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Nagore Iriberri

A thesis submitted for the degree of
Doctor of Philosophy

Department of Foundations of Economic Analysis I
Faculty of Economics and Business

2018

(c)2018 BERNARDO GARCIA POLA





Agradecimientos

En primer lugar, estoy en gran deuda con mis directores de tesis, Jaromír Kovářík y
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Resumen

Esta Tesis presenta tres estudios sobre teoría de juegos del comportamiento. La teoría

de juegos es un área que permite estudiar las interacciones estratégicas que son vi-

tales en la economía ya que se dan constantemente entre todo tipo de agentes. Tradi-

cionalmente, en la economía se ha supuesto que los individuos se comportan de forma

racional. La literatura empírica en este campo ha demostrado que esto no es así. Sin

embargo, estas desviaciones que presentan pueden ser lo suficientemente consistentes

como para incorporarse como nuevos supuestos y predecir mejor el comportamiento.

Esta tesis contribuye al estudio sobre qué factores son relevantes al guiar el compor-

tamiento en situaciones estratégicas de interés.

CAPÍTULO 1: NON-EQUILIBRIUM PLAY IN CENTIPEDE GAMES

El capítulo 1 investiga cuales son los modelos de comportamiento que mejor explican

y predicen el comportamiento en el juego del ciempiés.

El juego del ciempiés, propuesto originalmente por Rosenthal (1981), representa

una de las clásicas contradicciones de la teoría de juegos, ya que la solución del equi-

librio de Nash perfecto en subjuegos contradice tanto la intuición de cómo jugar, como

los datos reales de comportamiento en el mismo. Este juego tiene especial interés para

los economistas dadas sus peculiares características. En este juego, dos agentes deci-

den de forma alternativa entre dos acciones, parar o continuar, durante varias rondas.
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Si un agente decide parar, el juego termina de forma inmediata. Si elige continuar, pasa

a ser el turno de decidir del otro agente. En la última ronda, ambas acciones terminan

el juego. El pago que obtiene un agente al parar satisface dos características. Primero,

este es siempre inferior al pago que obtendría al parar en rondas posteriores. Segundo,

este es siempre superior al pago que ese agente obtendría si pasa y el otro agente para

en la ronda directamente posterior. La primera característica da un incentivo a los

agentes a parar lo más tarde posible, mientras que la segunda da un incentivo a parar

siempre antes que el otro. Este contraste de incentivos es lo que hace a este juego

tan relevante, de forma similar a otros como el dilema del prisionero jugado de forma

repetida, y lo asemeja a situaciones de interés para la economía.

El juego del ciempiés presenta una única predicción del equilibrio de Nash perfecto

en subjuegos: parar en la primera ocasión. Debido a la particular estructura descrita

anteriormente, esta predicción es fácilmente calculable mediante la inducción hacia

atrás. Sin embargo, los estudios experimentales de este juego muestran como muy

pocos sujetos siguen esta predicción (véase McKelvey y Palfrey, 1992; Fey et al., 1996;

Nagel y Tang, 1998; Rappaport et al., 2003; Bornstein et al., 2004). A pesar de esto,

los economistas aún no tienen una compresión clara de cúales son los modelos de

comportamiento que guían el comportamiento humano fuera del equilibrio. Resolver

esta incógnita es el objetivo principal de este primer capítulo.

Han sido propuestas múltiples explicaciones para este comportamiento, las cuales

clasificamos en tres categorías: explicaciones basadas en distintas preferencias, racional-

idad limitada, y modelos que limitan el conocimiento común de la racionalidad. Las

primeras son aquellas que argumentan que los individuos podrían no estar maxi-

mizando su pago como asume el equilibrio, sino que podrían tener un objetivo dis-

tinto. Por ejemplo, podrían tener preferencias de naturaleza altruista e incorporar los

pagos del otro en su función de utilidad, buscar que la relación entre lo que ambos

obtienen sea equitativa, o desear la eficiencia en términos de Pareto. La racionalidad
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limitada asume que los sujetos sí que maximizan su propio beneficio, pero presentan

limitaciones sobre su propia racionalidad. Así, por ejemplo podrían equivocarse a la

hora de calcular la respuesta óptima al comportamiento ajeno. Por último, los mod-

elos basados en limitaciones al conocimiento común de la racionalidad, suponen que

los individuos sí que con racionales y maximizan su propio beneficio, pero estos tienen

la creencia de que los demás no van a comportarse tal y como dice el equilibrio.

Por lo tanto, el objetivo de este capítulo es averiguar cúales de estas explicaciones,

el equilibrio y sus tres tipos de alternativas, son más relevantes explicando el com-

portamiento inicial en el juego del ciempiés. Para ello, utilizamos dos herramientas

que nos permiten realizar este ejercicio y que diferencian a este estudio de la literatura

previa: el diseño experimental y las técnicas econométricas.

Con respecto al diseño experimental, una de las mayores limitaciones de los estu-

dios previos es que todos los juegos del ciempiés utilizados para estudiar el compor-

tamiento son los presentes en McKelvey y Palfrey (1992) y Fey et al. (1996) o variantes

con estructuras similares a estos. Estos juegos no son adecuados para discriminar

entre distintos modelos de comportamientos, ya que frecuentemente predicen com-

portamiento similar. En consecuencia, partimos de la definición formal de juego del

ciempiés y diseñamos un conjunto de ciempiés que difieren de los usados en la liter-

atura. Estos presentan variaciones en la progresión de la suma de los pagos, donde en

algunos esta es ascendente, constante, descendente, o varía a lo largo del juego. Tam-

bién son muy distintos en los incentivos que los individuos tienen a parar o continuar,

con el objetivo de que los modelos de comportamiento predigan comportamiento dis-

tinto en estos, y por tanto un individuo que muestre sus preferencias en todos ellos

deje una huella que pueda identificar qué está guiando su comportamiento.

Con respecto a las técnicas econométricas, aplicamos mixture-of-type models. Esta

técnica permite unos resultados heterogéneos, indicando múltiples modelos candidatos

al mismo tiempo si es que varios explican el comportamiento. Además, obliga a los dis-
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tintos modelos de comportamiento a competir entre ellos, ya que la relevancia empírica

de cada modelo es determinada endógenamente y siempre a costa de la de otros.

Los resultados muestran que el comportamiento de los sujetos es efectivamente de-

masiado diverso como para ser explicado por un solo modelo. Solo un 10% de los indi-

viduos sí que siguen el equilibrio parando en la primera oportunidad en la mayoría de

los juegos del ciempiés. Sin embargo, la mayoría del comportamiento está mejor expli-

cado por el fallo del conocimiento común de la racionalidad (concretamente level-k)

y por racionalidad limitada (específicamente Quantal Response Equilibrium). Estos

resultados no solo reflejan por primera vez la naturaleza diversa del comportamiento

en juegos del ciempiés, si no que además ayudan a comprender la literatura, en donde

diferentes estudios encontraban una u otra de estas explicaciones. Por último, el capí-

tulo termina con múltiples tests de robustez que confirman la solidez de los resultados

obtenidos.

CAPÍTULO 2: DO PEOPLE MINIMIZE REGRET IN STRATEGIC

SITUATIONS? A LEVEL-k COMPARISON

El segundo capítulo analiza la sorprendente relación entre dos modelos que han con-

seguido explicar satisfactoriamente comportamiento fuera del equilibrio en la liter-

atura de teoría de juegos: level-k y minimax regret. Sorprendentemente, a pesar de

que ambos modelos suponen motivaciones muy diferentes, ambos predicen el mismo

comportamiento en un gran número de juegos de la literatura. Es por esto que el

comportamiento atribuido a uno de estos modelos en el pasado, podría haber sido

motivado por el otro en realidad. En este segundo capítulo, analizo las relaciones en-

tre ambos modelos de manera teórica y en la literatura, y después presento un diseño

experimental específicamente diseñado para separarlos y dar respuesta a cuál de los

dos modelos (o si ambos) es más relevante guiando el comportamiento.
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El arrepentimiento es un sentimiento negativo de culpa por haber hecho una ac-

ción, el deseo de haber elegido otra opción mejor. Esta sensación solo se puede experi-

mentar ex post, pero es posible anticiparla y tenerla en cuenta a la hora de tomar deci-

siones. En teoría de juegos, el arrepentimiento puede interpretarse como la diferencia

entre el pago óptimo que un jugador podría haber obtenido dada la estrategia tomada

por el resto de jugadores, y el pago que efectivamente obtuvo dado la estrategia que

este tomó. Minimax regret es un criterio de decisión originado en Savage (1951) que

toma en cuenta la anticipación de este arrepentimiento y trata de evitar la mera posibil-

idad de sufrir un arrepentimiento elevado eligiendo la opción que proporciona el mín-

imo máximo arrepentimiento. El rol del arrepentimiento ha sido explorado y testeado

empíricamente multiples veces en diversas situaciones y campos del conocimiento.1

Level-k es un modelo de comportamiento que asume que los jugadores son racionales

y reaccionan óptimamente a sus creencias, pero tienen una creencia particular y sim-

plificada sobre cómo se comportan los demás. Distintos niveles representan distintos

niveles de sofisticación en el pensamiento y los individuos creen siempre que son el

más sofisticado (Costa-Gomes et al., 2001). De esta forma, el nivel menos sofisticado es

L0 que elige al azar cualquiera de las acciones posibles con la misma probabilidad. Un

nivel k se define como un tipo que hace mejor respuesta a una población donde todos

pertenecen al nivel anterior k − 1. De la misma forma que minimax regret, level-k ha

sido exitoso a la hora de explicar el comportamiento que se desvía del equilibrio.2

Este capítulo describe detalladamente ambos modelos de comportamiento y de-

1Inluyendo negociación (Linhart y Radner, 1989), establecimiento de precios (Renou y Schlag, 2010),
toma de decisiones estratégicas (Halpern y Pass, 2012), problemas de elección de tratamientos (Manski,
2004, 2007; Stoye, 2009), proceso de decisiones (Baron y Ritov, 1994, 1995), subastas (Ozbay y Ozbay, 2007;
Ratan y Wen, 2016), y diferencias culturales en decisiones (Giordani et al., 2010). Ver Wang y Boutilier
(2003) para aplicaciones en ciencas de la computación, Zeelenberg (1999) para aplicaciones en psicología,
Loulou y Kanudia (1999) para aplicaciones en problemas medioambientales, y Brehaut et al. (2003) para
aplicaciones en medicina.

2Incluyendo juegos en forma normal (Stahl y Wilson, 1994, 1995; Costa-Gomes et al., 2001), concur-
sos de belleza (Nagel, 1995; Costa-Gomes y Crawford, 2006), juegos de entrada (Camerer et al., 2004),
subastas (Crawford y Iriberri, 2007), juegos de esconderse y buscar (Crawford y Iriberri, 2007), diseño de
mecanismos (Crawford et al., 2009), juegos de información asimétrica (Brown et al., 2012) y juegos del
ciempiés (Garcia-Pola et al., 2016). Ver Crawford et al. (2013) para un análsis completo.
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spués analiza las relaciones entre ellos de forma teórica y práctica. Primero utilizamos

los datos de 17 estudios experimentales diseñados para discriminar entre distintos

modelos de comportamiento hasta juntar 277 decisiones estratégicas distintas. Mostramos

que en un 83% de las mismas los dos modelos predicen exactamente el mismo com-

portamiento y solo en 35 decisiones (un 12% del total) predicen acciones totalmente

diferentes. Después analizamos sus relaciones de forma teórica, mostrando que en

cualquier juego 2 × 2 minimax regret y L1 predicen lo mismo. Además, la presen-

cia de relaciones de dominancia complica su separación. Por último, usamos varios

juegos como ejemplo para mostrar que las coincidencias van más allá de lo descrito

previamente y ambos modelos siguen coincidiendo en otras situaciones estratégicas

de interés aun cuando estas presentan un gran número de acciones posibles para los

jugadores.

Si unimos estos resultados al hecho de que ambos modelos han sido propuestos

como explicaciones al comportamiento alternativas al equilibrio de Nash, se crea una

duda razonable acerca de cuál es el que motiva realmente el comportamiento. Para

resolverla, en el final de este capítulo realizamos un ejercicio doble. Primero, revisita-

mos el estudio de Costa-Gomes y Crawford (2006) donde analizan el comportamiento

de múltiples guessing games. Este es el único de la literatura analizada previamente

en el que minimax regret y L1 predecían distinto comportamiento en la mayoría de

sus juegos. Después, proponemos un experimento diseñado específicamente con el

propósito de separar ambos modelos. Este consiste en una serie de juegos en forma

normal con tres características particulares. La primera es que distintas variaciones del

modelo minimax regret predicen la misma acción, de forma podemos poner a prueba

este modelo de forma amplia. La segunda es que hacemos que los incentivos de seguir

cada acción predicha por cada modelo sean lo más grandes posibles. Finalmente, y

siguiendo el objetivo principal de este experimento, hacemos que los modelos rele-

vantes estén separados de forma sistemática.
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Las ventajas de este diseño es que nos permite saber cuál es el modelo más rele-

vante empíricamente tanto en juegos con un número grande y continuo de opciones

a elegir por cada jugador (guessing games de Costa-Gomes y Crawford (2006)), como

en juegos en forma normal con pocas opciones discretas (nuestro experimento).

Los datos que arroja el análisis descriptivo es que L1 es el modelo que explica la

mayor parte del comportamiento en ambos experimentos, aunque hay un número no

despreciable de decisiones que coinciden con las predicciones de minimax regret. Sin

embargo, cuando realizamos un análisis en el que exigimos a los sujetos que sean con-

sistentes a través de sus decisiones en los distintos juegos, encontramos poca evidencia

para minimax regret (un 4%) en guessing games y ninguna en juegos en forma normal.

Estos resultados sugieren que la relevancia de minimax regret como una explicación al

comportamiento estratégico debe ser cuestionada.

CAPÍTULO 3: HOT VERSUS COLD BEHAVIOR IN CENTIPEDE

GAMES

En este tercer y último capítulo añadimos evidencia al tradicional debate en economía

experimental de hasta qué punto o en qué situaciones la obtención de comportamiento

individual mediante el método directo (en caliente) es equivalente al strategy-method

(en frío) en juegos extensivos. El primero implica que los jugadores observan el com-

portamiento que los demás han tenido en etapas anteriores del juego, y reaccionan

directamente a estas acciones pasadas. El segundo consiste en que los jugadores de-

scriben su plan completo de acciones en todas las hipotéticas etapas sin saber lo elegido

por los otros jugadores. Ambos métodos son equivalentes estratégicamente. Sin em-

bargo, que esa equivalencia se traslade al comportamiento real ha sido debatido por

décadas. Los motivos por los que podrían ser distintos, es porque en la obtención

en frío los sujetos podrían pensar más profundamente sobre todos los posibles casos
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que potencialmente ofrece el juego y esto podría modificar su comportamiento. De la

misma forma, la obtención en caliente podría modificarlo ya que hace reaccionar de

forma directa a los jugadores a las elecciones reales de los demás y por tanto podría

despertar en ellos reacciones más emocionales. Brandts y Charness (2011) ofrecen un

análisis de 29 estudios diferentes donde comparan ambos métodos. Obtienen resul-

tados mixtos, habiendo casos en donde coinciden y otros en los que no. Sugieren que

esto se puede deber a las condiciones particulares de cada estudio, por ejemplo el com-

portamiento suele diferir cuando los jugadores pueden castigarse por lo que han hecho

en etapas anteriores, dejando la cuestión abierta y requiriendo más evidencia para dar

una respuesta más clara.

Este capítulo hace exactamente eso, proporcionando datos de comportamiento obtenidos

mediante ambos métodos en cuatro variaciones distintas del juego del ciempiés. Los

datos de la obtención del comportamiento en frío se obtienen del mismo experimento

del primer capítulo, mientras que los datos de la obtención en caliente se obtienen de

un nuevo experimento realizado específicamente para este capítulo. Dos juegos son

los clásicos presentes en McKelvey y Palfrey (1992) y Fey et al. (1996), mientras que los

otros dos son juegos del ciempiés que varían en la progresión de la suma de los pagos

y en las asimetrías de los incentivos entre los jugadores.

Los datos obtenidos revelan que hay diferencias significativas en el comportamiento

obtenido mediante uno y otro método de obtención en los dos juegos del ciempiés

clásicos. En particular, el método en caliente desplaza el comportamiento hacia parar

antes. Sin embargo, el estas diferencias no existen en los otros dos juegos. Dado que

la diferencia principal entre ambos pares es que los dos jugadores tienen incentivos

similares en los dos primeros pero no en los dos segundos, atribuimos estos efectos a

la asimetría de los pagos. Las personas encuentran más facilidad para ponerse en la

situación de los demás si están enfrentándose a una situación similar a la suya, y es

por ello que esta diferencia puede jugar un papel importante. Por otro lado, participar
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en un juego con asimetría puede ser un elemento que aumente la complejidad de las

decisiones. Si este efecto se produce de una forma más general es algo que debería ser

sujeto de estudio en futuras investigaciones.





Chapter 1

Non-Equilibrium Play in Centipede

Games

1.1 INTRODUCTION

The Centipede Game (CG, hereafter), proposed by Rosenthal (1981), represents one of

the classic contradictions in game theory (Goeree and Holt, 2001) as the unique sub-

game perfect Nash equilibrium (SPNE, henceforth) is at odds with both intuition and

human behavior. This has drawn considerable attention of economists. In this game,

two agents decide alternately between two actions, take or pass, for several rounds

and the game ends whenever a player takes. The payoff from taking in a particu-

lar round satisfies two conditions: (i) it is lower than the payoff from taking in any

of the following rounds, which gives incentives to pass; but (ii) it exceeds the payoff

received if the player passes and the opponent ends the game in the next round, pro-

viding incentives to stop the game right away. This payoff structure reflects a tension

between payoff maximization and sequential reasoning, shared with prominent strate-

gic environments such as the repeated Prisoner’s dilemma (see Dal Bó and Fréchette,

2011, Friedman and Oprea, 2012, Bigoni et al., 2015, or Embrey et al., 2017, for re-

1
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cent advances). Such a tension characterizes other strategic repeated environments of

high economic interest including Cournot competition, public goods provision, or the

tragedy of the commons.

Due to its payoff structure, the CG has a unique SPNE, in which a utility-maximizing

selfish individual stops in every decision node. Experimental tests of the unique pre-

diction in CG confirm game theorists’ intuition, as very few experimental subjects fol-

low it (McKelvey and Palfrey, 1992; Fey et al., 1996; Nagel and Tang, 1998; Rappaport

et al., 2003; Bornstein et al., 2004).1 Despite the experimental work on CGs, economists

still do not have a clear understanding of the underlying behavioral model that makes

human play diverge from equilibrium play. This is the central question addressed in

this chapter.

Many explanations have been proposed for the behavior of people not following

the unique SPNE in the CG, which we broadly classify into three categories: preference-

based explanations, bounded rationality, and models that relax the common knowl-

edge of rationality. The preference-based approach argues that people do not maxi-

mize their own payoff, as typically assumed in SPNE. Rather, they may be altruistic,

seeking Pareto efficiency, or inequity averse (e.g. McKelvey and Palfrey, 1992).2

An alternative explanation is that people are not fully but boundedly rational. For in-

stance, people might make mistakes when calculating or playing the optimal response

to others’ expected behavior. To model this idea in CGs, Fey et al. (1996) apply the

quantal response equilibrium (QRE, henceforth; McKelvey and Palfrey, 1995), in which

players play mutually consistent strategies but may make mistakes in their choice of

actions. These mistakes have the feature that costlier mistakes are less likely to occur.

Finally, observe that even a selfish, fully rational utility-maximizer should not stop

in the first round if she expects her opponent not to stop in the following round. In

1Section 2 reviews the theoretical and empirical literature in more detail.
2Levitt et al. (2011) raise the possibility that their (relatively sophisticated) subjects view the game as

a game of cooperation, suggesting that non-selfish preferences might be important.
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fact, the best response to the typical observed behavior is to pass in the initial rounds.

Hence, people may have non-equilibrium beliefs and/or expect others to have them.

Two particular models relax the assumption of common knowledge of rationality. Ini-

tially, McKelvey and Palfrey (1992) proposed a Bayesian equilibrium approach, also

known as “gang of four", in which people play against a mixture of fully rational play-

ers and a small fraction of “irrational" individuals who pass in every node. A rational

decision-maker thus has incomplete information regarding the rationality of her op-

ponent. Level-k thinking model also relaxes the assumption of equilibrium beliefs:

decision-makers apply a simpler rule, forming their expectations about the behavior

of others, and best respond to their beliefs (Kawagoe and Takizawa, 2012; Ho and Su,

2013).

We therefore consider four classes of model. We test the ability of SPNE to ex-

plain individuals’ behavior as a default model.3 Alternatively, we consider three other

behavioral models. First, we allow for models based on preference-based explana-

tions, such as altruistic types. Second, to model bounded rationality we consider QRE

that relaxes the perfect rationality of individuals, allowing them to make mistakes

but keeping equilibrium beliefs and common knowledge of (ir)rationality. Finally, we

test the ability of both the “gang of four" model and level-k thinking to explain non-

equilibrium behavior, two models that maintain the rationality assumption but relax

the common knowledge of rationality.4

The purpose of this study is to discriminate between SPNE and the other three

types of alternative explanations of initial behavior in CGs, combining experimental

and econometric techniques. The experimental design and the econometric technique

3We use the strategy method in our experiment. Therefore, we actually test the unique Nash equilib-
rium in the reduced normal-form game. Nevertheless, since both concepts are behaviorally equivalent in
CGs, we abuse the terminology and call it SPNE throughout to preserve the link with the CG literature.
See Section 3.2.1 for a more detailed discussion.

4We also consider alternative specifications of these classes of models, as well as alternative models,
as discussed in Section 1.2 and Section 3.2. We selected a particular set of models for their theoretical and
empirical interest, focusing on those that have been proposed in the literature.
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are precisely the two features that differentiate our study from existing work on CGs.

With respect to the experimental design, we show that the two commonly used

CGs, the exponentially increasing-sum variant of McKelvey and Palfrey (1992) and

the constant-sum version by Fey et al. (1996), are not well suited to discriminating

between the four types of explanations. We, therefore, start from a formal definition

and design multiple CGs, some of which depart substantially from the CGs used in the

literature (see Figure 1.5 for our 16 CGs). We use three criteria to classify our CGs: they

differ in the evolution of the sum of payoffs along the different nodes: increasing-sum,

constant-sum, decreasing-sum, and variable-sum CGs; we have games that start with

an egalitarian division of payoffs and games that start with a non-egalitarian division;

we vary the incentives to pass and the incentives to stop the game right away. The main

criterion in designing our CGs was the greatest possible separation of predictions of the

candidate models, with the objective of identifying the behavioral motives underlying

the non-equilibrium choices.

Observe that our focus on initial responses in CGs induces us to provide no feed-

back concerning others’ behavior during the whole experiment, which determines the

use of strategy method or “cold play”, in contrast to the main papers studying be-

havior in CGs. There are two potential problems with eliciting behavior in “hot play”

when identifying the behavioral model behind the initial behavior in CGs. First, hot

play makes researchers observe the complete plan of action only of subjects who stop

earlier in extensive-form games. In other words, hot play in CGs endogenously de-

termines the behavioral types that the researcher observes.5 However, one needs to

observe the complete plan of action of each subject in several games to be able to iden-

tify the underlying behavioral model a particular individual follows. Second, hot play

necessarily conveys feedback from game to game, inducing learning across different

5For example, people following SPNE stop immediately in each CG. Therefore, analyzing solely the
actual play of matched subjects (rather than complete plan of behavior of subjects) might result in an
overestimation of the proportion of SPNE in the population.
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CGs as suggested by previous evidence (see Section 1.2). Therefore, we use the strategy

method or cold play, whereby subjects simultaneously submit their strategies game by

game without receiving any feedback until all decisions have been made. In CGs, hot

and cold play have been shown to produce similar behavioral patterns (Nagel and

Tang, 1998, and Kawagoe and Takizawa, 2012).6 We also find no differences between

the behavior of our subjects and the initial behavior reported in other studies (see Ap-

pendix A). Therefore, we have no reasons to believe that our results are affected by

the cold play method. Moreover, note that since our subjects cannot observe any past

behavior of any other individual in any game and their behavior is not different from

behavior using hot play, reputation-based explanations of non-equilibrium behavior

can be ruled out in our data.

With respect to the econometric techniques, we apply finite mixture-of-types mod-

els. Game theory has made considerable progress in incorporating the findings of

experimental and behavioral economics but behavioral game theory currently offers

a large number of behavioral approaches, often resting on very different assumptions

and generating very different predictions. Even though most studies compare differ-

ent behavioral models on a pairwise basis, the focus has recently shifted toward coex-

istence and competition between behavioral models (see Camerer and Harless, 1994,

and Costa-Gomes et al., 2001, for early references). We take this latter approach, ex-

ploiting finite mixture models. These models offer two distinctive features. First, in

contrast to the comparison of models on a pairwise basis, they are explicitly designed

to account for heterogeneity, where multiple candidate models are simultaneously al-

lowed. If, for instance, a small fraction of individuals behave according to SPNE while

most people are, say, boundedly rational or if, alternatively, one explanation is enough

to explain individual behavior, this would be detected endogenously at the estimation

6Brandts and Charness (2011) review the experimental literature on all two-person sequential games
and conclude that the strategy method does not generally distort subjects’ behavior compared to direct
responses.
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stage. Second and more importantly, this technique makes the alternative behavioral

models “compete” for space, because whether a model is empirically relevant, and to

what extent, is determined endogenously and at the cost of the alternative models.

We find that subjects’ behavior is too heterogeneous for one model to explain why

people do not adhere to SPNE in CGs. Consistently with previous findings, only about

10% of individuals take in the very first node in most of the 16 games. More impor-

tantly, the behavior of the majority is explained by level-k thinking model and by QRE.

Preference-based models play a negligible role in explaining non-equilibrium choices

in our data. In line with the conclusions of Fey et al. (1996) and McKelvey and Pal-

frey (1998), our analysis corroborates that the “gang of four" model contributes little

to explaining non-equilibrium behavior in CGs. In addition to the fitting exercise, we

also show that the estimated mixture-of-types model, composed of a small fraction of

SPNE and a large proportion of level-k and QRE types, is also successful at predicting

behavior across different CGs. As a result, researchers should account for behavioral

heterogeneity in CGs not only for a better explanation of behavior as advocated by this

study but also for a better prediction of choices in out-of-sample games.

These results have two important implications that go beyond the CG. First, several

recent papers have stressed the ability of strategic uncertainty to organize the average

behavior in games that reflect the tension between maximizing payoffs and sequential

rationality (Dal Bó and Frechette, 2011; Calford and Oprea, 2017; Embrey et al., 2017;

Healy, 2017). However, although these studies acknowledge important individual het-

erogeneity, they do not ask whether the heterogeneity can be described by a single

behavioral model or whether it requires a mixture of them. We propose combining

experimental techniques, individual-level data on initial responses, and mixture-of-

types model to both qualify and quantify this heterogeneity. The advantage of CGs,

as opposed to e.g. the repeated Prisoner’s dilemma, is that the “stage" payoffs can

be manipulated systematically such that different theories predict different behavior,
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the core of our design. Our results show that bounded rationality and the failure of

common knowledge of rationality are particularly relevant, while preference-based

explanations play a minor role.7

As a second contribution, many attribute non-equilibrium behavior in many extensive-

form games to their dynamic nature and the failure of backward induction, whereas

our study again shows that it constitutes a more general non-equilibrium phenomenon.8

Our subjects follow SPNE-like behavior in CGs that lowers incentives to pass (constant-

and decreasing-sum CGs), while they systematically violate SPNE’s prediction in

games designed to facilitate passing. More importantly, virtually all non-equilibrium

behavior is best explained by QRE and level-k, two behavioral models, which have

been successful in explaining behavior in static environments. These findings suggest

a unified perspective on non-equilibrium behavior in both simultaneous-move and

extensive-form games and call for a reevaluation of the aspects that distinguish static

from dynamic games from a behavioral point of view.

The chapter is organized as follows. Section 2 reviews the literature. Section 3 sets

out the theoretical framework. Section 4 introduces our experimental design. Section 5

presents the main estimation results, as well as a battery of robustness tests including

out-of-sample prediction test. Section 6 concludes. The Appendices A and B contain

additional material and the experimental instructions.

7In the repeated Prisoner’s dilemma, Cooper et al. (1996) also show that multiple models are necessary
to explain the behavior and Embrey et al. (2017) conclude that the existence of cooperative types has only
limited effect on the extent of cooperation, the equivalent of passing in CGs.

8Backward induction, a fundamental concept in game theory, is also frequently at odds with human
behavior (e.g. Reny, 1988; Aumann, 1992; Binmore et al., 2002; Johnson et al., 2002). However, although
CG is commonly associated with the paradox of backward induction in the literature, Nagel and Tang
(1998) and Kawagoe and Takizawa (2012) show that human behavior also deviates from SPNE when
presented in normal form and Levitt et al. (2011) show that following backward induction in other games
does not make people follow it in CGs.
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1.2 LITERATURE REVIEW

CG was first proposed by Rosenthal (1981) to point out that backward induction may

be counterintuitive, predicting that human subjects would rarely adhere to the SPNE

prediction in this particular game. The original game has 10 decision nodes and the

payoff sums in each node increase linearly from the initial node to the final one.

Megiddo (1986) and Aumann (1988) introduce a shorter CG with an exponentially

increasing-sum of payoffs in each node, called “Share or quit”. The name centipede is

attributed to Binmore (1987), who designed a 100-node version. Aumann (1992, 1995,

1998) was the first to discuss the implications of rationality and common knowledge

of rationality in CGs. He shows that although rationality alone does not imply SPNE,

common knowledge of rationality does. The epistemic approach to explaining the

paradox using perfectly rational agents has been followed by others (e.g. Reny, 1992,

1993, Ben-Porath, 1997).

McKelvey and Palfrey (1992) pioneered the experimental analysis of the CG. They

apply two modest variants of Aumann’s game, with four and six decision nodes,

where the payoffs increase exponentially. Figure 1.1 contains the six-node CG. They

focus on exponentially increasing-sum versions to reinforce the conflict between SPNE

and the intuition. Their results indeed confirm that SPNE is a bad prediction for behav-

ior in the game: only 37 out of 662 games ended in the first terminal node as predicted

by SPNE. The majority of matched subjects ended somewhere in the middle-late nodes

of the game and 23 out of 662 matches reached the final decision node (see Figure 1.3

for their distribution of reached terminal nodes in the first round in the game from

Figure 1.1). They also observe little learning over repetitions of the game. They ex-

plain their findings using the “gang of four" model (Kreps and Wilson, 1982; Kreps et

al., 1982). In particular, by assuming the existence (and common knowledge of this

existence) of 5% of subjects who pass in every node, and by combining them with the



1.2. LITERATURE REVIEW 9

possibility of noise in both behavior and beliefs.9

FIGURE 1.1: EXPONENTIALLY INCREASING-SUM CG IN MCKELVEY AND PALFREY (1992).

To test the hypothesis of altruism further, Fey et al. (1996) introduce a constant-sum

version of CG, shown in Figure 1.2. Since the sum of the payoffs of both players in

each node is the same, their and our altruistic type should be indifferent about where

to stop. Less than half of the matched subjects play according to SPNE initially (see

Figure 1.3 for the first-round behavior) even though people learn to play closer to SPNE

with experience. Fey et al. (1996) find no evidence of altruistic types (individuals

who “Always Pass") and reject the explanation based on “gang of four" provided in

McKelvey and Palfrey (1992), and propose two models: an “Always Take” behavioral

model, which can be rationalized by SPNE, Maxmin or Egalitarian (or inequity aversion,

a model we consider among the social preferences), and QRE. They find evidence for

QRE. Later, McKelvey and Palfrey (1998) extend QRE to extensive-form games, named

agent-QRE (AQRE, henceforth) and apply it to the exponentially increasing-sum CG.

They again reject the explanation based on “gang of four" and conclude that AQRE

fits individual behavior better than QRE. We corroborate the conclusions of both Fey

et al. (1996) and McKelvey and Palfrey (1998) regarding “gang of four" (see Section

1.5.3) and consider both QRE and AQRE (see Section 1.3.2).

Nagel and Tang (1998) test behavior using a 12-node CG. Unlike in previous re-

9This altruistic behavior, as noted by the authors, can be rationalized by assuming that altruistic sub-
jects derive utility not only from their own payoffs but also from the payoffs of their opponents. In
particular, in the exponentially increasing-sum CG, if the weight on their opponent’s payoff is 2/9 and
the weight on own payoff is 7/9, altruistic subjects will always pass. The equilibrium type in McKelvey
and Palfrey (1992) resembles our SPNE with noise (which differs from QRE) and differences in beliefs re-
fer to beliefs concerning whether others are altruistic or not. The exception is their altruistic type, which
is identical to our altruists. Zauner (1999) fits the proposed model to their data.
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FIGURE 1.2: CONSTANT-SUM CG IN FEY ET AL. (1996).

Exponentially Increasing-sum Constant-sum

FIGURE 1.3: INITIAL BEHAVIOR IN DIFFERENT STUDIES

search, subjects in their experiment played a normal-form CG. In particular, they pro-

pose a reduced normal-form, which collapses all strategies that coincide in the first stop-

ping node into one behavioral plan. In such a reduced normal-form each row/column

represents the node, at which Player 1/2 stops the game if the node is reached. Subjects

decide simultaneously in their experiment, but to make their approach as close as pos-

sible to a sequential play subjects only receive information about the final outcome of

the game. That is, they never learn the strategy chosen by the opponent if they stop ear-

lier. Interestingly, their results are very similar to those of McKelvey and Pafrey (1992),

where the majority of subjects did not choose to take immediately and most ended the

game in the middle-late nodes.10 Their findings illustrate that non-equilibrium behav-

ior in CGs cannot be attributed solely to the failure of backward induction but probably

represents a more general non-equilibrium behavioral phenomenon.

10They also observe that people react differently depending on the outcome of the previous round. If
they finish one game before the opponent, they tend to pass more in the next one; the opposite happens
if the opponent stops first. Since we focus on the initial play here, this plays no role in our study.
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In order to test for the relevance of common knowledge of rationality as opposed

to other explanations, Palacios-Huerta and Volij (2009) manipulate the rationality of

subjects and the beliefs about the rationality of opponents, combining students and

chess players. Chess players are not only familiar with backward induction but are also

known to be good at inductive reasoning. Using the exponentially increasing-sum CG

in Figure 1.1, they find that chess players behave much closer to SPNE than students.

More importantly, they find that chess players play closer to SPNE when matched

with other chess players rather than students. Figure 1.3 shows the initial behavior of

their students-against-students treatment, which is in line with the original findings

by McKelvey and Palfrey (1992).

Later, Levitt et al. (2011) find that chess players who play SPNE in other games

fail to do so in CGs, once again disconnecting the puzzling behavior in this game from

backward-induction arguments. They comment on the possibility that their subjects

may view the CG as a game of cooperation between the two players.

More recently, Kawagoe and Takizawa (2012) provide an analysis of the ability of

level-k models vs. AQRE to explain behavior in CGs using new experimental data and

the data from McKelvey and Palfrey (1992), Fey et al. (1996), Nagel and Tang (1998),

and Rapoport et al. (2003). See Figure 1.3 for the behavior in the extensive-form CGs

from Figures 1.1 and 1.2 in Kawagoe and Takizawa (2012). Their pairwise comparison

concludes that level-k thinking model fits the data better than the AQRE model with

altruistic players in the increasing-sum CG, while there is no difference between the

models in the constant-sum CG. Related to this study, Ho and Su (2013) show that

level-k thinking model explains the behavior in McKelvey and Palfrey (1992) well.

Our contribution over and above that of these two studies is that we allow multiple

behavioral models simultaneously (not only QRE or only level-k thinking model) and

that these alternative models compete with one another in explaining behavior across

multiple CGs (not only the most common CGs as in Kawagoe and Takizawa, 2012, or
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only the exponentially increasing-sum CG as in Ho and Su, 2013, where we show that

these two types of CGs are not enough to separate candidate theories). We show that

different CGs are crucial in explaining non-equilibrium behavior in these games.

In a recent contribution, Healy (2017) carries out an epistemic experiment, eliciting

utilities, first and second order beliefs, and actions in three variations of an increasing-

sum CG. He finds important heterogeneity in both utilities and beliefs and rationalizes

non-equilibrium behavior using an incomplete information setting similar in spirit to

the original explanation proposed by McKelvey and Palfrey (1992).11 In contrast to our

study, Healy (2017) finds support for social preferences. Nevertheless, he only applies

increasing-sum CGs that seem to exacerbate the role of altruism as pointed out by Fey

et al. (1996).

Although QRE models bounded rationality via mistakes, there are other theories of

bounded rationality that can explain behavior inconsistent with SPNE in CGs. Jehiel

(2005) proposes an analogy-based equilibrium model in which agents have imperfect

perception of the game. In particular, the decision nodes of other players are bundled

into one as long as the set of actions in those nodes is the same (even if the payoff

consequences differ across the decision nodes), forming a unique belief for all the bun-

dled nodes. Depending on which nodes are bundled together, passing in CGs can be

supported in equilibrium if the payoffs increase fast enough as the game develops. An-

other approach assumes that people have limited foresight. One example is Mantovani

(2014), who proposes a model in which individuals only consider a limited number of

subsequent decision nodes and truncate the CG afterwards. He shows that passing

in CGs can be rationalized as long as the incentives for passing are high enough and

the final node is not included in the limited horizon of individuals. We do not include

these alternative bounded rationality models in our main analysis.12

11In line with Dal Bó and Frechette (2011) and Embrey et al. (2017), Healy (2017) employs the term
strategic uncertainty, rather than the failure of common knowledge of rationality.

