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Abstract

Karyopherins are transporters involved in the bidirectional, selective and active transport of macromolecules through
nuclear pores. Importin-B1 is the paradigm of karyopherins and, together with its cargo-adapter importin-a, mediates
the general nuclear import pathway. Here we show the existence of different cellular pools of both importin-a and -1
homologues, KapA and KapB, in the coenocytic ascomycete Aspergillus nidulans. Fluorescence analysis of haploid
and diploid strains expressing KapB::GFP and/or KapA::mRFP showed patches of both karyopherins concurrently
translocating long distances in apically-growing cells. Anterograde and retrograde movements allowed those patches
to reach cell tips and distal regions with an average speed in the range of uym/s. This bidirectional traffic required
microtubules as well as kinesin and dynein motors, since it is blocked by benomyl and also by the inactivation of the
dynein/dynactin complex through nudA71 or nudK317 mutations. Deletion of Kinesin-3 motor UncA, required for the
transport through detyrosinated microtubules, strongly inhibited KapA and KapB movement along hyphae. Overall,
this is the first report describing the bidirectional dynamics of the main nuclear import system in coenocytic fungi. A
functional link is proposed between two key cellular machines of the filamentous fungal cell: nuclear transport and the
tip-growth apparatus.
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Introduction

Cells develop polarity to orient their activities in a variety of
different ways [1]. For example, neurons are highly polarized,
with clearly segregated dendritic and axonal domains [2,3]. On
the contrary, round cells such as those from budding yeast
display only polarized growth during certain phases of their life
cycle [4]. Establishment and maintenance of polarity within a
cell requires crucial events such as the correct recruitment of
the machinery involved and appropriate vesicle traffic via the
cytoskeleton [1,5,6].

Polarized growth is continuous and indefinite in vegetative
hyphae of filamentous fungi, such as the model ascomycetes
Neurospora crassa and Aspergillus nidulans [7]. Vegetative
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hyphae are non-specialized, pluripotent cells that extend
apically by the addition of new material to the cell wall at the tip
[8]. Tight coordination between actin and tubulin cytoskeletons
(and the corresponding molecular motors) is crucial for the
delivery of wall materials [9] and thus the maintenance of
hyphal tip extension (see for example 10-12). Building
components are distributed to the tip by an apical body called
Spitzenkdrper [13] utilizing myosin motors and actin filaments
[14,15]. New cell-wall components are initially contained within
vesicles or endosomes that are transported from distal regions
of hyphae to the apical body [5,16]. This occurs on
microtubules (MT), long filaments that are nucleated from MT-
organizing centers (MTOC). MTs are rather stable at the minus
end and exhibit alternating rounds of growth and shrinkage at
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the plus end [17,18]. Molecular cargoes are transported by
kinesins and dynein along microtubules [7]. The cooperation of
both motors mediates endosome movement, and thus cargo
transport, over the length of the entire fungal cell [19].

Nuclei were the first MT-dependent cargo described in
filamentous fungi [20,21] and both MT and actin filament
networks are utilized in related processes such as nuclear
transport [22]. This is the selective translocation of
macromolecules between the nucleus and the cytoplasm, and
occurs actively through the nuclear pore complex (NPC;
[23,24]). NPCs are embedded in the nuclear envelope (NE)
and are composed of more than 30 different proteins. Those
proteins called nucleoporins or Nup-s [24,25] have special
significance in the structure and function of NPCs. The shuttle
of macromolecular substrates through the NPC is dynamically
mediated by a family of proteins called karyopherins [26],
primarily importin-31 followed by other members of the
karyopherin-B  family (see below; [27]). Twenty-two
karyopherins have been identified in mammals and 15 in
Saccharomyces cerevisiae [28,29]. Recently, the function and
cellular distribution of the 14 A. nidulans karyopherins has been
systematically characterized [26,30].

Karyopherins can bind substrates directly or via adaptors,
but the targeting of the substrate into or out of the nucleus is
determined by the presence in its amino acidic chain of a
nuclear localization signal (NLS) or a nuclear export signal
(NES), respectively. The best characterized nuclear import
pathway is mediated by the importin-B1/importin-a heterodimer
[31], which requires the participation of auxiliary proteins and
facilitates the effective translocation of cargoes based on a
RanGDP/GTP gradient between the cytoplasm and the nucleus
(see references 32,33). It has been shown that the nuclear
accumulation of specific importin-B1/a cargoes also requires
active MT and actin cytoskeletons (see for example 34-36).

In Aspergillus nidulans, the nuclear localization of importin-a
and importin-B1 homologues, KapA and KapB, has been
partially described in the literature [26,30]. In this work we
define new features and show that the function of those
karyopherins is not limited to the nucleus and its vicinity.
Additional cytoplasmic pools already exist, which move bi-
directionally to the tip or distal regions. These anterograde and
retrograde movements are simultaneous for both karyopherins
and depend mainly on MTs. Consequently, mutations in nudA
or nudK, affecting the dynein motor complex, inhibit KapA
cytoplasmic transport. Similarly, the deletion of the A. nidulans
kinesin-3 coding gene, uncA, affects both nuclear and
cytoplasmic localizations of the main nuclear import complex.
Common features between this transport mechanism and injury
signaling in neurons are discussed. Overall, these results link
processes that occur at different cellular locations, such as
polar growth and environmental signaling at the tip, cargo
trafficking through cytoplasmic filaments along the length of the
cell and nuclear transport through the NE.
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Results

Aspergillus nidulans contains soluble and non-soluble
pools of nuclear import machinery components KapB
and KapA

In the first systematic characterization of the nuclear
transport machinery in a filamentous fungus, fluorescent
tagging and deletion analyses permitted our group to define a
general karyopherin distribution map during the cell-cycle [26].
Nuclear transporters were defined as the “soluble fraction” of
the nucleo-cytoplasmic trafficking machinery. This definition
refers to the transient relationship with the NPC, considered as
a "static" structure [37]. The coenocytic cell organization for A.
nidulans as for other filamentous fungi might impose
restrictions or variations to this concept for nuclear
transporters. With the aim to discover and study additional
features for specific karyopherins we used as a first step a cell-
fractionation procedure to discriminate between possible
organelle-associations or formation of complexes.

