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Resumen

En esta memoria estamos principalmente interesados en estudiar la conexión entre las cur-
vas cŕıticas para enerǵıas de tipo elásticas adecuadas (lo que posteriormente llamaremos
curvas elásticas generalizadas) y las superficies invariantes que posean ciertas pro-
piedades geométricas interesantes (como por ejemplo, superficies de evolución binormal,
superficies de curvatura media constante, superficies de Weingarten lineales,...). Además,
se establecerá una conexión similar entre las superficies invariantes cŕıticas para enerǵıas
de tipo-Willmore (véase la definición de superficies tipo-Willmore en la pgina xiii) y cur-
vas elásticas generalizadas. En el caso compacto, está relación se basa en el Principio de
Criticidad Simétrica de Palais, [117].

Más concretamente, vamos a estudiar las curvas cŕıticas para algunos casos particulares
de la siguiente familia de enerǵıas elásticas generalizadas

Θε,p
−Φ(γ) =

∫
γ

(κε + Φ)p ds ,

donde ε = 1, 2, p ∈ R y Φ es un potencial. Como ya hemos mencionado, llamaremos cur-
vas elásticas generalizadas a las curvas cŕıticas de alguna de las enerǵıas anteriores; y,
a partir de ellas vamos a construir superficies invariantes en espacios tridimensionales que
posean propiedades geométricas atractivas para su estudio, como son las mencionadas an-
teriormente. Es decir, vamos a establecer un nexo entre las curvas elásticas generalizadas
y diferentes tipos de superficies invariantes inmersas en ambientes tridimensionales.

El primer caṕıtulo de la memoria está dedicado a la introducción de los objetos y
fórmulas básicas, y al establecimiento de la notación y las convenciones que se usan a
lo largo de la memoria. En efecto, vamos a recordar algunos aspectos de la geometŕıa
semi-Riemanniana, que van a resultar esenciales en el futuro desarrollo de la memoria. En
concreto, nos vamos a centrar en superficies inmersas en los modelos de espacio semi-
Riemannianos de dimensión tres. Aśı mismo, también vamos a recordar diversas
herramientas y técnicas sobre problemas variacionales actuando en espacios de curvas
donde los Lagrangianos dependan de las curvaturas de estas curvas. En particular, vamos
a introducir las ĺıneas de centros de Kirchhoff generalizadas, es decir, extremos de
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la enerǵıa

Θ(γ) =

∫
γ

(P (κ) + µ τ + λ) ds ,

donde κ y τ son la curvatura y torsión de γ, respectivamente, P (κ) es una función diferen-
ciable y λ, µ ∈ R dos constantes. Debemos resaltar que las curvas cŕıticas para cualquier
tipo de funcionales energéticos dependientes de la curvatura poseen dos campos de vec-
tores de Killing asociados. Entre ellos, se encuentra uno que es paralelo al campo
de vectores binormal a la curva (y que denotaremos de ahora en adelante por I), tal y
como se detalla en la Proposición 1.3.2 y en la Proposición 1.3.3 (véase también [58] y [94]).

Posteriormente, en el Caṕıtulo 2, centraremos nuestra atención en las curvas elásticas
generalizadas. En este caṕıtulo trataremos de cubrir dos objetivos; por un lado, particula-
rizando los resultados conocidos para casos más generales, en la primera parte del caṕıtulo
(Sección 2.1) estudiaremos las curvas elásticas generalizadas y fijaremos las ecuaciones de
Euler-Lagrange, aśı como diversos resultados relacionados; y, por otro lado, en la segunda
parte (Sección 2.2), describiremos una aplicación interesante de una elección particular
de la enerǵıa elástica generalizada, dada por ε = 2 y p = 1/2 para un potencial constante
Φ = a2, a la compleción visual de curvas. Esta construcción justifica el estudio de este tipo
de curvas, no sólo como objetos puramente matemáticos, si no que también ilustra sus di-
versas aplicaciones a otras áreas. Por ejemplo, se puede utilizar para resolver un problema
surgido en visión computacional, ya que, reducimos el problema sub-Riemanniano de
la compleción de imágenes mediante optimización a un problema variacional clásico. De
hecho, tal y como sugieren diversos estudios neuro-biológicos, existe una estructura sub-
Riemanniana en el espacio de células visuales y, con el objetivo de completar una imágen
parcialmente dañada o cubierta, el cerebro considera geodésicas sub-Riemannianas entre
los puntos finales de la información que falta. Esta estructura sub-Riemanniana ha sido
recientemente modelada usando para ello el fibrado unitario tangente del plano, [124].

En la Sección 2.2.1, reduciremos el problema de hallar las geodésicas sub-Riemannianas,
que se cree que usa el cerebro con fines de reconstrucción de imágenes, a la búsqueda de
extremos de una familia de enerǵıas de tipo curvatura total (que en nuestro caso, se re-
ducen a enerǵıas elásticas generalizadas para las elecciones ε = 2, p = 1/2 y Φ = a2) en
el plano, es decir, a un problema variacional clásico. Entonces,

Resolveremos estos problemas variacionales completamente, de forma geométrica, en la
Sección 2.2.2, obteniendo de forma expĺıcita las curvaturas de las curvas cŕıticas.

Teóricamente, esto resuelve el problema completamente, pues las curvaturas carac-
terizan a las curvas en el plano, salvo movimientos ŕıgidos. Sin embargo, para objetivos
prácticos resulta más conveniente utilizar un método numérico adecuado para aplicaciones
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espećıficas y concretas. Por ello,

En la Sección 2.2.3, describiremos un método numérico para obtener las curvas que mi-
nimicen la longitud. Esta aproximación, implementada en lo que llamamos plataforma
XEL, está basada en el método del descenso del gradiente y se explicará brevemente en el
Apéndice B.

Por otro lado, como se explica al final de esa sección, el método que hemos desarrollado
posee una gran ventaja en comparación con otros métodos numéricos, pues nos permite
calcular la desviación de las soluciones numéricas con respecto a las anaĺıticas. Nuestros
resultados sobre este tema han sido principalmente publicados en [13], aunque el método
del descenso del gradiente va a ser descrito con más detalle en [9].

Este resultado se puede ver como una primera aplicación de las elásticas generalizadas
que sirve tanto como introducción, como motivación para el interés en este tipo de objetos
por si solos. Del mismo modo, como ya hemos comentado anteriormente, uno de los prin-
cipales objetivos de esta memoria es construir y/o caracterizar las superficies invariantes
(es decir, superficies que quedan invariantes por la acción de un grupo uniparamétrico
de isometŕıas) generadas por curvas elásticas generalizadas y que posean propiedades
geométricas interesantes. Para este fin, se usan dos tipos de herramientas diferentes.
Primero, si el espacio ambiente es un modelo de espacio semi-Riemanniano de dimensión
tres, la técnica que vamos a desarrollar se llama evolución binormal de curvas y el
Caṕıtulo 3 nos servirá para introducir y explicar detalladamente esta idea; por otro lado,
la segunda herramienta de construcción se basa en el uso de levantamientos totales de
curvas bajo sumersiones de Killing, y será explicado en el Caṕıtulo 6.

En 1972, Hasimoto [73], usando una transformación particular, obtuvo la reconocida
ecuación de Schrödinger no-lineal en una aproximación del movimiento auto-inducido
de un vórtice en un fluido viscoso, aunque este movimiento del vórtice viajando sin es-
tiramiento fue descrito en primer lugar en 1906 por Da Rios, [130]. Para este mode-
lo, Da Rios usó el movimiento de una curva, que representaba al filamento o vórtice,
propagándose de acuerdo a la ecuación de inducción localizada. Además, Hasimoto rela-
cionó este movimiento con las curvas elásticas, probando que la evolución de la curva se
realizaba en la dirección de la binormal, [74]. Por ello, siguiendo estas ideas, empezare-
mos el Caṕıtulo 3 estudiando la información geométrica de la evolución de curvas en la
dirección de la binormal (con velocidades dependientes de la curvatura y la torsión de las
mismas, F(κ, τ)) y definiendo las superficies de evolución binormal, es decir, las su-
perficies inmersas localmente generadas por esta evolución. Como consecuencia de aplicar
la transformación de Hasimoto a nuestra estado más general, obtendremos una familia
de ecuaciones diferenciales cuyas soluciones se corresponden con una onda compleja para
diferentes evoluciones binormales (véase la Proposición 3.1.2 y [64]). A continuación, trás
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calcular las ecuaciones de Gauss-Codazzi (véase la Sección 1.1.2) obtenemos el Teorema
3.1.3, [64]

Las superficies de evolución binormal asociadas a soluciones de tipo onda viajera de las
ecuaciones de Gauss-Codazzi se corresponden con la evolución (por isometŕıas y desliza-
miento) de las ĺıneas de centros de Kirchhoff generalizadas.

En particular, una consecuencia esencial viene dada en el Corolario 3.1.4, [10], y da
lugar al siguiente resultado,

Una curva de Frenet de rango 2 ó 3 evoluciona bajo el flujo de la binormal mediante
isometŕıas de un modelo de espacio semi-Riemanniano de dimensión tres, M3

r (ρ), si y
sólo si, es un extremo de

Θ(γ) =

∫
γ

(P (κ) + λ) ds ,

donde F(κ, τ) = F(κ) := d
dκ

(P (κ)) es la velocidad de la evolución de la curva.

Por lo tanto, localmente, podemos construir superficies invariantes evolucionando cur-
vas cŕıticas bajo el campo de vectores de Killing en la dirección de la binormal, I, cuya
existencia está garantizada por la Proposición 1.3.2. Aún más, en este caṕıtulo también
veremos que en un sistema de coordenadas geodésico, toda superficie invariante es local-
mente de este tipo. Ahora, un caso especial de evolución binormal aparece cuando todos
los filamentos tienen torsión nula. Este caso se estudia en la Sección 3.2 y, para nuestros
objetivos, podemos resaltar la Proposición 3.2.1, [10], y el resultado principal que se deriva
de ah́ı,

Consideremos una superficie de evolución binormal cuyos filamentos tengan torsión nula.
Entonces, el filamento inicial es un extremo de la enerǵıa

Θ(γ) =

∫
γ

(P (κ) + λ) ds

y la superficie de evolución binormal es una superficie invariante de M3
r (ρ).

Como caso particular, si M3
r (ρ) es simplemente un modelo de espacio Riemanniano de

dimensión tres, M3(ρ), entonces la Proposición 3.2.3 y la Proposición 3.2.4, [12], nos di-
cen que la superficie de evolución binormal del resultado anterior es rotacional. Además,
para estas superficies rotacionales de evolución binormal, desarrollaremos las condiciones
de cierre, que están resumidas en el Corolario 3.2.7 (que aparecerá en [14]). Estas condi-
ciones de cierre están basadas en las correspondientes condiciones de cierre de las curvas
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cŕıticas, y se pueden encontrar, por ejemplo, en [5].

Ahora, usando estos resultados, las primeras superficies cŕıticas invariantes que es-
tudiaremos en profundidad son las superficies de curvatura media constante invariantes.
Para este objetivo, a lo largo del Caṕıtulo 4, consideraremos el caso particular de la
enerǵıa elástica generalizada dado por ε = 1, p = 1/2 y potencial constante Φ = −µ.
Resulta que, cualquier superficie invariante con curvatura media constante puede ser des-
crita localmente (véase la Sección 1.2.3) como la evolución binormal de una de estas
curvas elásticas generalizadas, tal y como se prueba en el Teorema 4.1.1, [12]. Más aún,
el rećıproco también es cierto; la evolución binormal de estas curvas elásticas generali-
zadas particulares bajo el flujo de I, localmente, genera superficies con curvatura media
constante en cualquier modelo de espacio semi-Riemanniano de dimensión tres, M3

r (ρ).
Este resultado se puede encontrar en el Teorema 4.2.6, [12]. Resumiendo, si combinamos
ambos resultados tenemos

Localmente, una superficie invariante de M3
r (ρ) con curvatura media constante se puede

describir, o bien como una superficie reglada, o bien como una superficie de evolución
binormal con condición inicial una curva cŕıtica para

Θµ(γ) =

∫
γ

√
κ− µ ds ,

con µ ∈ R. Rećıprocamente, la superficie invariante en M3
r (ρ) obtenida mediante la

evolución bajo el flujo de la binormal del campo de Killing asociado I de una curva
cŕıtica para Θµ tiene curvatura media constante H = −ε1ε2µ.

En este punto, como todas las superficies invariantes con curvatura media constante
de cualquier modelo de espacio semi-Riemanniano de dimensión tres se pueden ver lo-
calmente como superficies de evolución binormal, y en este caso se trata de productos
alabeados, podemos obtener una relación entre las superficies invariantes de curvatura
media constante y las soluciones de la ecuación de Ermakov-Milne-Pinney, [54] y [127]. El
Teorema 4.1.2, [12], enuncia y prueba esta relación. De hecho, se puede resumir como sigue

La función alabeada de una descripción local de cualquier superficie con curvatura media
constante invariante de M3

r (ρ) es una solución de la ecuación de Ermakov-Milne-Pinney
con coeficientes constantes.

Finalmente, explotamos esta caracterización local de las superficies invariantes con
curvatura media constante como superficies de evolución binormal con curvas elásticas
generalizadas como filamentos iniciales para obtener nuevas pruebas de ciertos resultados
interesantes de la teoŕıa de superficies con curvatura media constante. Por ejemplo, en la
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Sección 4.2.2 obtenemos que las descripciones locales de superficies con curvatura media
constante invariantes de M3

r (ρ) forman una familia biparamétrica y, más aún, bajo las
condiciones del Teorema 4.2.7, [12], existe una deformación isométrica y uniparamétrica
de estas superficies con la misma curvatura media constante. Varias órbitas de estas de-
formaciones isométricas están dibujadas en las Figuras 4.1 a 4.5.

Como consecuencia de este resultado, en la Sección 4.2.3, se prueban dos teoremas.
Primero, en el Teorema 4.2.8, [12], se da una versión de una correspondencia de tipo
Lawson para superficies invariantes (para el caso general, se puede ver [96] en ambientes
Riemannianos; y, [59] y [118] para ambientes Lorentzianos); y, segundo, si nos restringi-
mos a modelos de espacio Riemannianos de dimensión tres, M3(ρ), (tal y como se explica
al final de esta sección, el análogo para modelos de espacio Lorentzianos no tiene sentido)
obtenemos una extension del Lema de Bour, [35], en el Teorema 4.2.9, [12]. Este resultado
enuncia que

Localmente, cualquier superficie invariante con curvatura media constante de M3(ρ) se
puede deformar isométricamente en una superficie rotacional con la misma curvatura me-
dia.

Por otro lado, como las superficies rotacionales con curvatura media constante de
M3(ρ) son de gran importancia, en la última parte del caṕıtulo (Sección 4.3) estudiare-
mos la clasificación local de estas superficies y, en particular, buscaremos cerradas. Según
se explica al final de la Sección 4.3.1, en ambos, el espacio Eucĺıdeo de dimensión tres y en
el espacio hiperbólico de dimensión tres, las únicas superficies rotacionales cerradas con
curvatura media constante son las esferas totalmente umbilicales. No obstante, este no es
el caso de la esfera de dimensión tres. Por ello, en la Sección 4.3.2, restringiremos nuestro
análisis a este espacio. Aqúı, usando la caracterización de las curvas perfil como elásticas
generalizadas para los valores ε = 1, p = 1/2 y Φ = −µ; y, después de unas largas y
tediosas cuentas que involucran a las integrales eĺıpticas (que con el fin de simplificar al
máximo los detalles, se resumirán en el Apéndice A) concluimos con el Corolario 4.3.8 (que
aparecerá en [14]) sobre la existencia de curvas perfil cerradas y simples. Esto es, usando
la maquinaria desarrollada para las superficies de evolución binormal, recuperamos los
resultados de Andrews-Li, [3]; Perdomo, [121]; y Ripoll, [128]. Además, como observación
final, también recuperamos la recientemente probada, [30], conjetura de Herbert Blaine
Lawson Jr. sobre toros minimales en la esfera de dimensión tres; el único toro minimal
embebido es el toro de Clifford, [97].

En las mismas condiciones, es decir, en espacios ambiente Riemannianos, M3(ρ), la
curvatura media de una superficie se puede expresar como la suma de las curvaturas prin-
cipales, salvo constante. Por este motivo, si la curvatura media es constante, esto nos da
lugar a una relación af́ın entre las curvaturas principales de la superficie. Las superficies

x



que verifican algún tipo de relación diferenciable entre las curvaturas principales fueron
introducidas por Julius Weingarten cuando intentaba estudiar deformaciones isométricas
entre superficies preservando la curvatura media, [142]. En el caso particular de que la
relación sea af́ın, estas superficies suelen ser conocidas como superficies de Weingarten
lineales y generalizan a las de curvatura media constante, como se ha explicado anterior-
mente.

En el Caṕıtulo 5, usaremos nuestro procedimiento de evolución binormal para estudiar
las superficies de Weingarten lineales de M3(ρ) invariantes a través de las elásticas gene-
ralizadas para los valores ε = 1 y potencial constante Φ = −µ. A lo largo de este caṕıtulo,
llamaremos curvas p-elásticas a las mismas, siguiendo la nomenclatura de [63]. Primero,
de forma similar a lo que sucede con el caso de superficies invariantes con curvatura media
constante, para estas p-elásticas podemos definir una función en términos de la curvatura,
de tal forma que sea una solución de la ecuación de Ermakov-Milne-Pinney generalizada.
De hecho, a partir de los Teoremas 5.1.1 y 5.1.2 (que representan una extensión de los
correspondientes resultados incluidos en [63]) tenemos

Dada una curva p-elástica es posible definir una función que solo dependa de la curvatura
de la misma y que sea una solución de la ecuación de Ermakov-Milne-Pinney generalizada
con coeficientes constantes. Más aún, para cada solución de esta ecuación diferencial,
podemos construir una curva cŕıtica para

Θp
µ(γ) =

∫
γ

(κ− µ)p ds ,

para algún µ ∈ R.

Obsérvese que la función solución de la ecuación de Ermakov-Milne-Pinney generali-
zada definida a partir de la curvatura de la curva p-elástica representará la velocidad de
la superficie de evolución binormal, tal y como suced́ıa en el caṕıtulo anterior. Ahora, si
la curva p-elástica es plana, la combinación del Teorema 5.2.1 y Teorema 5.2.2 nos da

La curva perfil de la descripción local de una superficie rotacional de Weingarten lineal
de M3(ρ) es, o bien una curva plana cŕıtica para

Θp
µ(γ) =

∫
γ

(κ− µ)p ds ,

o bien, una curva plana cŕıtica para Θν(γ) =
∫
γ

exp (νκ) ds. Reciprocamente, la evolución
binormal bajo el flujo del campo de Killing asociado I de una curva plana cŕıtica para,
Θp
µ ó Θν, es una superficie rotacional de Weingarten lineal.
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El Teorema 5.2.1 y el Teorema 5.2.2 son una generalización a los casos de modelos
de espacio Riemannianos de dimensión tres con curvatura seccional no nula de los co-
rrespondientes resultados que se publicarán en [103]. En este art́ıculo también se da la
descripción geométrica de todas las superficies rotacionales de Weingarten lineales del
espacio Eucĺıdeo de dimensión tres, usando una técnica que queda fuera de los objetivos
de esta memoria. No obstante, con ánimo de completar la misma y de fijar las ideas,
enunciaremos esta clasificación en los Teoremas 5.2.4, 5.2.5 y 5.2.6. Todas las superficies
de la clasificación se dibujaran en las Figuras 5.1 a 5.3.

Posteriormente, en la última parte del caṕıtulo (Sección 5.3) aplicaremos los resul-
tados obtenidos para estudiar soluciones de un problema variacional diferente, para ser
más precisos, de las superficies biconservativas. A partir de los resultados de Caddeo,
Montaldo, Oniciuc y Piu, [34]; y de Fu y Li, [60]; se tiene que una superficie biconserva-
tiva de un modelo de espacio Riemanniano de dimensión tres es, o bien, una superficie
de curvatura media constante, o bien una superficie rotacional de Weingarten lineal para
una elección particular de la relación af́ın entre las curvaturas principales. Por ello, como
consecuencia de nuestra caracterización local como superficies de evolución binormal con
condición inicial un curva p-elástica plana, concluimos con el Teorema 5.3.2 y el Teorema
5.3.3 (que se publicarán en [111]),

La curva perfil de una superficie biconservativa con curvatura media no constante de
M3(ρ) es una curva plana cŕıtica para

Θ1/4
o (γ) =

∫
γ

κ1/4 ds .

Reciprocamente, la superficie invariante de M3(ρ) obtenida tras aplicar la evolución bi-

normal bajo el flujo del campo de Killing asociado I a una curva plana cŕıtica para Θ
1/4
o

es una superficie biconservativa con curvatura media no constante.

Aśı mismo, usando los argumentos presentados en el Caṕıtulo 3, podemos estudiar
el comportamiento topológico de estas curvas planas p-elásticas particulares, y, por lo
tanto, traduciéndolo a las superficies de evolución binormal, somos capaces de probar que
no existen superficies cerradas biconservativas con curvatura media no constante ni en
el espacio Eucĺıdeo de dimensión tres, ni en el espacio hiperbólico de dimensión tres, tal
y como refleja la Proposición 5.3.2, [111]. Sin embargo, en la esfera de dimensión tres
probamos la existencia de estas curvas planas p-elásticas con curvatura periódica y que no
cruzan el eje de rotación. Por este motivo, la verificación de la condición de cierre (véase
el Corolario 3.2.7) cobra especial interés. Esta comprobación requiere de largas y compli-
cadas cuentas que involucran herramientas de análisis que omitiremos en la memoria con
objeto de clarificar los resultados. Para más detalles al respecto se puede ver [111], donde
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este análisis se publicará.

Nótese que todas las superficies invariantes con las que hemos trabajado hasta el mo-
mento están inmersas en modelos de espacio de dimensión tres, tanto Riemannianos como
Lorentzianos. Para finalizar la memoria, consideraremos superficies invariantes inmersas
en espacios ambiente con curvatura seccional no constante, pero que preserven ciertas
simetŕıas. Por ejemplo, para los espacios Riemannianos homogéneos de dimensión tres, se
sabe que la dimensión del grupo de isometŕıas debe ser 6, 4 ó 3. Los modelos de espacio se
caracterizan por tener grupo de isometŕıas de dimensión seis. Por otro lado, los espacios
de dimensión tres con grado de rigidez 4 se pueden describir localmente como espacios
de Bianchi-Cartan-Vranceanu (véase la Sección 6.2.2). Más aún, estos espacios se pueden
ver como sumersiones de Killing con curvaturas del fibrado y de Gauss constantes. Por lo
tanto, parece natural considerar en este momento como espacios ambiente a los espacios
totales M de sumersiones de Killing π : M → B con superficie base B y campo de
Killing vertical ξ.

Por estos motivos, en el Caṕıtulo 6, estudiaremos superficies de los espacios totales
M que queden invariantes por el flujo del campo de Killing ξ (superficies verticales) y
tales que, al mismo tiempo, sean extremos de la enerǵıa de tipo-Willmore, es decir,
de la enerǵıa de Willmore con potencial ξ-invariante Φ, Φ ∈ C∞(M). En primer lugar,
calcularemos la Primera Fórmula de Variación y las ecuaciones de Euler-Lagrange para
superficies compactas de tipo-Willmore. Posteriormente, usando el Principio de Criticidad
Simétrica de Palais, [117], obtenemos en el Teorema 6.3.1, [25], una interesante conexión
entre los toros verticales de tipo-Willmore en los espacios totales M de las sumersiones de
Killing y las elásticas con potencial 4Φ̄ en las superficies base (donde Φ̄ viene determinado
por Φ = Φ̄ ◦ π). Más concretamente, probaremos que

Un toro vertical generado a partir de una curva cerrada en la superficie base de una
sumersion de Killing con fibras compactas es una superficie de tipo-Willmore con potencial
ξ-invariante, Φ ∈ C∞(M), si y sólo si, la curva es cŕıtica para

Θ4Φ̄(γ) =

∫
γ

(
κ2 + 4Φ̄

)
ds ,

donde Φ = Φ̄ ◦ π.

Aunque, en general, las enerǵıas de tipo-Willmore con potencial y la enerǵıa de Chen-
Willmore son diferentes funcionales actuando en el espacio de superficies inmersas, el
carácter especial de la estructura que poseen las sumersiones de Killing nos permiten usar
argumentos similares cuando trabajamos con ambos tipos de enerǵıas. Debido a ello, en
el Teorema 6.3.3, [25], obtendremos una conexión entre los toros de Willmore verticales
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en los espacios totales de sumersiones de Killing y las curvas elásticas generalizadas para
las elecciones ε = 2 y p = 1 en la superficie base B. Esto es,

Un toro vertical generado a partir de una curva cerrada en la superficie base, B, de una
sumersion de Killing es una superficie de Willmore en M , si y sólo si, la curva es cŕıtica
para

Θ4τ2π
(γ) =

∫
γ

(
κ2 + 4τ 2

π

)
ds ,

donde τπ denota la curvatura del fibrado de la sumersion de Killing.

Particularizando este resultado al fibrado de referencias ortonormales de una super-
ficie, llegamos al Corolario 6.3.5, [25], que enuncia que un toro vertical en el fibrado de
referencias ortonormales de una superficie es Willmore, si y sólo si, la curva perfil es
una elástica con potencial K2

B, donde KB es la curvatura de Gauss de la superficie. En-
tonces, en la última parte del caṕıtulo (Sección 6.4), como ilustración de estos hallazgos
describiremos dos métodos de construcción de sumersiones de Killing foliadas por toros
de Willmore con curvatura media constante. La primera esta basada en la Proposición
6.4.2, [25], donde se obtienen todas las funciones alabeada de las superficies alabeadas, Sf ,
donde todas las fibras son elásticas con potencial K2

Sf
(KSf representando la curvatura

de Gauss de Sf ). Por otro lado, la segunda construcción depende en gran medida del
teorema de existencia de sumersiones de Killing (véase [107] y el Teorema 6.2.1, [25]).

xiv
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Introduction

Many mathematical and physical problems involve the determination of extremals. In
fact, the development of Calculus was initially motivated in order to compute maxima
and minima of functions, as the works of Gottfried Leibniz in 1684 prove. A natural
generalization consists on the computation of stationary points of functionals acting on
spaces of functions. Nowadays, this generalization is known as Calculus of Variations
and it is based on the Principle of Least Action, which states that any change in
Nature is made by using the minimum amount of energy needed for it. This principle
is often attributed to Pierre Louis Maupertuis because he wrote about it in 1744 and
1746, although Leonhard Euler in 1744 and Gottfried Leibniz in 1705 stated it before.
The principle remains central in Mathematics and Physics, where it is usually applied in
Thermodynamics, Fluid Mechanics, Theory of Relativity, Quantum Mechanics, Particle
Physics and String Theory, to mention some.

On the other hand, in Pure Mathematics, the Principle of Least Action plays an essen-
tial role in geometric Calculus of Variations. Actually, one of the first problems studied
using the Calculus of Variations was to determine the curve of minimum length among all
the curves of a given surface that join two fixed points, that is, roughly speaking, to obtain
the shortest “path” between two points. In 1697, this problem was publicly proposed by
Johan Bernoulli as a challenge to his brother Jacob Bernoulli. Since then, this problem
has attracted the attention of many Differential Geometers and, up to day, many related
problems are still open. If instead of curves with least length we just look for stationary
points of the length functional, we deal with geodesics, provided they are parametrized
by arc-length.

However, even before the problem of geodesics on surfaces, in 1691 Jacob Bernoulli
formulated the problem of determining the shape of an ideal elastic rod. In modern
terminology, by this is meant a thin elastic rod naturally straight and prismatic when
unstressed, and which is being held bent and twisted by external forces and moments
applied at its ends alone. The rod is supposed to be non-shearable, non-extendible and
made of an isotropic material which has uniform elastic rigidities. Moreover, it is assumed
that the strain energy, from which the stresses are derived, is a quadratic function of the
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strains. To fix ideas we may think of a long straight curtain rod with uniform cross sec-
tion, density and elasticity. Three rings are firmly attached to three given non-aligned
points placed in the same wall and the rod is forced to pass through these three rings so
as to cause the rod pass across a curved window. The curved rod itself is assumed to lie
in the same plane parallel to the wall. In equilibrium, the elastic forces of resistant of the
bent rod equal the external forces and the rod remains at rest. The point is to find out
all possible shapes that the rod can take, [28].

In the same context, it is known that the equilibrium equations of an ideal rod are
equivalent to those describing the motion of a heavy body turning about a fixed point,
which is called Kirchhoff’s kinetic analogy, [104]. If there is no twist and the rod is
bent in a plane so that the central line becomes a planar curve, the kinetic analogous is
a rigid pendulum, and the curve itself is nowadays called Euler-Bernoulli’s planar elastica.

In 1738, Daniel Bernoulli, nephew of Jacob Bernoulli, used the results of his uncle,
who had been investigating the bending of elastic rods from 1691 to 1705, to show that the
work of deformation done in bending an straight elastic rod is proportional to the square
of the curvature of the resulting bent rod (for more details, see [138]). That is, considering
a regular curve γ with curvature κ, its bending energy is given by

BE(γ) =

∫
γ

κ2 ds ,

where s is the arc-length parameter of γ. Hence, as suggested before, the work of de-
formation used in deforming the straight curtain rod into the elastica is proportional to
the bending energy. This work done in deforming the rod is stored in the bent rod as
potential energy of strain.

Later, in 1742, in a letter to Leonhard Euler, Daniel Bernoulli suggested that an elas-
tic rod should bend along the curve which minimizes the potential energy of the strain
under suitable constraints and proposed to study the elastic curves, or simply, elasti-
cae, as minimizers of the bending energy, also referred as Bernoulli-Euler’s elastic energy,
or, total squared curvature energy. Using Daniel Bernoulli’s setting of the elastica as a
variational problem in terms of the stored energy, Leonhard Euler obtained in his book
of 1744, [56], the ordinary differential equations for twistless planar rod configurations
proving that Daniel Bernoulli’s principle of least potential energy of strain leads to the
same differential equation for the elastica as is obtained directly from the principles of
mechanics using Jacob Bernoulli’s moments approach, [99].

Moreover, in [56], Leonhard Euler also described the possible qualitative types of the
twistless planar rod configurations classifying the different types of solutions for the case
of a rod with both ends clamped, although Jacob Bernoulli had partially solved it between
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1692 and 1694. It must be mentioned that the book of Leonhard Euler, [56], is considered
as one of the fundamental basis for the development of the Calculus of Variations.

After the publication of [56] the topic of elastic curves was forgotten for many years,
until in 1930 Tibor Radó classified free elastic curves in R3, that is, critical curves of the
bending energy among all the curves joining two fixed points, no matter if they have the
same length or no. However, it was not until the decade of 1980 that this topic gained in-
terest again. In that decade, David Singer and Joel Langer classified closed elastic curves
in bidimensional Riemannian space forms, [94]; and, they also studied issues concerning
existence and stability of elasticae in the Euclidean 3-space, [92]. Then, in 1986, Robert
Bryant and Phillip Griffiths introduced in [32] a different approach suitable, in particular,
to analyze elastica in Riemannian space forms. Recently, the elastica problem has been
generalized in several different aspects, giving rise to new and fruitful lines of research.
Thus, for example, the functional defining the bending energy has been substituted by the
integral of any smooth function depending on the curvatures of the curve (for more details
one can see [4], [5], [82] and references therein). Moreover, different ambient spaces have
been considered as background containers for elasticae, for instance, semi-Riemannian
space forms, see [58], [82] and references therein. In addition, motivated by physical con-
siderations, a bunch of different constraints have been imposed on the original problem.
Indeed, elastic curve theory encompasses a broad range of mathematical and physical
fruitful ideas and lies at the intersection of many different areas. For some examples see
[11] and references therein.

On the other hand, many construction procedures to obtain solutions to geometric-
variational problems defined on submanifolds have been devised by using elasticae (or
some of their generalizations). Energies in this case are usually defined in terms of the
mean curvature. In this setting, it is well-known that the analogue of the curvature of a
curve in the Theory of Submanifolds is the mean curvature function, H. In particular,
when the submanifold happens to be a surface in R3, the notion of mean curvature ap-
peared around 1810 in elasticity problems studied by Marie-Sophie Germain, who coined
the name, although it was Jean Baptiste Meusnier who first considered the sum of the
principal curvatures to characterize surfaces that locally minimize area. In fact, in Differ-
ential Geometry, the mean curvature of a surface appears when we consider the classical
isoperimetric problem of finding the surface of least area among all surfaces that enclose
a given amount of volume. The answer to this problem is the round sphere, as it was
shown by Hermann Amandus Schwarz using previous ideas of Jakob Steiner.

This variational problem can be understood as the bidimensional analogue of the min-
imum length problem for curves. However, the fixed enclosed volume condition makes a
difference. Indeed, if we only look for infinitesimal solutions of above isoperimetric prob-
lem, we have that the area of a compact surface immersed in the Euclidean 3-space is
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stationary with respect to all volume preserving variations, if and only if, the immersion
has constant mean curvature. In other words, surfaces with constant mean curvature
are the critical points of the area functional with respect to local deformations that pre-
serve the enclosed volume. On the other hand, recall that geodesics, curves with vanishing
curvature, are the curves that locally minimize the length, and that their bidimensional
analogues are surfaces with vanishing mean curvature, which are called minimal sur-
faces. These surfaces appear precisely as critical points of the area functional without
restricting the enclosed volume.

Moreover, the study of surfaces with constant mean curvature is interesting on itself,
besides the isoperimetric problem, and it is a common topic in many works in Differen-
tial Geometry. Surfaces of constant mean curvature are used as mathematical models in
physical settings where the energy is proportional to the surface area. For example, they
are models of the rise of a liquid in a thin tube introduced into a tank of liquid in the
absence of gravity that ascends, or descends, by the capillarity action. The first works
on capillarity were initiated independently by Thomas Young and Pierre Simon Laplace
in 1805, [146] and [95], respectively; but it was not until 1830 that Carl Friedrich Gauss
derived the celebrated Young-Laplace equation after unifying the work of these two sci-
entists.

Following the same idea, other examples in Physics where constant mean curvature
surfaces arise are the so called interfaces. An interface is the region generated between
two immiscible materials, for instance, where two liquids meet, or a liquid and the air.
We may consider that the region separating both media has negligible thickness in such
a way that the interface is modeled by a mathematical surface. In the absence of gravity,
the shape of this interface changes until it attains a state of physical equilibrium. Once
more, by the Principle of Least Action, this occurs when the interface minimizes the
surface energy. If the interface occurs as the region between homogeneous materials in
fluid phases, then the surface energy is proportional to the area of the interface, that is,
mathematically, to its surface area. Moreover, the capillary pressure difference, Pe − Pi,
sustained across the interface between the exterior and interior static fluids is governed
by the Young-Laplace equation

Pe − Pi = 2λH ,

where λ is the surface tension, which is a constant depending only on the materials. In
the case where the pressures are constant, the mean curvature H is also constant. Soap
bubbles and soap films are examples of interfaces in this context. Furthermore, by the
Young-Laplace equation, the mean curvature is zero on the interface, if the pressures on
both sides are equal. Mathematically, this means that a minimal surface is a critical
point of the area for arbitrary variations without the need of preserving the volume, as
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explained before.

The case of minimal surfaces represents a special topic in Differential Geometry and
is one of the oldest subjects. Therefore, during the years many generalizations have been
introduced. For instance, a natural generalization of minimal surfaces, in the same sense
elastic curves generalize the notion of geodesics, can be studied considering the integral
along the surface of the square of the mean curvature. In 1811, Marie-Sophie Germain
proposed to study this bending energy of a surface in order to study elastic plates. As we
have mentioned, this energy can be expressed as

W(N2) =

∫
N2

H2 dA ,

where N2 is any immersed surface in R3 and H denotes the mean curvature function of the
immersion. This functional was studied in the decade of 1920 by Wilhelm Blaschke, [29],
and Gerhard Thomsen, [136]. In particular, Wilhelm Blaschke proved in his book, [29],
that the functional W is conformal, that is, it stays invariant by conformal deformations.
This can be regarded as one of the most remarkable properties of this functional, which
has yielded nice generalizations, such as, the Chen-Willmore functional, introduced by
Bang-Yen Chen in [40].

Some years later, in 1968, Thomas James Willmore restarted the analysis of the func-
tional W , [144]. In fact, this functional is usually known as the Willmore energy and
the stationary points under its action are often called Willmore surfaces. Moreover,
among many other things, Thomas James Willmore conjectured that for every smooth
immersed torus, the Willmore energy is lower bounded by 2π2 and that this lower bound
is reached at the Clifford torus, [144]. The study of this conjecture, as well as, many other
related problems, made the Willmore functional to gain interest, up to day. Indeed, the
conjecture was opened until it has been recently proved by Fernando Coda Marques and
André Neves in 2014, [108].

At this point it must be observed that, in many cases, there is a strong connection
between critical submanifolds for the Chen-Willmore energy and critical curves for some
extended version of elastic curves. Under suitable symmetry conditions, these different
critical objects can be closely related by means of a symmetry reduction procedure (for the
simplest case see, for instance, [125]). In order to be able to apply this type of reduction
procedures, critical objects must verify certain kinds of symmetries. For example, one may
consider invariant surfaces within the space of immersed surfaces. These surfaces have
rich symmetry what makes them ideal for modeling physical systems. Therefore, along
the centuries the interest of many authors has been focused on studying invariant surfaces.
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In this memory we are mainly interested in studying the connection between critical
curves for suitable elastica-related energies (what we call below, generalized elastic curves)
and invariant surfaces possessing nice geometric properties (such as, binormal evolution
surfaces, constant mean curvature surfaces, linear Weingarten surfaces,...). Moreover, a
similar connection between invariant surfaces that are critical for Willmore-like energies
(for the definition of Willmore-like surfaces, see page xxxi below) and generalized elastic
curves is established. In the compact case, this relation is based on the Symmetric Criti-
cality Principle of Palais, [117].

More precisely, we will study critical curves for some particular cases of the following
family of generalized elastic energies

Θε,p
−Φ(γ) =

∫
γ

(κε + Φ)p ds ,

where ε = 1, 2, p ∈ R and Φ is a potential. Critical curves of any of above energies will
be called generalized elastic curves and, by using them, we are going to construct
invariant surfaces in 3-spaces that have nice geometric properties, such as those referred
above. Moreover, we are going to establish a link between these generalized elastic curves
and different types of invariant surfaces in some 3-dimensional ambient spaces.

The first chapter of the memory is devoted to the introduction of basic facts and to
the establishment of the notation and conventions that are used along the whole memory.
In fact, we recall a few aspects about semi-Riemannian geometry, which are going to be
essential in the future development of the memory, focusing on surfaces immersed in semi-
Riemannian 3-space forms. Furthermore, we also recall many tools about variational
problems over curves where the Lagrangians depend on the curvatures of the curves. In
particular, we introduce the generalized Kirchhoff centerlines, that is, extremals of
the energy

Θ(γ) =

∫
γ

(P (κ) + µ τ + λ) ds ,

κ and τ being the curvature and torsion of γ, respectively, P (κ) a smooth function and λ,
µ ∈ R two constants. It must be highlighted that critical curves of these general curvature
energies have naturally associated two Killing vector fields, and that one of them (from
now on denoted as I) is parallel to the Frenet binormal as detailed in Proposition 1.3.2
and Proposition 1.3.3 (see also [58] and [94]).

Then, in Chapter 2, we center our attention on generalized elastic curves. Along this
chapter we want to fulfill two objectives; on one hand, by particularizing general tools
known for more ample settings, along the first part of the chapter (Section 2.1) we study
generalized elastic curves and fix the Euler-Lagrange equations and related results; and,
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on the other hand, in the second part (Section 2.2), we describe a nice application of a
particular choice of generalized elastic energy, given by the choices ε = 2 and p = 1/2 for
constant potential Φ = a2, to visual curve completion. This construction not only justi-
fies the study of these curves as a pure mathematical subject, but it also illustrates their
many application to other fields. As an example, it can be used to solve a problem arising
in computer vision, since we reduce the sub-Riemannian problem of completion of im-
ages by optimization to a classical variational problem. In fact, as many neuro-biological
researches suggest, there is some sub-Riemannian structure on the space of visual cells
and in order to complete a partially spoiled or broken image the brain considers sub-
Riemannian geodesics between the endpoints of the missing data. This sub-Riemannian
structure has been recently modeled using the unit tangent bundle of the plane, [124].

In Section 2.2.1, we reduce the problem of finding sub-Riemannian geodesics, which
are believed to be used by the brain for image completion purposes, to the search of ex-
tremals of a family of total curvature type energies (which reduce in our case to generalized
elastic energies for the choices ε = 2, p = 1/2 and Φ = a2) in the plane, that is, to a
classical variational problem. Then,

We completely solve these variational problems geometrically in Section 2.2.2, explicitly
obtaining the curvatures of the critical curves.

Theoretically, this completely solves the problem, since the curvatures characterized
the curves in the plane, up to rigid motions. However, for practical purposes it is much
better to devise a numerical procedure suitable to be used in specific and concrete appli-
cations. Thus,

In Section 2.2.3, we describe a direct numerical approach in order to obtain energy mini-
mizers. This procedure, which is implemented in what we call the XEL-platform, is based
on the gradient descent method, briefly explained in Appendix B.

Moreover, as explained at the end of that section, the method we have developed has
an advantage in comparison with other numerical methods, since it allows us to compute
the deviation of numerical solutions from being analytical. Our results about this topic
have been basically published in [13], although the gradient descent method is going to
be more deeply explained in [9].

This result can be seen as a first application of generalized elastic curves that serves as
both, introduction and motivation for our interest in these objects on their own. Moreover,
as we have already mentioned, one of the main goals of this memory is to construct and/or
characterize invariant surfaces (by which we mean surfaces invariant by a one-parameter
group of isometries) “shaped” on generalized elastic curves and possessing interesting ge-
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ometric properties. To this end, two different main tools are used. First, if the ambient
space is a semi-Riemannian 3-space form, the technique we are going to develop is called
the binormal evolution of curves and Chapter 3 is devoted to introduce and explain
this idea; the second construction tool is based on the use of total lifts of curves under
Killing submersions as it is going to be explained in Chapter 6.

In 1972, Hasimoto [73], using a particular transformation involving the curvature and
torsion of a curve, derived the celebrated nonlinear Schrödinger equation in an approxi-
mation to the self-induced motion of a thin vortex filament in a viscous fluid, although
this movement of vortex filaments traveling without stretching was first modeled in 1906
by Da Rios, [130]. For this model, Da Rios used the motion of a curve, which repre-
sents the filament, propagating according to the localized induction equation. Moreover,
Hasimoto related this motion with elastic curves proving that the evolution of the curve
is done in the direction of the binormal, [74]. Therefore, following these ideas, we begin
Chapter 3 studying geometric information of binormal motion of curves (with velocity
depending on the curvature and torsion, F(κ, τ)) and defining the binormal evolution
surfaces, that is, the immersed surfaces that are locally generated by this evolution.
As a consequence of applying Hasimoto transformation to our more general setting, we
get a family of differential equations whose solutions correspond to the complex wave
function for different binormal evolutions (see Proposition 3.1.2 and [64]). Then, after
computing the Gauss-Codazzi equations (see Section 1.1.2) we obtain Theorem 3.1.3, [64],

The binormal evolution surfaces associated to traveling wave solutions of the Gauss-
Codazzi equations correspond to the evolution (by isometries and slippage) of generalized
Kirchhoff centerlines.

In particular, an essential consequence is given in Corollary 3.1.4, [10], and gives rise
to the following result,

A Frenet curve of rank 2 or 3 evolves under the binormal flow by isometries of a semi-
Riemannian 3-space form, M3

r (ρ), if and only if, it is an extremal of

Θ(γ) =

∫
γ

(P (κ) + λ) ds ,

where F(κ, τ) = F(κ) := d
dκ

(P (κ)) is the velocity of the curve evolution.

Therefore, we can locally construct an invariant surface by evolving any critical curve
under the Killing vector field I in the direction of the binormal, whose existence is guar-
anteed by Proposition 1.3.2. Moreover, in this chapter we also see that in a geodesic
coordinate system, any invariant surface is locally of this type. Now, a special case of
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binormal evolution appears when all the filaments have vanishing torsion. This case is
studied in Section 3.2 and, for our purposes, we highlight Proposition 3.2.1, [10], and the
main consequence that can be obtained from it,

Consider a binormal evolution surface all whose filaments have vanishing torsion. Then,
the initial filament is an extremal for the energy

Θ(γ) =

∫
γ

(P (κ) + λ) ds

and the binormal evolution surface is an invariant surface of M3
r (ρ).

As a particular case, if M3
r (ρ) is simply a Riemannian 3-space form, M3(ρ), then

Proposition 3.2.3 and Proposition 3.2.4, [12], tell us that the binormal evolution surface
given in the above result is rotational. Moreover, for these rotational binormal evolution
surfaces, we develop closure conditions, which are summarized in Corollary 3.2.7 (to ap-
pear in [14]). These closure conditions are based on the corresponding closure conditions
of the critical curves, that can be found for instance in [5].

Now, using these results, the first critical invariant surfaces that we deeply study are
invariant constant mean curvature surfaces. For this objective, along Chapter 4, we con-
sider the particular generalized elastic energies given by ε = 1, p = 1/2 and with constant
potential Φ = −µ. It turns out that any invariant constant mean curvature surface can be
locally (see Section 1.2.3) described as the binormal evolution of these generalized elastic
curves as it is proved in Theorem 4.1.1, [12]. Furthermore, the converse is also true;
the binormal evolution of these particular generalized elastic curves under the flow of I,
locally, generates surfaces with constant mean curvature in any semi-Riemannian 3-space
form, M3

r (ρ). This result can be found in Theorem 4.2.6, [12]. To sum up, combining
both results we have

Locally, an invariant surface of M3
r (ρ) with constant mean curvature can be described

either as a ruled surface or as a binormal evolution surface with initial condition a critical
curve of

Θµ(γ) =

∫
γ

√
κ− µ ds ,

where µ ∈ R. Conversely, the invariant surface in M3
r (ρ) obtained by evolving a critical

curve of Θµ under the binormal flow of the associated Killing field I has constant mean
curvature H = −ε1ε2µ.

Now, since all invariant constant mean curvature surfaces of semi-Riemannian 3-space
forms can be locally seen as binormal evolution surfaces, which in this case are warped
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products, we obtain a link between invariant constant mean curvature surfaces and solu-
tions of the Ermakov-Milne-Pinney equation, [54] and [127]. Theorem 4.1.2, [12], states
and proves this link. Moreover, it can be summarized as follows

The warping function of a local description of an invariant constant mean curvature sur-
face of M3

r (ρ) is a solution of the Ermakov-Milne-Pinney equation with constant coeffi-
cients.