12Empirically testing Jehiel’s (2005) model is not straightforward with our design based on a strategic
method to identify initial responses. See e.g. Danz et al. (2016) for such a test. Regarding Mantovani
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1.3 THEORETICAL FRAMEWORK

1.3.1 DEFINITION OF THE CENTIPEDE GAME

The CG is a two-player extensive-form game of perfect information, in which the play-

ers make decisions in alternating order. We denote by Player 1 the player deciding in

the odd decision nodes, while Player 2 refers to the player who decides in the even

decision nodes. The game can vary in length and we denote the number of decision

nodes byR. In each decision node one player decides between two actions: Take, which

ends the game immediately, and Pass, which leads to the next node, giving the turn to

Take or Pass to the other player. Figure 1.4 shows an example of a CG with R = 6.

The game differs from similar extensive-form games in the conditions on the payoff

structure. Let xir represent the payoff that the deciding player i receives if she takes in

a decision node r and let xjr be the payoff of the non-deciding player j 6= i in r. Then,

in any CG, for the decision node for player i:

xir < xir+2 for ∀r such that 1 ≤ r ≤ R− 1 (1.1)

xjr < xjr−1 for ∀r such that 2 ≤ r ≤ R+ 1 (1.2)

Expressions (1.1) and (1.2) summarize the trade-off that people face in CGs. The

first inequality represents the incentive to pass and move on in the game, since the

payoff from choosing Take in the next decision node where i decides is higher than

in the current one. By contrast, the second inequality illustrates the incentive to take

(2014), we re-estimate a variation of our main model which includes three additional behavioral types:
players who consider two, three, and four subsequent decision nodes when deciding whether to take or
pass. The predicted behavior of the types that consider two and three subsequent decision nodes is very
similar to that of L1 and L2, but when all models are jointly considered in one mixture-of-types model the
shares of L1 and L2 remain virtually unaffected while we find no support for these two limited-foresight
types. Hence, level-k explains individual behavior better in our data. If foresight is increased to four, such
players behave as SPNE in almost all our games. Therefore, for their theoretical and empirical interest,
we focus on SPNE and opt for QRE as a representation of bounded rationality.
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before the opponent does.

We refer to the sum of player’ payoffs in a particular decision node r by Sr:

Sr = xir + xjr (1.3)

Conditions (1.1) and (1.2) have some implications for the design of different varia-

tion of CGs. First, xir > xir−1; that is, the payoff in a decision node is higher than in the

previous non-decision node. Second, Sr < xir+2 + xjr−1 in each r player i decides in.

In words, the sum of payoffs in each decision node is lower than the sum of the payoff

resulting from action Take by i in the player’s next decision node and the payoff that

the opponent “sacrifices” by passing in the previous decision node. Third, although

the literature has only used CGs with increasing- or constant-sum evolution of payoffs

over the different decision nodes, it is easy to show that (1.1) and (1.2) allow for any

evolution of Sr as the game progresses. Hence, there are decreasing-sum versions and

even CGs with variable-sum which show non-monotonic patterns, disregarded in the

previous literature (see Figure 1.5 for examples; Figures 1.7 and 1.8 in the Appendix A

provide an alternative visualization of the same CGs).

FIGURE 1.4: EXTENSIVE-FORM (TOP) AND ASSOCIATED REDUCED NORMAL-FORM (BOTTOM) REPRESEN-
TATION OF A GENERAL SIX-NODE CG.

In this study, we focus on CGs with six decision nodes. The upper part of Figure

1.4 displays a general version of the six-node CG in extensive form, and the lower
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part presents the corresponding reduced normal-form representation.13 In this reduced

normal-form, each player has the following four pure strategies: Take the first time, Take

the second time, Take the third time, and Always pass. A player selecting the first option

finishes the game the first time she plays. That is, Player 1 would finish the game

in node 1 in the upper part of Figure 1.4. Analogously, Player 2 selecting this option

would finish in node 2. Take the second time corresponds to pass once and ending the

game the second time that the player has a chance to play. Take the third time consists

of passing twice and choosing Take the third time. Finally, Always pass entails choosing

always Pass and reaching the payoffs in the very last node.

1.3.2 CANDIDATE EXPLANATIONS OF BEHAVIOR IN CENTIPEDE GAMES

We introduce each behavioral type and describe its predictions in our reduced normal-

form CGs. In some cases, one model is indifferent between different strategies, in

which case we assume that people select uniformly among them. For the predictions

of each behavioral model in the CGs used in this experimental study, see Tables 1.3 and

1.4 below. Figures 1.9 and 1.10 in the Appendix A show these same predictions using

the game trees of the different games.

NASH EQUILIBRIUM IN THE REDUCED NORMAL-FORM, SPNE

Given the payoff structure of the CG described in Section 1.3.1, the SPNE type should

always choose Take in every decision node. In the reduced normal-form game, there

only exist one Nash equilibrium in pure strategies, where both players choose Take the

first time. Since this behavior is consistent with the SPNE, we abuse the terminology

and refer to this Nash Equilibrium as SPNE throughout the chapter. This prediction is

13Note that the figure does not contain all the strategy combinations. Rather, each behavioral plan in
Figure 1.4 represents all strategies that take for the first time in the same decision node. Nagel and Tang
(1998) experimentally test the same reduced normal-form, instead of the full normal-form representation.
The latter leads to an enormous strategy space where many strategy profiles have the same payoffs. For
a more thorough discussion, see Footnote 1 in Nagel and Tang (1998).
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unique and the same for all types of CGs.14

ALTRUISM, A AND A(γ)

In contrast to the standard selfish preferences, individuals might care about other play-

ers’ payoffs in an altruistic way. We allow for two alternative models of altruism. In

Section 1.5.3, we present two sets of results, one for each of the two definitions of al-

truism.

First, following Costa-Gomes et al. (2001), we assume that altruistic individuals

(A, henceforth) weight their own payoffs as much as the payoffs of the opponent, such

that they are maximizing the sum of payoffs, Sr, independently of how that sum will

be split between the two players. Also, despite taking into account opponents’ payoffs,

A is non-strategic in that she chooses the strategy that leads to the maximum Sr out

of all possible strategies and expects the same behavior from the opponent. Following

this definition, the behavior of A is determined by the progression of the payoff sum in

the CG. A chooses Always pass in increasing-sum CGs, Takes the first time in decreasing-

sum CGs, and is indifferent between the four strategies in constant-sum CGs. The

stopping node of A can be manipulated to lie anywhere in the variable-sum CGs.

Second, following how altruism has been modeled in economics and keeping such

type fully strategic, we assume that altruistic individuals’ utility is given by their own

payoff and a weight (γ) on the payoff of the opponent, where 0 ≤ γ ≤ 1. Such a type

assumes that her opponent is of the same type and selects the Nash equilibrium in the

reduced normal-form games expressed in terms of their utilities (rather than payoffs).

We refer to this model by A(γ). Note that for low values of γ this altruistic type is close

to SPNE, with A(0) = SPNE.15

14All pure strategies in the reduced normal-form CG are rationalizable. Using the extensive-form vari-
ation of rationalizability, only the SPNE is rationalizable.

15In fact, A(γ) = SPNE for roughly γ < 0.12 in our experiment; for assessing the separation between
SPNE and A(γ), see Table 1.10.
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PARETO EFFICIENCY, PE

Pareto efficiency is another classic concept in economics. A payoff profile in a node

is Pareto efficient if it is not possible to make a player better off without making the

opponent worse off. For the sake of simplicity, we again assume that this type is non-

strategic. In the reduced normal-form, PE type selects the strategy that yields a Pareto

efficient payoff profile.

For instance, only the two payoff profiles in the last decision node are Pareto effi-

cient in exponentially increasing-sum CGs. Hence, PE-Player 1 chooses Always pass,

and PE Player 2 randomizes between Take in the third and Always pass. In fact it follows

directly from the payoff structure of the game, described in Section 1.3.1, that the two

payoff profiles in the last decision node are Pareto efficient in any CG. Moreover, the

number of Pareto efficient outcomes and where they are located in the sequence of the

game can vary substantially. By (1.1), every outcome can potentially be Pareto efficient.

This is indeed the case in all the constant-sum and decreasing-sum CGs.

INEQUITY AVERSION, IA AND IA(ρ,σ)

Rather than caring about efficiency or others’ payoffs directly, some people might care

about payoff inequalities. Similar to altruism, we allow for two types of inequity aver-

sion preferences and present two sets of results in Section 1.5.3, one for each of the two

definitions of inequity aversion.

First, analogously to A, we assume that IA minimizes the difference in payoffs be-

tween the two players in a non-strategic way.16 IA first calculates the absolute values

of the differences between her payoffs and her opponent’s payoffs for each strategy

combination. Then, she takes the action (or actions if indifferent across more than one

action) that leads to the minimum payoff difference.

16We follow the equivalent assumption as in the definition of A and assume that IA implicitly believes
that other players are also IA.
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For instance, consider IA-Player 1 in the in CG in Figure 1.1. The action Take the

first time generates a difference of 30 independently of the choice made by Player 2,

Take the second time yields the differences of 60, 120, 120, and 120 for the four respective

strategies of Player 2, Take the third time leads to 60, 240, 240 and 240, and finally Always

pass 60, 240, 960, and 1920. An IA-player computes the smallest differences (30 in the

first case vs. 60 in the remaining cases) and selects the strategy corresponding to the

minimum, i.e. Take the first time. The decision-making process of an inequity-averse

Player 2 is characterized analogously.

Second, following more closely Fehr and Schmidt (1999) and Bolton and Ockenfels

(2000) and keeping the type fully strategic, IA(ρ, σ) individuals’ utility is given by

their own payoff minus the difference between the two individuals’ payoffs. When

the opponent is getting a lower payoff than oneself, the utility is given by own payoff

minus the difference between own payoff and the opponent’s payoff, weighted by

0 ≤ ρ ≤ 1, and when the opponent is getting a higher payoff than oneself, the utility

is given by own payoff minus the difference between the opponent’s payoff and own

payoff, weighted by 0 ≤ σ ≤ 1 . Other than that, IA(ρ, σ) is modeled as A(γ). If ρ and

σ are small, IA(ρ, σ) behaves very similarly to SPNE, with IA(0, 0) = SPNE.17

OPTIMISTIC, O

We also include a non-strategic type with naïvely optimistic beliefs (as in Costa-Gomes

et al., 2001). These optimists (O) make maximax decisions, maximizing their maximum

payoff over the other players’ strategies. Such an O-type player assumes that each

strategy yields the maximum payoff over all possible actions of the opponent and se-

lects the action corresponding to the maximal payoff from among those.18

17In our experiment, IA(ρ, σ) = SPNE for any σ if ρ ≤ 0.20; for assessing the separation between
SPNE and IA(ρ, σ), see Table 1.11.

18One can analogously define a pessimistic type, P, who makes maximin decisions. However, this be-
havioral type is almost indistinguishable from SPNE in CGs. By definition, type P never separates from
SPNE for Player 1 and shows only minor separation for Player 2, so we do not include it in our analysis.
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For instance, in the game shown in Figure 1.1 O calculates the maximum payoff

from each of her strategies (40 from Take the time, 160 from Take the second time, 640

from Take the third time, and 2560 from Always pass) and selects the maximum of these

maxima (leading to Always pass). In any CG, an O-Player 1 always passes, while an O-

Player 2 always chooses Take the third time. Notice that this type is often closely related

to A and PE, but their predictions differ enough in our games to be able to include

them all in the analysis (see Table 1.2 in Section 1.4 and Tables 1.3 and 1.4 in Section

1.5.1 for particular predictions in the CGs used in our design).

LEVEL-k THINKING MODEL, L1, L2, L3

This section focuses on level-k as a representation of the failure of common knowledge

of rationality. Fey et al. (1996) and McKelvey and Palfrey (1998) reject “gang of four" as

a relevant explanation of behavior in CGs and Section 1.5.3 shows that the conclusions

drawn from our benchmark models are robust to considering “gang of four."

Level-k thinking has proved successful in explaining non-equilibrium behavior in

many experiments (see Crawford et al. (2013) for a review). Level-k types (Lk) repre-

sent a rational strategic type with non-equilibrium beliefs about others’ behavior, in

that they best respond to beliefs but they have a simplified non-equilibrium model of

how other individuals behave. This rule is defined in a hierarchical way, such that

an Lk type believes that others behave as Lk-1 and best-responds to these beliefs. The

hierarchy is specified on the basis of a seed type L0. We set the L0 player as randomiz-

ing uniformly between the four available strategies in the reduced normal-form CG.19

That is, L0 selects each strategy with probability 0.25. We assume that this type only

exists in the minds of higher types. L1 responds optimally to the behavior of L0,20

19We also tested other L0 specifications. For example, following Kawagoe and Takizawa (2012), we
also consider a dynamic version of level-k, in which L0 uniformly randomizes in each decision node. The
simultaneous version of level-k shows a better fit. We have also considered L0 an altruist, who maxi-
mizes the sum of payoffs, Sr , as well as an optimist. We find little evidence in favor of these alternative
specifications in our data.

20L1 is sometimes called Naïve. See e.g. Costa-Gomes et al. (2001).
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L2 assumes that the opponents are L1 and responds optimally to their optimal behav-

ior, and finally L3 believes that others behave as L2 and best-responds to these beliefs.

Since the empirical evidence reports that such lower-level types are the most relevant

in explaining human behavior (Crawford et al., 2013), we do not include higher levels

in our analysis.

Given the relative complexity of level-k, we illustrate the behavior of the differ-

ent levels on the CG in Figure 1.1. As mentioned above, L0 chooses each strategy in

the normal-form with probability 0.25, independently of whether she is Player 1 or 2.

Considering this behavior of L0, L1 first computes the expected payoff from the four

available strategies and selects the strategy that maximizes the expected payoff. For

Player 1 in Figure 1.1, the four strategies yield expected payoffs of 40, 125, 345, and

745, respectively. Consequently, L1-Player 1 selects Always pass. L1-Player 2 and all the

other Lk with k > 1 are defined analogously. In general, Lk types exhibit no particular

pattern of behavior in CGs. Thus, they have to be specified on a game-by-game basis

(see Tables 1.3 and 1.4 in Section 1.5.1 for different predicted behavior by level-k’s in

the CGs used in our experiment).

QUANTAL RESPONSE EQUILIBRIUM, QRE

Lastly, we consider the logistic specification of McKelvey and Palfrey’s (1995) QRE. In

words, the QRE approach assumes that people, rather then being perfect profit maxi-

mizers, make mistakes and that more costly mistakes are less likely to occur. Moreover,

in equilibrium, people also assume that others make mistakes that depend on the costs

of each mistake. Each strategy is played with a positive probability, with QRE being

a fixed point on these noisy best-response distributions. In the logistic specification,

parameter λ reflects the degree of rationality such that if λ = 0 the behavior is purely

random while as λ→∞QRE converges to a Nash equilibrium. The evidence suggests

that small λ’s typically fit the data from individuals’ initial behavior best (McKelvey
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and Palfrey, 1995). To compute the QRE’s for our games, we used Gambit software

(McKelvey et al., 2014).21

It is worth stressing that QRE differs from ε-equilibrium, noisy SPNE, and noisy

Lk. ε-equilibrium is defined as a profile of strategies that approximately satisfies the

condition of Nash equilibrium (Radner, 1980). In CGs, the main difference between

ε-equilibrium and QRE is that the former expands the set of Nash equilibria as ε in-

creases while the latter moves equilibrium play away from Take the first time.22 As for

noisy SPNE, such players make mistakes while best-responding to error-free equilib-

rium behavior of others, whereas QRE individuals make mistakes and assume that

others also make mistakes. Hence, both QRE and SPNE with noise embody the idea

of bounded rationality (as opposed to level-k that reflects the idea of non-equilibrium

beliefs and therefore the absence of common knowledge of rationality). Moreover, the

mistakes in ε-equilibrium and noisy SPNE do not necessarily possess any economic

structure because the errors are specified at the estimation stage, rather than being

part of the model as in QRE. More importantly, even though the three types predict

similar behavior in many cases, they are far enough apart in our CGs. See Table 1.2

in Section 1.4 for an evaluation of the separation between these behavioral types’, and

Tables 1.3 and 1.4 in Section 1.5.1 for predicted behavior in the different CGs used in

our experiment.

21Following McKelvey and Palfrey (1998) and Kawagoe and Takizawa (2012), we have also considered
AQRE, the QRE applied to extensive form games, but, as it occurs for the dynamic version of level-k,
simultaneous QRE shows a better fit.

22We have included ε-equilibrium as an additional behavioral type in our mixture-of-types model and
we find little evidence for its relevance. We estimate very low frequency for this type and the estimated ε
is so high that it includes almost any strategy, resembling a purely random type in almost all our CGs.
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1.4 EXPERIMENTAL DESIGN

1.4.1 EXPERIMENTAL PROCEDURES

A total of 151 participants were recruited using the ORSEE recruiting system (Greiner,

2015) in four sessions in May 2015.23 We ensured that no subject had participated in

any similar experiment in the past. The sessions were conducted in the Laboratory of

Experimental Analysis (Bilbao Labean; http://www.bilbaolabean.com) at the Univer-

sity of the Basque Country using z-Tree software (Fischbacher, 2007).

Subjects were given instructions explaining three examples of CGs (different from

those used in the main experiment), how they could make their choices, the matching

procedure, and the payment strategy. The instructions were read aloud. Subjects were

allowed to ask any questions they might have during the whole instruction process.

Afterwards, they had to answer several control questions on the computer screen to

be able to proceed. An English translation of the instructions can be found in the

Appendix B.

At the beginning of the experiment, the subjects were randomly assigned to a role,

which they kept during the whole experiment. There were two possible roles: Player

1 and Player 2. To avoid any possible associations from being the first vs. second or

number 1 vs. 2, subjects playing as Player 1 were labeled as red and those playing as

Player 2 were called blue. Each subject played 16 different CGs one by one with no

feedback between games. The games were played in a random order, which was the

same for all subjects (see footnote 24). Subjects made their choices game by game. They

were never allowed to leave a game without making a decision and get back to it later,

and they never knew which games they would face in later stages. There was no time

constraint and the participants were not obliged to wait for others while making their

23Given the matching mechanism described below, we did not need the number of participants to be
even.
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choices in the 16 games. Our design minimizes reputation concerns and learning as

far as possible. Hence, the choice in each game reflects the initial play and each subject

can be treated as an independent observation.

The CGs were displayed in extensive-form on the screens, as shown in the instruc-

tions in the Appendix B. The behavior was elicited using the strategy-method. More

precisely, the branches in the game were generally displayed in black but the branches

corresponding to each players’ actual choices were displayed in red for Players 1 and

in blue for Players 2. Depending on the player, they had to click on a square white box

that stated either “Stop here” or “Never stop”. To ensure that subjects thought enough

about their choices, once they had made their decision of whether to stop at a node or

never stop by clicking on the corresponding box, they did not leave the screen immedi-

ately. Rather, the chosen option changed color to red or blue depending on the player

and they were allowed to change their choice as many times as they wished, simply

by clicking on a different box. In such a case, the previously chosen option would turn

back to white and the newly chosen action would change color to either red or blue. To

proceed to another game in the sequence, the subjects had to confirm their decision by

clicking on an “OK” button in the bottom right corner of the screen. They were only

allowed to proceed once they had confirmed. In terms of strategies, for each game and

each player type, participants faced four different options to click on: Take the first time,

Take the second time, Take the third time, and Always pass, without knowing the strategy

chosen by the other player. The appendix provides some examples of how the different

stages were displayed to the subjects in the experiment.

When all subjects had submitted their choices in the 16 CGs, three games were

randomly selected for payment for each subject. Hence, different participants were

paid for different games. The procedure, which was carefully explained to the subjects

in the instructions, was as follows. The computer randomly selected three games for

each subject and three different random opponents from the whole session, one for



24 CHAPTER 1. NON-EQUILIBRIUM PLAY IN CENTIPEDE GAMES

each of these three games. This means that the same participant may have served as

an opponent for more than one other participant. Nevertheless, being chosen as an

opponent does not have any payoff consequence. To determine the payoff of a subject

from each selected game, her behavior in each game was matched to the behavior of the

randomly chosen opponent for this game. At the end of the experiment, the subjects

were privately paid the sum of the payoffs from the three games selected, plus a 3 Euro

show-up fee. The average payment was 17.50 Euro, with a standard deviation of 16.93.

At the end of the experiment, the participants were invited to fill in a question-

naire eliciting information in a non-incentivized way concerning their demographic

variables, cognitive ability, social and risk preferences.

1.4.2 EXPERIMENTAL GAMES AND PREDICTIONS OF BEHAVIORAL TYPES

Figure 1.5 displays the 16 different games, CG 1 - CG 16, that each subjects faced in our

experiment.24 Figures 1.7 and 1.8 in the Appendix A provide an alternative graphical

visualization of these games.

For predictions of behavioral types, see Tables 1.3 and 1.4, where each behavioral

model’s prescribed choice is shown for each game and player role.25 For instance, in

any of the 16 CGs, both players should stop immediately if they play according to

SPNE. Hence, SPNE is written for both player roles below the choice of Take the first

time. In a few instances, one model is shown to be indifferent between two or more

strategies. In such case, one behavioral model appears in columns corresponding to

different strategies. For example, in any of the 16 CGs, the last two strategies for Player

2, Take the third time and Always pass, include the PE label. That means that a PE-

Player 2 is indifferent between the two choices Take the third time and Always pass.26 To

24For the sake of illustration, we display them in a particular order. During the experiment, subjects
played the 16 games in the following randomly generated order: CG 6, CG 13, CG 16, CG 1, CG 8, CG 12,
CG 3, CG 14, CG 7, CG 10, CG 2, CG 4, CG 11, CG 9, CG 15, CG 5.

25The same information is displayed differently in Figures 1.9 and 1.10 in the Appendix A.
26Since some types may lead to such indifferences more often than others, one may ask whether these

types may not be artificially favored. Our below empirical approach controls carefully for such a possi-
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make it easier to read the predictions of different behavioral types, we show the QRE’s

predictions in a separate row. By definition, QRE predicts playing each strategy with

a positive probability and the probabilities depend on the parameter λ. For the sake

of illustration, we show the predicted frequencies of QRE for one particular value of

the noise parameter λ = 0.38. Similarly, we show the predictions for A(γ = 0.22) and

IA(ρ = 0.08, σ = 0.55). The values of the parameters were chosen once the estimations

had been made (see below). Most information regarding these parametric types below

will also be reported for their estimated values.

We now explain our games in more detail and comment on the prediction as re-

gards behavioral models. First, since many studies apply the exponentially increasing-

sum CG from McKelvey and Palfrey (1992) shown in Figure 1.1 and the constant-sum

from Fey et al. (1996) shown in Figure 1.2, we also include them in our analysis. The

former is labeled as CG 1 and the latter as CG 9 in Figure 1.5. Including these two

games enables us to compare the behavior of our subjects with other studies that have

analyzed these games using different experimental procedures. Appendix A shows

that the behavior in these two games in our experiment replicates the patterns of be-

havior in other studies. When we look at the behavioral predictions of the different

models in CG 1 and CG 9 in Tables 1.3 and 1.4, it is important to observe that using

only these two games is not helpful for separating many candidate explanations. The

predictions of most relevant models are highly concentrated in the middle or late nodes

in CG 1, while the same models’ predict stopping at in the initial nodes in CG 9. This

makes it hard to discriminate between many models solely on the basis of behavior in

these two games.

Second, as clearly shown by Figures 1.7 and 1.8 in the Appendix A, the payoff from

ending the game at the very first decision node is characterized by an unequal split

(40,10) in half of the games (CGs 1, 3, 5, 7, 11, 13, 15, 16), while the initial-node payoffs

bility.
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CG 1 CG 2

CG 3 CG 4

CG 5 CG 6

CG 7 CG 8

CG 9 CG 10

CG 11 CG 12

CG 13 CG 14

CG 15 CG 16

FIGURE 1.5: THE 16 CGS USED IN THE EXPERIMENT.
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are the same for both players (16,16) in the other half (CGs 2, 4, 6, 8, 9, 10, 12, 14). The

standard constant-sum CG of Fey et al. (1996) is the only CG in the literature that starts

with an equal split of payoffs. As discussed above, this may make IA-players look like

SPNE and one cannot distinguish between the two types on the basis of a single game.

We therefore vary the payoff distribution across player roles in the initial node.

Third and more importantly, the games can be classified based on the evolution of

the sum of payoffs, Sr, as the game progresses. This is again cleanly visible in Figures

1.7 and 1.8 in the Appendix A. There are four types: 8 increasing-sum games (CG 1−8),

2 constant-sum (CG 9 − 10), 2 decreasing-sum (CG 11 − 12) and 4 variable-sum (CG

13−16). The constant- and decreasing-sum CGs provide little room for discrimination,

since most behavioral types predict stopping at early nodes in these games. Therefore,

they only represent 25% of the games. The increasing- and variable-sum games pro-

vide the most room for separation of the alternatives, and therefore account for 75% of

the games. For example, the (not necessarily exponentially) increasing-sum CGs are

very successful at separating between Lk and QRE. In particular, CG 3 separates L1

and QRE for both player roles (see also Figures 1.9 and 1.10 in the Appendix A). By

contrast, exponentially increasing-sum CGs are not good at separating A from any Lk.

CG 5− 8 offer important differences in the payoff path for each player, separating rad-

ically different levels of strategic reasoning. Interestingly, the variable-sum CGs allow

for an arbitrary placement of the predicted stopping probabilities for many behavioral

models and we design these games to exploit this feature. For instance, Sr decreases

initially and increases afterwards in CG 13 and 14, with the very final payoff being

greater than the initial one (S1 < S7). These two games are good at separating well the

predictions of most of our alternatives (see Tables 1.3 and 1.4 and Figures 1.9 and 1.10

in the Appendix A). Additionally, CG 13 and 14 are the only games, in which only PE

predicts stopping at the initial and final nodes. CG 16 is the only situation, where A

takes earlier than our Lk types.
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Finally, our games vary in the incentives to move forward and those to stop the

game. To give an example, CG 10 has a constant-sum of payoffs in all nodes (as well

as CG 9), but is designed such that Lk and QRE predict stopping as late as possible.

In some games, the incentives to stop or not are different for the two player roles.

For instance, CG 5 and 6 provide incentives for Player 1 to stop the game early and

incentives for Player 2 to proceed. By contrast, CG 7 and 8 have the opposite incentive

structure for the two roles. Figures 1.7 and 1.8 in the Appendix A also helps visualizing

the differences in incentives by different player roles.

1.4.3 PREDICTION PRECISION OF DIFFERENT BEHAVIORAL MODELS AND

THEIR SEPARATION

We start by assessing how precise the behavioral models are in their predictions. In a

particular game and for a particular player role, if a behavioral model assigns proba-

bility one to a single strategy we say that the model is the most precise as it can only

accommodate one out of four strategies, while if it assigns a positive probability to any

strategy we say that the model is the least precise as it can accommodate any behavior.

Table 1.1 summarizes the average imprecision across our 16 CGs for each of the

behavioral models, separated according to player roles. Each number is the average

percentage of strategies predicted to be chosen with a positive probability by the cor-

responding model. For instance, 0.25 means that SPNE makes a single prediction (out

of four) in all games for both players, whereas the 1’s corresponding to QRE reflect the

idea that all strategies are predicted to be played with a positive probability by this

model.

The table reveals that SPNE, O, and L1 make the most precise predictions on aver-

age. Naturally, QRE exhibits the lowest precision, followed by PE and IA. Although

higher imprecision gives a higher probability of success a priori, overall compliance

rates in Section 1.5.2 and our estimates in Section 1.5.3 show that this is not necessarily
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the case. Moreover, the proposed likelihood specification in our estimation method

penalizes such imprecisions; see Section 1.5.3.

TABLE 1.1: AVERAGE IMPRECISION IN PREDICTION OF DIFFERENT MODELS ACROSS THE 16 CGS

Behavioral Type Player 1 Player 2
SPNE 0.25 0.25

A(γ=.22) 0.30 0.31
IA(ρ=.08,σ=.55) 0.25 0.34

A 0.41 0.48
IA 0.31 0.80
PE 0.53 0.70
O 0.25 0.25

L1 0.25 0.25
L2 0.25 0.39
L3 0.25 0.55

QRE(λ=.38) 1.00 1.00
Notes: THE TABLE REPORTS THE AVERAGE IMPRECISION OF EACH
BEHAVIORAL TYPE OVER THE 16 CGS FOR PLAYERS 1 AND 2,
SEPARATELY. THE MAXIMUM PRECISION IS 0.25 WHEN A MODEL
PREDICTS ONE UNIQUE STRATEGY IN EACH CG; THE MINIMUM
PRECISION IS 1 WHEN A MODEL ASSIGNS POSITIVE PROBABILITY
TO EACH STRATEGY IN ALL THE CGS.

Since the main criterion applied in the selection of the 16 games was to separate the

predictions of the candidate explanations as far as possible, we now discuss and assess

how suitable the selected CGs are for discriminating between the alternative theories.

To this aim, Table 1.2 shows the fractions of decisions (out of a total of 32 for both

player roles) in which two different behavioral types predict different strategies.27 The

first row and column list the different behavioral types. A particular cell ij reports

the separation value between the behavioral type in row i and the behavioral type in

column j. The minimum value in a cell is 0 whenever two behavioral types make the

same predictions in all the 32 decisions, while the maximum value would be 1 if two

types differ in their predictions in all the 16 games for both player roles.28

27Table 1.12 in the Appendix A provides an alternative view of separability, which we refer to as sepa-
ration in payoffs. It leads to the same conclusion as Table 1.2, so we relegate the table and its discussion
into the Appendix A.

28The separation is computed as follows. When two types make a single prediction in a CG, it is
either different or the same, and yields a separation value of 1 or 0, respectively. When at least one type
predicts a distribution over more than one action in a CG, define P = (P1, P2, P3, P4) for one type and
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Note that QRE presents some difficulties.29 To simplify matters, the separation

values are thus computed assuming that a QRE-type player has a probability one of

playing the action with the largest predicted probability given λ = 0.38. Obviously,

this simplification is not made in the estimations below; the estimations consider the

exact probabilities of each strategy (as reported in Tables 1.3 and 1.4).

TABLE 1.2: SEPARATION RATES IN THE DECISIONS BETWEEN DIFFERENT MODELS

SPNE A(γ) IA(ρ, σ) A IA PE O L1 L2 L3
SPNE 0.00

A(γ=.22) 0.14 0.00
IA(ρ=.08,σ=.55) 0.05 0.18 0.00

A 0.88 0.84 0.86 0.00
IA 0.58 0.62 0.53 0.72 0.00
PE 0.87 0.81 0.84 0.28 0.63 0.00
O 1.00 0.95 0.98 0.61 0.78 0.47 0.00

L1 0.72 0.68 0.70 0.81 0.78 0.73 0.75 0.00
L2 0.66 0.61 0.62 0.85 0.73 0.80 0.85 0.60 0.00
L3 0.55 0.51 0.53 0.78 0.70 0.77 0.95 0.86 0.54 0.00

QRE(λ=.38) 0.33 0.29 0.33 0.88 0.72 0.85 0.97 0.66 0.54 0.52
Notes: THE TABLE REPORTS AVERAGE SEPARATION RATES OVER THE 16 CGS AND OVER THE TWO PLAYER ROLES BETWEEN THE BEHAVIORAL MODELS LISTED IN THE
CORRESPONDING ROW AND COLUMN. THE MINIMUM SEPARATION IS 0 WHEN TWO MODELS PREDICT THE SAME BEHAVIOR FOR BOTH PLAYER ROLES IN EACH CG; THE
MAXIMUM SEPARATION IS 1 WHEN TWO BEHAVIORAL MODELS ALWAYS PREDICT DIFFERENT BEHAVIOR.

It can be seen that the majority of the candidate behavioral types considered are

separated in at least 50% of decisions in our design and the figures are even larger

in most cases. For example, note that the separation between Lk and QRE is particu-

larly interesting. The literature traditionally finds difficulties in separating these two

models, as they prescribe very similar behavior in many games. This is not our case

P ′ analogously for the second. Let n = |j : Pj > 0 ∨ P ′j > 0| be the number of strategies predicted to be
played with positive probability by at least one of the two types and s = |j : Pj > 0∧P ′j > 0| the number
of strategies predicted with positive probability by both. Then, the separation value between both types
in the CG is (n−s)/n. For example, if type i predicts choosing the actions Take the first time, Take the second
time, Take the third time, and Always pass with probabilities (1/3,0,1/3,1/3) and type j with probabilities
(0,1,0,0), the two types are fully separated, leading to the value of 1. If type j predicts (1/2,1/2,0,0)
instead, the value is 3/4 because i’s and j’s predictions differ in only three out of four actions predicted
by at least one of the model. Finally, if j predicts (0,0,1/2,1/2), the separation is 1/3.

29SinceQRE assigns positive probability to all strategies, the usual calculation of separability forQRE
would just reflect the relative imprecision of the predictions of the model that you are comparing QRE
to.
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though. Hence, our design enable us to discriminate between these two theories. How-

ever, there are few exceptions on which we comment in what follows. PE is separated

from O in slightly less than 50% and from A in 28%. The table suggests that there

might be separation problems between SPNE and QRE. Nevertheless, note that sepa-

ration of QRE is computed differently from other models and SPNE always predicts

one unique strategy that is often the strategy predicted with the highest probability by

QRE. As a result, the real separation between these two models is way higher than

the 33% reported in Table 1.2.30

The real separability issues arise with A(γ) and IA(ρ, σ) in relation to SPNE for

the estimated values of their parameters. Observe that the behavioral predictions of

SPNE and these two social-preference models are the same in most games and player

roles. As shown in Tables 1.3 and 1.4, SPNE and IA(ρ = 0.08, σ = 0.55) are only

separated in two decisions (out of 32) whereas SPNE and A(γ = 0.22) only in six

of them (out of 32). Moreover, both A(γ = 0.22) and IA(ρ = 0.08, σ = 0.55) predict

multiple strategies in all these cases (but one), one of which often is the same as the

one predicted by SPNE (lowering further the separability). Tables 1.10 and 1.11 in

the Appendix A evaluate the overall separability of these social-preference types with

SPNE, for different values of their parameters γ, ρ, and σ. The tables reveal that

both models can be very well separated from SPNE if their parameters are high and

relevant enough. In other words, if these preferences types cared enough about the

payoff of others (positively for altruism, or positively and negatively depending on

the relative position for inequity aversion), then social preferences types are very well

separated from SPNE. That is, such a problem only arises for the estimated values. In

other words, the estimated altruistic and inequity-averse types are so similar to selfish

preferences that they are behaviorally almost indistinguishable from SPNE. This will

be important for the interpretation of our estimation results.

30Table 1.9 in the Appendix A reports the separation values between QRE and all the other models for
different values of λ.
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1.5 RESULTS

We first present an overview of the results of our experiment and the extent of overall

compliance with the different behavioral types. Second, we estimate the distribution

of types from the experimental data.

1.5.1 OVERVIEW OF RESULTS

Tables 1.3 and 1.4 provide an overview of the behavior observed in our experiment,

while Figures 1.12 and 1.13 in Appendix A present the experimental choices of sub-

jects using histograms. In Tables 1.3 and 1.4, each row–corresponding to one of the

16 CGs–is divided into two parts, one for each player role. The top number in each

cell reports the percentage of subjects in a particular role who chose the correspond-

ing column strategy. In each cell, we additionally list all the behavioral models that

predict choosing the corresponding strategy for the corresponding player. Again, QRE

predicts each strategy to be played with a positive probability and we report the QRE

probabilities for λ = 0.38. In the tables if, say, 0.01QRE appears in a cell it means that

the strategy of the particular player role should be chosen with probability 1% in the

QRE if λ = 0.38. Similarly, in case of A(γ) and IA(ρ,σ), the table shows values for

γ = 0.22, ρ = 0.08, and σ = 0.55.

In the increasing CGs (CG 1 − 8) the modal choices are concentrated between Take

the second time or Take the third time for both player roles. However, there are a few

salient exceptions. In CG 5 and 6, the most frequent choices of Players 1 also include

Take the first time and in CG 7 and 8, Players 2 also commonly play Take the first time for

similar reasons. Observe that, in these particular games and player roles, the payoffs

exhibit lower increasing rates than the rest. These variations prove to be crucial in

separating different behavioral types.

In the constant-sum CGs, the modal behavior of Players 1 is Take the second time,
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TABLE 1.3: OBSERVED AND PREDICTED BEHAVIOR FOR ALL MODELS (γ = .22, ρ = .08, σ = .55 AND
λ = 0.38): CG 1− 8.