Following the protocol developed by Rodriguez-Galan and
coworkers [38], protoplasts from strains under study were
obtained, then mechanically lysed and subsequently divided by
different centrifugation steps into four fractions: P0.3K, P13K,
P100K and SB100K (see Experimental Procedures and Figure
1A; TE stands for total extract obtained after direct lysis of
protoplasts). The SB100K fraction constitutes the cytoplasmic
soluble content and proteins which are detected in the other
three fractions are derived from membranous organelles, large
aggregates or attached to membranes. We used three
standards to verify that fractionation was adequately and
effectively performed (Figure 1B). Firstly, we followed the
fractionation of the GFP-tagged NPC-core nucleoporin Nup170
as a nuclear membrane marker that should be detected
exclusively in the NE-containing fraction (Figure 1B; [24,39]).
Secondly, we tracked GFP-tagged MexA, a RNA export factor,
which also exhibits a perinuclear localization [26]. Finally,
hexokinase (Hxk) was used as an exclusive marker of the
cytoplasmic soluble fraction [38]. As expected, Nup170 and
MexA were detected mainly or exclusively to the P13K fraction,
containing nuclear membranes, while Hxk was detected only in
the SB100K cytoplasmic soluble fraction (Figure 1B).

Once the method was validated with our internal controls, we
analyzed the distribution pattern of HA-tagged KapA and GFP-
tagged KapB (Figure 1B). The results showed that, in contrast
with previous fluorescence studies [26], all subcellular
fractions, either membrane-associated or soluble, contained
KapA or KapB pools. A deeper analysis of the fluorescence of
haploid strains expressing KapB::GFP or KapA:mRFP,
allowed us to visualize not only the main nuclear pools but also
additional accumulations in the cytoplasm (Figure 1C). Small
spots or accretions of KapA and KapB were detected at distal
and subapical regions (black arrows), but also at the tip. These
results led us to study these additional KapA and KapB
subpopulations, and elucidate the general features of their
transport mechanisms.
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Figure 1. Subcellular pools of karyopherins KapA and KapB. A) Fractionation procedure for strains expressing KapB::GFP or
KapA::mRFP (based on reference [38]). The diagram shows the predicted content of each fraction generated. B) Western-blot
experiments showing the karyopherin-a or -1 content of each cellular fraction. Antibodies used in each case are indicated on the
right. The perinuclear RNA-export factor MexA, the NPC-core nucleoporin Nup170 and hexokinase (Hxk), the latter as a marker for
cytoplasmic proteins, were used as controls. C) Maximum projection fluorescence microscopy images of KapA:mRFP (top) and
KapB::GFP (bottom). KapA::mRFP accumulates mainly in nuclei and small cytoplasmic patches (black arrows) located at the tip as
well as subapical and distal regions. KapB::GFP locates at the nuclear envelope. Small cytoplasmic patches (black arrows) can be

observed at the tip, subapical and distal regions. Scale bar = 5 pm.
doi: 10.1371/journal.pone.0085076.g001
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Cytoplasmic Pools of importins-B1 and -a Move
Bidirectionally

We centered firstly on KapB because it is predictably the true
transporter of the import complex, while KapA acts as the
cargo adapter [32]. We acquired video streams from cells of a
strain expressing the KapB::GFP fusion (MAD1266) to
determine whether those spots described in Figure 1C were
mobile and, if that was the case, describe the main features of
this movement (Figure 2A; Video S1, which corresponds to the
lower kymograph). KapB::GFP patches moved from distal
regions towards the tip (anterograde movement, see
trajectories in red for patches 1, 2, 3 and 4, Figure 2A) and,
inversely, from the tip to distal regions of apical compartment
(retrograde; in blue patches 5, 6 and 7 in diagrams from Figure
2A). Kymographs illustrate this bidirectional motility and show
that multiple fluorescent patches followed common trajectories
to reach the tip and distal regions (parallel lines in
kymographs). The average speed measured for KapB::GFP
patches at 37°C was 2.56 + 0.88 ym/s in anterograde direction
and 3.08 + 0.75 pym/s in retrograde direction (n= 10 patches,
different cells, in each direction). Some patches reached the
dome of the tip (number 4 in diagrams of Figure 2A). Fixed
patches were also detected at the tip and subapical regions of
vegetative hyphae (in magenta, numbers 8 and 9 in middle
inset of Figure 2A, respectively). Mobile patches that stopped
suddenly were also detected (in green, two trajectories labeled
with number 10 in upper inset of Figure 2A).

In their movement, patches crossed strong KapB:GFP
accumulations both at the nuclear envelope or the cytoplasm
(see white arrows in Figure 2A, lower inset), which
corresponded to either the spindle pole bodies (SPB) or
MTOCs, as shown in co-localization studies with mCherry-
tagged Nud1 (Figure 2B and 2C, respectively [40]).