Finally, we exploit the local characterization of invariant constant mean curvature sur-
faces as binormal evolution surfaces with generalized elastic curves as initial filaments to
get new proofs of some interesting results of the theory of constant mean curvature sur-
faces. For instance, in Section 4.2.2 we obtain that local descriptions of invariant constant
mean curvature surfaces of M3

r (ρ) form a biparametric family and, what is more, under
the conditions of Theorem 4.2.7, [12], there exists a one-parameter isometric deformation
of these surfaces with the same constant mean curvature. Some orbits of these isometric
deformations are drawn in Figures 4.1 to 4.5.

As a consequence of this result, in Section 4.2.3, two theorems are proved. First, in
Theorem 4.2.8, [12], a version of the Lawson’s type correspondence for invariant surfaces
is given (for the general case, one can see [96] for Riemannian backgrounds; and, [59] and
[118] for Lorentzian ambient spaces); and, second, by restricting ourselves to Rieman-
nian 3-space forms, M3(ρ), (as it is explained at the end of the section, the analogue for
Lorentzian 3-space forms makes no sense) we get an extension of Bour’s Lemma, [35], in
Theorem 4.2.9, [12]. This result states that

Locally, any invariant constant mean curvature surface in M3(ρ) can be isometrically de-
formed into a rotational surface with the same constant mean curvature.

On the other hand, rotational constant mean curvature surfaces in M3(ρ) are of special
interest. Hence, in the last part of the chapter (Section 4.3) we study the local classi-
fication of rotational constant mean curvature surfaces and, in particular, we search for
closed ones. As explained at the end of Section 4.3.1, in both the Euclidean 3-space and
the hyperbolic 3-space the only closed rotational surface with constant mean curvature is
the totally umbilical sphere. However, this is not the case in the round 3-sphere. Thus,
we restrict our analysis to this space in Section 4.3.2. Here, using the characterization
of profile curves as generalized elastic curves for ε = 1, p = 1/2 and Φ = −µ; and, after
lengthy computations involving elliptic integrals (that have been summarized in Appendix
A, for the sake of clearness) we conclude with Corollary 4.3.8 (to appear in [14]) about
the existence of closed and simple planar profile curves. That is, using the machinery we
have developed for binormal evolution surfaces we recover the results of Andrews and Li,
[3]; Perdomo, [121]; and Ripoll, [128]. Moreover, as a final remark, we also recover the
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recently proved, [30], conjecture of Herbert Blaine Lawson Jr. about minimal tori in the
round 3-sphere; the only embedded minimal tori is the Clifford torus, [97].

In the same setting, that is, in Riemannian ambient spaces, M3(ρ), the mean curvature
of a surface can be expressed, up to a constant, as the sum of the principal curvatures.
Therefore, if the mean curvature is constant, this gives rise to a particular affine rela-
tion between the principal curvatures. Surfaces that verify any type of smooth relation
between their principal curvatures were introduced by Julius Weingarten when trying to
study isometric deformations between surfaces preserving the mean curvature, [142]. In
the particular case of an affine relation they are often called linear Weingarten sur-
faces and they generalize constant mean curvature ones, as explained above.

In Chapter 5, we use our binormal evolution procedure to study invariant linear Wein-
garten surfaces of M3(ρ) via generalized elastic curves with ε = 1 and constant potential
Φ = −µ. Along this chapter, they are also called p-elastic curves, following the notation
of [63]. First, similar to what happened in the invariant constant mean curvature case,
for these p-elastic curves we can define a function in terms of the curvature, such that,
it is a solution of a generalization of the Ermakov-Milne-Pinney equation. Indeed, from
Theorem 5.1.1 and Theorem 5.1.2 (which represent an extension of the corresponding
results that are included in [63]) we get

Given a p-elastic curve it is possible to define a function depending only on its curvature
which is a solution of the generalized Ermakov-Milne-Pinney equation with constant co-
efficients. Furthermore, for any solution of this differential equation, we can construct a
critical curve of

Θp
µ(γ) =

∫
γ

(κ− µ)p ds ,

for some µ ∈ R.

Observe that the function solution of the generalized Ermakov-Milne-Pinney equation
defined from the curvature of the p-elastic curve will represent the velocity of the binormal
evolution surface, as happened in previous chapter. Now, if the p-elastic curve happens
to be planar, combination of Theorem 5.2.1 and Theorem 5.2.2 gives us

The profile curve of a local description of a rotational linear Weingarten surface of M3(ρ)
is either, a planar critical curve of

Θp
µ(γ) =

∫
γ

(κ− µ)p ds ,

or, a planar critical curve of Θν(γ) =
∫
γ

exp (νκ) ds. Conversely, the binormal evolution
along the flow of the associated Killing field I of a planar critical curve of either, Θp

µ or
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Θν, is a rotational linear Weingarten surface.

Theorem 5.2.1 and Theorem 5.2.2 are a generalization to non-zero constant sectional
curvature Riemannian 3-space forms of the corresponding results that will appear in [103].
In this article the geometric description of all rotational linear Weingarten surfaces of the
Euclidean 3-space is also given, using a technique that is out of the purposes of this
memory. However, for the sake of completeness and, in order to fix ideas, we state this
classification in Theorem 5.2.4, Theorem 5.2.5 and Theorem 5.2.6. All the surfaces of this
classification have been drawn in Figures 5.1 to 5.3.

Then, in the last part of the chapter (Section 5.3) we apply our findings to study
solutions of a different variational problem, more precisely, to biconservative surfaces.
From the results of Caddeo, Montaldo, Oniciuc and Piu, [34]; and of Fu and Li, [60];
we get that a biconservative surface of a Riemannian 3-space form is either, a constant
mean curvature surface, or a rotational linear Weingarten surface for a particular choice
in the affine relation between the principal curvatures. Therefore, as a consequence of
our local characterization as binormal evolution surfaces with planar p-elastic curves as
initial conditions, we conclude with Theorem 5.3.2 and Theorem 5.3.3 (to appear in [111]),

The profile curve of a non-constant mean curvature biconservative surface of M3(ρ) is a
planar critical curve of

Θ1/4
o (γ) =

∫
γ

κ1/4 ds .

Conversely, the invariant surface in M3(ρ) obtained by evolving a planar critical curve

of Θ
1/4
o under the binormal flow of the associated Killing field I is a non-constant mean

curvature biconservative surface.

Furthermore, using the arguments introduced in Chapter 3, we can study the topolog-
ical behavior of these particular planar p-elastic curves, and, therefore, translating to the
binormal evolution surfaces, we are able to prove that there are no closed non-constant
mean curvature biconservative surfaces in neither, the Euclidean 3-space nor in the hy-
perbolic 3-space, as it is stated in Proposition 5.3.4, (to appear in [111]). However, in
the round 3-sphere we prove the existence of this particular planar p-elastic curves with
periodic curvature and that they never cross the axis of rotation. Thus, the verification
of the closure condition (see Corollary 3.2.7) plays an essential role. This verification
requires hard computations involving analytical tools that are omitted here for the sake
of clearness. For more details one can check [111], where this analysis is going to appear.

Notice that all the invariant surfaces we have been working with up to now are im-
mersed in either Riemannian or Lorentzian 3-space forms. To finish this memory we are
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also going to consider invariant surfaces immersed in ambient spaces with non-constant
sectional curvature having suitable symmetries. For instance, for Riemannian homoge-
neous 3-spaces, it is known that the dimension of the isometry group must be 6, 4 or 3.
Space forms are characterized by having six-dimensional isometry group. On the other
hand, those 3-spaces with degree of rigidity 4 can be locally described as Bianchi-Cartan-
Vranceanu spaces (see Section 6.2.2). What is more, these spaces can be seen as Killing
submersions with constant bundle and Gaussian curvatures. Therefore, it seems natural
at this step to consider as ambient spaces the total spaces M of Killing submersions
π : M → B with base surface B and vertical Killing field ξ.

Thus, in Chapter 6, we study surfaces of the total space M which are invariant by the
flow of the Killing field ξ (vertical surfaces) and which, at the same time, are extremals of
a Willmore-like energy, that is, a Willmore energy weighted with a ξ-invariant poten-
tial Φ, Φ ∈ C∞(M). We first compute the First Variation Formula and Euler-Lagrange
equations for compact Willmore-like surfaces. Then, by using the Symmetric Critical-
ity Principle of Palais [117] we obtain in Theorem 6.3.1, [25], a nice connection between
Willmore-like vertical tori in the total space M of a Killing submersion and elastica with
potential 4Φ̄ in the base surface B (Φ̄ being determined by Φ = Φ̄ ◦ π). More precisely,
we can show

A vertical torus shaped on a closed curve of the base surface B of a Killing submersion with
compact fibers is a Willmore-like surface in M with ξ-invariant potencial Φ ∈ C∞(M), if
and only if, the curve is a critical curve of

Θ4Φ̄(γ) =

∫
γ

(
κ2 + 4Φ̄

)
ds ,

where Φ = Φ̄ ◦ π.

Although, in general, Willmore-like energies with potential and the Chen-Willmore
energy are different functionals acting on the space of immersed surfaces, the special
structure of Riemannian submersions allows us to use similar arguments when dealing
with both types of energies. Thus, in Theorem 6.3.3, [25], we obtain the connection be-
tween vertical Willmore tori in the total space M of Killing submersions and generalized
elastic curves for the choices ε = 2 and p = 1 in the base surface B. More precisely,

A vertical torus shaped on a closed curve of the base surface, B, of a Killing submersion
is a Willmore surface of M , if and only if, the curve is a critical curve of

Θ4τ2π
(γ) =

∫
γ

(
κ2 + 4τ 2

π

)
ds ,
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where τπ denotes the bundle curvature of the Killing submersion.

Particularizing this result to the orthonormal frame bundle of a surface, we conclude
with Corollary 6.3.5, [25], which states that a vertical torus in the orthonormal frame
bundle of a surface is Willmore, if and only if, the profile curve is an elastic curve with
potential K2

B, where KB is the Gaussian curvature of the base surface, B. Then, in
the last part of the chapter (Section 6.4), as an illustration of our findings we describe
two constructions of Killing submersions foliated by Willmore tori with constant mean
curvature. The first one is based on Proposition 6.4.2, [25], where the warping functions
of warped product surfaces, Sf , all whose fibers are elastic curves with potential K2

Sf
(KSf

denoting the Gaussian curvature of Sf ) are obtained. The second construction strongly
depends on the existence theorem of Killing submersions (see [107] and Theorem 6.2.1,
[25]).



Chapter 1

Preliminaries

The Calculus of Variations has played a major role in the analysis of many problems
in Differential Geometry, as we have highlighted along the introduction. In particular, if
Lagrangians are described in terms of geometric invariants, these variational problems are
usually referred as geometric-variational problems, and the search of stationary points of
these energies has yielded great results. Therefore, both the energies themselves and, also,
the ambient spaces where the minimizing objects live have been generalized in the last
decades. For the former, one can see [5] and the references therein, while for the latter,
one of the most frequent generalizations consists on considering semi-Riemannian ambient
spaces, (see, for instance, [82]), due to the unnumbered applications semi-Riemannian
manifolds have, for instance, in Physics.

For these reasons, this chapter is going to be devoted to introductory notions and
well-known facts about semi-Riemannian geometry. Moreover, in the last part we are
also going to describe the main tools about different types of curvature energies in semi-
Riemannian ambient spaces.

1.1 Basic Facts of Semi-Riemannian Geometry

Although in this PhD memory we are going to be mainly interested in low dimensions, as
this chapter has an introductory objective, and as there is no extra cost for the presen-
tation of these facts in more general settings, we are going to begin by introducing the
main objects, of arbitrary dimension, of semi-Riemannian geometry, that is, manifolds
and submanifolds, as well as their most commonly used formulas. In particular, we will
put emphasis on the case of curves. This section is mainly based on [39].

1



2 1.1. Basic Facts of Semi-Riemannian Geometry

1.1.1 Semi-Riemannian Manifolds

Along this PhD memory, we will understand that a manifold is a connected smooth
manifold of dimension greater or equal than two without boundary. We will denote it by
Mn, where n represents the dimension of the manifold.

A semi-Riemannian metric tensor, g, on a manifold Mn is a symmetric non-degenerate
(0, 2) tensor field on Mn of constant index. Very often, we will use the notation 〈· , ·〉 to
denote g. Moreover, g is sometimes referred as the first fundamental form. Then, a
semi-Riemannian manifold is a manifold equipped with a metric tensor g. The common
value r (0 ≤ r ≤ n) of index on Mn is called the index of Mn. Thus, from now on, we
will denote by Mn

r to a n-dimensional semi-Riemannian manifold of index r, keeping the
notation Mn = Mn

o to denote Riemannian manifolds of dimension n.

As it is usual, the Levi-Civita connection onMn
r is going to be denoted by∇. Moreover,

for a semi-Riemannian manifold Mn
r with Levi-Civita connection ∇, we will define the

Riemann curvature tensor as the (1, 3) tensor field defined by

R(X, Y )Z = ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z , (1.1)

where X, Y and Z are any vector fields tangent to Mn
r . Furthermore, if W is another

tangent vector field, following this notation we will write R(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉.
Observe that some authors use a different convention for the curvature tensor R, which
differs from our convention in the sign. Finally, if we denote by π any plane section of
Mn

r , its sectional curvature, K(π), is given by

K(u, v) = εuεv〈R(u, v)u, v〉 , (1.2)

where {u, v} represents any orthonormal basis of π, and, εu and εv are the causal char-
acters of the vectors u and v, respectively. Take into account that, even if in other works
the definition of the curvature tensor may have the oposite sign, the sectional curvature
coincides.

1.1.2 Semi-Riemannian Submanifolds

An immersion ϕ : Nm
ν → Mn

r of a semi-Riemannian manifold, Nm
ν , into another semi-

Riemannian manifold, Mn
r , is said to be isometric if

〈u, v〉p = 〈ϕ∗pu, ϕ∗pv〉ϕ(p)

holds for all u, v in TpN
m
ν and for all p ∈ Nm

ν . Let’s assume now that ϕ : Nm
ν → Mn

r is

an isometric immersion. We will denote by ∇ and ∇̃ the Levi-Civita connections of Nm
ν

and Mn
r , respectively.
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Assume also, that X and Y are vector fields tangent to Nm
ν , then X̃ and Ỹ will be the

extensions of X and Y to vector fields on Mn
r , respectively. Thus, we have the following

formula of Gauss
∇̃X̃ Ỹ = ∇XY + h(X, Y ) . (1.3)

The bilinear form h is called the second fundamental form of Nm
ν for the immersion ϕ.

When there is no doubt, we will just write X, Y for the tangent vectors of Nm
ν and for

their extensions to Mn
r .

On the other hand, if η is a normal vector field of Nm
ν in Mn

r , the decomposition of
the Levi-Civita connection into its tangential and normal parts gives us also the formula
of Weingarten

∇̃Xη = −Aη(X) +D⊥Xη , (1.4)

where Aη stands for the shape operator and D⊥ denotes the connection on the normal
bundle of Nm

ν .

Finally, let’s denote by R and R̃ the curvature tensors of Nm
ν and Mn

r , respectively.
Then we have the Gauss-Codazzi equations

〈R̃(X, Y )Z,W 〉 = 〈R(X, Y )Z,W 〉 − 〈h(X,W ), h(Y, Z)〉+ 〈h(X,Z), h(Y,W )〉, (1.5)

(∇h)(X, Y, Z) = (∇h)(Y,X,Z) , (1.6)

where ∇h is defined by

(∇h)(X, Y, Z) = D⊥Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ) .

It is also possible to obtain the Ricci equation, however, when the codimension of the
submanifold is one, Ricci equation is just and identity (see, for instance, [39]). Notice
that this would be the case along this PhD memory, since we are going to work mainly
with surfaces immersed in 3-spaces. Therefore, for the sake of simplicity we omit this
equation. Usually, the three systems of equations of Gauss, Codazzi and Ricci are known
as the fundamental equations. Indeed, they are the essential conditions that the first and
second fundamental forms must satisfy in order to assure the existence and uniqueness of
submanifolds. For more details, see §2.7 of [39].

Finally, if we restrict ourselves to semi-Riemannian space forms, Mn
r (ρ), that is, com-

plete, connected, simply-connected semi-Riemannian manifolds with constant sectional
curvature, ρ, we are going to see that it is possible to reduce the codimension for a given
isometric immersion. In fact, let Nm

ν be a semi-Riemannian manifold isometrically im-
mersed in a semi-Riemannian space form, Mn

r (ρ), of arbitrary dimension n. For a given
p ∈ Nm

ν , the first normal space N1(p) is defined to be the subspace of the normal space
spanned by the vector valued second fundamental form of the immersion. A normal sub-
bundle N is called parallel if, for each section η of N and each tangent vector X ∈ TNm

ν ,
the covariant derivative of η in the direction of X, with respect to the normal connection,
remains in N . The following result is basically known
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Theorem 1.1.1. Let ϕ : Nm
ν →Mn

r (ρ) be an isometric immersion of a semi-Riemannian
manifold, Nm

ν , into a semi-Riemannian space form, Mn
r (ρ). Assume that (Nm

ν , ϕ) has a
parallel normal subbundle N2 of rank q < n − m containing the first normal space N1.
Then, there exists a totally geodesic submanifold Em+q embedded in Mn

r (ρ) such that
ϕ (Nm

ν ) ⊂ Em+q.

If ρ = 0 the result can be found in [105] for N1 = N2 (see also [39], Theorem 2.6). If
ρ = −1 a proof is given in [87]. A general proof for any ρ can be made by adapting to
the semi-Riemannian case the arguments of [39], Theorem 2.6 and of [44], Theorem 4.1.
In the Riemannian case, the above result is due to Erbacher, [53]. Therefore, quite often,
above Theorem is called Erbacher’s Reduction Theorem.

From now on, we will resort to the standard abuse of notation and identification tricks
in the Theory of Submanifolds.

1.1.3 Curves in Semi-Riemannian Manifolds

Let Mn
r be a semi-Riemannian manifold with metric g ≡ 〈· , ·〉 and Levi-Civita connection

∇. If γ : Ī → Mn
r is a smooth immersed curve in Mn

r , γ′(t) will represent its velocity

vector dγ(t)
dt

and the covariant derivative of a vector field X(t) along γ will be denoted by
∇γ′X(t).

A C1 immersed curve in a semi-Riemannian manifold is spacelike (respectively, time-
like; respectively, lightlike) if 〈γ′(t), γ′(t)〉 > 0,∀t ∈ Ī (respectively, 〈γ′(t), γ′(t)〉 < 0,∀t ∈
Ī; respectively, 〈γ′(t), γ′(t)〉 = 0,∀t ∈ Ī). Of course, there exist curves whose causal char-
acter changes as t moves along the parameter interval, but this kind of curves will not be
considered in this memory. We recall that, a non-null curve can be parametrized by the
arc-length and this natural parameter is called proper time. From now on this natural
parameter is going to be denoted by s and, therefore, the tangent to the curve is going to
be represented by T (s) = γ′(s).

For a non-null immersed curve, the first Frenet curvature, or simply, the curvature,
is defined as the positive root of κ2

1 = ε2〈∇TT (s),∇TT (s)〉, where ε2 denotes the causal
character of ∇TT (s). A geodesic is a constant speed curve whose tangent vector is parallel
propagated along itself, that is, a curve whose tangent, γ′(s) = T (s), satisfies the equation
∇TT (s) = 0. Obviously, geodesics have zero curvature. Along this memory, geodesics
will be equivalently called Frenet curves of rank 1.

An arc-length parametrized immersed curve in a semi-Riemannian manifold γ : I →
Mn

r is called a Frenet curve of rank m, 2 ≤ m ≤ n, if m is the highest integer for which
there exists an orthonormal frame defined along γ, {e1(s) = T (s) = γ′(s), e2(s), . . . , em(s)}
and non-negative smooth functions on γ, κi(s), s ∈ I, 1 ≤ i ≤ m− 1 (Frenet curvatures),
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such that the following equations are satisfied (Frenet-Serret equations)

∇T e1(s) = ∇TT (s) = ε2 κ1(s) e2(s) , (1.7)

. . . . . . . . . . . . . . . . . . . . . . . . ,

∇T eh(s) = −εh−1 κh−1(s) eh−1(s) + εh+1 κh(s) eh+1(s) , h ∈ {2, 3, . . . ,m− 1}, (1.8)

. . . . . . . . . . . . . . . . . . . . . . . . ,

∇T em(s) = −εm−1 κm−1(s) em−1(s) , (1.9)

where εi := 〈ei(s), ei(s)〉 denotes the causal character of ei(s), i ∈ {1, . . . ,m}. For a Frenet
curve of rank m < n the Frenet curvatures of index higher than m− 1 are considered to
be zero, κi(s) = 0, s ∈ I, m ≤ i ≤ n− 1.

1.2 Semi-Riemannian 3-Space Forms

Consider the Euclidean semi-space Emð . That is, Rm endowed with the canonical metric
of index ð, denoted by 〈·, ·〉, and the corresponding Levi-Civita connection, denoted by
∇̄. A semi-Riemannian 3-space form is a complete, connected, simply connected semi-
Riemannian 3-manifold of index r = 0, 1, with constant sectional curvature ρ. These
spaces are going to be denoted by M3

r (ρ), r = 0, 1. If r = 0, M3
o (ρ) is a Riemannian

3-space form (usually, simply denoted by M3(ρ)) and if r = 1, M3
1 (ρ) is a Lorentzian

3-space form.
Notice that, M3

r (ρ), r = 0, 1, can be isometrically immersed in E4
ð, the 4-dimensional

Euclidean semi-space, in a standard way. In fact, the flat case, M3
r (ρ) = E3

r, ρ = 0,
r = 0, 1, corresponds to either the Euclidean 3-space, R3, or to the Minkowski 3-space,
R3

1 ≡ L3. They can be isometrically immersed in L4 = R4
1 endorsed with the metric

g = dx2
1 + dx2

2 + dx2
3 − dx2

4 ,

in an obvious manner;

R3 = {(x1, x2, x3, x4) ∈ L4 |x4 = 0} , L3 = {(x1, x2, x3, x4) ∈ L4 |x1 = 0} .

When ρ > 0, M3
r (ρ) corresponds to the round 3-sphere S3(ρ), if r = 0, and to the de

Sitter 3-space S3
1(ρ), if r = 1, which are defined by

S3
r(ρ) = {x ∈ E4

r | 〈x,x〉 =
1

ρ
} ,

where x = (x1, x2, x3, x4). Finally, for ρ < 0 we obtain the hyperbolic 3-space, H3(ρ) if
r = 0, and the anti de Sitter 3-space, H3

1(ρ), if r = 1

H3
r(ρ) = {x ∈ E4

r+1 | 〈x,x〉 =
1

ρ
} .
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The standard isometric immersions of M3
r (ρ) into E4

ð ([39], p. 20) will be all denoted by i
and the induced metrics also by 〈·, ·〉, while the Levi-Civita connections on E4

ð and M3
r (ρ)

are denoted by ∇̄ and ∇̃, respectively.
As usual, the cross product of two vector fields X, Y in M3

r (ρ), denoted by X × Y , is
defined so that 〈X × Y, Z〉 = det(X, Y, Z) for any other vector field Z of M3

r (ρ), where
det(X, Y, Z) stands for the determinant.

1.2.1 Curves in 3-Space Forms

Let’s denote by γ an arc-length parametrized non-null curve immersed in M3
r (ρ), and let

κ(s) represent the curvature of γ in the 3-space form.
If κ(s) = 0, then γ is a geodesic in M3

r (ρ). On the other hand, if γ(s) is a unit speed
non-geodesic smooth curve immersed in M3

r (ρ) with non-null velocity γ′(s) = T (s) and

non-null acceleration, ∇̃TT (s), then γ(s) is a Frenet curve of rank 2 or 3 and the standard
Frenet frame along γ(s) is given by {T,N,B}(s), where N and B are the unit normal
and unit binormal to the curve, respectively, and B is chosen so that det(T,N,B) = 1.
Then the Frenet equations (see formulas (1.7)-(1.9))

∇̃TT (s) = ε2 κ(s)N(s) , (1.10)

∇̃TN(s) = −ε1 κ(s)T (s) + ε3 τ(s)B(s) , (1.11)

∇̃TB(s) = −ε2 τ(s)N(s) , (1.12)

define the curvature, κ(s) (κ(s) > 0 if n = 3), and torsion, τ(s), along γ(s), where εi,
1 ≤ i ≤ 3 are the causal characters of T , N and B, respectively. Notice that {εi, i = 1, 2, 3}
are three numbers satisfying

i) at most one of them is negative , ii) εi = ±1 , iii) ε1ε2ε3 = (−1)r . (1.13)

Now, the following relations hold

T = ε1N ×B , N = ε2B × T , B = ε3T ×N .

Notice that, even if the rank of γ is 2 (that is, τ = 0), the binormal B = ε3 T ×N is still
well defined and above formulas (1.10)-(1.12) still make sense when τ = 0. A curve with
vanishing torsion, τ = 0, is going to be referred as a planar curve. On the other hand, if
a curve has constant curvature and torsion is called a Frenet helix. Moreover, a Lancret
helix is a curve whose unit tangent vector makes a constant angle with a Killing vector
field of M3

r (ρ) of constant length.
Finally, we recall that, in a semi-Riemannian space form any local geometrical scalar

defined along Frenet curves can always be expressed as a function of their curvatures and
derivatives.
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1.2.2 Surfaces Immersed in 3-Space Forms

Let’s consider a given isometric immersion of a surface in a 3-space form, ϕ : N2
ν →M3

r (ρ),
where ν ∈ {0, 1} represents the index of the surface. Recall that M3

r (ρ) is immersed in
a Euclidean semi-space of dimension 4 for suitable index, E4

ð, see Section 1.2. We denote
by ∇ the Levi-Civita connection of the surface N2

ν . As it is also customary, for a surface
N2
ν in any 3-dimensional space form M3

r (ρ), we require the first fundamental form to be
non-degenerate. Take X, Y, Z,W tangent vector fields to N2

ν and choose η a local normal
vector field to N2

ν in M3
r (ρ). Then the formulas of Gauss and Weingarten, (1.3) and (1.4),

are, respectively

∇̄XY = ∇̃XY − ρ 〈X, Y 〉x = ∇XY + h(X, Y )− ρ 〈X, Y 〉x , (1.14)

∇̃Xη = −AηX +D⊥Xη , (1.15)

where x = i ◦ ϕ can be seen as the position vector, h denotes the second fundamental
form of N2

ν in M3
r (ρ), and D⊥ denotes the connection on the normal bundle of N2

ν . We
remind that Aη is the notation we are using for the shape operator.

A surface is said to be isoparametric if the shape operator Aη has the same charac-
teristic polynomial at all points of the surface. As proved in [71], this definition coincides
with the classical definition due to Cartan; a surface is said to be isoparametric if locally
all parallel surfaces have constant mean curvature. Notice that in the Riemannian case,
Aη is diagonalizable and, therefore, an isoparametric surface has constant eigenvalues,
usually called principal curvatures, with constant algebraic multiplicities. In [37], Cartan
classified isoparametric surfaces in Riemannian 3-space forms and showed that they are
either totally umbilical or spherical cylinders. In Lorentzian backgrounds, Magid [106]
studied hypersurfaces whose shape operator has constant minimal polynomial in Lorentz-
Minkowski space Ln and called them also isoparametric; Li and Wang [100] studied these
isoparametric surfaces in the de Sitter space S3

1(ρ), ρ > 0; and, Xiao [145] studied these
isoparametric hypersurfaces in the anti de Sitter space Hn

1 (ρ), ρ < 0.
Now, for any isometric immersion, by using (1.14) and (1.15), and denoting by R

and R̃ the Riemann curvature tensors associated to ∇ and ∇̃, respectively, the following
relation holds

R̃(X, Y )Z = ρ (< Y,Z > X− < X,Z > Y ) , (1.16)

while the equations of Gauss and Codazzi are given respectively by (1.5) and (1.6). Choos-
ing an adapted local orthonormal frame {e1, e2, e3} in M3

r (ρ) such that the vectors e1, e2

are tangent to N2
ν and e3 is normal to N2

ν in M3
r (ρ), the intrinsic Gaussian curvature of

N2
ν is given by (1.2)

K = ε̃1ε̃2 〈R(e1, e2)e1, e2〉 , (1.17)

where ε̃j = 〈ej, ej〉 is the causal character of ej. Now, denoting by {ω1, ω2, ω3} the dual
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frame of {e1, e2, e3}, the Cartan connection forms are defined by

∇̃Xei =
∑
j

ε̃j ω
j
i (X)ej ,

for i, j ∈ {1, 2, 3}. Then, ωji = −ωij and

h(ei, ej) = ε̃3 hij e3, hij = − < ∇̃eie3, ej >= ω3
j (ei) , (1.18)

i, j ∈ {1, 2}.
Moreover, the mean curvature vector H of a surface N2

ν isometrically immersed in
M3

r (ρ) is defined by H = 1
2
trace h while the mean curvature function, H, is defined so

that the following equation is verified

H = ε̃3H e3 . (1.19)

For a local parametrization of N2
ν , take p ∈ N2

ν and let α : Ī → N2
ν be an immersed

non-null curve α(t) with causal character εα, such that α(Ī) is contained in a local chart
around p and α(0) = p. For any to ∈ Ī, take Vto as a unit vector tangent to N2

ν at α(to) so
that {(dα/dt)(to), Vto , η(to)} form an orthonormal basis and consider the geodesic γto(s)
with initial data; γto(0) = α(to) and (dγto/ds)(0) = Vto . Thus, in a neighborhood of p in
N2
ν we can find a local parametrization (U, x) (called a geodesic parametrization) defined

by
x(s, t) = γt(s) , (1.20)

t ∈ Ī. Therefore, calling γ = γo(s), the coefficients of the metric with respect to (U, x)
are (reparametrizing the geodesics if needed) g11 = 〈xs, xs〉 = εγ, g12 = 〈xs, xt〉 = 0, and
g22 = 〈xt, xt〉, which, for simplicity, is denoted by g22 = εαF2(s, t). That is, with respect
to this parametrization, (1.20), the metric can be written as

g = εγds
2 + εαF2dt2 . (1.21)

Let’s assume that γ is not a geodesic of the ambient space. Then, by using the Frenet
frame defined in Section 1.2.1 we have that εγ = ε1 and εα = ε3 (since, γ is a geodesic on
the surface). Therefore, (1.21) can be equivalently expressed as

g = ε1ds
2 + ε3F2dt2 . (1.22)

In this setting, the Gauss and Weingarten formulas (1.14) and (1.15), in combination
with the Gauss and Codazzi equations (1.5) and (1.6), will give us all the relevant ge-
ometric information about the immersion (U, x). Indeed, the Christofel symbols of the
Levi-Civita connection of (1.22) with respect to the parametrization (1.20) (see, for in-
stance [39], Proposition 1.1) can be computed from the metric coefficients gij. In our case,
we have

Γ1
11 = Γ2

11 = Γ1
12 = 0 , Γ2

12 =
Fs
F
, Γ1

22 = −ε1ε3FFs , Γ2
22 =

Ft
F
,
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where subscripts s and t mean partial derivative with respect to s and t, respectively.
This makes it possible to know the expression for the Levi-Civita connection of x(U)
([39], §1.4), denoted here by ∇,

∇ ∂
∂s

∂

∂s
= 0, ∇ ∂

∂s

∂

∂t
=
Fs
F

∂

∂t
, ∇ ∂

∂t

∂

∂t
= −ε1ε3FFs

∂

∂s
+
Ft
F

∂

∂t
. (1.23)

As before, {T (s, t), N(s, t), B(s, t)} represent the Frenet frames along γt(s), and we choose
the following local adapted frame on x(U)

e1 = xs = T , e2 =
xt
F

= B , e3 = η = −ε2N, (1.24)

where η is the unit normal to x(U) (locally defined). Then, combining (1.10)-(1.12),
(1.14), (1.15) and (1.18), one gets

ω2
1(e1) = 0 , ω2

1(e2) = ε3
Fs
F
, ω3

1(e1) = h11 = −ε2κ , (1.25)

ω3
1(e2) = ω3

2(e1) = h12 = ε2 τ , ω3
2(e2) := h22 , (1.26)

where, κ(s, t) and τ(s, t) denote the curvature and torsion of the curves γt(s).

The second fundamental form can be considered as a quadratic form given by h(X) :=
〈AηX,X〉, therefore, we obtain from (1.18), (1.25) and (1.26) that

h = −ε2κ ds
2 + 2ε2τFds dt+ F2h22dt

2 , (1.27)

with respect to the parametrization (1.20), where h22 is the coefficient of the second

fundamental form ([39], §2.3) of x(U) in M3
r (ρ) given by h22 := −ε2〈∇̃BB,N〉. Since ∇

is determined by g, h22 can be computed with the aid of (1.23) and the Gauss formula
(1.14) giving

h22 =
1

κ
{ε3
Fss
F
− ε2τ

2 + ε1ε3ρ}. (1.28)

Using again the Gauss and Weingarten formulas (1.14) and (1.15), it can be shown
that x : U →M3

r (ρ)→ E4
ð satisfies the following PDE system

xss = − κ
F
xs × xt − ε1ρ x , (1.29)

xts =
Fs
F
xt −

τF
κ
xss − ε1

τF
κ
ρ x , (1.30)

xtt = −ε1ε3FFsxs − ε2
h22F2

κ
xss −

(
ε1ε2h22

κ
+ ε3

)
F2ρ x+

Ft
F
xt . (1.31)
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1.2.3 Invariant Surfaces of 3-Space Forms

An immersed surface N2
ν in a 3-space form, M3

r (ρ), is said to be an invariant surface
if it stays invariant under the action of a one-parameter group of isometries of M3

r (ρ).
One-parameter groups of isometries of M3

r (ρ) are determined by the flow of Killing vector
fields of M3

r (ρ).
If the Killing field ξ is null, then N2

ν is isometric to the Minkowski 2-space, L2. Isomet-
ric immersions of L2 into M3

1 (ρ) have been studied in [45] and [69]. Thus, let’s consider
that ξ is a non-null Killing vector field on M3

r (ρ). Since M3
r (ρ) is complete, we can con-

sider that the flow of ξ is {φt, t ∈ R}. Therefore, N2
ν is a ξ-invariant surface of M3(ρ) if

we have φt(N
2
ν ) = N2

ν . However, if ξ changes its causal character, there may exist points
such that for all their neighborhoods there are orbits of different causal characters, see
[33]. Thus, along the whole memory we are also going to assume that we are working in
any local neighborhood of a point, p, such that 〈ξ(p), ξ(p)〉 is non-zero. More precisely, if
we call S = N2

ν − {p ∈ N2
ν | 〈ξ(p), ξ(p)〉 = 0}, then S is a ξ-invariant surface, which can

be locally parametrized as (U, x) given by

x(s, t) := φt(γ(s)) , (1.32)

where γ(s) is a curve in S everywhere orthogonal to the Killing vector field ξ, called
the profile curve. That is, locally, any ξ-invariant surface of M3

r (ρ) can be described as
a surface Sγ = x(U) with profile curve γ. From now on, we will say that the surface
constructed as above is a local description of a ξ-invariant surface N2

ν .
From above parametrization, (1.32), it is clear that we have a family of congru-

ent copies of the profile curve, {γt(s)}. Moreover, if the profile curve γ is arc-length
parametrized, then all the curves in this family are also unit speed parametrized. Notice
that in this case F2(s, t) = ε̃〈xt, xt〉 = ε̃〈ξ, ξ〉, where ε̃ denotes the constant causal charac-
ter of ξ, only depends on the parameter s. Therefore, let’s call from now on, G(s) = F(s)
which represents the length of the Killing vector field ξ.

Now, if the profile curve, γ, is a geodesic of the 3-space form, M3
r (ρ), then Sγ will be a

ruled surface, that is, a surface locally foliated by geodesics of the ambient space. In this
case, we call δs(t) to the integral curve of ξ through γ(s) and consider the orthonormal
frame {Tγ, Tδ, n} where Tγ and Tδ, are unit tangent fields to γ and δs(t), respectively,
and n is determined by the cross product of both. We are going to use ε1 for the causal
character of γ, ε3 for that of δs, and finally, 〈n, n〉 = ε2. Then, by standard computations
we obtain the following Frenet-type equations,

∇̃TγTγ = 0 , ∇̃TγTδ = −ε2f(s)n , ∇̃Tγn = ε3f(s)Tδ , (1.33)

for some smooth function f(s). Moreover, we also have

∇̃TδTδ = −ε1ε3
Gs

G
Tγ + ε2h22n , ∇̃Tδn = ε2∇̃Tδ(Tγ × Tδ) = ε1f Tγ − ε2ε3h22Tδ .
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Thus, Sγ is completely determined by its first fundamental form,

g = ε1ds
2 + ε3G

2dt2 . (1.34)

and the second following fundamental form h = −2f(s)G(s)dsdt+h22G
2(s)dt2. The func-

tions involved in both fundamental forms are connected by the Gauss-Codazzi equations
(1.5) and (1.6), which, in this case, can be written as

f 2(s) = (−1)rρ+ ε2ε3
Gss

G
, (1.35)

f ′(s) + 2
Gs

G
f(s) = 0 , (1.36)

h′22(s) + 2
Gs

G
h22(s) = 0 . (1.37)

On the other hand, if the profile curve, γ, is a Frenet curve, we obtain that all con-
gruent copies of the profile curve have well defined Frenet frame satisfying (1.10)-(1.13).

Moreover, since γt(s) = x(s, t) is not a geodesic in M3
r (ρ) and ∇̃xsxs is not null, then, for

sufficiently small s, the unit Frenet normal to γt(s), N(s, t), is parallel to a (local) unit
normal to Sγ, η. This means that γt(s) are geodesics in Sγ for any t and the parametriza-
tion (1.32) determines a geodesic coordinate system (see Section 1.2.2) with respect to
which the metric 〈· , ·〉 ≡ g can be written as (1.22), while the second fundamental form
is given in (1.27), in both cases with F(s, t) = G(s).

Finally, from the definition of the Riemannian curvature tensor, (1.1), and (1.17), one
can check that the Gaussian curvature, K, of a local description, Sγ, of any ξ-invariant
surface in terms of the natural parametrization, (1.32), is given by

K(s, t) = −ε1
Gss(s)

G(s)
. (1.38)

In this case, it is also possible to give the explicit formula for the mean curvature function,
H, (1.19). In fact, we obtain

H(s, t) =
1

2κ(s)G(s)

(
Gss(s)− ε1ε2G(s)(κ2(s) + ε1ε3τ

2(s)− ε2ρ)
)
. (1.39)

That is, looking at both (1.38) and (1.39) we can see that the Gaussian and mean curvature
functions of a local description of any ξ-invariant surface, K and H respectively, only
depend on the parameter of the profile curve, that is, on s. Roughly speaking, this is
the reason why studying invariant surfaces simplifies the equations, translating PDEs to
ODEs.
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1.3 Curvature Energies in Semi-Riemannian Mani-

folds

Let’s assume along this section that all our curves are Frenet curves, and let’s consider
the following curvature energy functional

Θ(γ) :=

∫
γ

P (κ) =

∫ L

0

P (κ(s)) ds , (1.40)

where P (κ) is a smooth function in an adequate domain and where, as usual, the arc-
length or natural parameter is represented by s ∈ [0, L], L being the length of γ. For
more details in this section we refer the reader to, for instance, [4], [5], [7], [8], [58], [82],
[93] and [94].

Then, we consider Θ acting on the following spaces of curves, satisfying given boundary
conditions in (Mn

r , 〈·, ·〉). We shall denote by Ωr
pop1

the space of smooth immersed Frenet
curves of Mn

r , joining two given points of it, that is:

Ωr
pop1

= {β : [0, 1]→Mn
r | β(i) = pi, i ∈ {0, 1},

dβ

dt
(t) 6= 0,∀t ∈ [0, 1]}, (1.41)

where pi ∈Mn
r , i ∈ {0, 1}, are arbitrary given points of Mn

r .
We take Θ acting on Ωr

pop1
. For a Frenet curve γ : [0, 1]→Mn

r , we take a variation of γ,
Γ = Γ(t, ς) : [0, 1]×(−ε, ε)→Mn

r with Γ(t, 0) = γ(t). Associated to this variation we have
the vector field W = W (t) = ∂Γ

∂ς
(t, 0) along the curve γ(t). We also write V = V (t, ς) =

∂Γ
∂t

(t, ς), W = W (t, ς), v = v(t, ς) = |V (t, ς)|, T = T (t, ς) = e1(t, ς), N = N(t, ς) =
e2(t, ς), with the obvious meanings and put V (s, ς), W (s, ς),... for the corresponding
reparametrizations by arc-length. The following general formulas for the variations of v
and κ1 in γ in the direction of W can be obtained using standard computations that
involve the Frenet equations (1.7)-(1.9) (see [58] and [94])

W (v) = ε1v〈∇̃TW,T 〉, (1.42)

W (κ1) = 〈∇̃2
TW,N〉 − 2ε1κ1〈∇̃TW,T 〉+ 〈R(W,T )T,N〉, (1.43)

Then, after a standard computation involving integrating by parts and formulae (1.42)
and (1.43), the First Variation Formula is obtained

d

dς
Θ(ς)|ς=o =

∫ L

0

〈E(γ),W 〉ds+ B [W, γ]L0 , (1.44)

with E(γ), B [W, γ]L0 denoting the Euler-Lagrange operator and boundary term, respec-
tively. These are given by

E(γ) = ∇̃TJ +R(K, T )T , (1.45)

B [W, γ]L0 =
[
〈K, ∇̃TW 〉 − 〈J ,W 〉

]L
0
. (1.46)
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where

K(γ) = Ṗ (κ)N , (1.47)

J (γ) = ∇̃TK + ε1

(
2κṖ (κ)− P (κ)

)
T , (1.48)

where Ṗ represents the derivative of P (κ) with respect to κ.
We will call critical curve (or, also, extremal curve) to any curve γ ⊂ Ωr

pop1
, (1.41),

such that E(γ) = 0. Notice that this is an abuse of notation, since proper criticality
depends on the boundary conditions, (1.46), as it can be checked from the First Variation
Formula, (1.44). However, under suitable boundary conditions, curves verifying E(γ) = 0
are going to be proper critical curves. Therefore, since for the purposes of this memory
we just need to consider curves that verify E(γ) = 0, for the sake of simplicity, from now
on, we are going to use the name critical curve to denote any curve γ ⊂ Ωr

pop1
verifying

E(γ) = 0.
Let’s assume now that Mn

r is an n-dimensional space form, that is, Mn
r = Mn

r (ρ).
Then, from the Reduction Theorem, Theorem 1.1.1, it is enough to study critical curves
of our functional when acting on the space of smooth immersed curves of M3

r (ρ) since,
it can be seen that a curve critical for Θ must lie in a totally geodesic M3

r (ρ) ⊂ Mn
r (ρ).

Indeed, we have

Proposition 1.3.1. Let’s consider the curvature energy functional Θ, (1.40), acting on
the space of curves immersed in a space form of dimension n, that is, acting on Ωr

pop1
,

(1.41), where Mn
r = Mn

r (ρ), then a critical point of Θ must lie in a totally geodesic
3-dimensional submanifold of Mn

r (ρ), namely, M3
r (ρ).

For a proof of above Proposition, just adapt the computations of Proposition 3 of [65].

1.3.1 Critical Curves in 3-Space Forms

Let’s consider the curvature energy functional Θ, (1.40), acting on Ωrρ
pop1

, where we denote
by Ωrρ

pop1
the space of smooth immersed Frenet curves of M3

r (ρ), joining two given points
of it, that is:

Ωrρ
pop1

= {β : [0, 1]→M3
r (ρ) | β(i) = pi, i ∈ {0, 1},

dβ

dt
(t) 6= 0,∀t ∈ [0, 1]}, (1.49)

where pi ∈M3
r (ρ), i ∈ {0, 1}, are arbitrary given points of M3

r (ρ).
Then, apart from the general formulas for the variations of v and κ1 = κ in γ in the

direction of the variation vector field, W , (1.42) and (1.43), we can also obtain the formula
for the variation of κ2 = τ in γ in the direction of W ([82] p. 59 and [58])

W (τ) = ε2

(
1

κ
〈∇̃2

TW + ε1ρW,B〉
)
s

− ε1τ〈∇̃TW,T 〉+ ε1κ〈∇̃TW,B〉 , (1.50)
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where the subscript s here denotes differentiation with respect to the arc-length.

In this case, the Euler-Lagrange operator, (1.45), can be written as

E(γ) = ∇̃TJ +R(K, T )T = ∇̃TJ + ε1ρK , (1.51)

where K and J are given in (1.47) and (1.48), respectively. Now, using the Gauss for-
mula (1.14) and the Frenet-Serret equations (1.10)-(1.12), we can see that E(γ) has no
component in T while its normal and binormal components can be expressed in terms
of the curvature and torsion. Thus, after long straightforward computations, E(γ) = 0,
(1.51), boils down to

Ṗss + ε1ε2Ṗ
(
κ2 − ε1ε3τ

2 + ε2ρ
)
− ε1ε2κP = 0 , (1.52)

2τ Ṗs + τsṖ = 0 , (1.53)

which are the Euler-Lagrange equations of the curvature energy functional Θ, (1.40),
acting on Ωrρ

pop1
, (1.49). Therefore, the only curve, up to rigid motions (see §2.7 of [39]),

determined by the curvature, κ, and torsion, τ , solution of (1.52) and (1.53) is a critical
curve of Θ, (1.40), acting on Ωrρ

pop1
, (1.49), in the sense of previous section.

Associated Killing Vector Fields

Along this section we are going to consider that γ is a critical Frenet curve of Θ, (1.40),
acting on Ωrρ

pop1
, (1.49). Then, a vector field W along γ, which infinitesimally preserves

unit speed parametrization is said to be a Killing vector field along γ (in the sense of [94])
if γ evolves in the direction of W without changing shape, only position. In other words,
the following equations must hold

W (v)(s, 0) = W (κ)(s, 0) = W (τ)(s, 0) = 0 , (1.54)

(v = |γ′| = |dγ
ds
| being the speed of γ) for any variation of γ having W as variation field.