Games Player Take the first time Take the second time Take the third time Always pass
CG 1 1 3.95% 32.89% 40.79% 22.37%

(increasing) SPNE, IA L2, L3 A, L1, PE, O
A(γ), IA(ρ,σ), 0.01QRE 0.86QRE 0.12QRE 0.01QRE

2 18.67% 26.67% 50.67% 4.00%
SPNE, IA L3, P, IA L1, L2, PE, O, IA A, PE, IA

A(γ), IA(ρ,σ), 0.76QRE 0.21QRE 0.02QRE 0.00QRE
CG 2 1 2.63% 34.21% 31.58% 32.58%

(increasing) SPNE, IA L2, L3 A, PE, L1, O
IA(ρ,σ), 0.00QRE A(γ), 0.69QRE 0.29QRE A(γ), 0.02QRE

2 8.00% 33.33% 52.00% 6.67%
SPNE, IA L3, IA L1, L2, PE, O, IA A, PE, IA

A(γ), IA(ρ,σ), 0.00QRE 0.89QRE A(γ), 0.11QRE 0.01QRE
CG 3 1 15.79% 57.89% 18.42% 7.89%

(increasing) SPNE, IA L2, L3 L1 A, PE, O
A(γ), IA(ρ,σ), 0.78QRE 0.18QRE 0.06QRE 0.01QRE

2 30.67% 49.33% 16.00% 4.00%
SPNE, L3, IA L1, L2, IA PE, O, IA A, PE, IA

A(γ), IA(ρ,σ), 0.84QRE 0.11QRE 0.03QRE 0.02QRE
CG 4 1 9.21% 64.47% 21.05% 5.26%

(increasing) SPNE, IA L2, L3 L1 A, PE, O
IA(ρ,σ), 0.39QRE A(γ), 0.45QRE 0.09QRE 0.07QRE

2 37.33% 48.00% 13.33% 1.33%
SPNE, L3, IA L1, L2, IA PE, O, IA A, PE, IA

A(γ), IA(ρ,σ), 0.90QRE 0.09QRE 0.01QRE 0.00QRE
CG 5 1 65.79% 14.47% 13.16% 6.58%

(increasing) SPNE, L1, L3 IA L2 A, PE, O
A(γ), IA(ρ,σ), 0.96QRE 0.03QRE 0.00QRE 0.00QRE

2 20.00% 20.00% 36.00% 24.00%
SPNE, L2 L2, L3, IA L1, L2, PE, O, IA A, L2, PE, IA

A(γ), IA(ρ,σ), 0.27QRE IA(ρ,σ), 0.24QRE IA(ρ,σ), 0.24QRE IA(ρ,σ), 0.24QRE
CG 6 1 51.32% 15.79% 19.74% 13.16%

(increasing) SPNE, L1, L3, IA L2 A, PE, O
A(γ), IA(ρ,σ), 0.15QRE 0.31QRE 0.41QRE 0.13QRE

2 10.67% 34.67% 40.00% 14.67%
SPNE, L2, IA L2, L3, IA L1, L2, PE, O, IA A, L2, PE, IA

A(γ), IA(ρ,σ), 0.00QRE IA(ρ,σ), 0.14QRE IA(ρ,σ), 0.53QRE IA(ρ,σ), 0.32QRE
CG 7 1 15.79% 21.05% 25.00% 38.16%

(increasing) SPNE, L2 IA L3, IA A, L1, PE, O, IA
A(γ), IA(ρ,σ), 0.00QRE 0.25QRE A(γ), 0.38QRE A(γ), 0.37QRE

2 57.33% 24.00% 17.33% 1.33%
SPNE, L1, L3, IA L3 L2, L3, PE, O A, L3, PE

A(γ), IA(ρ,σ), 0.60QRE 0.32QRE A(γ), 0.07QRE A(γ), 0.01QRE
CG 8 1 53.95% 21.05% 14.47% 10.53%

(increasing) SPNE, L2, IA L3 A, L1, PE, O
A(γ), IA(ρ,σ), 0.77QRE 0.12QRE 0.05QRE 0.05QRE

2 52.00% 25.33% 22.67% 0.00%
SPNE, L1, L3, IA L3, IA L2, L3, PE, O, IA A, L3, PE, IA

A(γ), IA(ρ,σ), 0.77QRE 0.13QRE 0.08QRE 0.02QRE

Notes: THE TABLE REPORTS, FOR EACH STRATEGY (COLUMNS 3-6) IN EACH CG (COLUMN 1) AND EACH PLAYER ROLE (COLUMN 2), (I) THE PROPORTION OF SUBJECTS
CHOOSING THE STRATEGY, AND (II) THE BEHAVIORAL MODEL THAT PREDICTS THE STRATEGY TO BE CHOSEN WITH POSITIVE PROBABILITY. FOR QRE , WE LIST THE
PROBABILITY WITH WHICH IT PREDICTS EACH STRATEGY.
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TABLE 1.4: OBSERVED AND PREDICTED BEHAVIOR FOR ALL MODELS (γ = .22, ρ = .08, σ = .55 AND
λ = 0.38): CG 9− 16.

Games Player Take the first time Take the second time Take the third time Always pass
CG 9 1 22.37% 59.21% 11.84% 6.58%

(constant) SPNE, A, L2, L3, PE, IA A, L1, PE A, PE A, PE, O
A(γ), IA(ρ,σ), 0.43QRE 0.38QRE 0.13QRE 0.06QRE

2 64.00% 26.67% 9.33% 0.00%
SPNE, A, L1, L2, L3, PE, IA A, L3, PE, IA A, L3, PE, O, IA A, L3, PE, IA

A(γ), IA(ρ,σ), 0.67QRE 0.20QRE 0.08QRE 0.04QRE
CG 10 1 11.84% 67.11% 15.79% 5.26%

(constant) SPNE, A, PE, IA A, L2, L3, PE A, L1, PE A, PE, O
A(γ), 0.33QRE 0.46QRE 0.16QRE 0.05QRE

2 29.33% 57.33% 12.00% 1.33%
SPNE, A, L3, PE, IA A, L1, L2, PE, IA A, PE, O, IA A, PE, IA

A(γ), IA(ρ,σ), 0.37QRE 0.42QRE 0.13QRE 0.08QRE
CG 11 1 64.47% 10.53% 15.79% 9.21%

(decreasing) SPNE, A, L2, L3, PE L1, PE PE PE, O, IA
A(γ), IA(ρ,σ), 0.43QRE 0.39QRE 0.05QRE 0.12QRE

2 70.67% 16.00% 10.67% 2.67%
SPNE, A, L1, L2, L3, PE L3, PE L3, PE, O, IA L3, PE
A(γ), IA(ρ,σ), 0.42QRE 0.24QRE 0.22QRE 0.13QRE

CG 12 1 55.26% 32.89% 7.89% 3.95%
(decreasing) SPNE, A, L2, L3, PE, IA L1, PE PE PE, O

A(γ), IA(ρ,σ), 0.53QRE 0.29QRE 0.12QRE 0.06QRE
2 66.67% 24.00% 9.33% 0.00%

SPNE, A, L1, L2, L3, PE, IA L3, PE, IA L3, PE, O, IA L3, PE, IA
A(γ), IA(ρ,σ), 0.57QRE 0.23QRE 0.12QRE 0.08QRE

CG 13 1 50.00% 17.11% 22.37% 10.53%
(variable) SPNE, PE L2, L3 L1, IA A, PE, O, IA

A(γ), IA(ρ,σ), 0.63QRE 0.24QRE 0.10QRE 0.03QRE
2 33.33% 44.00% 22.67% 0.00%

SPNE, L3, PE L1, L2, IA PE, O A, PE
A(γ), IA(ρ,σ), 0.44QRE A(γ), 0.32QRE 0.15QRE 0.09QRE

CG 14 1 31.58% 39.47% 15.79% 13.16%
(variable) SPNE, PE, IA L2, L3 L1 A, PE, IA

A(γ), IA(ρ,σ), 0.50QRE 0.30QRE 0.14QRE 0.07QRE
2 36.00% 42.67% 18.67% 2.67%

SPNE, L3, PE, IA L1, L2, IA PE, O, IA A, PE, IA
A(γ), IA(ρ,σ), 0.48QRE 0.31QRE 0.14QRE 0.08QRE

CG 15 1 72.37% 10.53% 14.47% 2.63%
(variable) SPNE, L1, L2, L3 PE, IA A, PE PE, O

A(γ), IA(ρ,σ), 0.94QRE 0.05QRE 0.01QRE 0.00QRE
2 68.00% 28.00% 2.67% 1.33%

SPNE, L1, L2, L3 A, L2, L3, PE, IA L2, L3, PE, O, IA L2, L3, PE, IA
A(γ), IA(ρ,σ), 0.36QRE 0.23QRE 0.20QRE 0.20QRE

CG 16 1 39.47% 40.79% 10.53% 9.21%
(variable) SPNE, A, L3, PE L1, L2, PE IA PE, O, IA

A(γ), IA(ρ,σ), 0.38QRE 0.46QRE 0.11QRE 0.05QRE
2 46.67% 29.33% 24.00% 0.00%

SPNE, A, L2, L3, PE L1,L3, PE, IA PE, O, IA PE
A(γ), IA(ρ,σ), 0.67QRE 0.22QRE 0.10QRE 0.07QRE

Notes: THE TABLE REPORTS, FOR EACH STRATEGY (COLUMNS 3-6) IN EACH CG (COLUMN 1) AND EACH PLAYER ROLE (COLUMN 2), (I) THE PROPORTION OF
SUBJECTS CHOOSING THE STRATEGY, AND (II) THE BEHAVIORAL MODEL THAT PREDICTS THE STRATEGY TO BE CHOSEN WITH POSITIVE PROBABILITY. FOR QRE ,
WE LIST THE PROBABILITY WITH WHICH IT PREDICTS EACH STRATEGY.
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while the modal strategies of Players 2 consist of Take the first time in CG 9 and Take the

second time in CG 10. In the decreasing-sum CG 11 and 12, both roles mostly select Take

the first time, although both roles also choose Take the second time with non-negligible

frequencies in CG 12.

We cannot describe the overall behavior in the variable-sum games well as they

differ in important aspects, but the most common choices in these games are Take the

first time and Take the second time for both roles.

Tables 1.3 and 1.4 also illustrate how misleading it can be to identify behavioral

types on the basis of a single game. For instance, note that 3.95% of Player 1 subjects

take at the first decision node in CG 1. This provides little support for SPNE or IA,

the two theories that predict stopping at the first node. By contrast, the behavior in

CG 11 seems to adhere to SPNE for both player roles. However, a closer look at the

table reveals that this behavior in CG 11 is also consistent with a large number of other

behavioral theories. Therefore, our experimental design uses multiple CGs designed

to separate the predicted behavior of different behavioral types as much as possible.

1.5.2 OVERALL COMPLIANCE WITH BEHAVIORAL TYPES

To discriminate across the candidate explanations, we first ask to what extent behavior

complies with each behavioral type in absolute terms. Note that we have 151 subjects

making choices in 16 different CGs. This results in a total of 2416 decisions (151× 16).

Table 1.5 lists the compliance rates for each model, on aggregate and disaggregated

across the types of games. For instance, 0.38 for SPNE reflects that 38% of the choices

(out of the 2416) correspond to actions predicted by SPNE with positive probability

and can thus be rationalized by this model. Since all strategies are played with positive

probabilities in QRE, any behavior is in-line with this prediction. To allow comparison

with other types, Table 1.5 only count the number of times that subjects selected strate-

gies with the largest predicted probability by QRE conditional on λ.
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TABLE 1.5: COMPLIANCE RATES OF ALL MODELS ACROSS DIFFERENT TYPES OF CENTIPEDE GAMES

Behavioral Type All games Increasing Constant Decreasing Variable
SPNE 0.38 0.28 0.32 0.64 0.47
A(0.22) 0.47 0.44 0.32 0.64 0.53
IA(0.08,0.55) 0.43 0.39 0.32 0.64 0.47
A 0.37 0.12 1.00 0.80 0.34
IA 0.53 0.61 0.58 0.44 0.40
PE 0.53 0.27 1.00 1.00 0.58
O 0.17 0.24 0.08 0.08 0.13
L1 0.42 0.40 0.49 0.45 0.42
L2 0.50 0.46 0.53 0.64 0.50
L3 0.52 0.46 0.55 0.80 0.48
QRE(0.38) 0.45 0.38 0.53 0.64 0.47

Notes: THE TABLE REPORTS THE FRACTION OF CHOICES IN THE EXPERIMENT COMPLYING WITH EACH BEHAVIORAL MODEL FOR ALL THE CGS (COLUMN
2), AND SEPARATELY FOR THE INCREASING-SUM (COLUMN 3), CONSTANT-SUM (COLUMN 4), DECREASING-SUM (COLUMN 5), AND VARIABLE-SUM CGS
(COLUMN 6).

What do we learn from the reported numbers? First, no rule explains the majority

of decisions; this points to substantial behavioral heterogeneity. Second, the compli-

ance rates illustrate that many rules could explain large proportion of choices in the

experiment. However, a closer look at the compliance rates across different types of

CGs in Table 1.5 reveals that some models exhibit considerable variation in compli-

ance across the game types. For example, SPNE explains up to 64% of decisions in

decreasing-sum games but only 28% in increasing-sum CGs. By contrast, L1’s compli-

ance varies little across the different types of CGs. This shows that some behavioral

types may “appear” highly relevant if one focuses only on one game or even on one

type of game. Hence, careful selection of games is crucial if behavior in CGs is to be

explained successfully.

The information in Table 1.5 should be interpreted with care. First, a decision may

be compatible with several behavioral types (i.e. the proportions do not add up to

one). That is, the candidate behavioral types do not compete against each other when

compliance rates are calculated. Second and more importantly, these compliance mea-

sures impose no restriction on the consistency of each behavioral explanations within
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subjects. In this table, an individual could comply with one behavioral model in a cer-

tain number of CGs and with another in the rest. Lastly, rules that frequently predict

more than one option (e.g. IA or PE; see Table 1.1) obtain higher compliance scores.

These issues are absent in the mixture-of-types econometric approach introduced in

the next section.

1.5.3 ESTIMATION FRAMEWORK

Our design enables us to use individual behavior across the 16 CGs to identify the be-

havioral type behind each subject’s revealed choices. Table 1.13 (in the Appendix A)

quantifies how many experimental subjects behave consistently with each behavioral

type, for different minimum numbers of CGs in which they are required to comply. We

observe that the choices of some subjects across the 16 CGs fully reveal their type. In

particular, the decisions of 69 out of our 151 subjects (46%) comply with some behav-

ioral type considered in at least 10 (out of 16) games. Disregarding A(γ) and IA(ρ, σ),

67 of these subjects could potentially be classified without relying on mixture-model

techniques: 25 of them best comply with SPNE, 1 with A, 3 with O, 22 with L1, 11

with L2, and 5 with L3. However, two of these 69 subjects best comply with both L2

and L3 simultaneously. Moreover, for reasons explained in Section 1.4.3, almost all the

subjects best complying with SPNE are equally compatible with A(γ) and IA(ρ, σ).31

Last, the remaining 82 out of our 151 subjects are not classifiable that easily and the

actual estimation method is required.

Unlike other approaches, finite mixture-of-types models estimate the distribution

of behavioral types in the population, requiring consistency of behavior within subjects

and making the candidate models compete with each other.32 Below, we first describe

31These examples illustrate why the numbers reported in Table 1.13 are generally higher than those
mentioned here. Some subjects could equally comply with more than one model (not necessarily in the
same games) and less separated behavioral models tend to include the same subjects, while here we only
refer to the model that best explains the behavior of each individual.

32Our approach closely follows that of Stahl and Wilson (1994, 1995), Harless and Camerer (1994), El-
Gamal and Grether (1995), Costa-Gomes et al. (2001), Camerer et al. (2004), Costa-Gomes and Crawford
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in detail the maximum likelihood function and then present the estimation results.

Readers familiar with mixture-of-types models may prefer to skip the next section and

go directly to the estimation results.

MAXIMUM LIKELIHOOD UNDER UNIFORM AND SPIKE-LOGIT ERROR

SPECIFICATIONS

Let i index the subjects in the experiment, i = 1, ..., 151, k the behavioral types consid-

ered, k = 1, 2, ...K, and g the CG from a setG = {1, 2, ..., 16}. In each g, each subject has

four available strategies j = 1, 2, 3, 4. We assume that individuals comply with their

types but make errors. We will present two sets of results, one in which we consider

the extreme non-parameterized social-preference types A and IA and one in which

we instead use the more flexible parameterized models A(γ) and IA(ρ, σ). In the lat-

ter case, the additional parameters are estimated jointly with the other parameters of

our mixture models. For each of these alternatives, we estimate two model variations,

differing in our assumptions regarding the underlying error structure.

Uniform errors. Under our benchmark specification, we assume that a subject em-

ploying rule k makes type-k’s decision with probability (1 − εk), but with probability

εk ∈ [0, 1] she makes a mistake. In such a case, she plays each strategy uniformly at

random from the four available strategies. As in most mixture-of-types model appli-

cations, we assume that errors are identically and independently distributed across

games and subjects and that they are type-specific.33 The first assumption facilitates

the statistical treatment of the data, while the second considers that some types may

be more cognitively demanding and thus lead to larger error rates than others.

The likelihood of a particular individual of a particular type can be constructed

as follows. Let P g,jk be type-k’s predicted choice probability for strategy j in game g.

(2006), and Crawford and Iriberri (2007a,b).
33See e.g. El-Gamal and Grether (1995), Crawford et al. (2001), Iriberri and Rey-Biel (2013), or Kovarik

et al. (2018) among many others.
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Some rules may predict more than one strategy in a CG. This is reflected in the vector

P gk = (P g,1k , P g,2k , P g,3k , P g,4k ) with
∑

j P
g,j
k = 1.34 The probability that an individual i

will choose a particular strategy j if she is of type k 6= QRE is

(1− εk)P g,jk +
εk
4

.

Note that, since P g,jk > 0 for strategies predicted by k while P g,jk = 0 otherwise, the

probability of choosing one particular strategy inconsistent with rule k 6= QRE is εk
4 .

For each individual in each game, we observe the choice and whether it is or not

consistent with k. Let xg,ji = 1 if action j is chosen by i in game g in the experiment

and xg,ji = 0 otherwise. The likelihood of observing a sample xi = (xg,ji )g,j given type

k and subject i is then

Lki (εk|xi) =
∏

g

∏
j

[
(1− εk)P g,jk +

εk
4

]xg,ji
. (1.4)

In the variation of the model, in which–instead of A and IA–we apply A(γ) and

IA(ρ, σ), the predicted choice probabilities depend on the parameters of each model

and we write P gA(γ) and P gIA(ρ, σ), respectively. The expression (1.4) for A(γ) and

IA(ρ, σ) then becomes:

Lki (εk, θ|xi) =
∏

g

∏
j

[
(1− εk)P g,jk (θ) +

εk
4

]xg,ji
, (1.5)

where θ = γ for A(γ) and θ = (ρ, σ) for IA(ρ, σ).

34The particular probabilities for each type considered here are listed in Tables 1.3 and 1.4 (and dis-
played visually in Figures 1.9 and 1.10 in the Appendix A). As an example, P gSPNE = (1, 0, 0, 0) for each
g. That is, SPNE stops with probability one at the first decision node of each CG. Note that for the re-
maining models, the predictions are not symmetric across the player roles so we should also specify P
for different player roles. Since the notation is already cumbersome in the current form, we omit the
dependency of P g,jk on player role in the presentation of the model.
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Matters are different for QRE. In this case, P gk = P gk (λ). Hence,

LQREi (λ|xi) =
∏

g

∏
j

(
P g,jQRE(λ)

)xg,ji
, (1.6)

where λ is a free parameter to estimate, inversely related to the level of error, and

P gQRE(λ) =
[
P g,1QRE(λ), P g,2QRE(λ), P g,3QRE(λ), P g,4QRE(λ)

]
are the QRE probabilities of each

action in game g. Abusing slightly the notation, denote by P gQRE(λ) a (mixed) strat-

egy profile in game g and let πg(j, P gQRE(λ)) be the expected payoff from choosing j

in game g against the profile P gQRE(λ). We follow the literature and work with the lo-

gistic QRE specification. Thus, the vector P gQRE(λ) in each game is the solution to the

following set of four equations per player role: for j = 1, 2, 3, 4,

P g,jQRE(λ) =
exp

[
λπg(j, P gQRE(λ))

]
∑

l exp
[
λπg(l, P gQRE(λ))

] . (1.7)

As mentioned above, one might think that behavioral models that predict more

than one strategy may be artificially favored by appearing more successful. However,

this is not the case with our likelihood specifications, since models predicting more

actions are punished in (1.4), (1.5), and (1.6) through lower P g,jk . Consequently, when-

ever someone takes a strategy predicted by these models, it is taken as evidence for

them to a lower extent compared to models that generate more precise predictions.

Adding up for all k (including QRE) and i, and assigning probabilities p = (p1, p2, ..., pK)

to each k yields one log-likelihood function of the whole sample:

lnL(p, (εk)k 6=QRE , λ|x) =
∑

i
ln
[∑

k 6=QRE
pkL

k
i (εk|x

g,j
i ) + pQREL

QRE
i (λ|xg,ji )

]
.

(1.8)
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In case of A(γ) and IA(ρ, σ), the log-likelihood (1.8) changes to

lnL(p, (εk)k 6=QRE , γ, ρ, σ, λ|x) =
∑

i
ln
[∑

k
pkL

k
i (.)
]

. (1.9)

Spike-logit errors. Observe that, by construction, QRE is treated differently in

(1.8) and (1.9) from other rules. Nevertheless, the logistic-error structure can also be

specified for the error of any behavioral model, except those rules that do not involve

any type of optimization. This only concerns PE in our case so we drop this type for

this particular specification.35 Hence, in our alternative specification we use a spike-

logit error structure, in which we also assume that a subject employing rule k makes

type-k’s decision with probability (1−εk) and err with probability εk ∈ [0, 1]. If people

make a mistake, we assume that they only play with positive probabilities strategies

not predicted by the rule and these probabilities follow a logistic distribution. The

probabilities of selecting such type-inconsistent strategies scale up with their payoffs or

utilities for most behavioral types (as for QRE), they scale up with the sum of payoffs

for A, or scale down with the absolute value of the difference between the payoffs of

the two players for IA, given the corresponding type’s beliefs about others’ behavior.

Moreover, this alternative error specification requires the estimation of one additional

parameter λk for each k 6= QRE. Similarly to QRE, these parameters measure how

sensitive the probability to choose a strategy inconsistent with a rule k 6= QRE is to

their goal (i.e. payoff, utility, sum of payoffs, or generated payoff difference).

Formally, denote by πg,ki (j) the payoff of individual i who employs type k 6= QRE,

A, IA, A(γ), IA(ρ, σ), who selects strategy j in game g, and who holds type k’s beliefs

about the behavior of opponents.36 Let j
′
g,k = {j|P g,jk = 0} be the subset of strategies

that are not predicted by a type k in game g. Define these concepts for A, IA, A(γ), and

IA(ρ, σ) analogously.

35As shown below, we find no evidence for PE anyway, so our results are not affected by its elimination.
36SPNE believes her opponents are also SPNE, but Lk, for instance, believe her opponents are Lk-1. The

beliefs of all behavioral types are described in Section 1.3.2.
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Thus, i’s likelihood of being of type k 6= QRE is

Lki (εk, λ|xi) =
∏

g

∏
j

[
(1− εk)P g,jk + εkV

g,j
k (λk)

]xg,ji
, (1.10)

where for any j ∈ j′g,k

V g,j
k (λk) =

exp[λkπ
g,k
i (j)]∑

j
′
g,k

exp[λkπ
g,k
i (j)]

(1.11)

and V g,j
k (λk) = 0 for j /∈ j′g,k. As mentioned above, λk’s , k 6= QRE, are free parameters

to estimate.

In the variation of the model with A(γ) and IA(ρ, σ) (instead of A and IA), the

predicted choice probabilities depend on the parameters of each model and we write

P gk (θ) being θ = γ and θ = (ρ, σ), respectively. The expression (1.10) then becomes:

Lki (εk, θ, λk|xi) =
∏

g

∏
j

[
(1− εk)P g,jk (θ) + εkV

g,j
k (λk)

]xg,ji
, (1.12)

The QRE probabilities are defined as in (1.6) and (1.7) and, by analogy, the log-

likelihood of the whole sample under A and IA is

lnL(p, (εk)k 6=QRE , λ|x) =
∑

i
ln
[∑

k 6=QRE
pkL

k
i (εk, λk|x

g,j
i ) + pQREL

QRE
i (λQRE |xg,ji )

]
.

(1.13)

In case of A(γ) and IA(ρ, σ), the log-likelihood (1.13) changes to

lnL(p, (εk)k 6=QRE , γ, ρ, σ, λ|x) =
∑

i
ln
[∑

pkL
k
i (.)
]

. (1.14)

ESTIMATION RESULTS

We estimate two sets of parameters: frequency of behavioral types within the subject

population p = (p1, p2, ..., pK) and the error-related parameters, one or two for each
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behavioral type depending on the error specification. Under uniform errors, the error-

related parameters are εk for k 6= QRE and the inverse error rate λ for QRE. In

contrast, under the spike-logit specification, there are two error-related parameters per

model, with the exception of QRE. More precisely, εk for k 6= QRE and a vector

λ = (λ1, ..., λK) that includes λQRE . Last, if A(γ) and IA(ρ, σ) are applied, we also

estimate their parameters. Under mild conditions satisfied by the functions (1.8), (1.9),

(1.13), and (1.14), the maximum likelihood estimation produces consistent estimates of

the parameters (Leroux, 1992).

Tables 6A and 6B present the estimation results for both error specifications. Table

6A corresponds to estimations withA and IA; Table 6B to those with the parameterized

A(γ) and IA(ρ, σ). Columns (1 − 4) in Table 6A and columns (1 − 6) in Table 6B

contain the uniform-error specification estimates, while columns (5− 10) and (7− 14),

respectively, show those for spike-logit errors. Standard errors shown in parentheses

below each estimate and the corresponding significance levels (**p > 0.01, *p > 0.05)

were computed using bootstrapping with 100 replications (Efron and Tibshirani, 1994).

For the frequency parameters pk, the inverse error rates λQRE , and for parameters γ,

ρ, and σ, we simply report their significance levels. However, the error rates are well

behaved if they are close to zero and far from one. Therefore, we test whether each εk

differs significantly from one (rather than zero). The standard errors and significance

levels reported jointly with the estimated εk’s in Tables 6A and 6B correspond to these

tests.37

There are several differences between the uniform and spike-logit error specifica-

tions. They mainly differ in how they treat choices inconsistent with a type k. The

former treats all mistakes in the same way, while the latter punishes more costly mis-

takes more than less costly ones. The consequence of the payoff-dependent errors is

37We perform no statistical tests for the λk’s corresponding to the models different from QRE in the
spike-logit specification because these only tell how sensitive the mistakes are to each type’s goal, but they
are irrelevant for telling with which probability people make mistakes. These probabilities are determined
by the estimated εk.
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that the spike-logit specification uses more information, since it regards the payoffs.38

Rather than favoring one error specification over the other, we let readers decide, in

which assumptions they wish to place more confidence.

TABLE 6A: ESTIMATION RESULTS I: NON-PARAMETERIZED SPECIFICATION FOR SOCIAL PREFERENCES

Uniform Error Spike-Logit Error
Full Selected Full Selected

Type pk εk, λ pk εk, λ pk εk λk pk εk λk
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

SPNE 0.09** 0.32** 0.08** 0.31** 0.10** 0.27** 1.00 0.11** 0.29** 0.98
(0.03) (0.09) (0.03) (0.08) (0.03) (0.05) (0.02) (0.04) (0.06) (0.08)

A 0.02 0.38** 0.01 0.19** 0.02
(0.01) (0.19) (0.01) (0.04) (0.20)

IA 0.03** 1.00 0.02 0.80** 0.00
(0.01) (0.20) (0.01) (0.06) (0.05)

PE 0.00 0.75*
(0.02) (0.15)

O 0.03* 0.06** 0.03* 0.06** 0.03* 0.05** 0.08 0.03* 0.05** 0.08
(0.01) (0.11) (0.01) (0.17) (0.01) (0.08) (0.14) (0.01) (0.07) (0.14)

L1 0.29** 0.59** 0.31** 0.60** 0.41** 0.49** 0.01 0.43** 0.51** 0.01
(0.05) (0.04) (0.05) (0.05) (0.07) (0.03) (0.05) (0.07) (0.03) (0.06)

L2 0.18** 0.61** 0.21** 0.66** 0.08** 0.36** 0.19 0.08** 0.36** 0.19
(0.06) (0.06) (0.06) (0.04) (0.02) (0.04) (0.08) (0.03) (0.04) (0.08)

L3 0.10* 0.59** 0.11* 0.62** 0.06* 0.43** 0.01 0.06* 0.44** 0.00
(0.04) (0.08) (0.04) (0.07) (0.04) (0.12) (0.02) (0.04) (0.12) (0.01)

QRE 0.28** 0.38** 0.27** 0.42** 0.29** 0.39** 0.29** 0.37**
(0.05) (0.12) (0.05) (0.15) (0.05) (0.09) (0.06) (0.09)

Notes: THE TABLE REPORTS THE ESTIMATION RESULTS FOR THE UNIFORM ERROR SPECIFICATION IN COLUMNS (1-4) AND THE SPIKE-LOGIT ERROR SPECIFICATION IN COLUMNS (5-10).
COLUMNS (1), (3), (5), AND (8) PRESENT THE ESTIMATED FREQUENCIES OF EACH BEHAVIORAL MODEL; COLUMNS (2), (4), (6), (7), (9), AND (10) PRESENT THE ESTIMATED ERROR-
RELATED PARAMETERS. FOR EACH ERROR SPECIFICATION, WE REPORT BOTH THE FULL AND THE SELECTED MODEL. THE FULL MODEL INCLUDES ALL CONSIDERED BEHAVIORAL TYPES;
THE SELECTED MODELS ONLY INCLUDE THE TYPES THAT SATISFY THE FOLLOWING: (I) THE ESTIMATED FREQUENCY IS SIGNIFICANTLY DIFFERENT FROM 0 AND (II) THE ESTIMATED
ERROR RATE IS SIGNIFICANTLY DIFFERENT FROM 1 (FOR QRE , THE ESTIMATED λ IS DIFFERENT FROM 0).

We first discuss in detail the results from Table 6A. First, consider the models that

include all the behavioral types introduced in Section 1.3.2, shown in columns (1 − 2)

and (5− 7) in Table 6A. Observe that both error specifications yield qualitatively sim-

ilar results. First, non-strategic and preference-based behavioral models (A, IA, PE, O)

all explain less than 5%. IA and PE additionally exhibit very high error rates. The O

type is an exception in that, despite explaining only 3% of the population, its estimated

38Another potential difference might arise due to the joint estimation of λ with the other parameters if
the estimated λ differs across the two models. The value of λ affects the degree of separability between
QRE and the other candidates (see Table 1.9) and different separability may effect the estimated type
frequencies. Since the estimated λ’s are very similar in all our estimations, this concern does not apply
here.
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fractions are significant and the error rates very low. Moreover, its estimates are highly

robust to the model specification. Second, SPNE explains the behavior of about 10% of

subjects well, consistently across the two models, and SPNE’s estimated error rates are

actually among the lowest. Third, the rest of the behavior–in fact, most of the behav-

ior of subjects inconsistent with SPNE–is best explained by level-k thinking and QRE.

Under both error specifications, level-k thinking is estimated to represent around 55%

of the subject population, while QRE represents about 30%. Level-k thinking model

also shows a familiar pattern compared to other estimation results with most subjects

concentrated in L1, followed by L2 and L3 (see Crawford et al., 2013). However, the

main difference between both error specifications comes from the proportions of each

level. Under uniform errors, around half of the population best explained by level-k

is classified as L1, while L1 absorbs half of the shares of L2 and L3 in the spike-logit

specification.

Given that several models systematically fail to explain the behavior in our exper-

iment, we estimate reduced models with some selected behavioral types. One widely

debated and so far unresolved issue is the over-parameterization of mixture-of-types

models and the related model selection (MacLachlan and Peel, 2000; Cameron and

Trivendi, 2005, 2010).39 Cameron and Trivendi (2005) propose using the natural in-

terpretation of the parameters and MacLachlan and Peel (2000) argue that the best

model minimizes the number of components selected if their proportions differ and all

are different from zero. We take an approach that combines these recommendations.

We require two conditions to hold for a type k to be included in our reduced model:

pk >> 0 and εk << 1 (λk >> 0 for QRE). In words, we require the share of each type

k selected to be high enough and its error rate low enough (the inverse error rate high

enough for QRE) to suggest that the decisions of people classified as k are made on

39Standard criteria for model selection (such as Akaike or Bayesian Information criteria or the like-
lihood ratio test) may perform unsatisfactorily in finite mixture models (Cameron and Trivendi, 2005,
2010).
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purpose rather than by error.40

For both specifications, we eliminate those rules with negligible shares or high error

rates. In particular, we estimate a reduced form of both (1.8) and (1.13), in which we

only include the relevant behavioral types O, QRE, level-k, and SPNE. Columns (3−4)

and (8 − 10) in Table 6A report the results. The estimates of the selected behavioral

types are stable as we move from the full to the reduced model. Moreover, all the

parameters estimated are well behaved. Under the uniform specification, the types

excluded are entirely absorbed by L1 and L2. As a result, their error rates slightly

increase. The estimates suggest that the composition of the population is 3% of O,

8% of SPNE, 27% of QRE, and 63% of level-k. Under the spike-logit specification,

the types excluded are entirely absorbed by L1 and SPNE and their error rates thus

slightly increase. The estimates suggest that the composition of the population is 3%

of O, 11% of SPNE, 29% of QRE, and 57% of level-k reasoning, figures very similar to

the uniform-error specification.41

Let us now turn the attention to Table 6B, in which we consider the flexible models

of social preferences A(γ) and IA(ρ, σ). In Table 6B, the uniform-error specification

is positioned in the top of the table while the spike-logit specification in the bottom.

Observe that the estimates of each estimation are displayed in three columns; columns

(1−3) and (7−10) correspond to the full models and columns (4−6) and (11−14) to the

selected ones. In line with Table 6A, the estimates are robust to the error specification

and the elimination of rules from the full model. Most importantly, the majority of

40This approach follows Kovarik et al. (2018) who propose a related model-selection algorithm and,
using Monte-Carlo simulations, show that such an algorithm successfully recovers the data-generating
processes as long as the error rates are not too high.

41It might be thought that our comparison between QRE and level-k could favor the latter, as level-k
allows for multiple types while we estimate a single QRE. Therefore, we re-estimate our uniform model
with two QRE types (with different λ’s). The estimation results are shown in Table 1.14 in the Appendix A.
Compared to the original pQRE = 0.27 and λQRE = 0.42, the introduction of another QRE type leads to
pQRE1 = 0.22 with λQRE1 = 0.38 and pQRE2 = 0.06 with λQRE2 = 0.32, while the estimated frequencies
of the rest of the types being virtually unaffected. Therefore, the proportion of people classified in each
rule is unaffected by considering one or two QRE types and our benchmark model does not seem to favor
level-k over QRE.
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TABLE 6B: ESTIMATION RESULTS II: PARAMETERIZED SPECIFICATION FOR SOCIAL PREFERENCES

Uniform Error
Full Selected

Type pk εk, λ γ, ρ, σ pk εk, λ γ, ρ, σ
(1) (2) (3) (4) (5) (6)

SPNE 0.01 0.00**
(0.01) (0.15)

A 0.08** 0.38** 0.21** 0.08** 0.38** 0.22**
(0.03) (0.07) (0.04) (0.03) (0.07) (0.04)

IA 0.06** 0.20** 0.07**,0.55** 0.06** 0.18** 0.08**,0.55**
(0.02) (0.03) (0.02),(0.12) (0.03) (0.04) (0.02),(0.13)

PE 0.01 0.45**
(0.02) (0.23)

O 0.03* 0.06** 0.03* 0.06**
(0.01) (0.07) (0.01) (0.10)

L1 0.28** 0.59** 0.29** 0.59**
(0.04) (0.04) (0.05) (0.04)

L2 0.20** 0.65** 0.21** 0.67**
(0.06) (0.08) (0.05) (0.07)

L3 0.08* 0.63** 0.08* 0.62**
(0.04) (0.13) (0.04) (0.14)

QRE 0.24** 0.37** 0.24** 0.38**
(0.04) (0.09) (0.05) (0.09)

Spike-Logit Error
Full Selected

Type pk εk λk γ, ρ, σ pk εk λk γ, ρ, σ
(7) (8) (9) (10) (11) (12) (13) (14)

SPNE 0.06** 0.93** 0.49 0.06** 0.93** 0.34
(0.01) (0.03) (0.03) (0.01) (0.04) (0.03)

A 0.10** 0.39** 0.01 0.29** 0.10** 0.11** 0.00 0.19**
(0.01) (0.01) (0.01) (0.00) (0.02) (0.05) (0.10) (0.01)

IA 0.06** 0.12** 0.51 0.02,0.76** 0.06** 0.11** 0.53 0.02,0.80**
(0.01) (0.01) (0.02) (0.00),(0.00) (0.00) (0.01) (0.04) (0.01),(0.00)

O 0.03** 0.05** 0.08 0.03** 0.05** 0.08
(0.01) (0.04) (0.02) (0.01) (0.02) 0.04

L1 0.37** 0.47** 0.01 0.37** 0.47** 0.01
(0.01) (0.02) (0.01) (0.08) (0.02) (0.05)

L2 0.09** 0.37** 0.14 0.09** 0.37** 0.14
(0.01) (0.02) (0.03) (0.00) (0.03) (0.03)

L3 0.00 0.63** 0.10**
(0.00) (0.03) (0.03)

QRE 0.29** 0.34** 0.29** 0.34**
(0.02) (0.06) (0.06) (0.03)

Notes: THE TABLE REPORTS THE ESTIMATION RESULTS FOR THE UNIFORM ERROR SPECIFICATION IN COLUMNS (1-6) AND THE SPIKE-LOGIT ERROR SPECIFICATION IN
COLUMNS (7-14). COLUMNS (1), (4), (7), AND (11) PRESENT THE ESTIMATED FREQUENCIES OF EACH BEHAVIORAL MODEL; COLUMNS (2), (5), (8-9), AND (12-13) PRESENT
THE ESTIMATED ERROR-RELATED PARAMETERS; COLUMNS (3), (6), (10), AND (14) PRESENT THE PARAMETERS ESTIMATED FOR A(γ) AND IA(ρ, σ). FOR EACH ERROR
SPECIFICATION, WE REPORT BOTH THE FULL AND THE SELECTED MODEL. THE FULL MODEL INCLUDES ALL CONSIDERED BEHAVIORAL TYPES; THE SELECTED MODELS
ONLY INCLUDE THE TYPES THAT SATISFY THE FOLLOWING: (I) THE ESTIMATED FREQUENCY IS SIGNIFICANTLY DIFFERENT FROM 0 AND (II) THE ESTIMATED ERROR RATE IS
SIGNIFICANTLY DIFFERENT FROM 1 (FOR QRE , THE ESTIMATED λ IS DIFFERENT FROM 0).
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non-equilibrium behavior is still explained by level-k and QRE and their estimated

parameters are virtually unaffected.

