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Abstract 

Organocatalysis has emerged as an invaluable tool for polymer synthesis and has already 

demonstrated versatility for replacing organometallic catalysts in many polymerization 

reactions. The overall ease of removal and lower toxicity of organocatalysts relative to their 

common metal counterparts has also nurtured development especially in chain growth 

polymerizations to achieve precision macromolecular architectures for application in the 

biomedical space. The application of organocatalysts in step-growth polymerizations of 

polymers, including polyesters, polycarbonates, and polyurethanes, has garnered fewer studies 

in spite of the large array of benefits that could be achieved. Step-growth polymers account for 

nearly 20 wt. % of the Word Plastic Production and play a vital role in many technologies as 

engineering plastics and high performance polymeric materials with outstanding 

thermomechanical performance. Step-growth polymerizations are achieved using monomers 

with a diversity of chemical functionality. Consequently, a vast array of polymeric structures 

are attainable and will impact diverse applications in energy, aerospace, medicine, 

transportation, and construction. This review article will highlight the recent advances in 

organocatalysis in step growth polymerizations. We will primarily focus our review on the 

synthesis of commercially important polyesters and polyurethanes using organocatalysis, 

however, the review will also emphasize recent literature describing less explored polymers, 

such as polyethers, polycarbonates, and polybenzoins, which have recently employed 

organocatalysts. Moreover, the article will draw attention to recent efforts in the use of carbon 
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dioxide as a monomer for the preparation of step-growth polymers in the presence of 

organocatalysis.  
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Abbreviations: AcOH, acetic acid; ADMET, α,ω-dienemetathesis polymerization; AMP, Acetal Metathesis 

Polymerization; BAIL, [BBSIm]Tf2N, 4-(3’-butyl-1’-imidazolio)-1-butanesulfonic acid 

bis(trifluoromethylsulfonyl)imidide; Brønsted acid ionic liquid; BDMAEE, 2,2′-bis-(dimethylaminoethyl ether); 

BF3OEt2, boron trifluoride diethyl ether complex; BHET, bis(2-hydroxyethyl)terephtalate; bis-MPA, 2,2-

bis(hydroxymethyl)-propionic acid; bis-MPA-TEMPO, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl 3-

hydroxy-2-(hydroxymethyl)-2-methylpropanoate; BEMP, 2-tert-butylimino-2-diethylamino-1,3-

dimethylperhydro-1,3,2-diazaphosphorine; CSA, camphor-10-sulfonic acid; Đ, dispersity; DABCO, 1,4-

diazabicyclo [2,2,2]octane; DBN, 1,5-diazabicyclo[4.3.0]non-5-ene; DBSA, dodecylbenzenesulfonic acid; 

DBTDL, dibutyltin dilaurate; DBU, 1,8-diazabicyclo[5.4.0]undec-7-ene; DCM, dichloromethane; DES, 

diethylstilbestrol; DFT, density functional theory; DOX, doxorubicin; DMAP, 4-dimethylaminopyridine; DMC, 

dimethyl carbonate; DMF, N,N-dimethylformamide; DMSO, dimethyl sulfoxide; DMT, dimethyl terephthalate; 

DPC, diphenyl carbonate; DPP, diphenyl phosphate; EG, ethylene glycol; Et-MDEA, N,N-bis(2-hydroxyethyl)-

N-methylbutan-1-aminium bromide; Hex-MDEA, N,N-bis(2-hydroxyethyl)-N-methylhexan-1-aminium bromide; 

HCl, hydrochloric acid; HMDI, hexamethylene diisocyanate; H3PO4, phosphoric acid; H2SO4, sulfuric acid; IPDI, 

isophorone diisocyanate; KHMDS, potassium bis-(trimethylsilyl)amide; KOMe, potassium methoxide; KO-t-Bu, 

potassium tert-butoxide; LCST, lower critical solution temperature; MDA, 4,4'-diaminodiphenylmethane; MDEA, 

N-methyldiethanolamine; MeCN, acetonitrile; MeOTF, trifluoromethanesulfonate; Mn, number-average molar 

mass; MRI, magnetic resonance imaging; MSA, methanesulfonic acid; MTBD, N-methyl 7-methyl-1,5,7-

triazabicyclo[4.4.0]dec-5-ene; Mw, weight-average molar mass; Nf2NH, bis(1,1,2,2,3,3,4,4,4-nonafluoro-1-

butanesulfonyl)imide; NfOH, 1,1,2,2,3,3,4,4,4-nonafluoro-1-butanesulfonic acid; NHC, N-heterocyclic carbene; 

NHC-CO2, azolium-2-carboxylate; NIPU, non-isocyanate polyurethane; NMP, N-methyl-2-pyrrolidone; 

[OBSIm]Tf2N, 4-(3’-octyl-1’-imidazolio)-1-butane-sulfonic acid bis(trifluoromethylsulfonyl) imidide; P2-Et, 1-

Ethyl-2,2,4,4,4-pentakis(dimethylamino)-2λ5,4λ5-catenadi(phosphazene); PCS, pyridinium camphorsulfonate; 

PEG, polyethylene glycol; PEO, polyethylene oxide; PET, poly(ethyleneterephtalate); Ph3P, triphenylphosphine; 

PHU, poly(hydroxyurethane); PHUU, poly(hydroxyurea−urethane); PPV, poly(1,4-phenylenevinylene); PPY, 4-

pyrrolidinopyridine; PTMO, poly(tetramethylene oxide); PTSA, p-toluene sulfonic acid; PTSAA, p-toluene 

sulfonic anhydride; PTS, pyridinium p-toluenesulfonate; p-TsOH, p-toluene sulfonic acid monohydrate; PU, 

polyurethane; PVA, polyvinyl alcohol; REMP, ring expansion metathesis polymerization; ROIP, ring opening 

insertion metathesis polymerization; ROP, ring-opening poylmerization; RT, room temperature (23 ± 5 °C); SP, 

(+)-sparteine; TBD, 1,5,7-triazabicyclo[4.4.0]dec-5-ene; t-BuP1, tert-butylimino-

tris(dimethylamino)phosphorene; t-BuP2, 1-tert-Butyl-2,2,4,4,4-pentakis(dimethylamino)-2λ5,4λ5-

catenadi(phosphazene); t-BuP4, 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)-

phosphoranylidenamino]-2λ5,4λ5-catenadi(phosphazene); TEA, triethylamine; TFA, trifluoroacetic acid; Tf2NH, 

bis(trifluoromethanesulfonyl)imide; TfOH, triflic acid; THF, tetrahydrofuran; Ti(OBu)4, titanium(IV) butoxide; 

TMC, trimethylene carbonate; TMG, 1,1,3,3-tetramethylguanidine; TMS, trimethylsilyl; TU, thiourea. 
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1. Introduction: Step-growth vs. Chain growth polymerization 

The beginning of the 20th century marked the development of the first synthetic plastics, 

ingraining polymers as ubiquitous in our daily life. Their production has increased over the past 

decades from 15 million tons in 1964 to 311 million tons in 2014 and is expected to increase 

above 500 million tons by 2050. The production of polymers comprises two distinctive 

polymerization mechanisms, chain growth and step-growth polymerization. The largest 

difference between step-growth and chain growth encompasses the molecular weight 

dependence on extent of monomer conversion. During chain growth polymerization process, a 

reactive intermediate (i.e. radical, anion, cation or metallocene) forms through an initiation step. 

This reactive center reacts with a monomer, most often alkene derivatives, in a propagation step 

transferring the reactive center to the end of the chain. Molecular weight growth occurs through 

consecutive addition of monomers until termination consumes the reactive center. This 

polymerization does not proceed through reaction with different polymer chains as this would 

result in termination of the reactive end. As such, high molecular weight polymers form early 

in the reaction and shorter polymer chains at the end, lowering the average molar mass, thus, 

the overall concentration of high molecular weight polymer chains and polymer dispersity 

index becoming reliant on % conversion (Figure 1b) [1]. One alternative to chain growth 

polymerization is the so-called living chain growth polymerization where the molecular weight 

increases linearly with the conversion (Figure 1c). Although this type of polymerization has 

gained a great interest in the polymer community due to the ability of obtaining narrower 

dispersities in comparison with conventional chain growth and step growth polymerizations, it 

is out of the scope of this review and therefore will not be discussed here. 

 

Figure 1. Molecular weight dependence on extent of conversion in different polymerization 
mechanisms a) step-growth b) chain growth and c) living. 
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In contrast, the mechanism of growth in step-growth polymerizations begins with the 

formation of dimers from monomers then systematically increases in size to trimers and 

tetramers until high molecular weights are achieved (Figures 1a and 2). In the case of a 

polymerization between two bifunctional monomers AA + BB, where A functional group reacts 

with B functional group, the reactive end-groups enable chains of varying sizes to couple 

together eventually forming high molecular weight species when larger chains couple [1]. This 

process also proceeds with AB type monomers enabling homopolymerization through one 

monomer. Studies on polyesters demonstrated that the increasing chain molecular weight does 

not perturb the reactivity of the end-groups. Carothers explained this extent of conversion 

dependence through the development of equation 1, where Xn represents the degree of 

polymerization, ρ denotes the extent of conversion, and favg indicates the average functionality 

of the polymer system.  

𝑿𝑿𝒏𝒏, 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔−𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 =  
𝟐𝟐

𝟐𝟐 − 𝝆𝝆𝒇𝒇𝒂𝒂𝒂𝒂𝒂𝒂
 (1) 

Figure 1a graphically depicts this dependence and demonstrates that high molecular weight is 

only achieved at high reaction conversions [1,2]. This being said, it must be pointed out that 

achieving high molecular weight with step-growth polymerization is non-trivial and requires 

six essential criteria unlike chain growth polymerizations:[3]  

1. Monomer functionality (f) of 2.0. 

2. Stoichiometry of functional groups equivalent to 1.0. 

3. Absence of side-reactions that would reduce monomer functionality and impact 

stoichiometry. 

4. High reaction conversions (>99.9%). 

5. Accessibility of reactive groups. 

6. Efficient removal of condensates when applicable. 

 

It should be noted that in step-growth polymerizations when the average functionality of 

monomers employed is greater than 2, cross-linked materials can be obtained. In these 

cases, obtaining high monomer conversions is not crucial to achieve high molecular weight 

polymers and factors such as gel point or crosslinking density should be evaluated. These 
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factors are extremely important in step-growth polymers but has not been considered in 

detail within this review as it focuses especially on the catalysis of thermoplastic polymers. 

 

Figure 2. Illustration of mechanistic difference between step-growth polymerization and chain 
growth polymerization. 

 

Step-growth polymers comprise almost all high performance polymers in production 

with chain-growth polymers making up 80 % of the currently utilized commodity polymers. 

While both of these polymer systems contribute to the quality, safety, and health of our modern 

life, step-growth polymers exhibit a marked improvement in toughness, stiffness, and thermal 

stability when compared to early free-radical derived polymers. For these reasons, many 

polymers obtained by step-growth method (e.g. polyetherketones, polysulfones, polyimides) 

comprise the top of the pyramid of added value polymers with high mechanical performance. 

Step-growth polymerization first gained notoriety through DuPont’s commercialization 

of Nylon-6,6, following Carothers pioneering work to elucidate the polycondensation process 

[4,5]. Traditionally this polymerization method occurs through a reaction between two different 

functional groups utilizing quantitative reactions, such as esterification, amidation, nucleophilic 

aromatic substitution, and urethane/urea formation with isocyanates [1,3]. Considering 

Carothers equation, for an organic reaction to be considered a suitable candidate for 

polymerization, the reaction must proceed in a quantitative fashion (> 99%). In the case of 

polyesters, the transesterification reaction achieves high conversion under proper conditions 

making it a suitable reaction for step-growth polymerization [6]. 

However, several issues perturb the course of a step-growth polymerization. For instance,  
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• The harsh conditions, such as high pressures and temperatures, facilitate monomer 

decomposition during the polymerization resulting in loss of the reaction stoichiometry. 

• Unwanted side reactions involving functional groups can occur (e.g. cyclization, 

decarboxylation from COOH end groups, etc.) affecting the A to B monomer ratio and 

diminishing the molecular weight. 

• Polymerization can reach an unfavorable equilibrium with no means to eliminate the 

side product (reversible polycondensation) limiting high conversions and consequently 

high molecular weight.   

Thus, most step-growth polymerizations require a catalyst to mediate the 

polymerization, increase the rate of reactions, and push the conversion above 99 %, in order to 

reduce the potential side reactions. Small organic molecules synthesis employs a diverse range 

of catalysts to improve selectivity of enantiomers and increase reaction rates. These reactions 

often draw inspiration from nature with the use of enzymes to catalyze biochemical reactions 

[7,8]. Flory initially studied the use of Lewis acidic/basic catalysts for quantitative ester 

interchange kinetics for use in high molecular weight polyester synthesis [9]. Until recently, 

metal based catalysts have comprised the majority of systems utilized in step-growth 

polymerization focusing on a variety of metal complexes, bases, and acids. Organocatalysis has 

emerged in this field with the potential to improve upon these long studied processes. [3]. 

 

2. Organocatalysis vs. Metal Catalysis in step-growth polymerizations 

The first notorious examples about the importance of metal catalysis for the preparation 

of well defined polymers were based on chain-growth polymerization. Among them, Ziegler-

Natta catalysts comprise the most widely used polymer catalysts due to their use in the 

commercialized synthesis of polyethylene, polypropylene, and polyolefin copolymers. These 

materials encompass over 50 % of the total non-fiber plastics produced since 1950 and 

generated an estimated 184 Mt of global primary plastic production in 2015 [10]. Developed in 

the 1940’s, these systems comprised titanium compounds and organoaluminum derivatives as 

co-catalysts. They allow triggering the polymerization through a coordination mechanism 

resulting in insertion of the catalyst across the double bond. Further development resulted in 

the formation of single-site catalysts using metallocene structures, often incorporating Zr or Hf 

as the metal center [11,12]. Metathesis based polymerizations represent another mechanism of 

catalysis for chain growth reactions. Originally developed for ring opening polymerizations of 



 8 

structures exhibiting significant ring strain, i.e. norbornene, these catalysts include transition 

metal centers observed in the Schrock or Grubbs catalyst in Figure 3 [11,13,14]. These catalysts 

expanded their use into a wide variety of polymerization including ring opening insertion 

metathesis polymerization (ROIP), ring expansion metathesis polymerization (REMP), and 

α,ω-dienemetathesis polymerization (ADMET) [15,16]. Cyclic monomers, such as lactones and 

epoxides, also undergo a ring opening polymerization following chain growth kinetics due to 

the repeated addition of the monomer to the active chain ends. Catalysis of these 

polymerizations traditionally occur through the use of metal alkoxide catalysts that undergo a 

“coordination-insertion” mechanism and use a diverse array of metals such as, Al, Mg, Zn, Ca, 

Sn, Fe, Y, Sm, Lu, Ti, and Zr [17]. 

 

Figure 3. Examples of typical a) transition metal-based catalysts for metathesis polymerization 
and b) organometallic catalysts for step-growth polymerization. 

Metal catalysis also have shown significant importance for the development of step-

growth polymers. One of the gold standars for step growth polymerization of polyurethanes are 

organotin compounds such as dibutyltin dilaurate. They act as Lewis acids toward the 

polymerization with remarkable catalytic activity and they are used in most of polyurethane 

preparation. The second highly employed catalyst in step-growth polymerization of polyesters, 

specially for the polymerization of polyethyleneterephtalate (PET) are antimony trioxide based 

compounds. The harsh polymerization conditions, being high vacuum in combination with high 

temperatures, are key factor in producing polymers with high molecular weights and good 

mechanical properties an antimony trioxide is currently the best suited for these polymerizatin 

conditions.  

While these catalysts enable the achievement of high molecular weight polymers, the 

accompanying issues that arise with their use present a variety of challenges. The initial use of 

organocatalysts for polymer synthesis largely stemmed from the necessity for a non-toxic 
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catalyst, to synthesize polymers for biomedical applications and/or microelectronics [17]. The 

initial focus was directed towards chain growth polymerizations, specifically ring opening 

polymerization of lactones and epoxides [17]. Over the last ten years, an emerging focus on the 

use of organocatalysts in step-growth polymerization has appeared in the literature.  

Organocatalysts comprise an area of polymer catalysis that exclusively utilize non-metal 

atoms[18–22]. The use of organocatalysis in chain growth polymerization primarily revolves 

around ring-opening polymerization (ROP) and occurs through four main activation 

mechanisms. Imidazoles, N-heterocyclic carbenes, phosphines, and pyridine derivatives 

undergo activation through a nucleophilic monomer activation mechanism. This occurs when 

the catalyst attacks the carbonyl carbon of the monomer resulting in ring-opening and the 

formation of a zwitterionic intermediate. The intermediate proceeds to deprotonate an initiating 

or propagating alcohol resulting in an alkoxide chain end that undergoes acylation with the 

carbonyl releasing the catalyst. Organic acids, such as trifluoromethanesulfonic acid (TfOH), 

trifluoromethanesulfonate (MeOTf), and HCl·Et2O, utilize the second activation mechanism, 

electrophilic monomer activation [23,24]. This involves activation of the carbonyl either by 

protonation or by interaction by hydrogen bonding, facilitating nucleophilic attack of the chain-

end (ROH). General base chain-end activation comprises the third catalytic mechanism. 

Activation of the chain-end (H-OR) occurs through deprotonation to form an alkoxide or H-

bonding to increase the nucleophilicity of the alcohol. The chain-end then attacks the carbonyl 

carbon causing a ring-opening reaction to form an ester and reform the activated alcohol 

species. Pyridine derivatives, such as dimethylaminopyridine (DMAP), demonstrate 

mechanistic competition between this mechanism and nucleophilic activation [25]. Finally, 

bifunctional activation encompasses the last mechanism for ROP, which simultaneously 

activates the monomer through electrophilic activation of the carbonyl and activation of the 

chain end/initiator through a general base mechanism [17]. It is hypothesized that 1,5,7-

triazabicyclododecene (TBD) catalyzes ROP through this unique dual-activation mechanism. 

This explains the observation of higher turnover frequency during the ROP of lactides and 

higher reactivity in comparison to 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and N-methyl-

1,5,7-triazabicyclododecene (MTBD), structures illustrated in Figure 4 [26,27]. 
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Figure 4. Structures of organocatalysts bases selected from guanidine or pyridine derivatives. 

 

Due to the similarity between the functional groups used in step-growth polymerization 

and ROP, many of the organocatalysts used in ROP represent possible catalytic systems for 

step-growth polymerizations. N-heterocyclic carbenes (NHCs), over the last 16 years, 

developed into a widely used range of organocatalysts for step-growth polymerization [28]. 

