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Senovilla. During the making of this thesis I also had the opportunity to visit the University of Beira
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Resumen

En esta tesis se han explorado posibles extensiones del Modelo Estándar de la Cosmoloǵıa. Hemos
obtenido las predicciones teóricas de los modelos considerados y sus principales caracteŕısticas.
Los resultados presentados están basados en tres proyectos principales en los que he participado
conjuntamente con mi supervisora, Mariam Boudmadi López, y otros colaboradores. Estos proyectos
enfocan tres áreas diferentes de investigación en la Cosmoloǵıa actual: teoŕıas métricas de gravedad
modificada tipo f(R) y modelos de enerǵıa oscura (EO) dinámica descrita por campos de 3-forma.
Asimismo, en esta tesis hemos considerado la Cosmoloǵıa Cuántica en el contexto del Universo
primordial. Además, tal como sugiere el titulo, en esta tesis el foco principal se ha centrado en un
tratamiento puramente teórico de los diferentes modelos considerados.

En la Parte I de esta tesis, se presentan primero, en el Capitulo 1, algunos de los principales conceptos
de la Cosmoloǵıa actual, como las ecuaciones de campo de la Relatividad General, la solución de
Friedmann–Lemâıtre–Robertson–Walker para un universo homogéneo e isotrópico y el Modelo Estándar
de la Cosmoloǵıa, que incluye ideas tan distintas como la cosmoloǵıa del Hot Big Bang, el modelo
ΛCDM y el paradigma de la inflación primordial para describir los últimos 14 mil millones de años de la
evolución de nuestro Universo. Adicionalmente, se presenta y discute la motivación para la búsqueda
de nueva f́ısica más allá del modelo estándar. En particular, nos centramos en los modelos de EO
dinámica, en la posibilidad de extender la acción de Einstein–Hilbert (EH) para la Relatividad General
(RG) y en la búsqueda de una teoŕıa cuántica de la gravedad. En el Caṕıtulo 2, presentamos los
principales métodos y los observables cosmológicos usados en esta tesis para caracterizar los diferentes
modelos cosmológicos considerados y comparar las previsiones teóricas con los datos observacionales.

La Parte II se centra en la evolución del Universo tard́ıo y está dividida en dos caṕıtulos, donde cada
uno corresponde a un proyecto diferente. En el Caṕıtulo 3, se discuten los posibles efectos que una
teoŕıa de la gravedad modificada, en particular la teoŕıa métrica de gravedad tipo f(R), puede tener
sobre la evolución del Universo y sobre las predicciones de los observables cosmológicos. Después de
una breve introducción a este tipo de teoŕıas y de su aplicación en la Cosmoloǵıa, se presentan dos
secciones donde se discute y se amplian los resultados publicados en

• Can f(R) gravity contribute to (dark) radiation?
J. Morais, M. Bouhmadi-López, S. Capozziello, JCAP09 (2015) 041; e-print: arXiv:1507.02623
[gr-qc].

En la Sección 3.2 de este caṕıtulo, se presenta un nuevo método de reconstrucción que permite
obtener la acción f(R) compatible con una expansión del fondo cosmológico previamente fijada. Este
tipo de métodos es también conocido en la literatura como designer f(R). Más espećıficamente,
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nuestro método está basado en asociar las modificaciones de la gravedad a un fluido efectivo que,
en conjunto con la materia normal, impulsa la expansión del Universo. Al imponer una ecuación
de estado barotrópica al contenido total de la materia, incluyendo la materia normal y efectiva, es
posible reescribir la ecuación de Friedmann modificada como una ecuación diferencial linear de segundo
orden para la función f(R). Utilizando este método, ha sido posible obtener por primera vez una
correspondencia entre las teoŕıas de gravedad f(R) y el gas de Chaplygin generalizado y modificado
(mGCG). Este fluido corresponde a una extensión del gas de Chaplygin que involucra dos nuevos
parámetros del modelo. Este tipo de modelo ha sido utilizado en diferentes contextos en Cosmoloǵıa,
desde el Universo primordial hasta la evolución tard́ıa del Universo.

En la Sección 3.3, se explora la posibilidad de que la radiación oscura (RO), un misterioso componente
introducido para modelar un posible exceso de la materia ultra-relativista detectado en observaciones
del fondo cósmico de microondas (FCM), sea una manifestación de las modificaciones de la acción
de EH en las teoŕıas métricas de gravedad tipo f(R). Además de la RO, se considera que las
modificaciones de la gravedad sean también responsables por la aceleración tard́ıa del Universo. Con
este fin, se asignan las modificaciones de la gravedad a un fluido efectivo descrito por un modelo
mGCG que mimetiza radiación en el pasado lejano y una constante cosmológica en el presente. Es
más, se obtiene la acción f(R) compatible con nuestro modelo a través de una integración numérica
de la ecuación de Friedman modificada y se analiza su relevancia f́ısica utilizando una perspectiva
cosmográfica e imponiendo las condiciones de viabilidad f́ısica para acciones f(R). Finalmente, se
calculan la evolución de las perturbaciones cosmológicas lineales en el modelo desde la época inicial
de radiación hasta el tiempo presente. Los efectos caracteŕısticos de las modificaciones de la gravedad
son identificados en la tasa de crecimiento de las perturbaciones de la materia y en el espectro de
potencias de la materia.

En la segunda mitad de la Parte II de esta tesis, en el Caṕıtulo 4, se explora un tipo diferente
de extensión del Modelo Estándar de la Cosmoloǵıa para la evolución del Universo tard́ıo. En lugar
de explicar los componentes oscuros a través de modificaciones de RG, se considera que la EO se
describe por un campo dinámico que evoluciona con el tiempo. En particular, para describir la EO
se utiliza un campo de 3-forma ḿınimamente acoplado a la gravedad y con un potencial positivo.
Después de una primera introducción a los campos de 3-forma y sus aplicaciones cosmológicas, se
presenta en la Sección 4.2 un análisis de sistemas dinámicos en modelos con materia oscura (MO)
y EO descrita por un campo de 3-forma. En particular, la estabilidad global del sistema se analiza
en profundidad por primera vez en este tipo de modelos. Con el fin de superar algunas dificultades
encontradas en el sistema dinámico usual al estudiar puntos fijos en el infinito, introducimos una
nueva representación que permite obtener sin ambigüedades la estabilidad de estos puntos. Esta
representación fue publicada en nuestro art́ıculo

• Cosmic infinity: A dynamical system approach
M. Bouhmadi-López, J. Marto, J. Morais, C. M. Silva, JCAP03 (2017) 042; e-print: arXiv:
1611.03100 [gr-qc].

donde las dificultades para definir la estabilidad de los puntos fijos en el infinito las resolvimos por la
primera vez.

En la Sección 4.3, se discute como el Little Sibling of the Big Rip (LSBR) aparece de forma natural
en modelos en los que la EO se describe por un campo de 3-forma. El LSBR es un evento cósmico
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en el futuro que induce a la divergencia del parámetro de Hubble y a la disociación de todas las
estructuras en el Universo, aunque de forma más suave que en la singularidad de tipo Big Rip. Después
de demostrar que el LSBR aparece de forma natural en modelos cosmológicos con 3-formas para
una amplia clase de potenciales independientemente de la presencia de otros tipos de materia que
verifiquen la condición de enerǵıa nula, se explora la posibilidad de que una interacción entre la MO
y la EO pueda prevenir este final catastrófico para el Universo. A través de un exhaustivo análisis
de sistemas dinámicos se comprueba que es posible eliminar el LSBR del futuro del Universo si la
interacción entre las dos componentes oscuras impide que la densidad de enerǵıa de la MO decaiga en
su totalidad. Una vez identificadas las interacciones que (dentro de una clase general) son capaces
de verificar esta condición, se utiliza la statedinder hierarchy y el método composite null diagnosis
para caracterizar la evolución cosmológica background y de las perturbaciones escalares lineales en el
modelo sin interacción y para dos casos con distintas interacciones que consiguen eliminar el LSBR. Se
comparan los resultados obtenidos con las observaciones cosmológicas para fσ8, donde f es la tasa
de crecimiento de las perturbaciones de la materia y σ8 es el valor cuadrático medio de la varianza
de las fluctuaciones de la materia en esferas de radio 8 h−1Mpc. Los resultados presentados en esta
sección fueron publicados en el trabajo

• Interacting 3-form dark energy models: distinguishing interactions and avoiding the
Little Sibling of the Big Rip
J. Morais, M. Bouhmadi-López, K. Sravan Kumar, J. Marto, Y. Tavakoli, Phys. Dark Univ. 15
(2017) 7-30; e-print: arXiv:1608.01679 [gr-qc].

En el Caṕıtulo 5, el único caṕıtulo de la Parte III, se estudian los efectos caracteŕısticos que una
época de pre-inflación imprime en el espectro de potencias primordial y en el espectro de potencias
angular del FCM. Más espećıficamente, se estudian dos modelos inspirados en el formalismo de la
Tercera Cuantización de la función de onda del Universo. En estos modelos, la época pre-inflacionaria
se obtiene a través de efectos cuánticos, incluyendo interacciones cuánticas entre diferentes universos
en el multiverso de la Tercera Cuantización. Este formalismo se propuso en la década de 1980 como
una nueva interpretación de la Teoŕıa Canónica de la Gravedad Cuántica que se basa en explorar los
paralelismos entre la ecuación de Wheeler–deWitt y la ecuación de Klein–Gordon para un campo
escalar cuántico. Algunos de los principales resultados de la Tercera Cuantización se resumen en la
primera sección de este caṕıtulo.

En la Sección 5.2, se discute la existencia de soluciones del tipo instantón Eucĺıdeo que conectan
pequeños universos bebé y universos inflacionarios en el multiverso de la Tercera Cuantización. Usando
la propuesta de Vilenkin para la probabilidad de la función de onda del Universo de atravesar la región
Eucĺıdea mediante efectos cuánticos, calculamos la probabilidad de que un universo bebé, al alcanzar
su tamaño máximo, dé origen a un universo inflacionario en lugar de recolapsar sobre si mismo. Los
resultados presentados en esta sección fueron publicados en

• What if? Exploring the multiverse through Euclidean wormholes
M. Bouhmadi-López, M. Krämer, J. Morais, S. Robles-Pérez, Eur. Phys. J. C (2017) 77: 718;
e-print: arXiv:1708.00025 [gr-qc].

En la Sección 5.3, se estudia la evolución de las perturbaciones cosmológicas escalares lineales en
modelos inspirados por la Tercera Cuantización donde se obtiene una época pre-inflacionaria gracias a
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considerar diferentes interacciones entre los elementos del multiverso. Nuestro análisis se centra en
tres casos diferentes de comportamiento del Universo en esta época inicial: (i) el Universo evoluciona
como si inicialmente estuviera dominado por materia ŕıgida,; (ii) el Universo se comporta como
si inicialmente estuviera dominado por un fluido de radiación; (iii) el Universo se comporta como
si inicialmente estuviera dominado por polvo. Los efectos del modelo en el espectro de potencias
primordial y el espectro de potencias angular del FCM se obtienen al asociar nuestro modelo al caso
de un campo escalar ḿınimamente acoplado a la gravedad y utilizando la metodoloǵıa habitual en
modelos inflacionarios. Los parámetros del modelo son acotados mediante una comparación de las
predicciones del modelo con los datos observacionales. Asimismo, se analizan las implicaciones para la
interacción entre universos. Parte de los resultados presentados en esta sección fueron publicados en

• Pre-inflation from the multiverse: Can it solve the quadrupole problem in the cosmic
microwave background?
M. Bouhmadi-López, M. Krämer, J. Morais, S. Robles-Pérez, Eur. Phys. J. C (2018) 78: 240;
e-print: arXiv:1711.05138 [gr-qc].

Los demás resultados serán publicados en

• The interacting multiverse and its effect on the cosmic microwave background
M. Bouhmadi-López, M. Krämer, J. Morais, S. Robles-Pérez, ; e-print: arXiv:18xx.xxxxx[gr-qc].

En la Sección 5.4, se discute la posibilidad de que el espectro de potencias primordial y el espectro de
potencias angular del FCM contengan información no solo sobre la época pre-inflacionaria sino también
sobre el peŕıodo de transición hacia la inflación primordial. Se introduce una extensión de un parámetro,
λ, al modelo discutido en la Sección 5.3 que permite controlar el número de e-folds necesarios para que
la transición hacia la inflación se complete. Al tener en cuenta peŕıodos de transición más largos es
posible suavizar las caracteŕısticas del potencial z′′/z que controla la evolución de las perturbaciones
escalares y aśı mejorar el ajuste del modelo con las observaciones cosmológicas. Se comprueba que
las caracteŕısticas del espectro de potencias primordial pueden ser predichas analizando la forma de
z′′/z en torno de la transición hacia la inflación. El espectro de potencias primordial y el espectro de
potencias angular del FCM se calculan en los casos en que la época pre-inflacionaria mimetiza un
Universo dominado por materia ŕıgida o por radiación y se comparan los resultados con los datos
observacionales para acotar los parámetros del modelo. Los resultados presentados en esta sección
serán publicados en un futuro trabajo

• Transition in the pre-inflationary Universe and their effects on the cosmic microwave
background (working title)
M. Bouhmadi-López, J. Morais, .

En la Sección 5.5, se estudia el caso particular de transiciones instantáneas en el Universo primordial y
las condiciones de contorno para las perturbaciones escalares en el momento de la transición, deducidas
por primera vez por Deruelle y Mukhanov [136]. En el limite de valores muy altos del parámetro λ, el
modelo estudiado en la Sección 5.4 presenta un salto descontinuo en el parámetro de la ecuación de
estado y en el parámetro de slow-roll ε en el momento de la transición hacia la inflación. Además,
algunos términos divergentes aparecen en el potencial z′′/z que inducen una discontinuidad en la
derivada de la perturbación de curvatura comoving y en la variable de Mukhanov–Sasaki y su derivada,
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en conformidad con las condiciones de contorno de Deruelle y Mukhanov. Las mismas condiciones de
contorno se obtienen utilizando la aproximación de longitud de onda grande, k2 � z′/z, que, dado el
valor tan alto de z′′/z en el momento de la transición hacia la inflación, se hace válida a todas las
escalas y permite obtener resultados exactos para la evolución de las perturbaciones. Se deduce la
expresión anaĺıtica para el espectro de potencias primordial al fin de la inflación y se comparada con los
resultados del escenario estándar de inflación con condiciones iniciales del tipo Bunch–Davies. Además,
se estudia con detalle el comportamiento de la expresión encontrada en los reǵımenes de grandes y
pequeñas escalas. Comparando el comportamiento asintótico con las ligaduras observacionales para
el espectro de potencias primordial alrededor de la escala pivote de la misión Planck, se deducen
ligaduras fuertes para la variación de ε en la transición hacia inflación que excluyen un comportamiento
desacelerado en la época inicial en una situació de transición instantánea hacia la inflación. Finalmente,
las predicciones anaĺıticas del modelo son comparadas con los resultados numéricos obtenidos para
valores cada vez más altos del parámetro λ. Los resultados presentados en esta sección serán publicados
en un futuro trabajo citado anteriormente: Transition in the pre-inflationary Universe and their effects
on the cosmic microwave background (working title).

En la Parte IV se presentan las conclusiones generales y los comentarios finales de esta tesis y en
la Parte V se presenta el Apéndice A, que contiene una revisión de la teoŕıa de las perturbaciones
cosmológicas lineales, y los Apéndices B, C y D, donde se incluyen cálculos y resultados auxiliares a
los Caṕıtulos 3, 4 y 5.

Otros trabajos originales publicados a lo largo de esta tesis incluyen

• Scalar perturbations in the late Universe: viability of the Chaplygin gas models
M. Bouhmadi-López, M. Brilenkov, R. Brilenkov, J. Morais, A. Zhuk, JCAP12 (2015) 037;
e-print: arXiv:1509.06963 [gr-qc].

• The late Universe with non-linear interaction in the dark sector: the coincidence prob-
lem
M. Bouhmadi-López, J. Morais, A. Zhuk, Phys. Dark Univ. 14 (2016) 11-20; e-print:
arXiv:1603.06983 [gr-qc].

• K-essence model from the mechanical approach point of view: coupled scalar field and
the late cosmic acceleration
M. Bouhmadi-López, K. Sravan Kumar, J. Marto, J. Morais, A. Zhuk, JCAP07 (2016) 050;
e-print: arXiv:1605.03212 [gr-qc].

• Coupled scalar fields in the late Universe: The mechanical approach and the late cos-
mic acceleration
A. Burgazli, A. Zhuk, J. Morais, M. Bouhmadi-López, K. Sravan Kumar, JCAP09 (2016) 045;
e-print: arXiv:1512.03819 [gr-qc].
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• Cosmological perturbations in an effective and genuinely phantom dark energy Uni-
verse
I. Albarran, M. Bouhmadi-López, J. Morais, Phys.Dark Univ. 16 (2017) 94-108; e-print:
arXiv:1611.00392 [astro-ph.CO].

• What if gravity becomes really repulsive in the future?
I. Albarran, M. Bouhmadi-López, J. Morais, Eur. Phys. J. C (2018) 78: 260; e-print:
arXiv:1706.01484 [gr-qc].

y también las siguientes contribuciones a proceedings de conferencias internacionales

• 3-Form Cosmology: Phantom Behaviour, Singularities and Interactions
J. Morais, M. Bouhmadi-López, J. Marto, Universe 2017, 3(1), 21.

• The Third Quantization: To Tunnel or Not to Tunnel?
M. Bouhmadi-López, M. Krämer, J. Morais, S. Robles-Pérez, Galaxies 2018, 6(1), 19.
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Prologue

Since ancient times, philosophers and scientist alike have discussed the idea of unifying all the processes
of Nature under a single unified description. This idea of a Theory of Everything gained further
attention in modern physics after the successes of Electromagnetism, in the nineteenth century, and of
the Electroweak theory, in the second half of the twentieth century, in unifying two seemingly different
fields of physics and remains one of the most sought after goals of theoretical physics. However, despite
the great advances of the XX century that ultimately led to the Standard Model of particles and despite
the hints to the existence of a Grand Unified Theory at very high energies, gravity has continuously
avoided any attempt to be described at the same level of the other three forces. In fact, its very
geometrical nature, as understood since the advent of General Relativity (GR) one hundred years ago,
means that a separation of the gravitational interaction from the space-time is not possible in general
situations. This is a critical difference between gravity and the other fundamental interactions, where
a full quantum theory was first obtained by considering a quantum system of particles and interactions
on a classical background. This situation is also aggravated by the non-renormalisability of GR, which
prevents us from applying the full machinery of quantum field theory in a self-consistent way. A
full theory of quantum gravity is still missing to this day, despite the huge theoretical advancements
achieved in the last century.

On the other hand, the theory of gravitation proposed by Albert Einstein in 1915 [145], has so
far passed all the experimental tests with bright colours [360]. This includes the recent discovery of
gravitational waves [2] and the results 26-year long Gravity collaboration that analysed the orbit of
the star S2 around the massive black hole in the centre of the Milky Way [8]. Paradoxically, this
extraordinary agreement with the data makes the known limitations of GR even more enigmatic. Apart
from the lack of renormalisability of the theory and the lack of a quantum description, GR, which is at
the centre of modern cosmology, offers no answer to the mysteries surrounding dark matter (DM) and
dark energy (DE), the two unknown fluids that comprise 95% of the content of the known Universe
[287, 296]. In addition, there is no a priori requirement for the action that describes the gravitational
interaction to be dependent only on the scalar curvature, as considered in the Einstein-Hilbert action.
Over the decades, this has motivated the appearance of several proposals of extended or modified
theories of gravity with equally diverse guiding principles. However, no theory has so far been able to
equal the successes of GR, which continues to be the best theory of gravitation that we possess to
describe the known Universe.

From an observational point of view, the low value of Newton’s gravitational constant, when
compared with the coupling parameters of other forces, implies that we cannot rely on laboratory-sized
experiments to test the limits of the gravitational interaction. Instead, we must resort to looking to the
cosmos, searching for new clues on the effects of gravity in the very large (Astronomy and Cosmology),
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or the very dense (Black Hole and Neutron Star physics). It is in this context that Cosmology, which
is currently undergoing a golden age in terms of precision, has moved to the forefront of theoretical
physics as a favourite arena to look for imprints of modifications and extensions of GR, both in the
infrared (corrections at cosmological scales) and in the ultraviolet (possible quantum effects during
the primordial inflation). Furthermore, the existence of DM and DE, two of the biggest mysteries of
modern day physics, was discovered and confirmed through cosmological observations and there is no
reason not to believe that future observations will be essential in determining the nature of the dark
sector of the Universe. In fact, several features of the Standard Model of Cosmology are sensitive to
the properties of these two fluids and to even small changes in the laws of gravitation–as such, future,
more precise and accurate missions might be able to detect imprints of new physics.

The work presented in this thesis explores different possible extensions to the Standard Model of
Cosmology and tries to derive theoretical predictions for their characteristic imprints. The results
presented are based on three main projects led by my supervisor, Mariam Bouhmadi López, and in
collaboration with other authors. These projects explore three different main lines of research in
modern Cosmology: effects of modified gravity, namely metric f(R)-gravity, in the late-time Universe;
imprints of a dynamical model of DE; quantum cosmology in the context of the primordial Universe.
Furthermore, as the title indicates, in this work we focus on a purely theoretical treatment of the
various models presented.

In Part I of this thesis, we begin by reviewing, in Chapter 1, some of the main concepts of modern
cosmology, such as the field equations of General Relativity, the Friedmann–Lemâıtre–Robertson–
Walker solution for a homogeneous and isotropic universe and the Standard Model of Cosmology,
which combines such different ideas as the Hot Big Bang cosmology, the ΛCDM model and the
paradigm of primordial inflation to successfully describe the last 14 billion years of evolution of our
Universe. In addition, we discuss the motivations for the search for new physics behind the standard
model, in particular dynamical models of DE, the possibility of extending the Einstein–Hilbert (EH)
action of GR and the search for a quantum theory of gravitation. In Chapter 2, we present the methods
that were used to characterise the different cosmological models studied in this thesis. While some of
these methods have a more mathematical focus, for example, a dynamical system analysis, others are
based on calculating the theoretical predictions of observational quantities, such as the matter power
spectrum or the angular power spectrum of the cosmic microwave background (CMB) radiation, and,
therefore, allow for a direct comparison with the observational data.

On the first half of Part II, in Chapter 3, we discuss the possible effects that a modified theory
of gravity, specifically metric f(R)-gravity, has on the evolution of the Universe and its imprints on
cosmological observables. After a brief introduction to the theory of metric f(R)-gravity and its
applications to cosmology, we present two sections where we discuss and expand on the original results
first published in the work

• Can f(R) gravity contribute to (dark) radiation?
J. Morais, M. Bouhmadi-López, S. Capozziello, JCAP09 (2015) 041; e-print: arXiv:1507.02623
[gr-qc].

In Sect. 3.2, we present a new reconstruction method which allows us to find the f(R) action that
is compatible with a given evolution of the FLRW cosmological background. This type of approach
is commonly referred to in the literature as designer f(R). More specifically, our method is based
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on mapping the modifications of gravity onto an effective fluid that, together with normal matter,
drives the expansion of the Universe. Then, by imposing a barotropic equation of state (EoS) for
the total matter content, which includes normal mater and the effective f(R) fluid, we are able to
re-write the modified Friedmann equation as a linear second order differential equation for f(R). We
then show how, using this equation, we are able to successfully obtain for the first time the complete
f(R) mapping of the modified generalised Chaplygin gas, a 2-parameter extension of the Chaplygin
gas (mGCG) model, which has several applications in cosmology, both in the late and in the early
Universe.

In Sect. 3.3, we explore the possibility that dark radiation, a mysterious component that accounts for
an excess of ultra-relativistic matter that was detected in observations of the CMB, is a consequence of
modifications of the EH action within the context of metric f(R)-gravity. In addition to dark radiation,
we consider that such modifications also lead to the current accelerated expansion of the Universe.
In order to obtain this change between an early radiation-like behaviour and a later cosmological
constant-like evolution, we map the modifications of gravity onto a mGCG with appropriate parameters
and then integrate the modified Friedmann equation to obtain a numerical solution for the function
f(R). At the level of the FLRW background, we constraint our model using a cosmographic approach
and the viability conditions for physically relevant f(R) solutions. In addition, we study the evolution
of the linear perturbations in our model, from the early radiation-dominated epoch till the present time.
In particular, we compute the effects of the modifications of gravity on the matter power spectrum
and the growth rate of the matter perturbations.

On the second half of Part II, in Chapter 4, we probe a different type of extension to the Standard
Model of Cosmology. Instead of considering modifications to the theory of gravitation, we explore the
possibility that DE is not a cosmological constant, but rather a dynamical field. More specifically, we
describe DE by a 3-form field minimally coupled to gravity and with a positive valued potential. After
an initial section where we review the 3-form field and its applications to homogeneous and isotropic
cosmologies, we discuss in Sect. 4.2 the use of a dynamical system approach in models with DM and
3-form DE. In particular, we discuss for the first time how to use a compact description of the model
in order to obtain a global picture of the stability of the system. Furthermore, we present a novel
dynamical system representation that allows us to unequivocally study the dynamics of the system
when the amplitude of the 3-form field assumes very large values. The results discussed in this section
are the focus of the original work

• Cosmic infinity: A dynamical system approach
M. Bouhmadi-López, J. Marto, J. Morais, C. M. Silva, JCAP03 (2017) 042; e-print: arXiv:
1611.03100 [gr-qc].

and were motivated by some anomalies in the study of the stability of fixed points at very large
amplitudes of the 3-form that were detected in

• Interacting 3-form dark energy models: distinguishing interactions and avoiding the
Little Sibling of the Big Rip
J. Morais, M. Bouhmadi-López, K. Sravan Kumar, J. Marto, Y. Tavakoli, Phys. Dark Univ. 15
(2017) 7-30; e-print: arXiv:1608.01679 [gr-qc].
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In Sect. 4.3, we discuss how the Little Sibling of the Big Rip (LSBR) can appear naturally in models
where a 3-form field plays the role of DE. The LSBR is a cosmic abrupt event in the future that,
despite being softer than the Big Rip singularity, leads to a divergence of the Hubble rate and to the
dissociation of all structure in the Universe. After showing that in 3-form models within a certain
class of potentials the LSBR is a general feature and that this situation is not altered by the presence
of DM or other types of matter that satisfy the null energy condition, we explore the possibility
that an adequate interaction between DM and DE can prevent this catastrophic end state of the
Universe. We employ an extensive dynamical system analysis of the model in order to identify the
types of interactions that are able to remove the LSBR and replace it by a final de Sitter-like scaling
solution, where an energy transfer from DE to DM prevents the energy density of the latter from
vanishing completely. For two types of interaction that fall into this category, we use the statefinder
hierarchy and the composite null diagnosis to characterise the evolution of the model at the level
of the homogeneous and isotropic background and at first order in cosmological perturbations. In
addition, we analyse the effects of the interaction in the growth rate of the linear matter perturbations.
The results presented in this section are the main focus of the aforementioned work Interacting 3-form
dark energy models: distinguishing interactions and avoiding the Little Sibling of the Big Rip.