The main difference between Tables 6A and 6B concerns SPNE and the social-

preference types. We find no evidence for A and IA in Table 6A, whereas 14% of

subjects are classified as either A(γ) or IA(ρ, σ) and their error rates are well behaved

in Table 6B. We can observe that these shares come at the cost of SPNE, which re-

ceives no support in the full model and is, therefore, eliminated in the selected one.

However, a closer look at the estimated γ, ρ, and σ of subjects classified into these

social-preference types reveals the reason: they exhibit almost no social concerns and

their behavior matches closely that of SPNE. As shown in Tables 1.2, 1.3, and 1.4,

SPNE and IA(ρ = 0.08, σ = 0.55) predict exactly the same strategy in 30 decisions

(out of 32) whereas SPNE and A(γ = 0.22) in 26 of them. Moreover, in the remain-

ing cases (with one exception) both A(γ = 0.22) and IA(ρ = 0.08, σ = 0.55) predict

multiple actions, one of which is typically the same as the one prescribed by SPNE.

That is, even if A(γ) and IA(ρ, σ) could theoretically be well separated from SPNE

(simply by being truly non-selfish; see Tables 1.10 and 1.11 in the Appendix A), the

actually estimated altruistic and inequity-averse types become behaviorally almost in-

distinguishable in order to explain about 14% of the population. They thus account for

a very small part of non-equilibrium choices in our data. Most importantly though,

since these social-preference types only compete for space with SPNE and never with

the other non-SPNE theories, the conclusions that most non-equilibrium choices can

be explained by the failure of common knowledge of rationality (level-k) and bounded

rationality (QRE) and preference-based arguments play at most a negligible role in

explaining non-equilibrium play in CGs still hold even if we allow for more flexible

social-preference types.

An issue linked naturally to the objectives of finite-mixture modeling is whether

the estimations generate a well separated, non-overlapping classification of subjects at
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the individual level. In particular, a desirable property of type mixtures is that indi-

viduals are ex-post classified to one and only one of the candidate types, rather than,

say, 50% QRE and 50% level-k. Therefore, we compute posterior probabilities of each

individual belonging to a certain type (see MacLachlan and Peel, 2000). Given that our

two specifications in Tables 6A and Tables 6B deliver qualitatively and quantitatively

similar results, this exercise is only performed for the selected model under uniform

errors in Table 6A. If people are accurately classified at the individual level then those

posterior probabilities are close to one for a single behavioral model and close to zero

for the remaining ones for each individual. This is indeed the case here (see Figure

1.14) so we conclude that our classification is also successful at the individual level. As

a result, two departures from SPNE seem to be crucial for non-equilibrium behavior in

CGs and, as shown by this posterior-probabilities exercise, each model is relevant for

different individuals.

ROBUSTNESS 1: GANG OF FOUR

The previous subsection shows that non-equilibrium behavior in CGs is explained by

both QRE and level-k as representations of bounded rationality and the failure of

common knowledge of rationality, respectively. Due to its prominence in the early

literature on CGs, this section analyzes whether these conclusions are robust to con-

sidering the “gang of four" model (GoF , hereafter). Similarly to level-k, GoF relaxes

the assumption of common knowledge of rationality but, as opposed to level-k, it

is an equilibrium approach. In this model, there are two types of players, strategic

types and non-strategic types, and the type distribution is common knowledge. How-

ever, players have incomplete information about the type of their opponent. McK-

elvey and Palfrey (1992) propose such model to rationalize individual behavior in their

exponentially-increasing CG. In particular, they allow for the existence of a type who

always passes (rationalized as an altruist in their paper), such that there is a fraction
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(1-q) of such non-strategic types and a fraction q of the strategic individuals in the pop-

ulation. This constitutes an incomplete-information game and one can compute the

Bayes-Nash equilibria of any game in function of q. If q = 1, GoF = SPNE in our

framework; if q = 0, the strategic type best responses to the non-strategic one. We

make the original model more flexible by assuming that the non-strategic type is an

altruist, A, who maximizes the sum of payoffs between the two players. Assuming A

rather than an “Always Pass" type as in McKelvey and Palfrey (1992) enables such a

type to react to differing incentives to take or pass across our CGs and thus gives a

better chance to GoF to explain the behavior of at least some subjects in our data.

Observe that including GoF among our candidate models requires to estimate q

jointly with other parameters of the model. In our fitting exercise, we interpret q as

a–not necessarily correct–belief an individual following GoF holds regarding the pop-

ulation frequency of the strategic types. Remember that McKelvey and Palfrey (1992)

find that experimental subjects’ behavior can be rationalized with a q = 0.95.

We first analyze the separation rate between GoF and the other candidate mod-

els. This is shown in Table 1.15. Among the relevant explanations, there might exist

separation problems between GoF on one side and L1 and L2 on the other for certain

values of q. No issues arise with L3. Naturally, if q = 1, GoF = SPNE but both

models are well separated for any q < 1 in our CGs. Last, it may potentially resemble

the estimated QRE if q = 1 but the separation for the estimated λ is good otherwise.

In sum, if GoF is relevant in our data it will most likely compete with L1 and L2 and

might thus impact their estimated shares but should not alter the frequencies of other

models.42

The estimation results shown in Table 1.7 confirm this conjecture. Compared to the

uniform-error estimations in Table 6A, the estimated shares of all models but level-k

42IfGoF competes with SPNE, it would mean that the estimated q is so close to 1 that people classified
as GoF are rather SPNE. In Table 1.7, q is always significantly different from 1.
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TABLE 1.7: ESTIMATION RESULTS INCLUDING GANG OF FOUR

Uniform Error
Full Selected 1 Selected 2

Type pk εk, λ q pk εk, λ q pk εk, λ q
(1) (2) (3) (4) (5) (6) (7) (8) (9)

SPNE 0.09** 0.32** 0.08** 0.32** 0.08** 0.32**
(0.04) (0.10) (0.03) (0.08) (0.03) (0.08)

A 0.01 0.36**
(0.01) (0.16)

IA 0.00 0.99
(0.01) (0.01)

PE 0.03* 1.00
(0.02) (0.02)

O 0.02* 0.00** 0.02 0.00**
(0.01) (0.06) (0.01) (0.09)

L1 0.23** 0.56** 0.23** 0.56** 0.24** 0.57**
(0.04) (0.04) (0.05) (0.06) (0.05) (0.05)

L2 0.15** 0.61** 0.19** 0.67** 0.18** 0.66**
(0.05) (0.06) (0.06) (0.09) (0.06) (0.09)

L3 0.10** 0.59** 0.10* 0.61** 0.11* 0.61**
(0.04) (0.05) (0.05) (0.09) (0.05) (0.08)

GoF 0.08* 0.51** 0.37** 0.10* 0.54** 0.37** 0.11* 0.57** 0.32**
(0.04) (0.08) (0.05) (0.05) (0.08) (0.09) (0.05) (0.08) (0.08)

QRE 0.28** 0.38** 0.28** 0.38** 0.28** 0.38**
(0.05) (0.10) (0.05) (0.12) (0.05) (0.11)

Notes: THE TABLE REPORTS ESTIMATION RESULTS FOR UNIFORM ERROR SPECIFICATIONS. COLUMNS (1), (4), AND (7) PRESENT THE ESTIMATED FREQUENCIES
OF EACH BEHAVIORAL MODEL; COLUMNS (2), (5), AND (8) PRESENT THE ESTIMATED ERROR-RELATED PARAMETERS; COLUMNS (3), (6), AND (9) PRESENT THE
ESTIMATED PARAMETER q FOR GoF . THE FULL MODEL INCLUDES ALL CONSIDERED BEHAVIORAL TYPES; THE SELECTED MODELS ONLY INCLUDE THE TYPES
THAT SATISFY THE FOLLOWING: (I) THE ESTIMATED FREQUENCY IS SIGNIFICANTLY DIFFERENT FROM 0 AND (II) THE ESTIMATED ERROR RATE IS SIGNIFICANTLY
DIFFERENT FROM 1 (FOR QRE , THE ESTIMATED λ IS DIFFERENT FROM 0). SINCE THE ESTIMATED pO IS NOT STATISTICALLY DIFFERENT FROM 0 IN THE FIRST
SELECTED MODEL, WE APPLY OUR MODEL SELECTION PROCEDURE TWICE.
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are virtually unaffected in both the full and selected models.43 The estimated q in the

selected model takes the value of 0.32, a value for which the predictions of GoF are

relatively close to both L1 and L2. However, note that both L1 and L2 still exhibit

higher estimated shares than the estimated 8% for GoF even though the latter has one

additional degree of freedom due to the parameter q. Moreover, the estimated value

of 1− q is 68% in our estimation. This means that individuals classified as GoF believe

that there are 68% of altruists in the population. This figure is considerably larger

that the 5% proposed in McKelvey and Palfrey (1992) to explain the behavior in their

experiment and contrasts starkly with the estimated proportions of A in any of our

model specifications. We believe that these observations cast certain doubt on GoF as

a relevant explanation of behavior in our data.

This conclusion notwithstanding, if one accepts GoF as a relevant explanation, ob-

serve that the estimated share of level-k is 63% in the uniform-error model in Table

6A, while the fraction of level-k plus GoF–the two models that relax the assumption

of common knowledge of rationality–is 64% in Table 1.7. That is, our conclusions re-

garding the explanation of non-equilibrium choices in the data are both qualitatively

and quantitatively robust to whether we include GoF among our candidate models:

above 60% of behavior in our experiment can be attributed to the failure of common

knowledge of rationality, and common knowledge of rationality and bounded rational-

ity explain virtually all non-equilibrium behavior while preference-based approaches

play a negligible role.

ROBUSTNESS 2: ESTIMATION BY PLAYER ROLE AND OMITTED TYPES

In this section, we provide two additional exercises. First, we estimate the selected

models separately for the two player roles. Second, we report an exercise testing for

omitted behavioral types. Since all our model specifications deliver similar messages,

43Since the estimated pO is not statistically different from 0 in the first selected model (Selected 1), this
is the only case in which we apply our model selection procedure twice.
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the robustness checks in this section are only performed for the selected models from

Table 6A.

Estimation by player role. There is some evidence that people adapt their sophisti-

cation to their strategic situations (see e.g. Kovarik et al., 2018, or Mengel and Grimm,

2012).44 Since this might potentially also apply to different roles in the same game,

we would like to make sure that our conclusions still hold if we re-estimate our se-

lected models separately for each player role. Table 1.8 reports the estimates for both

the uniform and spike-logit error specifications. Observe that our main conclusions

are qualitatively unaffected by only considering one player type: a relatively small

fraction of subjects is classified as SPNE, while the majority is best described by either

QRE or level-k. Again, level-k is the most relevant model, classifying most people as

L1. However, we observe two systematic quantitative differences across the player

roles. In particular, Players 2 exhibit higher estimated shares of L1 and lower shares of

L3. In fact, the estimates suggest that no subject in role 2 can be classified as L3.45

To see whether the type composition changes across the two player roles, we for-

mally test whether the parameters estimated differ across the two models, using the

uniform error specification. Brame et al. (1998) propose a statistical test for the equality

of maximum-likelihood regression coefficients between two independent equations.

Despite the differences mentioned above, these tests detect no difference between the

corresponding pairs of estimated coefficients across the two models at the conventional

5% level, with the exception of the error rate of L1, εL1. These tests thus support the

idea that the above classification differ neither qualitatively nor quantitatively across

the two player roles.

Omitted types. One important question inherent in finite mixture-of-types models

is the selection of the candidate types. What if there is a type that explains a relevant

44Gill and Prowse (2016) document that some people change their degree of sophistication depending
on the sophistication of their opponents in Beauty Context Games.

45The available data do not allow us to explore the reason behind the differences.
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TABLE 1.8: ESTIMATION RESULTS BY SUBJECTS’ ROLE: PLAYER 1 AND PLAYER 2

Uniform Error Spike-Logit Error
Player 1 Player 2 Player 1 Player 2

Type pk εk, λ pk εk, λ pk εk λ pk εk λ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

SPNE 0.05* 0.33** 0.05 0.16** 0.05 0.23** 1.00 0.14** 0.26** 0.93
(0.03) (0.09) (0.06) (0.15) (0.03) (0.17) (0.03) (0.05) (0.09) (0.10)

O 0.05* 0.33** 0.05 0.16** 0.03* 0.00** 0.26 0.03 0.09** 0.08
(0.03) (0.09) (0.06) (0.15) (0.01) (0.20) (0.17) (0.02) (0.12) (0.11)

L1 0.31** 0.81** 0.44** 0.54** 0.31** 0.61** 0.01 0.44** 0.44** 0.05
(0.07) (0.04) (0.09) (0.05) (0.08) (0.04) (0.04) (0.06) (0.02) (0.06)

L2 0.10* 0.60** 0.23** 0.66** 0.10* 0.41** 0.16 0.06* 0.26** 0.42
(0.06) (0.14) (0.08) (0.09) (0.05) (0.05) (0.09) (0.02) (0.11) (0.15)

L3 0.22** 0.58** 0.05 0.69* 0.21* 0.45** 0.01 0.00 0.51** 0.05
(0.09) (0.03) (0.03) (0.15) (0.10) (0.08) (0.02) (0.00) (0.15) (0.07)

QRE 0.33** 0.38** 0.23** 0.67** 0.31** 0.38** 0.33** 0.27
(0.07) (0.10) (0.05) (0.15) (0.06) (0.10) (0.06) (0.17)

Notes: THE TABLE REPORTS THE ESTIMATION RESULTS FOR THE UNIFORM ERROR SPECIFICATION IN COLUMNS (1-4) AND THE SPIKE-LOGIT ERROR SPECIFICATION
IN COLUMNS (5-10). COLUMNS (1), (3), (5), AND (8) PRESENT THE ESTIMATED FREQUENCIES OF EACH BEHAVIORAL MODEL; COLUMNS (2), (4), (6), (7), (9),
AND (10) PRESENT THE ESTIMATED ERROR-RELATED PARAMETERS. FOR EACH ERROR SPECIFICATION, WE REPORT BOTH THE FULL AND THE SELECTED MODEL.
WE ONLY REPORT BEHAVIORAL TYPES FROM THE SELECTED MODELS IN TABLE 6A.

part of our subjects’ behavior but is not included in the set of candidate explanations?

To test for this possibility, we perform the following “omitted type” exercise. We

re-estimate our models separately for each player role 76 and 75 times for Player 1 and

Player 2, respectively. In each of these 151 estimations, we add to the set of considered

models an additional type, whose predicted behavior is identical to the experimental

behavior of one particular subject’s choices. That is, each subject represents one type in

one these 151 estimations. If someone’s behavior approximates the behavior of many

others well and is sufficiently different from any of the theories considered, this would

provide evidence for a relevant type being missing from our set. Note that this exercise

is only possible under the uniform error specification because we take the behavioral

profile as a type without actually observing the underlying optimization problem of

such subjects.

For such an omitted type to be relevant, two criteria are applied. First, we require

the type to attract a non-negligible frequency. In particular, we look for subjects who

attract a share of at least 10% the population. Second, we require the type to be suf-
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ficiently separated from any candidate explanation already considered. In particular,

types must be separated in at least half of the 16 CGs. It turns out that there are five

subjects who play as Player 1 (subjects 10, 17, 39, 67 and 72) and three who play as

Player 2 (subjects 100, 140, 151), who satisfy both conditions. A closer look at their

behavior reveals that they all behave as hybrids between different consecutive types

of level-k. When we add those two combinations as possible behavioral types, L1-L2

and L2-L3, which consist of either one type or the other, none of the predictions of the

omitted types survives the application of the separation criteria mentioned above.

Hence there are some subjects whose behavior taken as a behavioral type could po-

tentially explain that of a non-negligible part of other subjects. However, these omitted

types hybridize level-k and mostly affect the share of different level-k types, such that

they still maintain the assumption of perfect rationality and relax the common knowl-

edge of rationality.46 Therefore, their existence does not affect our main conclusions in

that equilibrium behavior is represented by a minority and that the majority of indi-

viduals can be explained by either level-k or QRE.

ROBUSTNESS 3: OUT-OF-SAMPLE PREDICTIONS

The ability to predict out-of-sample is a desirable feature of any model. In this section,

we assess the extent to which the selected uniform-error mixture model (columns (3

- 4) in Table 6A) that best fits the behavior of subjects in some games, referred to as

in-sample games, is able to predict both individual and population-level behavior in

other games, referred to as out-of-sample games. For this model to generate successful

out-of-sample predictions, we require two things. First, the estimated composition of

the population, as well as the individual posterior probabilities of belonging to a par-

ticular behavioral type must be stable across different in-sample games. This would

actually show how robust the estimates of our mixture-of-types model in Table 6A is

46See Gill and Prowse (2016) for further evidence on these hybrid types. A finer analysis of these hybrid
types is out of the scope of the present study.
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to the removal of one particular game. Second, this model must predict behavior suc-

cessfully in and consistently across different out-of-sample games, at both individual

and population level.47

The individual- and population-level out-of-sample prediction exercises that we

carry out exploit the behavioral variation across the 16 different CGs used in our ex-

periment and have the following common basis. First, we estimate 16 variations of

the model with 15 games only (rather than 16 as in Table 6A). Since we remove a dif-

ferent game each time from each estimation, this yields 16 different population-level

estimations, reported in Tables 1.16 and 1.17 in the Appendix A.

We first check the robustness of the estimates to such removals. At the population

level, we formally test whether any of the parameters estimated in these 16 models

is significantly different from its counterpart in the benchmark model in columns (3 -

4) in Table 6A. It is remarkable that none of the 16 × 12 = 192 parameters is signif-

icantly different at conventional 5% from its original estimation with 16 games.48 At

the individual level, we employ the parameters estimated in the 16 models based on

15 games and compute the posterior probabilities of our 151 subjects belonging to each

behavioral type.49 For each of the 16 models, we assign each individual to the type that

best explains his/her behavior in the in-sample games. This enables us to assess the

individual-level stability and consistency of our classification from the previous sec-

tion. We observe that 42% of the subjects (63 out of 151) are fully consistent, such that

they are classified in the same behavioral type across all 16 estimations; 77% (117 out of

151) are consistently classified in at least 12 out of 16 (75%) games. Most of our subjects

are thus consistently classified into the same behavioral model at the individual level

47There only exists scarce evidence of whether subjects’ behavior is stable across different games. Geor-
ganas et al. (2015) examine whether level-k model generates stable cross-game predictions at the individ-
ual level in two types of games (undercutting games and two-person guessing games). They report stable
classification within types but large instability across game types. Given these results, our out-of-sample
exercise solely focuses on different CGs.

48We do not report the details of these 192 tests here. They are available upon request from the authors.
49This would lead to 16 four-panel graphs similar to Figure 1.14 in the Appendix A.



1.5. RESULTS 57

even in subsets of our games. Therefore, our main estimation results are highly robust

to the removal of any single game at both the population and the individual level.

Individual-level out-of-sample predictions. We use the above individual-level

classification of subjects based on the 15 in-sample games and predict the strategy that

each subject should take in the out-of-sample CG excluded while making the classi-

fication. Our individual-level test compares this predicted behavior with the action

actually taken by the corresponding subject in the corresponding game. This exercise

generates a 151× 16 matrix of “hits", or “probability of hits" for QRE, for the 151 sub-

jects in the 16 CGs, which enables us to assess the ability of the mixture-of-types model

to predict the behavior of each subject in the out-of-sample CGs.

To provide a relative prediction performance of our mixture model, we repeat this

procedure for each relevant behavioral type (SPNE, QRE, O, and level-k) in isolation.

For SPNE and O, we simply take the average compliance between their predictions

and actual individual behavior across the 16 CGs. For QRE we estimate 16 models

that assume that all subjects are classified as QRE using their observed behavior in the

in-sample games, yielding one λ per estimation. With the estimated λ’s, we assess the

average ability of QRE to predict the observed behavior in the out-of-sample CGs. For

level-k, we estimate 16 mixture models with three types, L1, L2, and L3, and compute

accordingly the average individual-level ability of this level-k mixture to predict out of

sample.

The left panel of Figure 1.6 reports the average improvement in the ability to pre-

dict individual behavior out of sample (in percentage terms) in each model, be it our

mixture model or one of the four one-type models described above, compared to a pure

random hit of 0.25. The latter corresponds to a purely random type that selects each

strategy with probability one fourth. The figures reported should thus be interpreted

as how much better in percentage points the out-of-sample prediction of a particular

model is than a pure random selection of action. The vertical bars reflect standard
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errors of the 16 improvements and reflect how sensitive the ability of each model to

predict individual out-of-sample behavior is to different out-of-sample CGs. A good

model should on average exhibit significantly greater improvements with respect to

random behavior and the average improvement should not be too sensitive to which

game is being predicted. Our mixture and the mixture of different level-k’s exhibit

the largest improvements compared to random prediction, but a comparison between

them shows that allowing non-level-k types in our mixture model improves the ability

to predict individual behavior significantly. Our mixture model improves the predic-

tion ability of a random type by almost 90%, compared to less than 80% in case of

level-k. Additionally, our mixture-of-types model and QRE reveal the lowest sensi-

tivity to which CG is being predicted. However, our mixture-of-types model largely

outperforms QRE. We thus conclude that jointly considering alternative explanations

of behavior significantly enhances the ability of a model to predict individual behavior

in out-of-sample games.

Population-level out-of-sample predictions. This test is again based on the 16

estimations with the 15 in-sample games described above.50 With the estimates in

hand, we compute the log-likelihood (1.8) for the observed behavior of our subjects in

the out-of-sample game. This generates 16 log-likelihood values. Again, to be able

to assess the relative ability of the mixture-of-types model in columns (3 - 4) in Table

6A to predict out of sample vis-à-vis the individual explanations of behavior in the

in-sample games, we apply the estimated parameters and compute the loglikelihood

of the observed behavior in the out-of-sample CG. As before, we preform the same

exercise for a random type, which selects each strategy with probability one fourth,

and use it for normalization. More precisely, we compute the difference between the

log-likelihood of each model (once again either our mixture model or all the one-type

50This exercise is motivated by Wright and Leyton-Brown (2010) except that we predict the behavior
of the same subjects in different games, rather than using one part of the subject pool for predicting the
behavior of other part of the pool.
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models) and the log-likelihood of the uniform model divided by the log-likelihood of

the uniform model, which gives the percentage improvement in log-likelihoods of each

model with respect to random behavior. The right-hand panel of Figure 1.6 reports the

average percentage improvement of the log-likelihood values with respect to random

behavior (see Table 1.18 for more details). The vertical bars reflect the standard errors

of these 16 improvements and again reflect how sensitive the ability of each model to

predict is to the CG considered. A good model should on average exhibit significantly

greater improvement with respect to random behavior and the average improvement

should not be too sensitive to which game is being predicted. In the latter case, if the

standard errors are large the particular model predicts well for some games but fails to

predict successfully for others. Observe that the first condition is only satisfied for the

mixture-of-types model and a mixture of level-k. That is, QRE, SPNE, and O alone are

not significantly better at predicting the behavior of our subjects out-of-sample than a

random selection of an action. Furthermore, the mixture-of-types model on average

outperforms the level-k alone.

As for standard errors, the mixture-of-types model is also the most stable at predict-

ing behavior, while all the others show greater sensitivity to the out-of-sample games.

In fact, our mixture-of-types model is the only one that always outperforms the ran-

dom type (see Table 1.18). The remaining models always predict the behavior worse

than a pure random type for at least two games.51 This includes the mixture of level-k.

We thus conclude that, at both the individual and population levels, our mixture-

of-types model is the most successful in predicting behavior and the least dependent

on which out-of-sample game is chosen to predict. As a result, researchers should ac-

count for behavioral heterogeneity in CGs not only for a better explanation of behavior

as advocated by this chapter, but also for a better prediction of choices in out-of-sample

games.

51O is an exception but it is because the estimated error is εo = 1. Therefore, it always performs as the
random behavioral type.
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FIGURE 1.6: AVERAGE PERCENTAGE IMPROVEMENT IN THE ABILITY TO PREDICT (LEFT) AND LOG-
LIKELIHOOD (RIGHT) OVER THE RANDOM BEHAVIOR, WHEN COMPARING THE OBSERVED BEHAVIOR
IN OUT-OF-SAMPLE GAMES USING IN-SAMPLE GAMES FOR ESTIMATION.

1.6 CONCLUSIONS

We report a study designed to explain initial behavior in CGs, combining experimental

and econometric techniques. Our approach enables us to classify people into differ-

ent behavioral explanations and discriminate between them. Crucially, this approach

determines endogenously whether one or multiple explanations are empirically rele-

vant. We show that people are largely heterogeneous and more than one explanation

is required to both explain and predict individual behavior in CGs. Independently of

our model specification, roughly 10% of people behave close to SPNE and most non-

equilibrium behavior seems to be due to two reasons: either the failure of common

knowledge of rationality, as advocated by Aumann (1992, 1995) and modeled via level-

k thinking model in our setting, or bounded reasoning abilities of subjects, simulated

by QRE.

The reported results may stimulate future research in two directions. Our study

contributes to the “competition” between level-k models and QRE as two behavioral

alternatives to standard equilibrium approaches. Some authors argue for the former
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while others prefer the latter, but empirical literature has found difficulties in discrim-

inating between the two approaches because both theories often predict very similar

behavior. As a result, most studies compare their abilities to explain behavior using

the representative-agent approach. Our design allows us to separate the predictions

of the two theories and we show that–at least in our setting–both level-k models and

QRE are empirically relevant for the explanation of non-equilibrium choices but each

model explains the behavior of different subjects. Future research should determine

how these conclusions extend to other strategic contexts.

Second, the behavior in CGs and other extensive-form games have been attributed

to their dynamic nature and the failure of backward induction, whereas our study

again shows that it may be a more general non-equilibrium phenomenon. Since most

non-equilibrium choices in our experiment are best explained by QRE and level-k that

have been successful in explaining behavior in static environments, our findings call

for a reevaluation of the aspects that distinguish static from dynamic games in the

analysis of non-equilibrium behavior.
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1.7 APPENDIX A: ADDITIONAL TABLES AND FIGURES

CG 1 CG 2

CG 3 CG 4

CG 5 CG 6

CG 7 CG 8

FIGURE 1.7: ALTERNATIVE REPRESENTATION OF THE CENTIPEDE GAMES USED IN THE EXPERIMENT
(1-8).
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CG 9 CG 10

CG 11 CG 12

CG 13 CG 14

CG 15 CG 16

FIGURE 1.8: ALTERNATIVE REPRESENTATION OF THE CENTIPEDE GAMES USED IN THE EXPERIMENT
(9-16).
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CG 13 CG 14

CG 15 CG 16

FIGURE 1.9: THE 16 CGS USED IN THE EXPERIMENT WITH THE PREDICTIONS OF EACH OF THE BEHAV-
IORAL MODELS EXCEPT QRE, A(γ) AND IA(ρ, σ) (SEE FIGURE 1.10).
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CG 1 CG 2

CG 3 CG 4

CG 5 CG 6

CG 7 CG 8

CG 9 CG 10

CG 11 CG 12

CG 13 CG 14

CG 15 CG 16

FIGURE 1.10: THE 16 CGS USED IN THE EXPERIMENT WITH THE PREDICTIONS OF QRE, A(γ) AND
IA(ρ, σ) FOR THE VALUES λ = 0.38, ρ = 0.22 AND σ = 0.55.
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TABLE 1.9: THE SEPARATION RATES BETWEEN QRE AND ALL OTHER BEHAVIORAL MODELS FOR λ =
{0, 0.1, ..., 1}

SPNE A(γ=.22) IA(ρ=.08,σ=.55) A IA PE O L1 L2 L3
λ = 0.0 0.75 0.70 0.70 0.55 0.45 0.38 0.75 0.75 0.68 0.61
λ = 0.1 0.66 0.60 0.64 0.91 0.87 0.84 0.91 0.47 0.54 0.58
λ = 0.2 0.50 0.44 0.48 0.84 0.74 0.83 0.91 0.53 0.48 0.58
λ = 0.3 0.34 0.32 0.35 0.84 0.76 0.82 0.94 0.59 0.57 0.58
λ = 0.4 0.31 0.29 0.32 0.88 0.72 0.85 0.97 0.66 0.54 0.52
λ = 0.5 0.25 0.29 0.26 0.88 0.69 0.85 0.97 0.69 0.60 0.52
λ = 0.6 0.22 0.27 0.23 0.88 0.69 0.85 0.97 0.72 0.66 0.52
λ = 0.7 0.22 0.27 0.23 0.88 0.69 0.85 0.97 0.72 0.66 0.52
λ = 0.8 0.19 0.24 0.20 0.88 0.66 0.85 0.97 0.72 0.66 0.52
λ = 0.9 0.16 0.22 0.17 0.88 0.66 0.85 0.97 0.72 0.66 0.55
λ = 1.0 0.16 0.22 0.17 0.88 0.66 0.85 0.97 0.72 0.66 0.55

Notes: THE TABLE REPORTS THE SEPARATION RATES BETWEEN THE QRE AND EACH OF THE BEHAVIORAL MODELS LISTED IN THE FIRST ROW FOR DIFFERENT VALUES OF λ. THE
MINIMUM SEPARATION IS 0, WHEN TWO BEHAVIORAL MODELS PREDICT EXACTLY THE SAME STRATEGY FOR EACH OF THE PLAYER ROLES AND EACH OF THE CENTIPEDE GAMES. THE
MAXIMUM SEPARATION RATE IS 1 WHEN TWO BEHAVIORAL MODELS PREDICT A DIFFERENT STRATEGY FOR EACH OF THE PLAYER ROLES AND EACH OF THE CENTIPEDE GAMES.

TABLE 1.10: THE SEPARATION RATES BETWEEN A(γ) AND SPNE FOR γ = {0.01, 0.1, 0.2, .., 1}

γ Separation Rates
0.01 0.00
0.10 0.00
0.20 3.83
0.30 10.83
0.40 13.59
0.50 15.67
0.60 17.08
0.70 18.92
0.80 21.08
0.90 22.58
1.00 26.33

Notes: THE TABLE REPORTS THE SEPARATION RATES
BETWEEN THE A(γ) AND SPNE FOR DIFFERENT
VALUES OF γ . THE MINIMUM SEPARATION IS 0, WHEN
TWO BEHAVIORAL MODELS PREDICT EXACTLY THE
SAME STRATEGY FOR EACH OF THE PLAYER ROLES
AND EACH OF THE CENTIPEDE GAMES. THE MAXI-
MUM SEPARATION RATE IS 1 WHEN TWO BEHAVIORAL
MODELS PREDICT A DIFFERENT STRATEGY FOR EACH
OF THE PLAYER ROLES AND EACH OF THE CENTIPEDE
GAMES.
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TABLE 1.11: THE SEPARATION RATES BETWEEN IA(ρ, σ) AND SPNE FOR ρ = {0.01, 0.1, 0.2, .., 1} AND
σ = {0.01, 0.1, 0.2, .., 1}

ρ/σ 0.01 0.10 0.20 0.3 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.01 0.00 0.00 0.75 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
0.10 0.50 0.50 1.25 1.25 1.25 1.25 1.25 2.00 2.00 2.00 2.00
0.20 3.00 3.17 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
0.30 5.92 5.75 5.25 5.25 5.25 5.25 5.25 5.25 5.25 5.25 5.25
0.40 7.58 6.92 6.75 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25
0.50 10.92 10.17 8.75 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25
0.60 12.75 11.00 9.92 9.42 8.42 8.42 8.42 8.42 8.42 8.42 8.42
0.70 19.33 14.25 11.58 11.00 11.00 9.75 9.58 9.58 9.58 9.58 9.58
0.80 20.92 16.08 14.67 12.83 11.58 11.58 11.58 10.25 10.25 10.17 10.17
0.90 21.92 19.58 16.00 14.17 13.17 13.17 11.58 11.58 11.58 10.25 10.25
1.00 21.08 20.75 16.00 14.33 14.33 14.33 13.33 13.33 11.75 11.75 11.75

Notes: THE TABLE REPORTS THE SEPARATION RATES BETWEEN THE IA(ρ, σ) AND SPNE FOR DIFFERENT VALUES OF ρ AND γ . THE MINIMUM SEPARATION
IS 0, WHEN TWO BEHAVIORAL MODELS PREDICT EXACTLY THE SAME STRATEGY FOR EACH OF THE PLAYER ROLES AND EACH OF THE CENTIPEDE GAMES. THE
MAXIMUM SEPARATION RATE IS 1 WHEN TWO BEHAVIORAL MODELS PREDICT A DIFFERENT STRATEGY FOR EACH OF THE PLAYER ROLES AND EACH OF THE
CENTIPEDE GAMES.

Separation in Payoffs. This part provides an alternative look at how well the pre-

dictions of the candidate explanations are separated in our CGs, taking into account

the incentives of each behavioral type to behave as a different type. More precisely,

Table 1.12 compares the incentives of each behavioral type to follow its predictions in

our 16 CGs vs. the predictions of any alternative theory, measured according to the

goal of each type (e.g. the sum of payoffs of both players for A, payoff difference for

IA, and simply payoffs or utilities for the other types). The first row and column list

the different behavioral types; the upper (lower) part of the table corresponds to Player

1(2). A particular cell ij reports the aggregate payoff that the behavioral type in row i

earns in the 16 CGs if she behaves true to type in column j and her opponents behave

in line with the beliefs of type i. In particular, if i = j the cell contains the total payoff

over the 16 CGs of a subject who is of type i always behaves as predicted by rule i and

the opponents always behave according to the beliefs of type i. For example, a Player

1 who adheres to SPNE always ends the game at her first decision node, leading to

8×40+8×16 = 448 experimental points. For i 6= j, the cells contain the total payoff in
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the 16 CGs that type i obtains if she keeps the beliefs of type i but behaves as type j in-

stead. As example, consider a SPNE player with SPNE beliefs who behaves asA. Since

such a player expects the opponent to behave according to SPNE, the cell (SPNE,A)

contains 20 + 10 + 20 + 10 + 2 + 1 + 38 + 1 + 13 + 15.25 + 40 + 16 + 33 + 11 + 10 + 39.25 =

279.5. Note that no such analysis can be carried out for PE as they are not following

an optimization problem, although it is possible to calculate the payoff that other be-

havioral types would earn if they followed the PE prescription rather than their own

optimal strategy.