It turns out that these extremals of Θ, (1.40), have naturally associated Killing vector
fields defined along them. Let us define the following vector field, I, along γ

I = ε3T ×K ,

where × denotes the cross product and K is defined in (1.47). Combining the Frenet
equations (1.10)-(1.12) and (1.47), we see that I is given by

I = ε3T ×K = Ṗ (κ)B . (1.55)

Then, we have (see also [58])
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Proposition 1.3.2. Assume that γ is an immersed curve in M3
r (ρ) with non-null velocity

and acceleration which is an extremal of Θ, (1.40). Consider the vector fields (1.48) and
(1.55) given by

I = Ṗ B , J = ε1

(
κṖ − P

)
T + ṖsN + ε3τ Ṗ B , (1.56)

defined on γ, {T,N,B} being its Frenet frame. Then I and J are Killing vector fields
along γ.

Proof. Assume that γ is an extremal of Θ, (1.40), which, without loss of generality
we can assume γ to be arc-length parametrized. Then the curvature and torsion of γ must
satisfy (1.52) and (1.53). Take any variation of γ in Ωrρ

pop1
, (1.49), Γ(s, ς), with variation

vector field I and denote by v(s, ς) = | d
ds

Γ(s, ς)| the speed of the variation curves. By
substituting W = I in (1.42), we have

I(v) = ε1 < ∇̃TI, T > v ,

and then, the Frenet equations (1.10)-(1.12) give I(v)(t, 0) = 0. Similarly, when W = I,
the equation (1.43) gives

I(κ) = ε2
1

κ
< ∇̃2

TI, ∇̃TI > − 2ε1κ < ∇̃TI, T > +ε1ρ < I, N > ,

which combined with the Euler-Lagrange equation (1.53) shows that I(κ)(t, 0) = 0. Fi-
nally, a combination of (1.50)

I(τ) = ε2

(
1

κ
〈∇̃2

TI + ε1ρ I, B〉
)
s

− ε1τ〈∇̃TI, T 〉+ ε1κ〈∇̃TI, B〉

and (1.52), gives also I(τ)(t, 0) = 0. Hence, we see from (1.54) that I is a Killing vector
field along γ. A similar argument works for the vector field J , which proves the state-
ment. �

Thus, using an argument similar to that of [94] we can extend I and J , (1.56), to
Killing vector fields on the whole M3

r (ρ). We are going to denote them again by I and
J , respectively.

First Integrals of Euler-Lagrange Equations

The Euler-Lagrange equations, (1.52) and (1.53), represent a system of second order
ordinary differential equations, ODEs. However, if Ṗs does not vanish, we can compute
a first integral of this system making use of the Killing vector fields along the critical
curves, I and J , (1.56) (see [5], [58] and [82]).
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In fact, a direct long computation using the Frenet equations (1.10)-(1.12), formulas
(1.47) and (1.48), and the Euler-Lagrange equations (1.52) and (1.53), shows that the
derivatives of the functions 〈J , I〉 and 〈J ,J 〉+ ε1ε2ε3ρ〈I, I〉 along the critical curve are
both zero. Thus,

〈J , I〉 = e, (1.57)

〈J ,J 〉+ ε1ε2ε3ρ〈I, I〉 = d, (1.58)

with d and e being real constants. Now, if we substitute the values of both Killing vector
fields along any critical curve, (1.56), we get the expression of the first integrals of the
Euler-Lagrange equations, (1.52) and (1.53), in terms of the curvature and torsion of the
critical curve,

τ Ṗ 2 = e , (1.59)

Ṗ 2
s + ε1ε2

(
κṖ − P

)2

+ ε2ε3τ
2Ṗ 2 + ε1ρṖ

2 = ε2d . (1.60)

1.3.2 Generalized Kirchhoff Centerlines

Along this section, we are going to study a generalization of the curvature energy func-
tionals Θ, (1.40). More precisely, let’s consider a functional of the following form

Θ(γ) =

∫
γ

P (κ) + µτ + λ =

∫ L

0

(
P (κ)(s) + µτ(s) + λ

)
ds , (1.61)

acting on Frenet curves immersed in space forms, where µ and λ ∈ R. As one can check,
in this case the Reduction Theorem, Theorem 1.1.1, also works, therefore, again it is
enough to study critical curves of above variational problem among immersed curves in
M3

r (ρ).
Now, by computing the first variation formula for (1.61) acting on Ωrρ

pop1
, (1.49), (under

arbitrary boundary conditions) and using the Frenet equations (1.10)-(1.12), the Euler-
Lagrange equations can be written as

Ṗss + ε1ε2Ṗ
(
κ2 − ε1ε3τ

2 + ε2ρ
)
− ε1ε2κ (P − µτ + λ) = 0 , (1.62)

2τ Ṗs + τsṖ − ε1ε3µκs = 0 , (1.63)

For reasons that will be clear later (see Section 3.4.2), along this memory curves sat-
isfying above equations (1.62) and (1.63) will be called generalized Kirchhoff centerlines.
Notice that generalized Kirchhoff centerlines are a particular case of extremals of energies
depending on the curvature and torsion of the curves, P (κ, τ). The Euler-Lagrange of
these energies in semi-Riemannian 3-space forms have been obtained, for instance, in [4],
[58] and [82].

An important fact about generalized Kirchhoff centerlines is that the correspondence
version of Proposition 1.3.2 is also true. In particular, we have
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Proposition 1.3.3. The vector field I = ε1ε3µT + ṖB is a Killing vector field along γ,
if and only if, γ is a generalized Kirchhoff centerline.

For a proof of above result, we refer to [64].

1.3.3 Curvature Energies with Potential

A different generalization of the curvature energies Θ, (1.40), can be done by considering
a potential defined on the manifold. Along this section, let’s assume that Φ is a smooth
function on the semi-Riemannian manifold Mn

r . Then, we consider the following curvature
energy functional with potential

ΘΦ(γ) =

∫
γ

P (κ) + Φ =

∫ L

o

(P (κ) + Φ) (s) ds , (1.64)

acting on Ωr
pop1

, (1.41). Arguing as before we can get the Euler-Lagrange operator, which,
in this case is

EΦ(γ) = ∇̃TJΦ +R(KΦ, T )T + grad Φ , (1.65)

where now JΦ is given by

JΦ(γ) = ∇̃TKΦ + ε1

(
2κṖ (κ)− P (κ)− Φ

)
T ,

while KΦ = K, (1.47). Moreover, as in the potential free case, (1.40), critical curves under
suitable boundary conditions of ΘΦ, (1.64), are going to be characterized by the equation
EΦ(γ) = 0.

Elasticae with Potential in Riemannian Surfaces

If we consider P (κ) = κ2, Φ = λ ∈ R and λ = 0 in (1.64), we are dealing with the
bending energy and its critical curves are elastic curves (or, simply, elasticae). The study
of elasticae is a classical variational problem initiated in 1691 when Bernoulli proposed
to determine the final shape of a flexible rod. If n = 2, the problem of elastic curves
in surfaces has a long history but it is really well understood only when M2 is a real 2-
space form, M2(ρ). In fact, Euler published in 1744 his classification of the planar elastic
curves in the Euclidean plane R2, [56], and, much more recently, Langer and Singer have
classified the closed elastic curves in the 2-sphere, S2(ρ), and in the hyperbolic plane,
H2(ρ), [94], but, in general, little is known for elastic curves in surfaces with non-constant
curvature.

On the other hand, if λ 6= 0, the functional Θλ, (1.64), is also a bending-type energy.
However, in this case, by a version of the Lagrange’s Multipliers Principle, critical curves
are elastic curves with a restriction on the length. Notice that the constant λ can be
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generalized. For instance, following the notation of Section 1.3.3, consider that Φ is a
general smooth function defined on a Riemannian surface Mn

r = N2, and we are going to
consider the curvature energy with potential (1.64) for P (κ) = κ2, that is

ΘΦ(γ) =

∫
γ

(
κ2 + Φ

)
ds (1.66)

acting on smooth immersed curves in N2. Then, following the computations of Section
1.3.3, the Euler-Lagrange equations for this case, (1.65), simplifies to (see also [25])

2κss + κ
(
κ2 + 2K − Φ

)
+N(Φ) = 0 , (1.67)

where K denotes the Gaussian curvature of N2. Observe that above Euler-Lagrange
equation, (1.67), generalizes the Euler-Lagrange equation of classical elastic curves. Thus,
solutions of (1.67) are going to be referred as elasticae with potential.



Chapter 2

Generalized Elastic Curves: A First
Application

The determination of the shape of elastic curves or rods is not only one of the oldest prob-
lems in the geometric Calculus of Variations, as it has been explained in the introduction,
but during the years it has been also showed to be one of the most interesting. In fact, it
has a huge range of applications, not only in Differential Geometry, but also in Physics,
Biophysics, Fluid Dynamics,... (see [11] and the references therein).

In this chapter we consider a possible generalization of elastic curves, that also includes
many other classical variational problems (see, for instance, [5], [7], [29],...). We are going
to call generalized elastic curves to these curves for obvious reasons, and they are going
to play an essential role along the whole memory. Indeed, most of the critical curves that
are going to appear in the memory fall inside this family. Therefore, in the first part of
the chapter, we are going to fix all the details of the variational problem related with
generalized elastic curves.

Finally, in the second part, we are going to completely describe a first nice application
of these curves to visual curve completion, that is, to image reconstruction.

2.1 Generalized Elastic Curves in Semi-Riemannian

Manifolds

Along this section we are going to consider the particular choice of the function P (κ)
given by

P (κ) = (κε − µ)p , (2.1)

19
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in the curvature energy functional (1.40), where ε = 1, 2 and p and µ ∈ R. That is, we
are going to consider the curvature energy

Θε,p
µ (γ) =

∫
γ

(κε − µ)p =

∫ L

o

(κε(s)− µ)p ds , (2.2)

where s denotes the arc-length parameter and L is the length of γ.
When p = 0, (2.2) is nothing but the length functional whose arc-length parametrized

critical curves are geodesics, therefore, in what follows, we are not going to allow p to be
zero. Moreover, if p = 1, then (2.2) is, basically, the total curvature functional, if ε = 1;
or, the bending energy with a penalty on the length, if ε = 2. In the latter, extremals of
(2.2) are called elastic curves. Therefore, from now on, we are going to call generalized
elasticae to critical curves of (2.2).

We first notice that for any positive p, curves with κε = µ will be global minima among
curves with (κε − µ)p ∈ L1([0, L]). Then, for all the cases, we consider Θε,p

µ (γ) ≥ 0 acting
on the following spaces of curves, satisfying given boundary conditions in (Mn

r , 〈· , ·〉),
with κε greater than µ. We shall denote by Ωr∗

pop1
the space of smooth immersed Frenet

curves of Mn
r , joining two given points of it and verifying that κε > µ, that is:

Ωr∗
pop1

= {β : [0, 1]→Mn
r | β(i) = pi, i ∈ {0, 1},

dβ

dt
(t) 6= 0,∀t ∈ [0, 1], κε > µ}, (2.3)

where pi ∈Mn
r , i ∈ {0, 1}, are arbitrary given points of Mn

r .
Then, if W is a proper vector field along a curve γ ∈ Ωr

pop1
, (1.41), then it is known that

there exists a variation of γ by immersed curves in Mn
r , Γ : [0, 1]× (−ε, ε)→Mn

r , (t, ς)→
Γ(t, ς), whose variation vector field is dΓ

dς
= W , as we have already explained in Section 1.3

of Chapter 1. Moreover, if γ ∈ Ωr∗
pop1

, (2.3), smoothness of Γ and κ implies that there exists

a “subvariation” Γ̂ : [0, 1] × (−ε̂, ε̂ ) → Mn
r , ε̂ < ε and Γ̂ being the restriction of Γ, such

that any variation curve in Γ̂ belongs to Ωr∗
pop1

, (2.3). Observe that both variations have
the same variation vector field W , and therefore, the derivation of the Euler-Lagrange
equations is the same.

That is, a critical curve γ ∈ Ωr∗
pop1

, (2.3), of Θε,p
µ , (2.2), must satisfy E(γ) = 0, where

E is the Euler-Lagrange operator defined in (1.45), for the adequate value of P (κ), (2.1).

2.1.1 Generalized Elastic Curves in 3-Space Forms

If the ambient space is a semi-Riemannian space form of arbitrary dimension n, Mn
r (ρ),

then by Proposition 1.3.1, it is enough to consider critical curves among curves immersed
in M3

r (ρ). Thus, in this section we are going to study the Euler-Lagrange equations of a
generalized elastica immersed in a semi-Riemannian 3-space form, M3

r (ρ).
Following the notation of Section 1.3.1 and 2.1, we denote by Ωrρ∗

pop1
to the subspace of

Ωrρ
pop1

, (1.49), where κε > µ. Now, if we consider Θε,p
µ , (2.2), acting on Ωrρ∗

pop1
, substituting
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the value of P (κ), (2.1), in (1.52) and (1.53), E(γ) = 0 boils down to

d

ds2

(
κε−1 (κε − µ)p−1)+ ε1ε2κ

ε−1 (κε − µ)p−1 (κ2 − ε1ε3τ
2 + ε2ρ

)
−ε1ε2

κ

εp
(κε − µ)p = 0 , (2.4)

2
d

ds

(
κε−1 (κε − µ)p−1) τ + κε−1 (κε − µ)p−1 dτ

ds
= 0 , (2.5)

which are the Euler-Lagrange equations of Θε,p
µ , (2.2), acting on Ωrρ∗

pop1
. Moreover, applying

Proposition 1.3.2 we obtain that the following vector fields along γ,

I = ε p κε−1 (κε − µ)p−1 B , (2.6)

J = ε1 (κε − µ)p−1 ((εp− 1)κε + µ) T

+ε p
d

ds

(
κε−1 (κε − µ)p−1) N + ε3εpκ

ε−1 (κε − µ)p−1 τ B , (2.7)

are Killing vector fields along γ. And, therefore, as explained in Section 1.3.1 they have
unique extensions to Killing vector fields on M3

r (ρ) (which will be denoted by the same
letters).

Finally, by making use of equations (1.59) and (1.60), we also have the following first
integrals of the Euler-Lagrange equations (2.4) and (2.5)

p2κ2(ε−1) (κε − µ)2(p−1) τ = e , (2.8)(
d

ds

(
κε−1 (κε − µ)p−1))2

+ ε1ε2
1

ε2p2
(κε − µ)2(p−1) ((εp− 1)κε + µ)2

+
(
ε2ε3τ

2 + ε1ρ
)
κ2(ε−1) (κε − µ)2(p−1) = ε2

d

ε2p2
, (2.9)

where d and e are the constants of integration appearing in (1.57) and (1.58), respectively.

2.2 An Application to Image Reconstruction

In this second part of the chapter, we are going to show how a certain family of general-
ized elastic curves can be applied to image reconstruction. In particular, we are mainly
interested in the application to visual curve completion. This section is going to be based
on [13].

Neuro-biologic research over the past few decades has greatly clarified the functional
mechanisms of the first layer V1 of the visual cortex (primary visual cortex ). Such layer
contains a variety of types of cells, including the so-called simple cells. Researchers found
that V1 constitutes of orientation selective cells at all orientations for all retinal positions
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so simple cells are sensitive to orientation specific brightness gradients (for details see [26]
and [50]). Recently, this structure of the primary visual cortex has been modeled using
sub-Riemannian geometry, [124]. In particular, the unit tangent bundle of the plane can
be used as an abstraction to study the organization and mechanisms of V1.

According to this model, in the space R2× S1 each point (x, y, θ) represents a column
of cells associated to a point of retinal data (x, y) ∈ R2, all of which are adjusted to
the orientation given by the angle θ ∈ S1. In other words, the vector (cos θ, sin θ) is the
direction of maximal rate of change of brightness at point (x, y) of the picture seen by
the eye. Such vector can be seen as the normal to the boundary of the picture. Thus,
when the cortex cells are stimulated by an image, the border of the image gives a curve
inside the 3-space R2×S1, but such curves are restricted to be tangent to the distribution
spanned by the vector fields

X1 = cos θ
∂

∂x
+ sin θ

∂

∂y
, X2 =

∂

∂θ
. (2.10)

It is believed that, if a piece of the contour of a picture is missing to the eye vision
(or maybe it is covered by an object), then the brain tends to “complete” the curve by
minimizing some kind of energy, being length the simplest (but not the only) of such
(for other possible options see [13]). In short, there is some sub-Riemannian structure on
the space of visual cells and the brain considers a sub-Riemannian geodesic between the
endpoints of the missing data.

2.2.1 Sub-Riemannian Geodesics

Let M3 be a smooth 3-manifold. A subbundle of the tangent bundle TM3 is called a
distribution D on M3. Once we have chosen D, a D-curve on M3 is a smooth immersed
curve δ : [a, b]→ M3 which is always tangent to D; that is, δ′(t) ∈ Dδ(t) for all t ∈ [a, b].
A distribution D is said to be bracket-generating if for every p ∈ M3 the sections of D
near p together with all their commutators span the tangent space of M3 at p, TpM

3. By
a well-known Theorem of Chow-Rashevskii, there is a D-curve joining any two points of
M3 if D is bracket-generating (check [27] for the smooth version of this Theorem).

Now, a sub-Riemannian metric is a smoothly varying positive definite bilinear form
〈· , ·〉 on D. Thus, if D were equal to the whole tangent bundle, 〈· , ·〉 would give a
Riemannian metric on M3. A sub-Riemannian 3-manifold, (M3,D, 〈· , ·〉), is a smooth
3-dimensional manifold M3 equipped with a sub-Riemannian metric 〈· , ·〉 on a bracket-
generating distribution D of rank m > 0. In this setting, the length of a D-curve δ is
defined to be

L(δ) =

∫ b

a

〈δ′(t), δ′(t)〉
1
2 dt .

Since D is bracket-generating, it is possible to endow M3 with a distance d. The distance
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d(p, q) between any two points p and q of M3 is defined by

d(p, q) = inf
δ
{L(δ) | δ is a D-curve joining p to q} .

To construct a sub-Riemannian structure on M3 = R2 × S1 we take the distribution
D = ker(sin θ dx − cos θ dy), where x and y are the coordinates on R2 and θ is the
coordinate on S1. This distribution is spanned by the vector fields described in (2.10).
Consider on D the inner product 〈·, ·〉 for which the two vectors (2.10) are everywhere
orthonormal.

Now, notice that every D-curve γ(t) = (x(t), y(t), θ(t)) with γ∗(cos θ dx+sin θ dy) 6= 0
is the lift of a regular curve α(t) = (x(t), y(t)) in the plane whose tangent vector α′(t)
forms the angle θ(t) with the x-axis, that is,

α′(t) = v(t) cos θ
∂

∂x
+ v(t) sin θ

∂

∂y
,

where v(t) is the speed of α(t). Conversely, every regular curve α(t) in the plane may be
lifted to a D-curve γ(t) = (x(t), y(t), θ(t)) by setting θ(t) equal to the angle between α′(t)
and the x-axis. Now, the tangent vector γ′(t) of the D-curve γ(t) has squared length

〈γ′(t), γ′(t)〉 = v2(t) + (θ′)
2

(t) = v2(t)

(
1 +

(
θ′(t)

v(t)

)2
)

= v2(t)(1 + κ2(t)) ,

where κ(t) is the curvature of α. Thus, the D-curves with γ∗(cos θ dx+ sin θ dy) 6= 0 that
cover the distance between two points (x0, y0, θ0) and (x1, y1, θ1) of M3 are the lifts of
curves α in the plane joining (x0, y0) to (x1, y1) with initial angle θ0 and final angle θ1

that minimize the functional

L(α) =

∫
α

(
1 + κ2(s)

) 1
2 ds , (2.11)

s being the arc-length parameter, among all such curves in the plane. In other words,
geodesics in V1 are obtained by lifting to M3 = R2 × S1 minimizers of (2.11) in R2.
Finally, as indicated in [26], the hypercolumnar organization of the visual cortex suggests
that the cost of moving one orientation unit is not necessarily the same as to moving
spatial units, then the curve completion problem should consider the functional

Θa(γ) =

∫
γ

√
κ2 + a2 ds (2.12)

for any real constant a, acting on planar curves instead. Observe that Θa, (2.12) is
included in our family of generalized elastic functionals, (2.2), for p = 1/2, ε = 2 and
µ = −a2.
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2.2.2 Total Curvature Type Extremals

Let us consider along this section the energy functional Θa : Ωpq → R defined in (2.12)
where, a ∈ R, s is the arc-length parameter and κ(s) ≡ κ1(s) is the first Frenet curvature
of γ(s), acting on the space of immersed curves γ(t) in R3 with fixed endpoints p, q ∈ R3,
Ωpq.

Observe that geodesics (curves of rank 0) are minima of Θa, (2.12). Now, since
geodesics are always critical for Θa, (2.12) (for suitable boundary conditions) in the
following we may assume, in addition, that γ ∈ Ωpq is a non-geodesic curve, namely, that
it is a curve of rank at least 1. Then, from (1.51), we obtain that the Euler-Lagrange
operator is given by

E(γ) =
1

(κ2 + a2)
1
2

T (3) + 2
d

ds

(
1

(κ2 + a2)
1
2

)
T ′′

+

(
d2

ds2

(
1

(κ2 + a2)
1
2

)
+

κ2 − a2

(κ2 + a2)
1
2

)
T ′ +

d

ds

(
κ2 − a2

(κ2 + a2)
1
2

)
T .

Now, if γ is an extremal of Θa, (2.12), then E(γ) = 0 and, therefore, (2.4) and (2.5),
reduce to

d2

ds2

(
κ

(κ2 + a2)
1
2

)
+

κ

(κ2 + a2)
1
2

(
κ2 − τ 2

)
− κ

(
κ2 + a2

) 1
2 = 0 , (2.13)

d

ds

(
κ2

κ2 + a2
τ

)
= 0 . (2.14)

Case a = 0 corresponds to the total curvature functional. This is the reason why along
this section we call total curvature type energy to Θa, (2.12). Moreover, this is also the
name given to the functional Θa in [15], where it was studied in any space form. In the
proper total curvature functional case, if γ ∈ Ωpq is critical then (2.13) and (2.14) imply
that the torsion vanishes, τ = 0 and, therefore, γ is a planar curve. Then,∫

γ

κ = θ(1)− θ(0) + 2πm , (2.15)

where θ(i) ∈ [0, 2π), i = 1, 2, denotes the angle that vi, i = 1, 2, makes with the line deter-
mined by p and q, and m ∈ Z is an integer representing the number (taking orientation
into account) of loops that the trace of γ has between p and q. Since (2.15) is constant
within any regular homotopy class of Ωpq having the same tangent vectors at p and q,
we see that the corresponding variational problem is trivial, that is, any γ ∈ Ωpq with
adequate tangent vectors at p and q is critical for Θa, (2.12), when a = 0.

So we assume from now on that a 6= 0. Notice that above equations (2.13) and (2.14)
imply that there are no helices (nor even Lancret helices) critical for Θa, (2.12) (see the
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corresponding definitions in Section 1.2.1). On the other hand, if γ ∈ Ωpq is critical for
Θa under arbitrary boundary conditions, then it satisfies E(γ) = 0 and, therefore, we
conclude that the first integrals of the Euler-Lagrange equations, (2.13) and (2.14), are(

dκ

ds

)2

=

(
a2 + κ2

a2κ

)2 ((
κ2 + a2

)
(dκ2 − e2(κ2 + a2))− κ2 a4

)
, (2.16)

τ = e

(
κ2 + a2

κ2

)
, (2.17)

where d > 0 and e ∈ R, due to the constraints of (1.57) and (1.58).
Moreover, by using the symmetries of R3, the coordinates of a critical curve γ can

also be obtained by quadratures. In fact, γ being critical means that I and J , which are
the extensions of (2.6) and (2.7), are Killing fields (see Section 2.1.1, Proposition 1.3.2
and the argument after it), which must come from one-parameter groups of helicoidal
motions. Then, choosing z as the axis of the helicoidal motion associated to I, introducing
cylindrical coordinates r, θ, z, and taking into account the first integrals of the Euler-
Lagrange equations given before, (2.16) and (2.17), we get ([5] and [92])

J =
√
d ∂z , (2.18)

I = J × γ +
e

d
J =

e√
d
∂z +

√
d ∂θ , (2.19)

where d > 0 and e ∈ R are the constants of integration appearing in (1.57) and (1.58).
Since | ∂θ |2= r2(s), then (1.55) and (2.19) give

r2(s) =
κ2

d(κ2 + a2)
− e2

d2
. (2.20)

Moreover, T (s) = r′∂r + θ′∂θ + z′∂z so (2.6), (2.7) and (2.18) imply

z′(s) =
−a2

(d(κ2 + a2))
1
2

. (2.21)

Finally, combining 〈T, I〉 = 0 and (2.19) we obtain

θ′(s) =
e

d

z′

r2
. (2.22)

Therefore, from (2.20)-(2.22) we see that, once the curvature of the critical curve, γ,
is known (for which we need to solve (2.16)) the coordinates of γ can be obtained by
quadratures. Notice also that (2.21) implies that z(s) is monotonic, thus, there are no
periodic solutions of the Euler-Lagrange equations (2.13) and (2.14), so that we cannot
have closed critical curves.
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Extremals in R2 are totally determined by their curvature, κ, which, in our case, can
be obtained explicitly. In fact, making τ = 0 in the Euler-Lagrange equation (2.13) we
get

d2

ds2

(
κ

(κ2 + a2)
1
2

)
− a2κ

(κ2 + a2)
1
2

= 0,

from which we have

κ

(κ2 + a2)
1
2

(s) = c1 exp(a s) + c2 exp(−a s) ,

for some integration constants c1 and c2. Then, solving for κ one obtains

κ(s) =
a(c1 exp(a s) + c2 exp(−a s))(

1− (c1 exp(a s) + c2 exp(−a s))2) 1
2

. (2.23)

From this equation, (2.23), we see that there is at most one point where the curvature
may change sign, so the curvature is always positive (or negative) except for at most
one inflection point. Moreover κ′(s) has at most one zero (a vertex), hence, either the
curvature is monotonic, or it monotonically decreases up to reaching the vertex where it
starts to monotonically increase (or viceversa). This means that planar critical curves are
a family of “short time” spirals in the plane.

This is a case relevant in image restoration as we mentioned in Section 2.2 and a
parametrization of extremal curves, using as parameter, θ, the angle which the curve
makes with a fixed line, was given in [26], under the assumption that the curves have no
inflection points. But, as we have just noticed, these extremals have at most one vertex,
hence, the argument of [26] applies and an explicit parametrization of extremals for this
variational problem can be obtained in terms of elliptic integrals of the first and second
kind (see Appendix A for details about these elliptic integrals). Alternatively, one may
use our previous computations to get different parametrizations of extremals, at least, by
quadratures. In fact, as it is very well-known, a parametrization in terms of the curvature
and arc-length parameter of a planar curve is given by

(∫
cos
∫
κ,
∫

sin
∫
κ
)
, then, using

(2.23) we can also get a parametrization of the extremals of Θa in R2 in terms of the
arc-length parameter after two quadratures. Observe that another parametrization can
also been explicitly obtained from (2.20) and (2.21).

However, for any possible choice of a parametrization method, a specific determination
of the solution curves implies that the integration constants must be determined. This
can be tried by imposing the solutions to satisfy the given boundary conditions, but this
requires, at the best, solving a highly nonlinear system for which an explicit parameters
expression looks unlikely. Hence, a numerical approach seems to be a reasonable strategy.
Our numerical treatment will be developed in next section and it is based on the gradient
descent method. For more details, see Appendix B.
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2.2.3 Minimizing Length

As explained in Section 2.2.1, the problem of minimizing the functional (2.11) acting
on the space of plane curves joining two given points of R2 with prescribed initial and
final angles is equivalent to that of finding D-curves minimizing the sub-Riemannian
length. Even better adapted to the curve completion demands is the variational problem
associated to the functional Θa, (2.12), which has been discussed in Section 2.2.2. Thus,
once we translate it to the language of the unit tangent bundle, we are led to the following
variational problem.

Denote by X the space of curves

β : [a, b] −→ R2 × S1 ; β (t) = (x (t) , y (t) , θ (t)) ,

joining two given points (xa, ya, θa) and (xb, yb, θb) of R2 × S1, that is

(x (a) , y (a) , θ (a)) = (xa, ya, θa) , (x (b) , y (b) , θ (b)) = (xb, yb, θb) ,

and satisfying the following admissibility condition

y′(t) = x′(t) tan θ(t) , t ∈ [a, b] ,

where ′ denotes derivative with respect to the curve parameter t ∈ [a, b], hereafter. On X
we consider the functional L defined by

L (β) =

∫ b

a

√
(x′)2 + (y′)2 + h2 (θ′)2dt , (2.24)

where h ∈ R is a proportionality constant introduced by accuracy of the physical model
[26]. Then, our problem is to find the minimizers or, more generally, extremals of L :
X→ R.

We first translate the problem to our settings. The sub-Riemannian metric defined on
R2 × S1 in Section 2.2.1 is extended to the whole space by considering the vector field

X3 = − sin θ
∂

∂x
+ cos θ

∂

∂y
,

and declaring orthonormal the family {X1, X2, X3}, where X1, X2 are given in (2.10). It
is easy to check that the induced metric is nothing but the standard product metric in
R2 × S1.

Now, consider the exponential map

exp : R→ S1 ; exp(t) = (cos t, sin t) .

Then π := Id × exp : R3 → R2 × S1, π(x, y, z) = (x, y, exp z) is a Riemannian covering
map with respect to the product metrics in both spaces and, in particular, it is a local
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isometry. For any β ∈ X choose a point (xa, ya, θ̃a) ∈ R3 such that π((xa, ya, θ̃a)) =

(xa, ya, θa) and take the unique lifting β̃ : [a, b] −→ R3 of β to R3 with β̃(a) = (xa, ya, θ̃a).

Define (xb, yb, θ̃b) = β̃(b). Then any variation of β within X can be uniquely lifted to a

variation of β̃ with endpoints (xa, ya, θ̃a) and (xb, yb, θ̃b) satisfying the constraint y′(t) =

x′(t) tan θ̃(t), t ∈ [a, b].

Thus, on the space of curves X̃

β̃ : [a, b] −→ R3 ; β̃ (t) = (x (t) , y (t) , θ̃ (t)) ,

joining the two points (xa, ya, θ̃a), (xb, yb, θ̃b) of R3,(
x (a) , y (a) , θ̃ (a)

)
=
(
xa, ya, θ̃a

)
,
(
x (b) , y (b) , θ̃ (b)

)
=
(
xb, yb, θ̃b

)
,

and satisfying the admissibility condition

y′(t) = x′(t) tan θ̃(t) , t ∈ [a, b] ,

we can define the functional

L̃
(
β̃
)

=

∫ b

a

√
(x′)2 + (y′)2 + h2

(
θ̃′
)2

dt .

Then, L̃(β̃) = L (β) , and, therefore β is critical for L, if and only if, β̃ is critical for

L̃. Observe also that regular curves in R2 × S1 are lifted to regular curves in R3 with the
same curvature and torsion and that they have the same projection, α(t) = (x(t), y(t)),
on R2.

Therefore, the original problem boils down to study extremals for L̃ in X̃ and we are
in position to apply our algorithm based on the gradient descent model to locate minima
(see Appendix B) with m = 3, n = 1, A = B = 0 to the functional L̃ acting on X̃
(however, by abuse of notation we are going to denote both, the functional and the space
of curves, without the tilde ˜ ). Moreover, for computational simplicity, it is better to
work with plane curves α(t) = (v(t), θ(t)) which are parametrized by using its speed v (t),
and the angle that its tangent makes with the x-axis direction, θ (t). Hence, our energy
functional becomes

L (β) =

∫ b

a

√
v2 (t) + h2 (θ′)2dt ,

and will be considered acting on the space X̂ formed by curves (we are abusing again of
the notation by using the same letter β as before)

β : [a, b] −→ R2 ; β (t) = (v (t) , θ (t)) ,
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satisfying the affine conditions

θ (a) = θa , θ (b) = θb ,

along with the following isoperimetric conditions

xb − xa =

∫ b

a

v cos θdt, yb − ya =

∫ b

a

v sin θdt.

Observe that the relations

x′ (t) = v (t) cos θ (t) , y′ (t) = v (t) sin θ (t) ,

enable us to recover the original minimizing curve β. Finally, the choice of our metric will
be

〈β(t), β̄(t)〉 = 〈β(a), β̄(a)〉+

∫ b

a

〈β′(t), β̄′(t)〉dt ,

for curves β, β̄ ∈ X̂.
In order to make the XEL-platform [9] work on the functional L : X̂→ R just defined,

we can take, without loss of generality, our curves defined in the unit interval, that is,
a = 0, b = 1, and assume also that the ends of the curves are chosen to be

p0 = (0, 0, θ0) , p1 = (1, 0, θ1) , θ0, θ1 ∈ R .

As an strategy to speed up the convergence of the algorithm we will restrict our
analysis to curves β satisfying additionally θ (t) = θ0 + t (θ1 − θ0), t ∈ [0, 1]. Notice that
this is a quite reasonable assumption in image reconstruction, since we do not expect
our image filling curves to have loops, and its inclusion does not alter the conclusions.
Rewriting our functional in this context we have

L (β) =

∫ 1

0

√
v2 (t) + h2 (θ1 − θ0)2dt ,

with

θ (0) = θ0 , θ (1) = θ1 ,

x1 − x0 =

∫ 1

0

v cos θdt , y1 − y0 =

∫ 1

0

v sin θdt ,

x′ (t) = v (t) cos θ (t) , y′ (t) = v (t) sin θ (t) .

To start with the gradient descent process we need to choose an initial curve αo in
the space of functions defined just above. For a = 0, b = 1, we determine αo by selecting
functions

θ (t) = (θ1 − θ0) t+ θ0 , v (t) = λ+ ν t , (2.25)
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where the parameters λ and η are obtained by using the isoperimetric constraints, that is

1 =

∫ 1

0

v (t) cos θ (t) dt , 0 =

∫ 1

0

v (t) sin θ (t) dt .

In other words, denoting by ∆θ = θ1 − θ0, we have

1 =
λ

∆θ
(sin (θ (t)))1

0 + ν

(
t

∆θ
sin (θ (t)) +

cos θ (t)

(∆θ)2

)
,

and

0 =
λ

∆θ
(− cos (θ (t)))1

0 + ν

(
− t

∆θ
cos (θ (t)) +

sin θ (t)

(∆θ)2

)
.

This gives a linear system A

(
λ
ν

)
=

(
1
0

)
, with associated matrix

A =


sin θ1 − sin θ0

∆θ

sin θ1

∆θ
+

cos θ1 − cos θ0

(∆θ)2

cos θ0 − cos θ1

∆θ

sin θ1 − sin θ0

(∆θ)2 − cos θ1

∆θ


whose solutions are

λ =
1

det (A)

{
sin θ1 − sin θ0

(∆θ)2 − cos θ1

∆θ

}
, ν =

1

det (A)

{
cos θ1 − cos θ0

∆θ

}
.

Now, substitution of these values in (2.25) gives us the curve αo to start with the
method. Of course, this can be done for any choice of initial conditions θ0, θ1.

Figure 2.1 shows a family of minimizers which have been obtained via the XEL-
platform for different choices of end angles θ0, θ1 detailed in Table 2.1. The minimizer
painted in blue in Figure 2.1 corresponds with the first row of Table 2.1. The initial and
final data of the minimizer in red is described in the second row, and, finally, the green
and brown curves correspond with the third and fourth rows of the Table 2.1, respectively.
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Figure 2.1: Some projections of minimizers of (2.24) obtained via XEL.

One may wish to compare extremals obtained by our method with those got in [26],
where the authors used a different numerical approach. For example, Table 2.1 also shows
the length of extremal curves obtained with both methods for identical initial data. Thus,
although both numerical approaches are conceptually very different, it is remarkable that
the results obtained by each method are very close concerning both shape and length of
the extremals.

However, the numerical procedure, XEL, briefly described in Appendix B (for more
details one can see [9]), is based mainly on numerical integration and it is free of numerical
derivations. This fact is very important when numerical algorithms are developed because
it is well-known that integration is more forgiving than differentiation.

Table 2.1: Some values of four minimizers of (2.24) in R2 × S1.

θ0 θ1 [26] XEL dev(L) err(G)

20◦ −10◦ 1.1687 1.16917677 4× 10−7 2× 10−8

40◦ −30◦ 1.6287 1.62896057 7× 10−8 2× 10−8

60◦ −50◦ 2.2435 2.24363232 8× 10−7 3× 10−9

70◦ −60◦ 2.5758 2.57613001 2× 10−9 2× 10−8

Our model deals with two different types of boundary conditions, affine and isoperi-
metric conditions. The former ones do not accumulate errors during the process, while for
the latter ones, the design of the numerical procedure looks for the minimization of the
possible error that can be accumulated during the implementation. Furthermore, as it is
deeply explained in [9], this way of constructing the solution via numerical integrations
gives rise to a way of measuring the deviation between numerical and real solutions. In
other words, once that boundary conditions are satisfied, it is possible to measure how
far the numerical solution, obtained with this method, is from satisfying the differential
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equation. Notice that this remark represents a huge advantage in comparison with other
numerical methods used for image reconstruction.

For instance, for the variational problem we are studying along this section, (2.24),
let’s consider the differential equation (2.13) with τ = 0 written in terms of a general
parameter t ∈ [0, 1], that is,

1

v(t)

d

dt

(
1

v(t)

d

dt

(
κ(t)√

κ2(t) + a2

))
− a2 κ(t)√

κ2(t) + a2
= 0 ,

where v(t) = ds
dt

is the velocity of the curve. Then, manipulating it, we formally obtain a
first integral

d

dt

(
κ(t)√

κ2(t) + a2

)
− a2 v(t)

∫ t

o

κ(u) v(u)√
κ2(u) + a2

du = c v(t) ,

for any constant of integration c ∈ R. Moreover, it is also possible to obtain formally a
second integral, that is(

κ(u)√
κ2(u) + a2

)t

o

− a2

∫ t

o

(∫ w

o

κ(u) v(u)√
κ2(u) + a2

du

)
v(w) dw = c

∫ t

o

v(u) du. (2.26)

Observe that in the experiments of Table 2.1 we have chosen a = 1, for simplicity.
Now, as explained above, the XEL-platform gives both tabulated functions and their

corresponding integrals, that is, everything we need to substitute in (2.26). As a conse-
quence, we can also measure the deviation. For this purpose, let’s define the point-wise
deviation by

Ψ(t) =

(
κ(u)√

κ2(u) + a2

)t

o

− a2

∫ t

o

(∫ w

o

κ(u) v(u)√
κ2(u) + a2

du

)
v(w) dw − c

∫ t

o

v(u) du .

Then, the deviation between the theoretical solution and the approximate one will be
considered to be the L2 norm of the function Ψ(t), that is

dev (L) =

(∫ 1

o

Ψ2(t) dt

) 1
2

.

Take into account that the theoretical solution verifies Ψ(t) = 0, and, therefore, dev (L) =
0. We collect the deviations of the solutions given by XEL in the column dev (L) of Table
2.1. On the other hand, in the column err (G) we compute the accumulated error for each
case, due to the isoperimetric boundary conditions. In conclusion, it can be checked that
both columns have really small values, which makes our method quite accurate.
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In Figures 2.2 and 2.3, we plot some examples of curve completion via minimum length
in the unit tangent bundle of the plane. In Figure 2.2, we have two modal completions
(their completed boundary curves give illusory and subjective objects) and in Figure 2.3
one amodal completion (the object is fragmented due to occlusion) is represented.

Figure 2.2: Two modal completions.

Finally, notice that another advantage of our XEL-platform is that it is easily adapt-
able to a huge family of functionals satisfying the required conditions. For instance, it
has been pointed out in [26] (and also suggested in [112]) that investigation of extremals
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for the elastic energy in the unit normal bundle might be important for examining com-
binations of image plane properties. See [13] for some results obtained considering the
elastic energy (and others) using this XEL-platform.

Figure 2.3: One amodal completion.



Chapter 3

Binormal Evolution Surfaces in
3-Space Forms

A large class of physical systems are modeled in terms of motion of curves and surfaces
in the Euclidean 3-space, R3. A remarkable example is the so called localized induction
equation

xt = xs × xss , (3.1)

which is a soliton equation used to model the dynamics of a thin vortex filament in an
incompressible, inviscid, homogeneous, 3-dimensional fluid, [49], [130] and [132]. Locally,
this motion determines an immersed surface in R3. On the other hand, by choosing a
geodesic coordinate system in an isometrically immersed surface (U, x) of R3, one can
check that the following equation is satisfied on U

xt = ζ xs × xss ,

where ζ is a function which depends on the surface metric coefficients with respect to
(U, x). If ζ = 1, we recover the localized induction equation, (3.1), and as we will see
later, Gauss-Codazzi equations, (1.5) and (1.6), boil down to Da Rios equations found in
1906, [130].

Quite often, by resorting to the underlying geometry one can gain considerable insight
into the dynamics of physical systems, [89] and [132]. In the first part of this chapter, we
use a geometrical approach to investigate an extension of (3.1) obtained by considering a
smooth map x : U ⊂ R2 →M3

r (ρ), x(s, t) (recall that M3
r (ρ) is isometrically immersed in

E4
ð), verifying

xt = ζ

(
|∇̃xsxs|,

det(xs, ∇̃xsxs, ∇̃2
xsxs)

|∇̃xsxs|2

)
xs × ∇̃xsxs , (3.2)

where ζ is a suitable smooth function and ∇̃ is the Levi-Civita connection on M3
r (ρ).

35
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Under mild conditions we will see that a curve motion following (3.2) describes a
curve γ evolving under the binormal flow, with velocity depending on the curvature and
torsion of γ, and determines an immersed surface, x(U), in M3

r (ρ). Then, fundamental
results of the Theory of Submanifolds can be applied and it will be seen that solving
geometrically (3.2) amounts to solve the Gauss-Codazzi equations (1.5) and (1.6), since
that would give us the curvature and torsion of a geodesic foliation of x(U). Alternatively,
one can determine the evolution by finding a single solution, working as initial condition
x(s, 0) = γ(s), and then giving a geometrical description of the binormal flow.

In the second part of this chapter, we focus on traveling wave solutions of the Gauss-
Codazzi equations and we will show that the initial condition for this type of solutions is
a generalized Kirchhoff centerline. In particular, we study curves evolving by (3.2) with
constant torsion and use the Gauss-Codazzi equations to construct solutions by means of
extremal curves for curvature dependent energies and associated one-parameter groups of
isometries.

Finally, in the last part, we are going to apply our findings to some special families of
surfaces of 3-space forms.

3.1 Binormal Motion of Curves

Let’s consider a smooth map x : U ⊂ R2 → M3
r (ρ), x(s, t), satisfying (3.2) and let’s

assume that the initial condition γ(s) := x(0, s) is a unit speed Frenet curve of rank 2
or 3, then γt(s) := x(s, t), which will be called the filament at time t, is also unit speed

parametrized ∀t. In fact, we have ∂
∂t
〈xs(s, t), xs(s, t)〉 = 2 〈∇̃xsxt, xs〉 = 0 , where the last

equality is obtained from (3.2). So, since 〈xs(s, 0), xs(s, 0)〉 = 〈dγ
ds
, dγ
ds
〉 = 〈T, T 〉 = ε1, then

so is ∀t, that is, (3.2) is a length-preserving evolution. Assuming also that ∇̃xsxs(s, t) is
non-null everywhere, the associated Frenet frame, {xs = T (s, t), N(s, t), B(s, t)}, will be
defined for all γt and combining (3.2) and (1.10)-(1.12) we obtain

xt = ζ(κ, τ)xs × ∇̃xsxs = ζ(κ, τ)T × ∇̃TT =

= ε2 κ ζ(κ, τ) T ×N = ε2 ε3 κ ζ(κ, τ)B = F (κ, τ)B . (3.3)

This means that γ(s) evolves by the binormal flow with velocity F(κ, τ). We are going to
suppose also that ζ is never zero so that (U, x) defines an immersed surface in M3

r (ρ) swept
out by γ(s). It will be called a binormal evolution surface with initial condition γ and
velocity F . In conclusion, a surface x : U →M3

r (ρ), x(s, t), immersed in any Riemannian
or Lorentzian 3-space form is a binormal evolution surface with velocity F(κ, τ) if the
following conditions are verified;

(i) The initial condition γ(s) = x(s, 0) is an arc-length parametrized Frenet curve of
rank 2 or 3,
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(ii) All the filaments γt(s) = x(s, t) are Frenet curves, and

(iii) Equation xt = F(κ, τ)B, (3.3), is verified.

The curves δs(t) := x(s, t), perpendicular to the filaments, are called fibers of (U, x). The
time variation of the Frenet frames is described in the following Proposition (compare
with (3.15) of [132] for surfaces in R3)

Proposition 3.1.1. ([10]) Let (U, x) be a binormal evolution surface of M3
r (ρ) with ve-

locity F . Then,

∇̃ ∂
∂s

 T
N
B

 (s, t) =

 0 κ 0
−κ 0 τ
0 −τ 0

 ε1T
ε2N
ε3B

 (s, t) , (3.4)

∇̃ ∂
∂t

 T
N
B

 (s, t) =

 0 −τF ε3Fs
τF 0 ε2h22F
−ε3Fs −ε2h22F 0

 ε1T
ε2N
ε3B

 (s, t) , (3.5)

where h22 = 1
κ
{ε3

Fss
F − ε2τ

2 + ε1ε3ρ}, and κ(s, t) and τ(s, t) denote the curvature and
torsion of the curves γt(s).

Proof. It is clear from (3.3) and (3.4) that the filaments γt(s) are geodesics of (U, x)
and, then, (U, x) defines a geodesic coordinate system (see Section 1.2.2). Thus, it must
verify the PDE system (1.29)-(1.31). This system can be expressed equivalently in terms
of the time variation of the Frenet frame. In fact, from the Gauss formula (1.14) and
(1.29), we have

∇̃ ∂
∂t
T = −ε2F τN + FsB . (3.6)

So, differentiating xt = F B and using once more Gauss and Weingarten formulas, (1.14)
and (1.15), we have

xtt = FtB + F
(
∇̃ ∂

∂t
B − ε3ρF x

)
,

which combined with (1.31) gives

∇̃ ∂
∂t
B = −ε1ε3Fs T − h22F N . (3.7)

Finally, from (3.6), (3.7) and the cross product relations (see Section 1.2.1), one obtains

∇̃ ∂
∂t
N = ε1τF T + ε2ε3h22F B ,

which ends the proof. �
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Now, combining (1.16) and Gauss and Codazzi equations, (1.5) and (1.6), with (1.23)-
(1.26), we obtain after a long computation

Fss
F

= ε3κh22 + ε2ε3τ
2 − ε1ρ , (3.8)

κt = −2Fsτ − τsF , (3.9)

τt = ε1ε3κFs + ε2(h22F)s . (3.10)

From the Gauss equation (3.8) we have (1.28)

h22 =
1

κ

(
ε2
Fss
F
− ε2τ

2 + ε1ε3ρ

)
.