In Chapter 5, the only chapter of Part III, we explore the possibility of detecting imprints of a pre-
inflationary epoch on the primordial power spectrum and on the angular spectrum of the CMB. More
specifically, we consider different toy models, inspired by the formalism of the Third Quantisation of the
wave-function of the Universe, where a pre-inflationary epoch arises due to quantum effects, including
quantum interactions between different universes within the multiverse. The Third Quantisation
formalism was proposed in the 1980’s as a new interpretation of the Canonical Theory of Quantum
Gravity, which explored the connections of the Wheeler–deWitt equation with the Klein–Gordon
equation that describes the dynamics of a quantum scalar field. In the first section of Chapter 5, we
present a brief introduction of the Canonical Theory of Quantum Gravity and of the Third Quantisation,
where we also review some of the main results of this formalism.

In Sect. 5.2, we discuss the existence of Euclidean instanton solutions that connect small baby
universes and large inflating universes in a model of the third-quantised multiverse. In addition, using
the proposal of Vilenkin for the probability of the wave-function of the Universe to tunnel through
the Euclidean region via quantum effects, we calculate the probability for an inflating universe to
emerge, once a baby universe reaches its maximum classically allowed size. The results presented in
this section were first published in the original work

• What if? Exploring the multiverse through Euclidean wormholes
M. Bouhmadi-López, M. Krämer, J. Morais, S. Robles-Pérez, Eur. Phys. J. C (2017) 77: 718;
e-print: arXiv:1708.00025 [gr-qc].

In Sect. 5.3, we study the evolution of the linear cosmological perturbations in the scalar sector in
a Third Quantisation-inspired model, where a decelerated epoch precedes a subsequent power law
inflationary period. In this model, distinct pre-inflationary behaviours are obtained by changing the
interaction term between different universes in the third-quantised multiverse. We focus our analysis
in the cases where the Universe initially behaves as if (i) dominated by stiff matter; (ii) dominated
by a radiation fluid; and (iii) dominated by pressureless dust. After mapping our model to that of
a massive scalar field minimally coupled to gravity, we compute the imprints of the pre-inflationary
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epoch in the primordial power spectrum at the end of inflation and in the angular power spectrum of
the CMB. By comparing the results with the observational constraints from the Planck mission, we
derive upper bounds on the parameters on the model and discuss its implications for the interaction
strength between different universes. The results presented in this section were partially published in

• Pre-inflation from the multiverse: Can it solve the quadrupole problem in the cosmic
microwave background?
M. Bouhmadi-López, M. Krämer, J. Morais, S. Robles-Pérez, Eur. Phys. J. C (2018) 78: 240;
e-print: arXiv:1711.05138 [gr-qc].

The remainder of unpublished results will be submitted for publication as

• The interacting multiverse and its effect on the cosmic microwave background
M. Bouhmadi-López, M. Krämer, J. Morais, S. Robles-Pérez, ; e-print: arXiv:18xx.xxxxx[gr-qc].

In Sect. 5.4, we consider the possibility that the imprints on the primordial power spectrum and on
the angular power spectrum of the CMB from a pre-inflationary epoch can also contain information
regarding the transition from the initial epoch to the subsequent inflation. We consider a 1-parameter
extension of the Third Quantisation-inspired model introduced in Sect. 5.3, in which the new parameter
λ allows us to control how many e-folds are necessary for the Universe to reach its asymptotic state
during the inflationary period, and to impose whether the Universe accelerates or decelerates in the
transition. When the transition takes longer to complete, i.e., for lower values of λ, the characteristic
bumps of the potential z′′/z around the onset of inflation are softened. This potential controls the
evolution of the scalar cosmological perturbations and a softening of its features leads to a lowering
of the amplitude of the peaks on the primordial power spectrum and amplifies the suppression at
large scales. For the cases where the initial pre-inflationary epoch mimics a stiff matter dominated
universe or a radiation dominated universe, we compute the primordial power spectrum and the angular
power spectrum of the CMB and show that, for the same pre-inflationary behaviour, a shorter or
longer period of transition can leave strong imprints on the theoretical predictions of the model. The
characteristic scales of the model where these imprints are stronger can be predicted by the shape of
the comoving Hubble wave-number and of the potential z′′/z around the moment of the transition
to inflation. Finally, we use the observational constraints to derive lower and upper bounds on the
parameters of the model. The results presented in this section will be published in a future work

• Transition in the pre-inflationary Universe and their effects on the cosmic microwave
background (working title)
M. Bouhmadi-López, J. Morais, .

In Sect. 5.5, we study the case of instantaneous transitions in the early Universe and review how
to impose proper matching conditions, first derived by Deruelle and Mukhanov [136], for the linear
scalar perturbations at the moment of the transition. We show that in the limit of very large values
of the parameter λ, the model introduced in Sect. 5.4 has a jump in the EoS parameter and in the
slow-roll parameter ε at the onset of inflation. We calculate the limit for large λ of the potential z′′/z
and show that the appearance of divergent terms in z′′/z at the moment of the transition leads to
a jump in the derivative of the comoving curvature perturbation R′k and in the Mukhanov–Sasaki
variable vk and its derivative. We show that the same boundary conditions can be obtained from
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the long wavelength approximation k2 � z′/z which, due to the very large values of z′′/z at the
moment of the transition, now becomes valid at all scales. We compute the full analytic expression
for the primordial power spectrum at the end of inflation in terms of general initial conditions imposed
in the pre-inflationary phase and make a comparison with the standard prediction of an inflationary
model with Bunch–Davies initial conditions. Using the asymptotic behaviour of the spectrum at small
scales we use the observational constraints for the primordial power spectrum to impose bounds on
the EoS parameter and on ε during the pre-inflationary epoch. In particular, we show that ε can
only vary by up to 3% with regards to its value during the inflationary epoch, which excludes the
possibility of having an initial decelerated expansion with an instantaneous transition to inflation.
Finally, we corroborate our results by comparing the prediction for the primordial power spectrum
from the analytical expressions with the numerical results obtained for increasingly large values of
the parameter λ. The results presented in this section will be published in the aforementioned work
Transition in the pre-inflationary Universe and their effects on the cosmic microwave background
(working title).

In Chapter 6 of Part IV we present the general conclusion of this thesis and in Part V we present a
series of appendices. In the Appendix A, we review the theory of Cosmological Linear Perturbations
and in the Appendices B, C and D, we present results auxiliary to the Chapters 3, 4 and 5.

Other original works published during the making of this thesis include

• Scalar perturbations in the late Universe: viability of the Chaplygin gas models
M. Bouhmadi-López, M. Brilenkov, R. Brilenkov, J. Morais, A. Zhuk, JCAP12 (2015) 037;
e-print: arXiv:1509.06963 [gr-qc].

• The late Universe with non-linear interaction in the dark sector: the coincidence prob-
lem
M. Bouhmadi-López, J. Morais, A. Zhuk, Phys. Dark Univ. 14 (2016) 11-20; e-print:
arXiv:1603.06983 [gr-qc].

• K-essence model from the mechanical approach point of view: coupled scalar field and
the late cosmic acceleration
M. Bouhmadi-López, K. Sravan Kumar, J. Marto, J. Morais, A. Zhuk, JCAP07 (2016) 050;
e-print: arXiv:1605.03212 [gr-qc].

• Coupled scalar fields in the late Universe: The mechanical approach and the late cos-
mic acceleration
A. Burgazli, A. Zhuk, J. Morais, M. Bouhmadi-López, K. Sravan Kumar, JCAP09 (2016) 045;
e-print: arXiv:1512.03819 [gr-qc].
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Convention & Notation

In this thesis, we use the Misner Thorne and Wheeler metric signature −+ ++ [262] and the Wald
definition for the Riemann tensor [347]. Roman letters, e.g. i, j, k, are used to denote the spatial
indices 123, while Greek letters, e.g. α, β, γ or µ, ν, ρ, are used to denote the space-time indices 0123
.

List of symbols:

z∗ complex conjugate of z

ẑ† Hermitian conjugate of ẑ

δµν Kronecker delta.

gµν space-time metric tensor

δgµν first order perturbation of the space-time metric tensor

∂µ Partial derivative with respect to the coordinate xµ

∇µ Covariant derivative with respect to the space-time metric gµν
� d’Alembert operator with respect to the space-time metric gµν
Di Covariant derivative with respect to the spatial metric γij
∇2 Laplacian with respect to the spatial metric γij
εµ1...µn Levi-Civita symbol (tensor density)

Eµ1...µn Levi-Civita tensor

Ā background value of the quantity A

δA first order perturbation of the quantity A

R σ
µνρ Riemann tensor

Rµν Ricci tensor

R Ricci scalar curvature
(3)R intrinsic spatial 3-dimensional scalar curvature

A[µν] anti-symmetrisation of Aµν on the indices µ and ν

A(µν) symmetrisation of Aµν on the indices µ and ν

η conformal time

xxi



t cosmic time

List of physical constants:

c speed of light in vacuum

G Newton’s gravitational constant

~ reduced Planck constant

κ2 Einstein constant κ2 = 8πG/c2

`P Planck length `P =
√
~G/c3

MP Planck mass MP =
√

~c/G

mP reduced Planck mass mP =
√
~c/(8πG)

List of abbreviations:

BD Bunch–Davies

CDM Cold Dark Matter

CMB Cosmic Microwave Background

CND Composite Null Diagnosis

DM Dark Matter

DE Dark Energy

EH Einstein–Hilbert

Eq. Equation

Fig. Figure

FLRW Friedmann–Lemâıtre–Robertson–Walker

GI Gauge invariant

GR General Relativity

KG Klein–Gordon

LQC Loop Quantum Cosmology

LSS Large-Scale Structure

mGCG Modified generalised Chaplygin gas

l.h.s. Left-hand-side

r.h.s. Right-hand-side

Tab. Table

UDM Unified Dark Matter–Energy

WDW Wheeler–DeWitt
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PART I

Introduction





1 The Standard Model of Cosmology

In this chapter we review briefly some of the key concepts of modern cosmology. We start by
presenting the action and field equations of Einstein’s General Relativity (GR) and go on to discuss
the Cosmological Principle and the Friedmann–Lemâıtre–Robertson–Walker (FLRW) solution, which
describes a homogeneous and isotropic universe. We discuss the Standard Model of Cosmology, which
describes the last 14 billion years of the history of our Universe, from an initial primordial inflationary
epoch that sets-up the initial conditions for Hot Big Bang cosmology, till the late-time evolution at
low redshift, where the ΛCDM model is favoured by observations. To conclude the chapter, we discuss
some of the limitations of the Standard Model, as well as its possible extensions found in literature,
some of which we will explore in subsequent chapters.

1.1. Einstein field equations

The Einstein–Hilbert (EH) action of GR, first published in 1915 by David Hilbert [184], reads

SEH = 1
2κ2

∫
d4x
√
−gR , (1.1)

where κ2 = 8πG with G being Newton’s gravitational constant, g is the determinant of the metric
gµν and the scalar curvature R := gµνRµν is the trace of the Ricci tensor, defined in terms of the
connection Γρµν as [347]

Rµν := ∂ρΓρµν − ∂νΓρµρ + ΓσµνΓρσρ − ΓσµρΓρσν , (1.2)

where ∂µ(·) := ∂(·)/∂xµ indicates a partial derivative with regards to the coordinate xµ. In this
thesis, we adopt a metric approach and consider that the metric gµν is the only fundamental object
of the gravitational sector. As such, the connection Γρµν in Eq. (1.2) is the Levi–Civita connection
constructed from the metric gµν [347]:

Γρµν := 1
2g

ρσ (∂µgσν + ∂νgµσ − ∂σgµν) . (1.3)

If, in addition to the EH action (1.1), we consider the existence of a cosmological constant Λ and
of matter fields minimally coupled to gravity and with internal degrees of freedom Ψ(i), then the total
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1.2 The matter sector

action reads1

S[gµν ,Ψ(i)] = SEH[gµν ] + SΛ[gµν ] + S(mat)[gµν ,Ψ(i)]

= 1
2κ2

∫
d4x
√
−g (R− 2Λ) +

∫
d4x
√
−gL(mat)[gµν ,Ψ(i)] , (1.4)

with L(mat) the Lagrangian density of the matter fields. The minimisation of Eq. (1.4) with regards
to variations of the metric gµν leads to the Einstein field equations2 [145]

Gµν + Λgµν = κ2[T (m)]µν , (1.5)

where the Einstein tensor, Gµν , and the stress-energy-momentum tensor, [T (m)]µν , are defined as

Gµν := Rµν −
1
2Rgµν , [T (m)]µν := − 2√

−g
δ
√
−gL(m)

δgµν
. (1.6)

The Einstein field equations (1.5), which have recently celebrated their first centenary, dictate how
space-time bends and curves in the presence, or absence, of matter. In essence, they encode all the
necessary information regarding the laws of gravitation in GR. On the other hand, in order to describe
how matter moves in the curved space-time, we require the equations of motion for the matter degrees
of freedom Ψ(i), which are obtained by minimising the action (1.4) with regards to variations of Ψ(i):

δL(mat)

δΨ(i) = 0 . (1.7)

From the trace of Eq. (1.5), we obtain an additional relation between the scalar curvature, the
cosmological constant and the trace of the stress-energy-momentum tensor, T (m) := [T (m)]µµ:

R− 4Λ = −κ2T (m) . (1.8)

1.2. The matter sector

In GR, where the matter fluids are minimally coupled to gravity, the matter content can be characterised
by the stress-energy-momentum tensor [T (m)]µν , defined in Eq. (1.6), which appears on the r.h.s.
of Eq. (1.5). Using the Bianchi identities [347], it is possible to show that the Einstein tensor is
divergenceless, i.e., ∇µGµν = 0, which, using Eq. (1.5), immediately leads to

∇µ[T (m)]µν = 0 , (1.9)

showing that GR is compatible with the local conservation of energy and momentum. In the case where
the matter Lagrangian density can be decomposed into several components L(j), each representing a

1Notice that while in GR the metric and Palatini approaches lead to equivalent equations of motion, the same might
not be true for modified theories of gravity [105, 321].

2Throughout this thesis, we opt to employ square brackets, when adequate, to separate labels of tensor quantities
from the space-time (or spatial) indices.
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Chapter 1. The Standard Model of Cosmology

separate fluid, we can define for each L(j) a stress-energy-momentum tensor via Eq. (1.6):

[T(j)]µν := − 2√
−g

δ
√
−gL(j)

δgµν
,

∑
j

[T(j)]µν = [T (m)]µν . (1.10)

However, the total conservation equation (1.9) does not guarantee the conservation of each [T(j)]µν .
Instead, we can write the individual conservation equations with an interaction vector [Q(j)]ν as

∇µ[T(j)]µν = [Q(j)]ν ,
∑

j
[Q(j)]ν = 0 . (1.11)

The specific form of the [Q(j)]ν , which defines the energy and momentum transfer for the fluid j, can
be obtained by using the equations of motion (1.7).

Given a time-like unit 4-vector uµ, we can decompose a stress-energy-momentum tensor Tµν as
[144, 196, 215]

Tµν = (ρ+ P )uµuν + Pgµν + 2u(µqν) + πµν , (1.12)

where ρ is the energy density, P is the pressure, qµ is the energy flux orthogonal to uµ (uµqµ = 0) and
πµν is the anisotropic stress which is traceless (πµµ = 0) and orthogonal to uµ (uµπµν = 0). These
fluid variables can be defined formally as [144, 196, 215]

ρ := uµuνT
µ
ν , (1.13)

P := 1
3h

µ
ν T

µ
ν , (1.14)

qµ := − uνhµρT ρν , (1.15)

πµν :=
(
hµρh

σ
ν −

1
3h

σ
ρhµν

)
T ρσ , (1.16)

where hµν := gµν + uµuν is the 3-metric projected on the 3-dimensional space orthogonal to uµ.
In the case of a perfect fluid, both the energy-flux and the anisotropic stress vanish and so the
stress-energy-momentum tensor (1.12) reduces to [144]

Tµν = (ρ+ P )uµuν + Pgµν . (1.17)

1.3. The Friedmann-Lemâıtre-Robertson-Walker solution

The cosmological principle states that any observer is not in a privileged position, but rather in a
fairly representative region of the Universe. In other words, when viewed at large enough scales, the
Universe should be roughly the same in every patch of space and in every direction we look. As such,
the laws of physics that we can test in our immediate neighbourhood should remain valid throughout
the Universe and be applicable in regions which are currently inaccessible to us. This is supported by
modern observations, which indicate that deviations from isotropy in the cosmic microwave background
radiation are of the order of 10−5 and that most cosmic structures have characteristic sizes of less
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1.3 The Friedmann-Lemâıtre-Robertson-Walker solution

than a few hundred3 megaparsec (Mpc).

The solution to Einstein field equations (1.5) that describes such a homogeneous and isotropic
universe was first presented by Alexander Friedmann in the early 1920’s [159, 160]. Shortly after
Friedmann’s death in 1925, the same solution was re-derived by Georges Lemâıtre [225], who
immediately realised the physical implications of the model4. After Edward A. Milne was able to
re-derive the evolution equations in Friedamnn and Lemâıtre’s model through kinematic considerations
in Newton’s theory of gravity [261] (see also Refs. [207, 254]), Howard P. Robertson [297–299] and
Arthur G. Walker [348, 349] analysed in detail the metric compatible with both models, showing that
it represents the most general solution for a homogeneous and isotropic universe independently of the
theory of gravity assumed.

The general FLRW line element can be written in coordinates {t, r, θ, ϕ} as5

ds2 = −N2(t)dt2 + a2(t)
(

dr2

1−Kr2 + r2dθ2 + r2 sin2(θ)dϕ2
)
, (1.18)

where N is the lapse function6, a is the scale factor which we consider to have units of length and
K = −1, 0, +1. From the line element (1.18) we can write the FLRW metric and its inverse as

gµν =
(
−N2 0

0 a2γij

)
, gµν =

(
−N−2 0

0 a−2γij

)
, (1.19)

where the 3-metric γij = γij(~x) is given in reduced-circumference polar coordinates {r, θ, ϕ} as

γij =


1

1−Kr2 0 0

0 r2 0
0 0 r2 sin2(θ)

 , γij =


1−Kr2 0 0

0 1
r2 0

0 0 1
r2 sin2(θ)

 . (1.20)

The line element (1.18) corresponds to a foliation of space-time into space-like hypersurfaces

3For more than a decade, the largest structure known to humankind was the CfA2 Great Wall (∼ 200Mpc) [165],
supplanted in the mid 2000’s by the Sloan Great Wall (∼ 500 Mpc) [171]. In recent years, however, some structures
were discovered that pass the 1000 Mpc mark, such as the Huge Large Quasar Group (. 1400 Mpc) [119] and the
Hercules-Corona Borealis Great Wall (∼ 2000–3000 Mpc) [188]. These structures are well above the theoretical limit for
the size of structure in the ΛCDM model; the value 260 h−1Mpc was obtained in Ref. [362] using multi-fractal analysis.
However, the statistical nature of such analysis means that the discovery of a few structures above the theoretical limit
do not necessarily represent an incompatibility with the cosmological principle [272].

4Two years before Edwin Hubble published his famous relation between the distance and the receding velocity of
nearby galaxies [193], Lemâıtre understood that an expanding universe leads to a redshift effect of the light coming
from extra-galactic sources and shortly after theorised that an extrapolation of the model implied that the Universe
should have begun in an extremely hot and small primeval atom (the original Big Bang) at some finite time in the past
[226]. These ideas eventually led to the theory of Big Bang Nucleosynthesis (BNN), initially spearheaded by Ralph A.
Alpher and George Gamow [31, 161], and to the prediction [30] and discovery [286] of the cosmic microwave background
(CMB) radiation.

5Here and throughout this work, we set the speed of light c = 1 unless explicitly stated otherwise.
6Most works on theoretical cosmology use either the cosmic time (N = 1) or the conformal time (N = a). Here,

we leave the lapse function unspecified, despite the obvious extra burden in the notation, as it provides us with a fast
way of obtaining the evolution equations for any choice of the time variable. This will be advantageous when numerical
integrations are required, in which case we prefer to use log(a/a∗), where a∗ is an arbitrary scale, as the time variable.
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Chapter 1. The Standard Model of Cosmology

orthogonal to the unit 4-vector

nµ =
(
−N, ~0

)
, nµ =

(
1
N
, ~0
)
, (1.21)

which are endowed with a spatial 3-metric7 hµν := gµν + nµnν and have uniform spatial curvature

(3)R = 6K
a2 . (1.22)

As such, in a FLRW universe, we find that the spatial sections can be closed (K = −1), flat (K = 0)
and open (K = +1). The local expansion scalar θ which corresponds to the expansion rate of a spatial
volume a3 is given by [246, 347]

θ := ∇µnµ = 3
N

ȧ

a
, (1.23)

where a dot indicates a derivative with respect to t. On the other hand, the shear tensor σµν , the
vorticity tensor ωµν and the acceleration 4-vector aµ are all identically zero in FLRW cosmology
[246, 347]:

σµν := hρ(µh
σ
ν)∇ρnσ −

1
3θhµν = 0 , (1.24)

ωµν := hρ[µh
σ
ν]∇ρnσ = 0 , (1.25)

aµ := nν∇νnµ = 0 , (1.26)

reflecting the symmetries of the geometry and the fact that an initially comoving particle remains at
rest with the Hubble flow.

In a Universe described by the line element (1.18), the homogeneity and isotropy conditions imply
that all 3-vectors and spatial gradients must vanish. As such, all the non-diagonal components of the
Einstein field equations must vanish. Inserting Eq. (1.19) in the field equations (1.5), we find that the
(0− 0) component reads

3
(
ȧ

a

)2
+ 3N

2

a2 K −N
2Λ = κ2N2ρ(m) . (1.27)

This equation relates the rate of expansion of the Universe with the total energy density, including the
contributions from the matter fields, the cosmological constant and the spatial curvature. On the
other hand, the (i− i) component reads

2 ä
a

+
(
ȧ

a

)2
− 2Ṅ

N

ȧ

a
+ N2

a2 K −N
2Λ = − κ2N2P (m) . (1.28)

From the expressions (1.27) and (1.28), we can obtain the acceleration of the expansion, ä, in terms

7By comparing Eqs. (1.19), (1.21) and the definition of the induced 3-metric hµν constructed from the 4-vector
nµ, it can be recognised that hij = a2γij .
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1.3 The Friedmann-Lemâıtre-Robertson-Walker solution

of the energy density and pressure:

ä

a
− Ṅ

N

ȧ

a
− N2

3 Λ = − κ2N2

6

(
ρ(m) + 3P (m)

)
. (1.29)

In the matter sector, the isotropy and homogeneity conditions lead to the vanishing of the energy-flux
4-vector [q(m)]µ and the anisotropic stress tensor [π(m)]µν , and any stress-energy-momentum tensor
reduces to the form of a perfect fluid, as given in Eq. (1.17). Furthermore, the conservation of the
stress-energy-momentum tensor, cf. Eq. (1.9), leads to the continuity equation

ρ̇(m) + 3 ȧ
a

(
ρ(m) + P (m)

)
= 0 . (1.30)

Such an equation is equivalent to the conservation of energy in an adiabatic system as stipulated by
the first law of thermodynamics. For extremely non-relativistic matter, Pm = 0, this equation leads to
the solution ρm ∝ a−3 which guarantees that mass is conserved as the Universe expands. On the
other hand, for purely relativistic matter, Pr = 1/3ρr, we obtain the solution ρr ∝ a−4, which points
to the loss of energy of ultra-relativistic particles (E = ~/λ) due to the redshift of the wave-length λ
in an expanding universe [225]

λ(t2)
λ(t1) = a(t2)

a(t1) . (1.31)

In the case of interacting fluids, the interaction 4-vector in Eq. (1.11), [Q(j)]µ, can be decomposed
as

[Q(j)]µ =
(
−N Q(j), ~0

)
, (1.32)

leading to a modified version of the continuity equation (1.30), which reads

ρ̇(j) + 3 ȧ
a

(
ρ(j) + P(j)

)
= N Q(j) . (1.33)

Notice that the continuity equation for the total energy density requires that
∑

jQ(j) = 0.

The Hubble rate H is defined as the expansion rate of the scale factor a(t) in cosmic time (N = 1):

H := 1
N

ȧ

a
= θ

3 , (1.34)

and allows us to re-write the Friedmann equation (1.27) in a simplified form as

3H2 = κ2ρ(m) − 3K
a2 + Λ . (1.35)

If we interpret the contributions of the curvature term and the cosmological constant term as
energy densities, then from Eq. (1.35) we can introduce the critical energy density of the Universe
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Chapter 1. The Standard Model of Cosmology

ρcrit := 3H2/κ2 and the fractional energy densities

Ω(m) := ρ(m)

ρcrit
, ΩK := − 3K

κ2a2ρcrit
, ΩΛ := Λ

κ2ρcrit
. (1.36)

In terms of these quantities, the Friedmann equation (1.35) reduces to the constraint

1 = Ω(m) + ΩK + ΩΛ . (1.37)

Thus, we can consider the Universe as effectively flat as long as Ω(m) + ΩΛ ≈ 1, even if K 6= 0.

In this section, we have discussed the highly symmetrical FLRW geometry which seems to best
describe our Universe at large scales. In order to obtain a richer description of the cosmos, however,
we need to also study the evolution of small inhomogeneities and anisotropies around the FLRW
background. In the Appendix. A, we present a quick review of the theory of cosmological perturbations,
which provides the theoretical framework to undertake such an endeavour.

1.4. The Standard Model of Cosmology

Twenty years ago, the observations of Type Ia supernovae (SNe Ia) by the Supernova Cosmology
Project [287] and the High-z Supernova Search Team [296] showed that the current expansion of
the Universe is incompatible with the behaviour of a dust dominated universe and instead favours a
picture where the Universe started to accelerate in our recent past. These results confirmed a series
of suspicions, raised in the preceding decade, that a significant contribution from a fluid similar to
a cosmological constant, the so called dark energy (DE), was necessary to explain contemporary
observations regarding the late time evolution of the Universe [284]. This catapulted the ΛCDM
model, which describes a Universe filled by a cosmological constant Λ and cold dark matter (CDM),
to the centre stage of modern cosmology.