TABLE 1.12: SEPARATION IN PAYOFFS BETWEEN DIFFERENT MODELS

Player 1
SPNE A(γ) IA(ρ,σ) A IA PE O L1 L2 L3 QRE(λ = 0.38)

SPNE 448.00 434.67 448.00 279.50 368.00 280.33 271.00 354.00 329.00 366.00 380.41
A(γ=.22) 492.82 655.28 492.82 681.26 490.62 684.13 673.95 733.67 633.42 732.46 618.81

IA(ρ=.08,σ=.55) 429.34 368.06 429.34 45.11 352.50 44.35 31.12 181.97 181.91 202.36 264.52
A 656.00 1856.67 656.00 6859.00 831.67 6827.42 6856.00 6408.00 2165.00 2191.00 1403.06

IA 240.00 323.33 240.00 436.50 141.00 447.42 427.00 397.00 424.00 415.00 366.31
O 448.00 1423.33 448.00 5283.28 587.00 5258.69 5307.20 5133.00 1571.00 1703.00 1065.40

L1 448.00 796.25 448.00 1781.78 484.08 1783.61 1755.95 1861.75 1028.00 1122.00 776.19
L2 448.00 664.67 448.00 851.25 383.00 863.75 830.00 902.00 1571.00 1542.00 1 816.95
L3 448.00 729.33 448.00 1011.13 495.25 1024.08 992.50 1034.00 1539.50 1703.00 910.26

QRE(λ = 0.38) 448.00 539.28 448.00 466.69 437.23 472.25 443.48 512.85 517.39 541.97 553.37

Player 2
SPNE A(γ) IA(ρ,σ) A IA PE O L1 L2 L3 QRE(λ = 0.38)

SPNE 208.00 208.00 208.00 208.00 208.00 208.00 208.00 208.00 208.00 208.00 208.00
A(γ) 381.00 580.72 381.00 740.04 572.11 740.04 740.04 744.56 756.49 462.75 490.55

IA(ρ,σ) 76.25 76.25 76.25 76.25 76.25 76.25 76.25 76.25 76.25 76.25 76.25
A 876.00 1436.00 991.75 6859.00 3302.50 5432.33 4037.00 3685.00 3771.75 1557.75 1480.50

IA 218.00 215.67 201.50 189.75 141.00 181.75 158.00 159.00 187.00 191.50 184.71
O 595.00 962.17 680.75 1661.10 1635.27 2304.93 3009.20 2847.00 2774.75 1031.60 1029.40

L1 498.25 592.83 526.50 700.04 740.45 860.08 1027.33 1106.25 1054.00 662.54 632.86
L2 487.00 853.17 487 1284.25 1278.50 1806.08 2299.00 2565.00 2584.00 840.00 773.69
L3 499.00 531.00 536.75 584.00 621.58 591.67 581.00 581.00 582.75 942.00 700.51

QRE(λ = 0.38) 396.19 401.73 409.12 346.52 377.21 347.05 330.05 335.18 412.13 384.42 427.23

Notes: THE TABLE REPORTS THE SEPARATION IN PAYOFFS BETWEEN THE BEHAVIORAL MODELS LISTED IN THE FIRST COLUMNS AND FIRST ROWS, FOR PLAYERS
1 AND 2 IN THE TOP AND BOTTOM PANELS. A PARTICULAR NUMBER IN ROW i AND COLUMN J REPORTS THE PAYOFF A BEHAVIORAL MODEL LISTED IN ROW i
OBTAINS IF IT FOLLOWS THE STRATEGIES PREDICTED BY THE BEHAVIORAL MODEL LISTED IN COLUMN j.

By construction, the comparison of the i = j values with i 6= j illustrate the in-

centives of a subject of a particular type to comply or not with her type. In the table,

the highest values (lowest payoff difference for IA) are in bold. As expected, almost

all types maximize their goal if they follow the prescriptions of their type, while al-

ternative decision rules typically yield a lower payoff (higher payoff difference in case

of IA).52 The behavioral types that show the widest separation in payoffs is those of A

52If Player 1 behaves according to SPNE Player 2’s behavior is irrelevant. Hence, the 208 experimental
points in all columns for SPNE-Player 2.
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and O, while SPNE and QRE show the smallest separation.

Replication of Behavior. Compared to earlier experimental studies on CGs, we

have changed several features in the procedures in carrying out our experiment. First

and most importantly, we apply the strategy method rather than the direct hot-hand

method. Second, our subjects played several CGs and we only elicit the initial re-

sponses in each game. Third, we only pay for three randomly chosen games. As a

result, we first ask whether these features do not distort subjects’ behavior vis-à-vis

other studies.

Exponentially Increasing-sum Constant-sum

FIGURE 1.11: COMPARISON OF BEHAVIOR ACROSS DIFFERENT STUDIES

Our exponentially increasing-sum CG 1 belongs to the most commonly tested vari-

ations of CGs. We compare the behavior of our 151 subjects who played the no-

feedback, cold version of the game with three other studies. First, we contrast their

behavior with the initial lab behavior of students in Palacios-Huerta and Volij (2009).

Their subjects (like ours) came from the University of the Basque Country. There were

80 students (40 in each role, as opposed to our 151, 76 as Player 1 and 75 as Player

2) and none of their students came from Economics or Business (whereas ours mostly

come from these two fields). Second, we also compare our subjects’ behavior with

those of the 58 subjects (29 in each player role) in McKelvey and Palfrey (1992). Third,

we contrast our data with the obtained in Kawagoe and Takizawa (2012). They do
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not report the exact number of subjects; we approximate it from the information on

the number of sessions and participants in each session. Given the different elicita-

tion methods, we cannot directly compare the behavior. To be able to compare them,

we create 100,000 random sub-samples from our data to match the number of sub-

jects in Palacios-Huerta and Volij (2009) and McKelvey and Palfrey (1992), and the

approximate number of subjects in Kagawoe and Takizawa (2012), respectively. For

each sub-sample, we randomly pair Players 1 and 2 and record the behavior that we

would observe if these two individuals interacted. Each of the 100,000 sub-samples

thus generates one possible distribution of behavior if our subjects participated in an

experiment under the conditions of the studies in the comparison. The white bars in

Figure 1.11, on the left, report the average simulated stopping frequencies at a partic-

ular decision node in the 100,000 simulated sub-samples corresponding to the condi-

tions of Palacios-Huerta and Volij (2009). The black and grey bars show the observed

stopping frequencies in Palacios-Huerta and Volij (2009), McKelvey and Palfrey (1992),

and Kawagoe and Takizawa (2012), in this order. The horizontal bars present the 95%

percentiles of the simulated distributions of behavior under Palacios-Huerta and Volij

(2009)’s conditions.53 It can be seen that the behavior in our experiment is relatively

similar to that in the study by to Palacios-Huerta and Volij (2009). When it differs, it

typically deviates towards the frequencies observed in McKelvey and Palfrey (1992) or

Kawagoe and Takizawa (2012), where there is a general tendency to stop somewhat

later.

The right-hand side of Figure 1.11 also compares the corresponding simulated be-

havior in CG 9 with the initial behavior of the 58 subjects in Fey et al. (1996) and the

behavior of the 40-48 (approximated by 44) subjects presented in Kawagoe and Tak-

izawa (2012). The behavior is very similar in all cases.

53For the sake of readability, we omit the corresponding simulated behavior for McKelvey and Palfrey’s
(1992) and Kawagoe and Takizawa (2012) conditions in the figure and only use them for the statistical tests
below. Since there are more observations in Palacios-Huerta and Volij (2009), their conditions generate
less variability in the simulated behavior and thus present a more conservative comparison.
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We thus conclude that the behavior in our CG 1 and 9 is comparable to that of other

studies.54 In CG 1, our observed behavior is particularly close to the one observed in

the experiment by Palacios-Huerta and Volij (2009), conducted few years earlier at the

same University; in CG 9, our observed behavior is very close to both Fey et al. (1996)

and Kawagoe and Takizawa (2012).

Finally, in the third chapter, we explore whether the hot and cold methods generate

the same behavior using four of our CGs: the games CG1, CG9, CG7 and CG16. We

observe that the use of direct method tends to make individuals stop somehow earlier

than the strategy method in CG1 and CG9. However, the behavior elicited using the

cold method in this study is still in between the behavior using direct method by our

experiment and the behavior using the direct method by the original studies. We found

no differences across the two elicitation methods in CG7 and CG16. Hence, our design

features do not seem to distort subjects’ behavior.

54We performed Pearson chi-square tests of independence with two alternative null hypotheses. First,
the test of the null hypothesis that the simulated play of different ending nodes in our experiment is
not different from the behavior in other studies yields p-values of 0.38, 0.34, 0.64, 0.00 and 0.56 for the
comparison with Palacios-Huerta and Volij (2009), McKelvey and Palfrey (1992), Fey et al. (1996), and
the increasing- and constant-sum treatments of Kawagoe and Takizawa (2012), respectively. Second, the
test of the null hypothesis that the behavior from other studies come from our simulated play yields p-
values of 0.09, 0.07, 0.49, 0.00 and 0.35 respectively. No test is rejected at conventional 5% significance,
with the exception of the increasing-sum treatment of Kawagoe and Takizawa (2012) where subjects stop
significantly later than in our and the other studies. Since this difference also arises in the comparison of
Kawagoe and Takizawa (2012) with McKelvey and Palfrey (1992) and Palacios-Huerta and Volij (2009),
we conclude that the behavior of our subjects does not differ from that in other studies.
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CG 1 CG 2

CG 3 CG 4

CG 5 CG 6

CG 7 CG 8

FIGURE 1.12: OBSERVED AGGREGATE BEHAVIOR IN CGS 1-8.
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CG 9 CG 10

CG 11 CG 12

CG 13 CG 14

CG 15 CG 16

FIGURE 1.13: OBSERVED AGGREGATE BEHAVIOR IN CGS 9-16.
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TABLE 1.13: CONSISTENCY WITH A PARTICULAR BEHAVIORAL MODEL FOR DIFFERENT CRITERIA

SPNE A(γ=.22) IA(ρ=.08,σ=.55) A IA PE O L1 L2 L3 QRE(0.38)
0 151 151 151 151 151 151 151 151 151 151 151
1 142 144 142 150 147 151 124 151 149 149 151
2 139 141 139 95 133 124 92 150 148 138 149
3 128 127 127 54 117 78 57 148 145 128 142
4 108 113 108 25 63 35 39 134 136 117 129
5 96 95 94 13 32 10 33 116 123 101 96
6 79 80 77 8 12 7 19 100 110 81 77
7 65 64 62 6 5 3 14 79 85 63 48
8 49 50 47 5 2 3 8 61 53 46 19
9 39 38 36 4 0 2 6 34 24 30 4

10 29 26 26 3 0 2 4 26 9 16 0
11 19 16 17 2 0 0 4 15 4 5 0
12 12 7 12 0 0 0 4 5 2 1 0
13 6 2 5 0 0 0 4 3 0 0 0
14 4 1 2 0 0 0 3 1 0 0 0
15 1 0 0 0 0 0 3 0 0 0 0
16 1 0 0 0 0 0 3 0 0 0 0

Notes: THE TABLE REPORTS THE NUMBER OF SUBJECTS (OUT OF 151) THAT COMPLY WITH EACH OF THE BEHAVIORAL MODELS, LISTED IN THE FIRST ROW, FOR
DIFFERENT NUMBER OF GAMES, AS LISTED IN THE FIRST COLUMN. WHEN THE COMPLIANCE CRITERION IS LOW, I.E. ONE GAME, THEN THE NUMBER OF SUBJECTS
THAT COMPLY WITH EACH OF THE BEHAVIORAL NUMBERS IS CLOSE TO 151. WHEN THE COMPLIANCE CRITERION IS HIGH, I.E. 15 GAMES, THEN THE NUMBER
OF SUBJECTS THAT COMPLY WITH EACH OF THE BEHAVIORAL MODELS IS LOWER.

TABLE 1.14: ESTIMATION RESULTS WITH TWO QRE TYPES

Original Results Two QRE
Type pk εk, λ pk εk, λ

(1) (2) (3) (4)
SPNE 0.08 0.31 0.09 0.06

O 0.03 0.06 0.03 0.60
L1 0.31 0.60 0.31 0.66
L2 0.21 0.66 0.21 0.62
L3 0.11 0.62 0.10 0.76

QRE 1 0.27 0.42 0.22 0.38
QRE 2 0.06 0.32

Notes: THE TABLE REPORTS THE ESTIMATION RESULTS FOR THE
UNIFORM ERROR SPECIFICATION AND THE RESTRICTED MODEL
WHEN ONE UNIQUE QRE MODEL IS CONSIDERED, COLUMNS 1-
2, AND WHEN TWO QRE BEHAVIORAL MODELS ARE ALLOWED,
COLUMNS 3 AND 4. COLUMNS 1 AND 3 PRESENT THE ESTIMA-
TION RESULTS ON THE FREQUENCIES FOR EACH OF THE BEHAV-
IORAL MODEL. COLUMNS 2 AND 4 PRESENT THE ESTIMATION
RESULTS FOR THE ERROR PARAMETERS.
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TABLE 1.15: SEPARATION OF GANG OF FOUR MODEL WITH OTHER BEHAVIORAL MODELS CONSIDERED,
FOR DIFFERENT VALUES OF q.

SPNE A IA PE O L1 L2 L3 QRE(λ=.38)
q = 0.00 0.91 0.59 0.83 0.47 0.38 0.44 0.70 0.95 0.81
q = 0.10 0.91 0.59 0.83 0.47 0.38 0.44 0.70 0.95 0.81
q = 0.20 0.80 0.54 0.82 0.47 0.38 0.52 0.56 0.82 0.67
q = 0.30 0.78 0.59 0.82 0.53 0.44 0.50 0.50 0.80 0.66
q = 0.37 0.78 0.67 0.82 0.58 0.53 0.41 0.48 0.80 0.66
q = 0.40 0.78 0.66 0.78 0.58 0.53 0.41 0.47 0.80 0.66
q = 0.50 0.78 0.67 0.78 0.60 0.56 0.41 0.42 0.80 0.63
q = 0.60 0.73 0.66 0.74 0.58 0.56 0.44 0.42 0.77 0.63
q = 0.70 0.70 0.68 0.72 0.59 0.61 0.47 0.41 0.70 0.63
q = 0.80 0.66 0.70 0.71 0.58 0.64 0.51 0.43 0.67 0.58
q = 0.90 0.65 0.73 0.64 0.65 0.76 0.58 0.48 0.58 0.59
q = 1.00 0.00 0.88 0.58 0.87 1.00 0.72 0.66 0.55 0.31

Notes: THE TABLE REPORTS THE SEPARATION RATES BETWEEN THE GANG OF FOUR TYPE AND EACH OF THE BEHAVIORAL MODELS LISTED IN THE FIRST ROW FOR
DIFFERENT VALUES OF q. THE MINIMUM SEPARATION IS 0, WHEN TWO BEHAVIORAL MODELS PREDICT EXACTLY THE SAME STRATEGY FOR EACH OF THE PLAYER
ROLES AND EACH OF THE CENTIPEDE GAMES. THE MAXIMUM SEPARATION RATE IS 1 WHEN TWO BEHAVIORAL MODELS PREDICT A DIFFERENT STRATEGY FOR
EACH OF THE PLAYER ROLES AND EACH OF THE CENTIPEDE GAMES.
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FIGURE 1.14: DISTRIBUTION OF PER-SUBJECT POSTERIOR PROBABILITIES OF BELONGING TO EACH
MODEL, COMPUTED FOR THE REDUCED MODEL WITH THE UNIFORM-ERROR SPECIFICATION (3-4) IN
TABLE 6A. THE TABLE SHOWS THAT A VAST MAJORITY OF SUBJECTS IS CLASSIFIED WITH PROBABILITY
CLOSE TO 1 TO ONE UNIQUE RULE, SUGGESTING A CLEAN SEGREGATION OF BEHAVIORAL TYPES IN OUR
DATA.
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TABLE 1.16: ESTIMATION RESULTS WITH 15 IN-SAMPLE GAMES. OUT-SAMPLE CGS 1-8.

Out-sample CG
Type 1 2 3 4 5 6 7 8
SPNE (pk) 0.10 0.07 0.09 0.09 0.07 0.08 0.09 0.09

(0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
O (pk) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
L1 (pk) 0.30 0.31 0.31 0.34 0.30 0.29 0.25 0.31

(0.06) (0.06) (0.06) (0.06) (0.06) (0.05) (0.05) (0.06)
L2 (pk) 0.13 0.20 0.17 0.18 0.26 0.25 0.22 0.19

(0.06) (0.06) (0.06) (0.05) (0.07) (0.06) (0.05) (0.05)
L3 (pk) 0.08 0.12 0.09 0.09 0.09 0.05 0.03 0.15

(0.05) (0.05) (0.05) (0.05) (0.04) (0.04) (0.04) (0.06)
QRE (pk) 0.36 0.27 0.30 0.28 0.25 0.31 0.39 0.24

(0.05) (0.05) (0.05) (0.04) (0.05) (0.05) (0.06) (0.05)
SPNE (εk) 0.31 0.24 0.35 0.33 0.26 0.27 0.33 0.33

(0.09) (0.14) (0.08) (0.08) (0.07) (0.06) (0.07) (0.09)
O (εk) 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

(0.13) (0.09) (0.10) (0.14) (0.11) (0.08) (0.14) (0.14)
L1 (εk) 0.60 0.60 0.61 0.65 0.60 0.58 0.57 0.59

(0.04) (0.10) (0.04) (0.04) (0.05) (0.05) (0.05) (0.04)
L2 (εk) 0.60 0.65 0.68 0.63 0.59 0.60 0.64 0.66

(0.11) (0.17) (0.12) (0.05) (0.05) (0.05) (0.08) (0.12)
L3 (εk) 0.89 0.62 0.62 0.65 0.79 0.92 0.99 0.58

(0.17) (0.05) (0.15) (0.13) (0.17) (0.18) (0.19) (0.10)
QRE (λ) 0.32 0.43 0.41 0.43 0.44 0.38 0.25 0.42

(0.09) (0.08) (0.07) (0.11) (0.11) (0.09) (0.08) (0.14)
Notes: THE TABLE REPORTS THE ESTIMATION RESULTS FOR THE UNIFORM ERROR SPECIFICATION AND THE RESTRICTED MODEL WHEN ONE OF THE CENTIPEDE
GAMES HAS BEEN TAKEN OUT (THE ONE LISTED IN THE FIRST ROW). A PARTICULAR NUMBER IN ROW i AND COLUMN j, THE TABLE SHOWS THE ESTIMATED
COEFFICIENT ON THE PARAMETER SPECIFIED IN ROW i WHEN THE GAME IN COLUMN j WAS TAKEN OUT. THE NUMBER IN PARENTHESIS PRESENT
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TABLE 1.17: ESTIMATION RESULTS WITH 15 IN-SAMPLE GAMES. OUT-SAMPLE CGS 9-16

Out-sample game
Type 9 10 11 12 13 14 15 16
SPNE (pk) 0.08 .011 0.09 0.09 0.07 0.07 0.04 0.08

(0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
O (pk) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
L1 (pk) 0.28 0.33 0.30 0.30 0.30 0.34 0.29 0.30

(0.05) (0.05) (0.05) (0.05) (0.05) (0.06) (0.05) (0.05)
L2 (pk) 0.23 0.18 0.21 0.18 0.21 0.20 0.25 0.23

(0.07) (0.06) (0.06) (0.06) (0.07) (0.07) (0.06) (0.06)
L3 (pk) 0.14 0.05 0.03 0.10 0.15 0.10 0.15 0.10

(0.06) (0.04) (0.04) (0.05) (0.05) (0.05) (0.06) (0.05)
QRE (pk) 0.25 0.30 0.35 0.30 0.24 0.27 0.23 0.26

(0.05) (0.06) (0.05) (0.05) (0.05) (0.05) (0.06) (0.05)
SPNE (εk) 0.32 0.32 0.34 0.34 0.29 0.30 0.19 0.31

(0.10) (0.06) (0.08) (0.09) (0.08) (0.07) (0.11) (0.11)
O (εk) 0.07 0.07 0.05 0.04 0.07 0.07 0.05 0.07

(0.10) (0.10) (0.15) (0.15) (0.20) (0.16) (0.11) (0.13)
L1 (εk) 0.59 0.62 0.60 0.60 0.59 0.62 0.61 0.56

(0.04) (0.05) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
L2 (εk) 0.65 0.66 0.65 0.66 0.62 0.63 0.66 0.69

(0.09) (0.09) (0.06) (0.06) (0.08) (0.08) (0.06) (0.08)
L3 (εk) 0.58 0.61 0.99 0.69 0.60 0.59 0.65 0.55

(0.12) (0.16) (0.15) (0.12) (0.12) (0.15) (0.08) (0.11)
QRE (λ) 0.43 0.26 0.26 0.27 0.43 0.42 0.58 0.38

(0.15) (0.10) (0.10) (0.13) (0.14) (0.14) (0.14) (0.12)
Notes: THE TABLE REPORTS THE ESTIMATION RESULTS FOR THE UNIFORM ERROR SPECIFICATION AND THE RESTRICTED MODEL WHEN ONE OF THE CENTIPEDE
GAMES HAS BEEN TAKEN OUT (THE ONE LISTED IN THE FIRST ROW). A PARTICULAR NUMBER IN ROW i AND COLUMN j, THE TABLE SHOWS THE ESTIMATED
COEFFICIENT ON THE PARAMETER SPECIFIED IN ROW i WHEN THE GAME IN COLUMN j WAS TAKEN OUT. THE NUMBER IN PARENTHESIS PRESENT THE STANDARD
ERRORS.
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TABLE 1.18: THE PERCENTUAL IMPROVEMENT OF THE LOG-LIKELIHOODS EXPLAINING BEHAVIOR OUT-
OF-SAMPLE, WITH RESPECT TO RANDOM BEHAVIOR. EACH COLUMN CORRESPONDS TO ONE OUT-OF-
SAMPLE GAME; THE ROWS LIST THE DIFFERENT MODELS. LEVEL-k CORRESPONDS TO A MIXTURE OF L1,
L2, AND L3.

Game predicted
1 2 3 4 5 6 7 8 9 10

Mixture 0.05 0.12 0.05 0.13 0.13 0.04 0.10 0.11 0.17 0.15
QRE -0.60 -1.00 -0.06 0.17 0.13 -0.08 -0.22 0.13 0.19 0.15
SPNE -0.10 -0.14 -0.04 -0.04 0.05 0.00 0.02 0.09 0.05 -0.05
O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Lk 0.04 0.05 0.07 0.10 0.08 0.06 0.03 0.04 0.21 0.14

11 12 13 14 15 16 Mean St.dev. St.Er.
Mixture 0.18 0.22 0.09 0.08 0.24 0.13 0.12 0.06 0.01
QRE 0.09 0.18 0.11 0.08 0.32 0.12 -0.02 0.34 0.08
SPNE 0.14 0.12 0.05 0.01 0.15 0.05 0.02 0.08 0.02
O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Lk 0.18 0.22 -0.10 -0.04 0.28 0.03 0.09 0.10 0.02

Notes: THE TABLE REPORTS THE PERCENTUAL IMPROVEMENT OF THE LOG-LIKELIHOODS EXPLAINING BEHAVIOR OUT-OF SAMPLE. THE BENCHMARK MODEL IS
RANDOM UNIFORM BEHAVIOR. EACH COLUMN CORRESPONDS TO THE CASE IN WHICH ONE GAME IS TAKEN OUT. THE ROWS LIST THE DIFFERENT BEHAVIORAL
MODELS. LEVEL-K CORRESPONDS TO A MIXTURE OF L1, L2, AND L3.

1.8 APPENDIX B: INSTRUCTIONS IN ENGLISH (ORIGINAL IN

SPANISH)

THANK YOU FOR PARTICIPATING IN OUR EXPERIMENT!

This is an experiment, so there is to be no talking, looking at what other participants

are doing or walking around the room. Please, turn off your phone. If you have any

questions or you need help, please raise your hand and one of the researchers will

assist you. Please, do not write on these instructions. If you fail to follow these rules,

YOU WILL BE ASKED TO LEAVE THE EXPERIMENT AND YOU WILL NOT BE

PAID. Thank you.

The University of the Basque Country has provided the funds for this experiment.

You will receive 3 Euros for arriving on time. Additionally, if you follow the instruc-

tions correctly you have the chance of earning more money. This is a group experiment.

Different participants may earn different amounts. How much you can win depends

on your own choices, on other participants choices, and on chance.
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No participant can identify any other participant by his/her decisions or earnings

in the experiment. The researchers can observe each participant earnings, but they will

not associate your decisions with the name of participant name.

During the experiment you can win experimental points. At the end, these experi-

mental points will be converted into cash at a rate of 1 experimental point = 0.10 euros.

Everything you earn will be paid in cash, in a strictly private way at the end of the

experimental session.

Your final earnings will be the sum of the 3 Euros that you get just for participating

and the amount that you earn during the experiment.

Each experimental point earns you 10 Euro cents, so 10 experimental points make

1 euro (10 x 0,10 = 1 Euro).

For example, if you obtain a total of 80 experimental points you will earn a total

of 11 Euros (3 for participating plus 8 from converting the 80 experimental points into

cash).

For example, if you obtain a total of 45 experimental points you will earn a total of

7.5 Euros (45 x 0.10 = 4.5 + 3 = 7.5)

For example, if you obtain a total of 190 experimental points you will earn a total

of 22 euros (190 x 0.10 = 19 + 3 = 22)

Groups:

All participants in these sessions will be randomly divided in two different groups,

the RED group and the BLUE group. Before you start making decisions, you will

be informed if you are RED or BLUE, and you will maintain that status throughout

the experiment. Each participant in the RED group will be randomly matched with a

BLUE participant.

Game and options:

The experiment will consist of 16 games. In each game you will be matched ran-

domly with a participant form other group. Nobody will know the identity of the
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participant with whom you are matched, nor will it be possible to identify him/her by

his/her decisions during or after the experiment.

A description of the games follows. Every game has the same format, as repre-

sented in graphic form below.

If you are a RED participant, you will see this version of the game, where you can

choose between the red circles only.

FIGURE 1.15: ROJO

If you are a BLUE participant, you will see this other version of the game, where

you can choose between the blue circles only.

FIGURE 1.16: AZUL

In each game, each participant, RED or BLUE, has three chances to determine the

earnings of both participants, in which he/she can choose one of two actions: stop or

continue. In the graphic representation, the circles colored, RED and BLUE, identify

which participant chooses. As the direction of the arrows shows, the game should be

read from left to right. The earnings of the two participants are represented by X and Y,

which in each circle of each game will be different numbers, representing experimental

points.

The RED participant has the first chance to choose: he/she can “Stop here” or con-
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tinue. In the graphic representation the downward arrow in the first RED circle rep-

resents “Stop” and the rightward arrow represents continue. If the RED participant

chooses “Stop here”, the RED participant receives X1 and the BLUE participant Y1,

and the game ends. If the RED participant does not choose “Stop here”, then the game

continues and it is the BLUE participant who chooses in the first blue circle.

The BLUE participant can choose “Stop” or continue. In the graphic representation,

the downward arrow in the first BLUE circle represents “Stop here” and the rightward

arrow represents continue. If the BLUE participant chooses “Stop here” the RED par-

ticipant receives X2 and the BLUE participant Y2, and the game ends. If the BLUE

participant does not choose “Stop here”, then the game continues and it is the RED

participant who chooses again in the second red circle

This description is repeated in the second red and blue circles, until the last chance

is reached by the RED and BLUE participants.

In the last chance for the RED participant, represented by the third and last red

circle, the RED participant can choose “Stop here” or “Never stop”. If the RED partic-

ipant chooses “Stop here” the RED participant receives X5 and the BLUE participant

Y5, and the game ends. If the RED participant chooses “Never stop”, then it is the

BLUE participant who chooses for the last time.

In the last chance for the BLUE participant, represented by the third and last blue

circle, the game ends. If the BLUE participant chooses "Stop here" each participant

receives, X6 for the RED and Y6 for the BLUE, and the game ends. If the BLUE par-

ticipant chooses “Never stop” the game ends and the quantities that the participants

receive are X7 for the RED and Y7 for the BLUE.

In summary, in each game you have to choose where to stop or whether not to stop.

That means that in each game you can choose between four different options: stop in

the first circle of your color, stop in the second circle of your color, stop in the third

circle of your color, or “Never stop”. The quantities change on each occasion and the
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participant who chooses “Stop here” before the other participant is the one who ends

the game and determines the experimental points earned by both participants.

In order to make the game easier to understand, three examples are shown below.

In the examples we show a choice by the RED participant (shaded in red) and one by

the BLUE (shaded in blue) for a hypothetical game, and we identify the earnings for

each participant.

Example 1:

FIGURE 1.17: EJEMPLO 1(ROJO)

FIGURE 1.18: EJEMPLO 1(AZUL)

The RED participant has chosen “Stop”in the first red circle and the BLUE partici-

pant has chosen “Stop”in the first blue circle. Because the RED participant has stopped

before the BLUE participant:

The RED participant earns: 40

The BLUE participant earns: 10

Example 2:

The RED participant has chosen “Stop”in the second red circle and the BLUE par-

ticipant has chosen “Never stop”. Because the RED participant has stopped before the

BLUE participant:
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FIGURE 1.19: EJEMPLO 2(ROJO)

FIGURE 1.20: EJEMPLO 2(AZUL)

The RED participant earns: 42

The BLUE participant earns: 8

Example 3:

FIGURE 1.21: EJEMPLO 3(ROJO)

The RED participant has chosen “Never stop” and the BLUE participant has chosen

stop in the third blue circle. Because the BLUE participant has stopped before the RED

participant:

The RED participant earns: 456

The BLUE participant earns: 103

Note: These examples are just an illustration. The experimental points that appear

are examples, i.e. they are not necessarily the ones that will appear in the 16 games.

In addition, the examples ARE NOT intended to suggest how anyone should choose

between the different options.
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FIGURE 1.22: EJEMPLO 3(AZUL)

How the computer works: In each game, you will see 4 white boxes, one for each

of your possible options. To choose an option, click on the corresponding box. When

you have selected an option, the box will change color, as shown in the examples. This

choice is not final: you can change it whenever you want by clicking on other box as

long as you have not yet clicked the “OK” button that will appear in the bottom-left

corner of each screen. Once you click “OK” your choice will be final and you will move

on to the next game. You cannot pass on to the next game until you have chosen an

option and have clicked “OK”.

Earnings:

Once you have submitted your choices in the 16 games, the computer chooses three

games at random for each participant for payment. You will be paid depending on the

actions that you chose and the ones that the participant you were matched with chose

in each of those three games.

Summary:

• The computer will choose randomly whether you are a RED or BLUE participant

for the whole experiment.

• You will participate in 16 different games and in each of them you will be matched

randomly with a participant of the other color.

• In each game, each participant can choose between four different options: stop in

the first circle of his/her color, stop in the second circle of his/her color, stop in

the third circle of his/her color or “Never stop”. The quantities change on each
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occasion and the participant that chooses “Stop here” before the other participant

is the one that ends the game and determines the experimental points for both

participants.

• At the end, the computer will randomly choose 3 of the 16 games for each player,

and you will be paid depending on the actions chosen by you and by the partici-

pant you were matched to in each of those three games.

The experiment will start shortly. If you have any questions or you need help,

please, raise your hand and one of the researchers will help you.



Chapter 2

Do people minimize regret in

strategic situations? A level-k

comparison

2.1 INTRODUCTION

The Nash equilibrium is the benchmark solution concept in game theory. However, it

fails to predict the observed behavior in many strategic situations of interest, especially

if subjects face a situation for the first time (Goeree and Holt, 2001; Bosch-Domenech

et al., 2002; Cabrera et al., 2007; Camerer, 2003). Many alternative explanations have

been proposed and tested to explain the deviations from Nash equilibria. The purpose

of this study is to provide an analysis of the relationships between two of those expla-

nations, regret minimization and level-k thinking. We show that these two behavioral

models prescribe the same behavior in many canonical experimental games and in a

large number of games explicitly designed to discriminate between different theories

of behavior. This comes as a surprise given these two behavioral models differ in their

origins and, more importantly, in their underlying motivations. Hence, behavior ratio-

87
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nalized by regret minimization may often be due to level-k reasoning and vice versa.

We test whether people follow regret minimization and level-k thinking, and if so to

what extent.

Regret is a negative feeling of sorrow or remorse for an action. Even though re-

gret is only felt ex post, it can be anticipated and taken into account when evaluating

different options. In terms of payoffs, regret can be defined as the difference between

the payoff that a player could have earned if she chose the best response to the final

state of the world or behavior of others, and the payoff that she actually obtained.

Minimax regret (MR, henceforth) takes into account the anticipation of regret and ap-

plies the traditional minimax rule to the measure of regret (instead of payoffs), choos-

ing the decision that minimizes the maximum regret that one could possibly obtain.1

MR as a criterion for decision making under uncertainty exists at least since Savage

(1951).2 The subsequent literature has treated the notion of regret in different ways,

for instance Loomes and Sugden (1982) and Bell (1982) incorporate it into the utility

function. The role of regret has so far been explored or empirically tested in multi-

ple situations across different fields.3 Different models of MR proposed for strategic

situations are addressed in Section 2.2.1.4

Level-k is a behavioral model that assumes that players best respond to their beliefs

but have a simplified, non-equilibrium model of how other individuals behave (Stahl

1Note that this is different from the minimax decision rule (applied to payoffs), even in 2× 2 games.
2There have been several axiomatizations of MR. See Milnor (1954) and Stoye (2011) for preference

ordering, and Hayashi (2008) and Stoye (2011) for choice correspondence.
3Examples include bilateral bargaining (Linhartand Radner, 1989), price-setting (Renou and Schlag,

2010), strategic decision making (Halpern and Pass, 2012), treatment choice problems (Manski, 2004, 2007;
Stoye, 2009), decision processes (Baron and Ritov, 1994, 1995), auctions (Ozbay and Ozbay, 2007; Ratan
and Wen, 2016), and cultural differences in decisions (Giordani et al., 2010). See Wang and Boutilier
(2003) for applications in computer science, Zeelenberg (1999) for applications in psychology, Loulou and
Kanudia (1999) for applications in environmental issues, and Brehaut et al. (2003) for applications in
medicine.

4Two strategic models based onMR are not considered in this study. Hyafil and Boutilier (2004) create
an equilibrium for incomplete information games where agents minimize regret with respect to different
agents’ utility types and not choices of others as in our study. Renou and Schlag (2010) introduce an
equilibrium that, unlike our approach, allows conjectures about the play of others. The former differs
considerably from standard models of regret, while our aproach and the latter are identical under specific
assumptions regarding the conjectures of players about the behavior of others.
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and Wilson, 1994, 1995; Nagel, 1995). In this model, level-k types (Lk) represent dif-

ferent levels of sophistication and assume that their strategy is the most sophisticated

(Costa-Gomes et al., 2001). The least sophisticated level, L0, takes each available action

with the same probability. An Lk type is defined as an individual who best responds

to a population of Lk-1 individuals. As well as MR, level-k thinking has also proved

successful in explaining non-equilibrium behavior.5

This chapter analyzes the relationships between the behavior predicted byMR and

L1. We first show that both behavioral models prescribe the same behavior in a large

number of games that have been explicitly designed to discriminate between different

theories of behavior in strategic situations. We use experimental results from 17 ex-

perimental studies, providing a total of 277 different strategic decisions. MR and L1

predict the same behavior in 83% of these 293 different decisions, and the two mod-

els predict entirely different actions in only 35 decisions (12%). These figures raise

the question of whether MR and L1 cannot be easily separated or whether no efforts

have been made to separate them. In the work on initial responses that we have ana-

lyzed, Costa-Gomes and Crawford (2006) represent a notable exception as their guess-

ing games separate these two theories of behavior very well. Therefore, our empirical

analysis below re-examine the data from Costa-Gomes and Crawford (2006) to see if

individual behavior can be explained by L1 or MR.

Since the predictions of the two models coincide in so many cases, we analyze the

link between them theoretically. We show that MR and L1 always predict the same

behavior in any 2 × 2 game. Moreover, the presence of dominant or dominated ac-

tions complicates the separation of these two behavioral models. Last, we use several

examples to illustrate that the two models predict the same behavior in other strate-

5Examples include normal-form games (Stahl and Wilson, 1994, 1995; Costa-Gomes et al., 2001),
beauty contests (Nagel, 1995; Costa-Gomes and Crawford, 2006), entry games (Camerer et al., 2004),
auctions (Crawford and Iriberri, 2007), hide and seek games (Crawford and Iriberri, 2007), mechanism
design (Crawford et al., 2009), asymmetric information games (Brown et al., 2012) and centipede games
(Garcia-Pola et al., 2016). See Crawford et al. (2013) for a review.
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gic situations of interest, well beyond simple 2 × 2 games and games with dominant

strategies.

Due to the overlapping predictions of the two models in both theory and the exper-

imental literature and given that both MR and L1 have been proposed as explanations

of behavior in games of varying structures (see Halpern and Pass, 2012, for the former

and Crawford et al., 2013, for the latter), we proceed as follows. First, we revisit the

data from Costa-Gomes and Crawford (2006). As mentioned above, this is the only

study in the literature analyzed that enables the predictions of MR to be separated

successfully from those of L1. Second, we propose an experiment explicitly designed

to separate the predictions of these two theories of behavior, consisting of a series of

simple normal-form games with three particular features. First, the games are de-

signed such that different models of MR predict the same action. This enables a clean

test to be conducted of the idea of MR vis-à-vis other theories. Second, we make the

incentives to follow the action prescribed by each behavioral model as large as possi-

ble. This provides incentives for subjects to behave in line with their behavioral type

and decreases the probability of making a mistake. Finally, and most importantly, the

games are designed such that the two behavioral models are systematically separated,

which is the main objective of the experiment.

The advantage of using the data from both experiments is that we can test the abil-

ity of MR and L1 to explain behavior in games with continuous, large strategy spaces

from Costa-Gomes and Crawford (2006) and games with finite and small numbers of

strategies presented in normal-form form as in our own experiment.

L1 explains a larger proportion of behavior in both experiments, but a non-negligible

number of decisions are in line with MR. However, when subjects are required to

be consistent in their behavior across different games we find little evidence for MR

in the guessing games (4%) and no evidence for it in the data from our own experi-

ment. In fact, the estimates suggest that no subject follows MR systematically in our
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normal-form games. These findings show that the relevance of MR as an explanation

of behavior in strategic situations should be questioned.

The chapter is organized as follows. Section 2.2 formally introduces level-k think-

ing and MR models. Section 2.3 analyzes the relationships between the predictions of

the two models, first theoretically and then using many games employed in the exper-

imental literature. Section 2.4 describes the two data sets used to separate L1 and MR

and presents the results. Section 2.5 concludes.

2.2 THEORETICAL FRAMEWORK

In this section, we first specify the notation and then introduceMR and level-k models.