The analysis of KapB::GFP also allowed us to follow the
positioning of the SPB. We observed that SPBs remained static
in most of the cases but also showed a limited movement
through the NE (Figure 2D). Furthermore, the distribution of
KapB::GFP at the NE was different depending on the cell-cycle
phase. At G1, we observed that KapB::GFP accumulated at
nodes distributed through the NE. However, at G2, it was
mostly detected at opposite poles of the nuclear envelope -
those farthest and closest to the tip (Figure 2E).

Aspergillus  nidulans importin-a homolog KapA was
previously described as a nucleoplasmic karyopherin [26].
However, its activity as the main, possibly the unique, cargo
adapter in the importin-B1 pathway [31] and the observation of
cytoplasmic spots (Figure 1C) led us to study the possible
subcellular movement of this karyopherin. Of note,
KapA:mRFP fluorescence intensity was extremely weak,
making its detection more difficult than in the case of
KapB::GFP patches. To maintain the quality of all frames in the
streams acquired, we decreased both number and exposure
time of each frame. With these changes in stream-capture
parameters, we were able to follow KapA::mRFP movement
(Figure 3; Video S2, which corresponds to the kymograph on
the right). Both kymographs in Figure 3 show that KapA:mRFP
patches followed specific trajectories reaching the hyphal tip
and distal regions with an average speed of 3.16 + 0.56 uym/s in
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anterograde direction and 3.22 + 0.75 pm/s in retrograde
direction, respectively (n= 10 patches in each direction;
numbers 1, 2 and 4 in the diagram from Figure 3; Video S2).
Non-mobile spots were also observed (numbers 3 and 5 in
Figure 3) but they did not resemble cytoplasmic MTOCs as
occurred with KapB::GFP.

KapB and KapA move simultaneously through the
cytoplasm

The similarities described in the previous section regarding
the cytoplasmic pattern of KapB::GFP and KapA::mRFP led us
to investigate the possibility of a simultaneous transport. With
this aim, the strains expressing either KapB::GFP or
KapA::mRFP were crossed. Heterokaryons were obtained and
they produced mature cleistothecia and ascospores. However,
it was not possible to obtain a descendant expressing both
tagged karyopherins suggesting that such genetic combination
was lethal in haploid strains. Thus, we generated a diploid
strain expressing both chimeras and analyzed KapB::GFP and
KapA::mRFP localization simultaneously using dual channel
acquisition (see Materials and Methods).

We validated the use of this diploid strain with the
confirmation of KapB::GFP perinuclear and KapA:: mRFP
nucleoplasmic fluorescence (Figure 4A; [26]). We were also
able to follow cytoplasmic patches composed of both
karyopherins moving simultaneously in both anterograde and
retrograde directions (Figure 4B, right block and Video S3).
The speed of KapB::GFP and KapA:mRFP patches in the
diploid strain was significantly lower than that described in the
previous section for fusions expressed in haploids (2.26 + 0.65
um/s in anterograde direction and 2.15 + 0.88 pm/s in
retrograde direction; a 21-32 % reduction; n= 10 patches in
each direction; p < 0.05 in both comparisons). Since we
focused exclusively on simultaneous patches for speed
measurements, this decrease could be a consequence of the
presence of two fluorescent tags, causing a detriment in the
efficiency of the complex formation or transport. Although we
analyzed a representative number of simultaneous KapA and
KapB patches through dual channel acquisition, we cannot
discard the possibility of cytoplasmic subpopulations of either
KapA:mRFP or KapB::GFP moving independently. This
statement is based, on one hand, on the fact that KapA can
bind proteins independently of KapB [39] and, on the other
hand, on the formation in the diploid strain of KapA/KapB
heterodimers in which only one or neither partner were tagged
with fluorescence. Finally, fluorescence studies of KapA::mRFP
and KapB::GFP in the diploid strain show that they co-localize
at a specific region of the NE, which, based on co-localization
studies with KapB::GFP and Nud1::mCh (Figure 2B and 2C),
may coincide with the SPB (white arrow in Figure 4A).

Overall, the results hitherto shown demonstrate that
vegetative hyphae contain different subpopulations of both
karyopherins. These pools move simultaneously, covering long
distances within the cell and reaching both the tip and distal
regions. The following sections will focus on the study of the
role of actin and tubulin cytoskeletons in this intracellular traffic
of KapA and KapB.

December 2013 | Volume 8 | Issue 12 | e85076



Importin-a/B1 Dynamics in the Fungus A. nidulans

A B KapB::GFP Nud1::mCh

6
< % C

SubaPicaI TIP
region

I
nucleus nucleus

D KapB::GFP
Dynamic SPB Static SPB

7.3 sec

o
] |
Qo
TIP Subapical t_t 3 &l
region nucleus N )
o
E KapB::GFP
o G1 nucleus G2 nucleus
1]
: "
wn
[— 9.2 ym
E %;\ )< pF o
S Q
n
Fixed nucleus T :
o 1xe! -
TIP  Subapical patch