Polycarbonates, polyesters, polybenzoins, and oxa-Michael addition polymerizations all 

utilized derivatives of NHCs to achieve high molecular weight polymers (Figure 5) [28–32]. In 

these polymerizations, carbenes were generated in- situ through deprotonation of imidazolium 

salts with a base, like potassium tert-butoxide, resulting in a nucleophile more active than 

tertiary amines or phosphines. This nucleophilic species activates the monomer through attack 

of the carbonyl carbon forming a salt with the resulting alkoxide and enabling attack from a 

propagating alcohol (nucleophilic monomer activation) [28]. Studies of transesterification 

reactions demonstrated that the bulkiness/ structure of the NHC influences the selectivity of the 

catalyst, limiting reactions with secondary alcohols, representing a unique tunable feature not 

present in metal based catalysts [30,31]. 
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Figure 5. Examples of N-heterocyclic carbenes catalyzed step-growth polymerizations and 
depolymerization.  

 

Cyclic guanidines comprise another large area of organocatalysts for step-growth 

polymerizations. Figure 4 depicts a few examples of these popular compounds that found 

success to access a wide range of polymers, such as polyesters, polyurethanes, and 

polycarbonates. In the field of polycarbonates, TBD was utilized on multiple occasion (Figure 

6) [33,34]. This bifunctional transacylation catalyst activates through two proposed 

mechanisms, amidation or hydrogen bonding stabilization [35]. Convenient preparation of this 

catalyst transpires from inexpensive and non-toxic chemicals in one-step with high yield [36]. 

production of polycarbonates with Mn of 33 kg.mol-1 occurred at low catalyst loadings (0.5 mol 

%) and relatively mild conditions (< 150 °C) [33]. Other guanidine bases, such as DBU, and 

pyridine base derivatives like DMAP also demonstrated success as step-growth polymerization 

catalysts [34]. 
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Figure 6. Examples of TBD catalyzed step-growth polymerizations. 

 

While nucleophilic/general base catalyst mechanisms exhibit encouraging results in 

polyesters and polycarbonates, acid catalysts displayed superior activity in isocyanate-based 

reactions. Acid catalysts expand the range of monomer options overcoming base sensitivity that 

limits compounds containing carboxylic acids and amides [37]. Triflic acid (TfOH), p-

toluenesulfonic acid (PTSA), and bis(trifluoromethanesulfonyl)imide (Tf2NH), undergo a dual 

activation mechanism in which the nitrogen of the isocyanate electrophilically activates along 

with simultaneous nucleophilic activation of the alcohol. Using these acids, high molecular 

weight PU’s were achieved in 6 h unlike the 24 h necessary to achieve > 98% conversion using 

DBU or the traditional metal catalyst, dibutyltin dilaurate (DBTDL) [38]. Acid catalysts also 

demonstrate use in dendritic polyacetals and unique ionic liquid with acid moieties act as both 

catalyst and solvent in the synthesis of polyesters and polyethers (Figure 7) [39–41].  
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Figure 7. Examples of PTSA catalyzed step-growth polymerizations. 

 

Figure 8 illustrates the field of organocatalysts within step-growth polymerization from 

2001 until now as expanded upon in this review. A focus is given on the main step-growth 

polymers such as polyurethanes, polyureas, polyesters, polycarbonates and polyethers 

synthesized using organic Lewis or Brønsted bases or Lewis or Brønsted acids. This review 

will also have a particular focus on comparing the best organic catalysts in each step-growth 

polymerization in terms of efficacy and selectivity with metal catalysts commonly used in each 

polymerization. The last section of the review will deal with the limitations and open challenges 

of organocatalyzed step-growth polymerizations.  
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Figure 8. Chronological compilation of organocatalysts utilized in chain growth and step-
growth polymerizations. 
 

3. Synthesis of polyurethanes, and poly(urea-urethane)s via step-growth 

polymerization using organocatalysis 

 

Since their first synthesis by Otto Bayer in 1937, polyurethanes (PUs) provoked interest 

due to their high versatility, good mechanical and physical properties, and relatively low cost 

[42]. Polyurethanes constitute the sixth most important class of polymeric materials used 

worldwide, with a global production that reached 18 Mt in 2016, and a demand in continuous 

expansion [43,44]. Industrially synthesized from the polyaddition between polyols and 

polyisocyanates in the presence of a metal-based catalyst (mercury- or tin-based catalysts). 

These versatile materials find applications in rigid and soft foams, coatings, adhesives, sealant 

or as biomedical materials [45,46]. Most industrial processes involve the use of a short chain 

diol or diamine, acting as chain extender in order to attain higher molecular weights. In this 
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case, the polyurethane synthesis is usually performed in two steps with the first step involving 

the use of a long chain diol to form a PU prepolymer. In the second step, the short chain diols 

(more reactive) are added to complete the polymerization and to achieve high molar masses. 

Catalysts play an enormous role in the process of synthesizing industrially relevant 

polyurethanes. The most employed catalyst being organotin compounds, such as dibutyltin 

dilaurate [47]. The success behind this catalyst is related to its high activity at low loading 

concentration. Nevertheless, the remarkable difficult and costly purification, limits the catalyst 

removal from the final polymers. This residual catalyst provokes detrimental effects on the 

ageing of the final polyurethane. In addition, some studies suggested the possibility of tissue 

function endangerment through slow penetration of the catalyst into the blood circulation 

system which should be considered when employing tin catalyzed PU in biomedical or food 

contact applications [48–54]. These issues have led to the implementation of regulations by the 

European Union to restrict its use [50,55,56]. 

Recent efforts in polyurethane synthesis were thus oriented toward the design and 

synthesis of novel organocatalysts that performed as effectively as tin-based catalysts. Several 

classes of organic compounds including strong and weak Brønsted/Lewis acid or bases, 

phosphazenes, amines and ammonium derivatives, guanidines and amidines, and thiourea 

derivatives demonstrated high catalytic activity in PU synthesis, highlighted in the following 

sections (Figure 9) [57]. 
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Figure 9. Conventional organic bases and acids used as catalysts for step-growth 

polymerization of polyurethane. Adapted from ref. [57]. 

 

3.1. Use of organic base catalysts.  

Although preparation of polyurethanes under catalyst free conditions is possible 

(Scheme 1.a), a catalyst is often required to achieve high molecular weight polymers under 

milder conditions. These catalysts comprise electrophilic activators, such as Brønsted acids, 

that activate the isocyanate group (Scheme 1.c) and nucleophilic activators, such as amines, 

that activate the alcohol group (Scheme 1.b) [57]. 
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Scheme 1. Mechanism of the reaction between isocyanate and alcohol in the presence of a) no 

catalyst, b) a base or nucleophilic activator as catalyst or c) an acid or electrophilic activator 

Adapted from ref. [57]. 

 

Tertiary amines. 

Historically, the most common organic base catalysts employed in urethane 

polymerization reactions consisted of tertiary amines. Among them, 1,4-diazabicyclo 

[2,2,2]octane (DABCO) and 2,2′-bis-(dimethylaminoethyl ether) (BDMAEE) represent the 

most industrially employed catalysts [58]. While the amine activation mechanism during the 

urethane formation remains unclear, it is well understood that DABCO can catalyze both 

isocyanate-water and isocyanate-hydroxyl reactions. In the 1940’s, Baker et al. researched the 

base catalysis of urethane formation through a series of kinetic studies indicating that the 

isocyanate undergoes nucleophilic activation by DABCO [59,60]. Other groups, such as 

Schwetlick and coworkers, contradicted this original study by demonstrating that the urethane 

formation involves first protonation of the catalyst, then nucleophilic addition of the alcohol 

onto the isocyanate, and finally proton transfer from the catalyst to the complex (Scheme 1.b) 

[61][60]. Density functional theory (DFT) calculation recently confirmed this mechanism as 

the most dominant pathway [62]. 
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Unfortunately, catalysis with DABCO exhibited limit reactivity enhancement relative 

to non-catalyzed reactions during the synthesis of linear aliphatic isocyanates[63]. Moreover, 

tin-based catalysts still outperform these systems in terms of reaction rates indicating that 

organocatalysts require molecules with higher basicity (amidines and guanidines). 

 

Cyclic guanidines and amidines.  

Tetra-alkylated guanidines, for example TBD (MeCN pKa TBDH+ = 26), amidines, 

such as DBU (MeCN pKa DBUH+=24.3), and penta-alkylated guanidines, such as MTBD 

(MeCN pKa MTBDH+ = 25.5) have been intensively studied in the ring-opening 

polymerization (ROP) processes [55]. Recent studies revealed potential in the area of step-

growth polymerizations.  

In 2012, amidines, acyclic guanidines, and cyclic guanidines were characterized as 

possible catalysts for polyurethanes based on isophorone diisocyanate (IPDI) and 

poly(tetramethylene oxide) 650 (PTMO-650) with the results compared to conventional 

DBTDL. The reaction was performed in bulk at 60 °C using 1 mol % of catalyst (Scheme 2) 

while FTIR monitored conversion [63]. 

 

Scheme 2. Synthesis of PTMO 650 and IPDI based polyurethanes utilizing amidine and 

guanidine catalysts. Adapted from ref. [63]. 

 

MTBD and DBU catalysts exhibited a significant improvement over DBTDL in the synthesis 

of PUs decreasing the time to full conversion from 1 h to 15 min. PUs with molecular weights, 

Mw, up to 74 kg.mol-1 (Đ = 1.9) were obtained with 1 mol % of DBU. Further study into this 

area, demonstrate the application of DBU to the room temperature solution polymerizations of 

polyether-based polyurethanes. Sardon and coworkers achieved molecular weight up to 188 

kg.mol-1 using trans-1,4-cyclohexylene diisocyanate [64]. A mechanism in which the base 
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activates the alcohol should imply that the higher the basicity of the catalyst the higher the 

reaction rate. Comparing the results obtained from acyclic and cyclic guanidines which exhibit 

similar pKa values in acetonitrile (25.4 and 25.43) [65,66], similar activities could be expected. 

However, kinetic studies showed that cyclic guanidines were much more reactive than their 

acyclic counterparts. Cramail et al. attributed the difference to the ring strain in the cyclic 

structure. The nitrogen atoms are constrained into a conformation where the lone pairs, being 

aligned, can be easily delocalized. Furthermore, TBD demonstrated much lower reactivity than 

MTBD even though it is a stronger base. The evidence indicates that another mechanism might 

occur in the catalyzed isocyanate-alcohol polymerization process. As shown in the Scheme 3 

below, adducts form through a nucleophilic mechanism between isocyanates and a guanidine 

catalyst triggering the formation of urethanes. 

 

 

Scheme 3. Proposed mechanism for the reaction between isocyanates and alcohols catalyzed 

by guanidines. Adapted from ref. [63]. 

 

Using this side reaction, Cramail and coworkers prepared delayed-action catalysts, 

activated upon heating through blocking the isocyanates moieties [67]. Preparation of the 

catalysts occurred through reacting one equivalent of different cyclic and acyclic guanidines 

(TBD, MTDB, TMG, etc.) or amidines (1,5-diazabicyclo[4.3.0]non-5-ene (DBN), DBU) with 

two equivalents of the desired isocyanate. The research confirmed through X-ray diffraction 

that MTDB reacting with benzylisocyanate formed a heterocyclic compound. (Scheme 4). The 

catalytic activity of the compounds was tested on the reaction between IPDI and PTMO 650 

with a catalyst loading of 1 mol %. Activity was not found at 20 °C, however upon heating at 
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60 °C, polymerization occurred. Employing MTBD-based latent catalyst, full conversion was 

achieved within 18 h and PUs with relative high molecular weight (Mw = 57.6 kg.mol-1, Đ = 

1.6) were obtained. The authors explained this latent activity by suggesting that decomposition 

of the heterocycle might occur upon heating. The alcohol functionality of the diol reacted with 

the isocyanurate functional group in the catalyst to form urethanes and regenerating the 

guanidine precursor. This latent catalyst also exhibited excellent selectivity with both aliphatic 

and aromatic isocyanates, producing PU without traces of cyclodimers and cyclotrimers. The 

key characteristic of latent or delayed action catalyst arises from their storage abilities and 

enables on-demand polymerizations.  

 

 

Scheme 4. Delayed-action catalyst based on guanidine. Adapted from ref. [67].  

 

Phosphazenes.  

Phosphazene-containing compounds function as extremely strong non-nucleophilic 

Brønsted bases. First introduced in 1987 by Schwesinger et al., they were used as effective 

catalysts for the ring-opening polymerizations of heterocycles or vinyl monomers [68,69]. Xia 

et al., in 2016, investigated the use of t-BuP4 (MeCN pKa BH+= 42.7) [69] to generate 

polyurethanes based on poly(ethylene oxide) (PEO) and IPDI [70]. They found that fast gel 

formation occurred upon addition of IPDI to a solution of PEO suggesting crosslinking of the 

isocyanate groups to form a polyamide structure under these basic conditions. In order to 

mediate this reaction, the addition of different thioureas as a cocatalyst with the phosphazene 

was studied. Employing 1,3-diphenylthiourea, they avoided the formation of polyamide side-

products, and after 72 h obtained high molecular weight polyurethanes (Mn = 67.8 kg.mol-1, Đ 

= 1.6) (Scheme 5). 
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Scheme 5. Synthesis of PUs with PEO soft segments utilizing phosphazene/thiourea co-

catalyst systems in a one-pot sequential manner. Adapted from ref. [70]. 

 

The group later investigated the application of a phosphazene catalyst with lower 

basicity, (tert-butylimino-tris(dimethylamino)phosphorene, t-BuP1, MeCN pKa BH+= 26.9) 

[71,72]. A macro-diol, poly(3,4-dihydrocoumarin-alt-ethylene oxide), was synthesized using t-

BuP1 in toluene prior to the addition of hexamethylene diisocyanate (HMDI) which was 

allowed to react at room temperature for 24 h. Under these conditions, the authors obtained 

polyurethane with a molecular weight of Mn = 43.9 kg.mol-1 (Đ = 2.1). 

 

N-Heterocyclic carbenes.  

The 𝜎𝜎-donor characteristic of the N-heterocyclic carbenes (NHCs) enables these 

molecules to act as either Brønsted bases (pKa= 15-30 in H2O) or as nucleophiles [73]. Coutlier 
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et al. recently demonstrated the synthesis of aliphatic diols and diisocyanates through catalytic 

activation with NHCs [74]. This study utilized low catalyst loading (1 mol % 1,3-

bis(ditertiobutyl)imidazol-2-ylidene) and low temperatures (30-50 °C) to achieve PUs [29]. The 

authors found that the order of addition of reactants was crucial to achieve linear polyurethanes. 

The addition of the diisocyanate to the reaction prior to the diol resulted in deactivation of the 

NHC, while the reverse order resulted in rapid polymerization. This suggests that a hydrogen-

bonding mechanism dominates.  

 

Scheme 6. Synthesis of crosslinked or linear polyurethanes catalyzed by NHCs. 

 

One of the advantages of carbenes, in comparison to other catalysts, relies on their 

potential to prepare carbene adducts that can be further used as latent catalysts. Buchmeiser et 

al. reported in 2009 the first NHC-catalyzed synthesis of crosslinked polyurethanes (Scheme 

6) [75,76]. NHC-CO2 adducts were used as latent catalysts for that purpose. The reactions were 

performed at 60-70 °C in dichloromethane, and the free carbene forms via thermal activation 

with subsequent release of CO2 (Scheme 7).  

 

 

Scheme 7. NHC-CO2 delayed-action catalyst. Adapted from ref. [75,76]. 

 

On demand activation resulted in significant interest towards this particular NHC 

catalyst to replace commonly used, but toxic, mercury derivatives.  
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3.2. Use of organic acid catalysts.  

Similarly to organic bases, strong organic acids proved to effectively catalyze the 

traditional isocyanate based polymerization of polyurethanes [38,77,78]. Until 2013, few 

studies reported on the synthesis of PUs using organic acid catalysts and those that did reported 

poor activities relative to traditional tin catalysts [78]. In 2013, Sardon and coworkers analyzed 

the potential of a range of organic acids to catalyze the solution polymerization of a 

poly(ethylene glycol) oligomer and HMDI at room temperature, as illustrated in Scheme 8 [38]. 

 

Scheme 8. O-activation vs. N-activation mechanism for the step-growth polymerization of 

hexamethylene diisocyanate and poly(ethylene glycol) 1500 in dichloromethane at room 

temperature. Adapted from ref. [38]. 

 

In this study, the researchers found that reactions without the presence of a catalyst resulted in 

negligible conversions. Alternatively, the addition of 5 mol % of “super strong” acids, such as 

bis(trifluoromethanesulfonyl)imide (Tf2NH, pKa = -18 [79]) and triflic acid (TfOH, pKa = -13 

[37]) afforded high molecular weight PUs (Mw= 24 kg.mol-1, Đ = 1.5) within 6 h. The catalytic 

capabilities of these acids outperformed the tin and DBU catalyzed reactions which only 

achieved complete conversion after 24 h. MSA and PTSA catalysts (sulfonic acids) afforded 

slower reaction rates relative to the “super strong” acids, but achieved higher molecular weights 

(Mw = 10.1 kg.mol-1, Đ = 1.7 and 18.5 kg.mol-1, Đ = 1.9, respectively) than the tin-catalyzed 

reaction (Mw = 7.4 kg.mol-1, Đ = 1.7). Apart from sulfonic acids, the authors also studied 

diphenylphosphate (DPP, pKa = 1.1), but 48 h were needed to reach full conversion, and PUs 

with low molecular weights were obtained after 6 h in comparison to the other acid catalysts 

(Mw = 4.3 kg.mol-1, Đ = 1.4). Moving to even weaker acid catalysts, such as trifluoroacetic acid 
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(TFA) and acetic acid (AcOH), proved completely ineffective. DFT calculations indicated that 

catalysis follows a dual hydrogen-bonding mechanism. This involves an electrophilic activation 

of the isocyanate prior to  nucleophilic activation of the alcohol (Scheme 9). The activation of 

the nitrogen exhibits a preference over the possible oxygen activation pathway suggesting that 

both acid strength and conjugate base nucleophility are important characteristics in the catalysis 

of polyurethanes. 

 

Scheme 9. The proposed formation of a urethane functionality through organic acid catalysis 

following an N-activation pathway. Adapted from ref. [38]. 

 

Recently, Fukushima and coworkers evaluated different organocatalysts for the 

synthesis of antithrombotic poly(carbonate-urethane) via one-pot sequential ring-opening 

polymerization and polyaddition process [80]. Among the used catalysts, triflic acid and 

diphenylphosphate were found to be the most active for the polyaddition of the polycarbonate-

diol with HDI. TfOH enabled the synthesis of poly(carbonate-urethane) with a molecular 

weight of Mn = 17.2 kg.mol-1 (Đ = 1.7). However, to monitor quantitatively the number of 

hydroxyl group formed in the early stage of the reaction, a weak acid such as DPP was preferred 

because of its capability of providing prepolymers with narrower dispersities without 

promoting side reactions. On the other hand, the mixtures TU/DBU and TU/SP were not 

suitable for the polyaddition as high monomer conversion could not be achieved. 