Consider a game G = (N,A, ~u) where N = {1, ..., n} is the set of players and

A = A1 × · · · × An is the set of action profiles (pure strategy profiles). Ai is the action

space of player i and the vector ~a is an action profile consisting of an action ai for each

player i, that is ~a = {a1, ..., an}. Let ~a−i denote the action profile of all players except

for player i and ui(~a) denote the payoff obtained by player i if the action profile ~a is

played.

Let S = S1 × · · · × Sn denote the set of mixed strategy profiles where Si = ∆(Ai) is

the set of mixed strategies of player i. A mixed strategy si is a probability distribution

si ∈ ∆(Ai), where si(ai) is the probability that an individual i playing si assigns to

choosing ai. ~s and ~s−i are defined analogously and ui(~s) is the standard expected

utility of player i from a mixed strategy profile ~s.

2.2.1 MINIMAX REGRET

MR is a non-strategic decision rule in which people choose the strategy that minimizes

the maximum regret that they could possibly experience. In contrast to the standard

equilibrium approach, an individual following this rule does not need to know the

behavior or payoffs of the other players. Formally, let u∗(~a−i) be the maximal payoff
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an individual i can earn if her opponents play ~a−i ∈ A−i:

u∗(~a−i) = max
ai∈Ai

ui(ai,~a−i). (2.1)

Define the regret of each action ai given the actions played by the opponents (~a−i) as

the difference between the maximal payoff that ai could yield to i and the actual payoff

that i receives. That is,

regreti(ai|~a−i) = u∗(~a−i)− ui(ai,~a−i) ≥ 0. (2.2)

Let regreti(ai) be the maximum regret that player i could possibly obtain by choosing

ai for any possible behavior of the opponents:

regreti(ai) = max
~a−i∈A−i

regreti(ai|~a−i). (2.3)

Finally, we define MRi(A) as the set of actions that minimize the maximum regret:

MRi(A) = arg min
ai∈Ai

regreti(ai). (2.4)

Last, MR(A) = MR1(A)× · · · ×MRn(A). This definition generalizes in a straightfor-

ward way for mixed strategies, where MRi(S) is the set of mixed strategies that a MR

player i can choose from.6

Notice that MR can predict multiple strategies for each player. Iterated regret min-

imization (IRM hereafter) is a solution concept proposed by Halpern and Pass (2012)

that involves the iterated deletion of strategies that do not minimize regret. IRM con-

sists of using MR as a deletion operator, which, applied to a game once, eliminates

6In the literature, mixed strategies for MR are treated in two different ways. Renou and Schlag (2010)
compute the regret of a mixed strategy as the corresponding convex combination of regrets of the pure
strategies while Halpern and Pass (2012) treat them as introduced here. Both definitions predict the same
behavior in the framework of this study.
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all actions that do not minimize regret for all players, MR1(A) ⊆ A. When MR

is applied to the remaining strategies MR1(A), the resulting actions are MR2(A) =

MR(MR1(A)) and so forth. The IRM solution MR∞(A) is obtained by continuing

with this process an infinite number of times. The set of actions that IRM prescribes

for player i is

IRMi(A) = MR∞i (A) = ∩kMRki (A), (2.5)

where MR1
i (A) = MRi(A) and MRk+1

i (A) = MRi(MRk(A)). Notice that, if the first

iteration leaves only one action for each player, IRMi = MRi. For an example of how

to apply MR and IRM to particular games, see Appendix A.

2.2.2 LEVEL-k THINKING

Level-k is a strategic behavioral model which assumes that individuals best respond to

their beliefs but have a simplified non-equilibrium model of how other players behave.

This rule is defined in a hierarchical way with different levels of sophistication and

each agent assumes that their strategy is the most sophisticated. We follow Costa-

Gomes, et al. (2001) and assume that a Lk type best responds to Lk-1 players.7 The

hierarchy is specified on the basis of the L0 type, which is the least sophisticated. We set

the L0 type as an individual who takes each available action with the same probability

(Stahl and Wilson, 1994, 1995; Nagel, 1995; Costa-Gomes et al., 2001; Camerer et al.,

2004).

Formally, let ri(A) be the mixed strategy for player i, who takes each action in Ai

with the same probability. An L1 player believes that the other players are L0 types,

and best responds to that belief. If the best response is not unique, an L1 individual

has the same probability of taking each best responding action. Let L1(A) denote the

set of action profiles that can be played by L1 players in the game G. That is, L1i(A) =

7Alternatively, Stahl and Wilson (1994, 1995) and Camerer et al. (2004) define an Lk type as a player
who believes that all other players are a distribution of all the lower levels. Our main focus is on L1,
which is identical under both approaches.
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arg maxai∈Ai{ui(ai, ~r−i(A−i))}. In general:

Lki(A) = arg max
ai∈Ai

{ui(ai, ~r−i(Lk-1−i(A)))} (2.6)

Lk(A) is the set of pure strategy profiles in A that can be played by Lk players in the

game G. For an example of how to apply L1 to particular games, see Appendix A.

2.3 RELATIONSHIP BETWEEN MINIMAX REGRET AND

LEVEL-k THINKING

In this section we analyze the similarities in the predictions of MR and L1. First, we

show formally in which games the predictions of the two behavioral models coincide.

Second, we analyze games from 17 experimental studies to show that both behavioral

models predict the same behavior in many games applied in the literature, which is

quite surprising given they differ significantly in their underlying motivations.

2.3.1 THEORETICAL APPROACH

LetWD(S) denote the set of weakly dominant strategies in the gameGwithWDi(S) =

{si ∈ Si : ui(si, ~s−i) ≥ ui(s
′
i, ~s−i) ∀s′i 6= si and ∀~s−i ∈ ~S−i}. Let d(S) denote the set

of strictly dominated strategies in the game G with di(S) = {si ∈ Si : ui(si, ~s−i) <

ui(s
′
i, ~s−i) ∀~s−i ∈ ~S−i for at least one s′i 6= si}. Proofs of the propositions can be found

in Appendix B.

Proposition 1.

(i) If WD(S) 6= ∅, then WD(S) = MR(S) = L1(S).

(ii) ∀s ∈ d(S), s 6∈MR(S) and s 6∈ Lk(S) ∀k.

Proposition 2.
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L1(A) = MR(A) in any 2× 2 game.

These two propositions restrict the types of game suitable for separating MR from

L1. Part (i) of the Proposition 1 shows that if there are weakly dominant strategies in a

game G, those strategies and only those strategies are the ones predicted by both MR

and L1. Part (ii) of Proposition 1 shows that a dominated strategy cannot be predicted

by MR or level-k.8 Proposition 2 shows that both models predict the same behavior in

any 2× 2 games.

Below, we show that overlapping predictions of MR and level-k arise in other

strategic settings. As an illustration, we analyze four specific games: the Traveler’s

Dilemma, Bertrand competition, the Nash bargaining game and the 11-20 money re-

quest game. These games are chosen for three reasons. First, the propositions do not

provide any result regarding these games. Second, each of them has a large action

space, which a priori might make it even more surprising that L1 and MR make the

same predictions. Last, the behavior observed in these three games has been used as

evidence supporting either level-k, MR or both (Brañas-Garza et al., 2011; Arad and

Rubinstein, 2012; Halpern and Pass, 2012; Baghestanian, 2014).

Example 1: Traveler’s Dilemma. The Traveler’s Dilemma models a situation in

which an airline company loses two identical suitcases belonging to two different trav-

elers. The airline does not know the value of the suitcases, so it offers the travelers the

following compensation system. The airline separates the two travelers and asks each

the value of their suitcase. Each traveler can claim any positive integer m ∈ [a, a]. If

both ask for the same amount, m = m′, each receives the amount requested. However,

8A weakly dominated strategy cannot be prescribed by any level-k, but it can be predicted by MR.
This may occur when both the weakly dominated strategy, sdi , and the strategy that dominates strategy
sdi , sDi , minimize the maximum regret, which can happen if the following conditions are met. First,
sdi must have the same payoff as sDi for at least one strategy profile of the opponents (~s−i). There-
fore, regreti(sdi |~s−i) = regreti(s

D
i |~s−i). Second, regreti(sdi ) = regreti(s

D
i ) = regreti(s

d
i |~s−i) =

regreti(s
D
i |~s−i). Last, sdi and sDi must be two of the strategies that minimize the maximum regret, that is

sdi and sDi ∈ argminsi∈Si regreti(si) =MRi(S).
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if they ask for different amounts, m < m′, the smaller amount m is treated as the true

value of the suitcase, and both travelers receive m plus/minus an integer r > 1 as fol-

lows: whoever asks for lower amount gets (m+ r) while the other player gets (m− r).

Iterative elimination of dominated strategies leaves us with the sole Nash equilibrium

of this game, which is to ask for a for any value of a, a and p. Nevertheless, the predic-

tions of MR and L1 differ depending on the parameter values:

(a) If a− a ≤ r, then L1(A) = MR(A) = IRM(A) = {a}.

(b) If a− a = r + 1, then L1(A) = IRM(A) = {a} ⊂MR(A) = {a, a+ 1}.

(c) If r + 2 ≤ a− a < 2r, then L1(A) = {a} 6= MR(A) = IRM(A) = {a+ 1}.

(d) If 2r ≤ a − a, then IRM(A) = {a − 2r + 1} ⊂ L1(A) = {a − 2r, a − 2r + 1} ⊂

MR(A) = [a− 2r, a].

Observe that the predictions ofMR and L1 cannot be separated in Traveler’s dilem-

mas under conditions (a), (b) or (d). Nevertheless, most studies apply parameters

that meet these conditions (see Basu, 1994; Capra et al., 1999;9 Goeree and Holt, 2001;

Becker et al., 2005; Rubinstein, 2006, 2007; Chakravarty et al., 2010). Hence, most stud-

ies cannot tell whether individuals are choosing according to L1 or MR.

Example 2: Bertrand competition. Bertrand competition is a game in which two

players representing firms that produce the same good choose a price. For the sake

of simplicity, we assume that prices must be non-negative integers and that producing

the good carries no cost. Each player chooses a price pi ∈ [0, a] at which to sell the good.

Each player gets a share of a fixed demand d > 0 depending on the prices chosen by

the two firms. If pi = pj = p, each player obtains (d/2) ∗ p. If a player chooses a

higher price than their opponent, she obtains 0. If she chooses a price lower than the

opponent, she obtains d ∗ pi. The Nash equilibria of this game are setting the prices (0,

0), (1, 1) or (2, 2), independently of the parameters. In contrast, the predictions of MR

and L1 depend on the particular value of a. For any d:

9The conditions are satisfied in four out of the five cases tested in Capra et al. (1999).
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(a) If a is odd, then L1(A) = MR(A) = IRM(A) = {a/2 + 0.5}.

(b) If a is even, then L1(A) = IRM(A) = {a/2} ⊂MR(A) = {a/2, a/2 + 1}.

MR and L1 predict the same behavior if a is odd, and L1 prediction is a subset of

MR prediction if a is even. Hence, L1 and MR predictions cannot be fully separated.

Example 3: Nash bargaining game. In the Nash bargaining game, two agents

share a surplus a. Each player can claim a share of the surplus by choosing an integer

m ∈ [0, a]. If one player chooses m, the other m′ and m + m′ ≤ a, each receives the

amount demanded. However, if m+m′ > a both receive 0. Each pair of amounts that

satisfy m = a −m′ is a Nash equilibrium, while the predictions of MR and L1 differ

depending on the particular value of a as follows:

(a) If a is odd, then L1(A) = MR(A) = IRM(A) = {(a/2) + 0.5}.

(b) If a is even, then IRM(A) = {a/2} ⊂ L1(A) = MR(A) = {a/2, (a/2) + 1}.

This time, MR and L1 predict the same behavior in any case and it is not possible

to tell which model individuals are following.

Example 4: 11-20 money request game. In this game, two players claim an integer

m ∈ [11, 20]. Each player receives the amount requested. However, a player receives 20

additional monetary units if she asks for exactly one unit less than the amount claimed

by the other player, that is if m = m′ − 1. This game has the particularity that the L1

predicted choice is to claim 19 no matter whether the definition of L0 behavior is to

randomize between all available actions or to choose any distribution in which 20 is

the most probable strategy. The sole Nash equilibrium of this game is to request each

amount with a probability of (0, 0, 0, 0, 0.25, 0.25, 0.20, 0.15, 0.10, 0.05). The predictions

of the three models considered in this study are L1(A) = IRM(A) = {19} ⊂MR(A) =

{19, 20}. In this game, the predictions of L1 and MR are not fully separated.

As shown by these four examples, L1, MR and IRM prescribe very similar behav-

ior despite the relatively large strategy space of the considered games.
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2.3.2 EXPERIMENTAL LITERATURE

To illustrate further the overlapping predictions of MR and L1, we show how often

the two behavioral models prescribe the same behavior in different games from 17

experimental studies. The common features of these studies are that they all aim to

explain non-equilibrium behavior and that the data are available. In particular, we

analyze whether, and if so to what extent, the predictions of MR and L1 coincide in

the different strategic situations provided in these studies.

Table 2.1 summarizes the results. The table reveals that the two models coincide in

a large number of different games. Out of the total of 293 different strategic situations

that we consider, MR and L1 prescribe the same behavior in 243 (82.94%) decisions,

and make predictions that are entirely separated in only 35 (11.95%). In the remaining

15 decisions the predictions of the two models overlap, coinciding in some actions

and differing in others. In the 35 decisions in which the two predictions are entirely

separate, 32% of subjects played the L1 prediction while 20% played according to MR.

Are subjects playing the actions prescribed by one of the models because these actions

also coincide with the prediction of the Nash equilibrium? Out of the 35 decisions, the

Nash equilibrium, L1 and MR predict different behavior in only 21 cases. In those 21

decisions, 16% of subjects are observed to play the Nash equilibrium prediction, 22%

the L1 prediction, and 12% that of MR.

Is it possible to tell which model describes individual behavior best based on these

data? The answer is no, for three reasons. First, individual behavior seems to be split

between MR and L1 predictions. In addition to the aggregate behavior explained

above, in half of the 22 decisions in which the predictions are separated the predic-

tion of one model is played more often than that of the other. Second, the incentives

for a player following one of these rules are quantitatively weak: The minimal maxi-

mum regrets of the actions predicted byMR are close to the minimal maximum regrets

of other actions, and the payoffs that a L1 individual expects in choosing the L1 pre-
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TABLE 2.1: RELATIONSHIP BETWEEN THE PREDICTIONS OF MR AND L1 IN STRATEGIC SITUATIONS FROM 17
EXPERIMENTAL STUDIES.

Research article
Different strategic

situations

Size of

Action space

Number of strategic

situations in which

L1 6=MR

Number of strategic

situations in which

L1 ∩MR = ∅
Schotter et al. (1994) 6 3 2 1

Stahl and Wilson (1994) 10 3 1 0

Stahl and Wilson (1995) 12 3 1 1

Stahl (1999) 15 3 2 2

Costa-Gomes et al. (2001) 36 3 5 5

Goeree and Holt (2001) 8 2 0 0

2 3 0 0

1 4 0 0

Traveler r=5 121 1 0

Traveler r=180 121 0 0

Haruvy et al. (2001) 15 3 2 2

Di Guida and Devetag (2002) 30 3 9 5

Morgan (2002) 2 3 1 1

Becker et al. (2005) Traveler r=2 99 1 0

Costa-Gomes and Crawford (2006) 16 200-800 13 13

Costa-Gomes and Weizscker (2008) 28 3 0 0

Selten and Chmura (2008) 24 2 0 0

Rey-Biel (2009) 40 3 8 3

Ivanov (2011) 9 3 2 2

3 2 0 0

Arad and Rubinstein (2012) 11-20 game 10 1 0

Garcia-Pola et al. (2016) 32 4 1 0

Total 293 50 35
Notes: The first column lists the studies under consideration. The second column indicates the number of different strategic situa-
tions. If the games are symmetric this is equal to the number of games, but if they are asymmetric then it is equal to the number of
games multiplied by the number of player roles in each game. Alternatively, this column shows the name of a game if the study has
a game that is analyzed in the previous section of this chapter (Traveler = Traveler’s Dilemma, 11-20 game = 11-20 money request
game). The third column displays the number of actions available in the strategic situations indicated in the previous column.
The fourth column shows the number of the strategic situations from the second column in which L1 and MR predictions are not
exactly the same. The last column indicates the number of strategic situations from the second column in which L1 andMR predict
entirely different actions.
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dictions are close to those expected for other actions. Lastly, these data come from

different subjects. The decisions by the same subjects in which the predictions are sep-

arated account for a proportion of the total choices that is too small for any analysis to

be conducted on whether any subject follows one rule systematically in all games.

Despite these conclusions, Costa-Gomes and Crawford (2006; CGC, hereafter) is a

noteworthy exception. 13 out of the 16 games from their paper are suitable for dis-

criminating between L1 and MR. Hence, to discriminate between these two models,

the next section uses the data from CGC and propose a new experimental design to

explicitly separate L1 from MR.

2.4 EXPERIMENTAL ANALYSIS

Both MR and L1 have been shown to predict behavior in a wide spectrum of games

(see Halpern and Pass, 2012, for the former MR and Crawford et al., 2013, for the

latter). This section analyzes two experiments which include two types of games which

have very different characteristics but which are suitable for discriminating between

these two models. First, we focus on guessing games with a large, continuous strategy

space, then we propose a new set of normal-form games with a finite, relatively small

strategy space.

2.4.1 TWO-PERSON GUESSING GAMES BY COSTA-GOMES AND CRAWFORD

(2006)

CGC report an experiment in which 88 subjects play 16 different two-player guessing

games with no feedback. In these games, each subject i has to make a guess between

a lower limit ai and an upper limit bi. If subject i makes a guess xi equal to the guess

made by her opponent xj times a target pi, she obtains the maximum payoff. The

closer the guess is to this optimum guess, the higher the payoff that the subject ob-

tains. Specifically, the payoff in points is given by si = max{0, 200− (|xi − pi ∗ xj |)}+
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max{0, 100 − (|xi − pi ∗ xj |)/10}. Subjects were paid for 5 randomly chosen games,

with an exchange ratio of 0.04 dollars per point. CGC vary the parameters of limits

(a, b) and targets (p) across games to obtain a strong separability of the behavior pre-

dicted by different decision rules, and elicits initial responses to test which rule better

explains the behavior of each subject.

TABLE 2.2: GUESSING GAMES, MODELS’ GUESSES AND BEHAVIOR FOR PLAYER i

Predictions Compliance

Game NE L1 MR NE L1 MR

(1) (2) (3) (4) (5) (6) (7)

1. α1β2 100 350 300 11 16 3

2. β1α2 100 150 175 14 16 17

3. β1γ2 150 200 200 9 24 24

4. γ2β1 300 350 400 39 17 9

5. γ4δ3 500 500 475 61 61 2

6. δ3γ4 650 520 520 23 23 23

7. δ3δ3 900 780 645 21 23 3

8. δ3δ3 900 780 645 18 25 3

9. β1α4 100 150 175 4 14 4

10. α4β1 150 500 325 3 27 2

11. δ2β3 300 350 465 4 14 1

12. β3δ2 390 780 645 1 14 2

13. γ2β4 500 350 400 18 16 12

14. β4γ2 750 600 600 7 25 25

15. α2α4 350 210 225 10 17 2

16. α4α2 500 450 325 5 25 1

Total 248 357 133
Notes: The name of each game in column (1) identifies the different pa-
rameters, the first two for player i and the last two for player j respec-
tively. Limits: α for 100 and 500, β for 100 and 900, γ for 300 and 500, and
δ for 300 and 900. Targets: 1 for 0.5, 2 for 0.7 3 for 1.3, 4 for 1.5. Columns
(2) to (4) present the guess prediction of each model in each game, and
columns (5) to (7) show the number of subjects (out of 88) that comply
with each model in each game.

Column (1) in Table 2.2 enumerates the games, and columns (2) to (4) show the
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guesses predicted by NE, L1 and MR in each game. Notice that in 12 out of 16 games

the predictions of all three models are different. In contrast, in games 3, 6 and 14 L1

and MR coincide while NE differs, whereas in game 5 NE and L1 coincide while MR

differs.

We now provide an intuition for why the guessing games provide a good separa-

tion between L1 and MR. Formally, the L1 ideal guess for player i for any parameter

is pi ∗
[
aj + bj

]
/2, and the MR ideal guess for player i is max(ai, pi ∗ aj) +

[
min(bi, pi ∗

bj) − max(ai, pi ∗ aj)
]
/2, which is usually different. In words, a L1 subject calculates

the middle value between the opponent’s limits and applies her target to it. On the

other hand, a MR subject first applies her target to the opponent’s limits and then

calculates the middle value. For example, consider a guessing game with a = 100,

b = 500 and p = 0.5 for both players. A L1 player thinks that her opponent random-

izes between 100 and 500. She best responds by multiplying the target by the middle

value between the limits of the opponent: 0.5 ∗ 300 = 150. In order to know what a

MR player does, we multiply the target by the limits of the opponent: 0.5 ∗ 100 = 50

and 0.5 ∗ 500 = 250. A player cannot choose a guess below 100 so the guesses that

generate the highest payoffs for a player are between 100 and 250. One of those exact

guesses, 100 or 250, always generates the highest regret for any guess (because one of

those two is the most distant from any guess and at the same time can potentially bring

the highest payoff). Therefore, a player who minimizes maximum regret chooses the

guess mid-way between those limits, minimizing the distance (in the value of the guess

and, as a consequence, in payoff and regret) from both limits. Therefore she chooses:

(250− 100)/2 + 100 = 175.

Columns (5) to (7) report how many of the total of 88 comply with the prediction

of each model in each game. 25.36% of the total of 1408 decisions comply with L1 and

only 9.45% with MR. 24.91% of the behavior the 13 games in which these two models

are entirely separate comply with L1 and 5.33% with MR. These figures suggest that
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MR explains a considerably lower fraction of choices in the data. Nevertheless, these

numbers provide no information regarding whether subjects systematically follow the

predictions of each model across the different games.

To formally control for the consistency of subjects’ behavior across games, we use

mixture model analysis to estimate the distribution of the population across the three

models. We adapt the maximum likelihood error-rate estimation from CGC to the pop-

ulation level analysis and restrict our analysis to the three models in the main analy-

sis.10 Let i denote the subjects (i = {1, ..., 88}), g the game (G = {1, 2, ..., 16}) and m

the model considered (NE, L1, MR). Denote by aig and big the lower and upper limits,

and by xig the guess of subject i in the game g.11 Finally, let tmg be the guess predicted

by model m.

Since the strategy space is continuous, we follow CGC and use a spike-logit error

structure. In each game, each subject following model m makes a correct guess with

probability (1 − εk) and commits an error with probability εm, choosing a guess fol-

lowing a logistic distribution over the non-predicted options within the limits. We as-

sume errors to be model-specific and identically and independently distributed across

games and subjects.12 The first assumption considers that it may be more cognitively

demanding to follow some models than others, and may lead to larger error rates,

while the second facilitates the statistical treatment of the data.

For player i in game g, let y be the guess of subject i’s opponent and Sg(x
i
g, y) be

her expected monetary payoff, taking the expectation only over the selection of games

that i is paid for. Let fmg (y) be the density representing the beliefs that model m is best

responding to. The expected payoff of player i in game g for model m’s specific beliefs

10The estimation with all the models used in CGC can be found in the Appendix C.
11In the actual experiment, subjects were allowed to guess outside the limits. However, they were

instructed that whenever they would guess outside these limits the computer would automatically adjust
their guess to the nearest limit. For expositional purposes, we only focus on adjusted guesses and simply
re-label them as guesses through this study.

12See Costa-Gomes et al. (2001), Iriberri and Rey-Biel (2013), Kovarik et al. (2018) or Garcia-Pola et al.
(2016) for a similar approach.
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is:

Smg (xig) =

∫ 900

100
Sg(x

i
g, y)fmg (y)dy. (2.7)

To identify when a player makes a correct guess given that the strategy space is con-

tinuous, we consider guesses made by subjects that are within 0.5 points of the guess

predicted by a model as a correct guess for that model. Let U img =
[
tmg − 0.5, tmg + 0.5

]
∩[

aig, b
i
g

]
be the set of guesses that subject i can play in game g predicted by model m,

and V im
g =

[
aig, b

i
g

]
/U img is the complement of U img within the limits. The error density

is then

dmg (xig, λm) =
exp

[
λmS

m
g (xig)

]∫
V img

exp
[
λmS

m
g (z)

]
dz

(2.7)

for xig ∈ V im
g and 1 elsewhere.

The value λm indicates the dispersion of erroneous guesses of a subject following

m. If λm is 0, subjects following model m play randomly when making a mistake,

while as λm tends to ∞ they play guesses closer to the ideal guess for model m with

a higher probability and costlier guesses (further from the ideal guess) with a lower

probability.

Let N im be the set of games in which subject i makes a guess in V im
g , and nim the

number of games in N im. In each model m and game g, each subject has a probability

(1−εm) of making a guess xig ∈ U img , and a probability εm of making a guess xig ∈ V img

with the corresponding density dmg (xig, λm). Therefore, the density of the guesses of a

subject i following a particular model m is:

dm(xi, εm, λm) = (1− εm)(16−n
im)εn

im

m

∏
g∈N im

dmg (xig, λm) (2.7)
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with an exception: when nim equals to 0 or G, then dm(xi, εm, λm) = 1.

Denoting p = (pNE , pL1, pMR) the probabilities corresponding to each model and

adding up for all models and subjects yields the log-likelihood function of the whole

sample:

L(p, εm, λm) =
∑
i

ln

[∑
m

pmdm(xi, εm, λm)

]
(2.7)

TABLE 2.3: CGC ESTIMATION RESULTS

All 16
games

Model pm εm λm
(1) (2) (3) (4)
NE 0.33*** 0.90*** 0.30***

(0.07) (0.02) (0.08)
L1 0.63*** 0.88*** 0.92***

(0.07) (0.03) (0.14)
MR 0.04** 0.53** 0.00

(0.02) (0.23) (0.28)
Notes: Columns (2), (3) and (4) contain the esti-
mation results. Column (2) displays the estimated
share of subjects who comply with each model p =
(pNE , pL1, pMR). Column (3) reports the correspond-
ing estimated error parameter ε = (εNE , εL1, εMR).
Column (4) reports the estimated dispersion of the er-
ror for each model λ = (λNE , λL1, λMR). Standard
errors are shown below each estimated coefficient, in
parenthesis. We report the significance levels (***p <
0.01, **p < 0.05, *p < 0.10) using bootstrapping with
500 replications (Efron and Tibshirani, 1994). Notice
that the error rates are well behaved if they are close to
zero and far from one (corresponding to random play),
so we test whether each εm differs significantly from
one (rather than zero)

Table 2.3 reports the estimation results. Observe that L1 explains the behavior of

61% of the subjects, followed byNE which explains 33% andMRwith only 4%. There-

fore, only a small minority of subjects is best explained by MR. Moreover, the disper-

sion of the error of theMRmodel is the closest to random play, and that of L1 gives the

greatest probability of guesses closer to the model’s predicted guess. Therefore MR is

not only followed by only a few subjects but they are also the most imprecise when
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making mistakes.

For a better comparison with the original estimates in CGC, Appendix C presents

two alternative models. Columns (2), (3) and (4) reproduces the estimates from Table

2.3 with all the types included in the original study by CGC (who disregardMR) while

columns (5), (6) and (7) incorporate MR. In this last estimation, the proportion of NE

is 19%, L1 is the model that explains the highest proportion of the population and MR

is no longer significantly different from 0%. This suggest that the 4% explained by

MR in the previous estimation was just capturing behavior best explained by other

models.13

In sum, these result show that, independently of the model specification, L1 ratio-

nalizes a large part of the behavior of subjects in guessing games whereasMR explains

the behavior of at best a negligible part of the population.

2.4.2 NORMAL-FORM GAMES

This section introduces an experiment explicitly designed to separate the predictions

of MR and L1 in normal-form games with a discrete strategy space and presents the

results.

EXPERIMENTAL DESIGN AND PROCEDURES

We recruited 115 participants in three different sessions in May 2017, using the ORSEE

recruiting system (Greiner, 2015).14 The sessions were conducted using z-Tree software

(Fischbacher, 2007) at the Laboratory of Experimental Analysis (Bilbao Labean; http://

www.bilbaolabean.com) of the University of the Basque Country.

Subjects were given detailed instructions giving examples of games, which were

different from those used in the experiment, of how they could make decisions and of

13We also perform the analysis at an individual level just as in CGC. Only 5 subjects are best explained
by MR when including our main 3 models, and also when including all CGC types.

14The matching mechanism described below did not require an even number of participants.
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the payment method. An English translation of the instructions can be found in Ap-

pendix E. The instructions were read aloud. Subjects were allowed to ask any question

they might have during the instructions. Since the ability to anticipate regret is key

to incorporating regret into the decision making process (Zeelenberg, 1999), we clearly

stated in the instructions that feedback would be provided. Moreover, at the end of the

instruction process, subjects had to answer several questions on the computer screen

before they could proceed, and one of the questions referred to the feedback. By an-

swering all the questions correctly, subjects guaranteed that they understood the in-

structions, including the fact that they would receive feedback about their behavior at

the end of the experiment.

At the beginning of the experiment, the computer assigned subjects randomly to

the roles of either a row player or a column player, and those roles were maintained

throughout the experiment. Since we were mainly interested in the decision of row

players, only two subjects were assigned to the role of column player in each session,

and we focused on the behavior of row players (see e.g. Ivanov, 2010, for the same

approach). Both roles were visualized from the row player perspective, so no player

had information about the role to which they were assigned. Subjects were assured

that they were playing against a real player. Then every subject participated in 16 one-

shot normal-form games as shown in Figure 2.1. All numbers displayed in the games

were expressed in Euros. Subjects played the games one by one in a random order,

which was the same for all subjects. They had no possibility of leaving a game without

making a decision, and they never knew which games they would face in later stages.

No feedback was provided until all 16 choices had been made. Subjects had no time

limits for making their decisions, and participants were not obliged to wait for others

while making their choices in any game.

Subjects were shown the game in normal-form and made choices by clicking on a

square box placed next to each action. Subjects could change their decision as many
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times as they wanted, but had to confirm their decision by clicking on the “OK" but-

ton in the corner of the screen before they were allowed to proceed to the next game.

Subjects could never go back to previous games.

Once all players had submitted their choices in all the games, the computer ran-

domly selected two different games for each subject for payment; that is, different

participants could be paid for different games. For each player, the computer also

randomly selected two opponents, one for each of those two selected games. That is,

any row player could have served as an opponent for both column players, and since

there were only two column players each of them served as an opponent for every

row player in one of the two randomly determined games. However, being chosen

as an opponent had no payoff consequence. Then the computer showed each sub-

ject on screen the two games selected for their payment, their own decisions in those

games, and the decisions of the opponents selected for those games. Before actually

being paid, the participants filled in a questionnaire eliciting their demographic data,

cognitive ability and risk preferences. At the end of the experiment, each subject was

privately paid the sum of the payoffs from the two selected games, plus a 2 Euro show-

up fee. Subjects earned on average 12.37 Euros, with a standard deviation of 3.71.

EXPERIMENTAL GAMES

Subjects faced the series of 16 normal-form games displayed in Figure 2.1 sequentially:

seven 3 × 3 games, seven 4 × 4 games, one 5 × 5, game and one 6 × 6 game. Since

we are only interested in row players choices, in what follows we only discuss the row

player perspective. The 16 games were designed to have the three following important

characteristics.

First, different models of MR predict the same pattern of choices across all 16

games. In particular, actions marked with MR on the left of each game are the MR

predictions and the IRM predictions.



2.4. EXPERIMENTAL ANALYSIS 109

Observe that, the games are designed such that there is noMR prediction in mixed

strategies. They are designed such that MR mostly predicts pure strategies and the

mixed strategies can be abstracted in the analysis below.15 Similarly, the actions pre-

dicted by L1 are marked with L1 next to the corresponding row of each game. Notice

that no game has any dominated strategy, so the predictions of the two approaches

do not change even if Lk or MR are assumed models in which players have prior be-

liefs about their opponents being rational and only consider rationalizable strategies

of others. Actions marked with NE on the left of each game are the Nash equilibrium

predictions.

Second, the games are specifically designed to study different interactions between

NE, L1, and MR. The seven 3 × 3 games and the seven 4 × 4 games share the same

structure: In one game NE = L1 = MR (G1 and G8), which should confirm whether

at least one of the models considered is relevant in predicting most of the behavior in

the experiment. Moreover, they are a benchmark for comparison with behavior in the

other games. In one gameNE = L1 6= MR (G2 and G9), in one gameNE 6= L1 = MR

(G3 and G10) and in one game NE = MR 6= L1 (G4 and G11). These games enable

the significance of the deviating model or the non-deviating models together are in ex-

plaining individual behavior to be determined. Finally, in the three remaining games

(G5, G6, G7, G12, G13 and G14) and in the 5 × 5 and the 6 × 6 games (G15 and G16),

NE 6= L1 6= MR. These games are particularly useful for separation and for iden-

tifying of which model shows the highest descriptive power in explaining individual

behavior.

Third, our games were designed to give strong incentives to individuals following

15There are two exceptions. In G4 and G11 the only MR in mixed strategies is to choose the ac-
tion marked with MR with the highest probability, but not with probability one. In particular, for G4
MR(S) = (1/9, 5/9, 1/3) and for G11 MR(S) = (0, 3/29, 9/29, 17/29). As explained below, in these
two games L1 predictions differ from the actions predicted by MR and by the and Nash equilibrium. In
this situation, it is not possible to obtain such a strong a separation of MR and L1 as in the other games,
because the high payoff in the Nash equilibrium must be in the MR choice too, weakening the separation
from L1.
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MR or L1 to behave according to their type. For example, an L1 individual best re-

sponds to L0 behavior that consists of randomizing among all possible choices. That

is, an L1 subject selects the action that maximizes the average payoff, assuming a uni-

formly random behavior of their opponent. In our games, the mean payoffs of the

action predicted by L1 is always at least 1 Euro greater than the second best option,

given the belief that the opponent is L0.16 In the case of actions predicted by MR, the

minimal maximum regret is at least 2 Euros less than the action with the second lowest

minimal maximum regret in all 16 games. For comparison, these differences are on

average only 0.6 for L1 and 0.7 for MR in the situations from Table 2.1 in which MR

and L1 are separated.

RESULTS

First, we provide basic descriptive statistics on overall behavior without requiring any

within-subject consistency. In the second part we estimate a mixture-of-types model

that shows which behavioral model best describes experimental data requiring certain

individual consistency of subjects across different games.

Table 2.4 summarizes the behavior observed in our experiment. There are a total of

1,744 choices, as a result of the number of subjects playing as row players (109) mul-

tiplied by 16 games. The behavior observed in all games shows that subjects mostly

comply with L1, but a significant proportion of their decisions also comply with MR

and NE. 78% comply with NE, L1 and MR when all three models coincide in their

predictions. This indicates that at least one of the models that we consider is indeed

relevant in describing subjects’ behavior. When NE prediction differs from those of

L1 and MR, 51% of the choices comply with L1 and MR, and 23% comply with NE.

When MR prediction is different, 70% of the choices comply with NE and L1. Ob-

serve that this number is only 8% lower than the 78% of compliance when all three

16G4 and G11 are an exception. In them, the mean earnings of the predicted actions are 0.66 and 0.75
Euros greater respectively than the second best option. For an explanation, see footnote 9.
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FIGURE 2.1: EXPERIMENTAL GAMES

G1 G2
NE,L1,MR 6 , 5 3 , 1 4 , 2 1 ,2 6 , 7 1 , 10

2 , 4 1 , 6 6 , 1 MR 6 , 7 3 , 4 2 , 1
2 , 5 5 , 3 1 , 7 NE,L1 9 , 1 1 , 3 5 , 6

G3 G4
L1,MR 5 , 8 7 , 10 3 , 1 7 , 3 2 , 2 3 , 8

1 , 6 9 , 2 1 , 8 NE,MR 2 , 3 9 , 10 1 , 3
NE 3 , 4 2 , 3 5 , 6 L1 6 , 8 2 , 3 6 , 7

G5 G6
MR 6 , 8 2 , 11 3 , 1 NE 5 , 6 1 , 3 6 , 1
L1 9 , 1 5 , 3 1 , 4 MR 2 , 1 7 , 2 3 , 4
NE 1 , 5 4 , 2 6 , 8 L1 4 , 3 10 , 8 1 , 11

G7 G8
L1 4 , 2 1 , 7 10 , 4 4 , 5 4 , 2 5 , 1 6 , 1
NE 2 , 3 6 , 5 2 , 2 NE,L1,MR 7 , 3 6 , 8 3 , 5 8 , 4
MR 1 , 11 3 , 1 7 , 8 7 , 4 4 , 7 2 , 10 3 , 4

9 , 7 1 , 6 1 , 2 7 , 9

G9 G10
NE,L1 6 , 8 1 , 5 5 , 2 8 , 1 NE 3 , 7 1 , 1 1 , 5 7 , 2
MR 3 , 1 4 , 4 2 , 3 6 , 7 2 , 1 6 , 8 5 , 7 2 , 5

1 , 8 3 , 6 1 , 9 9 , 8 L1,MR 1 , 1 6 , 2 7 , 3 5 , 5
1 , 4 7 , 1 1 , 2 3 , 11 1 , 5 8 , 5 2 , 7 4 , 4

G11 G12
5 , 2 3 , 4 3 , 3 3 , 1 9 , 8 2 , 9 2 , 6 2 , 5
4 , 8 8 , 7 1 , 3 1 , 5 MR 6 , 9 5 , 2 1 , 6 4 , 1

L1 5 , 3 7 , 5 4 , 4 1 , 2 L1 8 , 4 8 , 2 4 , 1 1 , 3
NE,MR 2 , 1 5 , 2 1 , 4 6 , 7 NE 5 , 3 1 , 3 2 , 5 7 , 8

G13 G14
L1 3 , 4 1 , 3 9 , 2 8 , 1 NE 1 , 4 7 , 2 8 , 7 1 , 3
NE 4 , 1 7 , 6 3 , 1 1 , 3 MR 1 , 5 4 , 8 5 , 1 6 , 2
MR 1 , 7 4 , 5 6 , 2 5 , 4 3 , 6 3 , 6 3 , 4 7 , 9

2 , 9 2 , 1 9 , 8 3 , 6 L1 4 , 1 1 , 4 7 , 4 9 , 2

G15 G16
L1 8 , 3 4 , 1 1 , 4 8 , 2 8 , 2 L1 7 , 6 8 , 5 1 , 7 3 , 4 8 , 6 6 , 4
MR 5 , 1 1 , 4 4 , 5 6 , 7 5 , 1 MR 5 , 7 6 , 5 4 , 6 1 , 5 7 , 4 4 , 1
NE 6 , 5 4 , 3 7 , 6 1 , 2 3 , 2 NE 6 , 2 4 , 5 6 , 7 2 , 6 7 , 5 1 , 6

3 , 9 3 , 6 1 , 4 9 , 2 5 , 5 4 , 3 7 , 1 3 , 2 3 , 2 3 , 2 6 , 2
2 , 8 3 , 6 4 , 1 8 , 6 4 , 9 1 , 8 5 , 7 5 , 1 3 , 7 7 , 8 5 , 9

5 , 8 1 , 6 4 , 3 2 , 2 9 , 1 5 , 5
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models coincide in their predictions. However, 20% of the choices comply with MR.