region

Figure 2. Localization and dynamics of KapB::GFP in vegetative hyphae. A) Movement of KapB::GFP patches through the
cytoplasm of vegetative hyphae. The insets correspond to three video streams (the lower inset corresponds to Video S1). Each
microscopy image is the first of a time stack with an associated kymograph shown below, representing the region indicated with a
dotted line which covered the complete width of the hyphal tube. Diagrams at the bottom of the kymographs are included for better
understanding of the trajectories followed for detected patches. Colors indicate the following: blue, retrograde movement of
KapB::GFP patches; red, anterograde movement; green, motile patches that suddenly stop; and magenta, static patches. The lower
inset was included to show fixed non-motile cytoplasmic patches of KapB::GFP. B) Co-localization studies of KapB::GFP with
Nud1::mCh, the latter used as a marker of SPBs [26,40]. Bottom left, a 3D diagram of fluorescence intensity, with a clearly visible
peak corresponding to the SPB (black arrowhead). C) KapB locates to cytoplasmic MTOCs. Arrows indicate KapB::GFP co-
localization with Nud1::mCh at the cytoplasm. D) Dynamics of the SPB, observed through KapB::GFP. Left, a SPB displacing
through the nuclear envelope. Right, an immobile SPB. D) KapB::GFP distribution at the nuclear envelope both at G1 and G2
phases. At G2, KapB::GFP accumulated mainly at NE regions closest to and farthest from the tip. Kymographs of the corresponding
stream acquisitions are shown in the lower panels. For all images, scale bar =5 pm.

doi: 10.1371/journal.pone.0085076.g002
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Figure 3. KapA::mRFP dynamics in vegetative hyphae. Movement of KapA:mRFP patches through the cytoplasm of
vegetative hyphae. Kymographs illustrate the motility of KapA::mRFP along the hyphal region analyzed (dotted line). The diagrams
below are included to facilitate the understanding of the kymograph. Numbers indicate: 1, retrograde movement of KapA::mRFP
patches; 2, anterograde movement; 3, mobile and fixed accumulations at the subapical region; 4, entry to the tip; and 5, fixed patch.
Scale bar= 5 ym. See Video S2 for the cell shown on the right side.

doi: 10.1371/journal.pone.0085076.g003

A minor pool of KapB patches may move together with
RabA/Rab5-early endosomes

We analyzed whether KapB could be transported in specific
subpopulations of endosomes, i.e., those defined by the Rab5
homologue RabA [16]. Several reasons led us to concentrate
on a hypothetic KapB transport on RabA/Rab5 early
endosomes. Firstly, RabA shows the most similar dynamics
compared to that described for KapB [16]. Secondly, Rab6/
RabC marks Golgi equivalents [41] while Rab7/RabS mediates
fusion of late endosomes/vacuoles [42] and its dynamics is
completely different to that shown by KapB. Finally, Rab4/
RabF/An9072 and Rab11 have not been functionally
characterized in this model fungus.

Consequently, we obtained a haploid strain expressing mCh-
tagged RabA driven by the ethanol-inducible alcA promoter
and KapB::GFP (see Materials and Methods; Figure 5). Our
streams and kymographs showed specific patches of
KapB::GFP moving simultaneously with Rab5 endosomes in
vegetative hyphae (see white arrows in Figure 5; Video S4).
However, we also observed multiple KapB::GFP patches not
co-localizing with RabA labeled endosomes. These results
suggest that a minor pool of KapB may move together with
RabA-endosomes while the major importin-g population seems
to move independently of this type of endosome (see
Discussion).
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KapB and KapA cytoplasmic mobility depends on
microtubules

The observation of KapA and KapB moving through the
cytoplasm following defined trajectories and their entry to/exit
from the hyphal tip is consistent with their hypothetic transport
through MTs and/or actin cables. Previous works also showed
interactions of Armadillo domain (ARM; [43])-containing factors
(predictably, KapA contains 10 ARM domains) with both actin
and tubulin cytoskeletons (see for example references 44—48).
Thus, we examined the role of actin and tubulin cytoskeletons
in the movement of KapA::mRFP and KapB::GFP by following
their cytoplasmic localization after the addition of tubulin or
actin  destabilizing drugs benomyl and latrunculin B,
respectively.

Compared to KapA and KapB dynamics in untreated cells
(Figure 6, control; see also previous sections), benomyl
addition (3pg/ml) impaired the movement of both karyopherins.
Motile patches were not observed in kymographs of streams
taken from either haploid or diploid strains. Non-mobile
accumulations were now visible along the cytoplasm but
lacking specific distribution (Figure 6, +ben).

The addition of the actin-destabilizing drug latrunculin B
(100uM) did not inhibit completely the movement of either
KapB::GFP or KapA:mRFP cytoplasmic patches, which
continued moving simultaneously in both anterograde and
retrograde directions (Figure 6, +latB). However, the average
speed significantly decreased to 2.18 + 0.57 ym/s and 2.13 £
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Figure 4. Localization and dynamics of KapB::GFP and KapA::mRFP in diploid hyphae. A) Co-localization (white after
merging magenta, mRFP, and green, GFP, channels), of KapB::GFP and KapA:: mRFP at the SPB indicated with an arrow. B)
Movement of KapB::GFP and KapA:mRFP patches through the cytoplasm of diploid vegetative hyphae. Images on the left
correspond to a selected frame from the stream acquisition shown in Video S3 (see Materials and Methods for simultaneous
analysis of KapA and KapB movement through dual-channel acquisition). Kymographs illustrate the movement of both importins
along the hyphal region analyzed. White arrows indicate two mobile patches (a and b) where KapA:: mRFP and KapB::GFP co-
localize. For all images, scale bar =5 pym.

doi: 10.1371/journal.pone.0085076.g004

0.63 pm/s in anterograde and retrograde directions, respectively, compared to the values calculated for non-treated

respectively (these are the average values calculated cells (Figure 6, control).

considering both KapB::GFP and KapA::mRFP patches; n= 20

patches in each direction, 10 corresponding to KapB::GFP and Mutations in kinesin-3 and dynein motors severely