The current Standard Model of Cosmology, or simply Concordance Model, describes a universe
that at the present time is dominated by two dark components: CDM and DE, the latter in the form
of a cosmological constant; but also considers the contribution of photons, in the form of the CMB
radiation, of cosmic neutrinos and of non-relativistic baryons. As such, we can write the Friedmann
equation as

H2 = H2
0

[
Ωr,0

(a0

a

)4
+ Ωm,0

(a0

a

)3
+ ΩK,0

(a0

a

)2
+ ΩΛ,0

]
, (1.38)

where a 0-subscript indicates evaluation at the present time. In Eq. (1.38), Ωr,0 = Ωγ,0 + Ων,0 is the
current fractional energy density of ultra-relativistic matter and includes a contribution from photons,
Ωγ,0, and light neutrinos, Ων,0. The current fractional energy density of pressureless matter is given
by Ωm,0 = Ωc,0 + Ωb,0 and includes a contribution from CDM, Ωc,0, and from non-relativistic baryons,
Ωb,0, while the contribution of DE is given by ΩΛ,0. A contribution from spatial curvature is included
in ΩK,0.

The recently released final results from the Planck mission [19], in conjunction with data from
baryonic acoustic oscillations (BAO), indicate that the best fit value of the expansion rate at the
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1.4 The Standard Model of Cosmology

Parameter Best-fit Value Description

H0 67.70 Hubble rate in km s−1Mpc−1

Age 13.78 Age of the Universe in billions of years (Gyr)

ΩΛ,0 0.6894 Contribution of non-relativistic matter

Ωm,0 0.3106 Contribution of non-relativistic matter

Ωc,0 0.2601 Contribution of DM

Ωb,0 0.04898 Contribution of non-relativistic baryons

ΩK,0 0.0007 Contribution of spatial curvature

Tγ,0 2.7255 Temperature of the photons of the CMB in K

Ωγ,0 5.395× 10−5 Contribution of the photons of the CMB

Ων,0 3.732× 10−5 Contribution of relativistic neutrinos

Table 1.1.: Some cosmological parameters of the Concordance Model and their values obtained from the
best fit values for the baseline 6-parameter ΛCDM model using the final 2018 results of the
Planck mission [19] with BAO data.

present time is H0 = 67.70 km s−1Mpc−1, and confirm that the two biggest contributions to the
total energy density are from DE, ΩΛ,0 ' 0.69, and pressureless matter, Ωm,0 ' 0.31, with baryonic
matter accounting for roughly 16% of the latter. The contribution of the curvature term is small,
|ΩK| < 0.003, indicating that at the present time the Universe is extremely flat. Assuming a (widely
tested) black-body distribution for the CMB, the total energy density of photons is given as [352]

ργ,0 = π2

15~3T
4
γ,0 . (1.39)

where Tγ,0 is the present temperature of the photons of the CMB. Using the value Tγ,0 = 2.7255 K
(0.23 meV) obtained in Ref. [158], we find that cosmic photons account for less than 1 part in 104 of
the current energy density of the Universe. The neutrino energy density is usually written in terms of
ργ,0 and the effective number of degrees of freedom, Neff , through the parametrisation [135, 249]

ρν,0 = 7
8

(
4
11

)4/3
Neffργ,0 . (1.40)

In the Standard Model of Particles, with three families of leptons, the prediction for the effective
number of relativistic degrees of freedom is Neff = 3.046, where the small deviation from 3 arises from
considering a non-instantaneous decoupling between neutrinos and the photon-baryon plasma before
the electron-positron annihilation [249]. Historically, a small excess of ∆Neff := Neff − 3.046 has
been inferred from CMB observations, leaving open the possibility for the existence of an additional
relativistic fluid that does not interact with light, the so called dark radiation [37, 181, 259]. This
scenario is somewhat disfavoured by the final results of the Planck mission, which in combination
with BAO data, leads to Neff = 2.99+0.34

−0.33 [19]. Nevertheless, higher values of the effective number
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Chapter 1. The Standard Model of Cosmology

Event Time after BB Redshift (z) Temperature (T )

Electroweak phase transition 20 ps 1015 100 GeV

QCD phase transition 20 µ 1012 150 MeV

Neutrino decoupling 1 s 6× 109 1 MeV

Big Bang Nucleosynthesis 3 min 4× 108 0.1 MeV

Radiation-matter equality 60 kyr 3365 0.8 eV

Recombination 260 kyr 1300 0.3 eV

Decoupling 380 kyr 1090 0.26 eV

Re-ionisation 100 kyr 9 2.4 meV

Matter-DE equality 9 Gyr 0.3 0.3 meV

Present 13.8 Gyr 0 0.23 meV

Table 1.2.: Some key events in the history of the Universe based on the Concordance Model and the best-fit
values from the 2018 results of Planck mission [19].

of degrees of freedom are still compatible with the data as long as H0 is allowed to take on larger
values. Restricting the analysis to the physically motivated range ∆Neff > 0 leads to the constraint
∆Neff < 0.30 at 95% confidence level [19].

Behind the apparently simple formula (1.38), the Concordance Model hides several key ideas of
modern cosmology developed throughout the last century. Using only GR and the well known physics
behind the Standard Model of Particles, it successfully describes an expanding universe that from an
initial state with a temperature well above the GeV mark (the Hot Big Bang), undergoes a series
of phase transitions which are triggered by the cooling down of the primordial plasma. Once the
temperature reaches 0.1 MeV, at redshift z ∼ 108, the process of the BBN kicks in, leading to the
primordial abundances of light elements, and at 0.8 eV, z ∼ 3400, the energy density of non-relativistic
particles overcomes that of radiation; thus starts the matter-dominated epoch which promotes the
growth of inhomogeneities that lead to the large scale structure (LSS) observed today. Around T ∼ 0.3
eV, z ∼ 1300, the first atoms start to form amid the plasma of free electrons and nuclei; shortly after,
the decoupling of photons and free electrons is completed and the Universe becomes transparent to
photons. This creates the last scattering surface, the remains of which form the CMB radiation. At
this point, the Universe enters the so called dark ages, a period during which very little light was
produced and only ends with the formation of the first stars and galaxies. Around redshift 10, T ∼ 2.4
meV, these newly formed structures illuminate the Universe and re-ionise the neutral hydrogen in the
intergalactic medium, thus creating the Lyman-α forest. Finally, at z ∼ 0.3, when the temperature of
the Universe is very close to the one observed today, the matter-dominated epoch ends once DE takes
over and starts to re-accelerate the Universe.
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1.5 Primordial Inflation

1.5. Primordial Inflation

The Cosmological Principle, which is one of the main pillars of modern cosmology, is also intimately
related to one of the biggest conceptual headaches of the Concordance Model. At the time of the
last scattering surface, the celestial sphere corresponded to over 104 regions that had been causally
disconnected for 380 thousand years. As such, the high degree of isotropy found in the CMB radiation
can only be explained by fine-tuning the Universe to be extremely homogeneous at the time of the
Hot Big Bang. However, no mechanism capable of setting up this degree of homogeneity is available
in the Concordance model.

A solution to this so called Horizon Problem was offered by Demosthenes Kazanas [206] and Alan
H. Guth [179] in the form of an initial epoch of extremely rapid growth of the scale factor. This fast
primordial expansion, dubbed inflation by Guth, would stretch very small and homogeneous regions
of space-time by several orders of magnitude in such a short period of time that inhomogeneities
and anisotropies would not have time to grow, thus providing a mechanism for the fine-tuned initial
conditions of the Hot Big Bang model8. Coincidentally, a similar inflationary period was being
considered at the same time by Alexey A. Starobinsky in the context of quantum modifications of
gravity [324, 325] although no mention is made to a resolution of the Horizon Problem. Shortly
after, a new mechanism of inflation based on the slow-roll of a scalar field along its potential was
introduced by Andrei D. Linde [235] and Andreas Albrecht and Paul J. Steinhardt [25]. Although this
new inflation sought to address some problem in Guth’s model related to the reheating phase, it was
quickly realised that some fine-tuning of the potential and initial conditions was required in order for
inflation to occur. This issue was tackled by Linde in his models of chaotic inflation [236] in which an
epoch of accelerated expansion can occur for very generic initial conditions. The following years it was
shown that quantum perturbations generated during inflation can also act as the seeds for the LSS
observed today, with current observations preferring a near-scale-invariant primordial power-spectrum
which is compatible with a wide range of single field inflation models.

The inflationary paradigm has since become widely accepted as the most probable mechanism to
solve several shortcomings of the Hot Big Bang cosmology, and is usually considered as an integral
part of the Concordance Model. Nevertheless, the idea of primordial inflation is not without its
critics and several alternative paradigms to explain the Horizon Problem continue to be explored, e.g.,
the ekpyrotic [208] or matter bounce [156] scenarios. After the 2013 results of Planck mission [13]
imposed severe constraints on the tensor-to-scalar ratio, which have been confirmed by the full mission
data [18], several models that were traditionally favoured, like power-law inflation or chaotic inflation
from monomial potentials, have been ruled out. Instead, models of single field inflation similar to
Starobinsky’s R2 inflation [325], with concave (d2V/dϕ2 < 0) nearly flat potentials during inflation
are preferred by the data. This has led to a renewed interest in extended theories of gravity as a
mechanism to fuel primordial inflation.

8In addition, to the Horizon Problem, the inflationary paradigm also solves the Flatness Problem under which the
apparent flatness of the Universe could only be explained by fine-tuning ΩK in the distant past. A period of primordial
inflation solves this problem by setting ΩK very close to zero at the beginning of the radiation-dominated epoch. In the
context of Grant Unified Theories, a period of primordial inflation also solves the Monopole Problem, since any initial
distribution of magnetic monopoles and other relics would be extremely diluted by the end of inflation [232].
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1.6. Beyond the Standard Model

In the current era of precision cosmology, the Concordance Model with an initial epoch of primordial
inflation allows us to describe and understand most of the last 14 billion years of our Universe using
only a diminutive set of parameters. Its success stands as one of the biggest achievements of modern
physics. However, several questions are still left unanswered (for a review on the future of cosmology
beyond the concordance model, please see Ref. [93]), with the most immediate ones being related
to the nature of the two unknown dark fluids that together comprise about 95% of the Universe. In
fact, since the ΛCDM model is purely phenomenological in nature, it presents no clue on the possible
origin of these fluids.

While the presence of a DM-like component is essential to obtaining correct predictions from BBN
calculations [310], the growth of the LSS and gravitational lensing [186] or to explaining the rotation
velocity curves of galaxies [307] and the gravitational potentials in the Bullet cluster [250], little is still
known about DM beyond its gravitational effects. For a review on the current status of the search
regarding the nature of DM, including a list of current DM candidates such as Weakly Interacting
Massive Particles, axions and axion-like particles, primordial black holes or modified gravity, please see
Refs. [40, 304].

The picture is not better when we turn our attention to DE. The historical interpretation of DE as
vacuum energy fails to predict the observed value by 120 orders of magnitude, leading to the so called
Cosmological Constant Problem [358]. Even if we accept the point of view that DE is nothing more
than a true cosmological constant and therefore a fundamental constant of Nature, we are still left
with the issue of why it became dominant only at the late time evolution, precisely only after allowing
the growth of cosmological structures (Coincidence Problem). In broad terms, the various proposals
of alternatives to a cosmological constant can be classified in two main categories: (i) dynamical dark
energy models, where the laws of gravitation of GR are maintained and the current acceleration of the
Universe is caused by a dynamical fluid, or field, that evolves in time; (ii) modified theories of gravity,
where DE is in fact a manifestation of a deviation from GR in the laws of gravitation at large scales
and as such no extra matter fluid is required.

Even the inflationary paradigm, despite being widely accepted as a simple and elegant solution
to several shortcomings of the Hot Big Bang cosmology, does not come free of problems. While it
manages to adequately set-up the initial conditions for a classical homogeneous and isotropic universe,
it does not provide a clear answer as to how primordial inflation came to be or what, if anything, came
before it, attracting criticism that it pushes the problem of initial conditions back in time instead of
actually solving it. Furthermore, since an inflationary regime can be obtained through a multitude of
models and can be embedded in several extensions of GR or quantum gravity proposals, we may lack
a way of understanding which physical mechanism is responsible for the primordial acceleration of the
Universe. This situation is aggravated by the lack of evidence of a cosmic background of gravitational
waves, a general prediction of inflation, in the B-mode polarisation of the CMB [14, 15]. It is hoped
that gravitational waves of cosmological origin will be detected in future observational missions, either
through polarisation of the B-modes [173], or through direct detection [48].

From an observational point of view, there are also reasons to explore scenarios beyond ΛCDM.
For example, a tension persists in the best-fit values of cosmological parameters obtained from the
CMB versus those obtained from low redshift measurements, with the latter finding systematically
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lower values of Ωm,0 and a larger Hubble rate [6, 245]. The existence of other inconsistencies between
observations and theoretical predictions at small scales [93] are viewed by some as an indication that
the dark sector of the Concordance Model needs to be modified. In addition, several anomalies in the
CMB are yet to be resolved, such as the low quadrupole (` = 2) anomaly, the dip the in the angular
power spectrum at 20 . ` . 30, or the cold spot on the southern hemisphere, first detected by the
WMAP mission [56] and confirmed by Planck as true features of the CMB [19].

Dynamical Dark Energy

Since the ΛCDM model provides no explanation for the nature of DE, several alternatives have been
proposed in the literature to explain the late time acceleration. In this regard, one of the main
approaches is to consider that instead of a cosmological constant or vacuum energy with w = −1,
DE is some unknown dynamical field or matter fluid capable of fuelling an accelerated expansion.
Such an approach seeks to preserve GR as the theory of gravitation, as well as the assumption of
homogeneity and isotropy in the late Universe, at the expense of introducing exotic matter in our
Universe that can violate the Null Energy Condition. Perhaps the most widespread class of dynamical
DE are the so called Quintessence models [101, 293], where the late time acceleration is obtained
through a scalar field slow-rolling down a potential, much like in single field inflation. Alternatives to
this scenario include models based on the Chaplygin gas [57, 60, 205] and 3-form fields [216, 217].
In some cases, a dynamical DE is incorporated in a unified description of the dark sector including
DM. These are the so called unified dark matter-energy models (UDM), of which the Chaplygin Gas
is one of the first examples. From a phenomenological point of view, several parametrisations of
the EoS parameter w have been considered in the literature, such as the wCDM model or the CPL
parametrisation [116, 237] (for additional strategies employed in the parametrisation of DE please
see Ref. [194]). However, despite these efforts in trying to explain the current acceleration of the
Universe, no significant deviations from a cosmological constant have been observed so far–the 1-year
results of the Dark Energy Survey point to w = −1 [6] even when the wCDM parametrisation is
considered–foiling hopes that characteristic imprints from a dynamical DE would be detected [367].

Dark Interactions

The idea that the unknown components of the Universe, namely DM and DE, have some kind of
interaction either between them or with other forms of mater can be seen as natural: If we know
so little about their nature and given that they overwhelmingly dominate the energy content of the
Universe then why should interactions not be considered? and as potentially necessary: Given that
neither DM or DE seems to interact with light, some other way of detecting them is necessary in order
for us to understand what comprises them.

From a more fundamental point of view, the idea of interactions involving DM also finds motivation
in the idea that DM is in fact a very massive particle yet to be discovered. If so, future observational
missions may be ale to detect imprints from DM decaying into lighter particles, or being scattered in
galaxy or cluster collisions. Several attempts have been made to derive constrains on the interacting
properties of DM using cluster collisions [250], interactions with solar neutrinos [230], gamma-ray
emissions in DM-rich dwarf galaxies [10, 273, 317], X-ray emissions from galaxy clusters [92, 201], or
measuring couplings to the electromagnetic fields [172]. A review of current and future searches for
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evidence of interactions in different DM models can be found in Refs. [128, 304].

Due to the lack of an obvious candidate for DE based on fundamental physics, interactions involving
DE tend to be more phenomenological in nature and usually take into account only pressureless
matter as the other interacting component, so that QDE = −Qm = Q. A usual interaction term
considered in the case of Quintessence models with a scalar field ϕ is Q ∝ 3ϕ̇ρm [32], which can
be readily interpreted as coming from a φ-dependence of the mass of the matter particles. Other
interaction terms considered in the literature include Q ∝ 3Γρm and Q ∝ 3(ȧ/a)ρm which can be
interpreted for example as a decay or production of massive particles with a production/annihilation
rate proportional to Γ or ȧ/a [64, 98, 99, 345]. Variations found in the literature include replacing ρm
by a linear combination of ρm and ρDE [68, 98, 99, 117] or by the quadratic term ρmρDE/(ρm + ρDE)
[38, 68, 78, 99], or even considering a dependence on the derivatives ρ̇m and ρ̇DE [68]. It has been
shown that UDM models can also be stated in the context of interacting DE by choosing an appropriate
interaction term [351]. More recently, several works have explored the possibility of using the action
functionals developed by9 J. David Brown [89] to find Lagrangian based formulations of interactions
between DE and DM [58, 66, 67, 153, 220, 291], in an attempt to eliminate ambiguities in the
definition of the interaction 4-vector Qµ.

Current analysis based on data from CMB, low redshift space distortions and cosmic chronometers
on the interaction between DM and DE suggest that in wCDM models an energy transfer occurs from
DM to DE when −1 < wDE and from DE to DM when a (mild) phantom behaviour (wDE < −1) is
considered [125, 154, 155, 277, 345]. An interaction between matter and a running vacuum energy
has also been found to alleviate some of the discrepancies between CMB and LSS measurements
[309, 318] and it has been argued that it could explain the Coincidence Problem [125, 155, 318].
Despite showing a preference for an interacting model, these results do not exclude the ΛCDM model
and the derived constraints on the coupling constants indicates that the interaction must be mild until
the present time.

Modified Gravity

The road to modified (or extended) theories of gravity is a long and rich one. Since the birth of
Einstein’s theory of gravitation in 1915 [145], many different proposals of theories of gravity have been
put forward, from Brans-Dicke models [85] and Hordenski’s generalisation of scalar-tensor theories
[187] to the studies on renormalisability of quadratic gravity by Stelle [328, 329] and Starobinsky’s
famous R2 model [325]. For a review on this topic please see for example Ref. [104, 152].

So far, GR has passed with bright colours all the tests designed to check its limits [360] and it is
in perfect agreement with the recent detection of gravitational waves [2] and with the results of the
26-year long Gravity collaboration that analysed the orbit of the star S2 around the massive black hole
in the centre of the Milky Way [8]. In fact, the multi-messenger detection of gravitational waves from
the black hole-neutron star binary [3] has led to severe constraints on potential modifications of GR,
in practice excluding from cosmological applications at late-time all theories that predict a deviation
between the speed of light and the speed of the gravitational waves. Nevertheless, there are many

9Earlier efforts on the topic of hydrodynamical fluids in curved space-times include works by Abraham H. Taub
[331], Bernard F. Schutz [314, 315] and by Schutz and Rafael Sorkin [316]. A review on this topic that includes physical
applications can be found in Ref. [33].
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extensions of GR that satisfy the constraints imposed by gravitational wave astronomy and many
indications still subsist that a modified theory of gravity may need to be considered, from the known
problems to explain the nature of DE, the capability of MOND to tackle several shortcomings of the
ΛCDM model at small scales [93], to the preference of the R2 model to explain the low tensor-to-scalar
ratio implied by the results of Planck [18]. In addition, many models of modified gravity can be
obtained as the low energy limit of more fundamental theories, such as string theory, that try to unify
gravity with the other fundamental forces.

Effects of Quantum of Gravity

Finding a theory of Quantum Gravity has been one of the more elusive pursuits of modern physics in
the XX and XXI centuries. After the introduction of GR in 1915, it was soon realised [88] that the
geometrical nature of gravity and its intricate connection to the space-time created serious difficulties
in repeating the successes of obtaining a quantum description for the other fundamental forces. In
1967, Bryce DeWitt published his Canonical Theory of Quantum Gravity [137] which built on the
efforts from Paul Dirac [138, 139] and from Richard Arnowitt, Stanley Deser and Charles Misner [39],
among others, to provided the first full theory that attempted to quantise gravity. In that seminal
work, DeWitt also presented for the first time the Wheeler–DeWitt (WDW) equation, which serves as
an analogous to the Schrödinger equation for GR. However, the fact that the inner-product associated
to this equation is not positive definite has created ambiguities in interpretation of the solutions of
the theory [202, 221], even in the simplest of models, which to date have not yet been completely
resolved. Nevertheless, the WDW equation has served as one of the pillars of subsequent attempts to
quantise gravity, such as loop quantum gravity and string theory. For reviews of the history and of the
current status of the different approaches to Quantum Gravity, please see [211, 260, 305].

Due to the weak coupling of gravity to matter, it is expected that the effects of quantum gravity
will only become important at very high energy densities or in regions of the space-time where the
curvature is close to the Planck scale. Within the context of cosmology, it is generally expected that
quantum effects of gravity play a crucial role in the earlier stages of the Universe. In addition to the
fact that quantum fluctuations during the primordial inflation can act as the seeds for the LSS and
the anisotropies of the CMB, there have been various attempts to use Quantum Gravity to explain
the very beginning of our Universe and to provide a mechanism that sets the proper conditions for
inflation to occur. In addition, it has been shown that quantum effects can be crucial in avoiding
certain future cosmological singularities [23, 29].

If any imprints of these early times are left on the primordial power spectrum at the end of inflation,
then they should lead to the appearance of special features in the CMB. Coincidentally, the existence
of several anomalies in the angular power spectrum of the CMB at the largest scales [18, 19], precisely
the ones that are expected to be more sensitive to pre-inflationary effects, provide a window to search
for new physics and hints of Quantum Gravity. Furthermore, the recent detection of gravitational
waves and the possibility of measuring the cosmological background of gravitational waves in the next
decades, either directly or through the B-mode polarisation of the CMB, might provide us with a new
important way of probing Quantum Cosmology in the early Universe.
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2 Tools to characterise cosmological models

As the list of proposed extensions and modifications to the Concordance Model grows, so does
the need for more advanced methods and techniques that can successfully select viable candidates
to describe our Universe. In order to be considered as viable, a given cosmological model should
not only be able to accommodate the current observational data, but also verify a certain degree
of naturalness, i.e., it should be compatible with the cosmological observations without the need
for fine-tuning the parameters of the model. The fact that extensions to the Standard Model of
Cosmology usually introduce new degrees of freedom and parameters to the theory can also be seen
as a double-edged sword. While the increased flexibility in the dynamics can in principle reduce the
deviation between theoretical predictions and observations, the higher number of parameters has
the undesired consequence of lowering the goodness of the fit. In fact, one of the main strengths
of the ΛCDM model is that it is able to adjust the current observations to an astounding level of
precision with a minimal set of parameters. In addition, the great level of freedom in how to extend
the Standard Model of Cosmology1 can lead to the existence of several viable cosmological models
with very different underlying physical motivations but which are difficult to distinguish, at least at
the level of the FLRW background geometry. It is, therefore, desirable to have a toolbox of methods
that is capable to characterise a given cosmological model, identify its characteristic imprints and to
provide a measure of the generality of the dynamics and the capacity to reproduce the observational
data without a need for fine-tuning.

In this chapter, we present the main techniques that will be used in this thesis to characterise
the models presented in the ensuing chapters. The methods presented here give emphasis to a
phenomenological and theoretical approach to cosmology and therefore do not employ a detailed
analysis of the observational data. Instead, we focus on providing a characterisation of the dynamics
of a given model and on computing the theoretical predictions for cosmological observables, at the
level of the FLRW background and of the linear scalar cosmological perturbations.

2.1. Dynamical system analysis

An explicit solution of the continuity equation (1.30) is usually only available for the simplest models,
as in the case of a fluid with constant EoS parameter w. In contrast, for models with additional

1This can be viewed as a consequence of the lack of a unequivocal guiding principle, either from fundamental
physics or from cosmological observations, on how to extend the theory.
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2.1 Dynamical system analysis

degrees of freedom, a numerical integration of the equations of motion may be required to determine
the evolution of the model. While these solutions are of interest on their own, in particular if special
regimes of the model can be identified, the fact that they depend on the initial conditions specified for
the integration means that they do not necessarily capture all of the interesting features of the model.
In this sense, a dynamical system approach has long proven to be a useful tool in cosmology, allowing
us to obtain a qualitative description of the system, to identify possible initial and final states, or even,
in some cases, to estimate the probability of the occurrence of certain kinds of behaviour. Within the
context of late-time cosmology and primordial inflation, dynamical system analysis has recurrently
been used in models with different types of matter fields, such as scalar fields, K-essence and 3-forms,
and in models of modified theories of gravity or quantum cosmology in a semi-classical regime. A
compendium on the application of dynamical systems in cosmology can be found in Refs. [121, 346],
while a recent review can be found in [44].

Perhaps the most common application of a dynamical system analysis found in literature is the case
of a universe filled by a scalar field ϕ with a potential V (ϕ). For completeness, here we also consider
the presence of a pressureless fluid (e.g., DM).Following the strategy defined in Ref. [124? ]

y :=
√
κ2

6
ϕ̇

H
, z :=

√
κ2

3

√
V

H
, s :=

√
κ2

3

√
ρm

H
, (2.1)

which have the advantage of possessing a clear physical interpretation: y2 and z2 correspond,
respectively, to the fractional kinetic and potential energy densities of the scalar field, while s2

corresponds to the fractional energy density of the pressureless matter. As such, they respect the
Friedmann constraint (1.37) which can now be written as

1 = y2 + z2 + s2 . (2.2)

In order to obtain a closed system of evolution equations, we can define an additional variable based
on the scalar field2, e.g, X :=

√
3κ2/2ϕ. Then, using the constraint (2.2) to eliminate the variable s,

we obtain a 3-dimensional set of equations3 that completely describes the evolution of the system:

X̃x = 3y , (2.3)

yx = − 3
2

[(
1− y2 + z2) y − λ(X)

3 z2
]
, (2.4)

zx = 3
2

[
1 + y2 − z2 − λ(X)

3 y

]
z . (2.5)

Here, an x subscript corresponds to a derivative with respect to x := log(a/a∗), a∗ being an arbitrary
constant, and the factor λ(ϕ) is defined as

λ(X) := − 3
V

dV
dX . (2.6)

2Other common choices for an additional dynamical variable that provide a closed set of evolution equations include
a compact function of ϕ, which allows us to obtain a compact phase space, or the quotient λ(ϕ), defined in Eq. (2.6),
which can be used as long as (d2V/dϕ2)/(dV/dϕ) is an invertible function of ϕ.