 

3.3. Catalyst selection for the synthesis of functional polyurethanes 
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While both organic base and organic acid catalysts demonstrated activation of the step-

growth polymerization of isocyanates and alcohols to some extent, catalyst choice is key when 

employing monomers featuring functional groups, as the latter may deactivate the catalyst.  

Sardon and coworkers described the acid-catalyzed synthesis and post-polymerization 

modification of PUs containing pendant activated pentafluorophenyl esters (Scheme 10). These 

systems cannot polymerize in the presence of a base catalyst as they interact with the pendant 

ester group [77]. In order to prevent this interaction, polymerizations were performed in 

dichloromethane at room temperature using 5 mol % triflic acid. This enabled the synthesis of 

high molecular weight polyurethanes ranging from Mn = 25 to 37 kg.mol-1 (Đ = 1.4). Moreover, 
19F NMR spectroscopy confirmed that the pentafuorophenyl esters remained intact after the 

polymerization. Interestingly, this method allowed a broad range of functionality to be 

incorporated in polyurethanes with pendant pentafluorophenyl through post-polymerization 

nucleophilic substitution (alcoholysis and aminolysis).  

The same group recently prepared thermally-responsive polyurethanes synthesized from 

PEG-diols of varying molecular weight (Mn = 600, 1000 and 1500 kg.mol-1), IPDI, and 2,2-

bis(hydroxymethyl)-propionic acid (bis-MPA) (Scheme 10) [81]. The reaction was performed 

in presence of 5 mol % methane sulfonic acid (MSA) catalyst. The authors argued that the 

catalyst choice was logical based on the mutual compatibility of the sulfonic acid and the 

carboxylic acid groups. Increasing the PEG content in the poly(ether urethanes) afforded a 

tunable LCST in aqueous media ranging from 30 to 70 °C. In order to access a wide range of 

thermoresponsive polyurethanes, Sardon et al. replaced bis-MPA with N-

methyldiethanolamine (MDEA) and quaternary amine-containing diols based on N-

methyldiethanolamine (i.e. Et-MDEA and Hex-MDEA) (Scheme 10). Polycations are 

attractive materials for biomedical applications in DNA or protein delivery, due to their 

temperature-responsiveness. In the case of cationic diols, the authors employed DBU as 

nucleophilic activator based on the mutual incompatibility between tertiary and quaternary 

amines with acid catalysts.  

Organic bases were found optimal for the polymerization of monomers bearing 

nitroxides [82]. Nitroxides contain oxygen-centered free radicals with a single unpaired 

electron, and are extensively employed in batteries, catalysis or nitroxide mediated 

polymerization; they also recently emerged as molecular magnetic resonance imaging (MRI) 

probes. One potential issue when using organocatalysts in the presence of nitroxide 

functionalities is that they can interact with strong acids, disproportionating the nitroxide and 
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diminishing the catalytic activity. Garmendia and coworkers concluded that, in order to 

polymerize monomers bearing nitroxide functionality, organic bases, e.g. DBU, were the most 

suitable catalysts (Scheme 10). 

 

Scheme 10. Adequate choice of catalyst for the synthesis of PUs employing monomers 

featuring functional groups. 

 

In summary, both organic bases and acids have proven suitable catalysts for the step-

growth polymerization of isocyanates and alcohols. Under specific conditions they exhibit 

comparable catalytic activities to commonly used tin-based catalysts. While strong acids may 

appear as an attractive choice, they can react with moisture potentially reducing their catalytic 

activity [83]. Strong bases can overcome this issue by catalyzing step-growth polymerizations 

even in the presence of moisture. However, as reported by Smith et al., formation of urethane 

groups in supercritical CO2 using DBU as catalyst provided lower activities compared to the 

reactions in conventional media as a result of its reaction with CO2 [84]. These findings suggest 

that in order to compete with tin-based catalyst organocatalyzed polymerization should be 

performed under dry and inert atmospheric conditions, which can be challenging for industrial 

applications. 
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4. Synthesis of non-isocyanate polyhydroxyurethane, polyurethanes and 

polyureas) via step-growth polymerization using organocatalysis 

 

The use of isocyanate based starting material in PU synthesis raises severe health 

concerns [85]. Common isocyanates are synthesized using phosgene, a highly reactive and toxic 

gas, used during World War I as chemical weapon. In the context of the new REACH regulation 

- implying the restriction on the use of substances containing free isocyanate - and taking into 

account the need to guarantee the users’ safety, it is important to find alternative and greener 

routes to PUs, involving non-toxic reagents [56]. In the last decade, alternative and 

environmentally friendly approaches have been developed to synthesize non-isocyanate 

polyurethanes (NIPUs) (Figure 10).  

 

Figure 10. Most employed synthetic routes toward non-isocyanate polyurethanes (NIPUs). 

Adapted from ref. [57] 
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The step-growth polyaddition of five-membered cyclic carbonates and diamines for the 

formation of polyhydroxyruethanes (PHU)s were reported as early as 1957 [86]. These 

polymers possess an important number of hydroxyl groups in their backbone, which confers 

them specific features compared to regular PUs discussed above. 

A catalyst is generally required to promote the reaction between the nucleophilic moiety 

of the monomer (alcohol or amine type) and the electrophilic center of the comonomer 

(carbonate or carbamate). There are evantually three ways to activate the reaction and 

facilitating the polymerization: a) increase the electrophilicity of the carbonate/carbamate 

center; b) increase the nucleophilicity of the amine/alcohol and c) a nucleophilic activation of 

the carbonate/carbamate (Scheme 11) [44]. 

Several types of organic molecules have thus been employed as nucleophilic catalysts, 

such as tertiary amines, cyclic guanidines and amidines, Brønsted and Lewis bases/acids or 

phosphazenes. 

  

Scheme 11. General activation mechanism for the organocatalyzed isocyanate-free synthesis 

of polyurethanes. Adapted from ref. [44]. 

 

4.1. Organocatalyzed step-growth polyaddition of cyclic dicarbonates and diamines 

The most popular synthetic pathway toward NIPUs is based on the reaction between 

cyclic dicarbonates and diamines (Figure 10.1). In this context, 5-, 6-, 7 and 8-membered 

dicyclic carbonate monomers have been the most studied [87–98]. While 6, 7 and 8-membered 

carbonates prove more reactive than their 5-membered counterparts, and facilitate catalyst-free 



 29 

polymerization, their synthesis generally requires the use of toxic chlorinated carbonylating 

agents. On the contrary, synthesis of 5-membered cyclic carbonates can easily be performed 

from coupling CO2 into epoxides [99]. In all these cases, the resulting polyurethanes structurally 

differ from conventional PUs by the presence in the β-position of the urethane bond of primary 

and/or secondary alcohols (Scheme 12) [100].  

 

Scheme 12. Synthesis of polyhydroxyurethane from 5-membered cyclic carbonates and 

diamines. Adapted from ref. [100] 

 

This section focuses on the organocatalysts employed in the polymerization of 5-

membered cyclic carbonates.  

Two reaction mechanisms have been proposed for the formation of urethanes by the 

aminolysis of cyclic carbonates. Tomita et al. and Garipov et al. suggested a mechanism 

through an amphoteric tetrahedral intermediate (Figure 11) [101,102]. Contrary to this work, 

Zabalov and Sardon et al. established with DFT calculations that hydroxyurethane formation 

may progress notably through a six-center ring intermediate based on the 5-membered cyclic 

carbonate and two amine molecules, one acting as catalyst and the other performing the 

nucleophilic attack (Figure 11) [98,103]. In this sense, the ring-opening reaction of cyclic 

carbonates may be accelerated through activation of the monomers. To this purpose, addition 

of Lewis acid catalysts may increase the electrophilicity of the cyclic carbonate group, while 

base catalysts may increase the nucleophilicity of the amine.  
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Figure 11. Proposed mechanism of the activation of cyclic carbonates with amines via an 

amphoteric tetrahedral intermediate (TS1) or via a six-center ring intermediate (TS2). Adapted 

from ref. [103]. 

 

Tertiary amines 

In 2004, Diakoumakos and Kotzev presented the first examples of the use of 

organocatalysis for step-growth polymerization of cyclic carbonates and diamines through the 

addition of piperazin or TEA [104]. The polymerizations were performed using aromatic and 

aliphatic diamines in conjuction with a cyclocarbonate resin reacted in bulk at 25 and 60 °C. 

The addition of TEA (1 wt %) to the polymerization afforded a decrease in the activation energy 

by 17.5 % (5.23 kJ/mol), in comparison with the non-catalyzed reaction (6.33 kJ/mol), and the 

reactions reached full conversion faster at both temperatures. According to the authors, the 

mechanism of catalyst activation using TEA involves the nucleophilic activation of the 

carbonate moiety prior to nucleophilic addition of the monomeric amine (Scheme 13). 
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Scheme 13. Proposed catalytic activation of cyclic carbonates utilizing triethylamine. Adapted 

from ref. [104]. 

 

D’Mello et al. further characterized the catalytic capabilities of TEA upon application 

to the polymerization of naturally derived cyclic carbonates with 1,6-hexamethylenediamine 

and/or isophorone diamine [105]. The two diamines reacted with equimolar amount of cyclic 

carbonate in bulk at 120 and 150 °C. The authors discovered that the addition of TEA in 

conjuction with the higher temperatures afforded faster rates of polymerization with Mn ranging 

from 2.7 to 4.6 kg.mol-1 (2.7 ≤ Đ ≤ 6.8). 

 

Cyclic guanidines and amidines.  

Amidines and cyclic guanidines, such as DBU and TBD, are also powerful catalysts for 

the ring-opening polymerization of cyclic esters and carbonates [55]. In particular, TBD which 

is the most studied bicyclic guanidines, has been reported to act as a bifunctional activator via 

H-bonding in a cooperative fashion. Moreover, and as discussed in the previous section, 

amidines and guanidines have shown efficient activation of the reaction between isocyanate 

and alcohol.  

Similarly, some authors reported the synthesis of polyhydroxyurethanes employing 

amidines and cyclic guanidines as catalysts. In particular, TBD proved efficient for the 
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aminolysis reaction of cyclic carbonates with amines [106]. Lambeth and Henderson conducted 

the aminolysis model reaction of two different 5-membered cyclic carbonates, i.e. 4-phenyl-

1,3-dioxolan-2-one (5CC1) and hexahydrobenzo[d][1,3]dioxol-2-one (5CC2) with hexylamine 

using TEA, TBD and DBU [87]. Carrying out the reactions in DMSO at room temperature, 

DBU and TBD improved the reaction rate in comparison to TEA. Specifically, while employing 

5CC1 the reaction barely reached 20 % conversion after 15 h, but with 10 mol % of TBD full 

conversion was achieved within 2.5 hours. Applied to difunctional materials, the authors 

reported the achievement of PHUs with molecular weights up to Mn = 53.4 kg.mol-1 (Đ = 1.4) 

(Scheme 14). In comparison, the non-catalyzed polyaddition yielded PHUs with much lower 

molecular weight (Mn = 5.43 kg.mol-1, Đ = 1.4).  

 

Scheme 14. TBD catalyzed solution polymerizations of diaminooctane or bis-(4-

aminocyclohexyl) methane with a 5-membered cyclic dicarbonate at room temperature. 

Adapted from ref. [87]. 

 

Chen and coworkers investigated further these reactions by performing 

polymerizations at room temperature with or without TBD using three commercially available 

diamines [107]. In the case of hexamethylenediamine, high molecular weight PHUs (Mn = 30 

kg.mol-1, Đ = 1.7) with close to 100 % conversion were achieved after 24 h through the addition 

of 5 mol % TBD. Slightly lower molecular weights (Mn= 23 kg.mol-1, Đ = 1.7) and lower 

percent conversions (93 %) were obtained upon removal of the catalyst. The results also 

demonstrated that the reaction rate improved using hexamethylenediamine rather than 

isophorone diamine probably due to the steric hindrance of isophorone diamine.  

Caillol and coworkers further exploited the TBD catalyst to prepare NIPU-type foams. 

This study characterized the step-growth polymerization of diamines (Priamine1073 or 
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Jeffamine EDR148) with 5-membered cyclic carbonates (trimethylolpropane tris-carbonate or 

polypropyleneoxide bis-carbonate) [108]. Poly(methylhydrogenosiloxane) was used as 

blowing agent, which reacted with the diamines releasing dihydrogen that expanded the NIPU 

materials in the presence of 5 mol % catalyst. 

A H-bonding mechanism for catalytic activation using TBD has been hypothesized 

based on previous ROP literature for cyclic carbonates (Scheme 15). However, recent studies 

indicated that a nucleophilic activation mechanism may dominate instead [63]. 

 

Scheme 15. Proposed hydrogen bonding activation mechanism of TBD-catalyzed step-growth 

polymerization of cyclic carbonates. 

 

Phosphines and phosphazenes 

Andrioletti and coworkers investigated the use of stronger bases, such as different 

phosphine and phosphazene derivatives (triphenylphosphine and t-BuP2), for the aminolysis of 

propylene carbonate with cyclohexylamine at room temperature [106]. While these organo-

compounds proved to effectively activate the conventional reaction between diisocyanate and 

diols, they appeared ineffective for NIPU formation. For example, 5 mol % of 2-tert-
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Butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) catalyst, 

only achieved a maximum conversion of 24 % within 1 hour. 

 

Thiourea 

Urea and thiourea derivatives represent another popular class of hydrogen-bonding 

catalysts that have been utilized successfully in a large variety of organocatalytic 

transformations in molecular chemistry, as well as in organocatalyzed ring-opening 

polymerization processes [109,110]. Especially, these Brønsted acids form hydrogen-bonded 

complexes with Lewis basic substrates, such as carbonate moieties, via bidentate binding 

interactions (Figure 12) [109,111]. 

 

 

Figure 12. Examples of bidentate hydrogen bonds for different thiourea-carbonyl substrates 

complex as determined by NMR and computational results. Adapted from ref. [111]. 

 

In particular, ureas and thioureas bearing 3,5-bis(trifluoromethyl)phenyl rings were 

extensively studied due to the high acidity that results in these double H-bonding molecules. 

This acidity results from the strong σ-electron withdrawing properties. Overall, the urea 

derivatives exhibit lower acidity relative to the thioureas, as indicated by the pKa values in 

Figure 13 [112]. Moreover, these compounds possess the advantage of being easily prepared 

from the reaction between iso(thio)cyanate derivatives and amines.  
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Figure 13. The effect of the 3,5-bis(trifluoromethyl)phenyl rings on the acidity of various ureas 

and thioureas. pKa values determined in DMSO. Adapted from ref. [112]. 

 

In 2014, Blain et al. examined the catalysis of aminolysis reactions between a range of 

amines and different cyclic carbonates with thioureas. They reported the use of two different 

thioureas as organocatalysts, namely, 1-(3,5-bis(trifluoromethyl)phenyl)-3-butylthiourea and 

1-(3,5-bis(trifluoromethyl)phenyl)-3-cyclohexylthiourea [106]. Employing propylene 

carbonate and cyclohexylamine as model compounds, the authors found that the thioureas 

exhibited activities equivalent to TBD at a catalyst loading of 5 mol %. Both catalysts achieved 

> 60 % conversions after only 1 h when reacting at room temperature. Interestingly, the 

cyclohexylphenyl-based thiourea outperformed TBD at low catalyst loading. 

The same group investigated a wide variety of urea and thiourea derivatives as 

organocatalysts for the aminolysis reaction of propylene carbonate with cyclohexylamine 

[113]. The reaction was performed in bulk at room temperature for 10 h. They discovered that 

the catalytic activity of the different thio(urea)s were mainly governed by their acidity (Figure 

13). In the case of thioureas, deprotonation occured when utilizing catalysts with high acidity 

inhibiting activation and resulting in low monomer conversions. Alternatively, catalysts with 

low acidity were not a strong enough activating agent to promote nucleophilic attack. Contrary 

to the difficulties of thioureas, higher conversions were achieved when utilizing aromatic urea 
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derivatives. The lower acidity of these catalysts limited the deactivation mechanism that 

inhibited thiourea use.  

These limitations did not prevent Caillol et al. from utilizing thioureas in the room 

temperature synthesis of isocyanate-free polyurethane foams [114]. These foams were 

synthesized through copolymerization of polypropylene oxide bis-carbonate, 

trimethylolpropane tris-carbonate, and Jeffamine EDR148 with 1 mol % catalyst 

(cyclohexylphenyl-based thiourea).  

Even if thioureas act successfully as organocatalysts for PU synthesis, they suffer from 

a lack of commercial availability and their synthesis could raise some health concerns. 

Currently these molecules require the use of isothiocyanate or isocyanate starting materials that 

are generally produced from thiophosgene or phosgene.  

 

Despite the successful synthesis at room temperature of PHU (or NIPUs) using TBD or 

thiourea catalysts, a few authors employed cyclic carbonates with more than 5-membered rings. 

For instance, Lambeth and coworkers conducted a detailed study of the aminolysis model 

reaction of trimethylene carbonate (TMC) and hexylamine using 10 mol % of different 

organocatalysts, namely TBD, DBU, 1-(3,5-bis(trifluoromethyl)phenyl)-3-cyclohexylthiourea) 

and phenolic derivative [115]. Overall only thiourea and TBD enabled a dramatic increase of 

the reaction rate, compared to the phenolic compounds and non-catalyzed reaction. 

Polymerization between a carbonate derivative of di(trimethylolpropane) and diaminopentane 

yielded a NIPU with Mn up to 42.9 kg.mol-1 (Đ = 2.1) in presence of thiourea catalyst at 50°C. 

Although the reaction rate could be significantly enhanced, molecular weights were limited due 

to side reactions, especially gelation resulting from the ring-opening reaction of TMC with 

pendant hydroxyl group, occurring during the reaction (Scheme 16).  

 

Scheme 16. Side reactions occurring during the aminolysis of TMC with hexylamine 

explaining the gelation occurring in polymerization as determined by 1H NMR and mass 

spectroscopy. Adapted from ref. [115]. 
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As described in previous studies by Besse et al. and Lamarzelle et al., the use of 

organocatalyst in harsh polymerization conditions for enhancing the reactivity of 5-membered 

cyclic carbonates usually implies the formation of secondary reactions [93,116]. In the 

presence of primary amines, urethane groups are indeed prone to urea formation. Moreover, 

ester-containing monomer can be subjected to amidification. It has been shown that 

oxazolidinones resulting from the dehydration of hydroxyurethanes can also be formed 

(Scheme 17). 

 

Scheme 17. Possible side reactions between 5-membered cyclic carbonate and amine: a) urea 

formation, b) amidification and c) dehydration. Adapted from ref. [93]. 