10 to KapA:mRFP; p < 0.01 in both comparisons). This is a affect KapB and KapA dynamics

reduction of ~24 % (anterograde) and ~33 % (retrograde), The dependence of KapB and KapA movement on MTs led
us to study the molecular motors related to transport through
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doi: 10.1371/journal.pone.0085076.9g005

this cytoskeleton. Previous work on the cellular localization of
dynein or dynactin subunits showed their capability to move
through the cytoplasm in patches, using MTs as tracks [49]. In
addition, NudK, a component of cytoplasmic dynein/dynactin,
has been shown to be an in vivo interactor of KapA in
Aspergillus nidulans [39]. Thus, we analyzed a hypothetic
functional requirement of the dynein/dynactin complex for the
cytoplasmic movement of the cargo adapter. Strains
expressing KapA::mRFP in either nudA1 [50] or nudK317 [51]
thermo-sensitive mutant backgrounds, the former affecting the
heavy chain of dynein and the latter the Arp1 subunit of
dynactin, were obtained by meiotic recombination. Similar
results were obtained in both backgrounds (Figure 7A). At
room temperature, KapA::mRFP accumulated at the subapical
region of hyphae in both genetic backgrounds while it remained
visible in nuclei. At the restrictive temperature of 42°C,
importin-a maintained a subapical localization but it was not
accumulated in nuclei (we show a germling in Figure 7A in
which no KapA::mRFP nucleoplasmic accumulation can be
observed). We did not detect KapA::mRFP patches moving
along the cytoplasm (see kymographs in Figure 7A). These
results clearly show the requirement of the dynein/dynactin
complex in KapA movement and suggest that it facilitates KapA
transport and accumulation in nuclei.

It has recently been reported the existence of diverse MT
populations in filamentous fungi [52]. Detyrosinated MTs
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(dtyrMT) would maintain the tubule structure in mitosis while
tyrosinated MTs (tyrMT) would form the mitotic spindle [7,52].
The activity of A. nidulans kinesin-3, UncA, was linked to the
intracellular transport through dtyrMTs. Thus, we analyzed a
possible role for UncA in the cytoplasmic transport of KapB and
KapA. We obtained strains expressing either KapB::GFP or
KapA::mRFP fusions in a AuncA genetic background by two
methods: firstly, by transformation of the AuncA strain SNZ9
(Table 1; [52]) with the DNA cassettes coding for each tagged
fusion; and secondly, by meiotic recombination between strain
SNZ9 and strains expressing either KapB::GFP or
KapA:mRFP. Both transformants and descendents were
phenotypically indistinguishable. The growth defect of the
generated strains indicated a genetic interaction between the
absence of kinesin-3 of A. nidulans and both tagged
karyopherins (Figure 7B), suggesting a functional relationship
of UncA with this nuclear import pathway.

At the microscopic level, we observed that kinesin-3 deletion
significantly  altered dynamics of both karyopherins.
Nucleoplasmic accumulation of KapA::mRFP significantly
decreased in the AuncA background (Figure 7C; compare inset
at the left, showing wild-type background, and that at the right,
AuncA). The nuclear versus cytoplasmic fluorescence intensity
ratio of KapA::mRFP decreased from a mean of 2.5 + 0.8 in the
wild type background to an average of 1.5 + 0.1 in the AuncA
background (a reduction of 40 %; N = 12 nuclei in each genetic
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KapA::mRFP
(haploid)

KapB::GFP; KapA::mRFP
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KapB::GFP; KapA::mRFP
(diploid)
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{
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KapB::GFP (haploid)

KapA::mRFP (haploid)

34.4 ym
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(diploid)

48.2 ym
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Figure 6. Effect of cytoskeleton destabilizing drugs on KapB::GFP and KapA::mRFP expressed in haploid or diploid
hyphae. KapB::GFP and KapA::mRFP dynamics were followed in haploid strains (left and middle columns, respectively) as well as
both simultaneously in a diploid strain (right column, merged image of both fluorescence channels is shown for each condition).
Minimal medium (control); supplemented with 3 ug/ml benomyl (+ben); supplemented with 40 pg/ml (100 uM) Latrunculin B (+lat B).

doi: 10.1371/journal.pone.0085076.g006

background; p = 0.00073). Kymographs, mainly the one
corresponding to KapB::GFP, clearly show the erratic, short-
distance displacement of cytoplasmic patches (Videos S5 and
S6). No patch was detected covering long distances as
observed in the wild-type background (Figure 7C, see also

PLOS ONE | www.plosone.org

previous figures). These results suggest that UncA and,
consequently dtyrMTs, may be required for: 1) the cytoplasmic
transport of the general nuclear import complex, and 2) its
recruitment to nuclear pores. However, the nature of this
functional link remains to be elucidated.
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Figure 7. Effect of mutations affecting cytoskeleton-dependent transport on KapB::GFP and KapA::mRFP localization. A)
KapA::mRFP localization in nudA1 and nudK317 mutant backgrounds. Strains were shifted to 42°C for 2 hours before analysis.
Scale bar = 5 ym. B) Phenotype of strains expressing KapB::GFP or KapA::mRFP in wild-type and AuncA backgrounds. Scale bar =
2 cm. C) KapB::GFP and KapA::mRFP dynamics in wild type (wt; left) and AuncA hyphae (right). Frames were selected from stream
acquisitions corresponding to the kymographs shown. Graphs are fluorescence intensity plots for KapA::mRFP at the regions
indicated by the lines above them. Scale bar = 5 pm. See Videos S5 and S6 for AuncA mutant cells.

doi: 10.1371/journal.pone.0085076.g007
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Table 1. Aspergillus nidulans strains used in this study (all
strains are veA7).