By substitution of (1.28) in (3.10) we get that the Codazzi equations, (3.9) and (3.10),
for (U, x) boil down to

κt = −2Fsτ − τsF , (3.11)

τt = ε1ε3κFs + ε2

(
F
κ

(
ε3
Fss
F
− ε2τ

2 + ε1ε3ρ

))
s

. (3.12)

Observe that, if F = κ, (3.11) and (3.12) are precisely Da Rios equations for the vortex
filament, [130]. So Da Rios equations can be seen as the Gauss-Codazzi equations of a
binormal evolution surface with velocity κ.

Notice that (3.11) and (3.12) are the compatibility conditions of the PDE system
(1.29)-(1.31). Thus, from the Fundamental Theorem of Submanifolds (see §2.7 of [39]),
given functions κ(s, t), τ(s, t) and F(s, t), smoothly defined on a connected domain U and
satisfying (3.11) and (3.12), there exists a solution of (1.29)-(1.31) (and, consequently,
of (3.4) and (3.5)) determining a smooth isometric immersion (U, x) (unique up to rigid
motions, if U is simply connected) of a surface in M3

r (ρ) whose metric and the second
fundamental form are given, respectively, by g = ε1ds

2 + ε3F2dt2 and ε2h = −κ ds2 +
2τFds dt+ ε2F2h22dt

2, (1.22) and (1.27), where h22 is obtained from (1.28).
Moreover, computing the Christoffel symbols from the metric coefficients for such an

immersion, (U, x), we see that γt(s) are arc-length parametrized geodesics ∀t. Then, a
combination of the Gauss formula (1.14) and equations (1.10)-(1.12) for the Frenet frame
along the coordinate curves γt(s), {xs = T (s, t), N(s, t), B(s, t)}, shows that the unit
Frenet normals N(s, t) are perpendicular to the surface (U, x). Hence, xt = λ(s, t)B(s, t),
but then the second coefficient of g (1.22) implies that F(s, t) = λ(s, t) and (U, x) is a
solution of (3.3). Since (U, x) is foliated by geodesics γt(s) having κt(s) := κ(s, t) and
τ t(s) := τ(s, t) as curvature and torsion, respectively, the immersion itself, x, is geomet-
rically determined by κt(s) := κ(s, t) and τ t(s) := τ(s, t), because, from the Fundamental
Theorem of Curves, for any fixed t, there exists a unique curve γt(s) (up to congruences
and causal character of the Frenet frame) having κt(s) and τ t(s) as curvature and torsion.
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Then, an smooth assembling of these curves γt(s), t ∈ Ī would give x. So, geometrically
solving (3.3) amounts to solve the system (3.11) and (3.12).

From now on, it will be convenient to choose a smooth function P (κ, τ) so that,
Ṗ (κ, τ) := ∂P

∂κ
(κ, τ) = F(κ, τ).

3.1.1 Hasimoto Transformation and the Complex Wave Func-
tion

To end up this section, we rewrite the Gauss-Codazzi equations (3.11) and (3.12) in terms
of the complex wave function. The Hasimoto transformation [73] maps any curve γ(s)
with positive curvature κ > 0 and torsion τ into its complex wave function Ψ defined by

Ψ(s, t) = κ(s, t) exp

(
i

∫ s

so

τ(s∗, t)ds∗
)
. (3.13)

Moreover, the curve can be recovered (up to congruences in M3
r (ρ)) from its complex wave

function Ψ, in terms of its curvature and torsion, by taking

κ = 〈Ψ,Ψ〉
1
2 , τ = Im(

Ψs

Ψ
) . (3.14)

Using this transformation and a choice of a suitable s0 (such that,
∫
τt ds

∗|s0= 0), we can
see that the Gauss-Codazzi equations (3.11) and (3.12) are equivalent to

Ṗss(1− ε2ε3)
Ψ

|Ψ|
= iΨt +

(
Ṗ

Ψ

|Ψ|

)
ss

+ ε1ε3

(
Ṗ

|Ψ|
(
|Ψ|2 + ε3ρ

)
− P

)
Ψ . (3.15)

Thus, we have that each solution of (3.15) gives rise to two functions defined in (3.14),
such that a smooth assembly of the only curves having them as curvature and torsion (up
to rigid motions in M3

r (ρ)) give a foliation of a binormal evolution surface with velocity
Ṗ , (3.3). The converse is clear, so we have

Proposition 3.1.2. ([64]) Let γ(s) be a unit speed Frenet curve of rank 2 or 3. Then,
γ(s) is the initial condition of a evolution under (3.3), if and only if, the complex wave
function Ψ, (3.13), evolves by (3.15).

3.1.2 Traveling Wave Solutions and Curvature Energies

As mentioned in Section 3.1, geometrically solving the binormal flow (3.3) is equivalent
to solve the Gauss-Codazzi equations given by the system (3.11) and (3.12). Thus, along
this section we are going to analyze traveling wave solutions of the Gauss-Codazzi equa-
tions (3.11) and (3.12) associated to a binormal evolution surface with respect to the
parametrization x(s, t) = γt(s), (1.20).
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Here, traveling wave is understood to be a function u(s, t) of the form u(s, t) = ψ(s−
$ t), $ ∈ R for some smooth function ψ. Let’s define ι = s − ε1ε3µ t for some real
constant µ, and take κ(s, t) = κ(ι) and τ(s, t) = τ(ι). Differentiating the Gauss-Codazzi
equations (3.11) and (3.12) we get

Ṗ τι + 2Ṗιτ − ε1ε3µκι = 0 , (3.16)

Ṗιι + ε1ε2Ṗ (κ2 − ε1ε3τ
2 + ε2ρ)− ε1ε2κ(P − µτ + ε1ε3 c) = 0 , (3.17)

for some c ∈ R. Then, calling λ = ε1ε3c, it is easy to verify that (3.16) and (3.17) are
precisely the Euler-Lagrange equations, (1.62) and (1.63), for Θ(γ) =

∫
γ

(P (κ) + µτ + λ).

In other words, a solution (κ, τ) of (3.16) and (3.17) determines a curve γ that must be
a generalized Kirchhoff centerline. Hence, the next theorem shows how to construct
solutions of binormal evolution surfaces in M3

r (ρ)

Theorem 3.1.3. ([64]) Traveling wave solutions of Gauss-Codazzi equations (3.11) and
(3.12) correspond to the curvature and torsion of generalized Kirchhoff centerlines. More-
over, generalized Kirchhoff centerlines evolve following (3.3) by isometries of M3

r (ρ) and
slippage.

Proof. The first part has just been stated. As for the second one, consider γ(s) a
generalized Kirchhoff centerline. Then, by Proposition 1.3.3, I = ε1ε3µT + ṖB is a
Killing vector field along γ. Denote by ξ the Killing vector field on M3

r (ρ) which extends
I (as explained in Section 1.3.1) and denote by {φt , t ∈ R}, the one-parameter group of
isometries associated to ξ ,that is, the flow of ξ. Define the surface y(s, t) := φt(γ(s)).
Since {φt , t ∈ R} are isometries, we have yt = ε1ε3µT + ṖB and we see that, after
reparametrizations, y(s, t) evolves by (3.3). �

Therefore, traveling wave solutions of the Gauss-Codazzi equations represent binormal
evolution surfaces (U, x), where the initial condition γ is a generalized Kirchhoff centerline.
In this case γ evolves by rigid motions and slippage.

On the other hand, among traveling wave solutions there is a special case where
initial filaments evolve by congruences. These solutions correspond to traveling wave
solutions with µ = 0 and it is a straightforward computation to verify that the Gauss-
Codazzi equations (3.11) and (3.12) are equivalent to the Euler-Lagrange equation for
Θ(γ) =

∫
γ

(P (κ) + λ) ds. Then,

Corollary 3.1.4. ([10]) A Frenet curve γ of rank 2 or 3 evolves under (3.3) by isometries
of M3

r (ρ), if and only if, γ is an extremal of Θ(γ) =
∫
γ

(P (κ) + λ) ds.

In this case, we get a foliation of the binormal evolution surface by critical points of
Θ, (1.40), (as curves in M3

r (ρ)) that are also geodesics of the surface (U, x).
In the following sections we are going to study binormal evolution surfaces all whose

filaments have the same constant torsion. Moreover, since τ = τo ∈ R, F(s, t) =
F(κ(s, t), τo). Thus, we can choose a smooth function P (κ) so that Ṗ (κ) := dP

dκ
= F(κ).
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3.2 Evolution with Vanishing Torsion

Let’s assume along this section that the torsion of all filaments of the evolution vanishes,
that is, τ(s, t) = 0. Now,

Proposition 3.2.1. ([10]) Let (U, x) be a binormal evolution surface all whose filaments
satisfy τ = 0. Then, the initial filament γ = x(s, 0) is extremal for the energy Θ(γ) :=∫
γ
(P (κ) + λ)ds and x(U) = Sγ = {φt(γ), t ∈ R}, where {φt, t ∈ R} is a one-parameter

group of isometries of M3
r (ρ).

Proof. By substituting τ = 0 in (3.11) we have κ(s, t) = κ(s) and the metric with
respect to the chosen coordinate system is g = ε1ds

2 +ε3F2(s)dt2. This means that (U, x)

is a warped product surface [39], and, since
∂gij
∂t

= 0 , we have that xt(s, t) = F(s)B(s, t) =

Ṗ (s)B(s, t) is a Killing field of (U, x). Now, integrating (3.12) we get

0 = Ṗss + ε1ε2Ṗ (κ2 + ε2ρ)− ε1ε2κ(P + λ) , (3.18)

for some λ ∈ R. Moreover, since τ = 0, we have that (3.18) is the Euler-Lagrange equa-
tion for Θ, (1.40), (see Section 1.3.1) and γt must be an extremal of Θ in M2

r (ρ), ∀t.
Then, by Proposition 1.3.2, xt is Killing along γt.
Hence, the associated one-parameter group {φt, t ∈ R} is formed by isometries of M3

r (ρ)
and x(U) = Sγ is obtained as Sγ = {φt (γ(s)) , t ∈ R}, where γ(s) = x(s, 0). �

Moreover, under the conditions of above Proposition

Proposition 3.2.2. ([10]) The fibers of Sγ have constant curvature and zero torsion (if
they are not geodesics) in M3

r (ρ).

Proof. Since xs = T (s, t), xt = Ṗ (κ(s))B(s, t), and ∇̃xsB(s, t) = −ε2τN(s, t) = 0, we
get that B(s, t) does not depend on s. Moreover, as fibers are orbits of a Killing field
of M3

r (ρ), they have constant curvature in M3
r (ρ). Now, for any so take an arc-length

parametrization, δso(t), of the fiber of Sγ through so. With the subscript δ denoting the
geometric elements associated to the curve δso(t), we have Tδ(t) = B( t

Ṗ (κ(so))
) and, using

the last equation of (3.5), we obtain

εδ2κδNδ = −ε1ε3
Ṗs

Ṗ
T − h22N , (3.19)

if δso(t) has non-null acceleration. Thus, differentiating (3.19) with respect to t and using
again (3.5), we have that δso(t) must verify

κδ(so, t) = κδ(so) , κδτδ = 0 , εδ2κ
2
δ = ε1

Ṗ 2
s

Ṗ 2
+ ε2h

2
22 ,
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from which we see that either κδ = 0, and δso(t) is a geodesic in M3
r (ρ), or κδ 6= 0, and

δso(t) is a planar circle.
On the other hand, if δso(t) has null acceleration and is not a geodesic, then we can
consider the following frame along γ. Define Nδ(t) as the lightlike field on δso(t) given by

∇̃ ∂
∂t
Tδ(t) = Nδ(t) and denote by Bδ(t) the only lightlike vector such that 〈Nδ, Bδ〉 = 1

and 〈Tδ, Bδ〉 = 0. In this case, we have the following Frenet-type equations

∇̃ ∂
∂t
Tδ(t) = Nδ(t) , ∇̃ ∂

∂t
Nδ(t) = τδ(t)Nδ(t) , ∇̃ ∂

∂t
Bδ(t) = −T (t)− τδ(t)Bδ(t) ,

for certain function τδ(t) which will be also called the torsion of γ (here, the “curvature”
is considered to be 1). Then, from the second equation of (3.5), it is clear that τδ(t) = 0. �

In particular, if the curvature of the filaments, κ(s, t), is also constant, then Sγ is a
flat isoparametric surface.

Proposition 3.2.3. ([12]) Let Sγ be a binormal evolution surface and assume that γ has
constant curvature, κo, and vanishing torsion, τ = 0. Then, Sγ is a flat isoparametric
surface.

Proof. Take γ a planar curve of M3
r (ρ) with constant curvature κ(s) = κo. Then,

the function Ṗ = F = G is independent of the arc-length parameter s. Therefore, from
equation (1.38), we have that the Gaussian curvature of Sγ vanishes, that is, Sγ is a flat
surface. Furthermore, substituting this information in equation (1.39), we get that the
mean curvature of Sγ, H, is constant. Thus, we conclude that Sγ is a flat isoparametric
surface. �

Assume now that r = 0, that is, Sγ is immersed in a Riemannian 3-space form M3(ρ).
If Sγ has planar filaments (τ = 0) and the curvature of γ is not constant, then Sγ would be
a rotational surface. In fact, any Killing vector field ξ defined on M3(ρ) can be assumed
to be of the form ξ = λ1X1 + λoVo where λi ∈ R for i = 0, 1 and

X1 = x1∂x2 − x2∂x1 , Vo = ∂x3 , (3.20)

if M3(ρ) = R3. In the case that, M3(ρ) = S3(ρ) ⊂ R4, any Killing vector field ξ can be
written as ξ = λ1X1 + λ2X2 where λ2 ∈ R, X1 is given in (3.20) and

X2 = x3∂x4 − x4∂x3 . (3.21)

And, in the last case, M3(ρ) = H3(ρ) ⊂ L4, a Killing vector field ξ can be assumed to be
either ξ = λ1X1 + λ3X3 where λ3 ∈ R, X1 is defined in (3.20) and

X3 = x4∂x3 + x3∂x4 , (3.22)
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or ξ = λ4X4 where λ4 ∈ R, with

X4 = (x4 − x3)∂x2 + x2∂x3 + x2∂x4 . (3.23)

We say that the Killing vector field Vo, (3.20), is a translational vector field. Notice
that the orbits of Vo are straight lines. On the other hand, the Killing vector fields X1

and X2, given in (3.20) and (3.21), respectively, are called spherical rotational vector fields
and their orbits are Euclidean circles. Moreover, we call hyperbolic rotational vector field
to X3, (3.22), while we refer as parabolic rotational vector field to X4, (3.23). The orbits
of X3 and X4 are hypercycles and horocycles, respectively.

Finally, we say that a surface N2 immersed in a Riemannian 3-space form, M3(ρ),
is a rotationally symmetric surface (or simply a rotational surface) if it is congruent to
a ξ-invariant surface and ξ = λiXi, for some i = 1, 2, 3, 4, that is, for some rotational
Killing vector field. If N2 is a rotational surface, then there exist a planar (τ = 0) curve,
γ, in M3 such that N2 = {φt(γ) , t ∈ R}, where {φt , t ∈ R} represents the one-parameter
group of isometries associated to ξ. Therefore, we use the notation N2 = Sγ (see Section
1.2.3). Now, in the case that ξ is a real multiple of X1 or X2, we will say that Sγ
is a spherical rotational surface; if ξ is a multiple of X3, then Sγ will be referred as a
hyperbolic rotational surface, and, finally, if ξ is a multiple of X4 we have that Sγ is a
parabolic rotational surface.

Proposition 3.2.4. ([12]) Let Sγ ⊂ M3(ρ) be a binormal evolution surface all whose
filaments have zero torsion. Then, if they also have non-constant curvature, Sγ is a
rotational surface.

Proof. In this case, from the proof of Proposition 3.2.2 we know that the Frenet
binormal is a constant vector field on γ, which can be written as

B(s) =
4∑
i=1

ai∂xi , (3.24)

where ai ∈ R. From Proposition 3.2.1 we know that Sγ is invariant by a one-parameter
group of isometries associated to a Killing vector field ξ. Moreover, from Proposition 1.3.2
we also know that the restriction of the Killing vector field ξ to the surface is

I = ξ = ṖB , (3.25)

where Ṗ denotes the function Ṗ = dP
dκ

.
Case (i). M3(ρ) = R3. In this case, since ξ is a Killing field, we can assume ξ =
λ1X1 + λoVo, (3.20). Then, comparing (3.24) and (3.25) we obtain that Ṗ a3 = λo. If
a3 6= 0, then Ṗ (and, therefore, κ) would be constant, which is not possible. Hence
a3 = λo = 0, what implies that Sγ is rotational.
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Case (ii). M3(ρ) = S3(ρ), ρ > 0. In this case, since ξ is a Killing field, we can assume
ξ = λ1X1 + λ2X2, (3.21). Now, comparing (3.24) and (3.25) we obtain that

Ṗ a1 = −λ1γ2(s), Ṗ a2 = λ1γ1(s), Ṗ a3 = −λ2γ4(s), Ṗ a4 = λ2γ3(s). (3.26)

If λ1, λ2 6= 0, then, combining
∑4

i=1 γ
2
i = 1/ρ and (3.26), we would obtain that Ṗ (and,

therefore, κ) would be constant, which is not possible. Hence, either λ1 = 0 or λ2 = 0. In
both cases, Sγ is rotational.
Case (iii). M3(ρ) = H3(ρ), ρ < 0. In this case the Killing field ξ can be assumed to be
either ξ = λ1X1 + λ3X3 or ξ = λ4X4, (3.22) or (3.23).
In the first case, comparing (3.24) and (3.25) we obtain that

Ṗ a1 = −λ1γ2(s), Ṗ a2 = λ1γ1(s), Ṗ a3 = λ3γ4(s), Ṗ a4 = λ3γ3(s). (3.27)

If λ1, λ3 6= 0, then, combining
∑3

i=1 γ
2
i − γ2

4 = 1/ρ and (3.27), we would obtain that Ṗ
(and, therefore, κ) would be constant, which is not possible. Hence, either λ1 = 0 or
λ3 = 0.
Assume first that λ3 = 0. Then (3.27) implies a3 = a4 = 0, and a2

1 + a2
2 = 1. Thus,

without loss of generality we may take B = (0, 1, 0, 0). From this and (3.27), we have
that γ2 = 0 and Ṗ = λ1γ1. After reparametrization if needed, we have that the flow of
ξ = λ1X1 is formed by the curves β(t) = (b1 cos(λ1t), b1 sin(λ1t), b3, b4), for certain scalars
bi ∈ R, i = 1, 3, 4. Taking γ(s) as initial condition for the flow, we have the following
parametrization of Sγ

x(s, t) = (γ1(s) cos(λ1t), γ1(s) sin(λ1t), γ3(s), γ4(s)) .

Call P 2 the plane spanned by e3 = (0, 0, 1, 0) and e4 = (0, 0, 0, 1). Analogously, denote
by P 3 the 3-space spanned by e3, e4 and e1 = (1, 0, 0, 0). If {φt, t ∈ R} denotes the one-
parameter group of isometries associated to ξ, then we see that the Lorentzian plane P 2

is point-wise invariant by the action of {φt, t ∈ R} and that P 3
⋂
Sγ = γ. Hence, Sγ is a

spherical rotational surface in H3(ρ), [36].
Assume now that λ1 = 0. Then (3.27) implies a1 = a2 = 0, and we may take B =
(0, 0, 1, 0). Combining this and (3.27), we have that γ3 = 0 and Ṗ = λ3γ4. After
reparametrization if needed, we have that the flow of ξ = λ3X3 is formed by the curves
β(t) = (b1, b2, b3 cosh(λ3t), b3 sinh(λ3t)), for certain scalars bi ∈ R, i = 1, 2, 3. Taking γ(s)
as initial condition for the flow, we have the following parametrization of Sγ

x(s, t) = (γ1(s), γ2(s), γ4(s) sinh(λ3t), γ4(s) cosh(λ3t)).

Call P 2 the plane spanned by e1 = (1, 0, 0, 0) and e2 = (0, 1, 0, 0). Analogously, denote
by P 3 the 3-space spanned by e1, e2 and e4 = (0, 0, 0, 1). If {φt, t ∈ R} denotes the one-
parameter group of isometries associated to ξ = λ3X3, then we see that the Riemannian
plane P 2 is point-wise invariant by the action of {φt, t ∈ R} and that P 3

⋂
Sγ = γ. Hence,
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Sγ is a hyperbolic rotational surface in H3(ρ), [36].
Finally, assume that ξ = λ4X4, (3.23). Then, comparing (3.24) and (3.25) we obtain

Ṗ a1 = 0, Ṗ a2 = λ4(γ4(s)− γ3(s)), Ṗ a3 = λ4γ2(s), Ṗ a4 = λ4γ2(s). (3.28)

For simplicity, we take λ4 = 1. Thus, relations (3.28) imply a1 = 0 and, since a2
2+a2

3−a2
4 =

1, we may assume a2 = a3 = a4 = 1. Again, we compute the integral curves of ξ with
initial conditions γ(s) obtaining the following parametrization of Sγ

x(s, t) = (γ1(s), γ2(s)t+ γ2(s),
γ2(s)

2
t2 + γ2(s)t+ γ3(s),

γ2(s)

2
t2 + γ2(s)t+ γ4(s)).

On the other hand (3.28) imply also γ2(s) = γ4(s) − γ3(s), so that, choosing the follow-
ing pseudo-orthonormal coordinate system B := {v1 = (0, 1, 0, 1), v2 = (0, 1, 1, 1), v3 =
(0, 0,−1,−1), v4 = (1, 0, 0, 0)}, we see that above parametrization reduces to

x(s, t) = (γ2(s), γ2(s)t,−1 + γ2
1(s) + γ2(s)2t2

2γ2(s)
, γ1(s)).

Moreover, the plane P 2 = span{v3, v4} is a degenerate point-wise invariant plane by the
action of the group of isometries associated to ξ, and if P 3 = span{v1, v3, v4} we have
P 3
⋂
Sγ = γ. Hence, Sγ is a parabolic rotational surface in H3(ρ), [36]. �

3.2.1 Parametrizations in Riemannian 3-Space Forms

Observe that the proof of Proposition 3.2.4 provides a standard way of finding local
parametrizations of binormal evolution surfaces with planar initial conditions in Rieman-
nian 3-space forms, provided that γ is a critical curve of Θ, (1.40), with non-constant cur-
vature. However, in what follows we are going to use a technique based on Killing vector
fields associated to γ (as described in Proposition 1.3.2) to obtain the local parametriza-
tions of Sγ in Riemannian 3-space forms, M3(ρ), with Ṗs 6= 0.

The Euclidean 3-Space, R3

If M3(ρ) = R3, the Euclidean 3-space, we are going to work with cylindrical coordinates,
that is,

x(r, θ, z) = (r cos θ, r sin θ, z) .

In these coordinates, we obtain that the Killing vector fields X1 and Vo, (3.20), simplify
to ∂θ and ∂z, respectively.

Now, take I and J the Killing vector fields along γ defined in Proposition 1.3.2 which
can be extended to Killing vector fields on the whole M3(ρ) (denoted by the same letter).
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Moreover, I is rotational as we have seen in Proposition 3.2.4 and I and J conmute, [5].
Therefore, we may assume that

I = a ∂θ , J = ã ∂θ + b̃ ∂z ,

with a, ã and b̃ real constants. Then, from equations (1.57) and (1.58), we conclude that,

I =
√
d ∂θ , J =

√
d ∂z , (3.29)

for positive real d. Notice that above fields coincide with (2.18) and (2.19) for e = 0. In
these coordinates, the curve γ can be parametrized as, γ(s) = x(r(s), θ(s), z(s)). Now,
assuming without loss of generality that s represents the arc-length parameter, we have
that T (s) = r′(s)∂r + θ′(s)∂θ + z′(s)∂z.

Therefore, from (3.29) and the definition of I and J , (1.56), θ(s) can be assumed to
be zero, and

z(s) =

∫
κṖ − P√

d
ds .

Thus, the binormal evolution surface, Sγ, in the Euclidean 3-space can be parametrized
as

x(s, θ) =
1√
d

(
Ṗ cos θ, Ṗ sin θ ,

∫
(κṖ − P ) ds

)
, (3.30)

where the curvature of γ is denoted by κ(s), P = P (κ(s)) and Ṗ = dP
dκ

. Then, we have
that γ can be parametrized as x(s, 0).

The Round 3-Sphere, S3(ρ)

In the case that M3(ρ) = S3(ρ) is the 3-dimensional round sphere, we are going to use
the following spherical coordinates,

x(θ, σ, ψ) =
1
√
ρ

(cos θ cosσ, cos θ sinσ, sin θ sinψ, sin θ cosψ) .

The Killing vector fields X1 and X2, (3.20) and (3.21), are ∂σ and ∂ψ, respectively. Notice
that in the 3-sphere there are only rotational Killing vector fields, so both of them are of
the same type.

Again, as I and J given in Proposition 1.3.2 are commuting Killing vector fields in
S3(ρ), [5]. Then, by a similar argument to that used in the Euclidean case, they are a
linear combination of ∂σ and ∂ψ. Moreover, we may assume that I is a real multiple of
∂σ, since it must be rotational.

Therefore, arguing as in the Euclidean case and using equations (1.57) and (1.58), we
obtain that,

I =
√
d ∂σ , J =

√
ρ d ∂ψ .
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Now, we parametrize γ(s) = x(θ(s), σ(s), ψ(s)) using these spherical coordinates intro-
duced above. Then, computing the tangent vector of γ and combining with (1.56), we
have that without loss of generality σ(s) = 0 and

ψ(s) =
√
ρ d

∫
κṖ − P
d− ρṖ 2

ds . (3.31)

Therefore, taking into account that γ is arc-length parametrized we have that the binormal
evolution surface Sγ in S3(ρ) can be parametrized as,

x(s, φ) =
1√
ρ d

(
√
ρṖ cosφ ,

√
ρṖ sinφ ,

√
d− ρṖ 2 sinψ(s) ,√
d− ρṖ 2 cosψ(s)

)
, (3.32)

where κ(s) represents the curvature of γ, Ṗ = dP
dκ

(κ(s)) and ψ(s) is given in (3.31). More-
over, we also have γ(s) = x(s, 0). Observe that γ(s) crosses the pole of the parametriza-
tion,

(
1/
√
ρ, 0, 0, 0

)
, if and only if, d = ρ Ṗ 2.

The Hyperbolic 3-Space, H3(ρ)

Finally, if M3(ρ) = H3(ρ) is the hyperbolic 3-space, we need to work slightly different since
there are three different types of rotations. For a rotational binormal evolution surface in
H3(ρ), the type of rotation is completely characterized by the constant of integration d,
(1.58). For any velocity, we get,

Proposition 3.2.5. ([14]) Let Sγ ⊂ H3(ρ) be a rotational binormal evolution surface with
velocity Ṗ , and let the initial condition γ be a planar extremal curve of Θ, (1.40). Then,
if d > 0, Sγ is a spherical rotational surface; if d = 0, Sγ is a parabolic rotational surface;
and, if d < 0, Sγ is a hyperbolic rotational surface.

Proof. For any so take an arc-length parametrization, δso(t), of the fiber of Sγ
through so. Notice that since γ is planar, the binormal along γ does not depend on s,
see Proposition 3.2.2. Now, from equation (3.19) we can compute the curvature of δso .
Moreover, using (1.28), (1.52) and (1.60), we obtain

κ2
δ(so) =

Ṗ 2
s

Ṗ 2
+ h2

22 =
d

Ṗ 2
− ρ . (3.33)

Therefore, d > 0, if and only if, κ2
δ > −ρ, that is, if and only if, δso is a Euclidean circle.

Similarly, d = 0 is equivalent to δso being an horocycle; and, finally, δso represents an
hypercycle, if and only if, d < 0. �
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Case (i). Cyclical Case (d > 0)

For the spherical rotational case, we are going to use the upper sheet hyperboloid model,
see Section 1.2. In this model we are going to pick up the following coordinates in order
to parametrize it,

x(u, θ, v) =
1√
−ρ

(sinhu cos θ, sinhu sin θ, coshu sinh v, coshu cosh v) .

Then, we have the following simplifications, ∂θ and ∂v, of the Killing vector fields X1 and
X3, (3.20) and (3.22), respectively. As in the other 3-space forms, we may assume I to
be a multiple of ∂θ, since for this case we want a spherical rotation. Notice that J must
be orthogonal to I, therefore it must be a linear combination of ∂θ and ∂v. The Killing
vector field X4, (3.23), does not appear here due to this orthogonality condition.

Using one more time equations (1.57) and (1.58), we conclude that

I =
√
d ∂θ , J =

√
−ρ d ∂v .

Now, if we combine (1.56) with the tangent vector of γ, after reparametrizing it by arc-
length using above coordinates, we may assume without loss of generality that θ(s) = 0
and that

v(s) =
√
−ρ d

∫
κṖ − P
d− ρṖ 2

ds . (3.34)

Thus, a binormal evolution surface in H3(ρ) for d > 0 admits the parametrization,

x(s, θ) =
1√
−ρ d

(√
−ρṖ cos θ,

√
−ρṖ sin θ,

√
d− ρṖ 2 sinh v(s),√
d− ρṖ 2 cosh v(s)

)
, (3.35)

where κ(s) is the curvature of γ, v(s) is given in (3.34) and Ṗ = dP
dκ

(κ(s)). The generating
curve γ can be parametrized as x(s, 0).

Case (ii). Hypercyclical Case (d < 0)

The case of hyperbolic rotational surfaces is similar to above case (d > 0). Indeed, we are
going to use the same coordinates as before. Now, we want I to be a hyperbolic rotational
vector field, so it must be a scalar multiple of ∂v. By the same argument as before, we
get that,

I =
√
−d ∂v , J =

√
ρ d ∂θ .

Combining again this and (1.56) with the tangent vector of γ, we conclude that v(s) = 0
and that

θ(s) =
√
ρ d

∫
κṖ − P
d− ρṖ 2

ds . (3.36)
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Therefore, rotational binormal evolution surfaces in H3(ρ) for d < 0 can be parametrized
as,

x(s, φ) =
1√
ρ d

(√
d− ρṖ 2 cos θ(s),

√
d− ρṖ 2 sin θ(s),

√
−ρṖ sinhφ,

√
−ρṖ coshφ

)
, (3.37)

where κ(s) is the curvature of the profile curve γ, which is γ(s) = x(s, 0), Ṗ = dP
dκ

(κ(s))
and θ(s) is given by (3.36).

Case (iii). Horocyclical Case (d = 0)

The last case in the hyperbolic 3-space corresponds to parabolic rotational surfaces. The
orbits here are horocycles, and computations involving horocycles in the upper sheet
hyperboloid model are quite hard. Moreover, as the ball model is just a conformal trans-
formation of the hyperboloid model, it is also hard to deal with computations. That is,
it will be convenient to use here a different model, for instance, the semi-space model.

Therefore, just for the next lines we are going to consider the definition of the hyper-
bolic 3-space given by

H3(ρ) = {(x1, x2, x3) ∈ R3 |x3 > 0}

endowed with the metric

g = − 1

ρ x2
3

(
dx2

1 + dx2
2 + dx2

3

)
. (3.38)

Now, we choose a parametrization of the space by horospheres,

x(u, v, w) =

(
2u exp (2w)

(u2 + v2) exp (2w) + 4
,

2 v exp (2w)

(u2 + v2) exp (2w) + 4
,

4 expw

(u2 + v2) exp (2w) + 4

)
.

In this parametrization the frame of coordinate vector fields is an orthogonal frame where
the metric (3.38) becomes

g11 = g22 = −exp (2w)

4ρ
, g33 = −1

ρ
.

Moreover, the parabolic rotational vector field X4, (3.23), simplifies to ∂u. And, then we
can assume that I = a ∂u, which necessarily gives us that J = b ∂v. Since it must be
orthogonal to I. Now, equation (1.58) tells us that b2 = −ρ a2. Moreover, if we compute
the tangent vector of γ, T (s) = u′(s)∂u + v′(s)∂v + w′(s)∂w, and, since I is a vector field
in the direction of the binormal of γ, we can suppose that u(s) = 0. That is, the tangent
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vector of γ is just T (s) = v′(s)∂v + w′(s)∂w, and we can obtain the expression of the
normal vector field of γ,

N(s) = −2w′(s)

expw
∂v +

expw v′(s)

2
∂w .

Using (1.56), together with the above descriptions of T (s) and N(s), we also have that
a2 exp (2w) = −4ρṖ 2 and,

v(s) = − b
ρ

∫
κṖ − P
Ṗ 2

ds . (3.39)

Therefore, the parametrization of any rotational binormal evolution surface for d = 0 in
H3(ρ) is,

x(s, u) =

 2uρ2Ṗ 2

(u2 + v2(s))ρ2Ṗ 2 + b2
,

2v(s)ρ2Ṗ 2

(u2 + v2(s))ρ2Ṗ 2 + b2
,

2

√
b2ρ2Ṗ 2

(u2 + v2(s))ρ2Ṗ 2 + b2

, (3.40)

where the curvature of γ is κ(s), Ṗ = dP
dκ

(κ(s)) and v(s) is given in (3.39). Moreover,
γ(s) = x(s, 0). Notice that above parametrization, (3.40), depends on the parameter
b 6= 0 (or, equivalently, on a 6= 0). However, it is a straight forward computation to check
that the surfaces parametrized by (3.40) are all congruent for any b 6= 0, that is, there
exists basically one rotational binormal evolution surface for d = 0.

3.2.2 Closed Binormal Evolution Surfaces of M 3(ρ)

Once we have the parametrizations of the binormal evolution surfaces generated by evolv-
ing planar extremals of Θ, (1.40), under (3.3) by congruences of M3(ρ), we can obtain
conditions for both the initial condition, γ, and the binormal evolution surface, Sγ, to be
closed.

Let’s begin by developing the conditions that must be verified by γ in order to close up.
First of all, we need its curvature κ(s) to be periodic. Then, adapting the computations
of [5], if we define the function

Λ(d) =

∫ %

o

κṖ − P
d− ρṖ 2

ds, (3.41)

where % is the period of κ(s) and d is the constant of integration given by (1.58), we have

Proposition 3.2.6. Let γ ⊂M3(ρ) be a planar critical curve of Θ(γ) =
∫
γ

(P (κ) + λ) ds

with periodic curvature κ(s), then γ(s) is closed, if and only if, the function Λ(d), (3.41),
vanishes for ρ d ≤ 0, or it is equal 2π n

m
√
ρ d

for any integers n and m, when ρ d > 0.



Chapter 3. Binormal Evolution Surfaces in 3-Space Forms 51

Notice that the integers n and m have a geometrical meaning. The number of
rounds the critical curve gives around the pole of the parametrization, that is the point(
1/
√
ρ, 0, 0, 0

)
, in order to close up is represented by the integer n, while m denotes the

number of lobes the curve has, that is, analytically, the number of periods of the curvature
needed to close up.

Now, in order the binormal evolution surface, Sγ, to be closed we need the orbits to be
closed. Notice that the orbits are closed curves, if and only if, the constant of integration,
d, is positive, as we have proved in Proposition 3.2.5. Moreover, we also need one of the
followings, either the profile curve to be closed or that it cuts the axis of rotation. Thus,
we conclude

Corollary 3.2.7. ([14]) Let Sγ ⊂ M3(ρ) be a binormal evolution surface whose profile
curve, γ, is an extremal of Θ with τ = 0 and periodic curvature, κ(s), which does not
meet the axis of rotation. Then, Sγ is a closed surface, if and only if, the function Λ(d),
(3.41), equals 2π n

m
√
ρ d

, for some d > 0 and any integers n and m, when ρ > 0; or, Λ(d),

(3.41) vanishes at some d > 0, when ρ ≤ 0.

3.2.3 Parametrizations in Minkowski 3-Space

Finally, in this section, we restrict ourselves to the flat Lorentzian space L3, the Minkowski
3-space, see Section 1.2. We say that a surface is a rotational surface if it stays invari-
ant under a one-parameter group of rotations. This definition follows the convention of
that given in Riemannian 3-space forms, see the beginning of Section 3.2. Notice that
in Riemannian settings all rotational surfaces can be constructed by rotating a planar
curve. However, this is not true in L3. In fact, there are rotational surfaces that cannot
be constructed in this way, see [33]. In any case, rotation of a non-null planar curve gen-
erates rotational surfaces. Moreover, the Minkowski 3-space is richer than Riemannian
3-space forms, in the following sense. There are basically three different type of rotations,
depending on the causal character of the axis. Here we understand the axis, as the only
geodesic that stays point-wise fixed under the action of the group of rotations. If the axis
is spacelike, we can assume without loss of generality that is given by x3 = x4 = 0, and
the rotation around it can be represented by the matrix cosh t sinh t 0

0 0 1
sinh t cosh t 0

 .

Now, if the axis is, for instance, x2 = x3 = 0, then, it is timelike and the matrix
corresponding with rotations around it is expressed as cos t sin t 0

− sin t cos t 0
0 0 1

 .
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Finally, there is another possibility for the causal character of the axis. Let’s assume
that our axis is given by x2 = 0 and x3 = x4, then this represents a null-geodesic, and its
correspondence rotations can be represented as t 1− t2

2
t2

2

1 −t t

t − t2

2
1 + t2

2

 .

If P (κ) = νκ, ν ∈ R, then any planar curve γ is critical for Θ, (1.40), [6] and Sγ must
be a right cylinder shaped on γ. Assume then that P (κ) 6= νκ, ν ∈ R. Then the Killing
field along γ, I, can be written as I = ṖB = λ1(γ×V )+λ2V , for some λ1, λ2 ∈ R, λ1 6= 0
and a constant vector V in R3. By scalar multiplication of the covariant derivative of
I = ṖB = λ1(γ×V ) +λ2V with V we obtain λ2 = 0 and, then, Sγ is a rotational surface
in L3 with profile curve γ.

Moreover, if P (κ) 6= νκ, ν ∈ R, it is not difficult to see that, identifying the plane
containing γ and R2 or L2, choosing a coordinate system containing V , and using I = ṖB,
it is possible to find a coordinate system in this plane where γ = (γ1, γ2) and γ1 = c Ṗ ,
for some constant c ∈ R.

In particular, take an extremal curve of
∫
γ
(P (κ) + λ)ds either in R2 or in L2 and

choose a coordinate system where γ = (γ1, γ2) and γ1 = c Ṗ , for some constant c ∈ R.
Assuming c 6= 0, then

x(s, t) =
(
c Ṗ sin (t) , c Ṗ cos (t) , a(s)

)
, if εδ1ε

δ
2 = 1 ,

x(s, t) =
(
c Ṗ sinh (t) , a(s), c Ṗ cosh (t)

)
, if εδ1 = −1 , and

x(s, t) =
(
c Ṗ cosh (t) , a(s), c Ṗ sinh (t)

)
, if εδ2 = −1 ,

where a(s) verifies εδ2((cṖ )′)2 +εδ3 (a′(s))2 = ε1, are rotation surfaces with planar filaments
evolving by (3.3).

Finally, if the extremal curve lies in the Minkowski plane L2, then choosing the same
coordinate system as before one could also construct a surface with planar filaments
evolving by (3.3) just rotating γ around a lightlike axis. In fact, suppose without loss of
generality that the lightlike axis is determined by ∂

∂x3
+ ∂

∂x4
then, the parametrization of

Sγ is given by,

x(s, t) = (cṖ + (a(s)− cṖ )
t2

2
, (a(s)− cṖ )t, a(s) + (a(s)− cṖ )

t2

2
) ,

where a(s) verifies ((cṖ )′)2 − (a′(s))2 = ε1. In this case, fibers are spacelike curves with
null acceleration.
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3.3 Evolution with Non-Zero Constant Torsion

Take now τo 6= 0. If κ(s, t) is also constant, filaments are Frenet helices. Then, as
proved in [7] and [57] (see also Section 1.3.1), Frenet helices are critical curves for Θ(γ) =∫
γ

(κ+ λ) ds. Therefore, by Proposition 1.3.2, the unit binormal B is a Killing vector
field on Frenet helices, hence, their evolution under the B-flow satisfy

xt = B . (3.42)

Moreover, the function Ṗ = F is also constant, and a generalization of Proposition 3.2.3
can be proved arguing in the same way. That is,

Proposition 3.3.1. ([12]) Let γ be a Frenet helix, then the binormal evolution surface
generated by evolving γ under (3.42) by congruences is a flat isoparametric surface.

Thus, we assume κ(s, t) is not constant. Then, (3.11) suggests to study traveling wave
solutions of the form κ(s− ε1ε3µ t), µ ∈ R, what implies F(κ(s, t)) = ε1ε3µ

2τ0
κ+λ, for some

λ ∈ R. Call ι = s− ε1ε3µ t. Then, by substitution in (3.12) we obtain

0 =
ε1ε2µ

2τo
κιι +

µ

4τo
κ3 +

(−1)rµ

2τo
κ(ε1ε3ρ− ε2τ

2
o ) + λ((−1)rρ− τ 2

o ) . (3.43)

Proposition 3.3.2. ([10]) Assume that γ(ι) is a curve in M3
r (ρ) with non-constant cur-

vature and constant torsion τ = τo 6= 0 which is an extremal of the energy

Θ(γ) =

∫
γ

(
ε1ε3µ

4τo
κ2 + λκ+ µτ + ν

)
ds ,

where µ 6= 0 and λ, ν ∈ R. Then, there exists a one-parameter group of isometries of
M3

r (ρ), {φt, t ∈ R}, such that a suitable parametrization of the surface Sγ := φt(γ(ι)) is
a solution of (3.3) with F(κ(s, t)) = ε1ε3µ

2τ0
κ+ λ.

Proof. It is easy to verify from (3.43) that κ(ι) and τ = τo satisfy the Euler-Lagrange
equations for the above energy Θ, (1.62) and (1.63), for a suitable ν ∈ R.
Consider κ(ι) a solution of (3.43) (observe that (3.43) can be explicitly solved with the aid
of Jacobi elliptic functions, see Appendix A), then κ(ι) and τ = τo determine a curve γ(ι)
in M3

r (ρ) which is an extremal for Θ. Now, the vector field I(ι) := ε1ε3µT (ι) +F(ι)B(ι)
is a Killing field along γ(ι) (see Proposition 1.3.3).
As in previous arguments, I can be extended to a Killing field on M3

r (ρ) with one-
parameter group of isometries {φt, t ∈ R}. Consider the surface Sγ := y(ι, t) = φt(γ(ι)), t ∈
R. Then, the reparametrization x(s, t) := y(s − ε1ε3µ t, t) satisfies xt = ( ε1ε3µ

2τ0
κ + λ)B,

having all filaments constant torsion τ = τo. �
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3.4 A Few Consequences

Finally, in this last section we are going to apply our findings about binormal evolution
surfaces to some special cases. Depending on the velocity F = Ṗ of the evolution we will
have different properties on the surface.

3.4.1 Pure Binormal Evolution and Hopf Cylinders

We first choose a constant velocity Ṗ . In this case, the binormal evolution equation can be
considered to be xt = B. These constant velocity binormal evolution surfaces have already
appeared along this chapter, see Section 3.3. In fact, if for instance, γ is a Frenet helix,
then by Proposition 3.3.1, the generated surface must be a flat isoparametric surface.

On the other hand, if γ has non-constant curvature and constant torsion, the congru-
ence solutions of Gauss-Codazzi equations can be obtained by taking µ = 0 in (3.43).
Notice that then, κ(s, t) = κ(s) and F(κ(s)) = λ and Sγ is flat.

Moreover, (3.43) implies that ρ = (−1)rτ 2
o . ThusM3

r (ρ) has to be either S3(ρ) or H3
1(ρ).

Flat surfaces in S3(ρ) can be locally described as the product, with respect to the Lie group
structure of S3(ρ), of two curves with torsions ρ and −ρ, respectively, [61]. In order to
construct explicit parametrizations solving (3.3) in this case, we take the complex plane,
C, and consider the maps πε : C2 → C2 defined by πε(z1, z2) = 1

2c
(z̄1z1 − εz̄2z2 , 2z2z̄1),

where, zi ∈ C, i ∈ {1, 2}, z̄i denotes complex conjugate, ε = ±1 and c ∈ R. Endow C2

with the semi-Riemannian metric 〈z, w〉 = Real(z1w̄1 + εz2w̄2). Then, the restriction of
πε to the hyperquadrics 〈z, z〉 = εc2, ε = ±1, gives two maps which are known as the
standard Hopf mappings

π+ : S3

(
1

c2

)
→ S2

(
4

c2

)
, and π− : H3

1

(
−1

c2

)
→ H2

(
−4

c2

)
.

Let γ be a curve in either S2
(

4
c2

)
or H2

(−4
c2

)
. Then, the complete lift T+

γ = π−1
+ (γ)

(respectively, T−γ = π−1
− (γ)) is a Riemannian (respectively, Lorentzian) flat (zero Gaussian

curvature) surface in S3
(

1
c2

)
(respectively, in H3

1

(−1
c2

)
) which is called the Hopf cylinder

on γ. The covering maps Ψ+ : R2 → T+
γ and Ψ− : L2 → T−γ defined by

Ψ±(t, s) = eit γ̄(s) , (3.44)

where γ̄(s) denotes a horizontal lift of γ can be used to parametrize T±γ . Assuming
without loss of generality c = 1, that is, ρ = ±1, critical curves of

∫
γ
κ in S3(1) or H3

1(−1)

are characterized by having torsion τ 2 = 1, [6] and [22]; and, therefore, they must be
horizontal lifts via Hopf maps. Hence,

Proposition 3.4.1. ([10]) Horizontal lifts via the Hopf map π± of arbitrary curves γ of
S2(4) or H2(−4) parametrized by (3.44) evolve under xt = B by rigid motions and the
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corresponding binormal evolution surface is a Hopf cylinder of S3(1) or H3
1(−1) shaped on

γ, T±γ .

Thus, explicit parametrizations of T±γ are obtained as follows. Take an arbitrary curve
γ(s) = (A1(s), 0, A2(s), A3(s)) in S2 (4) or H2(−4), then horizontal lifts of γ via π+ or π−
are given by

γ̄(s) = (α1(s) cos β(s), α1(s) sin β(s), α2(s) cos β(s)− α3(s) sin β(s),

α2(s) sin β(s) + α3(s) cos β(s)) ,

where

α1(s) =

√
2A1(s) + 1√

2
, α2(s) =

√
2A2(s)√

2A1(s) + 1
, α3(s) =

√
2A3(s)√

2A1(s) + 1
,

and

β(s) = ±2

∫
A3(s)A′2(s)− A2(s)A′3(s)

2A1(s) + 1
.