3In the particular case of the exponential potentials, the variable ϕ decouples from the rest of the system, allowing
for a further reduction of the dimensions of the system [124].
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Chapter 2. Tools to characterise cosmological models

Notice that, due to the presence of a factor V −1 in the r.h.s. of Eq. (2.6), the strategy described
above is not applicable to the cases where the potential of the scalar field has zeroes at finite values of
ϕ, e.g., monomial potentials V ∝ ϕn. In such cases, a different, usually model dependent, approach
need to be employed, as in the case of Refs. [26, 27].

The main focus of a dynamical system analysis is to study the trajectories of a set of differential
equations in order to better understand the dynamics of the model and possibly to identify approximate
behaviours in certain regions of the phase space. One of the most important steps in order to achieve
this goal is to study the position and stability of the fixed points of the system, i.e., the static solutions
of the evolution equations. While the position of a given fixed point can provide us with information
regarding the value of physical quantities, determining its stability allows us to determine whether the
static solution corresponds to a possible initial (repulsive) or final (attractive) state of the system, or
even if it represents an approximate solution that some trajectories follow before being repelled away
from the fixed point.

In the case of the system defined above, the fixed points {Xfp, yfp, zfp} can be found simply by
solving the set of Eqs. (2.3)–(2.5) for Xx = yx = zx = 0. On the other hand, determining the local
or global stability of the system around {Xfp, yfp, zfp} usually reveals itself a more laborious task.
While various methods can be found in the literature to determine the stability of a fixed point, in this
work, we will focus mainly on three:

• Linear Stability Theory

If all the eigenvalues γi of the Jacobian of the system (2.3)–(2.5) at a fixed point {Xfp, yfp, zfp}
have non-zero real part, then the fixed point is called hyperbolic and its stability can be determined
using linear stability theory. Eigenvalues with negative real part represent directions4 along
which the trajectories evolve towards the fixed point, while eigenvalues with positive real part
correspond to directions along which the trajectories move away from {Xfp, yfp, zfp}. As such,
we can classify a hyperbolic fixed point as attractive (stable) if all its eigenvalues have negative
real part, as repulsive (unstable) if all its eigenvalues have positive real part and as a saddle if
some eigenvalues have negative real part and others have positive real part.

• Centre Manifold Theory.

If for an isolated fixed point, the Jacobian of the system (2.3)–(2.5) has at least one eigenvalue
with vanishing real part, then the use of linear stability theory is no longer valid. Instead, we
can employ methods based on centre manifold theory [65, 111, 295]. In general, such methods
consist in separating the system into its stable, unstable and centre manifolds, each of which is
associated, respectively, to the eigenvalues with negative, positive and zero real part. Then, an
appropriate mapping of the stable and unstable manifolds onto the centre manifold allows us to
determine the stability of the fixed point.

4The directions along which the system is stable or unstable correspond to the ones given by the eigenvector ~vi
associated to the eigenvalue γi.
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2.2 Cosmography and Statefinder parameters

• Linear Stability for Non-Isolated Fixed Points

In the case that the system (2.3)–(2.5) admits as static solutions the elements of a continuous
set Nα characterised by a parameter α, any {Xfp, yfp, zfp} ∈ Nα is called a non-isolated
fixed point. Here, linear stability theory breaks down since at least one of the eigenvalues,
whose eigenvector corresponds to a direction tangent to Nα, is zero. Nevertheless, if all other
eigenvalues have non-zero real part, then the fixed point is called normally hyperbolic [41, 121]
and the stability of the system along the directions orthogonal to Nα can be decided by applying
Linear Stability Theory to the reduced set of non-zero eigenvalues.

2.2. Cosmography and Statefinder parameters

Once a given cosmological model is considered and the matter content fixed, Eqs. (1.27), (1.28) and
(1.30) allow us to fully describe the evolution of a FLRW universe. However, the solutions obtained
in this way have the obvious drawback of being model dependent, not only with regards to the
matter fluids considered but also, in a more general setting, to the theory of gravity employed. As
an alternative, Steven Weinberg proposed the use of cosmography [357], which aims to provide a
kinematic-based characterisation of the Universe. Since the FLRW line-element (1.18) represents the
most general description for a homogeneous and isotropic universe, a cosmographic approach can in
principle be used to derive “model-independent” constraints on the matter content of the Universe, or
even on the laws of gravitation [43, 69, 73, 107, 108, 343, 344].

The starting point in cosmography is a Taylor expansion of the scale factor around the present time.
Considering the cosmic time (N = 1) as the independent variable, we obtain [343, 344]

a

a(t0) = 1 +H0 (t− t0)− q0

2 H
2
0 (t− t0)2 + j0

3!H
3
0 (t− t0)3 + s0

4!H
4
0 (t− t0)4

+ l0
5!H

5
0 (t− t0)5 +O (t− t0)6

, (2.7)

where a 0-subscript indicates evaluation at t = t0. The cosmographic parameters q, j, s and l are
called deceleration parameter, jerk, snap and lerk, respectively, and are defined as [343, 344]

q := − 1
a

d2a

dt2 H
−2 , j := 1

a

d3a

dt3 H
−3 , s := 1

a

d4a

dt4 H
−4 , l := 1

a

d5a

dt5 H
−5 . (2.8)

Notice that knowing the cosmographic parameters is equivalent to knowing the expansion of the
Universe, since inverting the relations in (2.8) allows us to write down the time derivatives of the
Hubble rate in terms of the cosmographic parameters [107]:

Ḣ = −H2 (q + 1) , (2.9)
Ḧ = H3 [(j − 1) + 3 (q + 1)] , (2.10)
...
H = H4

[
(s− 1)− 4 (j − 1)− 3 (q + 1)2 − 6 (q + 1)

]
, (2.11)

....
H = H5

{
(l − 1)− 5 (s− 1) + 10 (j − 1) [10 + (q + 1)] + 30 (q + 1)2 + 10 (q + 1)

}
. (2.12)
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Chapter 2. Tools to characterise cosmological models

Higher order derivatives can be obtained in a similar fashion by extending the cosmographic expansion
(2.7) and, as a general rule, each new time derivative of the Hubble rate depends linearly on the
cosmographic parameter of corresponding order.

In an expanding universe, a photon emitted at a time t∗ with a wave-length λ∗, is redshifted at the
present time according to the relation [225]

1 + z = λ(t0)
λ(t∗)

= a0

a(t∗)
. (2.13)

This redshift effect is essential to determine how long ago a given photon was emitted and how far
did it travel before being detected on Earth. However, the various cosmological distances used in the
literature, such as the physical distance5 [108, 344]

D = c

∫ t0

t∗

dt = c (t0 − t∗) , (2.14)

or the luminosity distance [108, 344]

DL = c
a(t0)
a(t∗)

∫ t0

t∗

dta(t0)
a(t) , (2.15)

require the knowledge of the evolution of the Universe since the instant t∗ till the present time. This
limitation can be circumvented by using cosmography to derive approximate relations between the
various cosmological distances and the redshift z that depend solely on quantities evaluated at the
present time.

For example, in the case of the physical distance D, we can apply a cosmographic expansion to the
r.h.s. of Eq. (2.13) which, after using the definition (2.14) to eliminated t∗ − t0 in favour of D/c,
allows us to relate the redshift z with the cosmographic parameters through [344]

z = H0

c
D +A2

H2
0
c2
D2 +A3

H3
0
c3
D3 +A4

H4
0
c4
D4 +A5

H5
0
c5
D5 +O (H0D/c)6

. (2.16)

Here, the coefficients Ai are defined by

A2 = 1 + (q0 + 1)
2 , (2.17)

A3 = 1 + (j0 − 1) + 6 (1 + q0)
3! , (2.18)

A4 = 1− (s0 − 1) + 8 (j0 − 1) + 6 (q0 + 1)2 + 24 (q0 + 1)
4! , (2.19)

A5 = 1 + (l0 − 1)− 10 (s0 − 1) + 20 (j0 − 1) (3 + q0) + 90 (q0 + 1)2 + 80 (q0 + 1)
5! . (2.20)

Notice that to first order in D, Eq. (2.16) reduces to the original Hubble’s law v = H0D with v = cz

[193]. An inversion of the series in (2.16) allows us to obtain D(z) to arbitrary order in z, providing us

5In the definitions (2.14) and (2.15), we leave explicit the dependence on the speed of light c, which in the rest of
this thesis is set to 1.
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2.2 Cosmography and Statefinder parameters

with non-linear corrections to the relation between the physical distance travelled by a photon emitted
by source at a given redshift and detected on Earth at the present. Such a relation depends only on
the present day values {q0, j0, s0, l0} and not on the precise history of the expansion of the universe
since the photon was emitted. In a similar fashion, other cosmological distances can be described in
terms of the cosmographic parameters, as presented in Refs. [108, 344].

If the theory of gravitation is specified, cosmography can also be employed to set constraints on the
EoS of the matter content of the Universe. In Ref. [343], this possibility is explored by considering a
Taylor expansion:

P (ρ)
ρ0

= w0 + c2a,0

(
ρ

ρ0
− 1
)

+ P
(2)
0 ρ0

2

(
ρ

ρ0
− 1
)2

+ P
(3)
0 ρ2

0
3!

(
ρ

ρ0
− 1
)3

+O
(
ρ

ρ0
− 1
)4

, (2.21)

where the coefficients in the expansion are defined as6

w := P

ρ
, c2a := dP

d ρ = Ṗ

ρ̇
, P (2) = d2P

d ρ2 , P (3) = d3P

dρ3 . (2.22)

The first term in the expansion (2.21) corresponds to the EoS parameter w while the coefficient in
the second term is usually called the adiabatic squared speed of sound c2a. Using the cosmographic
expressions (2.9)–(2.12) in conjunction with the Friedmann equation, the continuity equation and
the EoS expansion (2.21), we can obtain expressions for w, c2a, P (2) and P (3) which allow us to
characterise the matter content in terms of the cosmographic parameters and the spatial curvature
term K/(aH)2 [343]. As in the case of Eqs. (2.9)–(2.12), each additional order considered in the EoS
expansion (2.21) requires the knowledge of an additional cosmographic parameter.

Despite the interesting premise of cosmography of finding model independent constraints on the
evolution of the Universe, the great difficulties in obtaining precise measurements for the jerk and
the snap (and of course the lerk) mean that any practical application of the cosmographic approach
beyond the deceleration parameter is, at the moment, severely limited. An additional limitation comes
from the fact that the one-to-one mapping found for the simple case of P (ρ) is not maintained in
models with more degrees of freedom, e.g., if DE is modelled by a scalar field with an unknown
potential V (ϕ) or by metric f(R)-gravity [95]. This lack of correspondence, as well as the existence
of an apparent bias of the results on the variable used to perform the cosmographic expansion, led the
authors7 of Ref. [95] to strongly criticise the use of cosmography, stating that “this method seems
unable to provide reliable or useful results for cosmological applications”.

The Statefinder Hierarchy

An alternative point of view for the application of cosmography is to use the coefficients of the
cosmographic expansion as discriminators between different cosmological models. This is the strategy

6In the case of non-barotropic fluids, the total derivatives with respect to the energy density in (2.22) can be
expanded in terms of time derivatives.

7The lack of a one-to-one correspondence between the cosmographic parameters and the cosmological parameters
had been previously pointed out to us by Ruth Lazkoz and Vincenzo Salzano in a private conversation.
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Chapter 2. Tools to characterise cosmological models

employed in Refs. [21, 308] in which a pair of statefinder parameters {rSF, sSF} constructed from
the deceleration parameter and the jerk were introduced as a diagnostic for DE models8. These were
later generalised to higher orders in the cosmographic expansion by the introduction of the statefinder
hierarchies [34]

S
(1)
3 := j = rSF , S

(2)
3 := 1

3
S

(1)
3 − 1
q − 1/2 = sSF , (2.23)

S
(1)
4 := s+ 3 (q + 1) , S

(2)
4 := 1

α

S
(1)
4 − 1
q − 1/2 , (2.24)

S
(1)
5 := l − 2 (3q + 4) (q + 1) , S

(2)
5 := 1

α

S
(1)
5 − 1
q − 1/2 , (2.25)

where α is an arbitrary constant. It was argued by the authors of Ref. [34] that the second hierarchy
of statefinders, S(2)

i helps to break the degeneracies with regards to the DE energy density and recent
studies based on BAO data support the statefinder hierarchy as a suitable tool to distinguish DE
models [355]. One of the main points in the definitions of S(1)

i and S
(2)
i is that the statefinder

parameters are normalised with regards to the standard cosmological model; it can be checked that
for ΛCDM, we have {S(1)

i , S
(2)
i } = {1, 0} at all orders. As such, the statefinder hierarchy is said to

define a null diagnostic for the ΛCDM model.

2.3. Growth of Structure and the Composite Null Diagnosis

After the moment of radiation-matter equality, when the Universe starts to be dominated by non-
relativistic baryonic matter, the pressure of radiation is no longer capable of preventing the collapse of
matter. As a consequence, initially small perturbations in the energy density of the background FLRW
start to grow in amplitude once their characteristic size becomes smaller than the Hubble horizon,
eventually leading to the appearance of the LSS observed today. The growth of these structures is
usually described in terms of the perturbation density contrast of matter:

δm(t, ~x) := ρm(t, ~x)− ρ̄m(t)
ρ̄m(t) . (2.26)

The evolution of δm can be obtained in a self-consistent way by using the cosmological perturbation
theory [215, 270] up to arbitrary order. In particular, for small perturbations satisfying |δm| < 1, we
can restrict the analysis to linear order9, which has the advantage of allowing a Fourier decomposition
of the cosmological perturbations into independent Fourier modes10

δm,~k(t) =
∫ d3~k

(2π)3/2 δm(t, ~x) ei~k·~x . (2.27)

8Here, we introduce the superscript SF when referring to the statefinder pair {rSF, sSF} defined in [21, 308] so as
to avoid confusion with previous notation.

9Please see the Appendix A for a quick review of the Theory of Linear Cosmological Perturbations
10Due to the high level of isotropy, it is usually assumed that the Fourier modes depend only on the amplitude of the

wavelength k := |~k| and not on the direction of ~k. As such, from this point onwards we drop the vectorial notation in
the subscript of the Fourier modes.
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2.3 Growth of Structure and the Composite Null Diagnosis

For a ΛCDM universe, or in models where the perturbations of DE can be disregarded, the evolution
of δm,k(t) in the Newtonian gauge11 is given by the closed equation [134]:

δ̈
(N)
m,k+ 2H [1 + ∆1(k)] δ̇(N)

m,k −
κ2ρ̄m

2 [1 + ∆0(k)] δ(N)
m,k = 0 , (2.28)

where the mode-dependent factors ∆i are defined as

∆1(k) := − 9
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aH
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) (
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, (2.29)
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) (
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aH

k

)4
]
. (2.30)

For modes well inside the Hubble horizon, i.e., for k2 � a2H2, we find that the factors ∆i vanish at
leading order in aH/k and Eq. (2.28) reduces to

δ̈
(N)
m,k + 2Hδ̇(N)

m,k −
κ2

2 ρ̄mδ
(N)
m,k = 0 . (2.31)

The same equation can be deduced from Newtonian perturbation theory and for the comoving density
contrast δ(C)

m,k, showing that at small scales all these different quantities coincide. In the rest of this
section, and unless stated otherwise, we consider that the regime k2 � a2H2 holds and drop the
superscript (N).

During the matter dominated era, the general solution of Eq. (2.31) is

δm,k = C1a
−3/2 + C2a . (2.32)

where C1 and C2 are integration constants. This linear growth of matter perturbations in a matter
dominated universe is a well known prediction of GR and is expected to be affected in modified
theories of gravity where an effective gravitational coupling Geff is introduced, e.g., metric f(R)-gravity
[322]. Once DE starts to dominate and accelerates the background, the growth of the matter density
perturbations is slowed down and can be characterised through the linear growth function D(a)

D(a) := δm,k(a)
δm,k(a0) . (2.33)

11The issue of gauge dependence of the perturbation variables was a major source of confusion in the field of
cosmological perturbations until the seminal work of James M. Bardeen [46], where the theory was re-stated in terms
of gauge-invariant (GI) quantities. In this thesis, a perturbation δX with a superscript (N) indicates a GI invariant
quantity that reduces to δX in the Newtonian gauge, cf. Eq. (A.54), while a perturbation δX with a superscript (C)
indicates a GI invariant quantity that reduces to δX in the comoving gauge, cf. Eq. (A.56). A further discussion on this
issue can be found in the Appendix A and references therein.
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Chapter 2. Tools to characterise cosmological models

In the CDM and ΛCDM models, D is independent of the scale considered, however, in more rich DE
models or in modified theories of gravity a mode dependence can appear. Thus, D(a) can provide a
powerful tool to discriminate between different late-time models.

An alternative way of characterising the growth of structure is to define the growth rate

f(a) := d logD(a)
d log a . (2.34)

Notice that f(a) = 1 during the matter dominated era when the matter density perturbations grow
linearly with the scale factor. For DM–DE models that closely mimic ΛCDM, i.e., with a slowly varying
EoS parameter wDE ≈ −1, it was found that the growth rate at late-time can be approximated
reasonably well by the mode-independent parametrisation [238, 239, 354]

f(a) ' Ωγm(a) . (2.35)

Here, γ = γ(a) is the growth index, which for ΛCDM reads ' 0.55 to leading order in 1/a [239]. By
integrating Eq. (2.34) we can write D(a) in terms of the growth index as

D(a) = exp
(∫ a

a0

Ωγm
a

d a
)
. (2.36)

In Ref. [34], the statefinder hierarchy (2.23)–(2.25) was complemented with information about the
growth of structure by using the fractional growth rate

ε(a) := f(a)
fΛCDM(a) , (2.37)

By construction, ε = 1 in the case of ΛCDM, meaning that statefinder hierarchy together with the
fractional growth parameter ε(a) forms a composite null diagnosis (CND) for ΛCDM.

2.4. The Matter Power Spectrum

The distribution of a given linear perturbation δ~k(t) in the momentum space can be characterised by
the power spectrum Pδ(~k) := 〈|δ~k|

2〉 through the relation [338]:

〈δ~k(t) δ~k′(t)〉 = (2π)3/2δ(3)(~k + ~k′)Pδ(t, ~k) . (2.38)

Here, 〈·〉 denotes an average over realisations and δ(3)(~k + ~k′) is the 3-dimensional delta function in
momentum space. Under the assumption of homogeneity and isotropy, the power spectrum depends
only on the amplitude k = |~k| and we can write simply Pδ(t, k).

Of particular interest in late-time cosmology is the power spectrum of the matter density contrast
Pδm(t, k), or simply matter power spectrum, which provides a measure of the collapse of matter into
structures of size λ = 1/k. Its shape and amplitude are sensitive not only to the characteristics of DM,
but also to non-clustering components, such as DE and massive neutrinos, non-linear effects such
as BAO, and to the theory of gravitation considered. In Fig. 19 of Ref. [19], it can be seen that the
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2.4 The Matter Power Spectrum

linear matter power spectrum predicted by the Concordance Model, with initial conditions compatible
with single field inflation, provides an extremely good fit to the observations from different sources; in
particular, the shape of Pδ(k) is heavily constrained in the range ×10−2 h Mpc−1. k . 2× 10−1

h Mpc−1. Therefore, Pδm(t, k) can be used as a powerful tool to discriminate viable models for the
late-time evolution of the Universe.

Observationally, the matter power spectrum is related to the number density of galaxies, δg, which,
in the absence of non-Gaussianities, can be related to the density contrast of DM through the
k-independent bias parameter b [350]:

δg = b δc . (2.39)

In Refs. [90, 350], it was argued that, under the assumption that galaxies are comoving with the
surrounding DM halos, the bias parameter should be defined in the rest frame of DM. As such, the
theoretical predictions for Pδm should be computed using a GI quantity12 that reduces to δm in the
frame comoving with pressureless matter. Such a quantity can be constructed as13

δ
(C)
m,k := δm,k + a

N

˙̄ρm

ρ̄m
(vm,k +B) = δ

(N)
m,k − 3aHv(N)

m,k , (2.40)

where vm is the peculiar velocity potential of pressureless matter, B is the potential that defines the
perturbation of the shift vector for scalar cosmological linear perturbations and v(N)

m,k is the GI quantity
that reduces to vm in the Newtonian gauge14. After these considerations, we can write the theoretical
prediction of the matter power spectrum as

Pδm = 〈|δ(C)
m,k|

2〉 = 〈|δ(N)
m,k − 3aHv(N)

m,k |
2〉 . (2.41)

While Pδ characterises the distribution of the perturbations in the momentum space, the distribution
in real-space coordinates is described by the two-point correlation function [338]

ξδ(t, ~r) = 〈δ(t, ~x) δ(t, ~x+ ~r)〉 , (2.42)

which corresponds to the Fourier transform of the power spectrum15 Pδ(t, k):

ξδ(t, ~r) =
∫ d3~k

(2π)3/2Pδ(t, k) ei~k·~r = (2π)3/2
∫ dk

k

k3

2π2Pδ(t, k) sin(kr)
kr

. (2.43)

Under the assumption of isotropy, the two-point correlation function depends only on the distance
r = |~r| between two points and not on the direction ~r. It gives a measure of the probability that, for
a random galaxy at a point ~x, another galaxy is found at a distance r.

From the two-point correlation function, we can calculate the variance of the distribution of the

12Following Bardeen [46], any physical observable should be represented by a GI quantity.
13In the last equality of Eq. (2.40), we have assumed the absence of interaction for pressureless matter so that the

continuity equation reads ˙̄ρm = −3(ȧ/a)ρ̄m.
14For a more complete discussion and definition of these quantities, please see the Appendix A.
15The dimensionless quantity k3/(2π2)Pδ(t, k) found in the integrand of the r.h.s. of Eq. (2.43), is commonly

preferred in the context of primordial inflation in detriment of Pδ(t, k). As such, it is usually referred to as the primordial
power spectrum and will be denoted in this thesis by Pδ(t, k) [352].
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perturbations as [338]

σ2 := 〈δ(t, x) δ(t, x)〉 = ξδ(t, 0) . (2.44)

Then, we can relate σ with the power spectrum Pδ by using Eq. (2.43). In practice, the variance is
computed using a window function WR that selects galaxy counts inside a volume with a characteristic
radius R:

σ2
R = (2π)3/2

∫ dk
k

k3

2π2Pδ(t, k)W 2
R(k) . (2.45)

Typical choices for the window functions include the Gaussian and top-hat functions [338]. One
particularly important parameter in cosmology is the root mean square of the variance of mass
perturbations on a sphere of radius R = 8 h−1Mpc, computed with a top-hat window function. This
parameter, denominated σ8, is employed in the normalisation of the amplitude of the matter power
spectrum and can help to mitigate the effect of some degeneracies in the data through the use of
certain specific parameter combinations, such as fσ8 in redshift space distortions measurements
[319] and S8 := σ8(Ωm)0.5, which was found to minimise the correlation with Ωm in cosmic shear
experiments [335].

2.5. The Primordial Power Spectrum

According to the paradigm of primordial inflation, small quantum fluctuations in the primordial
Universe are amplified during inflation and act as the seeds for the classical perturbations in the Hot
Big Bang cosmology, which eventually lead to the anisotropies of the CMB in the last scattering
surface and to the LSS observed today. One quantity that is of special interest in order to connect
the primordial quantum perturbations with the distribution of the classical perturbations during the
radiation dominated epoch is the GI comoving curvature perturbation [49, 53]

R := ψ − a

N

ȧ

a
(v +B) = Ψ− a

N

ȧ

a
v(N) , (2.46)

where B and ψ are one of the four metric potentials that characterise the scalar sector of the
cosmological perturbations, cf. Eq. (A.9) for the complete perturbed FLRW line element, and Ψ is
the Bardeen potential that reduces to ψ in the Newtonian gauge [46]. From the perturbed Einstein
field equations it is possible to derive the equation for the time derivative of R for a given Fourier
mode [53]:

Ṙk = 1
1 + w̄

ȧ

a

[
−
δP

(nad)
k

ρ̄
+ 1

3Ω(m)

(
k

aH

)2(
κ2

3 Πk + 2c2aΨk

)]
, (2.47)

where δP (nad) is the non-adiabatic component of the isotropic pressure (cf. Eq. (A.48)) and Π is
the anisotropic stress potential (cf. Eq. (A.42)). From this equation we find that, under adiabatic
conditions, the comoving curvature perturbation remains constant during super-horizon evolution
(k � aH). Thus, for most of the physically relevant modes, we can use the value of R at the end
of inflation to set-up the initial conditions for perturbations during the radiation dominated epoch,
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2.5 The Primordial Power Spectrum

without having to specify the mechanism of reheating.

The value of the comoving curvature perturbation R at the end of inflation is usually given in terms
of the primordial power spectrum [49]

PR(k) = k3

2π2 |Rk|
2 , (2.48)

where we recall that the lack of dependence on the direction of ~k reflects the isotropic evolution of
the Universe. This is commonly parameterised as

Pfit
R (k) = AS

(
k

k∗

)ns−1
, (2.49)

where k∗ is a pivot scale, As is the normalisation of the primordial power spectrum at the pivot scale
and ns is the scalar spectral index. In the Planck mission, the pivot scale was chosen to be 0.05
Mpc−1 and the final best-fit values for the parameters of the primordial power spectrum, when BAO
measurements are included, are As = 2.107× 10−9 and ns = 0.9682 [19], confirming a preference for
a near scale-invariant but red-tilted power spectrum that excludes a pure de Sitter inflation at more
than 8σ [18]. A deviation from (2.49) is nevertheless possible as long as the corresponding scales are
sufficiently far away from16 k∗. In fact, any imprints of a pre-inflationary evolution are expected to
appear at very large scales, k � k∗, while the reheating dynamics could affect scales much smaller
than the pivot scale, k � k∗. Modifications of the primordial power spectrum at small scales have
also been proposed as a mechanism to create primordial black holes [163].