Strain Genotype Source
TNO2A3 pyrG89; AnkuA::argB; argB2; pyroA4 [84]
SNZ9 pyrG89;AnkuA::argB; argB2;pyroA4,AuncA::pyroAAf  [51]
WX3 pyrG89; pyroA4; nudK317 [52]
XX3 pyrG89; nudA1, chaA1 [50]
MAD1266 pyrG89; wA3; pyroA4; kapB::gfp::pyrGAf [26]
MAD1312 pyrG89; nup170::gfp::pyrGAf; wA2; pyroA4 [24]
MAD1543 pyrG89, yA2, pabaA1; argB2; kapA::mRFP::pyrGAf [26]
MAD2149 pyrG89; pyroA4; nudK317, kapA::mRFP::pyrG This study
MAD2150 pabaA1; kapA::mRFP::pyrGAf; nudA1 This study
MAD2275 YA2; argB2, argB::alcA(p)::mCh::rabA; pantoB100 [16]
rG89; AnkuA::argB; argB2; pyroA4;
MAD2331 Py kel [26]
mexA::gfp::pyrGAf
rG89; wA4; inoB2; pyroA4; hhoA::mCh::pyroAAf,
MAD2446 P e ot [85]
pacC900
rG89; wA4; inoB2; pyroA4; hhoA::gfp:.pyrGAf,
MAD2447 . =4 il [26]
pacC900
rG89; AnkuA::argB; argB2; pyroA4; kapA::
MAD2606 by g gEe by P This study
hagzy::pyrGAf
rG89/pyrG89, yA+/ yA2, pabaA+/pabaA1; wA+/
MAD2620 py! py! YAt/ YAZ, p P
(diploid) WAS3;argB+/ argB2,pyroA+/ pyroA4; kapB+/ This study
iploi
> kapB::gfp::pyrG; kapA+/kapA::mRFP::pyrGAf
rG89; wA4; inoB2; pyroA4; hhoA::mCh::pyroAAf,
MAD2621 b o P This study
pacC900; kapB::gfp::pyrGAf
rG89; wA4; inoB2; pyroA4; hhoA::gfp::pyrGAf,
MAD2622 2 L B This study
pacC900; kapA::mRFP::pyrGAf
rG89; AnkuA::argB; argB2; pyroA4, AuncA::pyroA;
MAD2968 il g g=e Py el This study
kapA::mrfp::pyrGAf
rG89; AnkuA::argB; argB2; pyroA4, AuncA::pyroA;
MAD2970 2 Y RS 24 This study
kapB::gfp::pyrGAf
wWA3;argB2, argB::alcA(p)::mCh::rabA; pantoB100;
BD687 v v (°) P This study

kapB::gfp::pyrGAf
doi: 10.1371/journal.pone.0085076.t001

Discussion

Successful adaptation of organisms to their environment
involves, on one hand, the development of particular
mechanisms that confer specific advantages to compete in an
ecological niche (i.e., plasmids in bacteria or secondary
metabolite clusters in fungi). On the other hand, the process of
evolution results in the conservation of advantageous
molecular pathways that are broadly conserved among
species, allowing efficient application of cellular resources to
enhance growth, development, diversification and survival. This
occurs, for example, with the machinery that establishes and
controls cell-polarity and nuclear transport.

S. cerevisiae cells are uninucleated and symmetrical and
become polarized in order to undergo asymmetric cell division,
a process known as “budding” (reviewed by [4]). Thus, yeast
cells display polarity only during specific stages of their life
cycle [1]. Recent developments in elucidating the roles of the
cytoskeleton during polarity establishment have been reported
[1,63,54] but, in addition to the cytoskeleton, the nuclear
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transport machinery is relevant, since it plays a key role in the
correct nucleocytoplasmic  transport of asymmetrically
distributed mRNAs [55]. However, signal transition between the
cytoplasm and the nucleus in yeast seems less complex than
in other cell types.

Synapse-to-nucleus communication in neurons requires
protein messengers to be retrogradely transported hundreds of
microns (even centimeters) away [56]. Neurons are constantly
polarized and multiple mechanisms exist to convey synaptic
signals to the nucleus (see within [56]). The importin-31/a
complex plays key roles in some of these mechanisms (see
below). Multinucleated cells (hyphae) of Aspergillus nidulans
are, like neurons, constantly polarized but in this case the
nucleocytoplasmic transport of proteins must overcome long
inter-nuclear  distances.  Thus, additional  regulatory
mechanisms might be required to guarantee the proper
distribution of nuclear proteins. In this context, we have shown
that karyopherins KapA and KapB can move long distances
through the cytoplasm reaching the hyphal tip and distal
regions. This is a new finding for karyopherins in fungi. This
process links nuclear transport, the cytoskeleton and
morphogenetic processes guided at the Spitzenkorper, the
apical signaling hub that enables polar growth and co-ordinates
developmental transitions (52). Furthermore, we strongly
believe that although neurons are uninucleated and vegetative
hyphae are multinucleated, several similarities can be drawn
between synapse-to-nucleus and a putative tip-to-nucleus
communication.