 

Sardon and coworkers recently took advantages of the urea side reactions occurring during the 

organocatalyzed polymerization of five-membered dicyclic carbonates and diamines, to access 

a range of poly(hydroxyurea−urethane)s (PHUUs) with precise urethane to urea ratio in a one-

pot process. The as-formed PHUUs exhibited improved mechanical properties in comparison 

with the corresponding PHUs [117]. 
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Although the step-growth polyaddition of cyclic dicarbonates and diamines represents 

an attractive alternative to isocyanate-free polyurethanes, more work is needed to obtain good 

control over the polymerization and limitation of side products. Most authors agree on the fact 

that temperature, initial concentration of the reactants, and solvent play a pivotal role in this 

polymerization together with the catalyst. The increase of the reaction temperature leads to a 

higher reaction rate and much better conversions but alternatively high temperatures (100 °C) 

yield side products. Still there is a need to search a selective molecule, e.g. a Lewis acid or a 

Lewis base, capable of catalyzing the aminolysis of cyclic carbonates without favoring the side 

reaction between the pending alcohol of polyhydroxyurethanes and cyclic carbonates.  

 

4.2. Other isocyanate-free methods to obtain polyurethanes by step-growth 

polymerizations using organocatalysis 

Organocatalyzed step-growth polycondensation of linear activated dicarbonates and diamines 

Another synthetic pathway described in the literature to access NIPUs involves the 

polycondensation reaction between linear activated dicarbonates and diamines (Figure 10.2). 

In 2013, Hedrick et al. reported an efficient method to prepare PEG-based NIPUs in 

water using polycondensation of a highly reactive linear pentafluorophenyl dicarbonate and 

Jeffamine (Scheme 18) [118]. The polymerization was carried out at room temperature for 1 

hour in presence of TEA catalyst. This polymerization achieved NIPUs with molecular weight 

in the range of Mn = 15-16.5 kg.mol-1 (Đ = 1.9). The authors suggested that, due to the high 

reactivity of the employed carbonate, the urethane formation occurred before decomposition of 

the carbonate in water. One drawback of this process is the release of toxic pentafluorophenol 

as side-product in the reaction mixture, requiring dialysis to purify the polymer prior to its final 

application. 

 

Scheme 18. Synthesis of a linear pentafluorophenyl dicarbonate and Jeffamine based 

polyurethane utilizing TEA. Adapted from ref. [118]. 
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Following the same concept, Sardon and coworkers developed a one-pot process for the 

preparation of NIPU nanoparticles based on linear activated dicarbonates and diamines, using 

surfactant-assisted interfacial polymerization [119]. Activated pentafluorophenyl dicarbonates 

were polymerized with poly(oxyethylene) (bis)amine by interfacial polymerization (H2O/DCM 

mixture) in the presence of sodium dodecyl sulfate as anionic emulsifier. This afforded NIPUs 

with Mn = 27 kg.mol-1 which enabled the formation of a range of nanoparticles with sizes from 

200−300 nm. Nucleophilic attack on the dicarbonate was enabled through the TEA facilitated 

deprotonation of the diamine. Although this represents a unique strategy that can be 

implemented in water, the utilization of pentafluorophenol derivatives limits its industrial 

implementation, not only because of their prohibitive price of but also due to the tedious 

purification process.  

 

Organocatalyzed step-growth polycondensation of linear activated dicarbamates and diols 

Another isocyanate-free approach to PUs involves the reaction between linear activated 

dicarbamates and diols (Figure 10.3). Due to the low reactivity of diols compared to diamines, 

this reaction has been less studied in the literature. In addition, weak tertiary amines, such as 

TEA or DABCO, are not strong enough to obtain decent molecular weights.  

Unverferth and coworkers utilized TBD as a catalyst in the polymerization of the main 

fatty acid of castor oil, ricinoleic acid derived dimethyl dicarbamates, and diols as illustrated in 

Scheme 19 [120]. The authors noted that degradation of the catalyst and monomers occurred 

when utilizing high reaction temperatures (160 °C) but lower temperatures (110 °C) inhibited 

conversion resulting in low molecular weight. In order to circumvent this, the authors decided 

to add 0.1 equivalent of TBD in three increments, while increasing gradually the temperature 

from 120-160 °C. The reactions were performed under continuous vacuum to remove the 

methanol condensate pushing the equilibrium toward the formation of polyurethanes. This 

optimized procedure achieved PHUs with molecular weights of up to Mn = 24.6 kg.mol-1 (Đ = 

2.0). 
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Scheme 19. Polymerization of diols and ricinoleic acid derived linear dicarbamates utilizing 

TBD catalyst. Adapted from ref. [120]. 

 

Similarly in 2014, Firdaus and Meier performed the step-growth polycondensation of 

limonene based linear dicarbamates with various diols in bulk at 120 °C, using 5 mol % of TBD 

[121]. Once again, the group applied continuous vacuum to efficiently remove methanol. Using 

limonene derived diols, NIPUs with molecular weight around Mn = 7.9 kg.mol-1 (Đ = 1.9) were 

obtained after 16 hours of reaction. No further molecular weight increase was observed over 

longer reaction times. According to the authors, the steric hindrance of these diols, due to the 

presence of the cycloaliphatic group, could account for the limited molecular weight. This was 

verified by obtaining slightly higher molecular weight PHUs (Mn = 8.7-12.6 kg.mol-1, Đ = 1.8-

2.1) after employing less hindered long chain diols.  

Using the same transurethanization process, Duval et al. synthesized novel renewable 

NIPUs based on dimethyl carbonate [122]. Dicarbamate monomers were first prepared from 

the reaction between dimethyl carbonate and different diamines using TBD as catalyst. Then, 

the transurethanization reactions between the carbamate monomers and different linear and 

branched diols were performed in bulk and under continuous flow of nitrogen with 10 mol % 

of TBD or 5 mol % of potassium carbonate (K2CO3). As described by Unverferth, the 

polymerization temperature was increased gradually from 120-160 °C to avoid monomer 

degradation [120]. Due to solubility issues, only the molecular weight of the branched PUs 

could be assessed by GPC. PUs synthesized from carbamate based on 1,10-diaminodecane and 

methyl ricinoleate-based diol in the presence of TBD, exhibited molecular weights up to Mn = 

6.6 kg.mol-1 (Đ = 1.3). Thanks to the higher thermal stability of K2CO3, the same 

polymerization performed at 200 °C using 5 mol % of K2CO3 led to PUs with higher molecular 

weight (Mn = 13.9 kg.mol-1, Đ = 1.9). As further example, PUs with molecular weight of Mn = 

10 kg.mol-1 (Đ = 2.7) were achieved employing priamine-based carbamate and 1,10-
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decanediol, with TBD. These results revealed that both K2CO3 and TBD were efficient catalysts 

for transurethanization reactions. 

The same group also prepared photo-crosslinkable materials from allyl terminated 

renewable NIPUs and polyureas.  Dicarbamates were first synthesized by transurethanization 

of diamines with dimethyl carbonate and subsequently reacted with excess diamines or diols to 

provide the corresponding methyl carbamate-terminated NIPUs and amine-terminated 

polyureas. Reaction with 9-decen-1-ol and 10-undecenoic acid led to the allyl-functionalized 

polymers. All reactions were performed in bulk at 140 °C for 6 h with 10 mol % of TBD [123]. 

In summary, among all nitrogen-containing bases tested, TBD proved to be an efficient 

catalyst, not only for the well-studied step-growth polyaddition of cyclic carbonates with 

diamines, but also for the transurethanization between dicarbamates and diols. In contrast, 

tertiary amines, such as TEA, appeared to provide minimal enhancement to polymerization 

rates, presumably due to its lower basicity when compared to amidines or guanidines. Thanks 

to the wide variety of commercially available guanidine and amidine-based catalysts, as well 

as their ability to promote the polymerization under mild conditions, such molecules are 

attractive organocatalysts for the synthesis of non-isocyanate polyurethanes. 

 

Organocatalyzed step-growth polymerization of non-isocyanate polyureas 

The substitution of isocyanates with greener alternatives also comprises a substantial 

area of research in polyureas[57]. For example, in 2011, Koning and coworkers prepared a 

series of segmented polyureas starting from different dicarbamates and poly(propylene glycol)-

based diamines (PPGda-400, Mn = 400 kg.mol-1  and PPGda-2000 Mn = 2 kg.mol-1) using TBD 

as catalyst (Scheme 20) [124]. The authors first prepared three dicarbamate monomers using 

1,4-diaminobutane and dimethyl carbonate as starting materials. Polycondensation reactions 

were performed at 130 °C in different solvents depending on the dicarbamates, with 10 mol % 

TBD. Overall, the results showed that all monomers led to polyureas and the molecular weights 

obtained were in the range of Mn = 27-36 kg.mol-1 (Đ = 1.4-1.9).  
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Scheme 20. Polymerization of segmented polyureas utilizing TBD catalyst and non-isocyanate 

based monomers, dicarbamates and poly(propylene glycol) diamines. Adapted from ref. [124]. 

 

Recently, the same group conducted a study to assess the catalytic activity of different 

organocompounds, such as guanidines (TBD, MTBD, TMG), amidine (DBU) phosphazene (P2-

Et), alkoxy-alkyl molecules (KOMe, KO-t-Bu), organo-alkyl-metal compound (KHMDS) 

along with transition-metal derivatives for the formation of polyurea at different temperatures 

starting from hexylamine and dimethylcarbonate [125]. Among all tested catalysts, KOMe, 

KO-t-Bu and KHMDS showed the best results, explained by the generation of an alkoxide anion 

RO- upon reaction with the alcohol ROH condensate which exhibits much more efficient 

activation than TBD. A proposed mechanism for the alkoxy-alkyl catalyzed model reaction was 

presented (Scheme 21). The higher basicity of KO-t-Bu (pKa = 19) and KHMDS (pKa = 26) 

compared to KOMe (pKa = 15.5), resulted in the bases reacting easily with the methanol 

condensate during the reaction to produce methoxide anions. Computational calculations by 

DFT with MeO- as active species revealed an activation energy for the reaction between N-

hexyl methylcarbamate and hexylamine of 75 kJ/mol, comparable to the experimental value 

calculated from the Arrhenius plot (73.2 kJ/mol). In comparison, the activation energies 

obtained without catalyst or with TBD are much higher (126 kJ/mol and 94.8 kJ/mol 

respectively). As expected, an increase in the temperature resulted in an increase in the reaction 
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rate for the most active catalyst (KOMe – 70 °C – ~60 % conversion; KOMe – 100 °C – ~85 

% conversion).  

 

Scheme 21. Catalytic mechanism for the formation of urethane linkage from dimethyl 

carbonate and n-hexylamine using a) TBD and b) KOMe as organocatalysts. Adapted from 

ref. [125]. 

 

The activity of these catalysts was also tested in the polycondensation of poly(propylene 

glycol)-based diamine (Mn = 2 kg.mol-1) with butylene biscarbamate (Scheme 22). Reactions 

were performed at 130 °C in the presence of 5 mol% TBD, KOMe, or KO-t-Bu catalysts. The 

authors found that the results agreed with observations made in the model reaction, in which 

the most active species is MeO-. In this system, under argon, both KOMe and KO-t-Bu 

performed similarly to each other and better than TBD with molecular weights, Mn, reaching 

more than 90 kg.mol-1 and 15 kg.mol-1 respectively after 30 h of reaction. Under air however, 

these catalysts were less active than TBD due to the formation of KOH upon reaction with H2O, 

which is completely inactive toward amine-carbamate reactions. Thus, TBD demonstrated 

much less sensitivity toward water than these alkali-based catalysts. 
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Scheme 22. Polycondensation reaction of poly(propylene glycol)-based diamine with butylene 

biscarbamate using organocatalysis. Adapted from ref. [125]. 

 

5. Other polymer families obtained via organocatalyzed step growth 

polymerization 

Organocatalysts like TEA, TBD, DMAP or PTSA, have also been applied to the 

synthesis of less explored polymers, such as polyethers, polycarbonates and polyacetals. This 

section will focus on the development of these polymer families.  

 

5.1. Polycarbonates  

Regarding the literature, polycarbonate synthesis comprises two main polymerization 

techniques: (i) the ring-opening polymerization of cyclic carbonates and (ii) the 

polycondensation between dicarbonates and diols. In this section the focus will be placed on 

polycarbonates obtained by the polycondensation route. The discovery of polycarbonates dates 

to 1898, when Einhorn disclosed the transformation of hydroquinone and resorcinol derivatives 

into polymeric materials [126]. However, at the beginning of the 20th century the limited 

solubility of this polymer and its difficult processing restricted its study. 

In 1953, the first aromatic polycarbonates were commercialized by Bayer and were 

widely used as engineering plastics, owing to their outstanding high impact, low scratch- and 

temperature-resistance [127]. Traditionally, polycarbonates were synthesized by interfacial 

polycondensation, between phosgene and sodium salts of bisphenol-A at 20-40 °C and 

atmospheric pressure. Weak organic bases, such as trimethylamine, were employed to 

accelerate the polycondensation reaction and achieved high molecular weights. The catalyst 
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was hypothesized to act as a weak base activating the alcohol or as neutralizing agent to avoid 

the delivery of HCl to the environment. Continuous restriction on the use of phosgene 

derivatives, have pushed both industry and academia to develop phosgene derivative-free 

synthesis of polycarbonates. In this sense, phosgene has been replaced by dimethyl carbonate 

and diphenyl carbonate. In addition, some carbonylation agents, such as dimethyl carbonate can 

be synthesized using CO2 as building block.  

Thus, polycarbonate synthesis can be successfully performed through the 

polycondensation of dimethyl carbonate (DMC) or diphenyl carbonate (DPC) with a diol in a 

two-step process (Scheme 23). During the first reaction step consisting of the initial 

condensation, the temperature is maintained at 100-130 °C over a period of 1-24 hours until the 

equilibrium is reached. In this stage, hydroxyl and carbonate end groups react eliminating 

methanol, leading to low molecular weight oligomers (< 1,000 g.mol-1). In the second step, the 

chain growth takes place by transesterification between hydroxyl and methyl/phenyl carbonate 

end groups in the presence of transesterification catalyst. High temperatures (150-350 °C) and 

high vacuum are normally required to remove all unreacted monomers and condensates. The 

mole ratio of this polymerization is crucial to enhance the conversion of the first step and to 

obtain high molecular weight polycarbonates during the second step. The aim is to increase the 

number of methyl/phenyl carbonate groups for the transesterification reaction, which are more 

reactive compared to hydroxyl groups. This can be achieved with an excess of 

dimethyl/diphenyl carbonate leading to higher molecular weight [128]. 

This methodology not only avoids the use of chlorinated reagents but is also performed 

in bulk avoiding the employment of organic solvents and hindering the formation of cyclic 

carbonates side products. Nevertheless, the reactivity of these two linear carbonates is much 

lower and the reaction must take place at higher temperature (150-350 °C), reduced pressure 

usually with the required addition of catalysts. Metal and alkali metals, such as NaH or NaOH, 

have dominated the field of polycarbonates obtained by step growth polymerizations [129–

131]. 
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Scheme 23. General route for the synthesis of polycarbonates via step-growth polymerization. 

Adapted from ref. [34,128]. 

 

New efforts in polycarbonate synthesis were oriented toward the design of novel 

organocatalysts that achieved high molecular weights. As in the case of non-isocyanate 

polyurethanes, there are three ways to activate the reaction: a) increasing the electrophilicity of 

the carbonate b) increasing the nucleophilicity of the alcohol and c) a nucleophilic activation of 

the carbonate [44]. Several classes of organic compounds, including tertiary amines, strong 

bases such as guanidines and amidines, N-heterocyclic carbenes and thiourea derivatives have 

been investigated in polycarbonate synthesis, as described in the following sections (Figure 

14). 
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Figure 14. Conventional organic bases used as catalysts for step-growth polymerization of 

polycarbonates.  

 

Cyclic guanidines and amidines 

In spite of the success of weak organic bases, such as TEA, to mediate the synthesis of 

polycarbonates using phosgene or phosgene derivatives, the weak basicity of tertiary amines 

leads to limited molecular weights in presence of dimethyl carbonate and diphenyl carbonate. 

Stronger bases, such as guanidines and amidines, in particular, TBD, MTBD, and DBU have 

thus been investigated as potential catalysts. [33,34,132]. 

Meier et al. investigated the step-growth polymerization in bulk of 1,6-hexanediol and 
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dimethyl carbonate in presence of TBD (Scheme 24) [33]. When using 0.5 mol % of catalyst, 

a polymer with Mn of 33 kg.mol-1 could be prepared. Increasing the TBD concentration to 1 

mol % decreased the molecular weights. Studies by NMR spectroscopy demonstrated that at 

high TBD loadings, the terminal methyl carbonates were cleaved, forming  terminal allyl 

carbonate groups. This study resulted in significant improvements toward the polymerization 

with regards to previously reported results for similar polymer, which obtained Mn of 11 

kg.mol-1 from the polymerization of diethyl carbonate with 1,6-hexanediol catalyzed by 

immobilized Candida antarctica Lipase B.23. 

 

Scheme 24. Synthesis of polycarbonates utilizing TBD as catalyst and 1,6-hexanediol and 

dimethyl carbonate as monomers. Adapted from ref. [33]. 

 

More recently, Sun et al. investigated the effects of different organocatalysts on the 

synthesis of polycarbonates [34]. Comparing MTBD and TBD catalysts, polymers exhibited 

significantly higher molecular weight with MTBD. The MTBD catalyzed melt-

polycondensation achieved Mn = 17 kg.mol-1, whereas with TBD, molecular weights of 6.2 

kg.mol-1 were obtained. While no explanation was provided, this behavior could be related to 

the formation of allyl carbonate groups in presence of TBD or to the dual character of TBD 

which plays a detrimental role such as in the case of polyurethanes.  

 

In order to perform the polymerization at lower temperatures in solution, Malkoch et al. 

designed activated carbonates functionalized with carbonylimidazolide moieties [133]. This 
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strategy allowed the preparation of a unique library of polycarbonates including (i) rigid, 

flexible and reactive polycarbonate backbones, (ii) molecular weights 5–20 kg.mol-1, (iii) 

dispersities of 1.3–2.9 and (iv) a wide span of glass transition temperatures from −45 to 169 °C. 

DBU was found to be an excellent organocatalyst to mediate this polymerization. Sugar-derived 

polycarbonates from isosorbide and dihydroxyacetone were also prepared using 1 mol % of 

DBU. In all cases, polycarbonates exhibited quite similar molecular weights (Mn = 5 – 9 kg.mol-

1, Đ = 1.5-2.0) [132].  

 

N-Heterocyclic carbenes 

N-heterocyclic carbenes have attracted attention as versatile ligands and ligand-

precursors for several sustainable routes, including ring-opening polymerization of cyclic 

carbonates. In this regard, Naik et al. and Bigot et al. investigated the synthesis of aliphatic 

polycarbonates in bulk using 1-n-butyl-3-methylimidazol-2-carboxylate protected carbenes in 

the presence of dimethyl carbonate and several diols [30,134]. The efficiency of the carbene 

was studied in different syntheses, with a loading of 1 mol % in respect to the monomer [30]. 