When only L1 prediction differs from the others, we can observe that this is the one

model that most alters the proportions from those observed in the second column. In

fact, L1 prediction is the only one that can be chosen in a higher proportion than the

predictions of the other two combined. In the last column, where all three models

give different predictions, L1 prediction is selected most frequently (40%), followed by

NE (21%) and MR (15%). Notice that the sum of these proportions (76%) is approxi-

mately equal to the compliance rate of the three models when they all coincide in their

predictions (78%).

TABLE 2.4: COMPLIANCE RATES WITH EACH MODEL ACROSS DIFFERENT SUBSETS OF GAMES

All 16
games

NE = L1 =MR

(G1, G8)
NE 6= L1 =MR

(G3, G10)
NE = L1 6=MR

(G2, G9)
NE =MR 6= L1

(G4, G11)

NE 6= L1 6=MR

(G5, G6, G7, G12,
G13, G14, G15, G16)

NE
36%
(631)

78%
(171)

23%
(49)

70%
(152)

33%
(72)

21%
(187)

L1
49%
(865)

78%
(171)

51%
(112)

70%
(152)

38%
(82)

40%
(348)

MR
30%
(526)

78%
(171)

51%
(112)

20%
(43)

33%
(72)

15%
(128)

Other

actions
23%
(400)

22%
(47)

26%
(57)

10%
(23)

29%
(64)

24%
(209)

Total
100%

(1,744)
100%
(218)

100%
(218)

100%
(218)

100%
(218)

100%
(872)

Notes: There are a total of 1,744 choices, as a result of the number of subjects playing as row players (109) multiplied by 16 games.
The cells in this table show the compliance rates and the number of actions in parenthesis for each behavioral model given by the
row in the games considered in each column. Other actions refers to choices that do not comply withNE, L1 orMR. The Total row
indicates the total number of choices collected for the corresponding subset of games. Notice that this number is not necessarily
the sum of all the other rows.

L1 seems to rationalize more actions than NE and MR, but all three models seem

to explain a significant part of the behavior. However, the above statistics disregard

within-subject consistency of decisions. Our design enables us to analyze individual

behavior across all games and check whether subjects are consistent in complying with

the same model in most cases. Out of a total of 109 subjects, 15 comply with NE, 65

with L1and only 1 withMR in at least half of the games (8 out of 16). The behavior of 8

subjects does not comply with any of the three models in at least half of the games. In
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the following, we again use finite mixture-of-types models to estimate the distribution

of the population among the three models, requiring consistency of behavior within

subjects across games and making the models compete with each other.

To that end, let i denote the subject in the experiment (i = {1, ..., 109}), g the game

(G = {1, 2, ..., 16}) and m the model considered (NE,L1,MR). Depending on the

game, each subject has cg ∈ {3, 4, 5, 6} available choices. We assume that individu-

als follow a behavioral model but make errors with a probability of εm ∈ [0, 1]. In

normal-form games with a finite and small number of strategies, we think it is more

reasonable to assume errors to be uniformly distributed across the actions. Therefore,

if a subject follows a model m, she chooses the model’s predicted action with a prob-

ability of (1 − εm), and with a probability of εm chooses any action with equal proba-

bility. We again assume errors to be model-specific and identically and independently

distributed across games and subjects.

The likelihood of a particular individual following a certain model can be con-

structed as follows. Let P g,am be the predicted choice probability of model m for action

a in game g. That is, P g,aNE , P g,aL1 and P g,aMR are 1 if each model prescribes the choice and

0 otherwise. The probability of an individual i choosing a particular action a if she

employs the model m is

(1− εm)P g,am +
εm
cg

.

Let xg,ai be 1 if action a is chosen by an individual i in game g and 0 otherwise. The

likelihood of observing a certain sample xi = (xg,ai )g,a given type m and subject i is

then

Lmi (εm|xi) =
∏

g

∏
a

[
(1− εm)P g,am +

εm
cg

]xg,ai
. (2.7)

The log-likelihood function of the whole sample is obtained by adding up for all

modelsm and subjects i, and assigning the corresponding probabilities p = (pNE , pL1, pMR)
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to each model:

lnL(p, εm|x) =
∑

i
ln
[∑

m
pmL

m
i (εm|xg,ai )

]
. (2.7)

TABLE 2.5: ESTIMATION RESULTS

All 16
games

Games where
NE 6= L1 6=MR

Model pm εm pm εm
(1) (2) (3) (4) (5)
NE 0.32*** 0.94* 0.31*** 1.00

(0.08) (0.05) (0.11) (0.07)
L1 0.68*** 0.57*** 0.69*** 0.73***

(0.06) (0.03) (0.11) (0.03)
MR 0.00 0.42*** 0.00 0.41**

(0.05) (0.24) (0.01) (0.25)
Notes: Columns (2) and (3) contain the estimation results for all 16 games.
Columns (4) and (5) contain the estimation results only for the games in which
NE, L1 and MR predict different behaviors (G5, G6, G7, G12, G13, G14, G15,
G16). Columns (2) and (4) display the estimated share of subjects who com-
ply with each model p = (pNE , pL1, pMR). Columns (3) and (5) report the
corresponding estimated error parameters ε = (εNE , εL1, εMR). Standard er-
rors are shown below each estimated coefficient, in parenthesis. We report the
significance levels for pm and εm (***p < 0.01, **p < 0.05, *p < 0.10) using
bootstrapping with 500 replications (Efron and Tibshirani, 1994). Notice that
the error rates are well behaved if they are close to zero and far from one (cor-
responding to random play), so we test whether each εm differs significantly
from one (rather than zero).

Table 2.5 reports the estimation results. There are two different estimations: One

which contains all 16 games (columns (2) and (3)) and other which contains the esti-

mates only for those in whichNE, L1 andMR predict different behaviors (columns (4)

and (5)). The only model that seems to be relevant is L1, which explains the behavior

of about 68% of the subjects in the estimates for all games and 69% if only games in

which the three models predict different behaviors are considered. In both cases, the

noise rate is significantly below 1. The frequency of NE is positive in both estima-

tions, but the error rate is so high that it cannot be differentiated from 1 (pure noise),

especially in the games in which all the behavioral models’ give different predictions.

This noisy play is capturing other types of behavior not included in this analysis, as

explained below. Finally, no subject systematically follows MR, as the estimated fre-

quency is never different from 0 in any estimation.
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As a robustness test, we make two alternative estimations. Results are shown in Ta-

ble E.1 in Appendix D. First, columns (4) and (5) report the estimations from Table 2.5

excluding games G4 and G11, in which there was a prediction of MR in mixed strate-

gies (as explained in footnote 9). The conclusions remain the same. Second, columns

(2) and (3) in Table E.1 show the results of the estimation with additional behavioral

models. Even if L1 reduces its frequency to 23%, is still the only behavioral model

from Table 2.5 that remains relevant. Therefore, the conclusion that no one follows

MR systematically holds.

In short, these results reinforce the above conclusions that MR has no relevance

in explaining non-equilibrium behavior. When MR competes with L1 in normal-form

games and the experimental design is appropriate for separating the two, the results

show that MR has no predictive power.

2.5 CONCLUSIONS

This chapter studies the relationships between minimax regret and L1, two alterna-

tive behavioral models for explaining deviations from Nash equilibrium in a wide

spectrum of games. The comparison between these two types of models has been

neglected by economists, probably due to the great distance between their underlying

motivations. We point out the surprising degree to which their predictions coincide in

a large number of games in the experimental literature. Then, we analyze two experi-

ments that include games with very different characteristics that enable us to properly

separate these models and identify whether both are actually relevant in explaining

individual behavior or whether only one of them matters.

The experimental results show clear evidence in favor of the L1 model over MR.

Although many individual choices can be attributed to MR, very few subjects seem

to follow these predictions systematically in the guessing games from Costa-Gomes

and Crawford (2006) and no subject does so in our normal-form games specifically
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designed to separate these two models. Thus, our experimental results cast doubt on

whether MR play any role as a relevant theory in describing individual behavior in

strategic situations. Further research should test whether these results extend to other

conditions or strategic situations.
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2.6 APPENDIX A: EXAMPLES OF APPLICATIONS OF MR AND

L1

Here is an example to clarify how each model makes predictions. Consider the 3 × 3

game below.

Player i\Player j L C R (NE)
T (NE) 6,1 1,6 5,6

M 4,6 4,6 3,1
B 1,3 7,1 1,7

APPLICATION OF MR

First, we calculate MR(A), the actions predicted by MR in pure strategies. The maxi-

mal payoffs that each player can obtain given each action of the other, defined in (2.1),

are:

Player i\Player j L C R u∗j (ai)

T 6,1 1,6 5,6 u∗j (T )=6
M 4,6 4,6 3,1 u∗j (M)=6
B 1,3 7,1 1,7 u∗j (B)=7

u∗i (aj) u∗i (L)=6 u∗i (C)=7 u∗i (R)=5

The regrets of each action a given the actions played by the opponent, defined in

(2.2), are:

Player i\Player j regretj(L|ai) regretj(C|ai) regretj(R|ai)
regreti(T |aj) 0,5 6,0 0,0
regreti(M |aj) 2,0 3,0 2,5
regreti(B|aj) 5,4 0,6 4,0

The regret of each action a, defined in (2.3), is:
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Player i\Player j regretj(L|ai) regretj(C|ai) regretj(R|ai) regreti(ai)

regreti(T |aj) 0,5 6,0 0,0 regreti(T )=6
regreti(M |aj) 2,0 3,0 2,5 regreti(M)=3
regreti(B|aj) 5,4 0,6 4,0 regreti(B)=5
regretj(aj) regretj(L)=5 regretj(C)=6 regretj(R)=5

Finally, the actions that bring the minimum regret areMRi(A) = {M} andMRj(A) =

{L,R}:

Player i\Player j L(MR) C R(RM )
T 6,1 1,6 5,6

M (RM ) 4,6 4,6 3,1
B 1,3 7,1 1,7

Then we calculate MR(S), the actions predicted by MR in mixed strategies. The

utilities of playing the mixed strategies that minimize regret, of playing each strategy

with a probability of (0, 5/6, 1/6) for player i, and of playing each strategy with a prob-

ability of (6/13,1/13,6/13) for player j for the example game are:

Player i\Player j L C R sj

T 6,1 1,6 5,6 67
13 ,4813

M 4,6 4,6 3,1 46
13 ,4813

B 1,3 7,1 1,7 19
13 ,6113

si
21
6 ,336

27
6 ,316

16
6 ,126

249
78 ,30178

Applying (2.2) gives the corresponding regret for the strategies given each strategy

of the opponent. The mixed strategies yield the minimal maximum regret: 15/6 for

player i and 30/13 for player j:



2.6. APPENDIX A: EXAMPLES OF APPLICATIONS OF MR AND L1 119

Player i\Player j regretj(L|ai, si) regretj(C|ai, si) regretj(R|ai, si) regretj(sj |ai, si)

regreti(T |aj , sj) 0,5 6,0 0,0 0,3013

regreti(M |aj , sj) 2,0 3,0 2,5 126
78 ,3013

regreti(B|aj , sj) 5,4 0,6 4,0 288
78 ,3013

regreti(si|aj , sj) 15
6 ,0 15

6 ,2678
14
6 ,27978

153
78 ,12878

MR(S) can also be calculated as in Renou and Schlag (2010), i.e. bycalculating the

regrets of the mixed strategies as the corresponding convex combination of the regrets

of the pure strategies:

Player i\Player j regretj(L|ai, si) regretj(C|ai, si) regretj(R|ai, si) regretj(sj |ai, si)

regreti(T |aj , sj) 0,5 6,0 0,0 6
13 ,3013

regreti(M |aj , sj) 2,0 3,0 2,5 27
13 ,3013

regreti(B|aj , sj) 5,4 0,6 4,0 54
13 ,3013

regreti(si|aj , sj) 27
6 ,46

15
6 ,66

14
6 ,256

189
78 ,18078

Finally, we calculate the IRM(A). The table below indicates the choices that sur-

vive one application of the deletion operator MR:

Player i\Player j L(MR1
j ) C R(MR1

j )
T 6,1 1,6 5,6

M (MR1
i = MR∞i ) 4,6 4,6 3,1

B 1,3 7,1 1,7

The following game remains if the actions that do not survive one application of

the deletion operatorMR are eliminated. Applying it again to the leftover game gives:

Player i\Player j L(MR2
j = MR∞j ) R

M (MR2
i ) 4,6 3,1

Finally, IRMi(A) = M and IRMj(A) = L:
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Player i\Player j L(IRMj) C R
T 6,1 1,6 5,6

M (IRMi) 4,6 4,6 3,1
B 1,3 7,1 1,7

APPLICATION OF Lk

Last, we show L1(A), the choices that yield the maximum payoffs if the opponent

chooses randomly among all actions:

Player i\Player j L C R(L1j)
T (L1i) 6,1 1,6 5,6

M 4,6 4,6 3,1
B 1,3 7,1 1,7

2.7 APPENDIX B: PROOFS OF THE PROPOSITIONS OF

SECTION 2.3.1

Proposition 1. (i)

Proof for MR: A weakly dominant strategy always has the highest outcome pos-

sible for all strategies by the opponent: ui(WDi|~s−i) = maxsi∈Siui(si, ~s−i) = u∗i (~s−i).

As a result the regret of a weakly dominant strategy is 0: regreti(WDi|~s−i) = u∗(~s−i)−

ui(WDi, ~s−i) = ui(WDi, ~s−i)−ui(WDi, ~s−i) = 0 and regreti(WDi) = max~s−i∈S−iregreti(WDi|~s−i) =

0. Since 0 is the minimum regret possible for a strategy: minsi∈Siregreti(si) = regreti(WDi) =

0 and WDi(S) = MRi(S).

Proof for Lk: A dominant strategy WDi(S) is the best response to any strategy

s−i ∈ S−i. That includes the uniform play of a L0, r−i(S−i), or any other k.

Proposition 1. (ii)

Proof for MR: A dominated strategy di has a lower utility for each strategy of the

other players than the strategy that is dominated by, ui(di|~s−i) < ui(Di|~s−i). As a re-

sult, the regret of di is always higher than the regret ofDi for every state: regreti(di|~s−i) >
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regreti(Di|~s−i). Therefore, the maximum regret is also higher:

regreti(di) = max~s−i∈S−iregreti(di|~s−i) > max~s−i∈S−iregreti(Di|~s−i) = regreti(Di).

Finally, the minimum regret possible is not that one of the dominated strategy, because

that of the dominant strategy is always lower: minsi∈Siregreti(si) 6= regreti(di) >

regreti(Di).

Proof for the Lk: A dominated strategy is by definition not the best response to any

strategy of the other players. Therefore it is not part of the set of strategies that an Lk

could ever play for any k.

Proposition 2.

Let ai = {xi, yi} and aj = {xj , yj} be the possible actions for players i and j in a

2× 2 game.As defined in Section 2.2.2, yi ⊆ L1(A)i ⇐⇒ ui(yi|~rj(Aj)) ≥ ui(xi|~rj(Aj)).

In a 2× 2 game ~rj(Aj) is to play each action with a probability of 0.5. Substituting and

multiplying by 2 gives the condition for an action yi to be predicted by L1:

yi ⊆ L1(A)i ⇐⇒ ui(yi, xj) + ui(yi, yj) ≥ ui(xi, xj) + ui(xi, yj) (2.7)

In order analyze whether a strategy yi is a subset ofMR(A), it is necessary to study

4 different cases:

Case 1: ui(yi, xj) ≥ ui(xi, xj) and ui(yi, yj) ≥ ui(xi, yj)

Case 2: ui(yi, xj) ≤ ui(xi, xj) and ui(yi, yj) ≥ ui(xi, yj), not being both equal

Case 3: ui(yi, xj) ≥ ui(xi, xj) and ui(yi, yj) ≤ ui(xi, yj), not being both equal

Case 4: ui(yi, xj) ≤ ui(xi, xj) and ui(yi, yj) ≤ ui(xi, yj)

For case 1, yi is a weakly dominant strategy, and proposition 1 applies. In that

case, yi is predicted by MR and condition (2.7) is satisfied, so it is also predicted by

L1. By symmetry, same goes for case 4. If case 2 applies, u∗i (xj) = ui(xi, xj) and

u∗i (yj) = ui(yi, yj). As a result, regreti(yi) = ui(xi, xj) − ui(yi, xj) and regreti(xi) =

ui(yi, yj)− ui(xi, yj). Which strategy has the minimum regret depends on the relation

given by condition (2.7), specifically:
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ui(yi, xj) + ui(yi, yj) ≥ ui(xi, xj) + ui(xi, yj) ⇐⇒ regreti(yi) ≤ regreti(xi)

So in case 2, yi has less regret than xi if and only if the condition (2.7) is satisfied,

and therefore yi is also predicted by L1. By symmetry, the same goes for case 3.

2.8 APPENDIX C: CGC ALTERNATIVE ESTIMATIONS

We show the results of two alternative estimations for CGC in Table C.1. First, we

incorporate the types originally considered in CGC into the estimation from Table 2.3.

Second, we add MR to that estimation.

The estimation results in columns (2), (3) and (4) show the results for the popula-

tion level estimation with the original types from CGC.17 D1 (Dominance 1) eliminates

one round of dominated decisions and best responds to uniform-play over the oppo-

nent’s remaining decisions. D2 (Dominance 2) does the same but for two rounds of

dominated decisions elimination. Soph is a type that knows the actual distribution of

subjects decisions and best responds to it. The estimation results in columns (5), (6)

and (7) incorporate MR into the previous estimation. The distribution of the types es-

timated is similar to the individual analysis in CGC. L1 is the model that explains the

largest part of the population and MR explains a fraction the population not statisti-

cally different from 0.

17NE is denoted Eq in CGC.
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TABLE C.1: CGC ALTERNATIVE ESTIMATION RESULTS

CGC types CGC types plus MR

Model pm εm λm pm εm λm
(1) (2) (3) (4) (5) (6) (7)
NE 0.27*** 0.88* 0.34** 0.19*** 0.63*** 0.07

(0.07) (0.08) (0.19) (0.05) (0.07) (0.13)
L1 0.45*** 0.90*** 1.02*** 0.42*** 0.52*** 0.69***

(0.08) (0.02) (0.15) (0.09) (0.09) (0.18)
L2 0.23*** 0.82*** 1.14*** 0.20*** 0.41*** 0.66***

(0.07) (0.03) (0.19) (0.05) (0.09) (0.16)
L3 0.01 0.01*** 0.12 0.03* 0.53*** 1.03***

(0.07) (0.37) (0.48) (0.02) (0.11) (0.12)
D1 0.00 0.03*** 0.50 0.13** 0.95 0.74*

(0.07) (0.31) (0.54) (0.05) (0.32) (0.49)
D2 0.00 0.53* 1.17** 0.00 0.04*** 0.97**

(0.06) (0.33) (0.55) (0.01) (0.26) (0.44)
Soph 0.00 0.01*** 0.87** 0.00 0.29** 1.25***

(0.02) (0.40) (0.41) (0.06) (0.37) (0.38)
MR 0.04 0.52** 0.58

(0.05) (0.27) (0.72)
Notes: The estimation results in columns (2), (3) and (4) show results for the estimation with the original types
from CGC. The estimation results in columns (5), (6) and (7) incorporateMR to the previous estimation. Columns
(2) and (5) display the estimated proportion of subjects complying with each model named in column (1).
Columns (3) and (6) reports the corresponding estimated error parameter ε. Columns (4) and (7) report the
corresponding estimated distributions of the errors, λ parameters. Standard errors are shown below each esti-
mated coefficient, in parenthesis. We report the significance levels (***p < 0.01, **p < 0.05, *p < 0.10) using
bootstrapping with 500 replications (Efron and Tibshirani, 1994). Notice that the error rates are well behaved
if they are close to zero and far from one (corresponding to random play), so we test whether each εm differs
significantly from one (rather than zero).

2.9 APPENDIX D: ALTERNATIVE PRESENTATION OF THE

RESULTS OF OUR EXPERIMENT

Figure D.1 presents the results visually. 78% of the decisions comply with NE, L1 and

MR when the three models coincide in their predictions. This indicates that at least

one of the models considered here is indeed relevant in describing subjects’ behavior.

When the predictions of one model do not coincide with either of the others, 39% of

subjects’ choices comply with L1, 22% with NE and 16% with MR. The combination

of two models followed most when only two predict the same behavior are NE and

L1 with 70% compliance, followed by the combination of L1 and MR with 51%, and

the combination of NE and MR with 33%.
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FIGURE D.1: VISUAL REPRESENTATION OF THE RESULTS OF OUR EXPERIMENT

NE

L1 MR

22%

39% 16%
51%

70% 33%

78%

Notes: Each circle corresponds to the model marked in bold next to it. The fig-
ures inside each circle indicate the percentage of subjects’ choices that comply
with the corresponding model in different sets of games depending on the over-
lapping of the circles. The percentage indicated in the area where each circle does
not overlap with any other, indicates the compliance of the corresponding model
in the games where the predictions of that model do not coincide with those of
either of the other. The percentages shown in the area where two circles overlap
indicate the compliance of the corresponding models in the games where those
two models predict the same action, which is different from the action predicted
by the remaining model. Finally the percentage indicated in the middle of the
figure where all circles overlap refers to the compliance of the three models in the
games where all three prescribe the same behavior.

2.10 APPENDIX E: ALTERNATIVE ESTIMATIONS FOR OUR

EXPERIMENT

We show the results of two alternative estimations in Table E.1. First, we incorporate

more behavioral models into the estimation. Second, we consider the same models as

in Table 2.5 but remove those games in which the prediction ofMR in mixed strategies

is not the action marked as MR in our games (G4 and G11).

The estimation results in columns (2) and (3) show results for the estimation with

the additional behavioral models. A represents an altruistic individual who chooses
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the actions that could lead to the result with the maximum sum of the payoffs of

both players. IA represents an inequity averse player who chooses the actions that

could yield the result with the minimum difference in payoffs between the two play-

ers. MAXMAX and MAXMIN describe individuals who apply the traditional maximax

and minimax rules to the payoffs of the games. PE represents a player who chooses

the actions that could lead to a Pareto efficient payoff profile. Table E.2 shows how far

apart the predictions of all the models are separated from each other in the games. The

estimation results reveal that L1 continues to be a relevant model and the frequency

of MR is still not different from 0 when more behavioral models are considered. It

also confirms that NE is not a significant model, and that the high error rate indicated

in Table 2.5 was attributable to other types of behavior. L1, L2, and L3 are the most

relevant models. An altruistic type who chooses the action that could bring the maxi-

mum sum of the payoffs of both players and as a type who applies the minimax rule

to payoffs (and not regret), are also significant.

The estimation results in columns (4) and (5) confirm that the conclusions of Ta-

ble 2.5 remain unchanged even if the games in which the prediction of MR in mixed

strategies is not the action marked with MR in our games are removed.
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TABLE E.1: ALTERNATIVE ESTIMATION RESULTS FOR OUR EXPERIMENT

All
games

All games
except G4 and G11

Model pm εm pm εm
(1) (2) (3) (4) (5)
NE 0.01 0.63*** 0.29*** 0.92

(0.01) (0.06) (0.08) (0.07)
L1 0.23*** 0.52*** 0.71*** 0.56***

(0.05) (0.03) (0.07) (0.03)
MR 0.01 0.56*** 0.00 0.23***

(0.01) (0.11) (0.05) (0.25)
L2 0.21*** 0.51***

(0.06) (0.03)
L3 0.28*** 0.64***

(0.05) (0.14)
A 0.14*** 0.44***

(0.04) (0.06)
IA 0.00 0.85***

(0.00) (0.14)
MAXIMAX 0.02 0.41***

(0.02) (0.14)
MINIMAX 0.09** 0.61***

(0.04) (0.07)
PE 0.00 0.04**

(0.01) (0.21)
Notes: Columns (2) and (3) contain the estimates for several behavioral models for all
16 games. Columns (4) and (5) contain the estimates for NE, L1 and MR only for the
games in which the prediction ofMR in mixed strategies is the action marked asMR in
our games. Columns (2) and (4) display the estimated proportion of subjects complying
with each model named in column (1). Columns (3) and (5) report the corresponding
estimated error parameters. Standard errors are shown below each estimated coefficient,
in parenthesis. We report the significance levels for pm and εm (***p < 0.01, **p <
0.05, *p < 0.10) using bootstrapping with 500 replications (Efron and Tibshirani, 1994).
Notice that the error rates are well behaved if they are close to zero and far from one
(corresponding to random play), so for each εm we test whether it differs significantly
from one (rather than zero).
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TABLE E.2: SEPARATION BETWEEN THE PREDICTIONS OF DIFFERENT MODELS

NE L1 MR A IA MAXMAX MINMAX PA L2
NE 0.00
L1 0.75 0.00

MR 0.75 0.75 0.00
A 0.82 0.85 0.73 0.00

IA 0.69 0.79 0.76 0.67 0.00
MAXMAX 0.84 0.56 0.84 0.54 0.66 0.00
MINMAX 0.72 0.75 0.66 0.52 0.63 0.84 0.00

PA 0.68 0.74 0.68 0.60 0.42 0.64 0.72 0.00
L2 0.50 0.38 0.81 0.79 0.76 0.66 0.69 0.74 0.00
L3 0.19 0.75 0.88 0.76 0.63 0.78 0.63 0.74 0.38

Notes: Each cell of the table shows the proportion of the decisions across all 16 games in which two different behav-
ioral models predict different strategies. Any given number in row i and column j is the rate of separation between
the behavioral model listed in row i and the behavioral model listed in column j. The minimum value is 0 if both
models prescribe the same behavior, and the maximum value is 1 if they predict different strategies in all games. The
separation in each game is calculated by dividing the number of choices in which one model predicts an action with a
positive probability and the other does not by the total number of strategies predicted with a positive probability by
either of the two models.

2.11 APPENDIX F: TRANSLATION OF THE INSTRUCTIONS

INSTRUCTIONS

Welcome and thank you for taking part in our experiment! Please read these in-

structions carefully. The same instructions are given to for all participants. Please do

not write on these instructions.

If you have any questions, please raise your hand and a member of the team con-

ducting the experiment will answer them. From now on, communication with other

participants in the experiment is not allowed. Please, turn off your phone now. If

you do not agree to these rules, we are sorry, you will not be able to take part in the

experiment.

The University of the Basque Country has provided the funds for this experiment.

You will receive 2 Euros just for participating. However, you can earn more money

during the experiment. How much you can earn depends on your decisions, on those

of other participants, and on chance. Everything you earn will be paid privately in

cash at the end of the experiment session. During the experiment, all numbers will
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represent Euros. All your decisions will be confidential.

THE EXPERIMENT

This experiment consists of making choices in 16 rounds. In each round you will

be randomly and anonymously matched with another participant from this session,

though not necessarily with the person physically next to you in this room. You will

not know who any of these participants are, and they will not know who you are.

In each round, you and the participant with whom you are matched with, will

make independent decisions, i.e., you will not know the decisions of the other partici-

pant. The two decisions –yours and that of the other participant– will jointly determine

how much money each of you earns in the corresponding round.

Each round is independent from the others: the amount that you can earn in each

round depends solely on the decisions made in that round. Once a round is over,

neither you nor the participant with whom you are matched can change the decision

made in that round. In addition, throughout the 16 rounds neither you nor anyone

else will know what any other participant has done. You will only find out once the

experiment is over.

In each round you will have to choose an action. Here is an example of the decision

that must be made and how will be shounx in each round. This example is only an

illustration. The situations that you will face in the 16 rounds will be different from

this example and will change from round to round.

Each decision problem will be presented in the form of a table similar to the one

below (but with different values). You will see the corresponding table each time you

have to choose an action.
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Each row of the table corresponds to an action that you can choose: A, B, C or D.

The decision that you must make is which of them to choose. The participant you

will be matched with, will have to choose among his/her actions too, as shown in

the columns of the table: A, B, C or D. That is, you choose rows while the other per-

son chooses columns. To simplify things, the experiment is programmed such that all

participants –including the person with whom you are matched– see their decision as

in our example. That is, each of you will be presented with your possible actions in

the rows of the table. At the time of choosing, you will not know what action was

chosen by the participant you have been matched with, and when the participant you

have been matched with chooses his/her action, he/she will not know what action

you have chosen.

Your decision and that of the other participant will determine the payments for

each of you. In the table, your actions and your payments appear in red, while those

of the other participant appear in blue.

The table reads as follows:

- If you choose A and the other participant chooses A, you receive 1 and he / she re-

ceives 3

- If you choose A and the other participant chooses B, you receive 4 and he / she re-

ceives 8
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- If you choose A and the other participant chooses C, you receive 4 and he / she re-

ceives 9

- If you choose A and the other participant chooses D, you receive 3 and he / she re-

ceives 4

- If you choose B and the other participant chooses A, you receive 5 and he / she re-

ceives 2

- If you choose B and the other participant chooses B, you receive 1 and he / she re-

ceives 5

- If you choose B and the other participant chooses C, you receive 4 and he / she re-

ceives 2

- If you choose B and the other participant chooses D, you receive 8 and he / she re-

ceives 8

- If you choose C and the other participant chooses A, you receive 2 and he / she re-

ceives 3

- If you choose C and the other participant chooses B, you receive 5 and he / she re-

ceives 3

- If you choose C and the other participant chooses C, you receive 3 and he / she re-

ceives 5

- If you choose C and the other participant chooses D, you receive 1 and he / she re-

ceives 4

- If you choose D and the other participant chooses A, you receive 9 and he / she re-

ceives 6

- If you choose D and the other participant chooses B, you receive 7 and he / she re-

ceives 8
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- If you choose D and the other participant chooses C, you receive 1 and he / she re-

ceives 7

- If you choose D and the other participant chooses D, you receive 5 and he / she re-

ceives 6

The decision problem in each round will be shown as a table like the ones in these

examples. The rounds will differ in two aspects. First, the amounts in the cells will

differ from round to round. As in the example, how much you can earn in each round

will depend on your decision and that of the other participant.

Second, the number of actions that you can choose from will also differ form round

to round. In some rounds you will have to choose between four actions, as in the

example, but in other rounds you will have to choose between 3, 4, 5 or 6 actions. The

following table shows an example in which you have to choose between 3 actions:

Again, this is just an illustrative example and the numbers that you will see in the

experiment will differ from those shown here.

HOW TO USE THE COMPUTER

In each of the 16 rounds, you will see a table like the one shown in the examples

on the screen, with the same colors and with the white boxes corresponding to your

possible actions. You can choose an action by clicking on the corresponding box. For
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instance, say that in the first example with four actions you choose action C. When you

click on the box for action C it will change color as shown in the following table:

The choice is not final: you can change it as many times as you want by clicking

on another box so long as you have not yet clicked on the “OK" button in the corner

of the screen. Once you click on “OK" the option chosen will be final and you will go

on to the next round. You cannot move on to the next round until you have chosen an

option and clicked “OK".

PAYMENTS

After you have decided in all 16 rounds, your payments will be determined as

follows. The computer will select 2 of the 16 rounds randomly for each participant.

You will receive the total amount that you have earned in those 2 rounds, in line with

your own decision and that of the person you have been matched with in each round.

Your final payment will be the 2 Euros plus the amount in Euros that you have earned

in those 2 rounds.

At the end of the experiment, the screen will show the complete table of decisions

for each of the rounds selected: your decisions in each round, and those of the partici-

pant you were matched with.

SUMMARY
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In this experiment you will make decisions in 16 rounds. In each round you will

be matched randomly and anonymously with another participant.

In each round, you and the person you will be matched with, will have to make

independent decisions that will determine how much money each of you earns in

that corresponding round. Throughout the 16 rounds, neither you nor anyone else will

know what the other participants decide. You will only know once the experiment is

finished.

Each round will be a decision problem in the form of a table in which you have to

choose an action. You choose from the rows and the other participant chooses from the

columns. Your decision and that decision of the other participant will determine how

much each of you will be paid. In the table, your actions and your payments appear in

red, while the actions and payments of the other participant appear in blue.

After you have decided in all 16 rounds, the computer will choose 2 rounds at

random. You will again see the table for the decisions of those 2 rounds, and will be

informed of what action you chose in that round and what action the other participant

chose. You will receive the amount of money that you earned in those 2 rounds, ac-

cording to your decision and that of the person you have been matched with in each

round. Your final payment will be 2 Euros for participating plus the amount in Euros

that you have earned in those 2 rounds.

CONTROL QUESTIONS

Before beginning the 16 rounds, please answer the following control questions

about the situation represented by the table below. The rounds will not begin until

everyone has answered the 4 questions below the table correctly.
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1) Consider this table. If the participant you are matched with chooses action A and

you choose action C, what will your payment be if this round is chosen for your pay-

ment?

2) If the other participant chooses action B and you choose action A, how much will

the other participant be paid if this round is chosen for his/her payment?

3) True or False: We will pay you the sum of the payments of the 16 rounds.

4) True or False: At the end of the 16 rounds you will be able to see the complete table

of the decisions for the rounds for which you will be paid, your actions and those of

the participant you have been matched with.



Chapter 3

Hot versus Cold Behavior in

Centipede Games

3.1 INTRODUCTION

Strategic environments involving sequential decision-making are commonly repre-

sented by games in extensive form. A strategy in extensive-form games involves a

complete plan of actions, with one action for each possible information set. In a lab,

the researcher can thus elicit behavior using either the direct-response or “hot" method

as opposed to the strategy or “cold" method. Under the direct, hot elicitation proce-

dure players observe the behavior of others in previous stages of the game before they

take an action and can therefore only react to realized past actions. By contrast, under

the strategy, cold elicitation procedure, players take actions in all the hypothetical situ-

ations in which they can find themselves throughout the game, without observing the

actions of their opponents. Since both elicitation procedures are strategically equiv-

alent, one should observe the same behavior independently of which is employed.

However, the empirical validity of this equivalence has been debated for decades.

Does the elicitation method (hot vs. cold) yield different individual behavior? One

135
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traditional argument is that this would be the case because players are forced to think

more about the different hypothetical situations in the cold method, which can in turn

modify their behavior, while in the hot method players react to the actual behavior of

others, potentially triggering emotional responses that may also affect subjects’ behav-

ior (Roth, 1995; Lowenstein, 1996). Brandts and Charness (2011) provide a compre-

hensive survey of 29 studies that explicitly compare hot vs. cold elicitation methods.

They find no differences in behavior in 16 cases, 6 in which behavioral differences are

detected between the two elicitation methods, and 4 in which the evidence is mixed.

They conclude that their analysis should dispel the beliefs that the strategy method in-

evitably yields results different from those gathered using the direct-response method,

but their study rather suggests that both elicitation procedures lead to the same behav-

ior under certain conditions but not in others and provides suggestive evidence that

certain features of the environment may play a role. They do not find evidence that the

behavior elicited via the two methods generally diverges when emotions are involved–

as suggested above–but they document that punishment levels are typically lower un-

der the strategy method. Moreover, the behavior observed is more likely to differ from

one method to the other if subjects make fewer contingent choices, suggesting that

simpler, less complex strategic situations enhance the ability of subjects to reason sim-

ilarly under both elicitation methods. Lastly, they find that any behavioral differences

between the two procedures seem to diminish over time. In sum, whether the strategy

method is behaviorally equivalent to direct-response elicitation remains an open ques-

tion and more evidence is required to provide a conclusive answer. In particular, we

are aware of no studies that target this issue using a unified experimental framework

that enable a clean comparison between comparable strategic environments.