In the case of single field inflation, where we can write the peculiar velocity of the scalar field as
vϕ +B = (N/a)δϕ/ϕ̇, the evolution of the scalar perturbations during inflation is usually computed
in terms of the Mukhanov-Sasaki variable17 [215, 269, 270, 311]

v := a

(
δϕ+ ϕ̇

ȧ/a
ψ

)
= zR , z := a

ϕ̇

ȧ/a
, (2.50)

as the second order variation of the action reduces, in the conformal time η (N = a), to that of a
simple harmonic oscillator with variable mass [53, 267]:

δ(2)S = 1
2

∫
dη d3~x

[
(v′)2 −DivDiv + z′′

z
v2
]
. (2.51)

In the previous equation, a prime indicates a derivative with respect to the conformal time η and Di

is the covariant derivative with respect to the 3-metric γij defined in Eq. (1.20). Using a Legendre
transformation, we are able to write down the corresponding Hamiltonian and apply a canonical
quantisation procedure that promotes v to a quantum operator v̂ evolving on a classical FLRW
background. This operator can then be decomposed into mode functions vk which satisfy the

16Through reconstruction methods, the pure power-law behaviour of the primordial power spectrum was confirmed
by the Planck mission in the range 0.005 Mpc−1 . k . 0.2 Mpc−1 [18].

17Here, we remind the reader that despite the use of the letter v for the Mukhanov-Sasaki variable, it does not
represent a velocity potential. We choose to follow the notation found in the literature hoping that it does not lead to
any confusion. In addition, the variable z defined in Eq. (2.50) has no connection with the cosmological redshift.
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Mukhanov-Sasaki equation [53, 268]

v′′k +
(
k2 − z′′

z

)
vk = 0 , (2.52)

and verify the normalisation condition [53, 268]

vkv
∗
k
′ − v′kv∗k = i~ . (2.53)

After computing the evolution of vk until the moment of horizon crossing, we can use the definition
(2.50) to write PR(k) given in Eq. (2.48) in terms of vk:

PR(k) = k3

2π2
|vk|2

z2 . (2.54)

2.6. The CMB angular power spectrum

The anisotropies in the CMB can be described in terms of the temperature fluctuations in the black
body distribution of the cosmic photons [140, 352]:

Tγ(t, ~x, ~p) = T̄γ(t) + δTγ(t, ~x, ~p) = T̄γ(t) [1 + Θ(t, ~x, ~p)] . (2.55)

Here, ~x and ~p are the position and direction of propagation of the photon and T̄γ(t) is the temperature
of the background radiation fluid. In order to analyse the profile of temperature perturbations in the
celestial sphere, it is advantageous to decompose Θ(t, ~x, ~p) in spherical harmonics Y`m:

Θ(t, ~x, ~p) =
+∞∑
`=0

+∑̀
m=−`

a`m(t, ~x)Y`m(~p) , (2.56)

where the coefficients a`m(t, ~x) encode the information regarding the temperature fluctuations at
a multipole `. In a background that is isotropic on average, the mean value of all the a`m(t, ~x)’s
vanishes while its variance can be expressed in terms of the angular power spectrum C` := 〈|a`m|2〉 as
[140, 352]

〈a∗`ma`′m′〉 = δ``′ δmm′C`(t) , (2.57)

Due to the homogeneity and isotropy assumptions, the angular power spectrum cannot depend either
on the position ~x or the multipole moments m. The coefficients a`m(t, ~x) can also be related to the
Fourier mode Θ~k(t, ~p) by multiplying (2.56) by Y`′m′(~p), integrating over the angular section of ~p
and using the orthonormality of the spherical harmonics to write [140]

a`m =
∫

d Ωp Θ(t, ~x, ~p)Y ∗`m(~p) =
∫ d3~k

(2π)3/2 d Ωp Θ~k(t, ~p)Y ∗`m(~p) ei~k·~x . (2.58)

Assuming that the photons of the CMB are free streaming since the time of the last scattering, we can
write ~x = −D∗~p, where D∗ = η0 − η∗ is the comoving distance to the surface of last scattering. This
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2.6 The CMB angular power spectrum

allows us to write down the angular power spectrum in terms of the dimensionless power spectrum of
the temperature fluctuations as [140, 352]

C`(t∗) = 4π
∫ +∞

0

dk
k
PΘ(t∗, k) j2

` (kD∗) . (2.59)

where j`(z) is the spherical Bessel function [7, 283]. Since the function j2
` (kD∗) peaks at k = `/D∗,

the previous equation is well approximated by [352]

C`(t∗) ≈
π

2`(`+ 1)PΘ(`/D∗) , (2.60)

leading to the definition of the normalised angular power spectrum D` := `(` + 1)/(2π)C`. After
three generations of observational missions – CoBE, WMAP and Planck – the features of the CMB
over the whole sky have been mapped to an astounding precision and have provided us with one of
the pictures of the evolution of the Universe over 14 billion years, since the Hot Big Bang till the
present time, and over a wide range of scales. From the amplitude and position of the peaks on the
angular power spectrum, the near scale invariant shape at low multipoles or the exponential damping
at high `, we are able to probe such different aspects of the Concordance Model, such as the physics
of inflation, the spatial geometry of the Universe, the density of DM and of non-relativistic baryons,
the signature of DE through the integrated Sachs–Wolfe and the Rees–Sciama effects or the photon
diffusion that affects the smallest scales.

For each multipole `, the number of independent estimates of the angular power spectrum is reduced
to 2`+ 1 due to the fact that we have access to only one Universe. As such, the observed value of
Cobs
` averaged over multipole moments is given by

Cobs
` = 1

2`+ 1

+∑̀
m=−`

(aobs
`m )∗aobs

`m , (2.61)

and has a minimum theoretical uncertainty of

∆C`
C`

=

√√√√〈(C` − Cobs
`

C`

)2〉
=
√

2
2`+ 1 . (2.62)

This is the formula of the well known Cosmic Variance that limits our knowledge of the Universe for
low multipoles, i.e., at the largest scales observed today.
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PART II

Late Universe





3 Modified Gravity: f (R)-gravity

In this chapter we consider the effects of a modified theory of gravity, in particular of metric f(R)-
gravity [104, 130, 152, 322], which generalises the EH gravitational action to include a non-linear
dependence on the scalar curvature. This idea was first proposed by H. A. Buchdahl [91] and has
gained redoubled attention in the last decade as a possible candidate to explain the dark sector of the
Universe and the recent success of the R2 model [325] in explaining the current observation from the
primordial Universe [18]. We begin this chapter by presenting a brief review of the main properties of
f(R)-gravity and its applications to Cosmology. We then move on to present a novel reconstruction
method in which an appropriate f(R) action is deduced by imposing a barotropic EoS P (ρ) for the
total matter content of the Universe. Finally, in the last section, we discuss the possibility that dark
radiation, an excess of relativistic content not accounted for by the CMB photons or the three families
of neutrinos in the Standard Model of particles, is a manifestation of modified gravity. The main
results in this chapter were published in Ref. [264].

3.1. Metric f(R)-gravity: A brief review

3.1.1. The f(R) action

If we take in mind the interpretation of modified gravity as an extension of GR, then we can write
the f(R) action as an EH term, cf. Eq. (1.1), plus a modification term which depends on a generic
function f(R) of the scalar curvature R [130, 152, 322]:

S(f) = 1
2κ2

∫
d4x
√
−g [R+ f(R)] . (3.1)

It can be easily verified that the EH action with a cosmological constant can be accommodated by
setting f(R) = −2Λ. If in addition to the action (3.1) we consider the presence of matter fields, Ψi,
minimally coupled to gravity, the total action is given by

S = 1
2κ2

∫
d4x
√
−g [R+ f(R)] + S(m)[gµν ,Ψ(i)] . (3.2)
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3.1 Metric f(R)-gravity: A brief review

After minimising the total action (3.2) with regards to variations of the metric gµν and lowering one
index, we obtain the generalised Einstein equations of metric f(R)-gravity [130, 152, 322]:

(1 + fR)Gµν + 1
2 (RfR − f) δµν − (∇µ∇ν − δµν�) fR = κ2[T (m)]µν , (3.3)

where � := ∇µ∇µ is the d’Alembert operator and fR := (df/dR).

Since we are considering that matter is minimally coupled to gravity, the stress-energy-momentum
tensor [T (m)]µν is divergenceless and the usual continuity relations for the matter content are recovered.
This can be checked by taking the divergence of Eq. (3.3) and using the Bianchi identities and the
definition of the Einstein tensor to obtain

Rµν∇µfR − (�∇ν −∇ν�) fR = κ2∇µ[T (m)]µν . (3.4)

From the definition of the Riemann tensor and its symmetry properties we find that the terms on the
l.h.s. of the previous equation cancel each other, leading automatically to

∇µ[T (m)]µν = 0 . (3.5)

3.1.2. An extra degree of freedom

The modified Einstein field equations (3.3) are, in general, of fourth order in derivatives of the metric.
This contrasts with GR, where the equations of motion are of second order, and points to the existence
of an extra degree of freedom in metric f(R)-gravity. This can be seen more easily by looking at the
trace of Eq. (3.3) [130, 152, 322]:

3�fR + (fR − 1)R− 2f = κ2T (m) . (3.6)

Contrary to GR, this equation is no longer an algebraic relation between the scalar curvature and the
trace of the stress-energy-momentum tensor. In fact, for a generic f(R) function, Eq. (3.6) describes
the propagation of a new massive scalar degree of freedom, fR, which is sometimes called scalaron.

Following similar results for quadratic gravity (see, e.g., [332] and other references in [322]), it was
quickly realised that the action (3.1) of metric f(R)-gravity is dynamically equivalent to1

S(BD) 1
2κ2

∫
d4x
√
−g [φR− V (φ)] + S(m)[gµν ,Ψ(i)] , (3.7)

with the identification

φ := 1 + fR , and V (φ) := R(φ)(1 + fR)− [R(φ) + f(R(φ))] . (3.8)

The action (3.7) falls in the category of models of massive gravity proposed by O’Hanlon [278] which
correspond to a subcategory of Brans-Dicke gravity [85] with Brans-Dicke parameter ω0 = 0. When
viewed as such, metric f(R)-gravity can be considered as a scalar-tensor theory, which in turn is a

1It is common to find in the literature the statement that the equivalence between metric f(R)-gravity and its
Brans-Dicke representation depends on the inequality fRR 6= 0. More precisely, one requires that the mapping 1+fR = φ
be invertible, of which fRR 6= 0 is a sufficient, although not necessary, condition [282].
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particular case of the more general framework of Hordenski theories [187]. After the recent constraints
on the velocity of gravitational waves derived from the observation of the neutron stars merger event
GW170817 [3–5], f(R)-gravity is one of the few sub-categories of Hordenski theories that remain a
viable candidate for DE [126, 147, 223].

Minimising (3.7) with regards to the metric gµν and the scalar field φ leads to the equations of
motion [282, 322]

Gµν = κ2

φ
T (m)

µν −
1
2V (φ)gµν + 1

φ
[∇µ∇νφ− gµν�φ] , (3.9)

3�φ+ 2V (φ)− φdV
dφ = κ2T (m) . (3.10)

It can be checked that the substitution of (3.8) in the previous two equations leads immediately to
the modified Einstein equations (3.3) and the trace equation (3.6). This shows that the actions (3.2)
and (3.7) are dynamically equivalent.

The existence of this extra degree of freedom has led to several constraints being introduced to
ensure that f(R) is physically viable and free of dynamical instabilities [192, 327]:

1. Imposing that gravity is attractive since BBN implies that the effective gravitational coupling
Gf = G/(1 + fR) must be positive and consequently

1 + fR > 0 , (3.11)

for all R since early times.

2. If the effective gravitational constant at the present time is to match Newton’s gravitational
constant G, then the extra degree of freedom fR must verify

fR(a0) ≈ 0 . (3.12)

3. The scalaron is not a tachyon [327]

fRR > 0 . (3.13)

This condition is intrinsically related to the Dolgov-Kawasaki instability which was first discovered
for the model f(R) = −µ4/R [141] and later generalised for any f(R) function [151].

4. The existence of stable de Sitter solutions [149, 150] imposes that:

m2
eff = (1 + fR)2 − 2(R+ f)fRR

(1 + fR)fRR
> 0. (3.14)

This condition is much weaker than the previous ones since: (i) the early “de Sitter-like”
inflationary phase of the universe must be unstable in order for the transition to a radiation-
dominated epoch to occur; and (ii) while current observations suggest that our universe is
evolving towards a de Sitter-like phase, we cannot guarantee that it will remain so forever.
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3.1.3. FLRW cosmology in f(R)-gravity

Let us now consider a homogeneous and isotropic universe described by the FLRW line element (1.18).
After a substitution in the modified Einstein equations (3.3), the (0− 0) and (i− i) components can
be written, respectively, as [130, 152, 322]

(1 + fR)
[(

ȧ

a

)2
+ N2

a2 K

]
−N2RfR − f

6 + ȧ

a
˙(fR) = κ2N2

3 ρ(m) , (3.15)

(1 + fR)
[

2 ä
a

+
(
ȧ

a

)2
− 2Ṅ

N

ȧ

a
+ N2

a2 K

]
−N2RfR − f

2 +
(

2 ȧ
a
− Ṅ

N

)
˙(fR) + ¨(fR)

= − κ2N2P (m) . (3.16)

Here, we recall that a dot indicates a derivative with respect to the time variable t. These equations,
which reduce to Eqs. (1.27) and (1.28) when we set f(R) ≡ 0, show that in metric f(R)-gravity the
gravitational constant G = κ2/(8π) is replaced by an effective gravitational coupling Gf := G/(1+fR)
that depends implicitly on the curvature of space-time through the derivative fR. Such an effective
coupling is characteristic of scalar-tensor theories [148, 152]. In addition to Eqs. (3.15) and (3.16), we
can obtain from the trace equation (3.6) the evolution equation for the extra degree of freedom fR:

f̈R +
(

3 ȧ
a
− Ṅ

N

)
˙fR −

N2

3 [(fR − 1)R− 2f ] = κ2N2
(
ρ(m)

3 − P (m)
)
. (3.17)

However, out of the three equations (3.15), (3.16) and (3.17) only two are linearly independent.

In the presence of matter, the Einstein field equations and the equation of motion of fR are
complemented by the continuity equation

ρ̇(m) + 3 ȧ
a

(
ρ(m) + P (m)

)
= 0 . (3.18)

Since (3.18) assumes the same form as in GR, any solution ρ(a) found for a particular EoS remains
valid in metric f(R)-gravity. However, the dependence of such solution on the cosmic time will be
changed as the relation a(t) is dictated by the modified Friedmann equation (3.15).

3.1.4. f(R)-gravity as an anisotropic fluid

Contrary to GR, the two Eqs. (3.15) and (3.16) represent a system of fourth order in derivatives of
the scale factor. This means that, given a function f(R), finding general solutions for the evolution
of the FLRW background is an extremely difficult task, even in the absence of matter. Therefore,
when approaching modified theories of gravity from a phenomenological point of view, it is often
advantageous to rewrite the modified Einstein equations in such a way that all the new terms coming
from the modifications of GR appear on the r.h.s., thus forming a new effective stress-energy-momentum
tensor. In the case of metric f(R)-gravity, a reorganisation of Eq. (3.3) leads to [51, 130]:

Gµν = κ2
(
T (m)
µν + T (f)

µν

)
, (3.19)
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where [51, 130]

T (f)
µν = − 1

κ2

[
RfR − f

2 gµν + (Gµν + gµν�−∇µ∇ν) fR
]
. (3.20)

Notice that in this representation we no longer consider an effective gravitational coupling for matter,
as all the effects of the modification of gravity are now incorporated in T (f)

µν . The Bianchi identities
and the conservation of the stress-energy-momentum tensor of matter lead automatically to the
condition ∇µ[T (f)]µν = 0.

From the definitions (1.13)–(1.16) and the effective stress-energy-momentum tensor (3.20) we can
define the effective fluid quantities for metric f(R)-gravity:

ρ(f) = 1
κ2

[
RfR − f

2 − uµuνGµνfR−hµν∇µ∇νfR
]
, (3.21)

P (f) = − 1
κ2

[
RfR − f

2 + hµν

3 GµνfR +
(

2
3h

µν − uµuν
)
∇µ∇νfR

]
, (3.22)

[q(f)]µ = 1
κ2u

νhρµ (Gνρ −∇ν∇ρ) fR , (3.23)

[π(f)]µν = − 1
κ2

(
hρµh

σ
ν −

1
3hµνh

ρσ

)
(Gρσ −∇ρ∇σ) fR . (3.24)

We thus find that in general the modifications introduced by metric f(R)-gravity cannot be mapped
onto a perfect fluid [51] unless the symmetries of the space-time impose that Eqs. (3.23) and (3.24)
vanish2. Following the interpretation of metric f(R)-gravity as a scalar-tensor theory, we can define a
4-velocity for the effective fluid as [289, 334]

[u(f)]µ := ∇µfR√
X

, X := −∇µfR∇µfR . (3.25)

Inserting [u(f)]µ in Eqs. (3.21)–(3.24) leads to

ρ(f) = 1
κ2

[
RfR − f

2 − [u(f)]µ[u(f)]νGµνfR − θ(f)
√
X

]
, (3.26)

P (f) = − 1
κ2

[
RfR − f

2 + 1
3[h(f)]µνGµνfR + 2

3θ
(f)
√
X − [u(f)]µ∇µ

√
X

]
, (3.27)

[q(f)]µ = −
√
X

κ2 [a(f)]µ + fR
κ2 [u(f)]ν [h(f)]ρµGνρ , (3.28)

[π(f)]µν =
√
X

κ2 [σ(f)]µν −
fR
κ2

(
[h(f)]ρµ[h(f)]σν −

1
3 [h(f)]µν [h(f)]ρσ

)
Gρσ , (3.29)

where θ(f), [σ(f)]µν and [a(f)]µ are the expansion rate, shear tensor and acceleration vector of the
effective fluid with regards to the 4-velocity defined in Eq. (3.25) and which can be obtained by
replacing nµ by [u(f)]µ in Eqs. (1.23) and (1.24).

2This is precisely the case in a FLRW universe, where G0ifR = ∇0∇ifR = 0 and (Gij −∇i∇j)fR ∝ gij imply
that both the energy flux q(f)

µ and the anisotropic stress π(f)
µν vanish.
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In a FLRW universe, where the r.h.s. of Eq. (3.23) and (3.24) vanish, the energy density and
pressure of the effective fluid become [130]

ρ(f) = 1
κ2

[
RfR − f

2 − 3
N2

((
ȧ

a

)2
+ N2

a2 K

)
fR −

1
N2

ȧ

a
˙(fR)
]
, (3.30)

P (f) = − 1
κ2

[
RfR − f

2 − 1
N2

(
2 ä
a

+
(
ȧ

a

)2
− 2Ṅ

N

ȧ

a
+ N2

a2 K

)
fR

− 1
N2

(
2 ȧ
a
− Ṅ

N

)
˙(fR)− 1

N2
¨(fR)
]
. (3.31)

With these definitions, we can write Eqs. (3.15) and (3.16) in a GR-like formulation as(
ȧ

a

)2
+ N2

a2 K = κ2N2

3

(
ρ(m) + ρ(f)

)
, (3.32)

2 ä
a

+
(
ȧ

a

)2
− 2Ṅ

N

ȧ

a
+ N2

a2 K = − κ2N2
(
P (m) + P (f)

)
. (3.33)

3.1.5. Linear Perturbations in metric f(R)

Let us now consider the case of linear perturbations in metric f(R)-gravity. In Ref. [270] the evolution
of linear scalar perturbations in vacuum, both in the classical and semi-classical regime, was discussed
using a conformal transformation gµν → fRgµν that brings f(R)-gravity in the Jordan frame to
a scalar field theory in the Einstein frame. Around the same period, a series of papers [196–198]
presented the full equations for the linear perturbations in the Jordan frame as a particular case
of f(φ, R) theories. More recently, the renewed interest in modified theories of gravity has led to
a further exploration of the dynamics of linear perturbations in f(R)-gravity, see for example the
extensive list of references in [130]. In fact, metric f(R)-gravity has become one of the few examples
of modified gravity fully implemented in mainstream cosmological codes [52, 191].

At first order in perturbations, the modified Einstein field equations (3.3) read [134]:

(1 + fR̄)δGµν +
(
R̄µν + δµν �̄− ∇̄µ∇̄ν

)
δfR + δ(1) (δµν�−∇µ∇ν) fR̄ = κ2[δT (m)]µν , (3.34)

where the third term on the l.h.s. should be read as

δ(1) (δµν�−∇µ∇ν) fR̄ =
(
∇̄ρ∇̄νfR̄

)
δgµρ − δµν

(
∇̄σ∇̄ρfR̄

)
δgρσ

−1
2∇̄ρfR̄

[
2δµν ∇̄λδg

ρ
λ + ∇̄ρ (δgµν − δµν δg

σ
σ)− ∇̄µδgρν − ∇̄νδg

ρµ
]
. (3.35)

Although the perturbation δfR can be related with the metric perturbations through

δfR = fR̄R̄δR = −fR̄R̄
(
R̄ρσ + ḡρσ�̄− ∇̄ρ∇̄σ

)
δgρσ , (3.36)

it is advantageous when treating linear perturbations in f(R) gravity to maintain the variable δF := δfR.
In fact, this quantity represents a true extra degree of freedom in the scalar sector which is introduced

38



Chapter 3. Modified Gravity: f(R)-gravity

by the modifications to gravity in accordance with the discussion in Sect. 3.1.2. Its evolution equation
is obtained from the first order perturbation of the trace equation (3.6):

�̄δF + δ(1)�fR̄ + 1
3

(
R̄− 1 + fR̄

fR̄R̄

)
δF = −κ

2

3 (δρ− 3δP ) , (3.37)

where we have used (3.36) to replace δR by δF/fR̄R̄ and where

δ(1)�fR̄ = −
(
∇̄σ∇̄ρfR̄

)
δgρσ − 1

2∇̄ρfR̄
(
2∇̄λδgρλ − ∇̄

ρδgσσ
)
. (3.38)

When treating the modifications of gravity in terms of an effective fluid, we find that the first
order perturbation of the effective energy density, pressure, energy-flux and anisotropic stress, cf.
Eqs. (3.21)–(3.24), with respect to a generic 4-velocity uµ read

δρ(f) = −
[
ūµūνδGµν + 2Ḡµν ūµδuν + h̄µρδΓνµρ∇̄ν + 2ūµδuν∇̄µ∇̄ν

] fR̄
κ2

+
[
R̄

2 − ū
µūνḠµν − h̄µν∇̄µ∇̄ν

]
δF

κ2 , (3.39)

δP (f) = − 1
3
[
ūµūνδGµν + 2ūµḠµνδuν +

(
2h̄µν − 3ūµūν

)
δΓρµν∇̄ρ − 2ūµδuν∇̄µ∇̄ν

] fR̄
κ2

−
[
R̄

2 + 1
3 h̄

µνḠµν +
(

2
3 h̄

µν − ūµūν
)
∇̄µ∇̄ν

]
δF

κ2 , (3.40)

[δq(f)]µ =
[
ūν ūρδuµ + h̄νµδu

ρ
] (
Ḡνρ − ∇̄ν∇̄ρ

) fR̄
κ2 + ūν h̄ρµ

(
δGνρ − δΓσνρ∇̄σ

) fR̄
κ2

+ ūν h̄ρµ
(
Ḡνρ − ∇̄ν∇̄ρ

) δF
κ2 , (3.41)

[δπ(f)]µν = − 2
(
ūσh̄ρ(µδuν) −

1
3 h̄µν ū

σδuρ
)(

R̄ρσ − ∇̄ρ∇̄σ
) fR̄
κ2

−
(
h̄ρµh̄

σ
ν −

1
3 h̄µν h̄

ρσ

)(
δGρσ − δΓλρσ∇̄λ

) fR̄
κ2

−
(
h̄ρµh̄

σ
ν −

1
3 h̄µν h̄

ρσ

)(
Ḡρσ − ∇̄ρ∇̄σ

) δF
κ2 . (3.42)

In the last two equations we have used the results hνµ[q(f)]ν = [q(f)]µ and hρµ[π(f)]ρν = [π(f)]µν to
simplify the expressions obtained. If we take into account the 4-vector defined in Eq. (3.25) as the
4-velocity of the effective fluid, then the first order perturbations [u(f)]µand [u(f)]µ are given by

[δu(f)]µ = 1
2[ū(f)]µ[ū(f)]ν [ū(f)]ρδgνρ + [h̄(f)]µν

(
∇̄νδF√
X̄
− [ū(f)]ρδgρν

)
, (3.43)

[δu(f)]µ = − 1
2 [ū(f)]µ[ū(f)]ν [ū(f)]ρδgνρ + [h̄(f)]νµ

∇̄νδF√
X̄

. (3.44)

Inserting Eqs. (3.25), (3.43) and (3.44) in Eqs. (3.39)–(3.42) we are able to obtain the fluid quantities
with respect to the 4-vector [u(f)]µ = ∇µfR/

√
X.
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Cosmological perturbations

While the results so far presented are valid for linear perturbations around a generic background, in
this work we are interested in the specific case of perturbations in a FLRW universe. As such, from
this point onward we consider the perturbed FLRW line element in the Newtonian gauge:

ds2 = −N2 (1 + 2Φ) dt2 + a2(1− 2Ψ)δijdxidxj , (3.45)

where we recall that Φ and Ψ are the GI Bardeen potentials [46]. The new degree of freedom δF

transforms as a 4-scalar under gauge transformations and so we can define the GI quantity

δF (N) = δF − ḟR̄
σ

N
, (3.46)

where σ is the comoving shear potential defined in Eq. (A.16). We recall that the superscript (N)
indicates that δF (N) reduces to the perturbation δF in the Newtonian gauge, where σ = 0. Using
Eq. (3.36) we can relate δF (N) to the Bardeen potentials and their derivatives in Fourier space as

δF
(N)
k

6 = − fR̄R̄
N2

[
Ψ̈k +

(
4 ȧ
a
− Ṅ

N

)
Ψ̇k + ȧ

a
Φ̇k +

(
ä

a
−
(
ȧ

a

)2
− Ṅ

N

ȧ

a

)
Φk

]

− k2

3a2 fR̄R̄ (2Ψk − Φk) , (3.47)

This equation has no analogue in GR, where both δF (N) on the l.h.s. and fR̄R̄ on the r.h.s. vanish
identically. The evolution equation for δF (N)

k can be obtained from Eq. (3.37) and reads [198]

¨δF (N)
k +

(
3 ȧ
a
− Ṅ

N

)
˙δF (N)
k − N2

3

(
R̄− 1 + fR̄

fR̄R̄

)
δF

(N)
k + N2

a2 k
2δF

(N)
k

− ḟR̄
(
3Ψ̇k + Φ̇k

)
+ 2

[
f̈R̄ +

(
3 ȧ
a
− Ṅ

N

)
ḟR̄

]
Φk = κ2N2

3

(
δρ

(N)
k − 3δP (N)

k

)
. (3.48)