Polymers with Mn up to 7,400 g.mol-1 were obtained within 1 h 15 min. The polymerization 

was performed first by heating at 100 ºC for 15 min, and then at 150ºC for 1 h under reduced 

pressure. The authors hypothesized that the catalytic mechanism of the NHC occurred through 

decarboxylation to generate the carbene in situ which promoted hydrogen-bonding activation 

of the alcohol by the NHC to enable the formation of a polycarbonate (Scheme 25). 
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Scheme 25. Hypothesized mechanism for the in situ deprotection and catalytic activation of 

1-n-butyl-3-methylimidazol-2-carboxylate protected carbenes in the polymerization of 

polycarbonates. Adapted from ref. [30]. 

 

Nucleophilic activator 

Nucleophic activation of cyclic monomers for ROP has been demonstrated with the use 

of catalysts, such as 4-pyrrolidinopyridine (PPY) and 4-dimethylaminopyridine (DMAP) 

[135,136].  
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Scheme 26. Proposed nucleophilic activation mechanism of DMAP in the polymerization of 

polycarbonates. Adapted from ref. [135]. 

 

The  application of DMAP to step-growth polymerizations has been demonstrated by different 

authors in the case of polycarbonates (Scheme 26) [34,137,138]. Sun et al. screened different 

catalysts and found that DMAP was the most active towards the promotion of polycarbonate 

synthesis [34]. This polymerization achieved high molecular weights (Mn = 52 kg.mol-1) using 

a two-step synthesis at 170 °C and a catalyst molar ratio of 2:1:0.01 DMC:diol:DMAP. 

Similarly, Meabe and co-workers explored different parameters to optimize the polymerization 

[128]. This group demonstrated that polymerizations with longer diol oligomers required a 

higher mol % of DMC in the reaction. The authors further investigated the potential of these 

polycarbonates as polymer solid electrolytes for lithium batteries, and as alternatives to prepare 

biodegrable PEG-based polycarbonates. DMAP has also been investigated as catalyst for the 

reaction between aromatic diols and diphenyl carbonates. Haba and coworkers utilized 1 mol 

% DMAP in a high temperature reaction (up to 215 °C) between bisphenol-A and diphenyl 

carbonate. Unfortunately, these conditions did not afford high conversions in the 

polymerization [129]. Other nucleophilic activators, e.g. PPY, were also studied and only 
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catalyzed the step-growth process in a modest fashion [34]. 

 

Electrophilic activators 

Thioureas have demonstrated considerable success in the catalysis of ROP of cyclic 

carbonates. This work drove Sun et al. to study a variety of thioureas as catalytic systems in the 

step-growth polymerization of polycarbonates based on 1,4-butanediol and DMC [34]. These 

polymerizations only achieved lower molecular weights when using DMAP or MTBD (16 and 

17 kg.mol-1, respectively). In an attempt to increase the molecular weight and the 

polymerization kinetics, the authors studied the novel use of a co-catalyst system combining 

thioureas with other base catalysts, such as MTBD. Unfortunately, polymerizations with these 

co-catalysts were largely unsuccessful and inhibited molecular weight growth. The authors 

proposed that stable intermediates were formed during the activation of the carbonyl with the 

thiourea catalyst reducing the propensity of the reaction to move forward (Scheme 27).  

 

Scheme 27. Proposed stabilized intermediate formation in the catalysis of dimethyl carbonate 

with thiourea. Adapted from ref. [34]. 

 

Dual catalyst based on ionic compounds 

The high temperatures required to achieve high molecular weights is one main issue of 

this reaction. As recently reported by Flores et al., use of DMAP at high temperatures resulted 

in coloured polymers [139]. In order to overcome this limitation, an alternative might be to use 

of ionic compounds possessing a superior thermal stability. Bi et al. thus studied the mechanism 

and kinetics of a model melt polycondensation between bisphenol-A and diphenyl carbonate, 
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catalyzed by tetraethyl ammonium hydroxide [140]. This reaction can only take place at high 

temperature (150-350 °C) under reduced pressure to remove the phenol by-product. The 

catalyst acts as a base deprotonating the bisphenol-A alcohol to increase its nucleophilicity. The 

authors performed DFT calculations to demonstrate that the polymerization was favoured in 

presence of a base than without catalyst (Scheme 28).  

 

Scheme 28. Proposed mechanism for the step-growth polymerization of diphenyl carbonate 

and Bisphenol-A using a base as catalyst. Adapted from ref. [140]. 

 

In order to obtain more sustainable polycarbonates, besides exploring non-metallic catalysts, 

polycarbonates based on naturally occurring synthons have been also prepared by step-growth 

polymerization. Diphenyl carbonate and isosorbide were thus polymerized using imidazolium-

based ionic liquids as organocatalysts. [141] The reaction was performed in two steps, i.e. at 

100 and 240 °C first, then under vacuum (<5 kPa) to obtain high molecular weight polymers 

(Mn = 34-75 kg.mol-1 and Tg 174 °C) [142]. The screening of different ionic liquids based on 

imidazolium demonstrated that to achieve high molecular weight poly(isosorbide carbonate)s, 

it was necessary to employ anions with stronger electronegativity which are able to hydrogen 

bond. Ma et al. proposed a cooperative nucleophilic-electrophilic mechanism for this reaction. 

The authors claimed the possibility of rapid electrophilic activation of diphenyl carbonate 

through a hydrogen bond of the imidazolium cation’s hydrogen (Scheme 29). 
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Scheme 29. Proposed mechanism for the step-growth polymerization of diphenyl carbonate 

and isosorbide using imidazolium-based ionic liquids as organocatalysts. Adapted from ref. 

[142]. 

 

Organocatalysts thus appear as promising alternatives of organometallic catalysts, 

though achievement of high molecular weight polycarbonates by organocatalyzed step-growth 

polymerization remains an issue. While metal-based catalyzed polymerization leads to 

molecular weights higher than 100 kg.mol-1 (Mn = 150 kg.mol-1 using NaH) [130], it is indeed 

more problematic to reach molecular weights higher than 80 kg.mol-1 from organocatalysts. 

Imidazolium-based ionic liquids and DMAP prove the most attractive compounds in this 

context. The use of activated carbonates, as proposed by Malkoch et al., might represent another 

opportunity to produce polycarbonates by organocatalysis, as it requires lower reaction 

temperatures. One drawback of this reaction, however, is the use of toxic imidazole that is 
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produced as a side product; hence, polymers must be processed before the final application 

[133]. 

 

5.2. Polyethers 

Ethers or oxyalkylenes are chemical compounds that contain R-O-R’ bond, where R and 

R’ comprise any alkyl or aryl moieties. Since their first synthesis by Wurtz in the 1860s, 

polyethers received tremendous attention due to their versatile synthesis, thermal and chemical 

stability, and multiple possible structural modifications. The properties of these materials range 

from liquid and amorphous to highly crystalline, depending on the polymer nature. Therefore, 

the range of applications for polyethers is broad and range from water-soluble surfactants and 

drug delivery vehicles to high engineering applications, such as solid polymer electrolytes in 

battery applications.  

Among the different aliphatic polyethers, the most employed are poly(epoxide)s, 

poly(oxetane)s, and poly(tetrahydrofuran) prepared by means of the ring-opening 

polymerization of the corresponding cyclic ethers. However, using this method, larger size 

polyethers (containing 6 or more methylene units) cannot be obtained because the cyclic ethers 

are extremely stable. In these cases, the production of longer methylene unit polyethers can be 

achieved using step-growth polymerization methods [143,144]. 

There are eventually two main routes to access polyethers by step-growth 

polymerization. The first pathway was reported in 1850 by Williamson who showed that the 

ether linkage could be generated by a nucleophilic substitution of an alkali alkoxide on an 

alkylating reagent (typically a haloalkane). Although this method is highly efficient, choline is 

generated as a side product during the polymerization, limiting its industrial implementation. 

The second route is based on the acid-catalyzed condensation of two alcohols, resulting in an 

ether bond. Rhoad and Flory described, in 1950, the synthesis of polyethers by self-

condensation at high temperature (≥ 200 °C) from aromatic and aliphatic diols, such as p-

xylylene glycol or dimethyloldurene and 1,10-decanediol [145]. 

Alcohols generally need to be activated in this reaction, and typically acid catalysts are 

employed in polyether synthesis. The reaction proceeds in three-steps: the first one consists in  

the protonation of the alcohol group, forming its conjugated acid that is a better leaving group. 

This facilitates the second step, where nucleophilic attack of another alcohol onto the adjacent 



 56 

carbon via a SN2 mechanism takes place. Finally, ether is formed via subsequent deprotonation 

(Scheme 30). 

 

Scheme 30. General mechanism for the condensation of alcohols in the presence of acid as 

catalyst.  

Different acids, such as PTSA, sulfamic acid, and sulfuric acid (H2SO4), along with 

other metal-halides were tested as potential catalysts. Among all catalysts investigated, sulfamic 

acid and H2SO4 produced the best results. For example, p-xylylene glycol was found to undergo 

self-condensation at high temperature (200 °C) with 0.1 wt % of sulfamic acid catalyst. 

Similarly, 1,10-decanediol was polymerized in bulk at 200 °C using 2 wt % of H2SO4 (Scheme 

31).  

 

Scheme 31. Self-polycondensation of a) p-xylylene glycol and b) 1,10-decanediol at 200°C 

using acids as catalysts. Adapted from ref. [145]. 
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On the same basis, Lal and Trick, as well as Kobayashi and coworkers, later synthesized 

linear polyethers from aliphatic diols HO-(CH2)m-OH (m = 6, 7, 8, 9, 10 and 12) at 160 to 210 

°C, in presence of concentrated H2SO4 and boron trifluoride-diethyl ether complex 

(C2H5)2O∙BF3 as catalysts [146,147]. However, the molecular weights of the final polymers 

were not mentioned. Recently, Fleury and coworkers investigated the homopolymerization of 

secondary alcohols such as isoborbide [148]. Although homopolymers could not be obtained 

from isoborbide, oligomers (Mn = 1.2 kg.mol-1; Đ = 18.6) could be achieved when 

copolymerizing with polytrimethylene ether glycol (PTEG, M = 634 g.mol-1) in the presence 

of H2SO4 at 150 °C (Scheme 32).  

 

 

Scheme 32. Polycondensation of isosorbide and polytrimethylene ether glycol at 150°C using 

H2SO4 as catalyst. Adapted from ref. [148]. 

 

Obviously, water must be removed to achieve high molecular weights, which requires 

high temperatures. These conditions are not recommended for acid catalysts as they are volatile 

and they can be decomposed at elevated temperatures. Recently, Fradet et al showed how to 

minimize these drawbacks by using Brønsted Acid Ionic Liquids (BAILs) as reaction media 

and catalysts [41]. Acidic ionic liquids combine the catalytic activity of Brønsted acid with the 

high thermal stability and low vapour pressure of ionic liquids. They reported for the first time 

the use of BAILs, such as 4-(3’-butyl-1’-imidazolio)-1-butanesulfonic acid 

bis(trifluoromethylsulfonyl)imidide ([BBSIm]Tf2N) and 4-(3’-octyl-1’-imidazolio)-1-butane-

sulfonic acid bis(trifluoromethylsulfonyl)imidide ([OBSIm]Tf2N), as solvent/catalyst for the 

synthesis of polyethers from aliphatic diols (Scheme 33). The polymerization was peformed 

using the corresponding diol HO-(CH2)m-OH (m = 6-12) and the acidic ionic liquid in 2:1 molar 

ratio under N2. Performing the polymerization at 130ºC, good yields were achieved in all cases. 
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The authors reported the ability to obtain high molecular weights (Mw ≥ 20 kg.mol-1). For 

instance using 1,8-octanediol and [BBSIm]Tf2N they were able to reach a molecular weight of 

Mw = 42 kg.mol-1 (Đ = 2.2). Attempts to homopolymerize 1,4-butanediol and 1,6-hexanediol 

under the same conditions resulted in the formation of tetrahydrofuran and oxepane. 

 

Scheme 33. Schematic representation of the preparation of polyethers from diols using BAILs 

as reaction media and catalysts. Adapted from ref. [41]. 

 

5.3. Polyesters 

Polyesters represent another important class of polymeric materials finding applications 

in food packaging, biomedical, or electronic devices. They are defined by the R-COO-R’ 

linkage in their structure, where R and R’ represent any aliphatic or aromatic moieties. A wide 

range of polymerization synthetic routes to polyesters are known, including the step-growth 

polymerization of diacids and diols (and derivatives), the self-polycondensation of hydroxy 

acid, or the ring-opening polymerization of cyclic esters (Figure 15) [149,150]. 
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Figure 15. Most employed synthetic routes toward polyesters. 

 

Ring-opening polymerization allows for precise control over molecular weights and 

dispersity and gives access to complex structure, such as block copolymers. Even so, the 

polycondensation of diacids or diesters with diols represents the most studied and industrially 

applicable routes to polyester. However, this process often requires harsh polymerization 

conditions, such as high temperatures, long reaction time, vacuum to remove condensate by-

products, and catalysts to achieve high molecular weights. Among the common metallic salts 

used, such as titanium alkoxides, tin alkoxides, and zinc or magnesium carboxylates, the 

antimony-based catalysts represent the most successful. Despite of the excellent performance 

of antimony-based catalyst in polyesterification reactions, intensive research has been devoted 

to develop greener catalysts, considering the high potential of such materials in the biomedical 

and packaging industries [151]. Different types of organocatalysts have already demonstrated 

success in step-growth polymerization process to polyesters, including strong Brønsted acids, 

strong Brønsted bases, amines, and N-heterocyclic carbenes (Scheme 34). In the last decade, 

ionic mixtures, such as Brønsted acids ionic liquids or protic ionic salts showing a superior 

thermal stability have also been considered. 
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Scheme 34. General mechanism of alcohol/carboxylic acid (or derivatives) reaction in the 

presence of a) acid or b) base as catalysts. 

 

5.3.1. Use of organic base catalysts 

Amidines, guanidines and DMAP 

Due to the harsh polymerization conditions needed, tertiary amines, such as 

triethylamine, have been ineffective for this polymerization and stronger bases deemed 

necessary. For instance, Cramail et al investigated the synthesis of bio-based hyperbranched 

polyesters from ABn-type monomers (n=2,3), in presence of various organocatalysts at 120 ºC 

in bulk [152]. They compared the behavior of different amidines and guanidines, such as 1,5,7-

triazabicyclo[4.4.0]dec-5-ene (TBD), N-methyl 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene 

(MTBD), the amidine base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and the tertiary amine 

1,4-diazabicyclo[2.2.2]octane (DABCO), with sodium methoxide (NaOMe), a widely used 

transesterification catalyst in oleochemistry. However, only TBD exhibited a comparable 

activity to the metal catalyst. It was hypothesized that the dual catalytic behavior of TBD was 

beneficial for this polymerization. Similarly, Tang et al. reported the use of TBD for the 

formation of hydroxyl-terminated polyesters via polycondensation of bifunctional esters such 

as dimethyl adipate and sebacate in the presence of slight excess of different diols at about 120 

°C (Scheme 35) [152]. For instance, the polyesterification of 1,3-propanediol and dimethyl 

adipate reached full conversion within 5 h in presence of 5 mol % of TBD. In contrast, using 

titanium(IV) butoxide (TiBut) only achieved 30 % conversion after 24 h. In these conditions, 
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poly(1,3-propylene adipate) (Mn = 1.7 kg.mol-1, Đ = 1.3), poly(1,4-butylene adipate) (Mn =1.2 

kg.mol-1, Đ = 1.7), poly(1,12-dodecylene sebacate) (Mn = 2.1 kg.mol-1, Đ = 1.6), and poly(1,2-

dimethylethylene adipate) (Mn = 1.2 kg.mol-1, Đ = 1.6) were obtained with catalytic amount of 

TBD. The polyester-based macro-diols were further reacted with hexamethylene diisocyanate 

and chain-extended with hexamethylene diamine to yield thermoplastic poly(ester urethane 

urea)s.  

 

Scheme 35. Polymerization between diesters and diols in the presence of TBD catalyst 

Adapted from ref. [153]. 

 

TBD was also used for the synthesis of polyesters from the polycondensation of 𝛼𝛼,𝜔𝜔-

bifunctional fatty acids [154]. First, α,ω-bifunctional fatty acids and polymerization of the 

resulting monomer occurred at 120 °C using 5 mol % of TBD catalyst. Linear and 

hyperbranched polyesters containing thio-ether moieties were obtained without formation of 

side products, and molecular weights ranged from Mn = 3.9 kg.mol-1 (Đ = 1.9) to Mn = 9.4 

kg.mol-1 (Đ = 3.4). 

Until 2018, only TBD proved effective catalyst towards step-growth polymerization 

forming polyesters. In 2018, Flores et al. demonstrated that at high temperature (200 ºC), DBU 

and DMAP were effective to promote the synthesis of poly(ethylene terephtalate) (PET) by 
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step-growth polymerization of dimethyl terephthalate and ethylene glycol [139]. In this work, 

the authors screened both organocatalysts and more conventional metal-based catalysts such as 

titanium butoxide. They found that the reaction proceeded with second order kinetics with 

respect to the monomers − d[M]/dt = k [DMT][EG], as confirmed by the linear relationship 

between time, t, and 1/(1 − p), where p is the fraction of monomer converted to polymer. Rate 

constants k0 were obtained for each catalyst (Figure 16). DBU was thus found twice less 

reactive than TBD. In contrast, the catalytic activity of DMAP was 4 times higher than that of 

TBD, making it a viable option for transesterification reactions.  

 

Figure 16. Second order kinetics plot with respect to the monomers for the step-growth 

polymerization of dimethyl terephthalate and ethylene glycol in the presence of different 

catalysts. Adapted from ref. [139]. 

 

N-heterocyclic carbenes 

Carbenes have been extensively investigated as transesterification agents in the ROP 

polymerization of cyclic esters. Nevertheless, their use in step-growth polyesterificataion 

reactions is far behind. Thus, only one example has demonstrated that NHCs are able to catalyze 

the preparation of polyesters via step-growth process [28]. Due to the high air and moisture 

sensitivity of NHCs, the carbene catalyst must be generated in situ using the imidazolium 

chloride salt as starting source (Scheme 36).  
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Scheme 36. Preparation of NHCs using imidazolium chloride salt as carbene source. Adapted 

from ref. [28]. 

 

For instance, polytransesterification of ethyl 6-hydroxyhexanoate and ethyl glycolate in 

presence of 1,3-dimethylimidazol-2-ylidene at 60 °C under reduced pressure produced 

poly(caprolactone) and poly(glycolate) with Mn ranging from 8 to 21 kg.mol-1. The 

polycondensation of dimethyl adipate with ethylene glycol was performed under similar 

conditions, and 95 % monomer conversion was reported with molecular weight approaching 

Mn = 10 kg.mol-1. 