We contribute to this debate by testing this issue using Centipede Games (CGs,

hereafter), introduced by Rosenthal (1981). In these games, two players decide alter-

nately between two options: pass (and continue the game) or take (and stop it right
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away). The particular feature of CGs is their incentive structure. Both players have

incentives to pass because stopping at any later decision node always leads to higher

payoff. However, they also have incentives to take because if the other player takes

in the subsequent decision node they will get a lower payoff. Due to that incentive

structure, backward induction predicts a unique, symmetric behavior for both player

roles: take in every decision node. If both players follow this prediction, the player that

moves first stops the game in her first decision node, independently of other details of

the incentive structure.

Using the hot method, McKelvey and Palfrey (1992) were to first to show that the

unique subgame perfect Nash equilibrium fails to predict how people play this game.

This divergence from subgame perfect equilibrium has been extensively replicated

(e.g. Fey, McKelvey and Palfrey, 1996, Nagel and Tang, 1998, Palacios-Huerta and Volij,

2009, Levitt, List and Sadoff, 2011, Kawagoe and Takizawa, 2012, Garcia-Pola, Iriberri,

and Kovářík, 2016). Following McKelvey and Palfrey (1992), hot elicitation has be-

come the most commonly used method in CGs, though there are a few exceptions.

Nagel and Tang (1998) used the strategy method to elicit behavior in a twelve-node

CG. They conclude that the behavior in their experiment does not differ from that in

McKelvey and Palfrey (1992), but they do not test this issue formally. The only pa-

per that provides a direct experimental comparison of the two methods using CGs is

Kawagoe and Takizawa, (2012) who compare behavior under both methods in the six-

node increasing-sum CG from McKelvey and Palfrey (1992) and in the constant-sum

CG from Fey, McKelvey and Palfrey (1996), using a within-subject design.1 They find

no differences between the two elicitation procedures. We argue that this might be due

to the use of the within-subject design in their comparison. Subjects face one elicitation

procedure right after the other using the same game, a feature that may explain why

virtually the same behavior is observed in both cases.

1Kawagoe and Takizawa (2012) scale the payoffs in the constant CG up to balance the incentives across
the two CGs.
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Our study compares behavior under the hot and cold treatments in four variants of

six-node CGs using a between-subject design. Two games are the canonical increasing-

and constant-sum variations from McKelvey and Palfrey (1992) and Fey, McKelvey

and Palfrey (1996), respectively, tested in Kawagoe and Takizawa (2012). The other

two CGs, proposed in García-Pola, Iriberri, and Kovářík (2018), preserve the incentive

structure of CGs but differ dramatically from the two canonical games in the evolu-

tion and/or (a)symmetry of payoffs. One is an increasing-sum CG with two different

dimensions of asymmetry across player roles. First, the first player obtains a larger

payoff than the second player independently of who takes first. Second, the second

player has almost no incentives to pass, but for the first player that incentives are al-

most as strong as in the canonical CG proposed by McKelvey and Palfrey (1992). The

last CG is a variable-sum CG, meaning that the sum of payoffs neither monotonically

increases nor decreases over the decision nodes. This game also provides asymmetric

incentives across the two players.

Importantly, given that all four games preserve the incentive structure of CGs, they

provide no space for punishment (but they do provide space for positive emotional re-

sponses and thus reward passing behavior, a feature that might stimulate taking later

under the hot method) and the number of choices available to each player is constant

across all four CGs. Hence, the determinants detected by Brandts and Charness (2011)

are held constant across our four CGs. On the other hand, an incentive structure that

is asymmetric across the two players may be viewed as a source of complexity during

the decision-making process. In that case, Brandts and Charness (2011) suggest that be-

havior is more likely to differ between the two elicitation procedures in the asymmetric

games than the symmetric ones. Lastly, since Brandts and Charness (2011) conclude

that differences due to the elicitation method tend to disappear over time, people play

each CG for 10 different periods in our hot treatment so that we can tell whether their

behavior converges toward the behavior elicited via the cold, strategy method.
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Our data reveal significantly different behavior between the two elicitation meth-

ods in the two canonical CGs. In particular, in the hot method behavior shifts toward

stopping earlier. However, the behavior observed does not differ between the hot and

cold methods for the other two CGs. Since the main difference between the two pairs of

CGs is that both players face the same incentives in the former but not in the latter and

this result holds for both players, we attribute these effects to payoff (a)symmetry. Peo-

ple might find it easier to “put themselves in others’ shoes" if others face comparable

situations. This way, they are more likely to realize in symmetric games that the other

player also has the same incentives to stop earlier. This seems to be reinforced under

the direct, hot method but less so in the cold treatments, yielding behavior closer to

subgame perfect equilibrium in the first case. On the other hand, if payoff asymmetry

is considered as an element of game complexity, this finding may seem to contradict

one conclusion of Brandts and Charness (2011). Lastly, again in contrast to Brandts

and Charness (2011), we observe no convergence of the behavior elicited in the hot

treatment towards that of the cold treatment. If anything, the behavior in one of our

games rather diverges slightly with experience.

The chapter is organized as follows. Section 3.2 introduces the experimental proce-

dures and design. Section 3.3 presents the results. Section 3.4 discusses the results and

concludes.

3.2 EXPERIMENTAL DESIGN

3.2.1 EXPERIMENTAL PROCEDURES

The data presented in this study come from two sets of experiments. The data elicited

using the strategy method is the same than the one from the first chapter, where 151

subjects participated in four sessions in May 2015.2 In May and June 2018, we con-

2Given the matching protocol in the cold treatment, the number of participants did not have to be
even.
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ducted seven additional sessions with a further 218 subjects, employing the hot elicita-

tion method, explicitly designed for the purpose of this chapter. For both treatments,

recruitment was carried out with the ORSEE (Greiner, 2015) and we ensured that the

subjects had participated in no any similar experiments in the past. All sessions were

conducted at the Laboratory of Experimental Analysis (Bilbao Labean; http://www.bilbaolabean.com)

at the University of the Basque Country using z-Tree software (Fischbacher, 2007).

The two treatments share some common features. The subjects were given identi-

cal instructions in both cases, except for the specific changes inherent in each elicitation

procedure as described below. The instructions gave explanations of three examples

of CGs (other than those used in the main experiment), how subjects could make their

choices, the matching procedure, and the payment method. The instructions were read

aloud to guarantee public knowledge. Subjects were allowed to ask any questions they

might have throughout the instruction process. After the instruction process, all par-

ticipants had to answer several control questions on the computer screen before they

could proceed. An English translation of the instructions from the cold and hot treat-

ments can be found in Appendices B (of the first chapter) B (of this chapter), respec-

tively.

At the beginning of each treatment, each subject was randomly assigned the role

of either Player 1 (who decides first then chooses in the odd decision nodes) or Player

2 (who decides in the even decision nodes). To avoid any possible associations from

being first or second or number 1 vs. 2, subjects playing as Player 1 were labeled as

red and those playing as Player 2 blue throughout the experiment. At the end of the

experiment for both treatments, the participants were invited to fill in a questionnaire

eliciting information in a non-incentivized way concerning their demographic data,

cognitive ability, social and risk preferences.

Bellow, we describe in detail the design features of each treatment separately.
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COLD TREATMENT

In the cold treatment, each subject participated in 16 different CGs one by one in a

random order (which was the same for all subjects) with no feedback between the

different games. These 16 CGs included the four CGs analyzed in this study (displayed

in Figures 3.1 and 3.2). Subjects made their choices game by game. They were never

allowed to leave a game without making a decision and get back to it later, and they

were unaware in any stage of which games they would face in later stages. There

was no time constraint and the participants were not obliged to wait for others while

making their choices in the 16 games. Our design minimizes reputation concerns and

learning as far as possible. Hence, the choice in each game reflects the initial play and

each subject can be treated as an independent observation. The CGs were displayed in

the extensive form on the screens, as shown in the instructions in Appendix B of the

first chapter.

The behavior was elicited using the strategy method. That is, rather than making

their choices node by node and observing the behavior of their opponents in the pre-

ceding nodes, each subject submitted the decision node in which she would take for

the first time and thus end the game (if her opponent had not already taken). During

the actual decision, the subjects faced the extensive-form representation of the game

and decided as follows. The branches corresponding to different options in the game

were generally displayed in black but the branches corresponding to each players’

choice were displayed in red for Players 1 and in blue for Players 2. Depending on the

player, they had to click on a square white box that stated either “Stop here” or “Never

stop”. To ensure that subjects thought enough about their choices, once they had made

their decision whether to stop at a node or never stop by clicking on the correspond-

ing box, they did not leave the screen immediately. Rather, the chosen option changed

color to red or blue depending on the player and they were allowed to change their

choice as many times as they wished, simply by clicking on a different box. If they
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did so, the option chosen previously would turn back to white and the newly chosen

action would change color to either red or blue. To proceed to another game in the se-

quence, the subjects had to confirm their decision by clicking on an “OK” button in the

bottom right corner of the screen. They were only allowed to proceed once they had

confirmed. In terms of strategies, for each game and each player type, participants had

faced four different options to click on: Take the first time, Take the second time, Take the

third time, and Always pass, without knowing the strategy chosen by the other player.

The instructions in Appendix B of the first chapter provide some examples of how the

different stages were displayed to the subjects in this treatment.

When all subjects had submitted their choices in the 16 CGs, three games were

randomly selected for payment for each subject. Hence, different participants were

paid for different games. The procedure, which was carefully explained to the subjects

in the instructions, was as follows. The computer randomly selected three games for

each subject and three different random opponents from the whole session, one for

each of those three games. This means that the same participant may have served as

an opponent for more than one other participant. Nevertheless, being chosen as an

opponent does not have any payoff consequence. To determine the payoff of a subject

from each game selected, her behavior in each game was matched to the behavior

of the randomly chosen opponent for this game. At the end of the experiment, the

subjects were privately paid the sum of the payoffs from the three games selected at a

conversion ratio of 1 Euro for each 10 experimental points, plus a 3 Euro show-up fee.

HOT TREATMENT

In the hot treatment, each subject played only one of the four CGs displayed in Figures

3.1 and 3.2. Since the direct method already provides feedback within each game, we

also explored how behavior evolves over the repetitions of the same game. Therefore,

each participant played the same game ten times against a randomly chosen opponent
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in each round. This design feature enables us to analyze the behavior in the first round,

but also how behavior changes with experience and whether the behavior elicited via

the hot method converges to or diverges from the behavior observed under the strategy

method. Subjects made their choices round by round, with no the possibility of going

back to the previous rounds. There was no time constraint, but subjects had to wait for

their opponents to decide in each corresponding decision node and for all player pairs

to finish the current round before the computer would generate new random pairs in

each round. Our design minimizes reputation concerns, minimizing the number of

times that each subject plays with the same opponent in each group as far as possible

and ensuring that subjects never play against the same opponent in two consecutive

rounds. Additionally, the matching was designed so that there were more than two

and mostly three cohorts and so that subjects from one cohort never met a subject from

any other cohort, leading to at least two independent observations for each CG. The

CGs were displayed in extensive form on the screens, as shown in the instructions in

Appendix B.

Since behavior was elicited using direct, hot method, the players decided in each

node alternately one after the other. As in the cold treatment, the branches in the game

were generally displayed in black but the branches corresponding to the players’ two

current choices were displayed in red for Players 1 and in blue for Players 2. In each

corresponding decision node, each participant had to click on one of the two square

white boxes corresponding to each optionm which stated either “Stop here” or “Con-

tinue”. In the last decision node for each player, the boxes stated “Stop here” or “Never

stop” instead. Once a player chose “Stop here” the round finished. To ensure that sub-

jects thought enough about their choices, once they had made their decision whether

to stop at a particular node or not by clicking on the corresponding box, they did not

leave the screen immediately. Rather, the chosen option changed color to red or blue

depending on the player and they were allowed to change their choice as many times
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as they wished, simply by clicking on a different box. In such a cases, the option chosen

previously would turn back to white and the newly chosen action would change color

to either red or blue. To proceed to the next decision, subjects had to confirm their deci-

sion by clicking on an “OK” button in the bottom right corner of the screen. They were

only allowed to proceed once they had confirmed. These colors were maintained in

the game tree when players were deciding in the next decision nodes as an indication

of the decisions made for that round. The instructions in Appendix B provide some

examples of how the different stages were displayed to the subjects in this treatment.

When all subjects had submitted their choices in all 10 rounds, two rounds were

randomly selected for payment for each subject (or one round in case of the expo-

nentially increasing-sum CG, labeled as CG1 below, to preserve equality of payoffs of

subjects across different games). Hence, different participants were paid for different

rounds, according to their decisions and the decisions of their corresponding oppo-

nents in each round. At the end of the experiment, the subjects were privately paid

the sum of the payoffs from the two rounds (or one round) selected randomly at a

conversion ratio of 1 Euro for each 10 experimental points, plus a 3 Euro show-up fee.

3.2.2 EXPERIMENTAL GAMES

In this study, we analyze four different variations of six-decision node CGs. Figure

3.1 displays the extensive-form representations of the four CGs. Figure 3.2 represents

these games graphically, using players’ payoffs. In the latter case, the y-axes corre-

spond to the seven potential terminal nodes in each CG, while the x-axes plot both the

payoffs of each player and the sum of the payoffs of both players at the corresponding

decision nodes. This alternative depiction enables three important features to be ob-

served. First, the figure reflects the incentives of each player role to take or pass in each

decision node and their evolution over the nodes. Second, it reveals the (a)symmetry

in both the size of payoffs and their evolution across the two roles. Lastly, Figure 3.2 re-
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flects the evolution of the sum of payoffs across the two player roles over the different

decision nodes.

CG 1 CG 2

CG 3 CG 4

FIGURE 3.1: THE FOUR CENTIPEDE GAMES USED IN THE EXPERIMENT

CG 1 CG 2

CG 3 CG 4

FIGURE 3.2: ALTERNATIVE REPRESENTATION OF THE FOUR CENTIPEDE GAMES USED IN THE EXPERI-
MENT

We selected these four CGs in order to provide considerable variation in the evo-

lution of both the payoffs in each player role and the sum of payoffs of both players,

while preserving the payoff structure of a CG. That is, in all four CGs, (i) each player is

always better off passing and taking at the next decision node; but (ii) she always gets

a higher payoff by taking than if she passes and her opponent takes in the subsequent
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decision node.

The first game, labeled as CG1, is the exponentially increasing-sum CG originally

tested by McKelvey and Palfrey (1992). The sum of the payoffs of both players always

doubles moving from one node to the next and the splitting rate of the sum between

the players is always the same and is symmetric across the players. This game provides

strong, symmetric incentives for both players to pass, at least in the initial stages of the

game. CG2 is the constant-sum CG proposed by Fey, McKelvey, and Palfrey (1996). In

this game, the sum of the payoffs remains constant throughout the game, so there is no

social gain in moving forward. Again, the incentives of the two players are symmetric.

Unlike CG1 and CG2, CG3 and CG4 have not previously been tested in the litera-

ture. They differ from CG1 and CG2 mostly in that the payoff paths differ considerably

from one player role to the other. Like CG1, CG3 is an increasing-sum game. Neverthe-

less, the payoffs of Player 1 are always higher than those of Player 2 and they increase

considerably over the decision nodes, while the payoffs of Player 2 remain low and

slightly decrease. As a result, Player 1 has incentives not to take while the contrary

occurs for Player 2. Finally, CG4 is a variable-sum CG in which the sum of the payoffs

decreases initially, stays constant in the middle nodes, and rises slightly at the end.

Once again, the payoffs of Player 1 are higher overall than those of Player 2, but this

time the evolution of the payoffs is similar.

In total, we collected data from 151/216 subjects in the cold/hot treatments. Out

of the 216 in the hot treatment, 62 played CG1, 64 played CG2, 56 played CG3, and 34

played CG4.

3.3 RESULTS

Figure 3.3 summarizes the experimental results. Due to the difference in elicitation

methods between the two treatments, behavior cannot be compared directly. In the

hot treatment, Figure 3.3 reports the frequencies of the terminal nodes observed in each
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game, given the (random) matching of subjects in the actual experiment. On the fig-

ure, the three darker bars corresponding to each terminal node display the distribution

of behavior in the first round, the average behavior over all ten rounds of the experi-

ment, and the behavior in the last round, respectively. The figure reveals that there is

little variation in behavior over rounds. The only exception seems to be CG4, where

there is a tendency to take earlier as subjects gain experience. However, given that the

comparisons between the hot and cold treatments generally generate the same results

independently of whether the initial, average or final behavior in the hot treatment

is used, the main text focuses on the average behavior over all the ten experimental

rounds (see the results in Appendix A.1 for more details concerning the comparison of

behavior across different rounds).

Regarding the behavior elicited in the cold treatment, people submit their strategies

simultaneously and the distribution of terminal nodes reached is not observed directly.

To enable the behavior in the two treatments to be compared, we proceed as follows.

We generate 100,000 random sub-samples from the cold treatment to match the num-

ber of subjects in each role in each game in the corresponding hot treatment and ran-

domly match into pairs the behavior of the sampled subjects from different roles. This

generates 100,000 potential distributions of terminal nodes, each corresponding to one

possible realized distribution of behavior if the subjects from the cold treatment partic-

ipated in the hot treatments (respecting the sample sizes of the latter). The white bars

in Figure 3.3 plot the average terminal-node frequency across these 100,000 simulations

and the corresponding 95% confidence intervals.
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CG 1 CG 2

CG 3 CG 4

FIGURE 3.3: COMPARISON OF BEHAVIOR BETWEEN TREATMENTS.

Figure 3.3 shows that the behavior differs across the four CGs in line with the in-

centives. People stop consistently later in CG1, which provides the largest incentives

to pass. This tendency is observed for both roles. CG3 shows the second greatest ten-

dency to take later, and reflects the asymmetry between the two players: subjects in the

role of Player 1 (odd decision nodes) tend to stop later than subjects playing as Player

2 (even nodes). There is some passing in CG2, but few pairs of opponents reach the

third decision node independently of the treatment. Lastly, in CG4 the vast majority of

pairs end the game at the first decision node under both elicitation methods.

At first sight there are some differences between the two treatments, but they seem

to show up exclusively in the first or second decision nodes and disappear in later

stages of each game. Hence, it cannot be concluded from the figures whether the two
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methods generate the same behavior or not.

To test formally whether the distributions differ from one treatment to the other,

we perform three different tests for each game. Remember that we perform between-

subject comparisons, enabling us to use tests assuming the independence of the two

samples. First, we test two different null hypotheses using the chi-squared tests of

independence. One directly tests whether the behavior in both treatments comes from

the same distribution, and the other asks whether the behavior from the hot treatment

comes from the simulated distribution under the cold method. Third, we perform two-

sample Kolmogorov-Smirnov tests.3 Table 3.1 displays the p-values generated by the 3

(tests) × 4 (games) = 12 tests.

The three tests all conclude that behavior differs form one elicitation method to the

other in CG2. In contrast, equal behavior under both elicitation methods can never be

ruled out in CG3 and CG4.4 For CG1, the chi-square tests indicate that the hypothe-

sis of the same behavior in the two treatments cannot be accepted (p < 0.02), while

the Kolmogorov-Smirnov test suggests otherwise (p = 0.139). The main difference be-

tween these tests is that the former two tests take into account the whole distribution of

behavior, while the latter only looks at the largest difference between the two cumula-

tive distribution functions of behavior. It is thus possible to have two distributions that

do not differ much from one another at any particular point, leading the Kolmogorov-

Smirnov test to accept the equality the two distributions, but which consistently differ

sufficiently in the whole support of the distribution for a test that considers the whole

distribution to reject it. This is actually the case here. A look at the tests of propor-

tions show that they indeed suggest that significantly higher proportions of people

3We alternatively performed tests of proportions, which generally confirm the results of the tests re-
ported in the main text. See Appendix A.2.

4As mentioned above, people tend to stop earlier with experience in CG4. If equality of distributions
is tested under both treatments in CG4, all three tests conclude that behavior does not differ from one
treatment to the other using the initial and average behavior in the hot treatment. However, all three tests
reject equality of distributions using the last-round behavior (p = 0.039, 0.001, and 0.035, respectively;
see Appendix A.2). This suggests that behavior under the hot method diverges from that elicited with
the strategy method.
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stop in the initial phases of the game under the hot method than the cold method (see

Appendix A.2).

As a result, we conclude that our experimental subjects tend to stop earlier un-

der the hot method in CG1 and CG2 than in the cold treatments. These results are in

sharp contrast with those from the within-subject comparison in Kawagoe and Tak-

izawa (2012).5 For CG3 and CG4, the cold and hot methods seem to generate the same

behavior. The following section provides a hypothesis for why the conclusions might

differ from one game to another across the different games.

TABLE 3.1: TESTS THAT COMPARE BEHAVIOR IN HOT (AVERAGED OVER THE 10 ROUNDS) AND COLD
ELICITATION METHODS

Chi-squared test Kolmogorov-Smirnov test

Game
Both come from the

same population
Hot comes from cold Both distribution are equal

(1) (2) (3) (4)

CG1 0.019** 0.000*** 0.139

CG2 0.003*** 0.000*** 0.033**

CG3 0.749 0.278 0.681

CG4 0.238 0.071* 0.487
Notes: Column (1) identifies the game. Columns (2) and (3) report the p-values for the chi-squared test of two different null
hypotheses: (2) shows the probability of observing those particular distributions if data from both treatments come from the
same population, and (3) shows the probability if the data from the hot treatment comes from the cold treatment. Column (4)
reports the p-values for the Kolmogorov-Smirnov test under the null that the two distributions are equal.

3.4 DISCUSSION

Employing the between-subject design, this chapter compares the behavior elicited

by the direct, hot method and by the strategy or cold method in four six-node CGs,

which differ in their incentive structures from one game and one player role to another.

We observe that whether the two methods generate the same or different behavior
5Kawagoe and Takizawa (2012) do not provide any exhaustive analysis of this issue. They only per-

form the Kolmogorov-Smirnov test, which is designed for two independent samples, but their behavior
under both elicitation methods come from the same population, violating this assumption. This might be
one reason why our results contradict theirs.
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depends on the game under scrutiny. More precisely, we find significant differences

between the two elicitation methods in the two canonical CGs, in that people stop

somehow earlier under the hot method, while both elicitation procedures generate the

same behavior in two other CGs.

What determines whether the results differ from one game to another? As shown

in Figure 3.2, the main difference between the games that generate different behavior

and those that do not is the (a)symmetry of incentives between the two player roles.

The incentives are similar in size and evole in the same way as the game evolves for

both players in the games in which differences are observed between the hot and cold

treatments. By contrast, the incentive structures are asymmetric in the other games:

one of the games preserves the same evolution in payoffs but differs in size–and thus

the incentives to take or pass–from one player role to the other. In the second asym-

metric game size and evolution change, such that one player has greater incentives to

pass and those incentives increase over time, while they are lower and actually de-

crease for the second player role. This suggests that payoff (a)symmetry across player

roles might be a determinant of whether or not the elicitation procedure affects how

people behave. This contributes to the debate initiated in Brandts and Charness (2011)

regarding the conditions that determine when the direct-response elicitation generates

different behavioral responses from the strategy method.

As for the mechanism behind our finding, payoff asymmetry naturally hinders the

understanding of opponents’ motivations by (boundedly rational) decision makers.

As a result, asymmetric incentives may prevent decision makers from “putting them-

selves in the shoes of the opponent". By contrast, when the incentives are aligned it is

easier to realize that others also have strong incentives to take at every decision node in

CGs. This might reinforce the decision to take earlier in symmetric game than in com-

parable asymmetric games. Our results suggest that this effect might be reinforced

more under the hot method than under the strategy method. Whether this is a general
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phenomenon is a matter for further research. However, if there is indeed an interac-

tion between payoff (a)symmetry and decision making under “hot" conditions, payoff

asymmetry across players should be carefully considered when designing experiments

involving sequential reasoning.
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3.5 APPENDIX A: ADDITIONAL RESULTS

APPENDIX A.1 EVOLUTION OF BEHAVIOR FROM ROUND TO ROUND IN THE HOT

TREATMENT

Subjects played the same CG over 10 different rounds in our hot treatment. It is there-

fore possible to test whether the behavior of subjects in this treatment differs from one

round to another due to learning. Figure 3.4 plots the average terminal node across all

the player matches on the y-axes and the experimental rounds on the x-axes for the dif-

ferent CGs. The figure confirms the tendency to stop later in the increasing-sum CGs

(between the second and third nodes) than in the constant-sum and variable-sum CGs,

in which people stop on average between the first and the second decision nodes. Most

interestingly though, we detect little tendency to stop earlier or later with experience.

To test this formally, we ran four ordered-logit regressions at the level of matched pairs

of subjects to test whether the stopping node depends systematically on the round for

each game, taking into account potential correlations within cohorts. Table 3.2 reports

the results. There is no trend in behavior over time for CG1, CG2 and CG3. The only

game that shows some evolution is CG4, in which the stopping node decreases slightly

from one round to another (0.04 per round). This effect is significant at 5%.

In summary, we find little learning with experience except in CG4 in which people–

if anything–tend to stop earlier in later rounds. These observations contrast with those

of both Mckelvey and Palfrey (1992) and Fey, Mckelvey and Palfrey (1996) who ran 10

repetitions of CG1 and CG2, respectively, and found that their subjects played more

in line with the theoretical prediction (stopping earlier) in later rounds. In contrast, it

coincides with Nagel and Tang (1998), who found no tendency to stop earlier or later

over the 100 rounds of their CG.
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CG 1 CG 2

CG 3 CG 4

FIGURE 3.4: MEAN TERMINAL NODE OVER THE 10 ROUNDS IN THE HOT TREATMENTS.

TABLE 3.2: ORDERED-LOGIT ESTIMATIONS: EFFECT OF EXPERIMENTAL ROUNDS ON TERMINAL NODES
REACHED BY EACH MATCHED PAIR FOR THE FOUR CGS; HOT TREATMENTS.

CG1 CG2 CG3 CG4

(1) (2) (3) (4)

Round 0.0062561 -0.025974 0.0139131 -0.0434938**

(0.022909) (0.0218323) (0.0302528) (0.003155)

Constant 2.597849** 1.771429*** 2.902011*** 1.67451***

(0.2732784) (0.1027561) (0.0858486) (0.0083292)

Observations 310 280 329 170
Notes: Robust standard errors clustered at cohort level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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APPENDIX A.2 HOT VS. COLD TREATMENTS: ALTERNATIVE TESTS

TABLE 3.3: TESTS THAT COMPARE BEHAVIOR IN HOT (ROUND 1) AND COLD ELICITATION METHODS

Chi-squared test Kolmogorov-Smirnov test

Game
Both come from the

same population
Hot comes from cold Both distribution are equal

(1) (2) (3) (4)

CG1 0.026** 0.000*** 0.096*

CG2 0.019** 0.000*** 0.033**

CG3 0.698 0.349 0.900

CG4 0.297 0.137 0.608
Notes: Column (1) identifies the game. Columns (2) and (3) report the p-values for the chi-squared test of two different null
hypotheses: (2) shows the probability of observing those particular distributions if data from both treatments come from the
same population, and (3) shows the probability if the data from the hot treatment comes from the cold treatment. Column (4)
reports the p-values for the Kolmogorov-Smirnov test under the null that the two distributions are equal.

TABLE 3.4: TESTS THAT COMPARE BEHAVIOR IN HOT (ROUND 10) AND COLD ELICITATION METHODS

Chi-squared test Kolmogorov-Smirnov test

Game
Both come from the

same population
Hot comes from cold Both distribution are equal

(1) (2) (3) (4)

CG1 0.025** 0.000*** 0.096*

CG2 0.003*** 0.000*** 0.033**

CG3 0.369 0.060 0.635

CG4 0.039** 0.001*** 0.035**
Notes: Column (1) identifies the game. Columns (2) and (3) report the p-values for the chi-squared test of two different null
hypotheses: (2) shows the probability of observing those particular distributions if data from both treatments come from the
same population, and (3) shows the probability if the data from the hot treatment comes from the cold treatment. Column (4)
reports the p-values for the Kolmogorov-Smirnov test under the null that the two distributions are equal.

3.6 APPENDIX B: “HOT" TREATMENT INSTRUCTIONS IN

ENGLISH (ORIGINAL IN SPANISH)

THANK YOU FOR PARTICIPATING IN OUR EXPERIMENT!
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TABLE 3.5: TESTS OF PROPORTIONS THAT COMPARE BEHAVIOR IN HOT AND COLD ELICITATION METH-
ODS

Game End 1 End 2 End 3 End 4 End 5 End 6 End 7

CG1 0.063* 0.020** 0.047** 0.004*** 0.063* 0.597 1

CG2 0.004*** 0.002*** 0.166 0.486 0.680 1 1

CG3 0.587 0.142 0.295 0.992 0.741 0.896 1

CG4 0.092* 0.112 0.287 0.363 0.538 1 1
Notes: The table reports the p-values of the test of proportions performed on the two different proportions
of accumulated matches that ended before the end reported in each column in the hot and cold elicitation
methods. For example, 0.002 for CG2 and End 2 indicates that the proportion of subjects stopping CG2 in
either the first or second decision nodes differs statistically between the hot and cold treatments at 0.2%.

This is an experiment, so there is to be no talking, looking at what other participants

are doing or walking around the room. Please, turn off your phone. If you have any

questions or you need help, please raise your hand and one of the researchers will

assist you. Please, do not write on these instructions. If you fail to follow these rules,

YOU WILL BE ASKED TO LEAVE THE EXPERIMENT AND YOU WILL NOT BE

PAID. Thank you.

The University of the Basque Country has provided the funds for this experiment.

You will receive 3 Euros for arriving on time. Additionally, if you follow the instruc-

tions correctly you have the chance of earning more money. This is a group experiment.

Different participants may earn different amounts. How much you can win depends

on your own choices, on other participants choices, and on chance.

No participant can identify any other participant by his/her decisions or earnings

in the experiment. The researchers can observe each participant earnings, but they will

not associate your decisions with the name of participant name.

During the experiment you can win experimental points. At the end, these experi-

mental points will be converted into cash at a rate of 1 experimental point = 0.10 euros.

Everything you earn will be paid in cash, in a strictly private way at the end of the

experimental session.

Your final earnings will be the sum of the 3 Euros that you get just for participating
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and the amount that you earn during the experiment.

Each experimental point earns you 10 Euro cents, so 10 experimental points make

1 euro (10 x 0,10 = 1 Euro).

For example, if you obtain a total of 80 experimental points you will earn a total

of 11 Euros (3 for participating plus 8 from converting the 80 experimental points into

cash).

For example, if you obtain a total of 45 experimental points you will earn a total of

7.5 Euros (45 x 0.10 = 4.5 + 3 = 7.5)

For example, if you obtain a total of 190 experimental points you will earn a total

of 22 euros (190 x 0.10 = 19 + 3 = 22)

Groups:

All participants in this session will be randomly divided in two different groups,

the RED group and the BLUE group. Before you start making decisions, you will be

informed if you are RED or BLUE, and you will maintain that status throughout the

experiment.

Game and options:

The experiment will consist of 10 rounds of the same game. In each round you

will be matched randomly with a participant form other group which will always be

a different from the one from the previous round. That means , if you are RED in

each round you will be matched randomly again with another BLUE participant, and

if you are BLUE in each round you will be matched randomly again with another RED

participant. Nobody will know the identity of the participant with whom you are

matched, nor will it be possible to identify him/her by his/her decisions during or

after the experiment.

A description of the games follows. Every round has the same format, as repre-

sented in graphic form below. If you are a RED participant you can only make choices

in the red circles. If you are a BLUE participant you can only make choices in the blue



158 CHAPTER 3. HOT VERSUS COLD BEHAVIOR IN CENTIPEDE GAMES

circles.

FIGURE 3.5: GAME

In each round, each participant, RED or BLUE, has three chances to determine the

earnings of both participants, in which he/she can one of two actions: stop or continue.

In the graphic representation, the circles colored, RED and BLUE, identify which par-

ticipant chooses. As the direction of the arrows shows, the game should be read from

left to right. The earnings of the two participants are represented by X and Y, which in

each circle of each game will be different numbers, representing experimental points.

The RED participant has the first chance to choose: he/she can “Stop here” or con-

tinue.

FIGURE 3.6: RED 1

In the graphic representation the downward arrow in the first RED circle represents

“Stop” and the rightward arrow represents continue. If the RED participant chooses

“Stop here”, the RED participant receives X1 and the BLUE participant Y1, and the

round ends. If the RED participant chooses “Continue”, then the round continues and

it is the BLUE participant who chooses in the first blue circle.
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FIGURE 3.7: BLUE 1

The BLUE participant can choose “Stop” or continue. In the graphic representation,

the downward arrow in the first BLUE circle represents “Stop here” and the rightward

arrow represents continue. If the BLUE participant chooses “Stop here” the RED par-

ticipant receives X2 and the BLUE participant Y2, and the round ends. If the BLUE

participant chooses “Continue”, then the game continues and it is the RED participant

who chooses again in the second red circle.

This description is repeated in the second red and blue circles, until the last chance

is reached by the RED and BLUE participants.

FIGURE 3.8: RED 3

In the last chance for the RED participant, represented by the third and last red

circle, the RED participant can choose “Stop here” or “Never stop”. If the RED partic-

ipant chooses “Stop here” the RED participant receives X5 and the BLUE participant

Y5, and the game ends. If the RED participant chooses “Never stop”, then it is the

BLUE participant who chooses for the last time.
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FIGURE 3.9: BLUE 3

In the last chance for the BLUE participant, represented by the third and last blue

circle, the round ends. If the BLUE participant chooses "Stop here" each participant

receives, X6 for the RED and Y6 for the BLUE, and the round ends. If the BLUE par-

ticipant chooses “Never stop” the round ends and the quantities that the participants

receive are X7 for the RED and Y7 for the BLUE.

In summary, in each round you have to choose where to stop or continue in the

different circles of your color. That means that in each round you can choose between

two different Options in each of the different circles of your color: stop here or con-

tinue in the first circle of your color, stop here or continue in the second circle of your

color and stop here or “Never stop”in the third circle of your color You will play the

same game 10 times with different participants and the participant who chooses “Stop

here” before the other participant is the one who ends the game and determines the

experimental points earned by both participants.

In order to make the game easier to understand, three examples are shown below.

In the examples we show the choices by the RED participant (shaded in red) and ones

by the BLUE (shaded in blue) for a hypothetical game, and we identify the earnings

for each participant.

Example 1:
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FIGURE 3.10: EXAMPLE 1

The RED participant has chosen “Stop”in the first red circle. Because the RED par-

ticipant has stopped before the BLUE participant: The RED participant earns: 40 The

BLUE participant earns: 10

Example 2:

FIGURE 3.11: EXAMPLE 2

The RED participant chose “Continue”in the first red circle. Then the BLUE partic-

ipant chose “Continue”in the first blue circle. Finally, The RED participant chose “Stop

here”in the second red circle. A a result: The RED participant earns: 42 The BLUE

participant earns: 8

Example 3:
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FIGURE 3.12: EXAMPLE 3

The RED participant chose “Continue”in the first red circle. Then the BLUE par-

ticipant chose “Continue”in the first blue circle. In the second red circle, the RED

participant chose “Continue”. In the second blue circle, the BLUE participant chose

“Continue”. In the third red circle, the RED participant chose “Never stop”. Finally,
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the BLUE participant chose “Stop here”in the second blue circle. A a result: The RED

participant earns: 456 The BLUE participant earns: 103

Note: These examples are just an illustration. The experimental points that appear

are examples, i.e. they are not necessarily the ones that will appear in the 16 games.

In addition, the examples ARE NOT intended to suggest how anyone should choose

between the different options.

How the computer works: In each game, you will see 2 white boxes, one for each

of your possible options. To choose an option, click on the corresponding box. When

you have selected an option, the box will change color, as shown in the examples. This

choice is not final: you can change it whenever you want by clicking on other box as

long as you have not yet clicked the “OK” button that will appear in the bottom-left

corner of each screen. Once you click “OK” your choice will be final and you will move

on to the Next decision. You cannot pass on to the next decision until you have chosen

an option and have clicked “OK”.

At the end of each round you will see a summary of what happened in that round.

Earnings:

Once you have submitted your choices in the 16 games, the computer chooses Two

rounds at random for each participant for payment. You will be paid depending on the

actions that you chose and the ones that the participant you were matched with chose

in each of those two rounds.

At the end of the experiment, you will be informed about which were the two

rounds selected for payment, which were the decisions made by you and the ones of

the corresponding participant you were matched in those rounds and what will be

your final payment.

Summary:

• The computer will choose randomly whether you are a RED or BLUE participant

for the whole experiment.
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• You will participate in 10 rounds of the same game and in each of them you will

be matched randomly with a participant of the other color.

• In each game, each participant can choose between two different options in three

different circles: stop or continue in the first circle of his/her color, stop or con-

tinue in the second circle of his/her color, and stop or “Never stop”in the third

circle of his/her color. The quantities are always the same in each round and the

participant that chooses “Stop here” before the other participant is the one that

ends the game and determines the experimental points for both participants.

At the end, the computer will randomly choose 2 of the 10 rounds for each player,

and you will be paid depending on the actions chosen by you and by the participant

you were matched to in each of those two rounds.

The experiment will start shortly. If you have any questions or you need help,

please, raise your hand and one of the researchers will help you.
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