Hence, one uses (3.44) to obtain a solution of (3.3). Notice that if the curve γ is embedded
in either S2(4) or H2(−4), then so is T±γ in S3(1) or H3

1(−1) and we have binormal Hopf
cylinders with no self-intersections. Moreover, if γ is a closed curve then T±γ is a closed
surface (a flat Hopf Tori) but the evolving filament γ̄(s) may not be closed because of the
non-trivial holonomy. However, if, in addition, the area enclosed by γ(s) in either S2(4)
or H2(−4) is a rational multiple of π, then there are m ∈ Z such that the horizontal lift
of an m-cover of γ(s) is a closed filament, [6].

Finally, in this case Θ given in (1.61) is nothing but

Θ(γ) =

∫
γ

κ+ µτ + λ .

Critical curves for Lagrangians of the form Θνµλ(γ) =
∫
γ
νκ(s)+µτ(s)+λ, where ν, µ, λ ∈

R, have been used to construct models of spinning relativistic particles, both massive and
massless, in Lorentzian backgrounds, [57]. If the ambient space is a Riemannian space
form, M3(ρ), it is known that a curve γ ∈M3(ρ) is critical for Θνµλ, if and only if, γ is a
Lancret helix in M3(ρ), [7]. Hence, Lancret curves evolve under (3.3) by congruence and
slippage. The most interesting case is when M3(ρ) = S3(ρ), since it is the only case in
which the variational problem associated to the total curvature energy, µ = λ = 0, makes
sense, [7].

3.4.2 Hasimoto Surfaces and Elasticae

We choose now ζ ≡ 1 in (3.2). In other words, we are going to consider the evolution
in M3

r (ρ) of a unit speed Frenet curve, γ(s), of rank 2 or 3 under the extension of the
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localized induction equation, (3.2). Let x(s, t) describe the evolution of γ(s) under (3.2).
Since our curves γ are arc-length parametrized, (3.2) can be simplified in terms of the
binormal flow, (3.3)

xt = ε2ε3κB

and the corresponding evolution surfaces are known as Hasimoto surfaces. In this case,
we have Ṗ = ε2ε3κ. Moreover, Gauss-Codazzi equations, (3.11) and (3.12) reduce to

κt = −ε2ε3(2κsτ + κτs) , (3.45)

τt = ε2(ε2
κss
κ
− ε3τ

2 +
1

2
ε1κ

2 + ε1ε2ρ)s . (3.46)

Notice that if we were considering evolution under localized induction equation, (3.1),
in the standard Euclidean case, then εi = 1, for i = 1, 2, 3, and (3.45) and (3.46) would
be precisely the Da Rios equations, [130]. In other words, in the Euclidean case Da Rios
equations are nothing but the Gauss-Codazzi equations of Hasimoto surfaces expressed
with respect to the geodesic coordinate system (1.20). By this reason the Gauss-Codazzi
equations of the general case, (3.45) and (3.46), will be referred to as the Codazzi-Da Rios
equations in space forms. Remember that Da Rios equations first appeared when the
movement of a thin vortex filament in a viscous fluid by the motion of a curve propagating
in R3 according to the localized induction equation, (3.1), was modeled by Da Rios, [130].
Later on, Hasimoto discovered [73] that the localized induction equation is equivalent to
the nonlinear Schrödinger equation which is a well-known example of soliton equation.

Furthermore, in this case the complex wave equation corresponding to (3.45) and
(3.46) boils down to (see (3.15))

(1− ε2ε3)
Ψ

|Ψ|
|Ψ|ss = i ε2ε3Ψt + Ψss + ε1ε3

(
|Ψ|2

2
+ ε3ρ

)
Ψ . (3.47)

So we see that in the Euclidean space, M3
r (ρ) = R3, (3.47) is nothing but the focus-

ing nonlinear Schrödinger equation, recovering the correspondence found by Hasimoto.
Now, in the Minkowski 3-space case, M3

r (ρ) = L3, we obtain the defocusing nonlinear
Schrödinger equation if ε2ε3 = 1.

Finally, notice that for Hasimoto surfaces the energy Θ given in (1.61) is nothing but
Θ(γ) =

∫
γ
κ2 + µτ + λ. In R3, extremals of this functional are known to be centerlines of

Kirchhoff elastic rods, [93]. The converse is also true [81]. In other words, in R3 travel-
ing wave solutions of the Gauss-Codazzi-Da Rios equations (3.45) and (3.46) determine
Hasimoto surfaces Sγ whose initial conditions γ are centerlines of Kirchhoff rods. They
evolve under the localized induction equation, (3.1), by rigid motions and slippage in R3,
[93]. In [86] the notion of Kirchhoff elastic rods is extended to Riemannian 3-space forms,
M3(ρ), and it is shown that centerlines of Kirchhoff elastic rods provide solutions to the
Euler-Lagrange equations for Θ(γ) =

∫
γ
κ2 + µτ + λ in M3(ρ). This is the reason why
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in Section 1.3.2 we have used that name. Moreover, classical elasticae in M3(ρ) evolve
by rigid motions and correspond to soliton solutions of the localized induction equation.
We also remark that centerlines of Kirchhoff elastic rods can be identified with magnetic
trajectories of Killing magnetic fields in M3(ρ), [19].

On the other hand, in Lorentzian backgrounds (3.2) has been studied in [21] and [49],
while long time existence of closed solutions in Riemannian ambient spaces are analyzed
in [90].





Chapter 4

Invariant Constant Mean Curvature
Surfaces in 3-Space Forms

The concept mean curvature was first introduced by Germain in 1831, [66], who applied
the total mean curvature to describe elastic shells. In many cases, the mean curvature
gives us enough information to understand the extrinsic geometry of an immersed surface
into the ambient space. In fact, for a surface immersed in M3

r (ρ), the most important
extrinsic invariant is, probably, the mean curvature.

Of special interest are surfaces of constant mean curvature (CMC, for short), which
have played a prominent role in Analysis and Differential Geometry. Among them, if the
mean curvature vanishes, these surfaces are usually called minimal surfaces of M3

r (ρ).
The study of minimal surfaces in 3-space forms is one of the oldest subjects in Differential
Geometry. Indeed, minimal surfaces in R3 have played a major role in Mathematics since
the 1800’s, as evidenced by the names of many outstanding mathematicians who got
involved in their early developments (Weirstrass, Riemann, Enneper, Scherk,...).

On the other hand, invariant surfaces have rich symmetry which make them ideal
for modeling physical systems. Therefore, these two things have stimulated the interest
of many authors in studying invariant surfaces with constant mean curvature along the
centuries. For instance, a nice application of surfaces of revolution with CMC in R3,
regarding liquid bridges between vertical walls, is obtained in [139].

In 1841, Delaunay introduced a way of constructing rotationally symmetric CMC
surfaces in R3, by proving that, basically, a surface of revolution in R3 is a CMC surface,
if and only if, its profile curve is the roulette of a conic, [47]. An explicit parametrization of
Delaunay surfaces was given by Kenmotsu in 1980, [88], using an approach from complex
analysis. Three years later, following this method Do Carmo and Dajczer, [35], gave
the parametrization of CMC surfaces of the Euclidean 3-space, R3, invariant under one-
parameter groups of isometries, that is, invariant under helicoidal motions. There are
many works in the literature using different approaches to study rotational type CMC
surfaces both, in Riemannian and Lorentzian 3-space forms (for more details, see [48],
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[72], [80], [98], [131], [135],... and the references therein).

Moreover, one of the roulette curves in R2 is the catenary which generates the catenoid,
the minimal non-trivial surface of revolution. Catenaries are known to be solutions of
a classical variational problem. In fact, they have the shape of a rope when fixing the
extremes of it and letting gravity acts on the other part. However, in 1930, Blaschke
proved that catenaries are also a solution of another variational problem ([29], pp. 38-
39). To be more precise, Blaschke studied smooth immersed curves in R3 which are
extremal for the curvature energy functional Θ(γ) =

∫
γ

√
κ ds, κ being the curvature of

the curve, and he showed that catenaries are critical for Θ when it is acting on planar
curves.

The above facts motivated us to study CMC surfaces in Riemannian and Lorentzian
3-space forms, M3

r (ρ), which are invariant under the flow of a Killing vector field of the
ambient space. Along the first part of this chapter, we first describe any CMC invariant
surface locally as a binormal evolution surface, which allows us to understand them as
warped product surfaces, so that their local intrinsic geometry is totally determined by the
warping function. Moreover, we show that warping functions of invariant CMC surfaces
are solutions of an Ermakov-Milne-Pinney (EMP) equation with constant coefficients,
[54] and [127]. Then, an extension of Blaschke’s variational problem is studied. Namely,
we will introduce the functional Θµ(γ) =

∫
γ

√
κ− µ ds, for a fixed µ ∈ R (notice that

this functional falls into the family of generalized elastic functionals (2.2)), and consider
the associated variational problem when Θµ is acting on a certain space of smooth curves
immersed in a Riemannian or Lorentzian 3-space form. The corresponding Euler-Lagrange
equations, which are expressed in terms of the curvature and the torsion of the critical
curves, are integrated. This solves the variational problem geometrically, since curves are
completely determined by curvature and torsion (and the Frenet frame causal characters,
in the Lorentzian case) in 3-space forms. As a consequence, we will see that extremals
(recall the convention introduced in Section 1.3) of Θµ include roulettes of both the
Euclidean plane, R2, and also those of L2, the Minkowski plane. In particular, if µ = 0,
we will recover Blaschke’s result on catenaries of R2.

Furthermore, we also prove that extremals of Θµ evolving under an associated Killing
field, ξ, produce invariant CMC surfaces in M3

r (ρ). On the other hand, a CMC surface
N2 of R3 which is invariant by a one-parameter group of rigid motions is shown to be,
locally, spanned by an extremal curve of Θµ(γ) =

∫
γ

√
κ− µ ds while evolving by ξ. In

particular, if N2 is a surface of revolution in R3, then it has to be a Delaunay’s surface
and roulettes of conics (other than lines) are critical for Θµ. Moreover, this is also true
in general backgrounds. We are going to prove that invariant CMC surfaces in 3-space
forms are locally foliated by geodesics of the surface being extremals of Θµ, for a given
µ ∈ R, as curves in the ambient space.

In the second part of this chapter, we use our previous findings to extend two classical
results on CMC in R3. In particular, we construct two-parameter families of isometric



Chapter 4. Invariant Constant Mean Curvature Surfaces in 3-Space Forms 61

deformations preserving the constant mean curvature. This generalizes the well-known
isometric deformation of the catenoid into the helicoid and the corresponding extension
to CMC surfaces of R3, [35]. Also, in this part, we extend the correspondence between
CMC surfaces in different Riemannian 3-space forms described by Lawson [96].

Finally, in the last part of the chapter, by restricting ourselves to Riemannian ambient
spaces, we use the variational characterization of profile curves of invariant CMC surfaces
to study global properties of these surfaces. More precisely, after describing the local
classification of CMC rotational surfaces in Riemannian 3-space forms, M3(ρ), we prove
the existence of compact and embedded CMC rotational tori in S3(ρ), by analyzing the
simplicity and closure of planar critical curves for the extension of Blaschke’s variational
problem.

4.1 Characterization as Binormal Evolution Surfaces

Along this section, assume that Sγ is a local description of a ξ-invariant surface of M3
r (ρ)

with constant mean curvature, H, where ξ denotes a Killing vector field on M3
r (ρ) (see

Section 1.2.3). Then, following the notation introduced in that section and Chapter 3, we
have

Theorem 4.1.1. ([12]) Let ξ be a non-null Killing vector field on M3
r (ρ) and assume that

Sγ is a local description of a ξ-invariant surface of M3
r (ρ) with constant mean curvature,

H. Then, locally, Sγ is either a ruled surface or it is spanned by a critical curve γ(s) of
Θµ(γ) =

∫
γ

√
κ− µ ds, µ = −ε1ε2H, in the sense of Section 1.3, evolving by the flow of

ξ. Moreover, in the latter case, Sγ is a binormal evolution surface with initial condition
γ(s) and velocity 1

2
√
κ(s)+ε1ε2H

.

Proof. Consider N2
ν ⊂ M3

r (ρ) an isometrically immersed ξ-invariant surface in any
semi-Riemannian 3-space form M3

r (ρ), then, using the notation of Section 1.2.3, we have
that N2

ν can locally be described as the warped product Sγ with metric given by g =
ε1ds

2 + ε3G
2(s)dt2, where G2(s) = ε̃〈ξ, ξ〉, ε̃ being the causal character of ξ. Moreover, it

must satisfy the PDE system (1.29)-(1.31). The compatibility conditions for this system
are given by the Gauss-Codazzi equations (3.11) and (3.12), which in our case, since φt
are isometries, can be shown to boil down to

0 = −2Gsτ − τsG , (4.1)

0 =

(
1

κ

(
ε2ε3Gss + ε1ε3G(κ2 − ε1ε3τ

2 + ε2ρ)
))

s

− ε1ε3κsG , (4.2)

where the involved functions depend only on s. Now, using (1.39), the mean curvature H
can be computed, so that we get

Gss −G
(
ε1ε2κ

2 + ε2ε3τ
2 − ε1ρ

)
= 2HκG , (4.3)
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for some constant H ∈ R.
First, assume that γ has constant curvature κ 6= 0 in M3

r (ρ). We combine (4.1) and (4.2)
to obtain 2ε3G(κ+ ε1ε2H) = ε3c. Thus, if κ = −ε1ε2H, γ has constant curvature making
it a global minimum of Θ−ε1ε2H (see Section 2.1) and we are done.
If κ 6= −ε1ε2H, then substituting (4.3) into (4.2) we obtain that G is constant, so that
(4.1) means that τ must be constant too, and Sγ is a flat isoparametric surface foliated
by congruent Frenet helices (see Proposition 3.3.1). Moreover, κ > 0 and the sign of H
can be inverted by changing the local orientation, so solving (4.3) for κ we get

κ = −ε1ε2H +
√
H2 − ε1ε3τ 2 + ε2ρ . (4.4)

Thus, following (1.52) and (1.53), we obtain that γ is a constant curvature extremal for
Θµ with µ = −ε1ε2H, since it verifies (2.4) and (2.5).
Finally, suppose that κ is not constant. Locally, by the Inverse Function Theorem we can
suppose that s is a function of κ, and, calling G(κ) = Ṗ (κ), where the upper dot denotes
derivative with respect to κ, we have that (4.1)-(4.3) can be expressed in the following
way (

Ṗ 2 τ
)
s

= 0 , (4.5)

Ṗss + ε1ε2Ṗ
(
κ2 − ε1ε3τ

2 + ε2ρ
)
− ε1ε2κ (P + λ) = 0 , (4.6)

Ṗss − ε1ε2Ṗ
(
κ2 + ε1ε3τ

2 − ε2ρ
)
− 2HκṖ = 0 , (4.7)

for some λ ∈ R. Now, substituting (4.7) in equations (4.5) and (4.6), we obtain (1.52) and
(1.53) what imply that γ(s) is critical for Θ(γ) =

∫
γ
(P (κ) + λ)ds. Since H is constant,

substitution of (4.6) into (4.7) and solving the resulting differential equation gives

P (κ) = c
√
κ+ ε1ε2H − λ .

Thus, γ is critical for Θµ, µ = −ε1ε2H. This finishes the proof. �

Notice that the restriction of ξ to γ(s) is ξ(s) = 1

2
√
κ(s)+ε1ε2H

B(s), where κ(s), B(s)

and εi, i ∈ {1, 2, 3} are the curvature, the Frenet binormal of γ(s), and the causal char-
acters of its Frenet frame, respectively. Hence, with the notation of above proof, we have
that, locally, a ξ-invariant surface of M3

r (ρ) can be seen as a warped product surface, Sγ,
parametrized by (1.32) with warped metric (1.22) and warping function G(s) = F(s, t)
given by

G(s) =
√
ε̃〈ξ, ξ〉 , (4.8)

where ε̃ is the causal character of the Killing field ξ. Thus, the intrinsic geometry of Sγ
is totally determined by G(s), that is, by the length of the Killing field along the profile
curve γ, (4.8).
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As it turns out, for the local description of the CMC ξ-invariant surfaces, Sγ, the
function G(s) is a solution of the Ermakov-Milne-Pinney (EMP, for short) equation with
constant coefficients [127]

G′′(s) + αG(s) =
$

G3(s)
, (4.9)

α and $ ∈ R. A generalization of this connection has been studied in [63] (see also Section
5.1.1). In fact, if G(s) is constant, then by Proposition 3.3.1, Sγ is a flat isoparametric
surface, and it trivially satisfies (4.9) for certain α,$ ∈ R. On the other hand, if G(s) is
not constant, we have the following

Theorem 4.1.2. ([12]) Let ξ be a non-null Killing vector field on M3
r (ρ) and N2

ν be a
ξ-invariant CMC H surface of M3

r (ρ). Assume that Sγ is a local description of N2
ν with

profile curve γ, as an evolving curve with metric (1.22) and warping function G(s), (4.8).
Then, if Sγ is not flat, G(s) is a solution of the following EMP equation

G′′(s) + ε1ε2G(s)(H2 + ε2ρ) =
$

G3(s)
, (4.10)

where $ ∈ R and εi, i ∈ {1, 2, 3} are the causal characters of the Frenet frame on γ.

Proof. Let’s begin by taking γ a geodesic of M3
r (ρ). In this case, we must consider the

frame introduced in Section 1.2.3. Now, since G(s) is not constant and Sγ has constant
mean curvature (in particular, h22 is constant), then (1.37) gives h22 = 0, and therefore
the mean curvature vanishes, H = 0. Hence, from (1.36) we get f(s) = ω

G2(s)
with ω ∈ R.

Finally, substituting this value of f(s) in the Gauss equation (1.35) we obtain

Gss + ε1ρG− ε2ε3
ω2

G3
= 0 , (4.11)

which falls under (4.10) replacing the derivative notation there by subscripts and taking
H = 0. Now, if γ has constant curvature, κ(s) = −ε1ε2H, then (4.1) and (4.2) reduce to

τ(s)G2(s) = ω , (4.12)

Gss + ε1ε2G(H2 + ε2ρ)− ε2ε3
ω2

G3
= 0 , (4.13)

where ω ∈ R, and, again, the second equation, (4.13), is a particular case of (4.10).
So, finally we assume that κ(s) is not constant. Then, from the proof of Theorem 4.1.1
we have that γ is a critical curve of Θµ(γ) =

∫
γ

√
κ+ ε1ε2H ds, with µ = −ε1ε2H, and

G is given by

G(s) =
1

2
√
κ(s) + ε1ε2H

. (4.14)
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Now, combining (4.1) and (4.2) with (4.14) we obtain

τ(s)G2(s) = ω , (4.15)

Gss + ε1ε2G(H2 + ε2ρ)− ε2
ε1 + 16 ε3 ω

2

16G3
= 0 , (4.16)

for some constant ω ∈ R. This finishes the proof. �

Thus, according to above results, if ξ is a non-null Killing field of M3
r (ρ), a ξ-invariant

surface N2
ν ⊂ M3

r (ρ) with constant mean curvature H admits a local description Sγ,
the ξ-orthogonal evolution of an extremal curve of Θµ, γ, (with non-null velocity and
acceleration vectors) along the flow of ξ. Sγ is a warped product surface whose intrinsic
geometry is determined by the length of ξ along the profile curve γ(s), G(s) = |ξ(s)|,
(4.8). The extrinsic geometry of Sγ is determined by γ and the value of ξ along it. But
the profile curve itself is determined, in turn, by its curvature κ(s), torsion τ(s) and causal
character of the Frenet frame. Hence, we have the following four cases for Sγ

(i) κ(s) is constant.

(a) κ(s) = 0. Then τ is not defined and G(s) is solution of the EMP equation
(4.11). Sγ is a ruled surface and, if G is constant, it is flat.

(b) κ(s) = −ε1ε2H. In this case, τ = ω
G2(s)

, ω ∈ R and G(s) is solution of the

EMP equation (4.13). If G is constant, Sγ is flat.

(c) κ and τ are two constants satisfying (4.4)

(κ+ ε1ε2H)2 = H2 − ε1ε3τ
2 + ε2ρ .

Then, the profile curve γ is a Frenet helix in M3
r (ρ) and Sγ is always flat in

this case. Indeed, Sγ is a flat isoparametric surface (see Proposition 3.3.1).

(ii) κ(s) is not constant. Now, G(s) is given by (4.14) and so, the torsion is τ(s) =
e (κ(s) + ε1ε2H) for some e ∈ R. Moreover, G(s) is a solution of the EMP equation
(4.16). Sγ is never flat in this case.

Now, calling µ = −ε1ε2H, we have that in the second part of case (i), (b), the profile
curve γ is a global minimum for the energy Θµ(γ) =

∫
γ

√
κ− µ ds acting on a suitable

space of curves, see Section 2.1. Finally, in the last part of case (i), (c), and in (ii), we
have that the profile curve γ(s) is a critical curve for the energy Θµ(γ) =

∫
γ

√
κ− µ ds

and the restriction of ξ to γ(s) is ξ(s) = 1

2
√
κ(s)+ε1ε2H

B(s), where B(s), εi, i ∈ {1, 2, 3} are

the Frenet binormal of γ(s), and the causal character of its Frenet frame, respectively.
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4.2 Extension of Blaschke’s Variational Problem

Notice that from the last remark of previous section, §4.1, it makes sense to study the
functional Θµ(γ) =

∫
γ

√
κ− µ ds, in order to geometrically obtain all its critical curves.

This functional corresponds with the generalized elastic functional Θε,p
µ , (2.2), for the

particular choices p = 1
2

and ε = 1.
For this purpose, we will assume from now on that all our curves are Frenet curves,

and for a fixed constant µ ∈ R we will consider the following curvature energy functional
Θµ = Θ

1,1/2
µ , (2.2),

Θµ(γ) :=

∫
γ

√
κ− µ =

∫ L

0

√
κ(s)− µ ds , (4.17)

where, as usual, the arc-length or natural parameter is represented by s ∈ [0, L], L being
the length of γ. As a particular case of (2.2), observe that any curve with κ = µ will be
a global minimum among curves with

√
κ− µ ∈ L1([0, L]). Then, we consider Θµ(γ) ≥ 0

acting on Ωrρ∗
pop1

, which was defined in Section 2.1.1 as

Ωrρ∗
pop1

= {β : [0, 1]→M3
r (ρ)| β(i) = pi, i ∈ {0, 1},

dβ

dt
(t) 6= 0, ∀t ∈ [0, 1], κ > µ}, (4.18)

where pi ∈M3
r (ρ), i ∈ {0, 1}, are arbitrary given points of M3

r (ρ).
This is a generalization of the problem studied by Blaschke in the Euclidean 3-space

R3 with µ = 0, [29]. Actually, the above variational problem can be considered on curves
of Mn

r (ρ), but, as we have already mentioned in Proposition 1.3.1, a curve critical for
Θµ must lie in a totally geodesic M3

r (ρ) ⊂ Mn
r (ρ). As a consequence, it will be enough

to study our functional (4.17) acting on the space of smooth immersed curves of M3
r (ρ),

Ωrρ∗
pop1

, (4.18). Moreover, if β lies fully in M3
r (ρ), then κ is positive and, for our purposes µ

can be considered to be non-positive, then the restriction κ > µ in the definition of Ωrρ∗
pop1

,
(4.18), can be omitted. On the other hand, if β lies fully in M2

r (ρ), then κ is considered
to be the signed curvature.

Then, following the arguments and notation of Section 2.1.1, a critical curve γ ∈ Ωrρ∗
pop1

of Θµ(γ) =
∫
γ

√
κ− µ ds is characterized by E(γ) = 0, where E is the Euler-Lagrange

operator defined in (1.51). Thus, substituting the value of P (κ) =
√
κ− µ in (1.52) and

(1.53) (also using (2.4) and (2.5)), E(γ) = 0 boils down to

d2

ds2
(

1√
κ− µ

) +
1√
κ− µ

(ε1ε2κ
2 − ε2ε3τ

2 + ε1ρ)− 2ε1ε2κ
√
κ− µ = 0 , (4.19)

d

ds
(

τ

κ− µ
) = 0 , (4.20)

which are the Euler-Lagrange equations of the curvature energy functional Θµ(γ) =∫
γ

√
κ− µ ds acting on Ωrρ∗

pop1
, (4.18).
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In order to integrate (4.19) and (4.20) we define the following parameters in terms
of the sectional curvature ρ, the energy index µ, and the two constants of integration
d, e ∈ R, (1.57) and (1.58),

a = −ε1ρ− ε1ε2µ
2 , b = 4ε2d+ 2ε1ε2µ , c = −ε1ε2 − ε2ε3e

2 , ∆ = 4ac− b2 . (4.21)

Now, we have

Proposition 4.2.1. ([12]) Let γ be an extremal for Θµ(γ) =
∫
γ

√
κ− µ ds acting on

Ωrρ∗
pop1

, (4.18). If γ has constant curvature κo, then γ is a Frenet helix with curvature given
by

κo = µ+
√
µ2 − ε1ε3τ 2

o + ε2ρ , (4.22)

and where τo (the torsion of γ) can be any constant verifying ε1ε3τ
2
o < µ2 + ε2ρ. Now,

assume that γ has non-constant curvature κ(s). Then, with the notation introduced in
(4.21), κ(s) depends on two parameters d, e and we have

(i) If ∆ 6= 0 and a 6= 0,

κ(s) =
2a

−b+
√
|∆|f(2

√
|a|s)

+ µ , (4.23)

where, f(x) = sinhx, if ∆ > 0 and a > 0; f(x) = coshx, if ∆ < 0 and a > 0; and
f(x) = sinx, if ∆ < 0 and a < 0.

(ii) If ∆ = 0 and a > 0

κ(s) =
2a

1− b exp (2
√
as)

+ µ . (4.24)

(iii) If ∆ < 0 and a = 0

κ(s) =
b

b2s2 − c
+ µ . (4.25)

(iv) Finally, if ∆ = 0 and a = 0, the curvature is given by,

κ(s) =
1

2
√
c s

+ µ . (4.26)

Moreover, in all above cases the torsion of the curve γ is τ = e(κ− µ), e ∈ R.

Proof. If κ is constant, then (4.20) implies that τ must also be constant, and then
equation (4.19) gives

κo = µ+
√
µ2 − ε1ε3τ 2

o + ε2ρ .

Observe, that this relation between the constant curvature κo and torsion τo of critical
Frenet helices already appeared in (4.4). Now, if κ is not constant, we know that (2.8)
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and (2.9) are first integrals of the Euler-Lagrange equations (2.4) and (2.5). Then, by
substituting P (κ) =

√
κ− µ in (2.8) and (2.9) and simplifying one gets(

dκ

ds

)2

= 4ε2 (κ− µ)2 (4d (κ− µ)− ε3e
2 (κ− µ)2 − ε1 (κ− 2µ)2 − ε1ε2ρ

)
, (4.27)

τ = e(κ− µ). (4.28)

In order to solve these equations, we make the change of variable, x = κ−µ. Then, we see
that (4.27) reduces to x2

s = 4x2Q(x) , where Q(x) = cx2 + bx+ a. Thus, equation (4.27)
only makes sense if Q(x) ≥ 0 what imposes some conditions on the parameters. That
is, the following two cases are not possible; first, ∆ ≥ 0 and c < 0; and, second, a ≤ 0,
2d = −ε1µ and e2 = −ε1ε3. Then, after lengthy computations with the aid of suitable
formulas in [68], equation (4.27) can be solved for the rest of cases obtaining (4.23)-(4.26).
Finally, the torsion of the curve is determined by (4.28). �

Remark 4.2.2. The integration constants d and e are not entirely arbitrary. They are
constrained by (1.57) and (1.58). Thus, for instance, when M3

r (ρ) = M3(ρ), the Rieman-

nian case, then ∆ must be negative, so that if a ≤ 0 we obtain d >
−µ+
√
µ2+ρ

2
.

Notice that the Fundamental Theorem for Frenet Curves tells us that the Frenet
curvatures κ(s) and τ(s) (and the causal character of the Frenet frame in M3

r (ρ) in the
Lorentzian case, r = 1) completely determine the curve up to isometries. Thus, the
solutions of the Euler-Lagrange equations given in Proposition 4.2.1 provide the extremal
curves of our variational problem (under suitable boundary conditions).

In the Riemannian setting, M3(ρ), things can be made simpler. Now, we get from
equation (4.21) that ∆ must be negative and the non-constant solutions of (4.19) are

Corollary 4.2.3. ([12]) Assume that M3(ρ) is a Riemannian 3-space form. Let γ be an
extremal (with non-constant curvature) for Θµ(γ) =

∫
γ

√
κ− µ ds acting on Ωρ∗

pop1
, (4.18).

Then

(i) If −ρ = µ2, then a = 0 and

κ(s) =
b

b2s2 − c
+ µ . (4.29)

(ii) If −ρ < µ2, then a < 0 and

κ(s) =
2a

−b+
√
−∆ sin(2

√
−a s)

+ µ . (4.30)

(iii) If −ρ > µ2, then a > 0 and

κ(s) =
2a

−b+
√
−∆ cosh(2

√
a s)

+ µ . (4.31)
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Again, the torsion of γ is given by τ = e(κ− µ), e ∈ R.

Case (i) of Corollary 4.2.3 (µ = 0 and M3(ρ) = R3) was obtained by Blaschke in [29].
Moreover, in this case the equation (4.20) implies that τ = eκ, e ∈ R, and the solutions
are all Lancret curves in R3 with non-constant curvature and torsion. See also [119]. In
particular, in the planar case setting, τ = 0 = e, we see that the curvature obtained in (i)
of Corollary 4.2.3 is precisely that of a catenary in R2. Catenaries can be generated by
the trace of the focus of a parabola when rolling it along a line. More generally, the loci
of a focus of a conic as the point of contact rolls along a straight line without slipping
in a plane are called roulettes of conics in R2. A line is generated when the conic is a
circle since its focus coincides with its center. If the conic is a parabola, as we have just
said, its focus traces a catenary. For a hyperbola we get a nodary ; for a proper ellipse,
an undulary ; and, finally, if our conic is degenerate we obtain a circle. Then, we obtain
the geometric characterization of critical curves of Θµ in the plane. In fact, curves with
constant curvature are either lines or circles, and they are also roulettes of conic foci. As
for the critical curves with non-constant curvature one has

Corollary 4.2.4. ([12] and [64]) Non-constant curvature critical curves for Θµ(γ) =∫
γ

√
κ− µ in R2 are, precisely, the roulettes of conic foci with non-constant curvature

(that is, other than lines and circles).

Proof. From the first two items in Corollary 4.2.3, (4.29) and (4.30), the planar critical
curves of Θµ have curvature

κ(s) =
4d

1 + 16d2s2
, (4.32)

for every d > 0 if µ = 0, and if µ 6= 0, we have that,

κ(s) =
2µ (ω2 + ω sin (2µs))

1 + ω2 + 2ω sin (2µs)
, (4.33)

where ω2 = 1 + µ
d
. Since planar curves are totally determined by their curvature, it is

enough to compute the curvature of the roulettes of conic foci. It is known that (4.32)
corresponds to the curvature of the catenary. On the other hand, a direct computation
of the curvatures of the roulettes using the parametrizations

β(s, µ, ω) =

(∫ s

0

1 + ω sin(2µt)√
1 + ω2 + 2ω sin (2µt)

dt,

√
1 + ω2 + 2ω sin (2µs)

2µ

)
gives (4.33) for the curvature of the others. �

In particular, above curvature functions (4.32) and (4.33) represent a catenary for the
case µ = 0, a nodary for µ 6= 0 and ω < 1 and an undulary for µ 6= 0 and ω > 1. Lines
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and circles correspond to the global minima obtained when κ = µ. If µ = 0 we have the
real line. If µ 6= 0 and κ = µ we get a circle. Notice, that circles with curvature κ = 2µ for
non-zero constant µ also appear as extremal curves. Rolling constructions for generating
curves of CMC surfaces in S3(ρ) and H3(ρ) have been developed in [135].

Another connection of our extremal curves with rolling curves can be given in L2. In
fact, Hano and Nomizu, [72], defined spacelike roulettes of quadratic curves foci in L2,
and show that CMC spacelike rotational surfaces in L3 which are generated by rotating
a planar curve, with spacelike or timelike axis, are obtained by rotating these roulettes.
When the mean curvature is a constant H and the polar form of the profile curve is given
by (r(θ) sinh θ, r(θ) cosh θ), then, they show that r has to be of one of the following types;

(i) r = 1
ν

and H = −ν
2

;

(ii) 1
r

= ±λ cosh θ + ν, λ > 0 and H = (λ2−ν2)
2ν

;

(iii) 1
r

= λ sinh θ + ν, λ > 0 and H = −(λ2+ν2)
2ν

; or

(iv) 1
r

= η exp−θ +ν, where ν 6= 0.

On the other hand, if s denotes the arc-length parameter, then, it can be seen from formula
(3) of [72] that the curvature of the profile curve κ(s) must satisfy κ(s) = θ′(s)− 1

r(s)
and

2κ(s) = θ′(s) + 2H. By combining these two equations and substituting the values
of r given in (i) to (iv) we obtain a ODE in θ(s) which can be solved and, then, the
curvature for spacelike roulettes of quadratic curves foci, κ(s), is obtained. After suitable
reparametrizations, it can be checked that these curvature functions fall under cases (i)
to (iii) of Proposition 4.2.1. Profile curves, γ, for CMC spacelike rotational surfaces in L3

of type Sγ, with lightlike axis of revolution are also given in [72]. It is a straightforward
computation to check that the curvatures of these curves are also included in Proposition
4.2.1. Thus

Corollary 4.2.5. ([12]) If γ lies in a Lorentzian plane, γ ⊂ L2, the locus of the origin
when a part of a spacelike quadratic curve is rolled along a spacelike line is a spacelike
critical curve for Θµ(γ) =

∫
γ

√
κ− µ ds in L2.

4.2.1 Binormal Evolution of Extremal Curves

We have seen in Section 4.1 that the local description Sγ of any ξ-invariant CMC surface is
spanned by an extremal curve of the extension of Blaschke’s variational problem. Further-
more, in what follows we are going to prove the converse, giving a way of constructing
CMC invariant surfaces from critical curves; namely the binormal evolution procedure
introduced in Chapter 3.

Therefore, now we are going to consider a suitable binormal evolution in any 3-
dimensional Riemannian or Lorentzian space form, M3

r (ρ), of a Frenet curve of rank
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2 or 3, γ(s), which is critical for the extension of the Blaschke’s variational problem. In
Proposition 1.3.2, we have proved that critical curves have an associated Killing vector
field in the direction of the binormal which can be uniquely extended to a Killing vector
field I on the whole space, M3

r (ρ). Let’s consider the one-parameter group of isometries
determined by the flow of I, {φt, t ∈ R}, and define the surface Sγ := {φt(γ(s))} obtained
as the binormal evolution of γ under the I-flow.

Observe that in our case, the velocity of the binormal evolution is given by Ṗ (κ) =
1

2
√
κ(s)−µ

, where κ(s) is the curvature of the critical curve and falls inside one of the cases

of Proposition 4.2.1. Then, these I-invariant surfaces Sγ have a very nice property. In
fact, we have

Theorem 4.2.6. ([12]) Let γ be an extremal curve of the energy Θµ(γ) =
∫
γ

√
κ− µ ds

and let Sγ denote the I-invariant surface in M3
r (ρ) obtained by evolving γ under the flow

of the Killing field I which extends (2.6) (for our particular choices of ε = 1 and p = 1
2
)

to M3
r (ρ). Then Sγ has constant mean curvature H = −ε1ε2µ.

Proof. We know that our critical curve γ evolves by isometries of M3
r (ρ), sweeping out

a surface, Sγ, which is not only a binormal evolution surface with velocity Ṗ , but also a
I-invariant surface.
Then, as explained in Section 1.2.3, with respect to the coordinate system given by (1.32),
the mean curvature function can be written as (1.39). Finally, by substitution of (4.19)
and (4.20) into (1.39) and after some simplifications, we obtain H = −ε1ε2µ. That is, as
µ ∈ R is fixed, Sγ has constant mean curvature H = −ε1ε2µ. �

Theorem 4.2.6 is particularly illuminating in R3. In fact, in 1841 Delaunay classified
the surfaces of revolution with constant mean curvature, called Delaunay surfaces, and
proved that they are obtained by rotating the roulette of a conic over the basic line; a
curve γ in the x1x2-plane generates a surface of constant mean curvature when rotated
about the x1-axis, if and only if, γ is the roulette of a conic rolling along the x1-axis, [47].
On the other hand, the classification of constant mean curvature helicoidal surfaces of R3,
that is, surfaces invariant under a one-parameter group of helicoidal transformations, is
given in [35]. Now, from Theorem 4.2.6, if γ is an extremal for Θµ(γ) =

∫
γ

√
κ− µ ds,

then it evolves under xt = ṖB by rigid motions following the one-parameter group of
isometries associated to the extension of I = ṖB to R3, sweeping out a surface with
constant mean curvature. If γ is planar (τ = 0) and its curvature is constant, then I is
constant on γ and it sweeps out a circular cylinder by translations. If the curvature of γ
is not constant, then the one-parameter group of I is a group of rotations and γ spans
a Delaunay surface. Now, if γ is a non-planar critical curve of Θµ(γ) =

∫
γ

√
κ− µ ds in

R3, then its evolution under the flow of I is driven by helicoidal motions and γ spans a
helicoidal surface with constant mean curvature in R3, that is, one of the surfaces classified
by Do Carmo and Dajczer [35].
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4.2.2 Bour’s Families of Invariant CMC Surfaces

From previous characterization we have that, basically, CMC ξ-invariant surfaces of
M3

r (ρ), are locally either ruled surfaces Sγ, γ being a geodesic; or, surfaces Sγ swept
out by extremals γ of Θµ in the sense of Section 1.3. If γ has constant curvature, then
Sγ can be either a flat isoparametric surface or it is determined by a solution of the EMP
equations (4.11) or (4.13), according to whether the curvature of γ vanishes or not. More-
over, by manipulating both equations (4.11) and (4.13), it is easy to check that if ω = 0,
then we have that Sγ is a totally geodesic surface when κ = 0, or a totally umbilical
surface if κ = µ 6= 0. On the other hand, if ω 6= 0 in (4.11) or (4.13), one obtains a two-
parameter family Fωβ = {Sγ}ωβ where β is a constant of integration. Along this section,
all the subscripts will denote the dependence of the corresponding function on them, do
not confuse with the notation of the derivatives used in other parts of the memory.

If γ has non-constant curvature, then Sγ can be constructed, basically, by using just one
function and Proposition 4.2.1 in the following manner. Given M3

r (ρ) with r = 0, 1, let us
fix a constant µ ∈ R and three numbers {εi, i = 1, 2, 3} satisfying (1.13). Take a, b, c,∆
as defined in (4.21) with parameters d, e ∈ R subjected to certain natural conditions
as observed in Remark 4.2.2. Consider the corresponding functions κ(s) = κde(s) as
defined in formulas (4.23)-(4.26) and τ(s) = τde(s) = e(κde(s) − µ). Once κd,e, τd,e and
εi, i = 1, 2, 3 have been set up, consider γd,e, the only Frenet curve (up to congruences)
of M3

r (ρ) with curvature κde, torsion τde and the following causal characters of its Frenet
frame, {T,N,B}; 〈T, T 〉 = ε1, 〈N,N〉 = ε2, and 〈B,B〉 = ε3. Now, γd,e is an extremal
curve of Θµ under suitable boundary conditions and denote by Sγd,e the surface obtained
as the evolution of γd,e under the Killing field I = ξde determined in (2.6). Then, from
Theorem 4.2.6 we know that Sγd,e is ξde-invariant surface of constant mean curvature
H = −ε1ε2µ with profile curve γd,e.

In this way, according to Theorem 4.2.6, for each possible choice of the ambient space,
M3

r (ρ), constant µ ∈ R, and {εi, i = 1, 2, 3} satisfying (1.13), we have a two-parameter
family of surfaces in M3

r (ρ), Fd,e := {Sγd,e | d, e ∈ R}, with the same constant mean
curvature H = −ε1ε2µ. Moreover, any surface of Fd,e is ξde-invariant for a certain Killing
field ξde and is shaped on a critical curve γd,e of Θµ(γ) =

∫
γ

√
κ− µ ds with non-constant

curvature κde.
Now, generalizing a classical result of Lawson in R3 [96], we are going to see that for

some cases, within each of these two-parameter families Fd,e it is possible to find one-
parameter subfamilies representing isometric deformations with the same constant mean
curvature. Recall we are using the notation of (4.21) and Proposition 4.2.1.

Theorem 4.2.7. ([12]) Choose r = 0 or r = 1 and two real constants ρ and µ. Take
{εi, i = 1, 2, 3} three numbers satisfying (1.13). For any real constant ν, consider the
conic Cν in the (d, e)-plane defined by

Cν ≡ 1 + ε1ε3e
2 = ν (2d+ ε1µ)2 . (4.34)
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When points (d, e) are moving on a fixed conic, (d, e) ∈ Cν, the above family Fd,e be-
comes a one-parameter family, denoted here by Fνd . Assume that one of the two following
conditions is satisfied

(i) d 6= −ε1
µ
2

and 1 + ε1ε2aν > 0.

(ii) ε1ρ < −ε1ε2µ
2, d 6= −ε1

µ
2

and 1 + ε1ε2aν < 0.

Then, if Fνd is not empty, it represents a one-parameter isometric deformation of ξd,e-
invariant surfaces, ξd,e being Killing fields on M3

r (ρ), with the same mean curvature H =
−ε1ε2µ.

Proof. Observe that, apart from a which is constant, under condition (4.34) all other
parameters defined in (4.21) depend only on d: bd, cd,∆d. First assume ∆d 6= 0. Then,
combining (4.21) and (4.34), we obtain ∆d = $ bd, where $ is another constant given
by $ = (ε2(ρ + ε2µ

2)ν − 1). Now, remember that the metric of Sγde is defined by
g = ε1ds

2 + ε3Gd(s)
2dt2, where Gd(s), given in (4.14), is Gd(s) = 1

2
√
κd(s)−µ

.

Suppose a 6= 0, that is, we are in the first case of Proposition 4.2.1. Hence, using formula
(4.23) we have

G2
d(s) = bd

√
$f(2

√
|a|s)− 1

8|a|
:= bdG

2
o(s) .

Thus, we see that, after a suitable reparametrization, all Sγde within this family are iso-
metric surfaces with the same constant mean curvature H = −ε1ε2µ, what finishes this
case.
Now, under the above assumptions (i) and (ii), only two more cases for ∆d are possible;
i) ∆d < 0 and a = 0, and ii) ∆d = a = 0. A similar argument shows that the cor-
responding values of Gd(s) under the deformation along the conic Cν are, respectively,
Gd(s) =

√
bdGo(s), and, cG4

o(s) = G4
d(s), for certain bd, c ∈ R and function Go(s). This

finishes the proof. �

Notice that for the surface family corresponding to a profile curve of constant curvature
with ω 6= 0, the relation (4.34) becomes ω2 = ν2β2. Then, under the same conditions
(i) and (ii) of Theorem 4.2.7, it can be seen that for each fixed ν the family of surfaces
Fωβ (introduced in the first paragraph of this section, §4.2.2) verifying ω2 = ν2β2, are all
congruent among them and, in addition, they are isometric to Fνd . Moreover, making d, e
tend to∞, we find that the curvatures of the profile curves γ of the family Fνd approaches
to κ = µ, which is, precisely, the curvature of the profile curves for the surfaces in Fωβ
with ω2 = ν2β2. In other words, the surface obtained from a profile curve γ of constant
curvature with ω 6= 0 can be understood as the “limit” surface of the family Fνd . This
reflects what happens in the well-known catenoid-helicoid classical deformation, where
the helicoid corresponds to a surface obtained from ω 6= 0.
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Figure 4.1: Conics Cν of type (4.34) for: minimal surfaces in R3 (Left); and, non-minimals
in R3 and all cases in S3(ρ) (Right).

Figure 4.2: Conics Cν of type (4.34) for: ρ + µ2 ≤ 0 in H3(ρ) (Left); and, ρ + µ2 > 0 in
H3(ρ) (Right).

Several families of conics Cν of type (4.34) are drawn in Figures 4.1 to 4.5, for different
values of the parameters. Profile curves γd,e of the surfaces {Sγd,e} belonging to one-
parameter families Fνd included in Theorem 4.2.7 are determined by the curvature and
torsion given in cases (i) and (iv) of Proposition 4.2.1. These Fνd correspond to conics
Cν satisfying conditions (i) and (ii) of Theorem 4.2.7 and which are painted in blue in
Figures 4.1 to 4.5. Solutions of type (ii) in Proposition 4.2.1 are the curvature and torsion
of profile curves γde for CMC surfaces Sγde which appear when the point (d, e) is moving
on conics Cν satisfying

d 6= −ε1
µ

2
, ν a = −ε1ε2 , ε2ε3e

2 < −ε1ε2, (4.35)

but this time the deformation along these conics does not provide isometric surfaces.
These conics only appear in Lorentzian backgrounds and are painted in orange in Figures
4.3 and 4.5.
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Figure 4.3: Conics Cν of type (4.34) with ε1 = −1 for: ρ + µ2 < 0 in H3
1(ρ) (Left);

ρ+ µ2 = 0 in L3 and H3
1(ρ) (Center); and, ρ+ µ2 > 0 in L3, S3

1(ρ) and H3
1(ρ) (Right).

Figure 4.4: Conics Cν of type (4.34) with ε2 = −1 for: ρ < µ2 in L3, S3
1(ρ) and H3

1(ρ)
(Left); ρ = µ2 in L3 and S3

1(ρ) (Center); and, ρ > µ2 in S3
1(ρ) (Right).

Figure 4.5: Conics Cν of type (4.34) with ε3 = −1 for: ρ + µ2 < 0 in H3
1(ρ) (Left);

ρ+ µ2 = 0 in L3 and H3
1(ρ) (Center); and, ρ+ µ2 > 0 in L3 and S3

1(ρ) (Right).
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If d = −ε1
µ
2

and e2 = −ε1ε3, we also have solutions of type (ii) in Proposition 4.2.1, but
now the conic degenerates to one point. On the other hand, if d = −ε1

µ
2
, ε2ε3e

2 < −ε1ε2

and ρ = −ε2µ
2 the conic degenerates to a piece of a line and the deformation along it

also gives an isometric deformation. This case corresponds to surfaces Sγd,e whose profile
curves have curvature and torsion of type (iv) in Proposition 4.2.1. Notice that for any
other choices of the parameters d, e the conics Cν (red conics in Figures 4.1 to 4.5) do not
correspond to solutions of the extended Blaschke’s problem solved in Proposition 4.2.1.