The synthesis of PET by NHC organocatalysis has also been described. The reaction 

was performed in two steps, in the first one, bis(2-hydroxyethyl) terephtalate (BHET) was 

prepared from dimethlyl terephthalate and ethylene glycol. In the second one, the successful 

polycondensation of BHET was carried out at high temperature (270-290 °C) (Scheme 37). 

 

Scheme 37. Two-step preparation of PET using NHCs as catalyst. Adapted from ref. [28]. 

 

5.3.2. Use of organic acid catalysts.  

Sulfonic and sulfonimide acids 

The esterification of a carboxylic acid and alcohol in the presence of a strong organic 

acid was first described by Emil Fischer and Arthur Speier in 1895 (Scheme 38) [155]. The 

mechanism involves the protonation of a carboxylic acid with either a Brønsted or Lewis acid 

to render it more electrophilic. Then, nucleophilic attack of the alcohol leads to the formation 

of a tetrahedral intermediate that dehydrates after a proton shift (tautomerism) to give water 

and the corresponding ester. 
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Scheme 38. General mechanism of the Fischer esterification. 

 

In the late 1980’s, the PTSA catalyzed polymerization between different adipic acids 

and different diols was investigated by Kuo and Chen, among others (Scheme 39) [156–158]. 

Performing the kinetic study at 140-160 °C, they found that in the presence of PTSA, the 

activation energy was lower that without catalyst and decreased in the presence of long chain 

diols. However, the presence of the catalyst significantly decreased the differences between 

each adipic acid/diol pairs. Nevertheless, when the catalytic ability of PTSA was compared to 

other organocatalysts, such as TBD, DMAP or DBU, for the step-growth polymerization of 

PET from dimethyl terephthalate and ethylene glycol at 200 ºC, it was found that the reaction 

rate was much inferior than the organic bases [139]. These results seemed to indicate that acid 

catalysis is preferred when preparing polyesters from carboxylic acids and alcohols.  
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Scheme 39. Schematic representation of the polymerization between diacids and diols to 

obtain polyesters in the presente of PTSA catalyst Adapted from ref. [158]. 

 

Moyori and coworkers investigated the use of different Brønsted acids, such as 

bis(trifluoromethanesulfonyl)-imide (Tf2NH), bis(1,1,2,2,3,3,4,4,4-nonafluoro-1-

butanesulfonyl)imide (Nf2NH), 1,1,2,2,3,3,4,4,4-nonafluoro-1-butanesulfonic acid (NfOH), 

and TfOH as potential catalysts for the bulk polycondensation of diacids and diols (Scheme 40) 

[159]. With 0.1 mol% of Nf2NH as catalyst, molecular weights up to Mn = 19.1 kg.mol-1 (Đ = 

2.2) were attained using temperatures as low as 60 ºC and vacuum. Under the same conditions, 

other acids (Tf2NH, NfOH, TfOH) afforded lower molecular weights (Mn = 12.3-14.3 kg.mol-

1, Đ = 2.1-2.2). Mn values obtained with these catalysts were higher than those determined when 

using PTSA or rare-earth acid, such as scandium bis(nonafluorobutanesulfonyl)imide (Mn = 5.8 

kg.mol-1, Đ = 2.1 and Mn = 10.3 kg.mol-1, Đ = 2.5 respectively). Interestingly, 

bis(1,1,2,2,3,3,4,4,4-nonafluoro-1-butanesulfonyl)imide strong Brønsted acids could be 

recycled without loosing the catalytic activity by simple sublimation of the catalyst. 

 

Scheme 40. Polyesterification of adipic acid with 3-methyl-1,5-pentanediol in the presence of 

bis(1,1,2,2,3,3,4,4,4-nonafluoro-1-butanesulfonyl)imide strong Brønsted acids. Adapted from 

ref. [159]. 
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One of the biggest challenge in the preparation of polyesters is the need to remove the 

generated water or alcohol in order to push the equilibrium and to obtain decent molecular 

weights. In this regard, Kobayashi et al. developed a novel method which eliminates the 

necessity of water removal from the media. They employed a Brønsted acid catalyst, 

dodecylbenzenesulfonic acid (DBSA), that at the same time can act as emulsifier. Using this 

catalyst, they were able to promote the reaction between alcohols and acids by emulsion 

polymerization. The main advantage of this process is that as the reaction mainly occurs at the 

monomer droplet, consequently the generated water moves to the aqueous phase, driving the 

conversion upward. Thanks to this process, the reaction can be performed at low temperatures 

and using atmospheric pressure [160,161]. Takasu and coworkes further apply this process 

using difunctional monomers. They investigated the synthesis of polyesters using 16 wt % of 

DBSA catalyst at 80º C. (Scheme 41) [162]. For example, using 1,9-nonanediol and 1,12-

dodecanedioic acid, the corresponding polyester was obtained in good yield (95 %) with a 

molecular weight of Mw = 10.1 kg.mol-1 (Đ = 2.0). In comparison, the use of scandium 

tris(dodesyl sulfate) as surfactant-type Lewis acid led to lower molecular weight (Mw = 4 

kg.mol-1, Đ = 1.5), while in absence of catalyst, no polymerization occurred. The authors also 

reported the feasibility of chain-extending the polyesters with hexamethylene diisocyanate 

directly in the emulsion to yield higher molecular weights.  

 

Scheme 41. Emulsion polymerization of diacids and diols in the presence of DBSA catalyst 

and subsequent chain extension with HMDI. Adapted from ref. [162]. 

 

Phosphoric acids 

Sokolsky-Papkov et al. employed phosphoric (H3PO4) and sulfuric (H2SO4) acids as 

catalyst for the polycondensation of adipic acid and sebacic acid with 1,4-butanediol, ethylene 

glycol, and propylene glycol [163]. Performing the reaction in bulk at 190 °C under vacuum, a 

small excess of diol was required to achieve higher molecular weight. For example, 
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poly(butylene adipate) and poly(butylene sebacate) were obtained at molecular weights of Mw 

= 23 kg.mol-1 (Đ = 1.4) and Mw = 85 kg.mol-1 (Đ = 1.5), respectively using 0.5 wt % of H3PO4 

and a diacid to diol molar ratio of 1:1.25. In contrast, the molecular weight of poly(butylene 

adipate) obtained in the non-catalyzed reaction only reached Mw = 8.5 kg.mol-1 (Đ = 1.4). 

 

5.3.3. Other type of catalysts: BAILs, ionic salts and chiral catalysts 

As mentioned earlier, polyesters can be obtained by the self-polyaddition of hydroxy 

acid. Fradet and colleagues applied this methodology in 2010 to synthesize high molar weight 

poly(12-hydroxydodecanoic acid)s in BAILs (Scheme 42) [164]. Hence, they employed 3-

alkyl-1-(butyl-4-sulfony-l)imidazolium hydrogen sulfate as solvent and as catalyst to obtain 

high molecular weight polyesters (Mn = 40 kg.mol-1, Đ = 2.2) in 2 h at 90 ºC. The found that 

the optimal conditions to obtain high molecular weights were to use a 1:1 molar ratio between 

the BAIL and the hydroxy acid. Higher temperature led to an increase in molecular weight (110 

°C, Mn = 43.5 kg.mol-1, Đ = 2.11; 130 °C, Mn = 49.9 kg.mol-1, Đ = 2.0). In comparison, 

following the same procedure at 110 °C, only oligomers were achieved in absence of catalyst 

or with a catalytic amount of PTSA (Mn < 700 g.mol-1). When the authors intended to reduce 

the BAIL content, highly viscous reaction mixtures were obtained reducing the final molecular 

weight. Whereas higher catalyst concentration led to dilute media (as the catalyst also act as 

solvent) reducing the polymerization rate. Finally, the authors found that only BAILs 

containing sulfonic acid groups were effective to achieve high molecular weights.  

 



 68 

Scheme 42. Self condensation of 12-hydroxydodecanoic acid in the presence of BAIL catalyst. 

Adapted from ref. [164]. 

 

The industrial synthesis of polyesters, such as PET, generally requires high 

temperatures (270-280 °C), therefore the thermal stability of catalysts employed is a critical 

parameter that must be taken into account. In this regard, Flores and coworkers investigated 

differente protic ionic salts for the preparation of PET from dimethyl terephthalate (DMT) and 

ethylene glycol (EG) in bulk (Scheme 43) [139]. The authors prepared two protic ionic salts 

of 1,5,7-triazabicyclo[4.4.0]dec-5-ene:methane sulfonic acid (TBD:MSA) and 1,8-

diazabicyclo[5.4.0]undec-7-ene:benzoic acid (DBU:BA), and they found that the catalytic 

activity of DBU:BA (1:1) salt was similar to the titanium based catalyst used in industrial PET 

synthesis. Using 5 mol % of this catalyst the authors reported the ability to obtain PET with 

molecular weights up to Mn = 10.7 kg.mol-1 (Đ = 2.9). The salts resistance to thermal 

degradation up to > 250 °C indicated that these protic ionic compounds could represent an 

interesting alternative for the bulk synthesis of PET at high temperatures, in comparison to 

other organocatalysts that are more susceptible to degradation or sublimation at such high 

temperatures.  

 

Scheme 43. Bulk polymerization mediated by organic salts for the preparation of PET Adapted 

from ref. [139]. 

 

The same group reported the chemical recycling of PET using TBD:MSA ionic salt as 

the organocatalyst (Scheme 44) [165]. This catalyst was indeed found to completely 

depolymerise PET in less than 2 h at 180 °C, producing more than 90 % highly pure BHET. 

The authors demonstrated that the catalyst could be reused at least 5 times. In addition, they 
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showed that using 5 mol % of the same ionic salt catalyst, the BHET obtained from the 

depolymerization could be re-used as monomer for further the step-growth polymerization 

forming new PET with similar molecular weights (Mn = 12 kg.mol-1) and thermal properties 

to those of PET produced from the more conventional polycondensation method.  

 

Scheme 44. Cradle-to-cradle cycle of PET using protic ionic salt as organocatalyst. Adapted 

from ref. [165]. 

 

Semi-crystalline polymers showing high stereoregular microstructure often exhibits an 

array of mechanical properties superior to those of the corresponding non-stereoregular 

polymers. Consequently, stereocontrol represents a key factor in these specific polymerization 

reactions. In this context, Landais and coworkers prepared optically active polyesters in good 

yields with a high level of stereocontrol, from the specific reaction between prochiral bis-

anhydrides and diols (Scheme 45) [166]. Asymmetric step-growth desymmetrizing 

polymerization could thus be implemented in presence of a chiral catalyst transfering its 

chirality to the growing polymer chains throughout the course of the reaction. Optimized 

conditions included the use of 10 mol % catalyst in THF (0.1 M) at room temperature, leading 

to polyesters with Mn up to 5 kg.mol-1. Slightly longer chains were obtained when higher 

catalyst loading (30 mol %) and pempidine (1 equiv.) as achiral base, were employed (Mn = 9 

kg.mol-1, Đ = 2.2).  
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Scheme 45. Synthesis of polyesters by desymmetrizing step-growth polymerization of bis-

anhydrides with diols using a chiral catalyst. Adapted from ref. [166]. 

 

In summary, the capability of both organic acids and bases to activate either carbonyl 

substrates or alcohols have enabled the synthesis of polyesters in a competitive fashion to 

conventional metal-based catalysts. For example, polytransesterification reactions catalyzed 

with DMAP are approximatively 6 times faster than with titanium(IV) butoxide. However, due 

to their strong basicity, bases like TBD or DMAP could easily be quenched via deprotonation 

of the carboxylic acid monomer in polyesterification reaction, inhibiting further molecular 

weight growth. In order to avoid this shortcoming, sulfonic and sulfonimide-based acids can be 

employed. 

However, lack of thermal stability of organocatalysts prevent them from providing 

comparable polymerization properties under high temperature conditions. Recent 

developments have focused on the preparation of novel organocatalysts based on DBU:BA or 

TBD:MSA mixtures. These protic ionic salts indeed combine the excellent catalytic ability of 

organocatalysts with the thermal stability of metal catalysts, making them suitable for both 

synthesis and depolymerization of polyesters in a more sustainable fashion. 
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5.4. Polyaldols 

An aldol or β-hydroxy aldehyde is an organic compound featuring two chemical 

functions in its structure, an aldehyde and an alcohol. The aldolisation reaction is a popular 

atom-economical organic reaction, discovered in 1872. This reaction involves the formation of 

a C–C bond originally via the nucleophilic addition of an enolate with an aldehyde catalyzed 

by a Brønsted or Lewis acid/base [167–169]. This reaction has been generalized to the addition 

reaction between any enolizable carbonyl-containing reagents [170]. Concerning the polyaldol 

synthesis, a few studies have been published about the self-polymerization of aldehydes or 

ketones using several types of catalysts such as Brønsted or Lewis acids or bases, metal or alkali 

metal amalgams, or transition metal-based catalysts [171–177]. Depending on the type of 

catalyst used, different mechanisms can operate in the aldol addition reaction (Scheme 46).  

 

Scheme 46. General mechanism of aldol addition reaction in the presence of a) acid or b) base 

as catalysts. 

 

Catalado et al. reported the homopolymerization of acetone using protic or Lewis 

acids/bases [176,177]. Under acidic conditions (H2SO4, CF3SO3H, or AlCl3), solid resins were 
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obtained in bulk. A molecular weight of 0.8 Kg.mol-1, as determined by osmometry, was 

reported when 2.5 mol % of H2SO4 was incorporated in the reaction mixture (monomer 

conversion = 54.8 %). The authors hypothesized the formation of a poly(methylacetylene) type 

polyaldol with carbonyl and hydroxyl groups in the main chain, as confirmed by elemental 

analysis (Scheme 47.a) [176]. In comparison, under basic conditions (NaOH, NaOEt or KOH), 

liquid resins were achieved [177]. In these cases, the polyaldolic reactions were performed in 

methanol or ethanol. The liquid resin was obtained with a maximum yield of 60 % (EtOH, 5 

mol % NaOEt, reflux). In all cases, the presence of isophorone was reported (up to 15 %), 

suggesting that the formed resin eventually resulted from both the condensation of acetone with 

isophorone and the self-condensation of isophorone (Scheme 47.b). 

Scheme 47. Polyaldolic reaction of acetone under a) acid and b) basic conditions. Adapted 

from ref. [176,177]. 

 

Organic bases 

More recently, Taton and coworkers reported a novel synthetic strategy for the synthesis 

of polyaldols [178]. The reaction took place through repetition of direct intermolecular 

aldolization reactions between bis(aldehyde)s as electrophilic acceptors and bis(ketone)s as 

nucleophilic donors. Various cyclic and acyclic secondary and tertiary amine compounds were 

screened as potential catalysts (Scheme 48). Early works in the 1950´s had reported the self-

polymerization of acetaldehyde catalyzed by tertiary amines, which proceded by repeated aldol 

reactions [179].  
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Scheme 48. Step-growth polymerization between bis(aldehyde)s and bis(ketone)s mediated 

by amine catalysts. Adapted from ref. [178]. 

 

These step-growth polymerizations of bis(aldehyde)s and bis(ketone)s were performed at room 

temperature in a variety of solvents (THF, DMSO, DMF, DCM or toluene) with a catalyst 

loading of 30 mol %, and up to 150 mol % of acetic acid as co-catalyst. It was found that the 

best results were obtained using pyrrolidine catalyst specially when conbining it with acetic 

acid in a 1 to 3 molar ratio. The authors suggested the nucleophilic substitution of the 

pyrrolidine and the formation of iminium and enamime intermediates were facilitated by the 

electrophilic activation mediated by the acetic acid co-catalyst. (Scheme 49). NMR 

spectroscopy analysis evidenced the presence of conjugated ketones that formed from the 

partial dehydration of the polyaldol (known as the crotonisation reaction). 



 74 

 

Scheme 49. Schematic representation of the aldol reaction between aldehyde and ketone in 

the presence of amine catalyst. Adapted from ref. [178]. 

 

Organic acids 

Since its discovery in 1973, the Mukaiyama aldol addition has been used extensively in 

organic chemistry [180]. The reaction is a Lewis acid-mediated addition of enol silanes on 

carbonyl compounds (Scheme 50). Formation of racemic mixture of isomers has prompted the 

study of chiral Lewis acid catalysts to favor the formation of a specific enantiomer.  
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Scheme 50. General mechanism for the repeated asymmetric Mukaiyama aldol addition 

between silylenolether and aldehyde using Lewis acid as catalyst. Adapted from ref. [181]. 

 

For that purpose, Itsuno’s group developed optically active aldol polymers using 

repeated asymmetric Mukaiyama aldol reactions between bis(silylenolether) and bis(aldehyde) 

monomers [182–184]. For example, step-growth polymerizations were performed in 

propionitrile at -20 °C using a chiral oxazaborolidinone catalyst. This catalyst is responsible for 

transferring the chiral information to each monomer unit (Scheme 51). A minimum of 20 mol 

% of catalyst was required to achieve good monomer conversion (> 74 %) and high molecular 

weights. Overall, the molecular weight of the polymers ranged between 0.9 and 48.2 kg.mol-1 

and the dispersity between 3.16 and 10.3, depending on the structure of the employed 

bis(aldehyde)s and bis(silylenolether)s. Incorporation of silyl groups into the monomers 

improved both yield and molecular weight of the obtained polymers, whereas ether linkages 

gave poor results due to a lower solubility of ether-containing dialdehydes in propionitrile.  

 

Scheme 51. Step-growth polymerization of bis(silylenolether) and bis(aldehyde) using 

oxazaborolidinone, a chiral Lewis acid as catalyst. Adapted from ref. [182]. 
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The aforementioned crotonization reaction occurring during aldol synthesis, forming 

conjugated units, can be exploited to achieve entirely π-conjugated polymers from the complete 

dehydration of polyaldols [174,175]. For example, Zhang and coworkers synthesized π-

conjugated isoindigo-based polymers via aldol polycondensation (Scheme 52) [185]. 

Polymerizations were performed at 120 °C in different acetic acid/toluene mixtures, with 60 

mmol % of PTSA or hydrochloric acid (HCl) as catalysts. Although similar conversions and 

molecular weights could be obtained with both acids, the time required to obtain high molecular 

weights in the presence of HCl (96 h) was much higher than in the case of PTSA (16 h). With 

a bulkier monomer, longer reaction time (72 h) were needed to access polymers with Mn values 

of 31.9 kg.mol-1. 

 

Scheme 52. Organocatalyzed preparation of conjugated polymers via PTSA-catalyzed aldol 

polycondensation. Adapted from ref. [185]. 