In neurons endocytosis of receptor-ligand complexes from
axonal synapses into early endosomes has been described to
be a major mechanism of signal transmission to the nucleus
[57]. Endosomes are subsequently actively transported to the
soma along MTs associated with dynein motors [58,59].
Another long-distance signaling mechanism with potentially
critical roles in adult neurons is retrograde injury signaling from
axonal lesion sites, which does not necessarily require
endosomes [60]. This mechanism is based on direct
interactions of cargo proteins with importin nuclear transport
factors in complexes with molecular motors [61]. Basically
importin-as are found in axons in constitutive association with
the retrograde motor dynein. mRNA for importin-31 protein is
found in sensory axons and is locally translated at the injury
site after lesion [61]. This leads to the formation of dynein-
bound importin-B1/a heterodimers, which actively transport
signaling cargos to the nucleus [56,60].

Similarly, our work shows that KapA and KapB move
retrogradely from the tip to distal regions. Since this movement
is simultaneous for both karyopherins, it could be suggested
that they move in association, although we could not
demonstrate a direct interaction by using the split-YFP
technique (not shown). However, in A. nidulans KapA and
KapB also move simultaneously in the anterograde direction,
suggesting that the association between the two proteins is not
formed after the local translation of kapB mRNA at the tip in
response to the signal reception, as occurs in neurons. The
average speed of KapA and KapB is in the same range (um/s)
of that measured for early endosomes (EEs; [16]) and our co-
localization studies suggested an EE-dependent transport of
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karyopherins. However, the presence of KapB mobile patches
that do not co-localize with RabA opens the possibility of an
alternative to EE-dependent transport, which is further
supported by the direct interaction of KapA with the actin-
related protein NudK, a component of the dynactin complex
[39,62]. The dynein/dynactin complex is essential for patch
motility and the nuclear accumulation of KapA while UncA
(kinesin-3) is involved in the latter transport mechanism.
Overall, it could be suggested that cytoplasmic dynein, dtyrMTs
and kinesin-3 may facilitate the recruitment of this and other
importins to the proximities of NPCs as gates of nuclei.
Cooperation between these cytoskeleton and motor elements
was previously described in fungi for the transport of EEs
[19,63].

Latrunculin B addition slightly reduced the average pace of
KapA and KapB patches. Thus, we cannot discard a minor role
for the actin cytoskeleton in their transport. Mechanistic
relationships between the nuclear transport machinery and
actin microfilaments have been described in other organisms,
as for example, the interaction between importin-a and yeast
ARP2/3 complex [64] and the relationship of importins with
endocytosis in metazoans [65].

The cytoplasmic movement of importins may be directed to
the transport of transcription factors (TF) from other cell
compartments. TFs are adapted to take advantage of
nucleocytoplasmic transport mechanisms [66]. Proteomic
studies revealed that more than 150 proteins contained bona
fide NLSs at the postsynaptic density [67,68] while other
analyses described that 39 TFs from the postsynaptic density
are implicated in the sensory neuron response to nerve injury
[69,70]. Jacob, NF-KB or CREB2, are only some examples of
synapto-nuclear TFs (see references within [56]). However, in
A. nidulans there is only one TF known to be located at the
polarity region (the tip). The bZIP-type TF FIbB transports
signals associated with environmental changes from tip to
nuclei and, in consequence, activates or represses
development [71,72]. The import mechanism of FIbB remains
unknown, but other eukaryotes could serve as models. For
example, A. thaliana and Mus musculus contain various TFs (a
large number of them are bZIPs) tethered to the membrane of
the endoplasmic reticulum (ER), which are imported after their
proteolytic cleavage in response to specific signals (see
references within [73,74]). The NLS within the cytosolic domain
of ERj1p (Dnadc1) mediates, after cleavage, binding with
Importin-B1 and import into the nucleus [74]. SREBP-1 (Sterol
Regulatory Element-binding Protein) and SREBP-2 are two
bZIP-type regulators of cholesterol metabolism which normally
reside in the membrane of the ER and Golgi apparatus [75,76].
After proteolysis, they enter the nucleus through a direct
interaction of the leucine zipper domain with Importin-g1 [75].
The Notch family of proteins is important for the regulation of
differentiation, proliferation and apoptotic programs in
vertebrates and invertebrates [77]. Notch proteins act as
surface receptors and regulators of gene expression. It has
been recently shown that, after the proteolytic release of the
notch intracellular domain, it is imported by the importin-B1/a
pathway [78].
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Overall, it can be concluded that karyopherin activity in
eukaryotes is not exclusively limited to the nuclear periphery.
The specific features that exhibit the cytoplasmic movement of
KapA and KapB in vegetative hyphae of A. nidulans allow us to
suggest that they travel in association through the cytoskeleton
to bind and subsequently import cargoes to all or specific nuclei
of the syncytium. Future work will be dedicated to identifying
cargoes which are differentially located in the cell and
subjected to this nuclear import pathway. This research line will
provide additional information on the molecular mechanisms
governing this essential transport pathway in eukaryotes.

Materials and Methods

Strains, oligonucleotides and culture conditions

Aspergillus nidulans strains used in this study are listed in
Table 1. Oligonucleotides used were described in [26]. Strains
were cultivated in adequately supplemented Aspergillus
minimal medium, MMA [79]. Strains MAD2621 and MAD2622
were obtained by meiotic crosses of strains MAD2446 and
MAD1266 or MAD2447 and MAD1543, respectively. MAD1543
was also crossed with nudK317 and nudA1 mutant strains
(provided by V. Efimov) to obtain strains MAD2149 and
MAD2150, respectively. Strain BD687 was obtained from the
cross between MAD1266 and MAD2275. Strains MAD2968
and MAD2970 were obtained from the crosses between SNZ9
[52] and MAD1543 or MAD1266, respectively.

