Pbam(α01
2)0ss

Different settings allow an equivalent description of the crystal structure of mullite. q
may be defined so that α′ = 1 − α, a different origin may be chosen or the rational
component of q may be removed by setting γ = 0 in a supercell description. Depending
on these choices there are eight possible superspace groups (Tab. A.5). All of them
can be derived from the superspace group Pcma(01

2γ)000 which is the superspace group
with number 55.1.10.6 in the tables generated by Stokes et al. (2011) [212] and number
55.6 in the International Tables Volume C [72]. The superspace group identifier 55.1.10.6
is composed of four numbers. The first refers to the number of the space group (55,
Pbam), the second defines that there is one additional dimension, the third is the number
identifying the tenth (3+1)d Bravais class, which is Pmmm(01

2γ), and the last number
refers to the sixth entry in the list of possible superspace groups with the respective
Bravais class.
The vast majority of structural investigations on mullite place the octahedral Al1 site at
the origin and the other atoms are placed so that the longest axis of the octahedra at the
origin is approximately parallel to the direction [120]. Furthermore, the modulation wave
vectors was always described with α < 0.4. This setting corresponds to Pbam(α01

2)0ss
or Xbam(α00)0ss.
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Superspace group q origin shift basic cell size centring
Pbam(α01

2)0ss (α 0 1
2) (0, 0, 0, 0) 1× 1× 1 –

Pbam(α01
2)0s0 (α 0 1

2) (0, 0, 1
2 , 0) 1× 1× 1 –

Pbam(α01
2)00s (1− α 0 1

2) (0, 0, 0, 0) 1× 1× 1 –
Pbam(α01

2)000 (1− α 0 1
2) (0, 0, 1

2 , 0) 1× 1× 1 –
Xbam(α00)0ss (α 0 0) (0, 0, 0, 1

4) 1× 1× 2 X = (0, 0, 1
2 ,

1
2)

Xbam(α00)0s0 (α 0 0) (0, 0, 1
4 , 0) 1× 1× 2 X = (0, 0, 1

2 ,
1
2)

Xbam(α00)00s (1− α 0 0) (0, 0, 0, 1
4) 1× 1× 2 X = (0, 0, 1

2 ,
1
2)

Xbam(α00)000 (1− α 0 0) (0, 0, 1
4 , 0) 1× 1× 2 X = (0, 0, 1

2 ,
1
2)

Table A.5: Equivalent superspace group settings of Pbam(α01
2)0ss. The origin shift is

expressed with respect to the basic cell size.

Figure A.1: Occupational modulation and modulation of equivalent isotropic displacement
parameter Ueq(t) (in units of Å2) of O3 and Al2 based on the refinement of the disordered
SSM (SA1).

A.6 Phase relationship between occupational and ADP
modulation

A comparison of the ADP modulation and the occupational modulation of O3 shows a
clear antiphase correlation (Fig. A.1). Symmetry restrictions force that the phase shift is
either 0 or π. However, these restrictions do not hold for Al3 and O4, for which the same
antiphase relationship is observed. Only in the case of Al2 a different phase relationship
is observed (Fig. A.1). This was not further analysed in the thesis and is shown here for
the interested reader.

A.7 Al/Si ordering of M25 #1 in superspace

The Al/Si ordering of M25 #1 is slightly different from the other ideal Al/Si ordering
patterns of M40 and M50 due to the altered orientation of Al-Si diclusters. In superspace
six block wave functions are necessary to describe the occupational modulation of Al2
and Si2 (Fig. A.2).
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Figure A.2: Section of superspace model that describes the Al/Si ordering of M25 #1.

A.8 Lack of ordered samples

Unfortunately, there were no ordered samples available for this thesis. A personal com-
munication with Dr. Georg Bednorz and Dr. Yuha Ylä-Jääski with respect to their TEM
study on ordered mullite [36] allows the conclusion, that samples usually exhibit differ-
ent degrees of order. Most of their samples did not show high order satellite reflections.
The sample, from which the diffraction patterns in Figure 5.5 were obtained, was grown
with a floating zone apparatus equipped with a halogen lamp. Dr. Daniel Salazar from
’BCMaterials’ in Leioa, Spain, kindly carried out crystal growth experiments with the
floating zone technique, but so far ordered samples could not be obtained and their ana-
lysis was not included in this thesis. Other approaches to obtain highly ordered samples,
or samples that show at least third order satellite reflections, failed. Due to the lack of
ordered crystals all experiments in this thesis were based on mainly disordered samples.

A.9 CIF files

CIF files (Crystallographic Information Framework) of the refinements of § 4.2.5 can be
found in the ’Supporting information’ of the following publication: Paul B. Klar, Iñigo
Etxebarria & Gotzon Madariaga (2018). ’Exploiting superspace to clarify vacancy and
Al/Si ordering in mullite’. IUCrJ 5, 497–509 (https://doi.org/10.1107/S2052252518007467 ).
The online version of the article can be found by searching ’IUCrJ Klar exploiting super-
space mullite’.
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