As we have just mentioned, families of surfaces Fνd corresponding to conics satisfy-
ing (4.35) provide an interesting difference between Riemannian and Lorentzian ambient
spaces, since they only appear in the latter case and the deformation along the conics Cν
is not isometric but preserves the mean curvature H. In fact, conditions (4.35) amount
to ∆ = 0 and a > 0 in (4.21). Let’s take the unique curve γ (up to rigid motions and
causal character of the Frenet frame) determined by a solution of the first integrals of the
Euler-Lagrange equations with ∆ = 0 and a > 0. The curvature and torsion of γ are
given by (see Proposition 4.2.1)

κ(s) =
2a

1− b exp (2
√
as)

+ µ , τ(s) =
2 e a exp (2

√
as)

1− b exp (2
√
as)

. (4.36)

Thus, the binormal evolution surface generated by evolving γ under the extension of its
associated Killing vector field I = G(s)B(s, t), where G(s) is

G(s) =

√
1− b exp (2

√
as)

8a exp (2
√
as)

, (4.37)

defines a surface Sγ whose first fundamental form is given by

g = ε1ds
2 + ε3

1− b exp (2
√
as)

8a exp (2
√
as)

dt2 ,

while the second fundamental form is given in (1.27) where h22 is given by (1.28), G(s)
is defined in (4.37) and κ(s) and τ(s) are those of (4.36). These surfaces have constant
mean curvature H = −ε1ε2µ since they are generated by a critical curve of the extended
Blaschke’s variational problem, and they only appear in Lorentzian space forms, M3

1 (ρ).
Moreover, from the first fundamental form we see that Fνd does not give an isometric
deformation of these ξ-invariant surfaces.

4.2.3 Lawson’s Correspondence for Invariant CMC Surfaces

To finish this section, a couple of consequences of Theorem 4.2.7 are given; an extension
of the so called Lawson’s correspondence and an extension of a Do Carmo-Dajczer result
on rotational CMC cousins.
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There exists an elementary correspondence between CMC surfaces in the different 3-
space forms, described by Lawson in the Riemannian case [96] and often attributed to
him although it was known to Riccati. In Lorentzian space forms, there are also Lawson’s
type correspondences between spacelike CMC surfaces [118] and between timelike CMC
surfaces [59]. Such CMC surfaces are called cousins of each other. The following ver-
sion of Lawson’s type correspondence for ξ-invariant surfaces can be obtained from our
computations

Theorem 4.2.8. ([12]) Take r = 0 or r = 1. Choose real numbers ρ, µ, ρ̂, µ̂ and ε,
satisfying εr+1 = 1 and

ρ+ εµ2 = ρ̂+ εµ̂2 . (4.38)

Then, for each ν ∈ R with non-empty associated one-parameter family Fνd , there exists a
warped product surface Sν, such that Sν admits both

(i) A one-parameter family of isometric immersions in M3
r (ρ) with the same mean

curvature |H| = |µ|, and

(ii) A one-parameter family of isometric immersions in M3
r (ρ̂ ) with the same mean

curvature |Ĥ| = |µ̂|.

Proof. Take r, ρ, µ, ρ̂, µ̂ and ε as stated above. Consider the following data r, ρ, µ and
three numbers {εi, i = 1, 2, 3} satisfying (1.13) and such that ε2 = ε. For d, e real numbers
satisfying suitable conditions (see Remark 4.2.2), define a, b, c,∆ as in (4.21). Consider
the corresponding functions κde(s) as defined in formulas (4.23)-(4.26) and the induced
surface Sγd,e constructed at the beginning of this section. Sγd,e is a warped surface with
metric determined by Gde(s) = 1

2
√
κde(s)−µ

. Now, for ν 6= 0 take the conic Cν (4.34),

and assume that the one-parameter family of surfaces Fνd (defined in Theorem 4.2.7) is
non-empty. For a fixed (do, eo) ∈ Cν , denote by Sν the corresponding surface of Fνd . Then,
from Theorem 4.2.7, Fνd can be seen as a one-parameter family of isometric immersions
of Sν into M3

r (ρ) with constant mean curvature H = −ε1ε2µ.

Now, for (d, e) ∈ Cν , consider d̂ such that

2d+ ε1µ = 2d̂+ ε1µ̂ . (4.39)

Observe that (d, e) ∈ Cν , if and only if, (d̂, e) ∈ Cν in the (d̂, e)-plane.
Finally, for initial data r, ρ̂, µ̂ and {εi, i = 1, 2, 3} as before, consider the corresponding

parameters defined in (4.21) and call them â, b̂, ĉ, ∆̂. Repeating the process we obtain a

one-parameter family of isometric immersions of a warped surface Ŝν into M3
r (ρ̂ ), Fν

d̂
,

with constant mean curvature Ĥ = −ε1ε2µ̂. Then, one can check that conditions (4.38)

and (4.39) imply a = â, b = b̂, c = ĉ, ∆ = ∆̂. Hence, from (4.23)-(4.26) we see that

Gde(s) =
1

2
√
κde(s)− µ

=
1

2
√
κ̂de(s)− µ̂

= Ĝde(s) ,



Chapter 4. Invariant Constant Mean Curvature Surfaces in 3-Space Forms 77

so that Sν and Ŝν are isometric and we are done. �

On the other hand, as mentioned before, in 1982 Do Carmo and Dajczer [35] in-
vestigated surfaces of constant mean curvature in R3 which are generated from a plane
curve by the action of a helicoidal group. They proved the following theorem; a com-
plete immersed CMC surface is helicoidal, if and only if, it is in the associated family
of a Delaunay surface. They proved this result by introducing for each helicoidal CMC
immersion the two-parameter family of helicoidal surfaces given by Bour’s Lemma and
evaluating the constant mean curvature condition for the elements of these families [35].
Now, we can give the following extension of the above result to Riemannian 3-space forms

Theorem 4.2.9. ([12]) Assume that Sγ is a local description of a ξ-invariant CMC H
surface of a Riemannian 3-space form M3(ρ), verifying that its profile curve, γ, has non-
constant curvature, κ. Then, Sγ can be isometrically deformed into a rotational surface
with the same mean curvature H.

Proof. The local description of any ξ-invariant CMC H surface belongs to a one-
parameter family Fνd , associated to a conic Cν , for a fixed ν. In the Riemannian case,
Cν are hyperbolas in the (d, e)-plane. See Figures 4.1 and 4.2. All members of Fνd are
isometric and have the same mean curvature H.
For a fixed ν, consider Sγ the member of the family Fνd which corresponds to e = 0, that
is, corresponding to the point in which Cν crosses the horizontal axis in the (d, e)-plane.
Since the torsion of γ, the profile curve of Sγ, is given by τ(s) = e(κ(s)−µ), we have that
τ = 0, what means that γ is planar, that is, it is contained in a totally geodesic surface
M2(ρ) of M3(ρ).
Therefore, by applying Proposition 3.2.4, we conclude that Sγ is a rotational surface. �

Above Proposition does not hold in the Lorentzian case. In fact, on the one hand, as
we noticed before, families of surfaces Fνd corresponding to conics satisfying (4.35) provide
a deformation along the conics Cν which is not isometric although it preserves the mean
curvature H. On the other hand, there are values of µ and ρ for which two types of conics
Cν appear, depending on the value of ν (see Figures 4.3 and 4.5). In fact, in these cases
we might have ellipses Cν , as those shown in the central parts of the pictures given in
Figures 4.3 and 4.5, or hyperbolas Cν which correspond to the upper and lower part of
the same pictures. In the latter case, the hyperbolas do not cross the d-axis, so that e,
and therefore τ , is never 0.

4.3 Delaunay Surfaces in Riemannian 3-Space Forms

Observe that the result proved in Theorem 4.2.9 highlights the importance of rotational
CMC surfaces of Riemannian 3-space forms. As we have mentioned in the introduction
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of this chapter, Delaunay constructed rotationally symmetric CMC surfaces of R3 from
roulettes of conics [47]. These roulettes have been proved to be planar critical curves of
Θµ, (4.17), in Corollary 4.2.4. Moreover, in previous sections, we have also proved that
the profile curves of local descriptions of rotational CMC surfaces in Riemannian 3-space
forms are planar critical curves of Θµ, (4.17) (see Theorem 4.1.1 and Theorem 4.2.6).
For this reason, along this section we are going to call Delaunay surfaces to all CMC
rotational surfaces of any Riemannian 3-space form, M3(ρ).

In the Euclidean 3-space, R3, Delaunay surfaces are globally well-known, since they are
Euclidean planes, catenoids (these two for the minimal case), spheres, cylinders, nodoids
and unduloids.

On the other hand, CMC surfaces immersed in the 3-sphere, S3(ρ), have played a
major role in Mathematics in last decades. In 1966, Almgren [1] proved that any im-
mersed minimal 2-sphere in S3(ρ) must be totally geodesic and, therefore, congruent to
the equator. Moreover, in 1970, Lawson [96] proved that, given any positive integer m,
there exist at least one compact embedded minimal surface in S3(ρ) with genus m. In fact,
if the genus of the CMC surface is 1, he conjectured that the only embedded minimal tori,
up to rigid motions in S3(ρ), is the Clifford torus, [97]. Lawson’s conjecture was recently
proved by Brendle in [30]. Furthermore, adapting the technique of this proof, Andrews
and Li [3] proved the Pinkall-Sterling conjecture; any CMC tori embedded in S3(ρ) must
be rotationally symmetric, [126]. In fact, these rotational CMC surfaces were completely
classified by Perdomo, [121] and [122], and Andrews and Li [3].

The study of CMC surfaces in the hyperbolic 3-space, H3(ρ), depends greatly on the
value of the mean curvature, H. For a surface with CMC H ≥

√
−ρ, it was shown that

there is a corresponding cousin CMC surface in both R3 and S3(ρ). Due to the existence
of Lawson’s correspondence, there have been many articles about these CMC surfaces.
For instance, Bryant constructed a Weierstrass type representation for surfaces with CMC
H =

√
−ρ using the Lawson’s correspondence [31]. However, there have been relatively

few papers when CMC verifies H <
√
−ρ. In [123], Perdomo characterized these CMC

rotational surfaces in terms of solutions of an ordinary differential equation. Moreover,
using tools from equivariant geometry, Gomes described rotational CMC surfaces of H3(ρ)
of spherical type, [67].

In this last part of the chapter we use the local characterization of rotational CMC
surfaces of M3(ρ) as binormal evolution surfaces swept out by planar critical curves of
Θµ, in order to develop a new approach to study Delaunay surfaces in M3(ρ). Indeed, we
give the local classification of CMC rotational surfaces in each 3-space form, M3(ρ).

Moreover, although the characterization introduced in previous sections is local in
nature, it can be used to make a global analysis of these surfaces. In particular, in the
round 3-sphere, S3(ρ), we prove the existence of closed planar extremal curves for some
particular cases, and, we also study when these critical curves are embedded in S2(ρ),
obtaining that the constant µ plays an essential role. Finally, applying the properties
obtained from the analysis of the planar critical curves, we recover many results about the
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global properties of rotational CMC surfaces of S3(ρ), previously obtained using different
tools.

4.3.1 Local Classification of CMC Rotational Surfaces

In Section 4.1 we have proved that the profile curve of a local description of a CMC
rotational surface of any Riemannian 3-space form, M3(ρ), is locally a planar critical
curve of the extended Blaschke’s variational problem Θµ, (4.17). Therefore, these profile
curves are completely characterized by the curvatures given in Corollary 4.2.3, (4.29)-
(4.31). Moreover, rotational CMC surfaces of M3(ρ) can be locally described as binormal
evolution surfaces swept out by these critical curves.

However, notice that in Proposition 4.2.1 there was another option for the curvature
κ(s), namely (4.22), which represents a constant solution of Euler-Lagrange equations,
(4.19) and (4.20). In Proposition 3.2.3, it has been proved that the binormal evolution
surfaces with this initial condition are flat isoparametric surfaces, and, therefore, in M3(ρ),
they are spherical cylinders.

Furthermore, for the sake of completeness, we recall that κ = µ was a global minimum
of Θµ, (4.17), when acting on a different space of curves, see Section 4.2. As explained
in the beginning of Section 4.2.2, the binormal evolution surfaces with initial condition of
this type are totally umbilical surfaces.

Taking this into account, we are in conditions to state the main results of this section.

Theorem 4.3.1. ([14]) Let Sγ be a rotational surface of R3 with CMC H, and let’s denote
by κ(s) the curvature of the profile curve of Sγ, γ. Then, locally, Sγ is a piece of one of
the followings

(i) A totally geodesic plane, R2; if κ(s) = H = 0.

(ii) A totally umbilical sphere; if κ(s) = |H| 6= 0.

(iii) A cicular cylinder; if κ(s) = 2|H| 6= 0.

(iv) A binormal evolution surface parametrized by (3.30) where the initial condition γ
has curvature κ(s) given by (4.29) or (4.30), the velocity is Ṗ (κ) = 1

2
√
κ−µ and

|µ| = |H|.

Proof. From Theorem 4.1.1, we have that the profile curve of Sγ must be, locally, a
planar extremal curve for Θµ, (4.17), where |H| = |µ|. Therefore, its curvature must be
either κ(s) = |H|, or given by Proposition 4.2.1 (see also Corollary 4.2.3). We first recall
that the case κ(s) = |H| represents totally umbilical surfaces, thus points (i) and (ii) are
clear. On the other hand, if κ(s) is given in Proposition 4.2.1 and it is constant, (4.22),
then Sγ must be a spherical cylinder, point (iii), as explained just before.
The other possible curvatures of Proposition 4.2.1 are also included in Corollary 4.2.3,
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and are given by, (4.29) and (4.30). They give rise to binormal evolution surfaces with
velocity Ṗ (κ) = 1

2
√
κ−µ . For the parametrizations of these surfaces see Section 3.2.1. �

Notice that in the last point of previous theorem we get a catenoid if H = 0; and a
nodoid and an unduloid, if H 6= 0. The nodoid comes from (4.30) with µ > 0, whereas
the unduloid is given by a profile curve with curvature (4.30) and µ < 0. This can also
be checked from Corollary 4.2.4.

The particular case where H = 0 has special interest, since it represents minimal ro-
tational surfaces of R3. From Theorem 4.3.1, we obtain the following well-known classical
result

Corollary 4.3.2. ([14]) Let Sγ be a rotational minimal surface of R3. Then, Sγ must be
congruent to either the plane, if the profile curve of Sγ, γ, is a geodesic of R3; or to the
catenoid.

Now, we are going to state a similar classification result for rotational CMC surfaces
of the round 3-sphere, S3(ρ).

Theorem 4.3.3. ([14]) If we denote by Sγ a rotational surface of CMC H in S3(ρ) and
by κ(s) the curvature of its profile curve, γ, then, Sγ must be locally congruent to a piece
of one of the followings

(i) The equator S2(ρ); if κ(s) = H = 0.

(ii) A totally umbilical sphere; if κ(s) = |H| 6= 0.

(iii) A Hopf Torus

S1
(√

ρ+ κ2
)
× S1

(√
ρ

κ

√
ρ+ κ2

)
,

if κ(s) = −|H|+
√
H2 + ρ.

(iv) A binormal evolution surface parametrized by (3.32) where the initial condition γ
has curvature (4.30), the velocity is given by Ṗ = 1

2
√
κ−µ and where |µ| = |H|.

Proof. This proof is similar to that of Theorem 4.3.1. �

Finally, we are going to develop a similar classification for the hyperbolic 3-space,
H3(ρ). Observe that, as it is clear from the different types of Killing vector fields, (3.22)
and (3.23), the group of motions of this space is richer than those of R3 and S3(ρ), and
because of this reason there are more options for the rotational CMC surface.

Theorem 4.3.4. ([14]) Consider a rotational surface Sγ ⊂ H3(ρ) with CMC H. Assume
that κ(s) is the curvature of the profile curve, γ. Then, Sγ is locally congruent to a piece
of one of the following surfaces



Chapter 4. Invariant Constant Mean Curvature Surfaces in 3-Space Forms 81

(i) A totally geodesic hyperbolic plane, H2(ρ); if κ(s) = H = 0.

(ii) A totally umbilical sphere when κ(s) = |H| >
√
−ρ.

(iii) An equidistant surface when 0 6= κ(s) = |H| <
√
−ρ.

(iv) An horosphere; if κ(s) = |H| =
√
−ρ.

(v) An hyperbolic cylinder; if κ(s) = |H|+
√
H2 + ρ.

(vi) A binormal evolution surface with velocity Ṗ = 1
2
√
κ−µ , parametrized by (3.35), if

d > 0; (3.37), if d < 0; or (3.40), when d = 0. Furthermore, in all these cases, the
initial condition γ has curvature (4.29), (4.30) or (4.31) and |µ| = |H|.

Proof. We can prove this result arguing as in the proof of Theorem 4.3.1. �

As we can see, in the hyperbolic 3-space, H3(ρ), things are a little bit more complicated.
On one hand, we have three different types of rotations, as studied in Section 3.2.1, and
on the other hand, there is another possibility for the curvature of the profile curve κ(s),
(4.31). If we restrict our attention to minimal rotational surfaces, we have that H = µ = 0,
so the only options are; the totally geodesic hyperbolic plane, H2(ρ), and the binormal
evolution surfaces given in point (vi) of Theorem 4.3.4, where κ(s) comes from (4.31).
Thus, we obtain

Corollary 4.3.5. ([14]) A minimal rotational surface, Sγ, of H3(ρ) with profile curve γ
is locally congruent to a piece of either, H2(ρ) if γ is a geodesic of H3(ρ); or to one of the
three binormal evolution surfaces described in point (vi) of Theorem 4.3.4, with µ = 0, if
γ has non-constant curvature.

From the similarity with the Euclidean 3-Space, some authors [36] call catenoids of
first, second and third type, respectively, to the binormal evolution surfaces appearing in
Corollary 4.3.5.

To end up this section, notice that from the well-known global classification of CMC
rotational surfaces of Euclidean 3-space, R3, which is locally given in Theorem 4.3.1, the
only closed surface is the totally umbilical sphere. Moreover, in [2], the same result was
proved for the hyperbolic 3-space, H3(ρ), which means that the binormal evolution surfaces
for d > 0 of point (vi) in Theorem 4.3.4 have non-closed profile curves. However, in the
round 3-sphere, S3(ρ), the first points of Theorem 4.3.3, (i)-(iii), give local descriptions of
closed rotational surfaces with CMC in S3(ρ), which are not only spheres, but also tori (see
for instance point (iii) in Theorem 4.3.3). Moreover, these surfaces are not only closed,
but they are also embedded in S3(ρ). On the other hand, the last case, (iv), depends
greatly on the profile curve. In fact, if the profile curve is closed, then the surface Sγ
would also be closed.
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4.3.2 Embedded CMC Tori in the Round 3-Sphere

Now, we want to understand which of the rotational CMC surface of S3(ρ), locally classi-
fied in point (iv) of Theorem 4.3.3, are closed. Then, using the results presented in Section
3.2.2, we have that there are two possibilities to obtain closed rotational CMC surfaces.
The first one corresponds with planar critical curves that meet the axis of rotation, and
the second one comes from planar closed critical curves. However, from equation (3.33),
in this particular case we have

κ̄2
δ = κ2

δ + ρ =
d

Ṗ 2
= 4d (κ− µ) > 0 .

Therefore, the Euclidean radius of curvature of the orbits (taking into account the im-
mersion of S3(ρ) into R4, see Section 1.2) is never zero, since κ is bounded (see (4.30)),
what means that planar critical curves of the extended Blaschke’s energy never cut the
axis of rotation. Observe that this result can also be obtained by considering the fixed
points of the binormal evolution, and checking that the evolution restricted to the initial
curve I = ṖB, (2.6) for ε = 1 and p = 1/2, is never zero, that is, there are no fixed points
along planar critical curves. Thus, we draw the same conclusion.

By the remark made just above, it is clear that it may be interesting to study closure
conditions for profile curves of Θµ, (4.17), when acting on curves immersed in S2(ρ), since
closed planar critical curves with curvature given by (4.30) will generate CMC rotational
tori, and these are the only possible non-isoparametric closed CMC rotational surfaces in
S3(ρ). Moreover, by the recently proved Pinkall-Sterling’s conjecture, these are the only
possible non-isoparametric CMC tori embedded in S3(ρ).

Figure 4.6: Closed planar extremal curves in S2(1) passing through the pole (4µ d = 1)
for µ ' 0.312 (Left) and µ ' 0.634 (Right).



Chapter 4. Invariant Constant Mean Curvature Surfaces in 3-Space Forms 83

Therefore, along this section we are going to restrict ourselves to M3(ρ) = S3(ρ),
the round 3-sphere. In this case, planar critical curves of Θµ, (4.17), are completely
determined by the curvature κ(s), (4.30). Notice that this curvature is periodic of period
% = π√

ρ+µ2
.

Now, using (4.30), it is easy to check that whenever 4µ d 6= ρ, at maximum and
minimum curvatures, the vector field J , (2.7), has only component in T , which means
that the critical curve is bounded between two parallels, which are the integral curves of
J at the maximum and minimum curvatures, respectively. What is more, the length of
J vanishes, if and only if, κ(s) reaches its minimum and 4µ d = ρ (observe that since
d > 0, this equality can only occur for positive values of µ). In this particular case, the
critical curve crosses the pole of the parametrization (see the parametrization given in
(3.32) and Figure 4.6). However, notice that it is possible to find a reparametrization of
the critical curve in order to delete this singularity. For instance, in Lemma 3.1 of [122]
it has been done when ρ = 1.

In Figure 4.6 and 4.7, we can see some plots of closed critical curves of Θµ, (4.17)
in S2(1). These curves have periodic curvature, κ(s), given by (4.30). The yellow part
of these pictures corresponds with the part of the curve covered in one period of the
curvature. Notice that, as the curvature is the same for each period of it, our critical
curve is nothing but congruent copies of the yellow part, that is, the whole curve can be
constructed by gluing smoothly as many copies of the trace covered in one period of the
curvature as needed to close up the curve.

Figure 4.7: Closed planar extremal curves in S2(1) for: µ = −0.1 and d ' 1.27 (Left);
and, µ = 1 and d ' 1.81 (Right). They close up for the values m = 5 and n = 3 (resp.,
m = 6 and n = 1).
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However, not every critical curve with periodic curvature (4.30) is closed. In fact, as
Proposition 3.2.6 states, we need the closure condition to be satisfied. Now, since we are
working in the round 3-sphere, S3(ρ), by (1.58) we have that the constant of integration
d must be positive (see also Remark 4.2.2). Moreover, in this case, the closure condition
boils down to

I = −1

2

√
ρ dΛ(d) =

√
ρ d

∫ %

0

(κ(s)− 2µ)
√
κ(s)− µ

4d (κ(s)− µ)− ρ
ds =

nπ

m
, (4.40)

for any integers n and m. We recall that n denotes the number of rounds the critical
curve gives around the pole of the parametrization in order to close up, and that m is the
number of lobes the critical curve has. Then, we can prove the existence of closed planar
critical curves with non-constant curvature, κ(s), given by (4.30), for any values of µ.

Let γ be a planar (τ = 0) critical curve of Θµ, (4.17), completely determined by
the curvature, κ(s), given by (4.30). As these curvatures are periodic functions with
period % = π√

ρ+µ2
, if we call α to the maximum curvature of κ(s) and β to the minimum

curvature, we obtain

α = κ

(
π

4
√
ρ+ µ2

)
≥ κ

(
− π

4
√
ρ+ µ2

)
= β .

Then, we can rewrite the function on the left hand side of (4.40). By symmetry,

I = 2
√
ρ d

∫ π

4
√
ρ+µ2

− π

4
√
ρ+µ2

(κ(s)− 2µ)
√
κ(s)− µ

4d (κ(s)− µ)− ρ
ds . (4.41)

Now, differentiating equation (4.30), we get that κs = 2(κ−µ)
√

4d(κ− µ)− (κ− 2µ)2 − ρ,
which can be written in terms of the maximum and minimum curvatures, α and β, re-
spectively, as

κs = 2(κ− µ)
√

(α− κ)(κ− β) . (4.42)

If we use above equation, (4.42), to make a change of variable in (4.41), we get

I =
√
ρ d

∫ α

β

κ− 2µ

(4d (κ− µ)− ρ)
√

(κ− µ) (α− κ) (κ− β)
dκ .

This integral can be written as a linear combination of complete elliptic integrals, see
Appendix A. As d > 0, we have the following relation, 4d(κ−2µ) = (4d(κ−µ)−ρ)+ρ−4µd,
and, therefore, we conclude that

I =

√
ρ

4
√
d

(∫ α

β

dκ√
(κ− µ) (α− κ) (κ− β)

+ (ρ− 4µd)

∫ α

β

dκ

(4d (κ− µ)− ρ)
√

(κ− µ) (α− κ) (κ− β)

)
. (4.43)
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Take into account that ρ = 4µd is a special case since the second integral does not appear.
Indeed if ρ = 4µd, then the critical curve passes through the pole, as we have explained
in the beginning of the section.

Now, following the notation of [68], we define

p =

√
α− β
α− µ

, q =
√

1− p2 , ν =
(α− β) (α + β − 4µ)

(α− µ) (α + β − 4µ)− ρ
. (4.44)

Then, from (4.42), we know that 4d(κ− µ)− (κ− 2µ)2 − ρ = (α− κ)(κ− β) which gives
us α + β = 4(d+ µ) and αβ = 4µ2 + 4µd+ ρ. Thus, finally, we obtain that

α =

√
ρ+ µ2

q
+ µ , β = q

√
ρ+ µ2 + µ . (4.45)

Therefore, using above relations (4.45), we reduce (4.43) to (see Appendix A)

I =
2
√
ρ

√
α + β − 4µ

√
α− µ

(
K(p) +

ρ− µ (α + β − 4µ)

(α− µ) (α + β − 4µ)− ρ
Π (ν, p)

)
, (4.46)

where K(p) and Π(ν, p) denote the complete elliptic integrals of first and third kind,
respectively.

Then, we have the following result

Theorem 4.3.6. ([14]) In the round 3-sphere, S3(ρ), there exist closed planar critical
curves of Θµ, (4.17), with non-constant curvature, κ(s), given by (4.30), for any value of
µ.

Proof. Consider a planar critical curve γ of Θµ, (4.17), with non-constant periodic
curvature κ(s), (4.30). Now, we need to check whether the conditions of Proposition 3.2.6
are verified or not. Remember that we have written the function I, (4.40), in terms of
elliptic integrals, (4.46).
We first begin by translating the different values of the parameter d into the new parameter

q introduced in (4.44). The value d =
−µ+
√
ρ+µ2

2
corresponds with q = 1, while, the limit

d → ∞, now reads q → 0. Moreover, d = ρ
4µ

, that is, when the critical curve passes
through the pole, is represented by q = µ√

ρ+µ2
.

Then, with the notation introduced in (4.44), it can be checked that p2 < ν < 1. Moreover,

as mentioned in Remark 4.2.2, d >
−µ+
√
ρ+µ2

2
> 0 and using (4.46) and formula (A.1) of

the Appendix A, we get

I = q φK(p) +
π

2
εΛo ( arcsin φ , p ) , (4.47)
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where ε represents the sign of ρ− 4µd and φ is given by

φ =

√
ν − p2

ν (1− p2)
=

1

q

√
ρ

4d (α− µ)
.

If µ ≤ 0, then necessarily ε = 1 and for any d ∈
(
−µ+
√
ρ+µ2

2
,∞
)

, I, (4.40), is a mono-

tonically decreasing function on d bounded by (see Lemmas A.0.1 and A.0.2 of Appendix
A)

arcsin

√
ρ

ρ+ µ2
< I <

π

(ρ+ µ2)
1
4

√
ρ

2
(
−µ+

√
ρ+ µ2

) . (4.48)

On the other hand, if µ > 0, we need to take out the case d = ρ
4µ

and d ∈
(
−µ+
√
ρ+µ2

2
, ρ

4µ

)
∪(

ρ
4µ
,∞
)

. Then, taking into account the sign of ε, we obtain that I, (4.40), is a mono-

tonically decreasing function on d, which is bounded by (see Lemmas A.0.1 and A.0.3 of
Appendix A)

− arcsin

√
ρ

ρ+ µ2
< I <

µ√
ρ+ µ2

K

(√
ρ

ρ+ µ2

)
− π

2
, (4.49)

if ε = −1, or, in the case ε = 1 we have the following upper and lower bounds

µ√
ρ+ µ2

K

(√
ρ

ρ+ µ2

)
+
π

2
< I <

π

(ρ+ µ2)
1
4

√
ρ

2
(
−µ+

√
ρ+ µ2

) . (4.50)

Thus, in all the three cases (4.48)-(4.50), we can always find some integers m and n, such
that, mI = nπ, that is, there are closed critical curves.
To end up the proof, we are going to consider now the case where the critical curve passes
through the pole. That is, when ρ = 4µd. As mentioned before, for this case we only
have the first integral in (4.43). Moreover, in this case, q = µ√

ρ+µ2
and µ can have values

in (0,∞), since ρ > 0. In this case, by (4.46),

I =
µ√
ρ+ µ2

K

(√
ρ

ρ+ µ2

)
. (4.51)

Then, from the result proved in Lemmas A.0.1 and A.0.3 of Appendix A, I is increasing
in µ and 0 < I < π/2. Therefore, there are also closed critical curves passing through the
pole. �
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Notice that planar critical curves of Θµ, (4.17), are all immersed in the totally geodesic
sphere S2(ρ) (see Figures 4.6 and 4.7). However, in order to study embeddedness of the
associated binormal evolution surfaces, we need to get under what conditions planar
critical curves are embedded in S2(ρ), that is, when these critical curves are simple.

Theorem 4.3.7. ([14]) Assume that γ is a planar critical curve of Θµ, (4.17), with non-
constant curvature, κ(s), (4.30), immersed in S2(ρ). Then, if µ > 0, γ is not simple.
Moreover, if µ ≤ 0, γ will be simple, if and only if, it is closed and it closes up in one
round around the pole.

Proof. Let γ be a planar critical curve of (4.17), with curvature, κ(s) (which is given
by (4.30)). Then, the function

Ĩ(s) =
(κ(s)− 2µ)

√
κ(s)− µ

4 d (κ(s)− µ)− ρ
, (4.52)

verifies that;

(i) If µ ≤ 0 or, µ > 0 and 4µ d ≤ ρ, then it never changes sign.

(ii) If µ > 0 and 4µ d > ρ, it changes sign.

Now, by Remark 4.2.2, we have that 2d > −µ +
√
ρ+ µ2. Moreover, notice that if

µ ≤ 0, then Ĩ(s), (4.52), does not change sign and, therefore, the function ψ(s), (3.31), is
monotone. Furthermore, the planar critical curve γ will be simple, unless it closes up in
more than one round. Thus, γ ⊂ S2(ρ) is simple, if and only if, it closes up in one round,
that is, by checking the image of I, (4.48), if there exists an integer m, such that,

arcsin

√
ρ

ρ+ µ2
<

π

m
<

π

(ρ+ µ2)
1
4

√
ρ

2
(
−µ+

√
ρ+ µ2

) ,
and verifying mI = π.
Now, if µ > 0 and 4µ d < ρ, the function Ĩ(s), (4.52), has always the same sign. That is,
by monotonicity of ψ(s), (3.31), γ will be simple, if and only if, it closes up in one round.
Attending to the limits obtained in Lemma A.0.2 of Appendix A, the absolute value of
the total angular variation, |2 I|, of γ in S2(ρ), (4.50), is always bigger than π, but smaller
than 2π. Thus, γ cannot close up in one period, and from the second period it travels
more than one round, so it cuts itself. That is, γ is not simple.
Let’s study now the case µ > 0 and 4µ d = ρ. In this case, γ passes through the pole
exactly once in each period of its curvature, therefore the only option for γ to be simple
is that it closes up in just one period. But, if we look at the absolute value of the total
angular variation, |2 I|, for this case, (0, π), we realize that γ ⊂ S2(ρ) does not travel one
whole round in each period, since |2 I| is always smaller than π.
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Finally, if µ > 0 and 4µ d > ρ, we have that Ĩ(s), (4.52), has changes of sign, what it
means that γ goes back, and as a consequence from (3.32), it is clear that γ is not simple. �

Notice that what Theorem 4.3.7 tells us is that there exist closed critical curves em-
bedded in S2(ρ). In fact, the condition in this case reduces to γ closing up in one round
and not having self-intersections in one period of its curvature.

Figure 4.8: Closed and simple planar extremal curves in S2(1) for: µ = −1 and d ' 2.48
(Left); and, µ = −2 and d ' 16.19 (Right).

The condition of closing up in just one round means that the angular variation, I,
must be equal π/m, for any integer m. This function has been proved to be bijective
in Appendix A (Lemma A.0.1), since the analysis made with elliptic integrals leads to I
being monotone. A different proof when ρ = 1 can be found in [3]. This bijection means
that for each m, there exist just one d such that mI = π. However, the election of the
integer m is not totally free, since it is constrained by µ. Indeed, if we combine Theorem
4.3.6 and Theorem 4.3.7 to obtain closed and simple planar critical curves we get that
µ < 0 and that for any m > 1

µ ∈
(
−√ρ m2 − 2

2
√
m2 − 1

,−√ρ cot
π

m

)
. (4.53)

Finally, we sum up all this information in the following Corollary,

Corollary 4.3.8. ([14]) Let γ be a planar closed critical curve of Θµ, (4.17), with non-
constant curvature, κ(s), (4.30), embedded in S2(ρ). Then, µ 6= −

√
ρ
3

is negative.
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Proof. From Theorem 4.3.7, we know that necessarily µ ≤ 0. Moreover, as explained
above, it must verify (4.53), for any m > 1. Then, we can check that for any strictly
negative µ 6= −

√
ρ
3
, there exist such m > 1. �

Observe that these results can be translated to the binormal evolution surfaces. In
fact, as we have already mentioned, if the initial condition is closed, then Sγ would also
be closed (see Figure 4.9), and, what is more, if the planar critical curve is simple and
closed, then the evolution under the binormal flow sweeps out a closed surface embedded
in S3(ρ).

Figure 4.9: Stereographic projections of two closed CMC rotational surfaces in S3(ρ)
showing the binormal evolution (in blue) of the filaments (in yellow).

With this argument, the local classification theorem (Theorem 4.3.3) and the bijection
of I, we have that once we fix the CMC H, for each m > 1, there exist at most one compact
embedded non-isoparametric rotational surface of CMC H in S3(ρ).

Observe that since critical curves with non-constant curvature do not meet the axis
of rotation, the binormal evolution surfaces of point (iv) of Theorem 4.3.3 are all local
descriptions of topological torus, therefore, both the Hopf tori and the binormal evolution
surfaces have genus one. Moreover, notice that the interval (4.53), is precisely the interval
given by Perdomo in [121]. In fact, for each possible value H and any m > 1 such that

|H| ∈
(
√
ρ cot

π

m
,
√
ρ

m2 − 2

2
√
m2 − 1

)
,

there exist a compact embedded non-isoparametric surface of genus one given by point (iv)
of Theorem 4.3.3 (see some of them in Figures 4.9 and 4.10). Moreover, our construction
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here gives a way of proving Ripoll’s Theorem [128], which states that for any H 6= 0,
±
√

ρ
3
, there exist a non-isoparametric torus of CMC H. In Figure 4.10, we can see the

stereographic projection of three of these surfaces for m = 3, 4 and 5, respectively.

Figure 4.10: Stereographic projections of embedded CMC rotational surfaces in S3(ρ).

Furthermore, the Pinkall-Sterling’s conjecture [126] (recently proved in [3]) asserts
that any CMC tori embedded in S3(ρ) must be rotationally symmetric. Therefore, points
(iii) and (iv) in Theorem 4.3.3 (together with the restriction from Corollary 4.3.8) give rise
to a complete classification of CMC tori embedded in S3(ρ). In particular, the Lawson’s
conjecture (see [30] and [97]) is verified. Indeed, if a rotational torus is minimal, then
µ must be zero and there are no closed simple planar critical curves of Θµ, (4.17), (see
Corollary 4.3.8), therefore, the only minimal torus embedded in S3(ρ) is locally given in
point (iii) of Theorem 4.3.3,

S1
(√

2 ρ
)
× S1

(√
2 ρ
)
,

which is a Hopf torus, usually called the Clifford torus.



Chapter 5

Invariant Linear Weingarten
Surfaces in 3-Space Forms

In the introduction of Chapter 4, we have mentioned that the mean curvature, H, is one
of the most important extrinsic invariants for a surface immersed in any Riemannian or
Lorentzian 3-space form, M3

r (ρ). Moreover, as we have seen in Chapter 1, all the intrinsic
and extrinsic information of an immersion of a surface, N2

ν , into any 3-space form, M3
r (ρ),

is encoded in the two fundamental forms. In particular, a combination of them gives rise
to the shape operator, Aη.

Take into account that in Riemannian backgrounds, the shape operator is symmetric
and that its eigenvalues are usually called principal curvatures. Therefore, it is well-known
that in Riemannian ambient spaces the principal curvatures of N2 always exist. However,
in Lorentzian 3-space forms, the shape operator may not be diagonalizable, so, in general,
the principal curvatures are not well-defined. For this reason, from now on, we are going
to restrict ourselves to surfaces immersed in Riemannian 3-space forms, M3(ρ).

In this setting, it can be checked that the mean curvature, H, verifies 2H = κ1 +κ2, κ1

and κ2 being the principal curvatures. In Chapter 4, we have considered CMC invariant
surfaces. Notice that the CMC condition expressed in terms of the principal curvatures
gives rise to a relation of the type Υ(κ1, κ2) = 0. Surfaces verifying a certain relation
Υ(κ1, κ2) = 0 between their principal curvatures are usually called Weingarten surfaces.
These surfaces were introduced by Weingarten in [142] and its study occupies an important
role in classical Differential Geometry.

The simplest relation of the type Υ(κ1, κ2) = 0 which extends the CMC condition is
the affine relation, often called linear relation in the literature. That is

a κ1 + b κ2 = c ,

where a, b and c are three real constants, such that, a2 + b2 6= 0. We are going to call
linear Weingarten surfaces to the surfaces whose principal curvatures verify this linear
relation. Trivial examples appear whenever a and c (or, equivalently, b and c) are both
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zero, or, also when the surface has one constant principal curvature. Thus, from now on,
we are going to discard them.

After these examples, without loss of generality, we can rewrite above linear relation
as

κ1 = a κ2 + b ,

where a, b ∈ R and a 6= 0. Well-known families of linear Weingarten surfaces are the
following;

(i) Totally Umbilical Surfaces. This is the case where a = 1 and b = 0.

(ii) Isoparametric Surfaces. In this case both principal curvatures are constant. Besides
the umbilical surfaces, the surface may be a spherical cylinder.

(iii) Constant Mean Curvature Surfaces. This is the case when a = −1 and the surface
has constant mean curvature H = b/2. Observe that in Chapter 4 we have been
able to study invariant CMC surfaces also in Lorentzian 3-space forms, M3

1 (ρ), by
considering H = Ho instead of above linear relation.

Finally, we remind that in the literature the name linear Weingarten surfaces has also
been used to denote surfaces verifying a linear relation between their Gaussian and mean
curvatures, K and H, respectively. However, we point out that, in general, these surfaces
do not coincide with those ones satisfying a linear relation of above type.

In this chapter we are going to apply the binormal evolution procedure described
in Chapter 3, in order to study invariant linear Weingarten surfaces of Riemannian 3-
space forms, M3(ρ). We begin by analyzing the critical curves of a particular generalized
elastic energy (ε = 1 in (2.2)), which along this chapter is going to be called p-elastic
energy following the notation of [63]. Moreover, we are also going to see that there
exist a correspondence between critical curves of this energy and a generalization of a
famous nonlinear equation, namely the Ermakov-Milne-Pinney (EMP) equation. This
correspondence can be used as an alternative route for obtaining exact solutions of the
generalized EMP equation.

Then, in the second part of the chapter, we variationally characterize the profile curves
of rotational linear Weingarten surfaces of Riemannian 3-space forms, M3(ρ). Indeed, we
prove that they are planar critical curves of two curvature energy functionals. Mainly,
they are p-elastic curves, that is, critical curves of the generalized elastic energy Θε,p

µ ,
(2.2), with ε = 1. However, for the case a = 1 in the linear relation, a completely different
curvature energy functional appears.

Moreover, we can prove that the binormal evolution of these critical curves generates an
invariant linear Weingarten surface. In fact, as critical curves are planar, the invariance
is given by a one-parameter group of rotations, and, therefore, the binormal evolution
surfaces with these planar critical curves as initial filaments are going to be rotational
linear Weingarten surfaces.
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Then, we are going to restrict ourselves to the Euclidean 3-space, R3, proving that
there are no rotational linear Weingarten tori for b = 0, that is, for the pure linear rela-
tion. However, by giving the full geometric description of all rotational linear Weingarten
surfaces in R3, we are going to see that for other topological types of surfaces, there
may exist closed rotational linear Weingarten surfaces, as, for instance, the Mylar balloon
proves.

In the last part of the chapter, a nice application of this characterization to another
type of variational problems is described. Indeed, we characterize the profile curves of
non-CMC biconservative surfaces as generalized elasticae. What is more, locally, all these
non-CMC biconservative surfaces are binormal evolution surfaces with initial condition
a planar generalized elastica. Finally, using this new description of the non-CMC bi-
conservative surfaces, we are going to prove that in both R3 and H3(ρ), there are no
closed non-CMC biconservative surfaces. On the other hand, in S3(ρ), we will see that
the closure condition plays an essential role.

5.1 The p-Elastic Energy of Curves in Riemannian

3-Space Forms

As we have just explained, for our purposes it is sufficient to consider Riemannian ambient
spaces along this section. That is, we are going to work with Riemannian 3-space forms,
M3(ρ). Then, for p 6= 0 and µ ∈ R, we define the curvature energy functional

Θp
µ(γ) =

∫ L

o

(κ(s)− µ)p ds . (5.1)

Notice that if we fix ε = 1 in the generalized elastic functional (2.2), we recover (5.1).
Moreover, in the flat ambient space, R3 (and also in the Minkwoski 3-space, L3) this
functional has been studied in [63], where its critical curves have been called p-elastic
curves. Therefore, along this section, we are going to refer to Θp

µ, (5.1), as the p-elastic
energy.

On the other hand, as a particular case of a generalized elastic energy obtained by
fixing ε = 1 in (2.2), the case p = 1 is, basically, the total curvature functional, whose
extremals are any planar curves whenever ρ + µ = 0 (see equations (2.4) and (2.5)).
This result was also obtained in [7] (check also the references therein). Notice that in
the definition of Θp

µ we have required p 6= 0 since, as explained in Section 2.1, the case
p = 0 corresponds with the length functional. From now on, we discard these two cases,
so p 6= 0, 1.

Now, adpating the Euler-Lagrange equations (2.4) and (2.5) for the case ε = 1 and
M3(ρ) (that is, εi = 1, for i = 1, 2, 3) we obtain the Euler-Lagrange equations of Θp

µ,
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(5.1), acting on Ωρ∗
pop1

, (4.18),

d2

ds2

(
(κ− µ)p−1

)
+ (κ− µ)p−1

(
κ2 − τ 2 + ρ

)
− 1

p
κ(κ− µ)p = 0 , (5.2)

2
d

ds

(
(κ− µ)p−1

)
τ + (κ− µ)p−1dτ

ds
= 0 . (5.3)

We also recall that for the space of curves L1([0, L]), any curve with κ = µ (whenever it
makes sense) will be a global minimum of Θp

µ, (5.1). For details see Section 2.1.
Moreover, by the same argument of Section 1.3.1, equations (2.8) and (2.9) are the

first integrals of the Euler-Lagrange equations. In our case, by substituting ε = 1 in (2.8)
and (2.9), we get(

d

ds

(
(κ− µ)p−1

))2

+
1

p2
(κ− µ)2(p−1) ((p− 1)κ+ µ)2

+(τ 2 + ρ)(κ− µ)2(p−1) = d , (5.4)

p2(κ− µ)2(p−1)τ = e , (5.5)

with d and e being real constants.
To end up this section, notice that for p-elastic curves we also have naturally associated

Killing vector fields. Indeed, the vector fields along γ, I and J , (2.6) and (2.7) with
ε = 1, can be extended to the whole M3(ρ). We are going to use the same letters for
these extensions (see Proposition 1.3.2 and the argument after it). Finally, the extension
of the Killing vector field along γ, I, given by

I = p (κ− µ)p−1B (5.6)

will play an essential role in following sections.

5.1.1 A New Approach to the Generalized EMP Equation

Nonlinear equations have been of an increasing interest in Physics during the last decades
and one of the simplest examples is the today called Ermakov-Milne-Pinney (EMP) equa-
tion, that is, the second order nonlinear differential equation

x′′(t) + q(t)x(t) =
~

x3(t)
, (5.7)

~ being constant. If ~ = 0, this is a particular instance of the one-dimensional linear
Schrödinger equation and for ~ 6= 0 and q(t) = w2(t) it describes the radial equation of
motion for a two-dimensional time-dependent linear oscillator, [52]. It was introduced by
Ermakov as a way of looking for a first integral for the time-dependent harmonic oscillator
[54] and it may be regarded as the simplest case of an Ermakov system [133].
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Recently, various authors have shown that, for a number of pure scalar fields and other
classes of cosmological models, Einstein’s gravitational field equations can be equivalently
reformulated in terms of the so called generalized EMP (GEMP) equation

x′′(t) + q(t)x(t) =
m∑
i=0

λi(t)

xbi(t)
, (5.8)

for functions q(t), λi(t) and bi ∈ R, i ∈ {0, 1, ...,m} (see, for instance, [46] and [76]).
Observe that in Chapter 4 equation (5.8) already appeared and it described the warping
function of a local description of a ξ-invariant CMC surface, see Section 4.1.

Along this section, we are going to show the existence of a correspondence between a
certain family of generalized EMP equations and p-elastic curves of Riemannian 3-space
forms, which where introduced in Section 5.1. In particular, solutions of these generalized
EMP equations are going to be geometrically characterized, in the sense that they are
going to be completely described by the curvature of a p-elastic curve. The results of this
section are an extension of those given in [63] to any Riemannian 3-space form.