Diploid strain MAD2620 (expressing KapB::GFP and
KapA::mRFP) was obtained by culturing in selective plates
mixes of protoplasts of haploid strains expressing the single
fusions. The genomic cassettes bearing kapA::mrfp, kapB::gfp
or kapA::3ha constructs were obtained by fusion PCR [80] and
transformed into appropriate recipient strains.

KapB and KapA cellular localization during vegetative growth
was analyzed by inoculating conidiospore suspensions in 8-
well plates (Ibidi, Germani; Cat. No. 80821) containing 300 pl/
well of adequately supplemented Watch Minimal Medium
(WMM; [81]). The analyses of KapB and KapA localization in
benomyl (3 ug/ml) or latrunculin B (100 yM) containing media
were done as described by 82.

Measurement of the Speed of KapB::GFP or
KapA::mRFP Patches

The speed of the cytoplasmic patches of both KapB::GFP
and KapA:mRFP (in um/s) was calculated by dividing the
length of the trajectory (um) covered by a specific patch with
the time interval. Given values are means of 10-15
measurements plus s.e.m. Statistical significance of differences
observed in the mean pace of cytoplasmic patches was
assessed using the t-test (two-tailed). Prior to this, a F-test for
estimating unequal variances in the populations was carried
out. This procedure was followed in two cases: 1) When
comparing the speed values of KapA/KapB patches in the
diploid with those measured in haploid strains; and 2) When
comparing the speed of KapB::GFP and Kapa::mRFP patches
in the presence or absence of Latrunculin B.
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Cellular fractionations

Cellular fractions were obtained following a procedure
described in reference [38]. Essentially, protoplasts of each
strain were obtained [83] and lysed in 0.2 M sorbitol, 50 mM
potassium acetate, 2 mM EDTA, 20 mM HEPES pH 7.2 and
protease inhibitor mixture from Roche Applied Science, using a
Dounce homogenizer. Subsequent centrifugations  of
supernatants at 300, 13000 and 100000 x g generated P0.3K,
P13K and P100K solid and SB100K liquid fractions. P13K,
P100K and SB100K fractions were resuspended in the lysis
buffer described before, precipitated in trichloroacetic acid and
resuspended again in standard urea/2-mercapto-ethanol SDS-
PAGE loading buffer. Equivalent samples of the different
fractions were analyzed by Western blotting.

Western-blot

Protein fractions were resolved in 10% SDS-polyacrylamide
gels, electrotransferred onto nitrocellulose filters and exposed
to rat anti-HA (Roche; 1/1,000), rabbit anti-hxk (Chemicon;
1/80,000) or mouse anti-GFP (Roche; 1/5,000) monoclonal
antibody cocktails. Peroxidase conjugated anti-rat (Southern
Biotech; 1/4,000), anti-rabbit (Sigma; 1/10,000) or anti-mouse
(Jackson ImmunoResearch; 1/4,000) IgG immunoglobin were
used as secondary antibodies. Peroxidase activity was
detected with SuperSignal® West Pico Chemiluminiscent
Substrate (Thermo Scientific).

Light and fluorescence microscopy

Microscopic analyses were performed as described by 72]
and [82. Strictly simultaneous imaging of GFP and mCherry
was carried out using a Dual-View imaging system
(Photometrics, Tucson, AZ), using the recommended filter set
[41]. Kymographs and maximal intensity projections were made
using Metamorph® software (Molecular Devices, USA).

Isolation and manipulation of nucleic acids

The isolation and manipulation of DNA samples as well as
Southern-blot experiments were performed as described in [72]
and [82].

Supporting Information

Video S1. KapB::GFP movement through the cytoplasm of
vegetative hyphae (Figure 2). Videos were constructed using
MetaMorph® and/or Imaged software (7 fs, frames per
second). Time scale is indicated in sec. Note the movement of
KapB::GFP patches through the cytoplasm to the tip and distal
regions. Patches crossed SPBs and cytoplasmic MTOCs.

(AVI)
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Video S2. KapA::mRFP movement through the cytoplasm
of vegetative hyphae (Figure 3). Video displays 7 fs and time
scale is in sec. KapA::mRFP moves to the tip and distal regions
in patches.

(AVI)

Video S3. Movement of KapB::GFP and KapA::mRFP
patches through the cytoplasm of diploid vegetative
hyphae (Figure 4). Both fusions move simultaneously.
KapB::GFP and KapA::mRFP analysis was done using a dual-
channel acquisition device (see Materials and Methods). The
video combines three streams: green/GFP (up) and red/mRFP
(middle) channels with a third merged video in magenta
(bottom). Video displays 5 fs and time is indicated in sec.

(AVI)

Video S4. Comparison of KapB::GFP  with
RabA(Rab5)::mRFP labeled early endosomes (Figure 5).
Video displays 7 fs and time is indicated in sec. The upper
video shows the green channel (KapB::GFP) and the middle
video the red channel (RabA::mCh). The lower is the merged
video in magenta.

(AVI)

Video S5. KapA::mRFP dynamics in AuncA hyphae
(Figure 7). Deletion of A. nidulans kinesin-3-coding gene,
uncA, affects KapA::mRFP nuclear localization and inhibits the
cytoplasmic movement. The video displays 7 fs and time is
indicated in sec.

(AVI)

Video S6. KapB::GFP dynamics in AuncA hyphae (Figure
7). Both NE-associated localization and cytoplasmic movement
of KapB::GFP are also affected by uncA deletion. Video
displays 7 fs and time is indicated in sec.

(AVI)
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