The equations of motion for the metric perturbations are obtained from the first order perturbation
of the modified Einstein field equations (3.34). In Fourier space, the individual (0− 0), (0− i), (i− i)
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and (i− j), with i 6= j, components of the modified Einstein equations read [198]

(1 + fR)
[
ȧ

a
Ψ̇k +

(
ȧ

a

)2
Φk + N2

3a2 k
2Ψk

]
− 1

2 ḟR̄
[
Ψ̇k + 2 ȧ

a
Φk
]

− 1
2

[
ȧ

a
˙δF (N) −

(
ä

a
− Ṅ

N

ȧ

a

)
δF

(N)
k

]
− 1

6
N2

a2 k
2δF

(N)
k = −κ

2N2

6 δρ
(N)
k , (3.49)

(1 + fR)
(

Ψ̇k + ȧ

a
Φk
)
− 1

2 ḟR̄Φk −
1
2

˙δF (N)
k + 1

2
ȧ

a
δF

(N)
k = −κ

2Na

2
(
ρ̄+ P̄

)
v

(N)
k , (3.50)

(1 + fR)
[

Ψ̈k +
(

3 ȧ
a
− Ṅ

N

)
Ψ̇k + ȧ

a
Φk +

(
ä

a
−
(
ȧ

a

)2
− Ṅ

N

ȧ

a

)
Φk

]
+ (1 + fR) N

2

3a2 k
2 (Ψk − Φk)

+ 1
2

[
ḟR̄
(
Φ̇k + 2Ψ̇k

)
+ 2

(
f̈R̄ −

Ṅ

N
ḟR̄

)
Φk
]
− 1

2

[
¨δF (N)
k +

(
2 ȧ
a

+ Ṅ

N

)
˙δF (N)
k

]
+ 1

2

[
ä

a
+ 2

(
ȧ

a

)2
− Ṅ

N

ȧ

a

]
δF

(N)
k − N2

3a2 k
2δF

(N)
k = κ2N2

2 δP
(N)
k , (3.51)

(1 + fR) (Ψk − Φk)− δF (N)
k = κ2Πk . (3.52)

The presence of the term δF
(N)
k in Eq. (3.52) shows explicitly that the modification of gravity

contributes to the anisotropy of the perturbations, in accordance with the picture of f(R)-gravity as
an anisotropic fluid, as discussed in the previous section. In fact, we can use Eqs. (3.39), (3.40) and
(3.42) to define the GI energy density and pressure perturbations, δρ(f,N) and δP (f,N), and the GI
anisotropic stress potential of the effective fluid as

δρ
(f,N)
k = 6

κ2N2 fR

[
ȧ

a
Ψ̇k +

(
ȧ

a

)2
Φk + N2

3a2 k
2Ψk

]
− 3
κ2N2 ḟR̄

[
Ψ̇k + 2 ȧ

a
Φk
]

+ 3
κ2N2

[
ȧ

a
˙δF (N) −

(
ä

a
− Ṅ

N

ȧ

a

)
δF

(N)
k

]
+ k2

κ2a2 δF
(N)
k , (3.53)

δP
(f,N)
k = − 2

κ2N2 fR

[
Ψ̈k +

(
3 ȧ
a
− Ṅ

N

)
Ψ̇k + ȧ

a
Φk +

(
ä

a
−
(
ȧ

a

)2
− Ṅ

N

ȧ

a

)
Φk

]

− 2
3κ2

k2

a2

[
fR (Ψk − Φk)− δF (N)

k

]
− 1
κ2N2

[
ḟR̄
(
Φ̇k + 2Ψ̇k

)
+ 2

(
f̈R̄ −

Ṅ

N
ḟR̄

)
Φk
]

+ 1
κ2N2

[
¨δF (N)
k +

(
2 ȧ
a

+ Ṅ

N

)
˙δF (N)
k

]
− 1
κ2N2

[
ä

a
+ 2

(
ȧ

a

)2
− Ṅ

N

ȧ

a

]
δF

(N)
k , (3.54)

Π(f)
k = 1

κ2

[
δF

(N)
k − fR (Ψk − Φk)

]
. (3.55)

By defining the 4-velocity of the effective fluid as in Eq. (3.25), we find that the perturbation [δu(v)]µ
and [δu(v)]µ take the form of Eqs. (A.39) and (A.40) with the peculiar velocity potential in the
Newtonian gauge, v(f.N), given by:

v(f,N) = N

a

(
δF

ḟR̄
− σ

N

)
= N

a

δF (N)

ḟR̄
. (3.56)
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In addition, an energy-flux potential q(f) needs to be taken into account:

q(f) = 1
aN

[
2
(

Ψ̇ + ȧ

a
Φ
)
fR
κ2 −

˙δF (N)

κ2 −

(
¨(fR)
˙(fR)
− 2 ȧ

a
− Ṅ

N

)
δF (N)

κ2

−2
(
ä

a
−
(
ȧ

a

)2
− Ṅ

N

ȧ

a

)
fR
˙(fR)

δF (N)

κ2

]
, (3.57)

since the choice of the 4-velocity (3.25) does not set the energy-flux to zero3. In fact, the form of
the expression (3.23) suggest that in metric f(R)-gravity it is not possible to choose a [u(f)]µ such
that [q(f)]µ is identically zero, independently of the geometry. These definitions differ slightly from
the ones in [198] due to the different way of defining the effective stress-energy-momentum tensor in
Eq. (3.20).

In the absence of anisotropies coming from the matter sector, Eq. (3.52) can be used to eliminate
one of the Bardeen potentials in favour of δF (N)

k . In addition, from a combination of Eqs. (3.49) and
(3.50), we can obtain the equivalent to the Poisson equation (A.77) in metric f(R)-gravity [198]

−1
2 ḟR̄

(
Ψ̇k + ȧ

a
Φk
)
− 1

2

[
ȧ

a
˙δF (N)
k −

(
ä

a
−
(
ȧ

a

)2
− Ṅ

N

ȧ

a

)
δF

(N)
k

]

+1
3
N2

a2 k
2
[
(1 + fR) Ψk −

1
2δF

(N)
k

]
= − κ2N2

6 δρ
(C)
k , (3.58)

In contrast with GR, Eq. (3.58) no longer represents an algebraic relation between the gravitational
potential Ψ and the comoving energy density δρ(C) = δρ(N) + ˙̄ρ(a/N)v(N). This difference is a
reflection of the extra degree of freedom in the scalar sector. Nevertheless, using Eqs. (3.50), (3.52)
and (3.58), we can eliminate the Bardeen potentials and their derivatives in favour of δF (N) and the
matter perturbation variables, which in vacuum leads to a closed differential equation for δF (N).

Evolution of matter perturbations

As discussed above, the matter sector is not modified in metric f(R)-gravity, therefore the first order
perturbation of the conservation equations remains unaltered [49, 246]:

δ̇
(N)
k + 3 ȧ

a

(
c2s − w̄

)
δ

(N)
k − (1 + w̄)

[
9
(
ȧ

a

)2 (
c2s − c2a

)
+ N2

a2 k
2

]
a

N
v

(N)
k = 3 (1 + w̄) Ψ̇k , (3.59)

v̇
(N)
k + ȧ

a

(
1− 3c2s

)
v

(N)
k + N

a

c2sδ
(N)
k

1 + w̄
− N

3a
k2

a2
Πk

ρ̄+ P̄
= − N

a
Φk . (3.60)

Nevertheless, the existence of the extra degree of freedom does affect the evolution of the matter
perturbations. For example, in the commonly employed quasi-static approximation, the evolution
of the matter density contrast in a universe filled only by pressureless matter is given by a modified

3We recall that in general, the first order perturbation of the stress-energy-momentum tensor has a contribution
from the perturbation of the energy-flux, cf. Eq. (A.44), with [δT (N)]0i = (a/N)∂i

[
(ρ̄+ P̄ )v(N) + q

]
.
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version of Eq. (2.31) [336, 365]:

δ̈
(N)
m,k + 2Hδ̇(N)

m,k − 4πG̃f ρ̄mδ
(N)
m,k = 0 , (3.61)

where the effective gravitational coupling G̃eff reads

G̃f := G

1 + fR

1 + 4 fRR
1+fR

k2

a2

1 + 3 fRR
1+fR

k2

a2

. (3.62)

Notice that G̃f deviates from the effective coupling Gf = G/(1 + fR) introduced in Sect. 3.1.3
and in the limit of k � a2(1 + fR)/(fRR) we have G̃f = (4/3)Gf . This means that the effects of
f(R)-gravity are felt at sufficiently small scales (large k), even when the background evolution follows
that of GR, i.e., when |fR| � 1. However, the quasi-static approximation that leads to Eq. (3.61) has
been criticised in the literature for imposing too strong conditions on the gravitational potentials Φ
and Ψ [55, 134]. In Ref. [134], a fourth order equation for δ(N)

m in metric f(R)-gravity was derived for
a universe filled only by dust. It was shown that, in the sub-horizon limit, a second order differential
equation is once more obtained [134]:

δ̈
(N)
m,k + 2Hδ̇(N)

m,k −H
2

(
Ḧ
H3 + 2 ḢH

)
Ḣ + 16

(
fRR

1+fR
k2

a2

)4 (
Ḧ
H3 + 4 ḢH

)
κ2ρ̄m
1+fR

Ḣ + 24
(
fRR

1+fR
k2

a2

)4 (
Ḧ
H3 + 4 ḢH

)
H2

δ
(N)
m,k = 0 . (3.63)

Despite the fact that the zeroth order coefficient In Eq. (3.63) has a different k-dependence when
compared with Eq. (3.61), both equations possess the same large k limit. Therefore, even if the
assumption of constancy of the gravitational potentials is not respected, Eq. (3.61) predicts the correct
behaviour of the matter density contrast when k � a2(1 + fR)/(fRR). In this regime, if matter
completely dominates the energy budget of the Universe (Ωm ≈ 1) and the deviations from GR are
small (|fR| � 1), the general solution to Eqs. (3.61) and (3.63) is

δm,k = C1a
−
√

33+1
4 + C2a

√
33−1
4 . (3.64)

By comparing Eq. (3.64) with the result in Eq. (2.32), it becomes apparent that metric f(R)-gravity
predicts a stronger collapse of matter, with regards to GR, during the matter dominated epoch at very
small scales (large k). This is reflected in the higher prediction for the growth rate (cf. Eq. (2.34))
during the matter era:

f (f) =
√

33− 1
4 ≈ 1.19 , (3.65)

when compared with the standard result f = 1 in GR.

3.1.6. Cosmography in f(R)-gravity

Since the objective of cosmography is to derive model independent constraints on the evolution of the
late Universe, it is in principle an ideal tool to differentiate between theories of gravity. In the context
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of f(R)-gravity, the cosmographic approach has been applied to since the end of the last decade in
an attempt to obtain constraints on the function f(R) and its derivatives (see e.g. Refs. [43, 73, 107]
for works of cosmography in f(R)-gravity and Refs. [42] for works of cosmography applied in other
modified theories of gravity).

In order to extend the cosmographic approach to f(R)-gravity, we need to write the scalar curvature
and its time derivatives in terms of the cosmographic parameters [43, 73, 107]:

R = 6H2
[
2− (q + 1) + K

a2H2

]
, (3.66)

Ṙ = 6H3
[
(j − 1)− (q + 1)− 2 K

a2H2

]
, (3.67)

R̈ = 6H4
{

(s− 1) + (q + 1)2 + 6 (q + 1) + 2 K
a2H2 [2 + (q + 1)]

}
, (3.68)

...
R = 6H5

{
(l − 1)− (s− 1)− (j − 1) [6 + 2 (q + 1)]− 18 (q + 1)2 − 14 (q + 1)

−2 K
a2H2 [4 + (j − 1) + 9 (q + 1)]

}
. (3.69)

Here, we recall that within the context of cosmography we work with the cosmic time (N = 1). By
replacing these derivatives in the Friedmann and Raychaudhuri equations, i.e., Eqs (3.15) and (3.16),
we are able to obtain the expressions for ˙(fR) and ¨(fR):

˙(fR)
H

= 1 + ΩK − Ω(m) + f

6H2 + q fR , (3.70)
¨(fR)
H2 = −

[
1 + 3ΩK − (4 + 3w) Ω(m) + f

6H2 + 2 (q + 1)
(

ΩK − Ω(m) + f

6H2

)]
+
[
1− 2ΩK + 2 (q + 1)2 − 5 (q + 1)

]
fR . (3.71)

Higher order derivatives di(fR)/dti can also be written in terms of the cosmographic parameters,
the values of f and fR and the parameters that characterise the matter fluid. Notice that each new
derivative di(fR)/dti requires the knowledge of an extra cosmographic parameter and a new time
derivative of the pressure P (m). From Eqs. (3.70) and (3.71), we find that even in the simple case
where the matter content of the universe behaves as dust, P (m) = 0, we require the values of f/H2

and fR, apart from ΩK and Ω(m), in order to constrain the derivatives of the new degree of freedom.
As pointed out in4 [95], this lack of one-to-one correspondence means that in order to set constraints
on the derivatives di(fR)/dti we need either to define sensible priors on f and fR, or fix their values
through complementary tests or physical considerations.

In [43, 73, 107] this limitation was overcome by arguing that if around the present time the f(R)
function is to be sufficiently close to the EH action with a cosmological constant then the higher order

4A similar argument had previously been presented to us by Ruth Lazkoz and Vincenzo Salzano in a private
conversation.
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terms in the Taylor expansion of f(R) around R0

f(R) = f0 + fR,0 (R−R0) + fRR,0
2! (R−R0)2 + fRRR,0

3! (R−R0)3 +O [R−R0]4 , (3.72)

should have a residual contribution. Thus, truncating the series at a sufficiently higher order should
not incur in a large error in the calculations. If we disregard terms of order O[R−R0]4 in Eq. (3.72),
we can then write the t-derivatives of fR as

˙(fR) = [fRR,0 + (R−R0) fRRR,0] Ṙ , (3.73)
¨(fR) = [fRR,0 + (R−R0) fRRR,0] R̈+ Ṙ2fRRR,0 , (3.74)
...

(fR) = [fRR,0 + (R−R0) fRRR,0]
...
R + 3R̈ṘfRRR,0 . (3.75)

If, in addition, we consider that around the present time fR ≈ 0, so that the effective gravitational
coupling Gf coincides with the gravitational constant G, a substitution of Eqs. (3.73)–(3.75) in
Eqs. (3.70), (3.71) and the first time derivative of (3.71) leads to [43, 73, 107]

R0 + f0

6H2
0

= − A0Ω(m)
0 + B0

D
, (3.76)

1 + fR,0 = 1 , (3.77)

fRR,0

(6H2
0 )−1 = − A2Ω(m)

0 + B2

D
, (3.78)

fRRR,0

(6H2
0 )−2 = − A3Ω(m)

0 + B3

(j0 − q0 − 2− 2ΩK)D , (3.79)

where the explicit formulas of the coefficients Ai, Bi and D are presented in the Appendix. B.1. In
the case of a spatially flat Universe filled by dust, the coefficients Ai reduce to the ones found in
Refs. [73, 107, 264]. Finally, if J matter fluids are considered, each with fractional energy density Ω(j),
j = 1, . . . , J, the terms AiΩ(m) in Eqs. (3.76)–(3.78) can be expanded as

Ai Ω(m) =
J∑

j=1
Ai,(j)Ω(j),0 , (3.80)

where Ai,(j) is given by the same formula as Ai with all the fluid quantities replaced by the respective
values for the fluid j. This is the case of Ref. [264], where the quantities Ai and Ci correspond to
Ai,m and Ai,r, respectively, with ΩK = 0.

3.2. The modified generalised Chaplygin Gas as f(R) gravity

Since the modified Einstein equations in metric f(R)-gravity (3.3) are of fourth order in derivatives
of the metric, the task of finding exact solutions for a given function f can become extremely
difficult, even in the case of a highly symmetrical FLRW universe. As discussed in Sect. 3.1.4,
an alternative approach is to define an effective stress-energy-momentum tensor and treat the
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modifications to the Einstein equations as an effective fluid. Once the FLRW background is fixed
we can look for the functions f(R) that are compatible with such an evolution. This approach,
also dubbed designer -f(R), has been successful in finding various solutions of cosmological interest
[76, 103, 106, 109, 133, 143, 182, 275, 276] including mapping the ΛCDM model in f(R)-gravity
[133, 143, 182].

In this section, we consider an extension of these methods to the case where the total energy density
and pressure of the universe, including the contribution from matter and the effective f(R)-fluid (cf.
Eqs. (3.30) and (3.31)):

ρ := ρ(m) + ρ(f) , P := P (m) + P (f) , (3.81)

follow a barotropic EoS, i.e., P = P (ρ) = w(ρ) ρ. Choosing N = 1 so that t is the cosmic time
and disregarding the spatial curvature (K = 0), we can re-write the Friedmann and Raychaudhuri
equations (3.32) and (3.33) as

H2 = κ2

3 ρ , Ḣ = − κ2

2 (1 + w) ρ . (3.82)

In turn, the scalar curvature becomes

R = κ2 (ρ− 3P ) , (3.83)

which allows us to write the derivatives Ṙ, fR and fRR as

Ṙ = − 3κ2H
(
1− 3c2a

)
(1 + w) ρ , (3.84)

fR =
(
1− 3c2a

)−1

κ2
df
dρ , (3.85)

fRR =
(
1− 3c2a

)−2

κ2

(
d2f

dρ2 + 3P (2)

(1− 3c2a)
df
dρ

)
, (3.86)

where c2a is the total adiabatic squared speed of sound and P (2) := d2P/dρ2. Replacing these
derivatives in the modified Friedmann equation (3.15) allows us to write

(1 + w)
(
1− 3c2a

)
ρ2 d2

dρ2 (R+ f) +
[
3 (1 + w)P (2)ρ− 1 + 3w

6
(
1− 3c2a

)]
ρ

d
dρ (R+ f)

−
(
1− 3c2a

)2
6 (R+ f) = −

(
1− 3c2a

)2 κ2

3 ρ
(m) . (3.87)

Any homogeneous and isotropic relativistic model with total energy density ρ and total pressure
P (ρ) can be described by an f(R) model as long as f satisfies Eq. (3.87). The presence of a
non-homogeneous term dependent on the matter energy density on the r.h.s. of (3.87) means that a
general solution to this equation might not always be found. Nevertheless, we can look for solutions
of the homogeneous equation which correspond to vacuum solutions.

As an example of the applications of Eq. (3.87) we consider the case of constant w, which implies
c2a = w and P (2) = 0. In this case we obtain the following differential equation after dividing all the
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terms in Eq. (3.87) by 1− 3w:

(1 + w) ρ2 d2

dρ2 (R+ f)− 1 + 3w
6 ρ

d
dρ (R+ f)− 1− 3w

6 (R+ f) = − (1− 3w) κ
2

3 ρ
(m) . (3.88)

The general solution to this equation in the absence of matter is [103, 143, 264]

R+ f = C+ρ
β+ + C−ρ

β− , (3.89)

where the exponents β± are given by [103, 143, 264]

β± = 1
2

1 + 1 + 3w
6(1 + w) ±

√
2(1− 3w)
3(1 + w) +

[
1 + 1 + 3w

6(1 + w)

]2
 . (3.90)

Since the scalar curvature is proportional to the energy density ρ, the solution (3.89) can be rewritten
in terms of R as

R+ f = D+R
β+ +D−R

β− . (3.91)

The argument on the square root in Eq. (3.90) vanishes when w = −(13± 4
√

6)/3, being negative
inside the interval defined by those points and positive otherwise. Thus, for w > −1, the exponents
β±, and consequently the solution R + f in Eq. (3.91), are always real valued. We note that real
valued solutions for f(R) can also be obtained when the coefficients β± acquire a complex phase,
as was recently shown in Ref. [29]. In the limit of w → −1 we find that only the solution β+ in
Eq. (3.90) as a finite limit and leads to the solution

R+ f = D+R
2 , (3.92)

which is precisely the function that in vacuum leads to a static solution of the trace equation, �R = 0,
for all values of the scalar curvature R.

3.2.1. Solution for the mGCG

Let us now consider the case of the modified generalised Chaplygin gas (mGCG) [57, 60, 205] (see
also [70, 83] and references therein) whose equation of state reads

P = βρ− (1 + β) A
ρα

. (3.93)

Here, α and β are parameters of the mGCG subject to the conditions α 6= −1 and −1 < β ≤ 1. For
earlier attempts of describing the GCG in f(R) gravity see Ref. [106]. The conservation of the energy
momentum tensor implies that the energy density of the mGCG scales as

ρ(a) = ρ0

[
As + (1−As)

(a0

a

)3ξ
] 1

1+α

, (3.94)
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where the factor ξ is defined as ξ ≡ (1 + β)(1 + α), and As is a dimensionless constant such that
As ≡ A/ρ1+α

0 . Here, we will restrict our analysis to the case 0 < As < 1, which guarantees that the
mGCG does not induce any singular behaviour for finite values of a. By defining the characteristic
scale factor a∗

a∗ =
(

1−As
As

) 1
3ξ

a0 , (3.95)

we can re-write Eq. (3.94) as

ρ(a) = ρdS

[
1 +

(a∗
a

)3ξ
] 1

1+α

, (3.96)

where ρdS ≡ ρ0A
1/(1+α)
s = A1/(1+α). Eq. (3.96) allows us to identify two regimes with distinct

behaviour of the mGCG, one for a < a∗ and another for a > a∗. Whether each of these regimes
corresponds to a dominance of the first or second term inside the squared brackets in (3.96) depends
on the sign of the parameter ξ. For ξ > 0, we have that

ρ(a) ≈

ρdS

(a∗
a

)3(1+β)
, if a� a∗ ,

ρdS , if a� a∗ ,

(3.97)

while for ξ < 0 we obtain the same behaviour but in an inverted chronological order

ρ(a) ≈


ρdS , if a� a∗ ,

ρdS

(a∗
a

)3(1+β)
, if a� a∗ .

(3.98)

For a complete review of the behaviour of the mGCG, inclusively in the case of β = −1 which can
lead, for example, to the appearance of a Little Sibling of the Big Rip type of singularity [77], see e.g.
Ref. [72].

Using Eq. (3.93), we find that the EoS parameter w, the adiabatic squared speed of sound c2a and
the second derivative P (2) for the mGCG model are

w(ρ) = β − (1 + β)
(
ρdS

ρ

)1+α
, (3.99)

c2a(ρ) = β + α (1 + β)
(
ρdS

ρ

)1+α
, (3.100)

P (2)(ρ) = − αξ

ρ

(
ρdS

ρ

)1+α
. (3.101)

Inserting this in the differential equation (3.87), we obtain

A2(ρ) ρ2 d2

dρ2 (R+ f) +A1(ρ) ρ d
dρ (R+ f) +A0(ρ) (R+ f) = 0 , (3.102)
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where the ρ-dependent coefficients are defined as

A2(ρ) = (1 + β)
[

1−
(
ρdS

ρ

)1+α
][

4− 3 (1 + β)
(

1 + α

(
ρdS

ρ

)1+α
)]

, (3.103)

A1(ρ) = − 1− 9β2

6 + 1
2 [1− 3β + α (1 + 3β)− 6αξ] (1 + β)

(
ρdS

ρ

)1+α

+ 3
2α (1 + 2α) (1 + β)2

(
ρdS

ρ

)2(1+α)
, (3.104)

A0(ρ) = − 1
6

[
4− 3 (1 + β)

(
1 + α

(
ρdS

ρ

)1+α
)]2

. (3.105)

In order to solve this differential equation, we now introduce the variable y, defined as5 [264]

y :=
(
ρdS
ρ

)1+α
. (3.106)

The variable y is finite and restricted to the interval (0, 1), approaching unity when the mGCG is near
the de Sitter regime, and vanishing asymptotically when the energy density of the mGCG scales as
a−3(1+β). By construction, y is also normalised so that its present day value is y0 = As. Using y as
the independent time variable, we can re-write the differential equation (3.102) as

d2

dy2 (R+ f) +
(

6ξ + 9β + 7
6ξ

1
y

+ 1
3ξ

1
y − 1 −

1
y − y1

)
d
dy (R+ f)

− α

2 (1 + α)2
y − y1

y2 (y − 1) (R+ f) = 0 , (3.107)

where y1 := (1− 3β)/[3α(1 + β)]. Eq. (3.107) is a second order linear differential equation with four
regular singular points [185] at y = 0, y = 1, y = y1 and y = +∞. Its general solution was obtained
in [264] and reads

(R+ f) (y) = C+g+(y) + C−g−(y) , (3.108)

where C± are arbitrary constants and the two linearly independent solutions f± of Eq. (3.107) are

g±(y) = y
±λβ−(9β+7)

12ξ

{(
b±3 − 1

) [ (
2b±1 − b

±
2 + 1

)
y −

(
b±3 + b±1 − 2b±2

) ]
F
[
b±1 , b

±
2 ; b±3 − 1 ; y

]
+
[
b±1 −

(
b±3 − b

±
2 − b

±
1 − 1

) (
2 + 3b±1 − 2b±2

) ]
(y − 1) y F

[
1 + b±1 , 1 + b±2 ; b±3 ; y

]}
.

(3.109)

Here, F [b , c ; d ; y] is the hypergeometric function [7, 283] and we have introduced the {β, ξ}-dependent

5In Ref. [264], the variable defined in Eq. (3.106) is denoted by x. Here, we adopt the new notation y since x is
reserved for the logarithm of the scale factor.
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constants

λβ :=
√

9β2 + 78β + 73 , (3.110)

and

b±1 := 3β + 5± λβ
12ξ , b±2 := 1 + − (3β + 1)± λβ

12ξ , b±3 = 2± λβ
6ξ . (3.111)

The differential equation (3.107) has four regular singularities in the expanded complex plane and
therefore falls outside the category of Riemann’s differential equation [283]. Nevertheless, for some
choices of the parameters {α, β}, or equivalently {β, ξ}, the singular point y1 reduces to one of the
other singularities: y = 0 (if β = 1/3), y = 1 (if ξ = 4/3) or y = +∞ (if α = 0). In such cases,
Eq. (3.107) not only possesses three regular singularities but falls in the category of the hypergeometric
differential equation6 [7, 283].