Thus, if we define the function ζ(s) as

ζ(s) = (κ(s)− µ)p−1 , (5.9)

κ(s) being the curvature of a p-elastic curve, γ(s), we will see in the following theorem
that ζ(s) satisfies a generalized EMP equation with constant coefficients of the type

ζ ′′(s) + α ζ(s) +
$

ζ3(s)
= ν ζa(s)− 1

a
ζ2a−1(s) , (5.10)

for certain values of the parameters a, α, $ and ν in R.

Theorem 5.1.1. (Extension of [63]) Assume that γ ∈ Ωρ∗
pop1

is a unit speed immersed
curve in any Riemannian 3-space form, M3(ρ), which is a critical curve of the p-elastic
energy Θp

µ, (5.1). Then, the function ζ(s), defined in (5.9), is a solution of the generalized
EMP equation with constant coefficients

ζ ′′(s) +
(
ρ+ µ2

)
ζ(s)− e2

p4 ζ3(s)
=

1− p
p

ζ
p+1
p−1 (s) + µ

1− 2p

p
ζ

p
p−1 (s) . (5.11)

Proof. Take γ ∈ Ωρ∗
pop1

a p-elastic curve and denote by κ(s) and τ(s) to its curvature
and torsion, respectively. Now, since γ is a p-elastic curve, its curvature and torsion must
verify the Euler-Lagrange equations (5.2) and (5.3). Then, if we define ζ(s) by formula
(5.9), we obtain

ζ ′′(s) + ζ(s)

((
ζ

1
p−1 (s) + µ

)2

− τ 2 + ρ

)
− 1

p
ζ

p
p−1

(
ζ

1
p−1 (s) + µ

)
= 0 ,

2ζ ′(s)τ(s) + ζ(s)τ ′(s) = 0 .
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Second equation above can be integrated and we have p2 ζ2(s) τ = e, where the constant
of integration has been chosen so that it coincides with (5.5). Finally, substituting this
expression for τ(s) in the first equation of above system we conclude the proof. �

Notice that the expression (5.10) is obtained from (5.11) after the following choice of
parameters

a =
p

p− 1
, α = ρ+ µ2 , $ = −e

2

p4
, ν = µ

1− 2p

p
. (5.12)

We recall that the relations (5.12) can be softened by considering the p-elastic energy
acting on a space of curves immersed in Lorentzian 3-space forms. Moreover, by the
Lagrange’s Multipliers Principle, restricting the length of the critical curves another extra
term appears in (5.11). For this more general cases in both the Euclidean 3-space, R3,
and the Minkowski 3-space, L3, see [63].

Conversely, for any p 6= 0, 1 consider real constants ρ, µ, $ ∈ R such that $ ≤ 0.
Take any solution ζ(s) of the generalized EMP equation

ζ ′′(s) +
(
ρ+ µ2

)
ζ(s) +

$

ζ3(s)
= −µ a+ 1

a
ζa(s)− 1

a
ζ2a−1(s) , (5.13)

with a = p/(p−1). Now, formula (5.9) defines a function, κ(s), and then another function,
τ(s), can be defined from

p2 ζ2(s) τ = e ,

e ∈ R being a constant verifying e2 = −$p4. Then, up to congruences in M3(ρ),
there exists a unique Frenet curve, γ(s), having κ(s) and τ(s) as curvature and torsion,
respectively. Hence, we obtain

Theorem 5.1.2. (Extension of [63]) Under the previous conditions, the curve γ(s) of
M3(ρ) constructed out of a solution of (5.13) is a critical curve of the energy functional
Θp
µ, (5.1).

Proof. By combining (5.2), (5.3) and (5.13), it is a straightforward computation to
check that the curvature and torsion of γ(s), κ(s) and τ(s), respectively, verify the Euler-
Lagrange equations (5.2) and (5.3). Then, γ is a critical curve of Θp

µ, (5.1), in the sense
explained in Section 1.3. �

To end up this section, recall that Ermakov used (5.7) to obtain a first integral for
the one-dimensional linear Schrödinger equation. Therefore, motivated by this fact, we
are going to use the connection we have just introduced between the generalized EMP
equation with constant coefficients of type (5.13) and the p-elastic curves in Riemannian
3-space forms to get a first integral of these nonlinear generalized EMP equations.
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Indeed, by substituting the value of ζ(s), (5.9), in the first integrals of the Euler-
Lagrange equations, (5.4) and (5.5), we obtain after some long direct computations(

ζ ′(s)
)2

= d− e2

p4 ζ2(s)
− ζ2(s)

p2

((
(p− 1)ζ

1
p−1 (s) + µ p

)2

+ p2ρ

)
, (5.14)

for some constants d, e ∈ R. Hence, it is easy to check that equation (5.14) is a first
integral of (5.13).

5.2 Planar p-Elasticae and Rotational Linear Wein-

garten Surfaces

Here, we are going to understand that a surface N2 immersed in M3(ρ) is a linear Wein-
garten surface if its principal curvatures, κ1 and κ2, verify the linear relation

κ1 = a κ2 + b , (5.15)

where a and b are real constants such that a 6= 0. The case a = 0 has been discarded by
the arguments given in the introduction of the chapter.

In this section, we are going to consider rotational linear Weingarten surfaces verifying
(5.15) in Riemannian 3-space forms, M3(ρ). As mentioned before, in Riemannian ambient
spaces the principal curvatures of a surface always exist. Moreover, since the initial con-
dition is planar, the shape operator Aη is directly diagonal, and, therefore, using the first
and second fundamental forms (see Chapter 1), we can check that the principal curva-
tures are −κ(s) and h22(s), respectively. Then, we are going to characterize variationally
the profile curve of these particular invariant surfaces of 3-space forms, generalizing the
results of [103] (and also those given in [120]).

As it will be clear after Theorem 5.2.1, for our purpose we also need to define the
energy

Θν(γ) =

∫ L

o

exp (νκ(s)) ds (5.16)

among curves immersed in Ωρ
p0p1

, (1.49), and where ν ∈ R− {0}. In fact, if ν happens to
be zero, above energy, (5.16), is once more the length functional. Notice that the energy
Θν , (5.16), is not included in the family of generalized elastic functionals. Even though,
by making use of the formulas presented in Section 1.3 and writing P (κ) = exp (νκ), we
can obtain the corresponding general Euler-Lagrange equations (1.52) and (1.53), which,
in our case, boil down just to

d2

ds2
(exp (νκ)) + exp (νκ)

(
κ2 + ρ

)
− 1

ν
κ exp (νκ) = 0 ,
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since for our purposes we are working with planar curves, that is, τ = 0, in Riemannian
3-space forms, M3(ρ).

Let N2 be a rotational linear Weingarten surface. As explained in Section 3.2, it will
be denoted by Sγ, where γ is the profile curve. Let us assume first that γ is a geodesic of
M3(ρ). Then, the Gauss-Codazzi equations for Sγ are given by (1.35)-(1.37). Moreover,
the principal curvatures in this case can both be written in terms of G(s), the length of
the rotational Killing vector field. Indeed, from equation (1.36) and (1.37), we get that
the products f(s)G2(s) and h22(s)G2(s) are both constant. Then, combining properly
the fundamental forms (see (1.34) and the beginning of Section 1.2.3), we get that the
principal curvatures only depend on G(s).

Now, by applying the linear relation between these principal curvatures, we neces-
sarily conclude that G(s) is constant, and thus, Sγ is a flat ruled isoparametric surface.
Therefore, we assume now that γ(s) is not a geodesic, then we obtain

Theorem 5.2.1. (Extension of [103]) Let Sγ be a rotational surface of M3(ρ) with profile
curve γ and such that its principal curvatures verify the relation (5.15). Then,

(i) If a 6= 1, γ is an extremal curve of Θp
µ, (5.1), for

µ =
b

a− 1
and p =

a

a− 1
.

(ii) If a = 1 and b 6= 0, then γ satisfies the Euler-Lagrange equation of Θν, (5.16), for

ν = −1

b
.

Proof. Let Sγ be a rotational surface, with profile curve γ, verifying (5.15) between
its principal curvatures. If the curvature of γ, κ(s), is constant, then by (5.15) and
(1.28), κ must be a solution of κ2 + b κ + ρ a = 0. Notice that a planar curve with such
a constant curvature falls inside points (i) and (ii), since it trivially verifies the Euler-
Lagrange equations for those cases. Assume now that the curvature of γ, κ(s), is not
constant. Furthermore, recall that since Sγ is rotational, γ is planar, that is, its torsion,
τ(s), vanishes.
Now, by the Inverse Function Theorem, we can locally assume that s is a function of κ,
and, then we call G(κ) = Ṗ (κ). For this case, the Gauss-Codazzi equations of Sγ, (3.11)
and (3.12), can be written as

Ṗss + Ṗ
(
κ2 + ρ

)
− κ (P + λ) = 0 , (5.17)

for some real constant λ, since φ is a rotation. Notice that (5.17) is the Euler-Lagrange
equation of Θ, (1.40). Moreover, using (1.28) and G(κ) = Ṗ (κ), equation (5.15) can be
expressed as

− κ = a
1

κ

(
Ṗss

Ṗ
+ ρ

)
+ b . (5.18)
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Therefore, combining (5.17) with (5.18), we end up with an ordinary differential equation
(ODE),

((a− 1)κ− b) Ṗ = a (P + λ) . (5.19)

Let’s consider first the case a = 1, in this case solving above ODE, (5.19), we get

P (κ) = c exp

(
−1

b
κ

)
− λ ,

for some c ∈ R. Thus, point (ii) is clear. On the other hand, if a 6= 1, the ODE, (5.19),
gives

P (κ) = c

(
κ− b

a− 1

) a
a−1

− λ ,

for any c ∈ R. This corresponds with (i), and it concludes the proof. �

Moreover, the converse of Theorem 5.2.1 is also true. Indeed, suppose γ is a critical
curve of either Θp

µ, (5.1), or Θν , (5.16), with constant curvature and vanishing torsion.
Then, by Proposition 3.2.3, the binormal evolution surface swept out by γ is a flat isopara-
metric surface, and, as a consequence, it trivially verifies (5.15) for some suitable constants
a and b ∈ R.

On the other hand, for the non-constant curvature case, we have

Theorem 5.2.2. (Extension of [103]) Let γ be a critical curve of either Θp
µ, (5.1), or Θν,

(5.16), with non-constant curvature and vanishing torsion. Then, the binormal evolution
surface with initial condition γ is a rotational surface that satisfies the linear Weingarten
relation (5.15), where

a =
p

p− 1
and b =

µ

p− 1
,

if γ is critical for the the functional Θp
µ, (5.1), or

a = 1 and b = −1

ν
,

if γ is critical for Θν, (5.16).

Proof. Take γ a planar critical curve of either Θp
µ, (5.1), or Θν , (5.16), with non-

constant curvature, κ(s). Then, by Proposition 3.2.4, the binormal evolution surface
generated by evolving γ under the flow of I, (1.55), is a rotational surface with warped
product metric (1.22) where F(s, t) = G(s) = Ṗ (κ(s)) for the suitable choice of P (κ).
Moreover, as γ is critical for a curvature energy, it must verify the corresponding Euler-
Lagrange equations. Let’s assume first that γ is critical for Θp

µ, (5.1), then, we have the
following Euler-Lagrange equation (see (5.2) and (5.3))

d2

ds2

(
(κ− µ)p−1

)
+ (κ− µ)p−1

(
κ2 + ρ

)
− 1

p
κ(κ− µ)p = 0 .
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Now, if we substitute the value of G(s) = p(κ− µ)p−1, it boils down to

G′′(s) +G(s)
(
κ2(s) + ρ

)
− 1

p
κ(s) (κ(s)− µ)G(s) = 0 .

On the other hand, if we use this equation in the linear relation −κ = a h22 + b, where
h22 is given in (1.28), we end up with

a =
p

p− 1
and b =

µ

p− 1
,

as desired. Finally, if γ is critical for Θν , (5.16), the corresponding Euler-Lagrange equa-
tion, once we have used G(s) = ν exp (νκ) to simplify it, is

G′′(s) +G(s)
(
κ2(s) + ρ

)
− 1

ν
κ(s)G(s) = 0 . (5.20)

Therefore, using (5.20) and h22, (1.28), in −κ = h22 + b, we get a = 1 and

b = −1

ν
,

proving the result. �

5.2.1 Rotational Linear Weingarten Surfaces in the Euclidean
3-Space

The cases discarded in the introduction of the chapter are those where one principal
curvature is constant. If κ1 = 0 (equivalently, if κ2 = 0), in the Euclidean 3-space, R3,
then the surface is developable. Moreover, if κ1 is a non-zero constant (equivalently, κ2),
these surfaces were classified in [134]. In particular, since we are just concerned with
rotational surfaces, then they must be either a sphere or a tori of revolution.

Apart from these examples and those ones described in (i)-(iii) in the introduction, a
first result due to Chern proves that the sphere is the only ovaloid with the property that
κ1 is a decreasing function of κ2 [42] (this happens, for example, if a < 0). Later, Hopf
proved in [79] that there are no closed analytic surfaces of genus greater or equal than
2 unless a = −1, that is, the surface has constant mean curvature and if the genus is 0
and the surface is analytic and rotational, then a or 1/a must be an odd integer. Indeed,
for each a > 1, Hopf proved the existence of a non-spherical closed convex rotational
C2-surfaces. The particular case a = −1 is exceptional. Hopf proved that the sphere is
the only closed surface of genus 0 with constant mean curvature [78]. In fact, during
many years, it was conjectured that the sphere was the only closed surface with constant
mean curvature until in 1986 Wente found an immersed torus in R3 with constant mean
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curvature [143]. Later, Kapouleas proved the existence of closed surfaces for arbitrary
genus [85].

Moreover, Hopf proved in [79] the existence of convex closed rotational surfaces for
any a > 0. When a = 2 and b = 0, Mladenov and Oprea have named this surface as
the Mylar balloon [110]. If a > 0 and b = 0, they have also given parametrizations of
the closed surfaces in terms of elliptic and hypergeometric functions and show that the
surface is a critical point of a variational problem [109]. For any a and b = 0, Barros
and Garay proved that all the parallels of these rotational surfaces are critical points for
an energy functional involving the normal curvature and acting on the space of closed
curves immersed in the surface [24]. On the other hand, in [102], López studied linear
Weingarten surfaces foliated by a uniparametric group of circles, proving that the surface
is rotational or that the surface is one of the minimal examples of Riemann.

In Section 5.2, we have variationally characterize the planar profile curves of rotational
linear Weingarten surfaces in any Riemannian 3-space form, M3(ρ). Now, restricting our-
selves to the Euclidean case, R3, Theorem 5.2.1 and Theorem 5.2.2 give us the character-
ization of profile curves of rotational linear Weingarten surfaces of R3. As a consequence
of this variational characterization, we prove that, there are no topological torus for the
pure linear case, that is, for b = 0 in (5.15) (see also Theorem 5.2.4). In fact, let Sγ be a
closed rotational linear Weingarten surface. First, notice that if a = 1 and b = 0, then Sγ
must be a totally umbilical surface. Therefore, we assume now a 6= 1, and then, from our
variational characterization, its generating curve γ is critical for Θp

µ, (5.1). If the critical
curve γ has constant curvature, then as mentioned above, it generates a flat isoparametric
surface, that is, either a plane, a cylinder or a sphere. Thus, up to here, the only closed
surface is the sphere, which has genus 0.

From now on, we are going to consider that γ has non-constant curvature. In order Sγ
to be closed, we need either γ to be closed or that it cuts the axis of rotation (see Section
3.2.2). In the latter, Sγ cannot be a torus. Therefore, in order to look for rotational linear
Weingarten tori for b = 0, we must look for closed critical curves of Θp

µ, (5.1). Thus, we
are going to apply Proposition 3.2.6, in order to prove

Proposition 5.2.3. ([103]) There are no closed critical curves with non-constant curva-
ture of Θp

µ for µ = 0. And, as a consequence, there are no topological torus satisfying
κ1 = a κ2.

Proof. Critical curves with non-constant curvature of Θp
µ will be closed, if and only

if, κ(s) is a periodic function of period % and the closure condition of Proposition 3.2.6 is
verified. If µ = 0, (3.41) simplifies to

Λ(d) =
p− 1

d

∫ %

o

κp ds .
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Then, the closure condition in the Euclidean 3-space, R3, (ρ = 0 and d > 0) reads∫ %

0

κp(s) ds = 0 .

Finally, since the orientation can be locally fixed, say κ(s) > 0, the closure condition
cannot be verified and, therefore, we obtain a contradiction. �

However, notice that the condition imposed to Sγ of being a torus is essential. On the
contrary, as explained above, Sγ can be closed if a non-closed critical curve cuts the axis
of rotation. For the pure linear relation, there exist these type of surfaces as we can see
in the following geometric description. See also [24].

We now summarize the complete description of the rotational linear Weingarten sur-
faces (see Figures 5.1, 5.2 and 5.3). Denote by γ the generating curve. If the surface does
not meet the axis of rotation, we have the next type of surfaces;

(i) Catenoid-Type Surfaces. The curve γ is a concave graph on some interval I of the
axis. These surfaces only appear when a < 0 and b = 0. There are two types
depending if I = R (−1 ≤ a < 0) or if I is a bounded interval (a < −1). The plane
is included here as an extremal case.

(ii) Unduloid-Type Surfaces. Embedded surfaces which are periodic in the direction of
the axis. Circular cylinders belong to this family.

(iii) Nodoid-Type Surfaces. Non embedded surfaces which are periodic in the direction
of the axis and the curve γ has loops towards the axis.

(iv) Antinodoid-Type Surfaces. Non embedded surfaces which are periodic in the direc-
tion of the axis and the curve γ has loops facing away from the axis.

(v) Cylindrical Antinodoid-Type Surfaces. Non embedded surfaces asymptotic to a cir-
cular cylinder. The curve γ has a single loop facing away from the axis.

Then, we turn to those surfaces that meet (necessarily orthogonally) the axis of rota-
tion. All the surfaces have genus 0 except in one case that the surface touches the axis at
exactly one point (case (iii) below).

(i) Ovaloids. They are convex surfaces. The shape is like an oblate spheroid being
more flat close to the axis as the parameter a gets bigger. This case only occurs
when a > 0. Round spheres are included here.

(ii) Vesicle-Type Surfaces. Embedded closed surfaces where the two poles of the profile
curve are close so the meridian presents two inflection points. These surfaces have
concave regions around the poles.
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(iii) Pinched Spheroids. Limit case of vesicle-type surfaces when the two poles coincide.
The surface is tangentially immersed on the axis and bounds a solid 3-dimensional
torus.

(iv) Immersed Spheroids. Closed surfaces of genus 0 that appear when the two poles of
the vesicle-type surface pass their-self through the axis.

Finally, for the sake of completeness, we recall that in [103], using a different tool the
classification of all rotational linear Weingarten surfaces has been proved. In fact, let
(x1, x2, x3) be the canonical coordinates in the Euclidean space R3 and let Sγ ⊂ R3 be a
rotational surface. Without loss of generality, we may assume that the axis of rotation
is the x3-axis and that its generating curve γ is contained in the x1x3-plane. Let γ(s) =
(x1(s), 0, x3(s)), s ∈ I ⊂ R, be parametrized by the arc-length, and thus x′1(s) = cos θ(s)
and x′3(s) = sin θ(s) for a certain function θ. If x(s, ψ) = (x1(s) cosψ, x1(s) sinψ, x3(s))
is a parametrization of Sγ, then the principal curvatures are

κ1(s) = κ(s) = θ′(s), κ2(s) =
sin θ(s)

x1(s)
, s ∈ I.

Notice that they are independent of the rotation angle ψ. Therefore, a surface of revolution
Sγ satisfying the linear relation (5.15) is characterized by the following system of ordinary
differential equations

x′1(s) = cos θ(s) , (5.21)

x′3(s) = sin θ(s) , (5.22)

θ′(s) = a
sin θ(s)

x1(s)
+ b . (5.23)

Now, we give the classification of the rotational surfaces satisfying the linear relation
κ1 = a κ2 with a 6= 0. The study of this class of surfaces has been first done in [24] where
the authors have characterized the parallels of these surfaces from a variational viewpoint
and different from our Theorem 5.2.1.

Theorem 5.2.4. ([103]) The rotational linear Weingarten surfaces satisfying the relation
κ1 = a κ2, a 6= 0, are planes, ovaloids (including spheres) and catenoid-type surfaces.
More precisely, if γ is the generating curve, we have (see Figure 5.1);

(i) Case a > 0. The curve γ is a concave graph on the z-axis of a function defined on
a bounded interval. The rotational surface is an ovaloid. If a = 1, then the surface
is a round sphere.

(ii) Case a < 0. The curve γ is a convex graph on the z-axis. If −1 ≤ a < 0, then γ
is a graph of a function defined on the entire z-axis and if a < −1, the function is
defined on a bounded interval of the z-axis being asymptotic to two parallel lines. In
both cases, the surface is of catenoid-type.
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Figure 5.1: Rotational linear Weingarten surfaces for b = 0 in R3. From left to right:
Ovaloid (a > 0), Catenoid-Type Surface with a ∈ [−1, 0) and Catenoid-Type Surface
with a < −1.

To end up this section, we consider the general case b 6= 0 in the linear Weingarten
relation κ1 = aκ2 + b (see Figures 5.2 and 5.3). The classification of the rotational linear
Weingarten surfaces is given by studying the solutions of (5.21)-(5.23) for all possible
values on the initial conditions. The classification will be done according to the sign of
the parameter a.

Theorem 5.2.5. ([103]) Let a > 0 and b 6= 0. The rotational linear Weingarten sur-
faces are ovaloids, vesicle-type surfaces, pinched spheroids, immersed spheroids, cilindrical
antinodoid-type surfaces, antinodoid-type surfaces and circular cylinders.

Theorem 5.2.6. ([103]) Let a < 0 and b 6= 0. The rotational linear Weingarten surfaces
are unduloid-type surfaces, circular cylinders, spheres and nodoid-type surfaces.

For a proof of above theorems (Theorem 5.2.4, Theorem 5.2.5 and Theorem 5.2.6) see
[103].

Figure 5.2: Rotational linear Weingarten surfaces for b 6= 0 in R3 that meet the axis of
rotation apart from Ovaloids (see Figure 5.1 on the left). From left to right: Vesicle-Type
Surface, Pinched Spheroid and Immersed Spheroid.
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Figure 5.3: Rotational linear Weingarten surfaces for b 6= 0 in R3 that do not meet the axis
of rotation. From left to right: Cylindrical Antinodoid-Type Surface, Antinodoid-Type
Surface, Unduloid-Type Surface and Nodoid-Type Surface.

5.3 Application to Biconservative Surfaces

Harmonic maps ϕ : Nm → Mn between Riemannian manifolds are the critical points of
the energy functional

E(ϕ) =
1

2

∫
Nm

|dϕ|2vg , (5.24)

acting on the space of all maps between Nm and Mn. Their corresponding Euler-Lagrange
equation is given by the vanishing of the tension field

τ̃(ϕ) = trace grad dϕ . (5.25)

In [51], Eells and Sampson suggested to study biharmonic maps, which are the critical
points of the bienergy functional

E2(ϕ) =
1

2

∫
Nm

|τ̃(ϕ)|2vg . (5.26)

The first variation formula of the bienergy was derived by Jiang, [84]. Moreover, he
showed that the Euler-Lagrange equation for E2 is

τ̃2(ϕ) = −J(τ̃(ϕ)) = −∆τ̃(ϕ) + traceRM(dϕ, τ̃(ϕ))dϕ = 0 , (5.27)

where J is the Jacobi operator of ϕ, ∆ represents the rough Laplacian on sections
ϕ−1(TM) and RM denotes the curvature operator on Mn. The equation τ̃2(ϕ) = 0 is
called the biharmonic equation.
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Let ϕ : Nn−1 → Mn be an isometric immersion of an hypersurface Nn−1 into a Rie-
mannian manifold Mn of dimension n with unit normal vector field η and mean curvature
vector field H = Hη. The decomposition of the bitension field for hypersurfaces is given
in [34]. In fact, the normal and tangential components of τ̃2(ϕ), (5.27), are respectively

∆H +H|Aη|2 −HRic(η, η) = 0 , (5.28)

2Aη(gradH) + (n− 1)HgradH − 2HRic(η)T = 0 , (5.29)

where Aη is the shape operator and Ric(η)T is the tangent component of the Ricci curva-
ture of Nn−1 in the direction of the vector field η. Notice that studying hypersurfaces that
only verify the second equation of this system, (5.29), makes sense by its own. Indeed, as
described by Hilbert in [77], the stress-energy tensor associated with a variational problem
is a symmetric 2-covariant tensor S which is conservative at critical points, that is, with
div S = 0.

Let ϕ : (Nm, g) → (Mn, g̃) be an harmonic map between two Riemannian manifolds,
that is a critical point of the energy functional (5.24). In this context, the stress-energy
tensor was studied in detail by Baird and Eells in [16]. Moreover, the tensor

S =
1

2
|dϕ|2g − ϕ∗g̃

satisfies div S = −〈τ̃(ϕ), dϕ〉, where τ̃(ϕ) is given by (5.25). Therefore, we have that
div S = 0 when the map is harmonic. Moreover, when ϕ is any isometric immersion,
the condition div S = 0 is always satisfied, since the tension field τ̃(ϕ) is normal to the
submanifold.

On the other hand, the study of the stress-energy tensor for the bienergy, (5.26), was
initiated in [83] and afterwards developed in [101]. It is given by

S2(X, Y ) =
1

2
|τ̃(ϕ)|2〈X, Y 〉+ 〈dϕ, ∇̃τ̃(ϕ)〉〈X, Y 〉− 〈dϕ(X), ∇̃Y τ̃(ϕ)〉− 〈dϕ(Y ), ∇̃X τ̃(ϕ)〉,

and it satisfies the condition
div S2 = −〈τ̃2(ϕ), dϕ〉 , (5.30)

where τ̃2(ϕ) is the bitension field, (5.27). Due to (5.30), we have the conforming to the
principle of a stress-energy tensor for the bienergy.

Now, if ϕ is an isometric immersion, (5.30) boils down to

(div S2)] = −τ̃2(ϕ)T , (5.31)

where ] denotes the musical isomorphism sharp. We say that an isometric immersion
is biconservative if the corresponding stress-energy tensor S2 is conservative, that is, if
div S2 = 0. From (5.31), biconservative isometric immersions correspond to immersions
with vanishing tangential part of the corresponding bitension field. That is, an isometric
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immersion of a hypersurface ϕ : Nn−1 → Mn is biconservative, if and only if, ϕ satisfies
the condition

2Aη(gradH) + (n− 1)H gradH − 2HRic(η)T = 0 , (5.32)

where Aη denotes the shape operator, H is the mean curvature function and η is a unit
normal vector field. The hypersurface Nn−1 immersed in this way is usually called a
biconservative hypersurface. Observe that, in particular, when the ambient space is any
Riemannian space form of dimension n, Mn(ρ), the tangential part of the Ricci curvature
vanishes, and therefore equation (5.32) simplifies to

2Aη(gradH) + (n− 1)H gradH = 0 .

5.3.1 Biconservative Surfaces in Riemannian 3-Space Forms

Now, let M3(ρ) denote a Riemannian 3-space form. In [34], it was proved that a biconser-
vative surface of a 3-space form, M3(ρ), is either a CMC surface or a rotational surface.
Moreover, in the same paper, a relation between the Gaussian curvature, K, and the mean
curvature, H, of the non-CMC biconservative surfaces of M3(ρ) was stated. Indeed, these
rotational surfaces verify

K = −3H2 + ρ . (5.33)

This relation implies that non-CMC biconservative surfaces are linear Weingarten surfaces
as it was first pointed out by Fu and Li in [60]. In this particular case, equations (5.32)
and (5.33), implies that the relation between the principal curvatures is given by

3κ1 + κ2 = 0 .

Thus, we have the following

Proposition 5.3.1. ([111]) Non-CMC biconservative surfaces of M3(ρ) are rotational
linear Weingarten surfaces verifying

3κ1 + κ2 = 0 . (5.34)

Moreover, let N2 ⊂ M3(ρ) be a rotational linear Weingarten surface verifying (5.34),
then, N2 is a biconservative surface.

Along this section we are going to assume that N2 is a non-CMC biconservative
surface of a Riemannian 3-space form, M3(ρ). Then, as mentioned above, N2 is locally
rotational and can be denoted by Sγ, see Section 3.2. Now, particularizing the result
of Theorem 5.2.1, we have that profile curves of these rotational surfaces have a nice
geometric property.

Theorem 5.3.2. ([111]) Let N2 be a non-CMC biconservative surface of M3(ρ). Then,
locally, N2 is a warped product surface, Sγ, whose profile curve verifies the Euler-Lagrange

equations for the functional Θ
1/4
o (γ) =

∫
γ
κ

1
4 ds, (5.1).
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In fact, the converse of Theorem 5.3.2 is also true, and gives us a way of constructing
all non-CMC biconservative surfaces of 3-space forms, as we have seen in Theorem 5.2.2.

We summarize this result in the following Theorem.

Theorem 5.3.3. ([111]) Let γ be a planar extremal curve with non-constant curvature of

the energy Θ
1/4
o (γ) =

∫
γ
κ

1
4 ds, (5.1), and let Sγ denote the I-invariant surface in M3(ρ)

obtained by evolving γ under the flow of the Killing field I which extends (5.6) for µ = 0
and p = 1/4 to M3(ρ). Then, Sγ is a rotational linear Weingarten surface of M3(ρ)
verifying (5.34), that is, Sγ is a non-CMC biconservative surface.

We remind that Theorem 5.3.3 gives a way of constructing all non-CMC biconservative
surfaces of M3(ρ). And, in fact, together with Theorem 5.3.2, it characterizes non-CMC
biconservative surfaces as the binormal evolution surfaces swept out by a planar extremal
of Θ

1/4
o , (5.1). This characterization also allows us to analyze global properties of the bi-

normal evolution surfaces based on topological facts about the profile curves. For instance,
we can study the existence of non-CMC closed biconservative surfaces.

5.3.2 Non-CMC Closed Biconservative Surfaces

Along this section, let Sγ be a local description of a non-CMC biconservative surface
immersed in a Riemannian 3-space form, M3(ρ). As we have just seen, Sγ is locally
a binormal evolution surface with initial condition, γ, being a planar critical curve of
Θ

1/4
o , (5.1). Now, as explained in Section 3.2.2, in order to look for closed surfaces we

need d > 0, since for these values of d, the orbits of the evolution are Euclidean circles.
Moreover, we also need either that γ cuts the axis of rotation or that it is closed. Notice
that γ is completely determined (up to rigid motions) by its curvature, κ(s), which must
be a solution of the first integral (5.4) for p = 1/4 and µ = 0, that is, after long direct
computations,

κ2
s =

16

9
κ2
(

16 dκ
3
2 − 9κ2 − ρ

)
. (5.35)

For simplicity on the notation, let’s call u = κ1/2. Therefore, above first integral reads,

u2
s =

4

9
u2
(
16 d u3 − 9u4 − ρ

)
. (5.36)

Now, observe that we need the right hand side of (5.36) to be positive. That is, the
following polynomial, Q(u), must be positive for some values of u,

Q(u) = 16 d u3 − 9u4 − ρ > 0 . (5.37)

Moreover, we have that Q(u) tends to −∞, whenever u tends to ±∞. It has a local
maximum at u = 4/(3 d), so condition (5.37) can be verified for some values of u, if and
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only if, Q(4/(3 d)) > 0, which gives an extra constraint on the parameter d. See the plot
of Q(u) in Figure 5.4.

-0.5 0.5 1.0 1.5
u

-5

5

Figure 5.4: Plot of the polynomial Q(u) for ρ = 1 and d = 1.

To be more precise, this extra constraint only appears when ρ > 0 (since for ρ ≤ 0 is
always true), and in this case we have

d > d∗ =
(27 ρ)

1
4

4
. (5.38)

Notice that this argument also shows the existence of just two roots of Q(u). Let’s
call αu and βu to these roots, such that αu > βu. After reversing the change of variable,
they will represent the maximum and minimum curvatures of γ, respectively. Indeed, we
have

βu < u < αu

for any u, that verifies (5.37).
Now, from the equation of Proposition 3.2.5, (3.33), we obtain κ̄2

δ = κ2
δ + ρ = 16 d u3,

where κ̄2
δ represents the curvature of the orbit δ in the semi-space E4

ð where M3(ρ) is
immersed (see Section 1.2). Furthermore, since u is bounded, the Euclidean radius of
δ is never zero, which means that our critical curves never meet their respective axis of
rotation. For a different way of proving this fact, one can adapt the computations of the
beginning of Section 4.3.2, which involve the fixed points of the evolution.

Therefore, we can apply Corollary 3.2.7 and see if there exist closed critical curves.
Let’s assume for a moment that there exist periodic solutions that are critical for Θ

1/4
o ,

(5.1), then we can obtain conditions for both γ and Sγ to be closed.
The function Λ(d) defined in (3.41) for this particular case, is precisely,

Λ(d) = −12

∫ %

o

κ
7
4

16 d κ
3
2 − ρ

ds , (5.39)
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where % is the period of κ(s) (remember that we have assumed that there exist critical
curves with periodic curvatures, and therefore, we are considering them) and d is the
constant of integration given by (1.58). Now, making use of Corollary 3.2.7, the following
result is clear, since for ρ ≤ 0, the integrand of (5.39) is always negative, and therefore,
Λ(d) never vanishes. That is, there are no closed critical curves, and, as a consequence,
we have

Proposition 5.3.4. ([111]) There are no closed non-CMC biconservative surfaces in 3-
space forms, M3(ρ), with ρ ≤ 0.

Thus, it makes no sense to look for periodic solutions of the Euler-Lagrange equation,
(5.35), in neither R3 nor H3(ρ), since even if they exist by Proposition 5.3.4 it will be
impossible to find closed non-CMC biconservative surfaces in these spaces. On the other
hand, if M3(ρ) = S3(ρ), we are going to prove the existence of periodic solutions. Consider
the phase plane of the Euler-Lagrange equation, (5.35) in S3(ρ). In order to simplify the
computations, we will denote x = κ1/4. Then, (5.35) can be written as the system

x′ = y , (5.40)

y′ = 4
y2

x
− x9 +

ρ

3
x . (5.41)

Now, since x 6= 0, the only critical point of the system (5.40) and (5.41) is (xρ, 0) =

((ρ/3)1/8 , 0), and it only appears if ρ > 0, which is our case. The orbits of the phase
plane of (5.35) are determined by the equation

dy

dx
= 4

y

x
− x9

y
+
ρ

3

x

y
,

which can be integrated obtaining

y2

x8
+ x2 +

ρ

9x6
= α ,

for some constant α. Let’s denote now, F (x, y) = y2

x8
+ x2 + ρ

9x6
. Then, F (x, y) is a Morse

function in a neighborhood of the critical point (xρ, 0). Moreover, we can compute

∂2F

∂x2
∣∣∣
(xρ,0)

=
6 + 14ρ

3x8
ρ

> 0 ,
∂2F

∂x∂y
∣∣∣
(xρ,0)

= 0 ,
∂2F

∂y2
∣∣∣
(xρ,0)

=
2

x8
ρ

> 0 .

That is, (xρ, 0) is a non-degenerate critical point of F , and, then, applying the Morse’s
Lemma, there are closed orbits around it (see Figure 5.5). Therefore, (5.35) admits
periodic solutions on R.
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Figure 5.5: Phase plane of the system (5.40) and (5.41) for ρ = 1.

Of course, since the profile curve has periodic curvature and the orbits are Euclidean
circles, the binormal evolution surface it generates is complete. The existence of complete
non-CMC biconservative in the round 3-sphere was first proved in [113] (see also [114]).
Notice that the existence of complete ones in R3 and H3(ρ) is clear from the geometric
description given in [24]. Moreover, for the Euclidean case one can also see the classi-
fication of Section 5.2.1 and Figure 5.1. However, to assure closure in S3(ρ), Corollary
3.2.7 tells that a binormal evolution surface of S3(ρ) whose profile curve, γ, has periodic
curvature, κ(s), is a closed surface, if and only if, the function

I = −1

2

√
ρ dΛ(d) = 6

√
ρ d

∫ %

o

κ
7
4

16 d κ
3
2 − ρ

ds =
nπ

m
(5.42)

for any d > d∗, (5.38), and any integers n and m, where n is the number of rounds and
m the number of lobes, see Section 3.2.2.

Now, from the differential equation that satisfies u = κ1/2, (5.36), it is easy to check
that when u = αu or u = βu the vector field J has only component in T , that is, the
profile curve γ is parallel to the integral curves of the Killing vector field J in that points.
Therefore, our critical curve is bounded between those parallels. What is more, in those
points the length of J is never zero, since, both αu and βu are positive. This means that
γ does not cross over the pole of the parametrization. Moreover, since the component
in T of the Killing vector field J is a non-zero multiple of u1/2 and u is always positive
(it varies from αu to βu, which in the spherical case are positive since Q(0) < 0), we get
that γ is never orthogonal to the integral curves of J , that is, γ is always going forward.
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Consequently, it does not cut itself in one period of its curvature, unless it gives more
than one round in that period. Thus, a critical curve γ can only be simple if it is closed
and if it closes up in just one round, that is, if it verifies the closure condition, (5.42), for
n = 1. For more details about the existence of non-CMC biconservative surfaces in S3(ρ)
see [111].



Chapter 6

Invariant Willmore Tori in Killing
Submersions

In 1811, Germain pointed out that the free energy controlling the physical system associ-
ated to an elastic plate is the total squared curvature or bending energy. In other words,
the bending energy of a surface N2 in R3 is given by

W(N2) =

∫
N2

H2 dA ,

where H denotes the mean curvature of the surface. Notice that for curves γ isometrically
immersed in a Riemannian manifold, H is nothing but the geodesic curvature of γ, κ, and
W(N2) boils down to

Θ2,1
o (γ) =

∫
γ

κ2 ds .

According to the classical model of Bernoulli, planar curves minimizing the bending energy
Θ2,1
o can be thought of as the equilibrium positions of thin elastic rods (or elasticae).

Observe that this energy acting on curves has been studied in Section 2.1.
On the other hand, the analysis of the variational problem associated to W(N2) for

surfaces in R3 goes back to Blaschke’s school in the 1920s. Some years later, Willmore
reintroduced the problem in [144] and this is the reason why W(N2) is also known as the
Willmore energy of a surface in R3 and its critical points are known as Willmore surfaces.
The Willmore energy is a conformal invariant, a property that was already known to
Blaschke. In the last years, there has been an intensive investigation of Willmore surfaces
in connection with the so called Willmore Problem, that is, the determination of the
minima for the Willmore energy within a given topological class. In particular, Willmore
proposed in 1965 the following conjecture; for every smooth immersed torus, N2, in R3,
W(N2) ≥ 2π2 and the equality is obtained at the Clifford torus. The conjecture has been
recently proved in [108], although prior to this proof the Willmore conjecture had already
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been shown for many special cases (see [91], [129], [137],... and references therein). As a
result, there is a huge literature concerning Willmore surfaces, specially within real space
form backgrounds (for more details in this respect, see, for instance, [62]).

A generalization of the Willmore energy is due to Chen [40]. He extended the Willmore
functional to any submanifold Nm of any Riemannian manifold Mn so that the conformal
invariance property is preserved. Given a Riemannian submanifold Nm of Mn the Chen-
Willmore functional is defined by

CW(Nm) =

∫
Nm

(H2 − τe)
m
2 dV ,

where H and τe denote the mean curvature and the extrinsic scalar curvature of Nm,
respectively. The energy CW is conformally invariant and its critical points are known
as Chen-Willmore submanifolds, [40] and [41]. In contrast to the case of Willmore sur-
faces in ambient spaces of constant curvature, there are no many results concerning Chen-
Willmore submanifolds in background spaces with non-constant sectional curvature. Nev-
ertheless, Willmore surfaces and submanifolds have strong connections in Physics with
applications to the analysis of elastic plates and biological membranes, [75] and [115], and
to bosonic string theories and sigma models, [18] and references therein, just to mention a
few. Several of these applications are based on a beautiful link between Willmore surfaces
and elastica which can be established by using a symmetry reduction procedure [125].

Along this chapter we are going to consider a generalization of Willmore surfaces, what
we are going to call Willmore-like surfaces, by introducing a potential in W(N2). These
Willmore-like surfaces, following the idea of [125], will allow us to describe a connection
between elastic curves with potential in the base surfaces of Killing submersions, studied
in Section 1.3.3, and invariant Willmore-like tori in total spaces of Killing submersions.

In the first part of the chapter, the First Variation Formula and the Euler-Lagrange
equation associated to this generalization of the Willmore energy, the Willmore-like en-
ergy, are computed in any Riemannian 3-spaces.

Then, as we are mainly interested in studying these surfaces in total spaces of Killing
submersions, along the second part of the chapter, we are going to introduce the basic facts
of Killing submersions, as well as an existence result that softens the simply connected
condition of the base surface.

Finally, the connection between invariant Willmore-like tori in total spaces of Killing
submersions and elastic curves with related potentials in the base surfaces is described.
This connection is exploited in the last part of the chapter in order to analyze Willmore
tori in Killing submersions and to construct foliations of Killing submersions made up of
Willmore tori with constant mean curvature.
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6.1 Willmore-Like Surfaces in Riemannian 3-Spaces

In this section we are going to study the following generalization of the Willmore energy,
which will be called Willmore energy with a potential Φ (or, simply, Willmore-like energy)

WΦ(N2) =

∫
N2

(
H2 + Φ|N2

)
dA ,

where N2 is a surface of a 3-dimensional Riemannian manifold M3, H denotes the mean
curvature of N2, and Φ ∈ C∞(M3). More precisely, let (M3, g = 〈· , ·〉) be a 3-dimensional
Riemannian manifold, Φ ∈ C∞(M3) a smooth function and N2 a compact surface with no
boundary. In the space of isometric immersions of N2 in M3, Imm(N2,M3), we define
the following Willmore-like energy

WΦ(N2) ≡ WΦ(N2, ϕ) =

∫
N2

(
H2
ϕ + Φ|ϕ(N2)

)
dAϕ , (6.1)

where ϕ ∈ Imm(N2,M3), Hϕ denotes the mean curvature function of ϕ and dAϕ is the
induced element of area via the immersion ϕ.

6.1.1 Field Equations

To compute the field equations associated with these kind of functionals, we consider a
variation of ϕ ∈ Imm(N2,M3). That is, a smooth map Γ : N2× (−ε, ε)→M3 satisfying
the following conditions

(i) For any ς ∈ (−ε, ε) the map ϕς : N2 → M3 defined by ϕς(p) = Γ(p, ς) belongs to
Imm(N2,M3).

(ii) ϕ0 = ϕ.

Then, the vector field along Γ given by

W (p, ς) = Γ∗

(
∂

∂ς
(p, ς)

)
determines a vector field along ϕ, W (p) := W (p, 0), which is called the variational
vector field associated to the variation Γ. Thus, we can identify the tangent space
Tϕ (Imm(N2,M3)) with that of vector fields along ϕ and, consequently, we have

∂WΦ(N2, ϕ)[W ] =
∂

∂ς

(∫
N2

(
H2
ϕς + Φ

)
dAϕς

)∣∣∣
ς=0

.

Now, using similar computations to those included in [18] and [141], we can obtain
the following formulae
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(i) Let H(p, ς) be the mean curvature vector field of ϕς at p ∈ N2, then

DςH∣∣
ς=0

=
1

2

(
∆V ⊥ + Ã(V ⊥) + Ric(η, η)

)
+D⊥V ᵀH,

where ∆ is the rough Laplacian associated with the connection D⊥ in the normal
bundle of ϕ(N2), Ã stands for the Simons operator, Ric is the Ricci curvature of M3

and η denotes the unit normal vector field of ϕ. Here ( )ᵀ and ( )⊥ denote tangential
part and normal part, respectively.

(ii) The variation of the area element is given by the following formula

∂

∂ς
dAϕς∣∣

ς=0

= −2〈H, V 〉 dAϕ + dθ,

where θ is the one-form defined by θ(X) = dAϕ(V ᵀ, X).

In both cases, for the sake of simplicity, we have omitted the symbol ϕ. Then, combining
the above two formulae and an argument involving integration by parts, we obtain the
First Variation Formula of the first term in (6.1)

∂

∂ς

(∫
N2

(
H2
ϕς

)
dAϕς

)∣∣∣
ς=0

=

∫
N2

〈∆H +
(
2H2 − 2KN2 + 2R + Ric(η, η)

)
H, V 〉 dA,

(6.2)
where KN2 denotes the Gaussian curvature of N2 endowed with the induced metric as-
sociated with the initial immersion ϕ, and R stands for its extrinsic Gaussian curvature
(that is, the sectional curvature of M3 on the tangent plane of ϕ).

Now, using once more above formulas to compute the First Variation Formula of the
second term in (6.1), we get

∂

∂ς

(∫
N2

Φ dAϕς

)∣∣∣
ς=0

=

∫
N2

〈grad Φ, V 〉 dA− 2

∫
N2

Φ〈H, V 〉 dA−
∫
N2

dΦ ∧ θ.

Take into account that dΦ ∧ θ = V ᵀ(Φ) dA and then

∂

∂ς

(∫
N2

Φ dAϕς

)∣∣∣
ς=0

=

∫
N2

〈(grad Φ)⊥ − 2 Φ H, V 〉 dA . (6.3)

Finally, we combine (6.2) and (6.3) to characterize the extremals of WΦ(N2) as the solu-
tions of the following Euler-Lagrange equation

∆H +H(2H2 − 2KN2 + 2R + Ric(η, η)− 2Φ) + η(Φ) = 0. (6.4)
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Along this PhD memory, closed surfaces solution of (6.4), that is extremals ofWΦ(N2),
will be called Willmore-like surfaces. Notice that if the potential Φ is a constant function,
say ρ (in particular, the case in which WΦ(N2) is the Willmore energy in a space of
constant curvature ρ), then every minimal surface is automatically a Willmore-like surface.
However, if the potential is not constant, it follows from (6.4) that a minimal surface, N2,
is Willmore-like, if and only if, grad Φ is tangent to N2 everywhere.

From now on, our analysis of Willmore-like surfaces will be focused mainly on surfaces
living in the total space of a Killing submersion.

6.2 Killing Submersions

A submersion is a smooth map between smooth manifolds whose differential is everywhere
surjective. Moreover, submersions equipped with compatible Riemannian metrics are
called Riemannian submersions. Then, a Riemannian submersion π : M → B of a 3-
dimensional Riemannian manifold M over a surface B will be called a Killing submersion
if its fibers are the trajectories of a complete unit Killing vector field ξ (for more details, see
[55] and [107]). Fibers of Killing submersions are geodesics inM and form a foliation called
the vertical foliation. M is usually referred as the total space of the Killing submersion,
while, B is called the base surface.