 

5.5. Polybenzoins 

The benzoin condensation is an organic reaction discovered by Wöhler and Liebig in 

1832 [186]. It involves the formation of the C-C bond by self-condensation of two 

benzaldehydes leading to an aromatic 𝛽𝛽-ketoalcohol labelled a benzoin. Due to the need for a 

nucleophilic activation, this reaction has been primarily catalyzed using cyanides as catalysts, 

as described by Lapworth (Scheme 53.a) [187]. Comparatively, Ukai et al. showed that N-

ethylbenzimidazolium bromide in the presence of a base can catalyze the benzoin condensation 

[188]. More recently, Breslow et al. disclosed a mechanism in which the active moiety is a 

carbene formed by deprotonation of the thiazolium salt [189]. The carbonyl of the benzaldehyde 
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can thus be activated by the carbene that acts as a nucleophilic catalyst to form an imidazolium 

alkoxide that further rearranges to form the “Breslow intermediate”. The carbene is 

subsequently regenerated trough the addition of a second benzaldehyde molecule (Scheme 

53.b). 

 

Scheme 53. General mechanism for the benzoin condensation using a) cyanide or b) N-

heterocyclic carbene as catalysts.  

 

The elementary benzoin condensation reaction has been applied in polymer synthesis, 

to thus achieve polybenzoins by step-growth polymerization of terephthalaldehyde [74]. First 

attempts employed cyanides as catalysts, forming polybenzoins in fact used as precursors for 

the synthesis of poly(1,4-phenylenevinylene) (PPV) and high-performance quinoxalines 

[190,191]. In 2009, Pinaud et al. reported the use of various NHCs as alternative catalysts to 

the toxic cyanide ions to conduct the same step-growth polymerization of terephthalaldehyde 

(Scheme 54) [31]. Four different NHCs were screened, polymerizations being performed at 40 

°C in either THF or DMSO. Using THF and 1 mol % 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-

triazol-5-ylidene (NHC4) as catalyst, high monomer conversion (> 90 %) and moderate 

molecular weights (Mn = 1-3 kg.mol-1) were obtained. However, under these experimental 

conditions, the polybenzoin precipitated out of the solution; it was suggested that both linear 

and cyclic polybenzoins formed during the reaction.  
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Scheme 54. Step-growth polymerization of terephthalaldehyde using N-heterocyclic carbenes 

as catalysts. Adapted from ref. [31]. 
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In summary, NHCs represent safer nucleophilic activators than the cyanide ions used so far, 

which can release hydrogen cyanide in the presence of water.  

 

5.6. Polyacetals 

Polyacetals, also known as polyformaldehydes or polyformals, represent a category of 

polymers containing acetal linkages [—O—C(R)(R’)—O—] where R and R’ can be a divalent 

aliphatic or aromatic sequence. Owing to their degradability under acidic conditions and the 

generation of relatively benign degradation products, these polymers have gained an increasing 

interest in the past decade. Similarly to the Brønsted or Lewis acid-catalyzed acetal formation 

in organic chemistry, different acid-catalyzed routes have been developed to produce 

polyacetals (Figure 17).  

 

Figure 17. Different routes for the synthesis of polyacetals using acid catalysis. 

 

For example, a simple method to achieve polyacetals is through the reaction of a diol 

with an aldehyde containing molecule in the presence of strong acid catalyst (Figure 17.a). The 

repeated acetalization reaction requires the electrophile activation of the carbonyl by an acid 

catalyst, followed by the addition of an alcohol to form a hemiacetal. The reaction can be driven 

to acetal formation, due to the hemiacetal instability under acidic conditions, by addition of a 

second alcohol if water, as by-product, is removed during the reaction (Scheme 55) [192–195]. 
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PTSA is the gold standard to catalyze the polyacetal formation among all Brønsted acids 

available. 

 

Scheme 55. General mechanism for the acetalization of aldehyde with alcohol using acid as 

catalyst. 

 

Using this polymerization strategy, Endo and coworkers designed amphiphilic 

polyacetals containing lilial, a hydrophobic compound used in fragrances. To do so, they 

copolymerized poly(ethylene glycol) and lilial (which contains aldehyde functionality) in 

cyclohexene in the presence of 1 mol % of PTSA monohydrate (p-TsOH) catalyst (Scheme 56) 

[192]. Using PEG-400, polyacetal having a molecular weight of Mn = 7.6 kg.mol-1 (Đ = 2.0) 

were obtained in relative good yields (80 %). In contrast, with PEG-1000, lower conversion 

and molecular weights were achieved (Mn = 2.5 kg.mol-1, Đ = 2.3). Under acidic conditions, 

polyacetals were in fact hydrolyzed releasing the lilial aldehyde, release rate depending on the 

PEG chain length.  

 

Scheme 56. Acid-catalyzed polymerization between poly(ethylene glycol) and lilial. Adapted 

from ref. [192]. 

Recently, the Miller’s group synthesized bioaromatic polyacetals by polymerizing 

different alcohols and polyols (PVA) with aromatic aldehydes in the presence of PTSA catalyst 

[193–195]. For example, PVA was reacted with several bioaromatic aldehydes to yield 
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polyvinyl aromatic acetals. The authors first investigated the effect of different acids, such as 

HCl, AcOH, MSA, H2SO4, and PTSA, on the reaction rate as well as the solvation condition of 

the polyacetalization (DMSO, or N-methyl-2-pyrrolidone (NMP)). Among the tested catalysts, 

the polymerization occurred only in presence of H2SO4 and PTSA. The authors determined 

experimental molecular weights ranging from 38.2 to 46 kg.mol-1 depending on the aldehyde 

precursor. For example, the acetalization of PVA with vanillin yielded polyvinyl vanillin acetal 

(Mn = 43.7 kg.mol-1) with 63.3 % of –OH groups converted to acetals. 

The same authors also reported the preparation of different bioaromatic polyacetal 

ethers containing cyclic acetals or spirocyclic acetals in their structure, via PTSA-catalyzed 

acetal formation from dialdehydes and tetraols in DCM (Scheme 57) [193,194]. Number 

average molecular weights, Mn, were in the range of 1.4 to 27.1 kg.mol-1with dispersity, Đ, 

ranging from 1.4 to 2.2. 

 

Scheme 57. Polycondensation of dialdehydes and tetraols using acid as catalyst to obtain 

bioaromatic polyacetals. Adapted from ref. [193]. 
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Another route for the preparation of polycatetals is by the self-condensation of α,ω-

diacetals (Figure 17.c) [196–199]. To do so, he diols are firstly converted into linear α,ω-

diacetals, which can polymerize in the presence of acid catalyst. Chikkali et al. thus reported 

the synthesis of novel polyacetals from plant oil-derived α,ω-diacetals [196][195]. Long-chain 

aliphatic α,ω-diol starting materials were first generated from unsaturated fatty acid esters and 

reacted with an excess of dimethoxymethane to yield the corresponding α,ω-diacetals. The 

difunctional acetal monomers were then subjected to self-condensation polymerization at 80-

100 °C using 2 to 4 mol % of PTSA catalyst. Reduced pressure was applied here to remove the 

dimethoxymethane by-product and push the reaction forward. The resulting polyacetals 

molecular weights ranged from Mn = 1.7 to 3.2 kg.mol-1, as calculated by 1H NMR. 

Similarly, Miller’s group prepared polyacetals from linear α,ω-diacetals using diethoxy- 

or dimethoxymethane [197]. Polymerizations were performed by mixing diethoxymethane and 

diols in a 30:1 ratio using 2 mol% of PTSA as catalyst. Temperatures were increased up to 200 

°C over 5 hours, followed by dynamic vacuum for 12 hours. They found that the length of the 

employed diols was crucial to attain high molecular weights. Short diols (2, 3 and 4 methylene 

units) led to the formation of cycles via intramolecular acetal formation, reducing substantially 

the polymer yield. Whereas, using longer diols as the cycle formation is not so favored, the 

polymerization was successful and high molecular weights could be obtained (Mn = 20.7 to 

38.5 kg.mol-1, Đ = 1.8 to 25). Comparing the use of dimethoxymethane and diethoxymethane, 

the authors found that when using a 30:1 excess of acetal to 1,10-decanediol, the choice of 

diacetal did not influence molecular weights (Mn > 35 kg.mol-1). However, in a ratio acetal : 

1,10-decanediol of 2:1, diethoxymethane (Mn = 32.7 kg.mol-1, Đ = 2.2) far excelled 

dimethoxymethane (Mn = 17.9 kg.mol-1, Đ = 2.9). The authors described this polymerization 

as Acetal Metathesis Polymerization (AMP) (Scheme 58).  
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Scheme 58. Step-growth polycondensation of linear α,ω-diacetals derived from α,ω-diols with 

diethoxy- or dimethoxymethane using acid as catalyst. Adapted from ref. [197].  

 

In other studies, Chikkali and coworkers synthesized polyacetals from the polycondensation of 

isohexide–diacetals at 60-90 °C, with argon-vacuum purge cycle and catalytic amount of PTSA 

(2-5 mol %) (Scheme 59) [198,199]. The endo-exo structure led to higher molecular weights 

(Mw = 5.0-8.9 kg.mol-1, Đ = 1.6-2.0) than those obtained with the endo-endo diastereoisomer 

(Mw = 2.1-3.8 kg.mol-1, Đ = 1.4-1.6) and the exo-exo one (Mw = 2.8-3.7 kg.mol-1, Đ = 1.5-1.7). 

In some cases, higher temperatures and longer reaction times were required to achieve higher 

molecular weights. Finally, access to various copolymers was demonstrated [199].  

 

Scheme 59. Step-growth polycondensation of isosorbide diacetal using 5 mol % of PTSA as 

catalyst. Adapted from ref. [198]. 
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Another route to generate polyacetals, without forming any by-product is by means of 

the reaction between vinyl ethers and alcohols (Figure 17.d and 17.e) [200–210]. This reaction 

which was developed by Heller et al. in 1980 can also be catalyzed by acid compounds, 

especially PTSA [200]. They found that using different divynil ethers such as 4-divinylbutane 

or diethyleneglycol divinyl, polyacetals could be obtained straightforward by reacting them 

with different diols. This strategy was further employed by different groups to incorporate 

functionalities in polyacetal backbone (Scheme 60). For example, pendant chain functionalized 

polyacetals, which display pH-dependent degradation, were prepared by Brocchini and 

coworkers [202,204]. First, amino-containing polyacetals were synthesized from the 

terpolycondensation reaction of tri(ethyleneglycol) divinyl ether, poly(ethylene glycol) 

(PEG3400, Mn = 3.4 kg.mol-1) and Fmoc-protected serinol in THF at 80 °C, using 3 mol % of p-

TsOH as catalyst. Using different ratio of PEG3400:Fmoc-serinol, an amino-polyacetal with 

molecular weight of Mw = 19.8-77.5 kg.mol-1 (Đ = 1.8 - 2.0) was obtained upon deprotection 

of the amino group. The resulting polymers were then functionalized with either I-labeled (di-

iodo) Bolton-Hunter reagent or Doxorubucin an anticancer drug (DOX). DOX-containing 

polyacetals were obtained with molecular weights, Mw, ranging from 57 to 99.5 kg.mol-1 (Đ = 

1.7-2.6) and a maximum DOX content of 8.5 wt %, as determined by HPLC. Biocompatibility 

studies showed that polymers were non-toxic and degraded under specific pH condition [204]. 

On this basis, acid-sensitive polymeric anticancer drugs based on polyacetal could be 

designed through the incorporation into the polymer backbone of diethylstilbestrol (DES), a 

non-steroidal oestrogen drug having a bishydroxyl functionality [205]. For that purpose, 

PEG3400 was reacted with tri(ethylene glycol) divinyl ether and DES in THF at room 

temperature with 3 mol % of p-TsOH. The DES-polyacetal obtained had a molecular weight of 

Mw = 43 kg.mol-1 (Đ = 1.8). 

Similarly, Brocchini and coworkers introduced tyrosine-derived diphenol into 

polyacetals [207]. A polymerization process at room temperature employing tri(ethylene 

glycol)divinyl ether, a diphenol, and PEG3400 using 4 mol % of p-TsOH as catalyst gave the 

desired water-soluble polyacetals with average molecular weights ranging from 24–71 kg.mol-

1 (Đ = 1.6–2.9). 
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Scheme 60. Synthesis of functional polyacetals from the step-growth polymerization of 

tri(ethyleneglycol) divinyl ether with poly(ethylene glycol) and functional diols using p-TsOH 

as catalyst. Adapted from ref. [204,205,207]. 

 

Based on the same chemistry, Sui et al. recently reported acetal-based hydroxyethyl 

methacrylate-co-methyl methacrylate polymer (poly(HEMA-co-MMA)) crosslinked networks 

obtained from the reaction of the hydroxyl pendant groups of HEMA with 1,4-

cyclohexanedimethanol divinyl ether, catalyzed by pyridinium p-toluenesulfonate (PTS) [208]. 

In 2000, Zhang and Ruckenstein reported the preparation of polyacetals from the self-

polyaddition of hydroxyalkyl based vinyl ethers using pyridinium p-toluenesulfonate catalyst 

[201]. They found that while a small amount of catalyst was needed to activate the reaction 

(molmonomer/molPTS = 200–400), while larger amounts (molmonomer/molPTS = 80) tended to 

accelerate the polymer decomposition at longer reaction times (Mw = 10.2 kg.mol-1, Đ = 2.2 

and Mw = 6.6 kg.mol-1, Đ = 2.0, respectively, after 75 hours of reaction).  

Later, Hashimoto et al. investigated the effect of the catalyst nature in the self-

condensation of 4-hydroxybutyl vinyl ether. Performing the reaction in THF at 0 °C for 72 h 

with no catalyst or in the presence of catalytic amount of p-toluene sulfonic anhydride 

(PTSAA), p-TsOH, PTS, HCl or BF3OEt2, they observed that the polymerization occurred only 

in the presence of acid catalysts [203]. p-TsOH promoted full conversion within 1 h, and 

polyacetals with a Mn = 66.5 kg.mol-1 (Đ = 1.6) were thus obtained. However, after 4 h the 

molecular weight reached a plateau due to possible degradation of the acetal linkages via 

hydrolysis by water derived from the catalyst. In contrast, a higher molecular weight was 

achieved using PTSAA under the same conditions (Mn = 110 kg.mol-1, Đ = 1.6), which was 
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attributed to the ability of the anhydride to react with water forming the corresponding acid. In 

comparison, PTS led only to low molecular weight polymers (Mn = 3.4 kg.mol-1, Đ = 3.5). This 

could be explained by the difference in acidity between PTS, PTSAA, and p-TsOH. PTS indeed 

possesses the lowest acidity among the three acids, which results in a slower reaction rate and 

a lower molecular weight. HCl and BF3OEt2 also proved useful to catalyze the polyaddition 

reaction (Mn = 21.1 kg.mol-1, Đ = 1.9 and Mn = 28.3 kg.mol-1, Đ = 2.9, respectively). The 

authors proposed a mechanism in which the acid catalyst is able to form a carbocation. This 

carbocation is subsequently attacked by a hydroxyl group forming an acetal group, releasing a 

proton and subsequently regenerating the catalyst. The authors also proposed that some cyclic 

structures could be produced by intramolecular cyclization. (Scheme 61).  

 

Scheme 61. Reaction mechanism for the acid-catalyzed self-condensation of hydroxyalkyl 

vinyl ethers. Adapted from ref. [203]. 

 

Similarly, the same authors reported the synthesis of a degradable polyurethane (PU) 

using polyacetals as soft-segments [206,210]. For example, polyacetal glycol (Mn = 1.6 kg.mol-

1, Đ = 2.5) was first synthesized from the reaction between 1,4-butanediol and 4-hydroxybutyl 

vinyl ether in THF at 0 °C in the presence of p-TsOH catalyst. The obtained prepolymer was 

then reacted with 4,4’-diphenylmethane diisocyanate to afford PU with a molecular weight, Mn, 

of 49 kg.mol-1 and Đ =1.7. For comparison, a conventional PU was prepared using 
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polytetrahydrofuran as soft segment. Overall, the results of molecular weight, mechanical, and 

thermal properties were comparable to those obtained with a common thermoplastic PU 

elastomer. However, polyacetal-based PU exhibited superior degradation under acidic 

conditions [206]. 

 

Another strategy for the production of polyacetals which involves a diol and a ketal 

containing monomers is achieved via the poly(transacetalization) reaction (Figure 17.f) 

[40,211,212]. Linear polyketal could thus be prepared using a diol and 2,2-dimethoxypropane 

with PTSA catalyst (Scheme 62) [211]. Murthy et al. prepared poly(1,4-phenyleneacetone 

dimethyleneketal) using 1,4-benzenedimethanol diol obtaining low molecular weights 

polyacetals Mw = 4 kg.mol-1 (Đ = 1.5). The authors suggested that the polymerization occurred 

in two steps. In the first step, low molecular weights dimers and trimers are formed, while in 

the second step, removal of the methanol by-product from the reaction media drives the reaction 

towards high conversion and high molecular weights. Polyketal nanoparticles that degrade 

under acidic condition were then formulated from the poly(1,4-phenyleneacetone 

dimethyleneketal) for drug delivery applications. 

 

Scheme 62. PTSA-catalyzed polyacetal formation from 1,4-benzenedimethanol and 2,2-

dimethoxypropane. Adapted from ref. [211]. 

 

The poly(transacetalization) was further exploited by Chatterjee and Ramakrishnan for 

the preparation of hyperbranched polymers using AB2-type monomers, A being an alcohol 

functionality and B an acetal moiety [212]. In this case the authors used pyridinium 

camphorsulfonate (PCS) as catalyst and reported molecular weights of 21 kg.mol-1 and Đ = 3.0 

which is in agreement with common values obtained in branched polymerizations. 
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In a similar fashion, Taton and coworkers investigated different Brønsted acids such as 

PTSA, camphor-10-sulfonic acid (CSA) or PCS for the poly(transacetalization) and 

polyacetalization of AB2-type monomers under inert atmosphere in THF (Scheme 63) [40]. 

The authors found that the presence of molecular sieves as water scavengers could enhance the 

polymerization. Under these conditions, molecular weights up to Mw = 1.6-3.3 kg.mol-1 (Đ = 

2-2.3) could be obtained with both PTSA and CSA catalysts at 50°C for the polyacetalization 

reaction of p-hydroxymethylbenzaldehyde. The authors further optimize the reaction by 

changing the molecular sieves every 2 days, resulting in significant enhancement of both 

conversion (86 %) and molecular weight (Mw = 19.3 kg.mol-1, Đ = 12.1) using PTSA over 7 

days. Overall, PTSA, which possesses a higher acidity than CSA, provided higher conversions 

and molecular weights in both cases. 