3.2.2. Special Case: From radiation to de Sitter (β = 1/3)

We now look at the case of β = 1/3 (with α 6= 0) which leads to y1 = 0. In such a case, the mGCG
mimics a radiation fluid when the first term in the EoS (3.93) dominates. Therefore, this particular
case of the mGCG has applications in the early Universe in models with pre-inflationary evolution
and in the transition from inflation to radiation during the reheating phase. In addition, it can be
employed in order to obtain a smooth transition between an initial (dark) radiation behaviour and a
later effective cosmological constant. A substitution in the differential equation (3.107) allows us to
obtain a hypergeometric differential equation [7, 283] for f(x):

y (1− y) d2

dy2 (R+ f)− 6y − 5
4 (1 + α)

d
dy (R+ f) + α

2 (1 + α)2 (R+ f) = 0 . (3.112)

As long as α does not satisfy any of the equalities 1 +α = 5/(4n) and 1 +α = 1/(2n), where n is an
integer, this equation admits as solutions the two pairs of linearly independent functions

g1(y) = F

[
1

2 (1 + α) ,−1 + 1
1 + α

; 5
4 (1 + α) ; y

]
, (3.113)

g2(y) = y1− 5
4(1+α)F

[
− 1

4 (1 + α) , 1−
3

4 (1 + α) ; 2− 5
4 (1 + α) ; y

]
, (3.114)

and

g3(y) = F

[
1

2 (1 + α) ,−1 + 1
1 + α

; 1
4 (1 + α) ; 1− y

]
, (3.115)

g4(y) = (1− y)1− 1
4(1+α) F

[
3

4 (1 + α) , 1 + 1
4 (1 + α) ; 2− 1

4 (1 + α) ; 1− y
]
, (3.116)

6Notice that special care has to be taken in the overlapping case of β = 1/3 and α = 0 which implies ξ = 4/3, as
there is no appropriate limit for y1.
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such that R+ f = C1 g1(y) +C2 g2(y) = C3 g3(y) +C4 g4(y), where the Ci’s are arbitrary constants.
We recall that the pairs {g1, g2} and {g3, g4} are related through a linear transformation [7, 283],
with {g1, g2} being more appropriate for the description of the behaviour around y = 0, i.e., when
the mGCG behaves as radiation, and {g3, g4} more appropriate for the behaviour around y = 1 where
the mGCG mimics a cosmological constant. Alternatively, these solutions can be recovered from
Eq. (3.109) by using the contiguous relations of the hypergeometric functions (cf. the Appendix B.4).

In the particular case β = 1/3, the first term on the EoS (3.93) does not contribute to the scalar
curvature, which can be written in terms of y as

R = RdSy
α

1+α , RdS := 4ρdS , (3.117)

where we have introduced the asymptotic value of the scalar curvature RdS. Thus, for α/(1 + α) < 0,
i.e., for −1 < α < 0, the scalar curvature is defined in the range ]RdS, +∞[ while for α/(1 + α) > 0,
i.e., for α ∈ R/[−1, 0], R is defined in the range ]0, RdS[. Introducing (3.117) in the solutions
(3.113)–(3.116) we find that [264]

g1(R) = F

[
1

2 (1 + α) ,−1 + 1
1 + α

; 5
4 (1 + α) ;

(
R

RdS

)1+ 1
α

]
, (3.118)

g2(R) =
(

R

RdS

)1− 1
4α

F

[
− 1

4 (1 + α) , 1−
3

4 (1 + α) ; 2− 5
4 (1 + α) ;

(
R

RdS

)1+ 1
α

]
, (3.119)

g3(R) = F

[
1

2 (1 + α) ,−1 + 1
1 + α

; 1
4 (1 + α) ; 1−

(
R

RdS

)1+ 1
α

]
, (3.120)

g4(x) =
[

1−
(

R

RdS

)1+ 1
α

]1− 1
4(1+α)

× F

[
3

4 (1 + α) , 1 + 1
4 (1 + α) ; 2− 1

4 (1 + α) ; 1−
(

R

RdS

)1+ 1
α

]
. (3.121)

Notice that when written in terms of R, the functions fi, i = 1, 2, 3, 4 can in principle be extended
beyond the value RdS by analytical continuation. The extended function, if real, would allows us to
obtain an f(R) function that, while capable to mimic a mGCG behaviour, is not restricted in the
values of R imposed by that model.

In order to fix the linear coefficients Ci for the solutions fi, we look at the stability conditions for
metric f(R)-gravity presented in Sect. 3.1.2. In particular we require that 1 + fR = gr > 0 and that
fRR = gRR > 0 during the history of evolution of the model and that at the present time fR ≈ 0. In
order to decide which values of the parameter α can give the desired behaviour, we begin by looking
at how the solutions found evolve near the asymptotic values y = 0 and y = 1. In Tab. 3.1 we present
the asymptotic values of f1, f2 and their R-derivatives for different values of the parameter α. Notice
that apart from α = −1 and α = 0, the value α = 1/4 is excluded as it leads to a special case of the
hypergeometric differential equation (3.112), where solutions of the type in (3.113) and (3.114) are
no longer valid. In addition, the values α = −1/4 and α = 1 are listed as they represent values where
the behaviour of the second derivatives f1,RR and f2,RR change. From analysing this table we find
that:
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α −1 − 1
4 0 1

4 1

g1 1 1 1 1 1 1

g1,R −∞ 0− 0− 0− 0− 0−

g1,RR +∞ 0+ 0+ 0− 0− − 2
5R
−2
dS −∞

g2 0+ +∞ +∞ +∞ 0+ 0+

g2,R 0+ +∞ +∞ −∞ +∞ +∞

g2,RR +∞ 0+ 2R−2
dS +∞ +∞ −∞ −∞

R 0+ +∞ +∞ 0+ 0+ 0+

Table 3.1.: Limiting value of the functions f1, f2 and its R-derivatives as x→ 0 for different values of the
parameter α. For comparison, we include the asymptotic value of the scalar curvature. Values
of α for which the solutions are not defined are indicated by a double vertical line.

a) If α < −1, there is a de Sitter epoch before the mGCG mimics a radiation fluid. In this case,
there is no solution where both the first and second derivative of g converge to a finite value as
the model evolves towards the radiation dominated epoch at R = 0. At best, we can choose
g(R) = C2 g2(R), with C2 > 0, so that both g(R) and its first derivative are finite as the
scalar curvature vanishes. In this case, gR vanishes at R = 0 implying a divergence of the
effective coupling Gf that would exponentiate the strength of gravity beyond that of the other
interactions.

b) For −1 < α < 0, the mGCG mimics a radiation fluid with infinite scalar curvature in the past.
Although this asymptotic behaviour is different from the one of a pure radiation fluid in GR,
where R = 0, we point out that a divergent scalar curvature in a radiation-dominated epoch
is not in itself problematic. In fact, any small deviation from w = 1/3 in Eq. (3.83), even if
subdominant with respect to ρ, can drive R away form zero. In this case, we find that g2 gives
once again the desired behaviour as g2, g2,R and g2,RR remain positive during the radiation
epoch7. For −1 < α < 0, the behaviour at high curvature in the expression (3.119) is dominated
by the term R1− 1

4α . The change in qualitative behaviour of the second derivative changes at
α = −1/4 thus corresponds to the case where this leading term is R2.

c) In the case of 0 < α, initially the mGCG mimics a radiation fluid and, contrary to the previous
case, the scalar curvature vanishes in the past, much like a pure radiation fluid in GR. In this case,
we find that we can obtain finite values of g, gR and gRR in the past if we set g(R) = C1g1(R)
and 0 < α ≤ 1. In addition, imposing C1 < 0 guarantees that gR and gRR approach zero from
positive values and therefore verify the stability conditions. The fact that gR approaches zero
implies that Gf would diverge in the past and that gravity would be much stronger than any
other interaction in the Universe. At low curvature, the leading term, beyond the constant term,
in Eq. (3.118) is R1+1/α. The change in the qualitative behaviour of the second derivative
g1,RR observed in Tab. 3.1 for α = 1, reflects that in that case the leading term becomes R2.

7Here, we point out that since R diverges for x = 0, there exists no problem in the divergence of g2, g2,R and
g2,RR in Tab. 3.1.
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α − 5
4 −1 − 3

4 0

g3 1 1 1 1 1

g3,R 2R−1
dS 2R−1

dS 2R−1
dS 2R−1

dS 2R−1
dS

g3,RR − 2R−2
dS

α(5+4α) − 2R−2
dS

α(5+4α) − 2R−2
dS

α(5+4α) − 2R−2
dS

α(5+4α) − 2R−2
dS

α(5+4α)

g4 0+ 0+ +∞ 0+ 0+

g4,R 0− 0− −∞ +∞ −∞

g4,RR +∞ 0+ +∞ −∞ −∞

Table 3.2.: Limiting value of the functions f3, f4 and its R-derivatives as x→ 1 for different values of the
parameter α. Values of α for which the solutions are not defined are indicated by a double
vertical line.

In Tab. 3.2, we present the asymptotic value of g3, g4 and their R-derivatives as y approaches unity,
i.e., when the mGCG mimics a cosmological constant, and for different values of the parameter α.
Notice that apart from α = −1 and α = 0, the values α = −5/4 and α = −3/4 are excluded as they
lead to a special case of the hypergeometric differential equation where the solutions (3.115) and
(3.116) may no longer be valid. From this table we conclude that:

a) For α < −1, i.e., when the radiation epoch is preceded by a de Sitter-like stage, we can obtain
a solution with finite and positive values of g, gR and gRR at R = RdS by restricting α to the
interval ]− 5/4, −1[ and setting g = C3gR + C4g4 with C3 > 0. For smaller values of α. it is
possible to obtain solutions for which g and gR are finite and positive by setting C3 > 0 but the
second derivative will either become negative (C4 = 0) or diverge with positive values (C4 > 0).

b) In the case of −1 < α < 0, we find that solutions with appropriate behaviour of g, gR and gRR
at R = RdS can be obtained by setting g = C3g3 with C3 > 0. Using the relation between g3
and the solutions g1 and g2, we find that C3 > 0 leads to a positive coefficient for g2 which
implies that such a solution is also well behaved for large scalar curvature, cf. Tab. 3.1, with g,
gR and gRR growing with positive values as R tends to infinity.

c) Finally, in the range 0 < α, we find that it is not possible to obtain a solution for which both gR
and gRR are finite and positive around RdS. However, we can always set g = C3g3 +C4g4, with
C4 < 0, so that gR and gRR remain positive as R converges to RdS. The solution g = C1g1,
with C1 < 0, which is well behaved for R ≈ 0 falls into this category.

In Ref. [264], we focused on the case of 0 < α < 1 with R+ f(R) = g(R) = C1g1(R) and C1 < 0
which allowed us to obtain a well behaved solution with no divergences in the past evolution of the
system. As mentioned above, in this case the conditions 1 + fR > 0 and fRR > 0 are satisfied as
R goes to zero, at y = 0. In order to fix the value of C1 we imposed the additional condition that
fR = 0 at the present time. Recalling that y0 = As, we obtain

C1(α, As) = −2
5
A

1
1+α
s

RdS
F

[
1

1 + α
, 1 + 1

2 (1 + α) ; 1 + 5
4 (1 + α) ; As

]
. (3.122)
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Figure 3.1.: Evolution of R + f = C1g1 as a function of (left panel) the dimensionless variable y and
(right panel) the scalar curvature R, with the linear coefficient C1 defined by Eq. (3.122). The
plots are obtained using the values α = 0.1 and As = 0.8.

The solution R + f = C1 g1 with C1 defined by Eq. (3.122) is plotted in Fig. 3.1. We find that
the positiveness of 1 + fR and fRR is extended to all R ∈]0, RdS[, thus ensuring that the effective
gravitational coupling is positive and that the solution found avoids the Dolgov-Kawasaki instability8.
This, coupled with the fact that the function R + f itself is negative throughout the whole range
R ∈]0, RdS[ implies that the effective mass (3.14) is positive, in particular during the late asymptotic
de Sitter phase.

3.2.3. Discussion

In this Section, we have described a new method within the reconstruction approach known as designer
f(R) to obtain solutions in metric f(R)-gravity that are compatible with a given evolution of a FLRW
Universe. Specifically, we have worked out the differential equation that defines the function f(R)
when the total energy budget of the Universe, including the contribution from matter and the effective
fluid arising from the modifications of gravity, satisfies a barotropic EoS P (ρ). The homogeneous
solutions to such an equation represent vacuum solutions and can be used to search for solutions in
the general case when matter is included. This method could in principle be generalised to include
a non-barotropic EoS, such as P (ρ, ρ̇), or to include the effects of viscosity. However, due to the
difficulty of finding exact solutions even in the most simple cases, it is unclear whether such an
extension would be fruitful.

Using this reconstruction method, we have fully mapped the modified generalised Chaplygin gas
(mGCG), a 2-parameter extension of the Chaplygin gas which was originally proposed as an alternative
to DM and DE [57, 60, 205], onto f(R)-gravity in the absence of matter fluids. Unfortunately, the
analytical expressions of the solutions obtained are quite cumbersome. This reflects one of the main
disadvantages of employing the strategy of designer f(R)–while it can provide us with exact solutions
for f(R), often-times these are extremely complicated to handle analytically and as a consequence
the physical interpretation of the solution becomes quite a difficult task. Nevertheless, for specific
values of the parameters of the model the complexity of the solutions found is substantially reduced,

8As observed on the r.h.s. panel of Fig. 3.1, R+ f(R) in an increasing function of R with positive curvature.
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allowing for a more detailed study of the physical implications of the model.

One of such cases is obtained when we fix the parameter β = 1/3, in which case the mGCG
interpolates between radiation and an effective cosmological constant. Such a behaviour of the
mGCG can be considered both in the context of reheating [74, 76] or at late-time to obtain a unified
description for dark radiation and DE [264]. In this case, the differential equation for f(R) reduces
to that of a hypergeometric function, greatly simplifying the solution with respect to the general
case. Using the conditions for the physical viability of f(R) actions and the asymptotic behaviour of
the hypergeometric functions, we were then able to classify the solution found, defining intervals of
interest for the mGCG parameter α. In particular, when the mGCG mimics radiation in the past and
a cosmological constant in the future, we find that adequate solutions can be found for 0 < α < 1
which are well behaved at all points except in the extremely distant future.

3.3. Dark radiation as f(R)-gravity

The concept of a dark radiation (DR), an unknown relativistic component that much like DM and
DE only interacts gravitationally with normal matter, was introduced after an excess in the radiation
content of the Universe was detected in CMB observations [37] that could not be explained by the
photons from the last scattering surface or the three families of leptons in the Standard Model. The
radiation content is usually parameterised in terms of an effective number of relativistic degrees of
freedom Neff , cf. Eq. (1.40) and the Standard Model of particles with three families of leptons predicts
Neff = 3.046, where the deviation from 3 is due to thermodynamic considerations [249]. Some of
the first models proposed to explain this excess theorised the existence of additional sterile neutrinos
[1, 37], an idea that seemed supported by initial best-fit values of Neff close to 4. However, subsequent
missions lowered this number considerably, making it incompatible with a new species of (sterile)
neutrinos. Other proposals that have been explored include dark photons that interacts only with
DM particles [9], thermal axions from Quantum Chromodynamics [37], or an extra contribution from
the decay of dark matter particles into very light particles [181, 259]. The final results of Planck
mission, in conjunction with BAO measurements, fix the value Neff = 2.99+0.34

−0.33 [19], which supports
the Concordance Model with no DR component. However, higher values of the effective number of
degrees of freedom are still compatible with the data as long as H0 is allowed to take on larger values.
In fact, restricting the analysis to the physically motivated range ∆Neff > 0 leads to the constraint
∆Neff < 0.30 at 95% confidence level.

In this section we explore the possibility that DR is the manifestation of a modification of gravity,
namely within the context of metric f(R)-gravity. The main results presented in this section9 were
published in Ref. [264]. We note that at the time of the publication, the partial results of Planck
mission indicated a higher value of the number of effective degrees of freedom, Neff = 3.15 [16],
which represented a 3.4% excess with regards to the theoretical prediction from the Standard Model.
This value is within the 95% confidence level interval presented in the final Planck data release [19].

9With regards to the results present in Ref. [264], in this section we add a further study of the dependence of the
cosmographic parameters on the mGCG that accounts for DR and DE, an analytical solution for f(R) in a universe
filled by radiation and pressureless dust and where the modifications to gravity account for a DR component and a
study of the growth rate of the matter perturbations.
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3.3.1. Background model

Let us consider a model of a universe filled by dust (DM and baryonic matter), radiation (photons
and neutrinos) and by a mGCG fluid which behaves as (dark) radiation in the past and as an effective
cosmological constant in the future. After solving the continuity equation for each individual fluid, the
Friedmann equation for such universe reads

3H2 = ρr,0

(a0

a

)4
+ ρm,0

(a0

a

)3
+ ρCh,0

[
As + (1−As)

(a0

a

)4(1+α)
] 1

1+α

, (3.123)

where the mGCG parameters verify 0 < As < 1 and 0 < 1 + α. For a� a∗ = [(1−As)/As]
1

4(1+α)

the mGCG energy density behaves as

ρCh(a) ≈ Ωdr,0

(a0

a

)4
, Ωdr,0 := (1−As)

1
1+αΩCh,0 , (3.124)

thus contributing to the total amount of the relativistic content of the Universe in the past:

Ωrel(a) = (Ωr,0 + Ωdr,0)
(a0

a

)4
. (3.125)

At late-time, for a� a∗, the mGCG behaves instead as an effective cosmological constant with

ρCh(a) ≈ ρdS , ρdS := A
1

1+α
s ρCh,0 . (3.126)

Phenomenologically, the total relativistic content of the Universe is parameterised as

Ωrel,0 =
[

1 + 7
8

(
4
11

)4/3
Neff

]
Ωγ,0 =

[
1 + 7

8

(
4
11

)4/3 (
N

(ν)
eff +N

(dr)
eff

)]
Ωγ,0 . (3.127)

By comparing Eq. (3.124) with the parametrisation (3.127) we can write Ωr,0 and Ωdr,0 as

Ωr,0 =
[

1 + 7
8

(
4
11

)4/3
N

(ν)
eff

]
Ωγ,0 = (1−D) Ωrel,0 , (3.128)

Ωdr,0 = 7
8

(
4
11

)4/3
N

(dr)
eff Ωγ,0 = DΩrel,0 , (3.129)

where D = D(N (dr)
eff ) ∈ [0, 1] is the percentage of relativistic matter that corresponds to DR:

D(N (dr)
eff ) :=

7
8
( 4

11
)4/3

N
(dr)
eff

1 + 7
8
( 4

11
)4/3 (

N
(ν)
eff +N

(dr)
eff

) . (3.130)

In addition, using the equalities (3.128) and (3.129) in conjunction with the Friedmann constraint

1 = Ωr,0 + Ωm,0 + ΩCh,0 , (3.131)
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Free parameters {α, D} α

Ωm,0 0.3065 0.3065

zeq 3361 3361

D — 1.377× 10−2

Ωrel,0 9.117× 10−5 9.117× 10−5

Ωr,0 9.117× 10−5(1−D) 8.991× 10−5

Ωdr,0 9.117× 10−5D 1.255× 10−6

ΩCh,0 0.6934 + 9.117× 10−5D 0.6934

As 1−
(

D
7682.93+D

)1+α
1−

(
1.792× 10−6)1+α

Table 3.3.: Values of relevant physical quantities for the model (3.123) in terms of the choice of the
parameters {α, D} and {α}. For the value of Ωm,0 and zeq we use the TT+lowP+lensing+ext
best-fit values of Planck mission [16]. On the rightmost column we fix D using the formula
(3.130) and the best-fit value for Neff .

and the definition of the redshift at dust-radiation equality 1 + zeq := Ωm,0/Ωrel,0, we are able to
write the mGCG parameter As as

As = 1−

 D
1+zeq

Ωm,0

1−
(

1 + 1−D
1+zeq

)
Ωm,0

1+α

. (3.132)

Thus, we can fully characterise the model in terms of the four parameters {Ωm,0, zeq, α, D}. Notice
that, if we take D = 0, we recover the ΛCDM model with a radiation component, independently of
the value of α.

In order to fix the parameters of the model, we use the best-fit values for Ωm,0 and zeq from Planck
mission [16]. This allows us to write all the relevant quantities of the model in terms of the parameters
{α, D}, or, equivalently, {α, N (dr)

eff }. Alternatively, we can take the observational value Neff = 3.15
[16] to fix the parameter D at 1.377%. In this case only α remains as a free parameter. In Tab. 3.3,
we present the values of the relevant physical quantities of the model in terms of the free parameters
{α, D} and in terms of α when D is fixed using the formula (3.130) and the best-fit value of Neff
from Planck mission [16]. In Fig. 3.2, we show on the l.h.s. panel the evolution of the squared Hubble
rate and on the r.h.s. panel the evolution of the individual fractional energy densities of pressureless
matter Ωm (blue solid curve), of radiation, Ωr (red dashed curve), and of the mGCG, ΩCh (green
dot-dashed curve), for the choice of the parameters D = 1.377% and α = 0.1. Initially, during
the radiation dominated epoch, the contribution of photons and neutrinos is dominant but there is
a small but constant contribution from the mGCG in the form of DR. After the radiation-matter
equality (leftmost thin vertical line), as pressureless matter starts to dominate the energy budget of
the Universe, the contribution of radiation and the contribution of the mGCG become residual. Close

57



3.3 Dark radiation as f(R)-gravity

-15 -10 -5 0

0

5

10

15

20

x

lo
g
1
0
(H

2
/H
02
)

-15 -10 -5 0

0.0

0.2

0.4

0.6

0.8

1.0

x

Ω
j

Figure 3.2.: (Left panel) Evolution of H2/H2
0 (solid blue curve) as a function of x = log(a/a0). For

comparison, the approximate behaviours during the radiation dominated and matter dominated
epochs are shown as dot-dashed and dashed black curves, respectively. (Right panel) The
fractional energy density of pressureless matter (blue solid curve), of radiation (red dashed
curve) and of the mGCG (green dot-dashed curve) as functions of x. The vertical lines
represent, from left to right, the moment of radiation-matter equality and the present time.
The plots shown were obtained using the values of Tab. 3.3 with D = 1.377% and α = 0.1.

to the present time, however, the mGCG starts to mimic a cosmological constant and overcomes
matter as the main component of the Universe.

3.3.2. Cosmography

In order to test the validity of our model, we now apply a cosmographic approach. We begin
by presenting the theoretical predictions of the model (3.123) for the cosmographic parameters
{q0, j0, s0, l0} in terms of the cosmological parameters {Ωm,0, Ωr,0, α, As} [264] :

q0 = − 1 + 3
2Ωm,0 + 2Ωr,0 + 2 (1−As) [1− Ωm,0 − Ωr,0] , (3.133)

j0 = 1 + 2Ωr,0 + 2 (1−As) (1 + 4αAs) [1− Ωm,0 − Ωr,0] , (3.134)

s0 = 1− 9
2Ωm,0 − [12 + 3Ωm,0 + 4Ωr,0] Ωr,0

− (1−As)
{

4
[
3− 8α2As + 8α(1 + α)A2

s

]
+ 3(1 + 4αAs)Ωm,0 + 8(1 + 2αAs)Ωr,0

}
× [1− Ωm,0 − Ωr,0]− 4 (1−As)2 (1 + 4αAs) [1− Ωm,0 − Ωr,0]2 , (3.135)

l0 = 1 + 3Ωm,0 + 27
2 Ω2

m,0 + [28 + 72Ωm,0 + 76Ωr,0] Ωr,0

+ 4 (1−As)
{

7 + 4α
(
3 + 2α+ 8α2)As − 8α

(
5 + 22α+ 24α2)A2

s

+32α
(
2 + 7α+ 6α2)A3

s + 9
[
2 + α(1− 4α)As + 4α(1 + 2α)A2

s

]
Ωm,0

+ 2
[
19 + 2α(5− 12α)As + 24α(1 + 2α)A2

s

]
Ωr,0

}
[1− Ωm,0 − Ωr,0]

+ 4 (1−As)2 [19 + 4α(5− 12α)As + 16α(3 + 7α)A2
s

]
[1− Ωm,0 − Ωr,0]2 . (3.136)
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As expected, for As = 1 (D = 0), the previous expressions reduce to the ones of ΛCDM with a
radiation component. Using the values and formulas of Tab. 3.3 we can write the cosmographic
parameters in terms of the free parameters α and D as

q0 = − 0.54007 + ∆q0(α, D) , (3.137)
j0 = 1.0002 + ∆j0(α, D) , (3.138)
s0 = − 0.38042 + ∆s0(α, D) , (3.139)
l0 = 3.1922 + ∆l0(α, D) , (3.140)

where the first term corresponds to the base value obtained in ΛCDM with a radiation component
(D = 0) and the second term corresponds to a correction derived from the contribution of the mGCG.
In Fig. 3.3 we present the contours on the {α, D} plane of |∆q0/q

base
0 |, |∆j0/jbase

0 |, |∆s0/s
base
0 | and

|∆l0/lbase
0 |. The number of dots in each contour line indicates the (negative) order of magnitude of

the deviation, e.g., a dot-dot-dashed line in the panel of the cosmographic parameter X indicates
the contour where |∆X/Xbase

0 | = 10−2. Therefore, darker regions correspond to higher deviations
from the base value. As long as we choose α close to 0, we find that the deviations introduced by the
mGCG do not contribute significantly for the cosmographic parameters and we can use the values
obtained for ΛCDM with a radiation component. This is to be expected as α = 0 corresponds to
the case where the mGCG behaves exactly as a cosmological constant plus a radiation term, which
has a very small contribution to the cosmographic parameters at the present time. For the choice
of parameters {α, D} = {0.1, 1.377}, which will be used in the numerical results of the following
sections, we find that the deviation of the cosmographic parameters with regards to the base value is
less than 10−4, as indicated by the red point in Fig. 3.3.

3.3.3. f(R) solution for the background

Having defined the evolution of the FLRW background, we wish to find a compatible f(R) function
that can accommodate the mGCG contribution in Eq. (3.123). Unfortunately, the presence of dust-like
matter and radiation means that we can no longer use the solutions (3.113)–(3.116) found in the
previous section. Instead, we opt to integrate numerically the modified Friedmann equation (3.15),
which, working with x := log(a/a0) as the time variable10, can be re-written as

(R+ f)xx +
[
1− R

6H2 −
Rxx
Rx

]
(R+ f)x + Rx

6H2 (R+ f) = Rx
ρr + ρm

3H2/κ2 . (3.141)

Here, an x-subscript indicates a derivative with respect to x and ρr and ρm are the radiation and
matter energy density, corresponding to the first two terms of Eq. (3.123). In order to impose boundary
conditions in this equation, we assume that the deviation from GR with a cosmological constant is
small at the present time and therefore we can write

(R+ f)0 = R0 − 6H2
0 [1− Ωr,0 − Ωm,0] , (R+ f)x(x = x0) = Rx(x = x0) . (3.142)

10With this choice for the time variable, the lapse function becomes N = 1/H.
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Figure 3.3.: Contour lines of the fractional deviations |∆q0/qbase
0 | (Top-Left Panel), |∆j0/jbase

0 | (Top-Right
Panel), |∆s0/s

base
0 | (Bottom-Left Panel) and |∆l0/lbase

0 | (Bottom-Right Panel) on the {α, D}
plane. The number of dots in each contour line indicates the (negative) order of magnitude of
the deviation, e.g., a dot-dot-dashed line indicates a deviation of 10−2. Darker regions indicate
regions of higher deviation from the base value. The choice {α, D} = {0.1, 1.377} used for
the numerical results in the rest of the section is indicated by a red point.