Most of the geometry of a Killing submersion is encoded in a pair of functions; KB

and τπ. Here KB represents the Gaussian curvature function of the base surface, B, while
τπ denotes the so called bundle curvature which is defined as follows. Do not confuse the
notation with the one used for the torsion of a Frenet curve, τ , (1.10)-(1.12).

Since ξ is a (vertical) unit Killing vector field, then it is clear that for any vector field,
Z, on M , there exists a function τZπ (which a priori depends on the chosen vector field

Z) such that ∇̃Z ξ = τZπ Z × ξ, where, as always, ∇̃ denotes the Levi-Civita connection in
M and × denotes the cross product. Actually, it is not difficult to see that τZπ does not
depend on the vector field Z (see [55] for details) so we get a function τπ ∈ C∞(M), the
bundle curvature, satisfying

∇̃Z ξ = τπ Z × ξ .
Notice that the bundle curvature is obviously constant along the fibers and, consequently,
it can be seen as a function on the base surface, τπ ∈ C∞(B). Sometimes, we will denote
by M (KB, τπ) to the total space, in order to give explicitly both KB and τπ.

Existence of Killing submersions over a given simply connected surface B for a pres-
cribed bundle curvature, τπ ∈ C∞(B), has been proved in [107]. Uniqueness of these
submersions, up to isomorphisms, is guaranteed under the assumption that the total
space is also simply connected. This fact leads to the classification of Killing submersions
on a simply connected surface as quotients of simply connected total spaces under vertical
translations. In particular, we can suppose that fibers have finite length since, if necessary,
we can always take a suitable quotient under a vertical translation in order to get a
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circle bundle over B. The following result provides existence of Killing submersions with
prescribed bundle curvature over arbitrary Riemannian surfaces

Theorem 6.2.1. ([25]) Let B be a Riemannian surface with Gaussian curvature KB and
choose any function τπ ∈ C∞(B). Then there exists a Killing submersion over B with
bundle curvature τπ, M(KB, τπ). Moreover, M(KB, τπ) can be chosen having compact
fibers.

Proof. If B is simply connected, then the result was proved in [107]. Therefore we
assume that B is not simply connected and, thus, it has a non trivial fundamental group
π1(B). Denote by Bo its universal covering and by p : Bo → B the universal covering map.
Now, if g is the metric on B, then we consider Bo endowed with the metric go = p∗(g) so
that p is a Riemannian covering map. Denote by Υ the group of deck transformations of
(Bo, p) which is a subgroup of the group of isometries Isom(Bo, go) isomorphic to π1(B),
the fundamental group of B.
Consider τπo = τπ ◦ p ∈ C∞(Bo). Since Bo is simply connected, we know there exists a
unique (up to isomorphisms) Killing submersion πo : Mo → Bo with simply connected
Mo and bundle curvature τπo (see [107] for details). Now, if h ∈ Υ, then it is obvious
that τπo ◦ h = τπo . Consequently, once an initial condition has been chosen, there exists a

unique isometry h̃ ∈ Isom(Mo, g̃o) preserving the Killing fiber flow (h̃∗ξ = ξ) and satisfy-

ing πo◦h̃ = h◦πo. Then, we have a monomorphism from Υ into Isom(Mo, g̃o) whose image

Υ̃ is isomorphic to Υ. It is not difficult to see that this determines a properly discontinuous
action of Υ̃ on Mo, defining a Riemannian covering map p̃ : (Mo, g̃o)→ (M = Mo/Υ, g̃).
Finally we define π : M → B by π(p̃(ā)) = p(πo(ā)) which satisfies π ∗ (g) = g̃. It can be
checked that it provides a Killing submersion over B with bundle curvature τπ. �

Finally, we notice that any Killing submersion is locally isometric to one of the fol-
lowing canonical examples, [107], which include, as we will show later, the so called
Bianchi-Cartan-Vranceanu spaces for suitable choices of the functions λ, a, b.

6.2.1 Canonical Examples

Given an open set Ω ⊂ R2 and λ, a, b ∈ C∞(Ω) with λ > 0, the Killing submersion

π :
(
Ω× R, ds2

λ,a,b

)
→ (Ω, ds2

λ), π(x1, x2, x3) = (x1, x2),

where

ds2
λ,a,b = λ2( dx2

1 + dx2
2) + ( dx3 − λ(a dx1 + b dx2))2 (6.5)

and

ds2
λ = λ2( dx2

1 + dx2
2) ,
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will be called the canonical example associated to (λ, a, b). Regardless of the values of the
functions a, b ∈ C∞(Ω), the Riemannian metric given by equation (6.5) satisfies that π is
a Killing submersion over (Ω, ds2

λ) with ξ = ∂x3 as unit vertical Killing field.
The bundle curvature and the Gaussian curvature are given by

2τπ =
1

λ2
((λb)x1 − (λa)x2) , KΩ = − 1

λ2
∆o(log λ) , (6.6)

where ∆o represents the Laplacian with respect to the standard metric in the plane.

6.2.2 Bianchi-Cartan-Vranceanu Spaces

Fix ρ ∈ R, then, particularizing the above construction one can get models for all Killing
submersions over R2, if ρ = 0; H2(ρ), if ρ < 0; and the punctured sphere, S2

∗(ρ), when
ρ > 0. In fact, if we define λρ ∈ C∞(Ωρ) as

λρ(x1, x2) = (1 +
ρ

4
(x2

1 + x2
2))−1 ,

where Ωρ = {(x1, x2) ∈ R2 | 1+ ρ
4
(x2

1 +x2
2) > 0}, we obtain that the metric in Ωρ = B given

by (6.6) has constant Gaussian curvature KB = ρ. If, in addition, we choose 2a = −lx2

and 2b = lx1 for some real constant l, then 2τπ = l, and we deal with the Bianchi-Cartan-
Vranceanu spaces, M(ρ, l). Thus, the Bianchi-Cartan-Vranceanu spaces can be seen as the
canonical models of Killing submersions with constant bundle curvature, τπ, and constant
Gaussian curvature, KB.

These spaces (see [38] and [140]) are described by the following two-parameter family
of Riemannian metrics

gρ,l =
dx2

1 + dx2
2(

1 + ρ
4
(x2

1 + x2
2)
)2 +

(
dx3 +

l

2

x2dx1 − x1dx2(
1 + ρ

4
(x2

1 + x2
2)
))2

, ρ, l ∈ R (6.7)

defined on M = {(x1, x2, x3) ∈ R3 | 1 + ρ
4

(x2
1 + x2

2) > 0}. Their geometric interest lies in
the following fact; the family of metrics (6.7) includes all three-dimensional homogeneous
metrics whose group of isometries has dimension 4 or 6, except for those of constant
negative sectional curvature. We recall that a Riemannian manifold (Mn, g) is said to
be homogeneous if for every two points p and q in Mn, there exists an isometry of Mn

mapping p into q. Cartan in [38] showed that the examples above cover in fact all possi-
ble 3-dimensional homogeneous spaces with 4-dimensional isometry group. These family
also includes two real space forms, which have 6-dimensional isometry group. The full
classification of these spaces is as follows (see, for instance [107])

(i) If ρ = l = 0, M(ρ, l) ∼= R3.

(ii) If ρ = l2, then M(ρ, l) ∼= S3(ρ
4
)− {∞}.
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(iii) If l 6= 0 and ρ = 0, we have that M(ρ, l) ∼= H3, the Heisenberg group.

(iv) If ρ > 0 and l = 0, M(ρ, l) represents a model for the product space (S2(ρ)− {∞})×
R.

(v) If ρ < 0 and l = 0, M(ρ, l) ∼= H2(ρ)× R.

(vi) If ρ > 0, l 6= 0 and ρ 6= l2, then M(ρ, l) ∼= SU(2)− {∞}.

(vii) And, finally, if ρ < 0 and l 6= 0, we have that M(ρ, l) ∼= S̃l(2,R).

For homogeneous 3-manifolds there are three possibilities for the degree of rigidity,
since they may have an isometry group of dimension 6, 4 or 3. The maximum rigidity,
6, corresponds to the space forms, which have been introduced in Section 1.2. On the
other hand, the homogeneous 3-dimensional spaces with isometry group of dimension
four include, amongst its simply connected members, the product spaces S2(ρ) × R and
H2(ρ) × R; the Berger spheres; the Heisenberg group; and, the universal covering of the
special linear group Sl(2,R) (see points (iii)-(vii) above). Finally, if the dimension of the
isometry group is 3, the homogeneous 3-space is isometric to a general simply connected
Lie group with left invariant metric.

Therefore, the above family contains the eight model geometries appearing in the
famous conjecture of Thurson on the classification of 3-manifolds, recently proved. More-
over, M(ρ, l) spaces are the only simply connected homogeneous 3-manifolds admitting
the structure of a Killing submersion, [107].

6.2.3 Bundle-Like Metrics

Let M be the 3-dimensional total space of a principal fiber bundle on a surface, B, and
denote by π : M → B the natural projection. Consider a principal connection ω and
denote by dt2 the metric on the fiber. Now, given a positive smooth function f ∈ C∞(B)
and any Riemannian metric, g, on B, we can define the following generalized Kaluza-Klein
Riemannian metric on M

g̃ = π∗(g) + (f ◦ π)2 ω∗(dt2).

In particular, if the function f is constant, then g̃ is called a Kaluza-Klein metric or a
bundle-like metric. As it is well-known, the following properties are satisfied by the above
class of metrics;

(i) The natural action of the structure group, G, on M is carried out by isometries
of (M, g̃). Consequently, the fiber flow is associated with a Killing vector field of
(M, g̃).

(ii) The natural projection π : (M, g̃) → (B, g) is a Riemannian submersion. Further-
more, its leaves are geodesics in (M, g̃), if and only if, f is a constant function, that
is, g̃ is a bundle-like metric.
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(iii) Setting

ḡ =
1

(f ◦ π2)
g̃ = π∗

(
1

f 2
g

)
+ ω∗(dt2)

one sees that generalized Kaluza-Klein metrics are conformal to bundle-like metrics.

Hence, once a suitable conformal change has been made (if necessary), every bundle-like
metric provides a Riemannian submersion whose fiber flow is associated with a vertical
unit Killing vector field. In other words, we have a Killing submersion.

6.3 Willmore-Like Tori in Killing Submersions

Assume we have a Killing submersion π : M → B of a 3-dimensional Riemannian manifold
M over a surface B. Let γ be an immersed curve in (B, g), then Sγ = π−1(γ) is a surface
isometrically immersed in M (by the natural inclusion i = ϕ) which is invariant under
G := {φt , t ∈ R}, the one-parameter group of isometries associated to the Killing vector
field ξ. In fact, any ξ-invariant surface in M , N2, is obtained in this way; N2 = π−1(γ),
for some curve γ of B. It is usual to call Sγ the vertical tube (or vertical cylinder) shaped
on the curve γ. Notice that Sγ is embedded if γ is a simple curve, and it is a torus
when γ is closed and G ∼= S1 is a circle group. If γ is parametrized by its arc-length,
then any horizontal lift of γ, γ̄, is also arc-length parametrized. Now, using as coordinate
curves the horizontal lifts of γ and the fibers of the submersion, vertical tubes Sγ can be
parametrized by x(s, t) = φt(γ̄(s)) and, as a consequence, Sγ are flat. It is also known
that the mean curvature of these surfaces H is related with the curvature function of the
corresponding cross sections by the formula (for details, see [17])

H =
1

2
κ ◦ π , (6.8)

κ denoting the geodesic curvature of γ in B. Then, we have

Theorem 6.3.1. ([25]) Consider a Willmore-like energy WΦ(N2) =
∫
N2 (H2 + Φ) dA,

(6.1), with invariant potential Φ (Φ = Φ̄ ◦ π) defined on the space of surface immersions
in a Killing submersion π : M → B with compact fiber, that is, G ∼= S1. If γ is a closed
curve in B, then, its vertical torus Sγ = π−1(γ) is a Willmore-like surface, if and only if,
γ is an extremal of the following elastic energy with potential Θ4Φ̄(γ) =

∫
γ

(κ2 + 4Φ̄) ds,

(1.66).

Proof. Let Sγ be a torus over γ. The S1-action on M can be naturally extended to
Imm(N2,M) by WΦ(ϕ) = WΦ(φt ◦ ϕ), for all t ∈ R, ϕ ∈ Imm(N2,M). On the other
hand the space, Σ, of the S1-invariant immersions can be identified with

Σ = {Sγ = π−1(γ) | γ is a closed curve inB}.



122 6.3. Willmore-Like Tori in Killing Submersions

In this setting, we can apply the symmetric criticality principle of Palais [117] to reduce
symmetry and then Sγ = π−1(γ) is a Willmore-like torus, if and only if, it is an extremal
ofWΦ restricted to Σ. Finally, we use (6.8) to conclude that this happens, precisely, when
γ is a critical curve for Θ4Φ̄. �

Notice that the Euler-Lagrange equation of the elastic energy with potential 4Φ̄ has
been introduced in Section 1.3.3, (1.67), obtaining

2κss + κ
(
κ2 + 2KB − 4Φ̄

)
+ 4N(Φ̄) = 0 .

However, observe that this equation can also be derived as an application of Theorem
6.3.1. Indeed, we have

Corollary 6.3.2. ([25]) A closed unit speed curve γ(s) of a Riemannian surface B is an
extremal of the elastic energy with potential Θ4Φ̄(γ) =

∫
γ

(
κ2 + 4Φ̄

)
ds, if and only if,

2κss + κ
(
κ2 + 2KB − 4Φ̄

)
+ 4N(Φ̄) = 0 ,

where N denotes the unit normal of γ in B.

Proof. If KB is the Gaussian curvature of B, choose any τπ ∈ C∞(B) and a Killing
submersion π : M(KB, τπ)→ B with compact fibers, as guaranteed by Theorem 6.2.1.
Define Φ = Φ̄◦π on M(KB, τπ). Now, from Theorem 6.3.1, we have that γ is an extremal
of the elastic energy with potential Θ4Φ̄(γ) =

∫
γ

(κ2 +4Φ̄) ds, if and only if, Sγ is a critical

point ofWΦ(N2) =
∫
N2 (H2+Φ) dA. Since Sγ is flat KSγ = 0, moreover, a straightforward

computation shows that on these vertical flat tori 2R+ Ric(η, η) = KB, η being the unit
normal along Sγ. Hence (6.4) gives that Sγ must provide a solution of the following
differential equation

∆H +H(2H2 +KB − 2Φ) + η(Φ) = 0. (6.9)

where H is the mean curvature function of Sγ in M(KB, τπ). Finally we combine (6.8)
and (6.9) to conclude that the curvature of the elastica with 4Φ̄-potential must satisfy
the desired equation. �

6.3.1 Vertical Willmore Tori in Killing Submersions

As indicated in the introduction of the chapter, in the context of Killing submersions
the Willmore problem can be described as the variational problem associated with the so
called Chen-Willmore energy

CW(N2) ≡ CW(N2, ϕ) =

∫
N2

(H2
ϕ +R) dAϕ, (6.10)
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where ϕ ∈ Imm(N2,M), and R denotes the extrinsic Gaussian curvature associated with
the immersion ϕ, that is the sectional curvature of M restricted to the tangent bundle
dϕ(TN2) of the corresponding surface. Recall that extremals of CW , (6.10), are known
as Willmore surfaces.

However, it should be noticed that, in general, the energy (6.10) does not coincide with
those given in (6.1), because the potential in (6.10) is defined on the Grassmanian of two
planes, but if (M, g̃) has constant sectional curvature, ρ, then the Willmore energy (6.10)
would correspond to a Willmore-like energy with constant potential Φ = ρ. Nevertheless,
the situation for vertical cylinders shaped on closed curves of the base surface changes
and we have the following

Theorem 6.3.3. ([25]) Assume that π : M(KB, τπ) → B is a Killing submersion with
compact fiber, that is, G ∼= S1. Then, a vertical torus over a closed curve γ in B, Sγ =
π−1(γ), is a Willmore surface in M(KB, τπ), if and only if, Sγ is an extremal of the
following Willmore-like energy

Wτ2π
(N2) =

∫
N2

(H2 + τ 2
π) dA .

And this happens in turn, if and only if, γ is an elastica with potential 4τ 2
π in B.

Proof. The extrinsic Gaussian curvature of vertical cylinders Sγ is related to the
bundle curvature by

R(X̄, ξ, ξ, X̄) = τ 2
π , (6.11)

where X̄ denotes the horizontal lift of the unit tangent vector field X = γ′. Now, com-
bining (6.10) and (6.11) and applying similar arguments to those used in Theorem 6.3.1
and the symmetric criticality principle of Palais, we draw the conclusion. �

It is well-known that compact minimal surfaces in spaces of constant curvature are
examples of Willmore surfaces. The Euclidean 3-space, R3, does not contain compact
minimal surfaces. However, the round 3-sphere, S3(ρ), has plenty of compact minimal
surfaces (for all rotational examples see Chapter 4). These Willmore surfaces can be
conformally projected by the stereographic projection to the Euclidean 3-space, R3, (see,
for instance, Figure 4.10 of Chapter 4) obtaining in this way examples of Willmore surfaces
in the Euclidean 3-space, R3, because the Willmore energy is invariant under conformal
changes in the surrounding metric.

Moreover, both the Euclidean 3-space, R3, and the round 3-sphere, S3(ρ), provide
examples of total 3-spaces associated with Killing submersions. In the former case, KB =
τπ = 0 and π is just the projection over a plane, see point (i) of Section 6.2.2. In the
spherical case, KB = 4τ 2

π is a constant and π is the well-known Hopf map from S3 on S2,
this is the case (ii) of Section 6.2.2 (see also Section 3.4.1). As it has been said previously,
besides these spaces (whose group of isometries has dimension 6) the class of homogeneous
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three spaces with 4-dimensional group of isometries provides also nice examples of Killing
submersions with both KB and τπ being constant. In this case vertical minimal tori are
automatically Willmore (see [20] and references therein). In contrast, for general Killing
submersions we have the following direct consequence of Theorem 6.3.3 and (6.11)

Corollary 6.3.4. ([25]) Let π : M(KB, τπ) → B be a Killing submersion and γ(s) be a
closed geodesic in B, then Sγ = π−1(γ) is a Willmore torus in M(KB, τπ), if and only if,
γ(s) is a tangent line of τ 2

π .

As an application, let us consider, for example, the unit round 2-sphere, S2(1) ⊂ R3,
which we assume to be centered at the point po = (0, 0, 1). Now, choose the non-negative
function h ∈ C∞(S2(1)) obtained as the restriction of the height function, in R3, to the
plane x3 = 0. It is clear that the gradient flow associated with gradh is made up of
the great circles through the origin, which obviously are geodesics. On the other hand,
we know that there exists a Killing submersion M(KB = 1, h) → S2(1) with bundle
curvature h, [107]. This Killing submersion is unique up to isomorphism and, in this
case, it coincides with the Hopf map π : S3(1/4) → S2(1) where the 3-sphere is endowed
with a suitable metric. Therefore, in the corresponding conformal class, we get a class of
minimal Willmore tori having a pair of great circles in common.

To end up this section, we consider frame bundles of surfaces as a particular case
of Killing submersions and study Willmore surfaces in this context. Let B be a surface
endowed with a Riemannian metric g and Gaussian curvature KB. Denote by FB its
orthonormal frame bundle. Then, the natural projection, π : FB → B gives a principal
bundle with structure group O(2). Now, FB can be endowed with bundle-like metrics as
follows

g̃ = π∗(g) + ω∗(dt2) ,

providing a large class of Killing submersions. The corresponding bundle curvature τπ
can be computed using (6.11) and [70]

τ 2
π = R(X̄, ξ, ξ, X̄) =

1

4

|RΞ(ξ)X|2

|X|2 |Ξ(ξ)|2
◦ π, (6.12)

where Ξ is the third O’Neill invariant [116] defined in terms of the connection form ω =
(ωij) by

Ξ(ξ)(f) =
2∑
i 6=j

ωij(ξ) fi ∧ fj = 2ω12(ξ) f1 ∧ f2 , f = (f1, f2) ∈ FB .

But 1 = ḡ(ξ, ξ) = 〈ω(ξ), ω(ξ)〉 =
∑2

i 6=j (ωij(ξ))
2 = 2 (ω12(ξ))2 and consequently (ω12(ξ))2 =

1/2. Therefore, |Ξ(ξ)|2 = 2. Moreover, we have

RΞ(ξ) = 2ω12(ξ)Rf1f2X̄ =
√

2KB (〈X, f2〉f1 − 〈X, f1〉f2) ,
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and we obtain
|RΞ(ξ)X|2 = 2K2

B

(
〈X, f1〉2 + 〈X, f2〉2

)
= 2K2

B,

where |X| = 1. Hence, from (6.12) we see that the bundle curvature of the frame bundle
Killing submersion is given by

τ 2
π =

1

4
K2
B ◦ π. (6.13)

Thus, combining Theorem 6.3.3 and (6.13) we have

Corollary 6.3.5. ([25]) Let γ be a closed curve in a Riemannian surface, B, with Gaus-
sian curvature KB. Then Sγ = π−1(γ) is a Willmore torus in the orthonormal frame
bundle FB, if and only if, γ is an extremal of the following elastic energy with potential
(1.66)

ΘK2
B

(γ) =

∫
γ

(κ2 +K2
B) ds,

acting on the space of closed curves in B.

6.4 Willmore Tori Foliations of Killing Submersions

In this last part we are going to exploit the characterization given in previous section of
vertical Willmore tori in the total space of a Killing submersion in terms of elasticae with
potential in the base surface.

On one hand, we are going to use the particular case of Killing submersions described
above, that is, orthonormal frame bundles of surfaces, together with Corollary 6.3.5, to
foliate these bundles by Willmore tori. Moreover, these tori will have constant mean
curvature. On the other hand, strongly using Theorem 6.3.3 and the existence of Killing
submersions given in Theorem 6.2.1, we are going to be able to construct some special
cases of Killing submersions whose total spaces may be foliated by Willmore tori with
constant mean curvature.

6.4.1 Willmore Tori Foliations of Orthonormal Frame Bundles

We first show how one can get minimal Willmore tori families foliating the frame bundle
of compact rotational surfaces in R3.

Proposition 6.4.1. ([25]) The orthonormal frame bundle of any compact rotational sur-
face in R3 admits a foliation by minimal Willmore tori.

Proof. Let Sγ be the rotation torus which is swept out by rotating a closed curve
γ contained in the half plane x3 = 0, x1 > 0, around the x3-axis. Denote by φt(γ) the
meridian obtained by rotating an angle t the profile curve γ . It is obvious that π−1(φt(γ))
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is a minimal torus in FSγ. However, meridians are not only geodesic, but they are also
extremals of the elastic energy ΘK2

B
because T (KB) = 0 (see Corollary 6.3.5 and (1.66)).

Consequently, {π−1(φt(γ)) , t ∈ R} constitutes a foliation of FSγ by minimal Willmore
tori. �

Now we want to obtain orthonormal frame bundles of surfaces, which admit foliations
by non-minimal Willmore tori. To this end, we consider the following construction. Let
f(s) be a smooth function defined on a real interval I endowed with the warped product
metric ds2 + f(s)dt2. The corresponding Riemannian surface is a warped product surface
simply denoted by Sf = I ×f S1. The group S1 acts trivially on Sf by isometries and the
orbits of this action, δs(t) = {s} × S1, are the corresponding fibers of Sf . We first want
to determine the warped product surfaces for which all fibers are extremals of

ΘK2
Sf

(δ) =

∫
δ

(
κ2 +K2

Sf

)
dt , (6.14)

KSf denoting the Gaussian curvature of Sf . Then, we have

Proposition 6.4.2. ([25]) Let Sf := I ×f S1 be a warped product surface all whose fibers
are critical for the energy functional (6.14). Then, locally, either f is constant and Sf is
a Riemannian product surface, or f(s) is determined by

λs

2
= ±

∫
df√

−1 + 4
λ
f − 2Lam

(
− 1
λ

exp
(
d1 − 2

λ
f
))
− Lam2

(
− 1
λ

exp
(
d1 − 2

λ
f
)) ,

where λ ∈ R+ and Lam denotes the Lambert function [43].

Proof. As mentioned above, the Euler-Lagrange equation for closed extremals of
(6.14) in a surface has been obtained in Section 1.3.3 (see also Corollary 6.3.2), and it
reads

2κ′′(t) + κ3(t) + 2K(t)κ(t)−K2(t)κ(t) +N(K2(t)) = 0 , (6.15)

where just in this proof t is the arc-length parameter of the curve, ( )′ = d
dt

, K(t) is the
Gaussian curvature of the surface along the curve and N is the normal vector to the curve
in the surface.
Assume that every orbit of Sf is critical for (6.14). In Sf the geodesic curvature of any

orbit κδ(s, t) = − ḟ(s)
f(s)

is constant on it (where now we are using overdots for d
ds

) while

the Gaussian curvature is given by K(s, t) = − f̈(s)
f(s)

. Observe that N ≡ d
ds

is the normal

vector field to the orbits on the surface. Since, all orbits are critical, equation (6.15) tells
us that

2f(s)ḟ(s)f̈(s)− ḟ 3(s) + 2f(s)f̈(s)
...
f (s)− ḟ(s)f̈ 2(s) = 0 , (6.16)
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for s ∈ I. If f(s) is constant, then Sf is locally a Riemannian product which is a flat
surface with every orbit being a geodesic. Therefore, orbits of Riemannian products satisfy
(6.15) so that they are critical for (6.14). If f(s) is not constant, we divide (6.16) by f 2(s)
obtaining

d

ds

(
ḟ 2(s)

f(s)
+
f̈ 2(s)

f(s)

)
= 0 .

and therefore
ḟ 2(s) + f̈ 2(s) = λf(s) , (6.17)

for some λ ∈ R+. For simplicity, in the following manipulations we put y(s) := f(s).
Then, (6.17) can be written as

1

2

d

dy

(
ẏ2(s)

)
= ±

√
λy(s)− ẏ2(s) .

Thus, setting z(s) = ẏ2(s), p(y) = dz
dy

, one gets

1

2

dz

dy
= ±

√
λy − z , y =

1

λ

(
1

4
p2 + z

)
. (6.18)

Differentiating with respect to z the second identity in (6.18), we have

dz =
1

2

p2

λ− p
dp .

Integrating this we get

z + c1 = −λ
2
p− 1

4
p2 − λ2

2
log(λ− p) , (6.19)

with c1 ∈ R. Unwinding the changes of variable (6.19) reduces to

c1 = ∓λ
√
λy − ẏ2 − λy − λ2

2
log
(
λ∓ 2

√
λy − ẏ2

)
. (6.20)

Manipulating the equation (6.20), we obtain

− 1

λ
exp

(
d1 −

2

λ
y

)
= −1

λ

(
λ∓ 2

√
λy − ẏ2

)
exp

(
−1

λ

(
λ∓ 2

√
λy − ẏ2

))
,

for a certain constant d1 ∈ R. In other words

Lam

(
−1

λ
exp

(
d1 −

2

λ
y

))
= −1

λ

(
λ∓ 2

√
λy − ẏ2

)
, (6.21)
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where Lam denotes the Lambert function (see [43]). Finally, from (6.21) we have

ẏ2 =
λ

4

(
−1 +

4

λ
y − 2 Lam

(
−1

λ
exp

(
d1 −

2

λ
y

))
− Lam2

(
−1

λ
exp

(
d1 −

2

λ
y

)))
.

This concludes the proof. �

Observe that according to the results in previous section, the warped product surfaces
described in Proposition 6.4.2 give rise to orthonormal frame bundles admitting foliations
by Willmore tori with constant mean curvature.

6.4.2 Construction of Killing Submersions Foliated by Willmore
Tori

The purpose of this section is to introduce a way of constructing special Killing submersion
whose total spaces admit foliations by Willmore tori. In order to achieve this goal, we
are going to consider elastic curves with potential, as suggested by Theorem 6.3.3. In
particular, one possible potential may be a constant one, that is, Φ̄ = λ ∈ R. This will
give us, precisely, critical curves of the bending energy for variations with a restriction on
the length of the curves, due to a version of the Lagrange’s Multipliers Principle.

Now, a natural problem is the following; given a generalized elastica, critical curve of
the energy Θ2,o

−λ, (2.2), say γ(s), in B, determine those potentials Φ̄ ∈ C∞(B) for which
γ(s) is an extremal of ΘΦ̄, in other words, a solution of (1.67). It is clear that these
potentials must satisfy the following differential equation along the curve γ(s)

N(ln (Φ̄− λ)) = κ .

Therefore, in a neighborhood of γ(s) in B, they must have the following form

Φ̄(s, t) = exp (κ(s) t+$(s)) + λ,

where $(s) is an arbitrary function along γ(s). Consequently, we have

Theorem 6.4.3. ([25]) Let γ(s) be an elastic curve with constant potential λ and with
curvature function κ(s) lying on a surface B with Gaussian curvature KB. For an arbi-
trary function $(s) along γ(s) consider

Φ̄(s, t) = exp (κ(s) t+$(s)) + λ,

defined on a certain neighborhood t ∈ (−ε, ε) of γ(s). Let π : M(KB, τπ)→ B be a Killing
submersion with closed fibers and bundle curvature, τπ, satisfying 4τ 2

π = Φ̄(s, t) on the
chosen neighborhood. Then, Sγ = π−1(γ) is a Willmore torus in M(KB, τπ).
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Finally, as an illustration we analyze the following problem. In B = R2 − {(0, 0)}
consider the family of circles {Ct , t > 0} defined by Ct = {(x1, x2) ∈ R2 |x2

1 + x2
2 = t2}.

It is obvious that this family constitutes the leaves of a foliation in B. Now, we wish to
determine those potentials Φ̄ ∈ C∞(B) that make the whole family of circles extremals
of the energy (1.66). Notice that we are considering B as the once-punctured Euclidean
plane and obviously endowed with the Euclidean metric, so KB = 0 and the curvature
of Ct is 1/t. Hence, from (1.67) we must determine those functions Φ̄(s, t) which are
solutions of the following differential equation

∂

∂t
Φ̄ =

1

t
Φ̄− 1

t3
. (6.22)

But, the general solution of this (6.22) is

Φ̄(s, t) = f(s) t+
1

3t2
, f ∈ C∞(S1). (6.23)

As a consequence, we have the following statement

Corollary 6.4.4. ([25]) Let B = R2 − {(0, 0)} be the once-punctured Euclidean plane, f
a smooth periodic positive function and define Φ̄ by (6.23). Then, there exists a Killing
submersion π : M(0, τπ) → B with bundle curvature given by 4τ 2

π = Φ̄ which admits a
foliation by Willmore tori with constant mean curvature.

Proof. Positivity of the function f allows to ensure the existence of τπ ∈ C∞(B)
satisfying 4τ 2

π = Φ̄, where Φ̄ is defined in (6.23). Now, we use Theorem 6.4.3 to obtain
a Killing submersion, say π : M(0, τπ) → B, with compact fibers over B and bundle
curvature τπ. Since the circles Ct, t > 0 are extremals of the energy action (1.66), we
obtain that St = π−1(Ct) are Willmore tori in M (see Proposition 6.23). �





Appendix A

Computations Involving Elliptic
Integrals

The main purpose of this appendix is to introduce a brief survey about elliptic integrals
and to prove some results involving long computations that have been used along the
whole PhD memory, to be more precise in Section 4.3.2.

We begin by introducing well-known definitions and properties concerning elliptic
integrals. We define the incomplete elliptic integrals of first, second and third kind,
respectively by

F (χ, p) =

∫ sinχ

o

dx√
(1− x2)(1− p2x2)

, E (χ, p) =

∫ sinχ

o

√
1− p2x2

√
1− x2

dx ,

and

Π (χ, ν, p) =

∫ sinχ

o

dx

(1− νx2)
√

(1− x2)(1− p2x2)
,

where p is the modulus and the number ν represents the parameter of the integral of third
kind.

We will denote by K(p), E(p) and Π(ν, p) to the complete elliptic integrals of first,
second and third kind, respectively, where χ = π/2; that is,

K(p) = F
(π

2
, p
)
, E(p) = E

(π
2
, p
)
, Π(ν, p) = Π

(π
2
, ν, p

)
.

Complete elliptic integrals have some distinguished values. In the following formulas we
recall some of them (for more details see [68])

K(0) =
π

2
, E(0) =

π

2
and E(1) = 0 .
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Notice that along the memory, as p2 < ν < 1 (see Section 4.3.2), we have made use of
the following alternative description for Π (ν, p),

Π (ν, p) =
π

2

√
ν

(1− ν)(ν − p2)
Λo

(
arcsin

√
ν − p2

ν(1− p2)
, p

)
, (A.1)

where Λo represents the Heuman’s Lambda, (similar descriptions for this and other rela-
tions between p and ν can be found in Appendix B of [5]).

As happened with the complete elliptic integrals, there are some distinguished values
for the Heuman’s Lambda too, these main values are (see Appendix B of [5])

Λo(φ, 0) = sinφ , Λo(φ, 1) =
2φ

π
and Λo(

π

2
, p) = 1 .

It is also important to have in mind that Heuman’s Lambda is antisymmetric in φ and
that

Λo(φ+mπ, p) = 2mπ + Λo(φ, p) , (A.2)

for any integer m ∈ Z.
Moreover, along the memory, we have also made use of the derivatives of the elliptic

integrals and of the Heuman’s Lambda with respect to their modulus. These derivatives
are given by the following formulas

(i) dK(p)
dp

= 1
p(1−p2)

(E(p)− (1− p2)K(p)) ,

(ii) dE(p)
dp

= 1
p

(E(p)−K(p)) and

(iii) dΛo(φ,p)
dp

= sin 2φ

πp
√

1−(1−p2) sin2 φ
(E(p)−K(p)) .

Now, following the notation of [68], we call

q =
√

1− p2 and ν =
4d (α− β)

4d (α− µ)− ρ
,

where α and β are given in Section 4.3.2 and 4d = α + β − 4µ. One may check that this
definitions coincide with those given in (4.44). Then, let’s consider the function

I =

√
ν − p2

ν
K(p) +

π

2
εΛo

(
arcsin

1

q

√
ν − p2

ν
, p

)
, (A.3)

where ε can be −1, 0 or 1, since it will represent the sign of ρ − 4µ d. Observe that the
function I, (A.3), corresponds with (4.47) if ε = ±1, and with (4.51), if ε = 0; and that it
is expressed as a linear combination of complete elliptic integrals after making use of the
relation (A.1).

In the following lemmas, we are going to state the main results of this appendix.
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Lemma A.0.1. The function I defined in (A.3) is monotonically decreasing in p.

Proof. In order to prove this result, we compute the derivative of I with respect to
p and see that it is always negative. For the sake of simplicity and following the notation
of Section 4.3.2, we call q to

√
1− p2 and

φ =
1

q

√
ν − p2

ν
.

Then, we observe that φ is not monotone. Indeed, since

dφ

dq
= − φ√

α− 2µ
(β − 2µ) ,

it changes monotonicity at q = µ√
ρ+µ2

, that is, precisely at ρ = 4µd. This means that the

sign ε for each possible value disappears when differentiating. Notice that this can also
be obtained as a consequence of the property of the Heuman’s Lambda given in (A.2).
Let’s begin by considering first the case ε = 0. Computing the derivative of I, (A.3), with
respect to p we obtain after straight forward computations

dI

dp
=

1

p q
(E(p)−K(p)) < 0 ,

which concludes the proof for this case.
Now, if ε 6= 0, differentiating I, (A.3), with respect to p and using previous argument
about monotonicity of φ to delete ε, we get after long computations for both ε = 1 and
ε = −1 that

dI

dp
=

φ

p q

(
2E(p)−

(
1 + q2

)
K(p)

)
.

Moreover, calling G(p) = 2E(p)− (1 + q2)K(p), we get that G(p) < 0, for any p ∈ (0, 1),
since G(0) = 0 and

G′(p) = p

(
K(p)− 1

q2
E(p)

)
< 0

implies that G(p) is decreasing and, therefore, G(p) < G(0) = 0. That is, I is decreasing
in p, as desired. �

The main consequence that can be obtained from previous lemma is that the function
I is bijective, since it is monotonically decreasing. Therefore, it is clear that its range
decreases from the maximum value, obtained as the limit when p is the smallest possible
value, to the maximum one, which is reached at the biggest possible value of p.

Thus, now we want to obtain the maximum and minimum values of I. Indeed, as
explained above, it is sufficient to take limits for the maximum and minimum values of p
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for each correspondence case. This is a direct long computation where we must use the
different distinguished values presented before. We sum up these results in the following
lemmas,

Lemma A.0.2. Consider µ ≤ 0, then p ∈ (0, 1) and the maximum and minimum values
of I, (A.3), are respectively

lim
p→0

I =
π

(ρ+ µ2)
1
4

√
ρ

2(−µ+
√
ρ+ µ2)

and lim
p→1

I = arcsin

√
ρ

ρ+ µ2
.

Proof. Since µ ≤ 0, then necessarily ε = 1 and p ∈ (0, 1). Then, taking limits in
(A.3) we obtain the statement. �

Lemma A.0.3. Let µ > 0, then ε can be either 0, 1 or −1, and we have the following
cases;

(i) ε = 1, if and only if, p ∈
(

0,
√

ρ
ρ+µ2

)
; and, the maximum and minimum values of

I, (A.3), are respectively

lim
p→0

I =
π

(ρ+ µ2)
1
4

√
ρ

2(−µ+
√
ρ+ µ2)

and

lim
p→ ρ√

ρ+µ2

−
I =

µ√
ρ+ µ2

K

(√
ρ

ρ+ µ2

)
+
π

2
.

(ii) ε = −1, if and only if, p ∈
(√

ρ
ρ+µ2

, 1
)

; and, we have the following limits for I,

(A.3)

lim
p→ ρ√

ρ+µ2

+
I =

µ√
ρ+ µ2

K

(√
ρ

ρ+ µ2

)
− π

2
and lim

p→1
I = − arcsin

√
ρ

ρ+ µ2
.

(iii) Finally, ε = 0, if and only if, p =
√

ρ
ρ+µ2

. In this case, for the possible values of

µ ∈ (0,∞), p varies from zero to one, and we have

lim
p→0

I =
π

2
and lim

p→1
I = 0 .

Proof. Observe that since ε represents the sign of ρ− 4µ d and µ > 0, we have that
the three options for ε may be possible. Then, using the definition of p, (4.44), we obtain
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the three different intervals. Finally, by taking the correspondence limits in I, (A.3),
and making use of the distinguished values of elliptic integrals and Heuman’s Lambda we
conclude the proof. �

In Figure A.1 we have painted in light blue the different regions where the function
I may have values. The upper regions correspond with the two possible cases for ε = 1,
while the region in the negative part of the I-axis corresponds with ε = −1. The functions
drawn in dark blue are the corresponding limit functions of previous lemmas. Notice that
a similar picture was drawn in [122]. Finally, in Figure A.1 two horizontal red lines have
been plotted at π/2 and −π/3, respectively, and they bound the rectangular region where
there may be values of the type mI = π, for some integer m. For more details see
Theorem 4.3.7.

-2 -1 1 2
μ
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1
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Ι

Figure A.1: Regions for the range of the function I, (A.3).





Appendix B

Gradient-Descent Method

In this appendix we are going to introduce a brief description of the gradient descent
based method we have developed in [9] (which we call XEL-platform) to localize minima
of an ample family of functionals defined on certain spaces of curves satisfying both affine
and isoperimetric constraints. First, we are going to describe the formalism which serves
as base for the numerical treatment.

Let H0(I,Rm) = L2(I,Rm) be the set of square integrable functions from I to Rm,
where I is an interval [a, b]. Let H1(I,Rm) denote the set of absolutely continuous maps
x : I → Rm such that x(1) ∈ H0(I,Rm), where x(1) stands for the first derivative of
the function. Finally, denote by Hn(I,Rm) the set of maps x : I → Rm such that
x(k) ∈ H1(I,Rm), k ∈ {0, . . . , n − 1}, where x(k) denotes the k-th derivative of x. Then,
Hn(I,Rm) is a Hilbert space with the following family of inner products [9]

〈x(t),y(t)〉n,a,b :=

∫ b

a

〈x(n)(t),y(n)(t)〉dt +
n−1∑
k=0

ηka〈x(k)(a),y(k)(a)〉

+
n−1∑
k=0

ηkb 〈x(k)(b),y(k)(b)〉 , (B.1)

where 〈· , ·〉 is the standard inner product in Rm and, ηka ≥ 0; ηkb ≥ 0; and, ηka +ηkb > 0. To
simplify the notation, from now on the above inner product (B.1) and the space Hn(I,Rm)
will be denoted simply by 〈· , ·〉n and Xn, respectively.

We want to analyze the variational problem associated to a certain family of energy
functionals F : Xn → R defined on Xn or on suitable subspaces of curves in Xn. We
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consider functionals of the form

F (x) =

∫ b

a

f
(
t, . . . , xi, . . . , x

(1)
i , . . . , x

(n)
i , . . .

)
dt

+A
(
a, . . . , xi (a) , . . . , x

(n−1)
i (a) , . . .

)
+B

(
b, . . . , xi (b) , . . . , x

(n−1)
i (b) , . . .

)
(B.2)

where x = (xj(t)) ∈ Xn, j = 1, . . . ,m and f : W ⊂ Rm(n+1)+1 → R, A,B : W̃ ⊂ Rmn+1 →
R are continuously differentiable functions defined on a sufficiently large domains W , W̃ .
We also assume that f, A,B satisfy suitable additional conditions which guarantee the
Fréchet differentiability of F and the (local) convergence of the gradient steepest descent
method (for more details see [9]).

As usual, one may consider F acting on subspaces of functions x = (x1, · · · , xm) ∈ Xn

satisfying, together with their derivatives x(i) = (x
(i)
1 , · · · , x

(i)
m ), given boundary conditions

at the endpoints of the interval (they will be referred to as affine constraints). For instance,
for a given i ∈ {0, 1, .. ., n − 1}, fix pi = (pi1, · · · , pim) and qi = (qi1, · · · , qim), points in
Rm. Then, for any arbitrary choice of a finite number of indexes i ∈ {0, 1, . . . , n− 1} and
j ∈ {1, 2, · · · ,m}, the intersection of the following family of subspaces

X
(i)
a,b,j =

{
y : [a, b] −→ Rm; y

(i)
j (a) = pij, y

(i)
j (b) = qij

}
,

is an affine subspace of Xn. So endpoint constraints lead to spaces of functions which are
not linear but they are affine spaces instead what causes minor computational additional
difficulties.

In contrast, suppose that we are seeking functions which not only satisfy affine con-
straints but also verify extra restrictions of the form (which will be called isoperimetric
restrictions)

G (x) =

∫ b

a

g
(
t, . . . , xi, . . . x

(1)
i , . . . , x

(n)
i , . . .

)
dt

+AG
(
a, . . . , xi (a) , . . . , x

(n−1)
i (a) , . . .

)
+BG

(
b, . . . , xi (b) , . . . , x

(n−1)
i (b) , . . .

)
= c , (B.3)

where, g, AG, BG are, at least, continuously differentiable functions and c ∈ R. Now any
candidate to be a solution must lie in the hypersurface Xn

G = G−1 (c) ⊆ Xn, which is not an
affine subspace. Of course, more than one isoperimetric restriction may appear at the same
time, and then any solution to the variational problem must lie in Xn

G = Xn
G1 ∩ · · · ∩X

n
Gh .

For simplicity, in the rest of this appendix we focus on the unconstrained problem.
Thus, we assume that the above functional (B.2) is defined on Xn. The gradient of F
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at x is defined to be the unique ∇Fx ∈ Xn that satisfies 〈∇Fx,w〉n = DFx(w), for all
w ∈ Xn. The existence and uniqueness of ∇Fx is guaranteed by the Riesz Representation
Theorem. Actually, as it has been proved in [9], for a functional F : Xn −→ R of the
type (B.2) (satisfying suitable conditions as those mentioned before), then the gradient is
given by ∇Fx = (∇Fx1 , ...,∇Fxm) and

∇Fxj =

∫ t

a

n· · ·
∫ t

a

Ef
xj ,n

dt+ Pxj ,2n−1 (t) , (B.4)

where Ef
xj ,n

are defined recursively as

Ef
xj ,0

=
∂f

∂xj
= fxj , Ef

xj ,i
= fxj(i) −

∫ t

a

Ef
xj ,i−1ds =

i∑
k=0

(−1)i−j
∫ t

a

i−j
· · ·
∫ t

a

fxj(j)ds .

and Pxj ,2n−1(t) =
∑2n−1

k=0 cj,kt
k are polynomials of degree 2n − 1, whose coefficients cj,k

are completely determined as the solutions of 2n × 2n linear systems which depend on
the concrete choice of the metric 〈· , ·〉n and the affine boundary constraints. Notice that
then, while an extremal is a zero of the gradient for any choice of the metric (B.1), the
gradient itself depends on the metric and, therefore the metric choice is crucial in our
computation.

If F is considered acting on a subspace satisfying additional constraints Xn
G , the gra-

dient ∇∗Fx is the orthogonal projection of ∇Fx onto the corresponding tangent space
and computation of the gradient requires a more elaborated process.

On the other hand, one of the most common methods for minimization of F is the
gradient steepest descent method. Basically, the essence of this method is to analyze the
behavior of the sequence {xk, k ∈ N} of successive approximations for the local minimum
points of F given by the formula

xk+1 = xk + tkhk, k ∈ N ,

where tk is a sequence of positive numbers, the so called control parameters, which lie in
a closed interval of the real line. In order to construct the sequence {xk, k ∈ N}, start
with an arbitrary point xo ∈ Xn (where, of course, ∇Fxo 6= 0), then, assuming that
xo,x1, . . . ,xk have already been constructed, proceed by choosing a sequence hk ∈ Xn

such that 〈∇Fxk ,hk〉 < 0 (usually, hk = −∇Fxk) and then take xk+1 = xk + tkhk.
A numerical method to locate minimizers of this general class of variational problems

under both affine and isoperimetric constraints is implemented in [9] (see also, the webpage
of the research group www.ikergeometry.org). The method is suitable for application to
the energy functionals described in Chapters 1 and 2, in particular it will be applicable
to Frenet-Serret actions after some convenient adjustments.
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[12] J. Arroyo, O. J. Garay and A. Pámpano, Constant Mean Curvature Invariant
Surfaces and Extremals of Curvature Energies, J. Math. Anal. App., 462 (2018),
1644-1668.

141



142 References
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