In the case of the poly(transacetalization), weak acids such as PCS were found more 

suitable. In this case the polymerization of p-hydroxymethylbenzaldehyde dimethylacetal 

reached molecular weight of Mw = 20.4 kg.mol-1 (Đ = 1.7) in 2 h with a degree of branching 

near 50 %. The authors found that in this latter case, the degree of branching was lower than in 

the case of the polyacetalization which was almost quantitative. The authors suggested that this 

fact could be attributed to the different reactivities of intermediate species formed during the 

polymerization process.  
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Scheme 63. Preparation of hyperbranched polyacetals from poly(transacetalization) and 

polyacetalization reactions in the presence of different organic acid catalysts. Adapted from ref. 

[40]. 

 

Another general method to incorporate acetal groups into polymers is by the step-growth 

or chain growth polymerization of acetal-containing monomers. For example, the Fréchet’s 

group synthesized miscellaneous acid-degradable polyurethanes and polyurea-polyacetals by 

step-growth polymerization of bis(p-nitrophenyl carbamate/carbonate) or diisocyanate 

monomers possessing a ketal-containing diamine in the presence of triethylamine [213]. 

Although PTSA represents the most popular catalytic system for the synthesis of polyacetal via 

step-growth polymerization in all synthetic routes investigated, a complete study of the effect 

of the acidity strength on the polymerization kinetics, as well as the molecular weight of the 

polymers is still lacking.  
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5.7. Other step-growth organocatalyzed polymerizations  

Besides the step-growth polymerization processes reviewed in previous sections, other 

types of step-growth polymerizations have been reported in the literature, for the preparation of 

metal-free polyamides, polyimides, and polysulfones. New polymer structures obtained by Ugi 

or Passerini multicomponent reaction processes, or by transforming the step-growth 

polymerization into living polymerizations [214,215], have been described. Use of 

organocatalysis in these polymerization processes remains underexplored, but with the 

intensive research going in the direction of metal-free polymerization processes, one can expect 

rapid progress in this area. The following lines discuss recent examples where novel types of 

organocatalyzed-polymerization processes were implemented.  

For instance, Park and coworkers investigated the organocatalyzed polymerization 

reaction involving fluoroarene electrophiles and silyl thioethers (Scheme 64) [216]. Different 

organic bases such as DBU and TBD were investigated as catalyst to mediate the 

polymerization. They found that the polymerization occurred at room temperature in DMF with 

low catalyst loading (0.5 mol %) using TMS-protected 1,6-hexanedithiol and 

hexafluorobenzene reagents. In only 15 min, the authors reported full conversion and molecular 

weights of Mn = 6-7 kg.mol-1 (Đ = 2.5-4). In the presence of weaker bases, such as TEA, 

diisopropylethylamine and DABCO, longer reaction times (14 h) were required and the 

resultant polymers exhibited lower molecular weights and dispersities (Mn = 2.5-3 kg.mol-1, Đ 

= 1.7-1.9). Under inert atmosphere, a polymer with much higher molecular weights (Mn = 33 

kg.mol-1) could be achieved within 15 min using 0.5 mol % of DBU. Computational studies 

revealed that the organocatalyst has a dual activation role facilitating the nucleophilic aromatic 

substitution reaction. The authors showed the ability to polymerize other fluoroarene 

electrophiles and silyl thioethers, and consequently a series of poly(aryl thioether)s were 

obtained in good yields.   
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Scheme 64. Organic bases-catalyzed step-growth polymerization between trimethylsilane-

protected thioethers with perfluoroarenes. Adapted from ref. [216]. 

 

In 2016, Long’s group reported the preparation of non-isocyanate poly(amide-

hydroxyurethane)s derived from biomass. Utilization of a monomer containing different 

functionalities, namely, cyclic carbonate and methyl ester, respectively, having the ability to 

react with primary diamines in the presence of TBD, gave poly(amide-hydroxyurethane)s 

[217]. The unique feature in this example is that by preparing a monomer with two 

functionalities, cooperative polymers with different polymer backbones could be synthesized. 

The polymerization was performed in bulk in a three-step procedure (Scheme 65). After being 

purged with argon, the medium was heating to 70 °C to allow melting of the monomers. The 

flask was then heated from 70 °C to 190 °C before a final vacuum step which aimed to 

completely remove the methanol byproduct. The non-segmented copolymer obtained exhibited 

a semi-crystalline behavior. However, due to solubility issues, no data about the molecular 

weights was provided. Incorporation into the formulation of varied amounts of 

poly(tetramethylene oxide) (PTMO)-based polyether diamine (Mn = 1 kg.mol-1) led to 

copolymer with a segmented morphology, a higher flexibility, and a lower crystallinity 
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compared to the non-segmented copolymer. Overall, the copolymers presented similar thermal 

properties than conventional polyurethanes, but showed weaker mechanical properties. 

 

Scheme 65. AB type monomer for the preparation of poly(amide-hydroxyurethane)s in the 

presence of a diamine catalyzed by TBD organocatalyst. Adapted from ref. [217]. 

 

In another example, Truong and Dove demonstrated that properly selecting the 

organocatalyst for the thiol-yne polyaddition reaction allowed accessing materials with 

completely different mechanical properties, which was related to the regioselectvity of the 

polymerization [218]. Various bases, such as primary, secondary and tertiary amines, amidines 

and guanidines, and phosphine, were tested as potential catalysts for the reaction. Among them, 

only TEA (10 mol %), DBU (1 mol %), TBD (0.1 mol %) and dimethylphenylphosphine (1 

mol %) were effective for the thiol-yne addition, with conversion higher than 85%. The 

regioselectivity of the reaction could be manipulated by choosing the appropriate 

catalyst/solvent system. The combination of weak bases, such as TEA, and non-polar solvents 

such as benzene and chloroform, caused the thiol and the catalyst to behave as hydrogen 

bonded-pair so that attack and deprotonation took place on the same side (Scheme 66) yielding 

the trans isomer. On the other hand, the combination of strong bases, such as DBU and TBD, 

and polar solvents, such as acetonitrile and DMSO, enabled the cis isomer to prevail due to the 

isolated thiolate anions that obey to the anti-addition rule (Scheme 66). Higher catalyst 

concentrations also increased the reaction rate, but did not affect the regioselectivity of the 

reaction. 
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Scheme 66. Proposed mechanism for the regioselective thiol-yne addition using non-polar 

solvent and/or weak base as catalyst (left) or polar solvent and/or strong base as catalyst (right). 

Adapted from ref. [218]. 

 

Taking advantage of the stereocontrol, using 1,6-hexanedithiol and propane-1,3-diyl 

dipropiolate difunctional monomers, cis and trans elastomers could be prepared (Scheme 67) 

[219]. In the presence of 1 mol% of DBU in CHCl3, the cis isomer was predominant (Mw = 

147.5 kg.mol-1, Đ = 5.6), while in the presence of 1 mol% of TEA in different mixtures of 

CHCl3/DMF, polymers with different cis/trans ratios were obtained (e.g. CHCl3/DMF = 3/7, 

cis/trans = 52/48, Mw = 131.1 kg.mol-1, Đ = 4.0).  

 

Scheme 67. Stereocontrolled thiol–yne polymerization from dialkyne and dithiol using 

different base organocatalysts Adapted from ref. [219]. 

 

The last examples use of carbon dioxide (CO2) as a monomer source in polymerization 

processes. CO2 is a gas naturally present in the atmosphere that can also be produced as a by-

product from fossil fuel combustion, being an abundant, inexpensive, and non-toxic renewable 

source. For many years, attention paid to global warming have focused on reducing the carbon 

footprint, as a result lots of consideration has been given to the re-use of CO2 [220]. While 

numerous papers can be found about the utilization of CO2 as monomer for the synthesis of 

several types of polymers in the presence of metal catalyst, only a few are based on catalyst-

free or organocatalyzed step-growth polymerizations.  

For instance, Yamazaki and coworkers showed that urea and thiourea can be synthesized 

by the direct reaction of CO2 or disulfide with amines in the presence of di- or triaryl phosphites 

in pyridine. Herein, the phosphorous alkyl ester derivative plays the role of the condensing 
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agent. The reaction proceeds via the formation of carbamyl N-phosphonium salts of pyridine 

given by the dephenoxylation of di- or triaryl phosphites with a tertiary amine (Scheme 68) 

[221]. Subsequently, they developed the direct polycondensation of CO2 with diamines under 

mild conditions (40°C, 20 atm, 4 hours), in the presence of diphenyl phosphite and pyridine to 

form polyureas [222–224]. Notably, the reaction of CO2 with aromatic diamines afforded high 

conversion under these conditions. Using 4,4'-diaminodiphenylmethane (MDA), molecular 

weights up to Mn = 54.1 kg.mol-1 were obtained. The effect of different tertiary amines (TEA, 

pyridine, 2,6-lutidine, imidazole, picoline isomers) on the formation of the N-phosphonium salt 

during the polycondensation of CO2 with MDA was studied. Overall, the yield and the polymer 

viscosity were affected by the basicity of the amine, best results being noted with pyridine or 

picoline isomers (5.23 < pKa < 6.02).  

 

Scheme 68 Synthesis of polyurea from the reaction of CO2 with diamines in the presence of 

diphenyl phosphite in pyridine. Adapted from ref. [223]. 

 

In the presence of other phosphorous catalyst compounds, such as triphenyl phosphite, 

phosphorous acid, monoethyl and diethyl phosphites, a different behavior was observed. 

Surprisingly, triphenyl phosphite yielded polymers in the presence of imidazole but not with 

pyridine. The same authors later found that the addition of pyridine hydrochloride facilitated 

the cleavage of the P—O—C bond in triphenyl phosphite, thus enhancing the formation of the 

corresponding phosphonium salt that subsequently reacts with pyridine to form the carbamyl 

N-phosphonium salts of pyridine [225].  
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Rokicki also performed the polymerization in the presence of N-acyl-N-

alkylphosphoramidite compounds [226]. The reaction mechanism was described as follows: N-

acyl-N-alkylphosphoramidite reacts with diamines leading to a diphosphoramidites and 

alkylacylamides (1). While subsequent insertion of CO2 into the P-N bond of the 

diphosphoramidites yielded a mixture of anhydride of arylcarbamic and dialkylphosphorous 

acid (2). Polycondensation of the latter with diamines yielded the corresponding polyurea and 

the simultaneous release of dialkyl phosphine oxide (3) (Scheme 69). 

 

Scheme 69. Proposed mechanism for the synthesis of polyurea from the direct 

polycondensation of aromatic diamines with CO2 in the presence of N-acyl-N-

alkylphosphoramidite. Adapted from ref. [226]. 

 

Besides the preparation of polyureas, CO2 was also used as a co-monomer for the 

preparation of polyurethanes. Chiba et al. thus performed the regioselective polycondensation 

of benzyl 2-amino-2-deoxy-α-D-glucopyranoside hydrochloride with CO2 employing a 

triphenylphosphine/carbon tetrachloride/base system as a condensing agent in N,N-

dimethylformamide (DMF) (Scheme 70) [227]. While no polymerization occurred with a weak 

base (TEA), polyurethanes containing glucosamine in their structure were obtained with a 

strong base (DBU). A temperature of 100 °C and a reaction time of 48 hours gave the best 

results, in terms of polymer yield and molecular weight. In order to assess the final molecular 

weights by SEC, the authors performed the acetylation of the polymers using acetic anhydride 

and reported molecular weight up to 3 kg.mol-1 (Đ = 1.7). Under similar conditions, the 

polymerization of D-glucosamide hydrochloride did not yield any polymer.  
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Scheme 70. Synthesis of polyurethane from the direct polycondensation of benzyl 2-amino-2-

deoxy-α-D-glucopyranoside hydrochloride with CO2 employing a triphenylphosphine/carbon 

tetrachloride/base system as a condensing agent. Adapted from ref. [227]. 

 

An intensive research related to the use of CO2 as monomer deals with the preparation 

of polycarbonates, which represents an attractive alternative to the use of petroleum-based 

reagents. In 1994, the organocatalyzed direct polycondensation of carbon dioxide with different 

diols was reported [228]. Polycarbonates were achieved combining CO2, diols, and dihalides in 

an aprotic solvent in presence of potassium carbonate. In other studies, polycarbonates were 

obtained from the reaction between aromatic diols and CO2 in the presence of condensing agent 

of trisubstituted phosphine/carbon tetrahalide/base in aprotic solvent [229,230]. Using a 

[diol]:[Ph3P]:[CBrCl3]:[N-cyclohexyl-N',N',N",N''-tetramethylguanidine] ratio of 1.0:1.5: 

2.0:2.0 in chloroform, a polycarbonate with a molecular weight of 5.8 kg.mol-1 was obtained 

[230]. The related mechanism is similar to that involved in polyurethane synthesis (see section 

3.1.). The reaction starts with the formation of an active intermediate from the triarylphosphine 

and the carbon tetrahalide, which is followed by reaction with CO2 and the diol in the presence 

of a base, forming a phosphonium compound. The nucleophilic attack of another alkoxide then 

produces the corresponding carbonate and phosphine oxide (Scheme 71).  
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Scheme 71. Proposed mechanism for the synthesis of polycarbonate from the direct 

polycondensation of aromatic diols with CO2 in the presence of condensing agent of 

trisubstituted phosphine/carbon tetrahalide/base. Adapted from ref. [230] 

  

Overall, these novel types of organocatalyzed-processes give an idea of the unlimited 

potential of organocatalysis for step-growth polymerization comparable to metal-based 

catalysts.  

 

6. Limitations and Opportunities of Organocatalysis in Step-growth 

polymerizations: Future Outlook  

 

Organocatalysts comprise a large array of compounds that demonstrate significant 

success in chain growth ROP and, more recently, in step-growth polymerizations. Over the past 

few years, organocatalysts displayed the ability to achieve high molecular weight polymers at 

loadings equivalent to traditional metal catalysts (0.1 mol %). This achievement extends a wide 

range of polymer systems from segmented polyurethanes to high performance polycarbonates 

and polyesters.  
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Among the metal based catalysts, metal alkoxides are the gold standards and the most 

commonly used catalysts in step-growth polymerizations. These compounds, such as titanium 

isopropoxide, antimony trioxide, and tin derivatives (i.e. DBTDL), undergo a complexation 

with carbonyls inducing a positive charge on the carbonyl carbon favoring nucleophilic attack. 

While there is no doubt that these catalysts produce high molecular weight polyurethanes, 

polycarbonate, polyesters and others at low catalyst loading, many detrimental issues arise in 

their use that lead researchers to investigate alternatives, such as organocatalysis.  

Removal of catalysts from the final polymer still plagues materials using metal catalysts. 

Due to the extremely oxophilic nature of transition metal catalysts, removal after 

polymerization becomes incredibly difficult and costly. Residual metal catalysts have been 

linked to a range of unwanted properties including undesired aging, toxicity, and effects on 

dielectric constants [50]. In the case of dielectric materials in the microelectronics industry, the 

presence of residual metals impacts the insulating properties of these materials detrimentally 

[37,231,232]. Even in general use situations, if catalysts remain active, their continued reactions 

with the polymer often result in degradation pathways during processing or the increased rate 

of weathering [55,64,233]. The continued presence of metal catalysts in polyesters was 

previously linked to depolymerization under air at high temperatures and the overall decrease 

in thermal degradation temperatures [54,234]. Catalysts further accelerate the degradation 

reactions present in natural environments, such as hydrolytic cleavage and oxidation [37,231]. 

In the case of polyurethanes, organic acid catalysts exhibited none of the degradation products 

that were normally observed for DBTDL [38]. While not the focus of most current studies, it is 

understood that organocatalysts not covalently bonded to the polymer can be removed through 

common purification techniques. This fact has been emphasized in many research articles when 

synthesizing polymers for biomedical applications.  

The toxicity of DBTDL, a commonly used catalyst in polyurethanes, provoked the 

implementation of regulations by the European Union to restricted its use [50,55]. Other studies 

of organo tin and aluminum catalysts demonstrated the possibility for endangering the functions 

of tissues through slow penetration into the blood circulation system [52–54]. Although less 

toxic alternatives, such as titanium based catalysts, have been implemented to fight against 

these regulations, these catalysts still do not overcome the detrimental effects from degradation. 

In contrast to these issues, organocatalysts currently used in step-growth polymerization 

(DMAP, TBD and m-trimethylammoniumphenolate betaine) only demonstrate toxicity when 

studied at concentrations much higher than the residual levels that would remain in polymers 
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[50]. A study of aliphatic polyurethanes demonstrated excellent biocompatibility when utilizing 

5 mol % DBU catalyst [64]. This poses many unique opportunities for synthesis of materials in 

the biomedical industry that include stringent toxicity requirements.  

Color formation during polymerization often arises through the use of metal catalysts. 

Titanium tetraisopropoxide was linked to the formation of color during polymerization of 

poly(ethylene terephthalate). This yellow discoloration resulted from a complexation occurring 

with the ethylene glycol monomer [149]. While this does not pose a huge threat to polymer use 

on the small scale, this represents an important consideration for many commercial polymers. 

This represents one of the main limitations organocatalysis will have to overcome to be 

industrially implemented. Nevertheless, Flores et al. and Jehanno et al. have demonstrated that 

using protic ionic compounds there is not any discoloration in the resulting polymer which 

could facilitate the implementation in industrial processes [139,165].  

Organocatalysis in polymerization processes will continue to revolutionize the field, 

ranging from more thermally stable polymers that are more amenable to recycling to novel 

sequences where regioselectivity will enable novel thermomechanical performance. 

Organocatalysis will also expand the current scope of reactions that are amenable to the 

formation of high molecular weight, ensuring high degrees of conversions at reaction conditions 

that were previously unattainable. Although step-growth polymerization has been present in the 

literature since the early 1900s, the potential synthetic methods to achieve high molecular 

weight polymers remains relatively small, thus there is a need to expand the toolbox of reactions 

to prepare high performance engineering polymers. In addition to enabling new compositions, 

organocatalytic mechanisms will fundamentally point to new reactions, tailoring of sequence 

control, and the introduction of functional group at modest temperatures. These new reaction 

conditions that were previously not attainable are expected to expand the range of processing 

techniques, including recent advances in additive manufacturing, particularly for rapid 

reactions and photo-allowed reactions for extrusion and lithography, respectively. It is 

important to note that many of the catalysts used in commodity polymers were discovered many 

decades ago, yet a fundamental understanding of the catalytic mechanism for many traditional 

catalysts is lacking. Key questions including the mechanism of the catalysts at exceptionally 

high temperatures and low pressures complicates an interpretation of catalytic mechanisms, 

thus rationale design of organic catalysts will allow for the first time fundamental advances in 

catalytic mechanism relative to their inorganic counterparts. The use of more sustainable 

approaches for polymer production such as organocatalysis or biobased compounds is gaining 
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a lot of attention specially in step-growth polymers to modify the currently unsustainable 

polymerization processes. From a green and sustainable chemistry standpoint, the current 

challenge in the industry is to switch from petrobased to biobased polymers in certain 

applications where we believe that the choose of the appropriate organocatalysis will be the 

key. 
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