Using the cosmographic formulas (3.76)–(3.79) for f(R)-gravity, we can calculate the values of the
function f and its derivatives that are compatible with the cosmographic parameters obtained for the
background model as

(R+ f)0

6H2
0

= 0.57451, fRR,0
(6H2

0 )−1 = 1.4962× 10−16,
fRRR,0

(6H2
0 )−2 = 1.3017× 10−4. (3.143)

Of course, the values here obtained via the cosmographic approach are consistent with the assumption
that f(R) is close to GR with a cosmological constant at the present and with the boundary conditions
imposed above.

In Figs. 3.4 and 3.5, we present the numerical solutions and their R-derivatives (continuous blue
curve) obtained when D = 1.377%. For comparison, we also show the behaviour of the Einstein-Hilbert
action R− 2Λ (red dashed curve) and of the expansion obtained from the cosmographic approach
(green dot-dashed line). As expected, during the late-time evolution the solution R+ f(R) obtained
mimics very closely the Einstein-Hilbert action and the expansion derived from the values of the
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Figure 3.4.: The numerical solution of the function f(R) as a function of x = log(a/a0) (left panel) and
of R (right panel) is shown as a continuous blue curve. The corresponding behaviour in the
case of GR is shown as a red dashed curve, while the Taylor expansion obtained from the
cosmographic approach, cf. Eq (3.143), is shown as a green dot-dashed curve. The asymptotic
behaviour at high energy density is shown as a thin black dot-dashed curve. The integration
of Eq. (3.141) was performed using the boundary conditions (3.142) and with the choice for
the free parameters: D = 1.377% and α = 0.1.
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Figure 3.5.: The numerical solution for 1 + fR (left Panel) and fRR (right Panel) of the solution plotted in
Fig. 3.5 as functions of x = log(a/a0) is shown as a continuous blue curve. The corresponding
behaviour in the case of GR is shown as a red dashed curve. The asymptotic behaviour at high
energy density is shown as a thin black dot-dashed curve. The integration of Eq. (3.141) was
performed using the boundary conditions (3.142) and with the choice for the free parameters:
D = 1.377% and α = 0.1.

cosmographic parameters. In addition, we note that the numerical solution obtained satisfies the
stability criteria of Sect. 3.1.2, since 1 + fR and fRR remain positive and finite throughout the
evolution till the present time. However, in the future fRR becomes negative, as can be seen by the
downward vertical evolution of the blue curve on the rhs panel of Fig. 3.5. As a consequence, the
effective mass m2

eff also becomes negative, which suggests that the de Sitter evolution of this f(R)
solution might suffer from a Dolgov-Kawasaki-like instability [141, 151]. We stress, however, that this
would happen only in the future and we have no guarantee that indeed a de Sitter-like stage would be
the asymptotic behaviour of our Universe.
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During the radiation dominated epoch, we find that R+ f(R) ∝ R4/3 with the fitted values

R+ f(R) ≈ 1.28067× 10−5R4/3 , (for D = 1.377%) . (3.144)

Such a behaviour is indicated by the thin black dot-dashed curve in Fig. 3.5. In order to make sense of
this behaviour for f(R), we write the matter energy density, the Hubble rate and the scalar curvature
at beyond leading order during the radiation dominated epoch as

ρ(m) ≈ 3H2
0

κ2

[
Ωr,0

(a0

a

)4
+ Ωm,0

(a0

a

)3
]
, (3.145)

H2 ≈ H2
0

[
(Ωr,0 + Ωdr,0)

(a0

a

)4
+ Ωm,0

(a0

a

)3
]
, (3.146)

R ≈ 3H2
0 Ωm,0

(a0

a

)3
. (3.147)

By replacing these variable in the modified Friedmann equation (3.15), we obtain a differential equation
for R+ f in terms of the rescaled scalar curvature r := R/(Ωm,0H

2
0 ):[

1 + 1
1 + zeq

(r
3

)1/3
]
r2(R+ f)rr −

[
1
6 + 1

1 + zeq

(r
3

)1/3
]
r(R+ f)r −

(R+ f)
6

= Ωm,0H
2
0

3

[
1 + 1−D

1 + zeq

(r
3

)1/3
]
r . (3.148)

Here, an r-subscript indicates a derivative with respect to r. The general solution of this equation is

R+ f = Ωm,0H
2
0

[
1 + 6D

1 + zeq

(r
3

)1/3
]
r + C−g−(r) + C+g+(r) . (3.149)

where the solutions g± to the homogeneous equation are defined as

g±(r) = r
7±
√

73
12 F

[
−9±

√
73

4 ,
7±
√

73
4 ; 1±

√
73
2 , − 1

1 + zeq

(r
3

) 1
3
]
. (3.150)

At large curvature, the two homogeneous solutions g± behave as R4/3, much like the leading term of
the non-homogeneous solution in Eq. (3.149), justifying the asymptotic behaviour shown in Fig. 3.4.
In fact, the non-homogeneous term in Eq. (3.149) accounts for only about 50% of the R4/3-coefficient
in the fitted values (3.144), with the rest being determined by the homogeneous part of the solution.

3.3.4. Growth of Linear Perturbations

We next analyze the evolution of the scalar perturbations in our model, since the radiation epoch till
the present time, and compare it with the evolution of perturbations in the concordance ΛCDM model
with a radiation component. In particular, we will look for the effects of the f(R) modifications in the
matter power spectrum as measured today.

In a metric f(R) theory, in the absence of an anisotropic stress from the matter sector, the
off-diagonal (i− j) component of the perturbed Einstein equations (3.52) in Fourier space relates the
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Bardeen potentials Φ and Ψ with the perturbation δF := δfR as [112, 134, 290, 320]

(1 + fR) (Ψk − Φk) fR = δFk . (3.151)

This equation shows how f(R)-gravity breaks the equality between the Bardeen potentials that
characterise GR in the absence of anisotropies from the matter sector, contributing to the total
anisotropy of the Universe. We now introduce the new set of variables Ψ+ and Ξ to replace the
Bardeen potentials

Ψ+ ≡ Φ + Ψ
2 , Ξ ≡ δF

1 + fR
= Ψ− Φ . (3.152)

Here, and in the rest of this section, we drop the k subscript so as to simplify the notation. Notice
that Ψ+ corresponds to the variable Φ+ in Ref. [290], while Ξ corresponds to the variable χ of the
same reference divided by 1 + fR. We choose to work with the variable Ξ instead of χ, because this
choice directly reflects the difference between the two potentials and allow us a better control of the
numerical integrations, even when the theory deviates considerably from GR (|fR| � 0). In order to
obtain the evolution equations for these variables, we can combine the (0− 0) and (i− 0) components
of the Einstein equations as

Ψ+
x = −Ψ+ − 1

4
(fR)x
1 + fR

(
2Ψ+ − 3Ξ

)
− κ2(ρ̄+ P̄ )

2(1 + fR)H2 aH v(N) , (3.153)

Ξx = Ξ + κ2(ρ̄+ P̄ )
(1 + fR)H2 aH v(N) + 1

2
(fR)x
1 + fR

(
2Ψ+ − 3Ξ

)
− 21 + fR

(fR)x
Hx

H
Ξ

− 2
3

1 + fR
(fR)x

[
2 k2

(aH)2 Ψ+ + κ2ρ̄

(1 + fR)H2

(
δ(N) − 3H(1 + w)a v(N)

)]
, (3.154)

where we recall that δ(N) and v(N) are GI quantities that reduce to the total fractional energy
density perturbation δ and peculiar velocity v in the Newtonian gauge. Eqs. (3.153) and (3.154) are
equivalent to the ones obtained in Ref. [290]. Here, however, we have used the evolution equation for
Ψ+ (3.153) to eliminate the dependence of Ξx on Ψ+

x in Eq. (3.154). Equations (3.153) and (3.154)
are complemented by the evolution equations, two for each fluid, for the perturbations of the matter
fluids. In the present case, where we consider the presence of dust and radiation fluids, the evolution
equations read

(δ(N)
r )x −

4
3

k2

(aH)2 v
(N)
r = 4Ψ+

x + 2Ξx , (3.155)

(v(N)
r )x + 1

4aH δ(N)
r = − 1

2aH
(
2Ψ+ − Ξ

)
, (3.156)

(δ(N)
m )x −

k2

(aH)2 aH v(N)
m = 3Ψ+

x + 3
2Ξx , (3.157)

(v(N)
m )x + v(N)

m = − 1
2aH

(
2Ψ+ − Ξ

)
. (3.158)

Here, the perturbations δ(N)
i and v(N)

i , with i = r,m, are the GI quantities that reduce, respectively,
to the fractional energy density perturbation and to the peculiar velocity potential in the Newtonian
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gauge11 .

In order to set initial conditions for the matter perturbation variables well inside the radiation-
dominated epoch, we assume the usual adiabatic conditions that apply for modes well outside the
Hubble horizon (k2 � (aH)2) [244]

δ(N)
m = 3

4δ
(N)
r = 3

4δ
(N) , v(N)

m = v(N)
r = v(N) . (3.159)

Having fixed the initial relations between the individual fluid variable and the total matter perturbations,
we can use Eqs. (3.153) and (3.154) to obtain δ(N) and v(N) in terms of the initial values of Ψ+,
Ξ and their derivatives. In GR, where Ξ = Ξx = 0 and Ψ+ = Ψ = Φ, an explicit solution for the
evolution of the gravitational potential for modes outside the Hubble horizon can be obtained and, to
leading order in k2/(aH)2, we find that the (0− 0) and (0− i) components of the perturbed Einstein
equations allow us to relate the initial values of δ and v with the gravitational potential Φ as

Φini = − 1
2δ

(N)
ini , Φini = − 2ainiHini v

(N)
ini . (3.160)

These can then be related to the comoving curvature perturbation R through the relation, valid for
constant EoS parameter w and for modes outside the Hubble horizon [53]

R = 5 + 3w
3 + 3wΦ . (3.161)

Using this relation12, and the fact the comoving curvature perturbation remains constant for super-
horizon evolution in adiabatic conditions, we can relate the value of the gravitational potential during
the radiation dominated epoch with the value of R at the end of inflation, as given by the primordial
power spectrum

PR = k3

2π2 |R|
2 = AS

(
k

k∗

)ns−1
. (3.162)

The best-fit of the 2015 Planck mission13 [16] for the primordial power spectrum PR set ns = 0.9681
for the scalar index and AS = 2.143× 10−9 for the amplitude of the scalar primordial power spectrum
at the pivot scale k∗ that corresponds to 0.05 Mpc−1.

In metric f(R)-gravity, however, the existence on an additional degree of freedom in the scalar
sector spoils this relationship between the gravitational potential and the matter variable in the
initial radiation-dominated epoch. In fact, it is no longer guaranteed that a static solution for Ψ+ is
obtained for the modes outside the Hubble horizon. In order to set initial conditions for the numerical
integrations, we then have to take into account the possible contribution of the four variables

Ψ+(xini) , Ψ+
x (xini) , Ξ(xini) , Ξx(xini) . (3.163)

Here, we are helped by the linearity of the Eqs. (3.153)–(3.158), which allows to write the general

11For the definition of these GI quantities, please see Eq. (A.54) of the Appendix A.
12We stress that the relation (3.161), which is derived in GR, is not necessarily valid in metric f(R) theories, where

a new scalar degree of freedom, δF , needs to be taken into account.
13Here, we employ the best-fit values that we used in our published work of 2015 [264].
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Figure 3.6.: Evolution of Ψ+ (Left panel), Ξ (Middle Panel) and δm (Right panel) for three different
wave-numbers: k = k0 (red); k = 102k0 (green) and k = 104k0 (blue). The results in
our f(R) model are shown in solid curves while the evolution in GR for the ΛCDM model
with a radiation component is shown as a dashed curved for comparison. The effects of the
modification of gravity are felt more strongly at smaller scales.

solution for Θ(x) = {Ψ+(x), Ξ(x), δr(x), vr(x), δm(x), vm(x)} as

Θ(x) = c1Θ1000(x) + c2Θ0100(x) + c3Θ0010(x) + c4Θ0001(x) (3.164)

where the subscript on the four individual solutions on the r.h.s. indicates that those particular solutions
were obtained by integrating the set of equations (3.153)–(3.158) with all but one of parameters in
(3.163) set to zero, e.g., Θ1000(x) is the numerical solution for Θ(x) obtained by setting Ψ+(xini) = 1
and Ψ+

x (xini) = Ξ(xini) = Ξx(xini) = 0. In order to restrict the freedom in setting the initial
conditions, we assume that the power-law dependence with k in Eq. (3.162) is maintained, so that
the linear coefficients ci are independent of the wave-number. For example, in the case of Θ1000,
which corresponds arguably to the situation with the least deviations from GR in the initial conditions,
the perturbed Einstein field equations (3.49) and (3.50) imply the initial conditions

δini =− 23 (1 + fR)H2

κ2ρ̄

[
1− (fR)x

1 + fR
+ k2

3a2H2

]
Ψ+

ini

≈ − 2(1 +D) [1 + fR − (fR)x] Ψ+
ini , (3.165)

v
(N)
ini = − 1

2aH
3H2(1 + fR)

κ2ρ̄

(
1− 1

2
(fR)x
1 + fR

)
Ψ+

ini

≈ − 1
2aH (1 +D)

[
1 + fR −

1
2(fR)x

]
Ψ+

ini . (3.166)

Even for a small percentage of DR, the corrections to the initial conditions (3.160) can become
significant if fR � 1 during the radiation dominated epoch.

In Fig. 3.6, we present the evolution of Ψ+ (Left panel), Ξ (middle panel) and δ(N)
m (Right panel)

obtained in the case of Θ1000 with the initial value of Ψ+ given by the relations (3.161) and (3.162). In
all panels, we present the evolution of three different modes with wave-numbers: k = k0 ≈ 2.2× 10−4

hMpc−1 (red); k = 102k0 ≈ 2.2× 10−2 hMpc−1 (green) and k = 104k0 ≈ 2.2 hMpc−1 (blue). For
each mode, we present as well the evolution in GR with the usual initial conditions (dashed curves).
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Figure 3.7.: Comparison of the evolution of log10 Ψ+ (left panel) and the growth rate f (right panel)
in the case of our f(R) model (solid curves) and in ΛCDM with a radiation component in
GR (dashed curves). Each colour corresponds to a different wave-number: k = k0 (red);
k = 102k0 (green) and k = 104k0 (blue). The deviations from GR become obvious at small
scales and indicate a stronger collapse matter.

We find that for low k (red curves), the difference between the evolution in GR and in our f(R) model
is negligible, with the potential Ψ+ becoming constant during the matter era, with 9/10 of its initial
value. This behaviour, observed as well in GR, is predicted from Eq. (3.161) and the conservation of
the comoving curvature perturbation at large scales in the transition from the radiation dominated era
to the matter dominated era. For intermediate scales (green curves) we find that some deviations from
GR start to be observed, in particular Ψ+ no longer remains constant during the matter dominated
era, in contrast with the assumptions of the quasi-static approximation [336, 365]. For low scales,
we find that the evolution of the modes start to deviate greatly from the behaviour in GR after the
modes re-enter the horizon. In particular, we observe that the matter density contrast has a slower
growth before the end of the radiation dominated epoch, which seems to be associated to a faster
decay of the gravitational potential and a higher deviation from isotropy due to the scalar Ξ. Once
the matter dominated epoch begins, however, the growth of the matter perturbations is accelerated,
with δ(N)

m eventually surpassing the predictions of GR at late-time.

In order to better visualise the effects of f(R) gravity in the evolution of the perturbations during
the matter dominated epoch, we plot in Fig. 3.7 the logarithm of the potential Ψ+ (left panel) and the
growth rate f (right panel) for x ∈ (−5, 0). We find that the approximation of static Ψ+ becomes
increasingly worse for larger wave-numbers, i.e., for small scales, which are precisely the scales that are
more affected by the modification of gravity. These results is in accordance with the criticism of the
quasi-static approximation in Refs. [55, 134]. From the analysis of the growth rate we confirm that
the evolution in our f(R) model follows closely the case in GR for modes with small and intermediate
values of k. Notice that the latter are inside the comoving Hubble horizon during most of the matter
dominated epoch, however, their wave-number is not large enough for the effects of f(R)-gravity
to kick in. For the modes with the largest wave-numbers, however, we find that f ≈ (

√
33− 1)/4

during most of the matter dominated epoch, which is the value predicted for the smallest scales in an
f(R) model where the evolution of the Universe is dominated by pressureless matter and |fR| ≈ 0, cf.
Eq. (3.65).
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Figure 3.8.: Evolution of fσ8 in the of our f(R) model (solid blue curve) and for ΛCDM (dashed red
curve). The various data points plotted, and respective error bars, are presented in Tab. 3.4.

Finally, we present in Fig. 3.8 the evolution of fσ8 in our model (blue solid curve) and in ΛCDM
(red dashed curve), where σ8 is the root mean square of mass fluctuations on spheres of radius 8
h−1Mpc. The temporal evolution of σ8 was obtained through the formula [356]

σ8(x) = σ8(0)δm(x)
δm(0) , (3.167)

assuming the best-fit value of the 2015 Planck results for the present day value σ8(0) = 0.8154 [16]
and using the evolution of δm for the mode with wavenumber k8 = 0.125 hMpc−1. For comparison,
we also plot several available observational data points and their respective error bars, which we
enumerate in Tab. 3.4. From Fig. 3.8, it is evident that the modification of gravity in our model leads
to a higher value of fσ8, when compared with the results for ΛCDM. This result is in agreement with
the results obtained above for the growth rate f , cf. Fig. 3.7, which was found to be substantially
higher than in GR for modes with wavenumber above keq. In particular, we find that this increase spoils
slightly the agreement of the predictions of our model with some data points at redshift 0.2 ∼ 0.9.

The matter power spectrum

In order to decide on the viability of the model at the perturbative level, we analyse how the f(R)
corrections affect the matter power spectrum Pδm [233]. As discussed in Sect. 2.4, the theoretical
predictions for the matter power spectrum is obtained from the GI comoving fractional energy density
perturbation14 δ

(C)
m :

Pδm ≡ 〈|δ(C)
m |2〉 = 〈|δm − 3aH vm|2〉. (3.168)

The numerical results can be seen in Fig. 3.9, where we show on the panel of the l.h.s. the matter
power spectrum obtained from Θ1000 (blue solid curve) with the initial value of Φ given by Eqs. (3.161)

14For a complete definition of δ(C)
m , please see Eq. (A.56) of the Appendix A.
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z fσ8 Survey Ref.
0.02 0.428+0.048

−0.045 6dF Galaxy Survey + SNe Ia [195]

0.067 0.423+0.055
−0.055 6dF Galaxy Survey [59]

0.15 0.53+0.19
−0.19 SDSS MGS [190]

0.18 0.36+0.09
−0.09 GAMA [62]

0.3 0.49+0.08
−0.08 SDSS LRG [280]

0.38 0.44+0.06
−0.06 GAMA [62]

0.38 0.497+0.039
−0.039 BOSS DR12 [20]

0.44 0.413+0.080
−0.080 WiggleZ [61]

0.51 0.458+0.035
−0.035 BOSS DR12 [20]

0.60 0.390+0.063
−0.063 WiggleZ [61]

0.60 0.55+0.12
−0.12 VIPERS [288]

0.61 0.436+0.034
−0.034 BOSS DR12 [20]

0.73 0.437+0.072
−0.072 WiggleZ [61]

0.86 0.40+0.11
−0.11 VIPERS [288]

1.4 0.482+0.116
−0.116 FastSound [281]

1.52 0.426+0.070
−0.070 BOSS DR14 quasars [364]

Table 3.4.: Available observational data points for fσ8 at different at redshift in the interval (0, 1.52),
which are plotted in Fig. 3.8. For each data point we present, in order, the value of the effective
redshift, the value of fσ8 and its respective error, the corresponding survey, and the reference
from which the values were taken.

and (3.162). For comparison, we also present the prediction of the ΛCDM model in GR (red dashed
curve). The changes on the shape of the spectrum appear on the high k regime of the spectrum
(k ≥ keq ≈ 0.01 Mpc−1), which is consist with the scale-dependent effects of f(R) which mostly
affect the growth of the matter perturbations at higher k [134, 290]. On the panel on the r.h.s. of
Fig. 3.9, we show the matter power spectrum obtained by fine-tuning the initial conditions in order to
minimise the deviations from the spectrum of the ΛCDM model. By comparing the two panels in
Fig. 3.9, we find that, although this procedure minimises the difference between the matter power
spectrum obtained in our model and the prediction of GR, it does not improve the results in the sense
that it cannot resolve the difference in tilt between the two power spectra for k > keq ≈ 0.01 Mpc−1.
In addition, attempting to alter Pδm at small scales (large k) seems to spoil the agreement with the
predictions of GR at large scales (low k).

3.3.5. Discussion

About 95% of our Universe is composed by dark fluids of which we know very little about apart
from their gravitational effects in the cosmological expansion. This lack of knowledge has fuelled the
idea that these exotic types of matter are instead the manifestation of modifications to Einstein’s
General Relativity felt only at cosmological scales. In this section, we have investigated the possibility
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Figure 3.9.: Matter power spectrum obtained from the f(R) model with D = 1.377% (blue solid curve)
compared with the GR prediction (red dashed curve). (Left panel) The matter power spectrum
obtained from Θ1000 with the gravitational potential Ψ+ given by the relations (3.161) and
(3.162). (Right panel) The matter power spectrum obtained by fitting the coefficients c1, c2,
c3 and c4 in Eq. (3.164) in order to minimise the deviations from the predictions of ΛCDM in
GR.

that such a modification of gravity could account for dark radiation, a potential excess of relativistic
content in our Universe that cannot be accounted for by the CMB radiation or neutrinos, and for
dark energy. In particular, we have assumed that the effective energy density of f(R) follows that
of a modified generalised Chaplygin gas (mGCG) that mimics (dark) radiation in the past and a
cosmological constant in the recent late-time evolution. In addition to the mGCG, we have considered
the presence of radiation (photons and ultra-relativistic neutrinos) and pressureless matter (baryons
and DM). Using a designer f(R)-approach and the cosmographic parameters derived from the best-fit
values the 2015 Planck mission, we were able to find a numerical solution for f(R) that is compatible
with the specified background evolution and that satisfies the viability conditions [141, 151] till at least
the present time. Not surprisingly, we have found that during the matter and DE dominated eras, the
solution tracks the Einstein-Hilbert action with a cosmological constant. However, in the asymptotic
past, when the mGCG behaves as radiation, we found that the numerical solution for R+ f behaves
instead as ∝ R4/3. In order to understand this behaviour, we then determined the general solution
for f(R) in a matter and radiation filled universe, where the modifications of gravity account for an
excess in the radiation content. We found that at high scalar curvature, the general solution behaves
precisely as R4/3, independently of the initial conditions, or the linear coefficients, chosen.

In order to decide on the viability of the model, we then computed the evolution of the linear
perturbations since the past radiation dominated epoch till the present time. Using linear perturbation
theory in f(R) gravity, we integrated numerically the evolution equations for the perturbations of
radiation, pressureless matter, the gravitational potentials and the new scalar degree of freedom of δfR
gravity since the radiation-dominated epoch, when the relevant modes were well outside the Hubble
horizon, and until the present time. For simplicity, we have disregarded the effects of anisotropies
coming from the relativistic components, i.e., photons and neutrinos, as well as the drag of baryons
by the radiation fluid that affect the smaller scales before the photon-baryon decoupling. The viability
of the model was asserted by contrasting the prediction for fσ8 with the available data points and
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by comparing the matter power spectrum obtained, at the present time, in our model and in ΛCDM
with a radiation component. We found that the imprints from the modifications to gravity appear
prominently on smaller scales, a characteristic feature of f(R)-gravity. In particular, we found that the
shape of the matter power spectrum in our f(R) model is able to perfectly mimic the prediction of GR
for modes with wave-number up to ∼ 0.01 Mpc−1, i.e., for large and intermediate scales. However,
modes with higher wave-number, which are the modes that enter the comoving Hubble horizon during
the radiation dominated epoch when f(R) ∝ R4/3, we find that the predictions of our model deviate
significantly from the results of GR due to the higher growth rate of the matter perturbations predicted
by f(R) gravity, which is also reflected in a higher prediction for fσ8 in comparison with ΛCDM.
Unfortunately, this is precisely the region where observational data strongly constraints the shape of
the matter power spectrum.

In the derivation of the numerical results for the linear perturbations, we have assumed that initial
conditions analogous to the ones of GR could be used. As such, we have assumed the initial adiabaticity
of radiation and matter and used the predictions of single-field inflation to set up the k-dependence
for the initial values of the gravitational potential and the new degree of freedom, as well as for
their derivatives. It remains to be checked that such initial conditions are compatible with the R4/3

behaviour of f(R) during the radiation epoch and it is quite possible that a change of the initial
conditions could strongly alter the predictions of the model at the present time.
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In this chapter we focus on the possibility of explaining DE without modifying the laws of gravity by
introducing a new dynamical field, a 3-form, to describe DE. The 3-form field, a totally anti-symmetric
tensor of rank (0, 3), was initially employed as a mechanism to obtain an effective cosmological
constant [142] and has more recently been proposed, in the late 2000’s, as an alternative to the scalar
field and K-essence models to describe primordial inflation and also DE [166, 216, 217, 219]. While in
some works 3-forms appear as the exterior derivative of 2-form like objects such as axions, e.g., in the
context of string cosmology [123, 243] and pre-big-bang scenarios [164], here, we treat the 3-form as
a true dynamical field with a kinetic term of its own. When viewed as such, the 3-form field minimally
coupled to gravity can be mapped onto a perfect fluid as it is a perfect candidate for applications
in FLRW cosmology. Within the context of primordial inflation, the issue of ghosts and Laplacian
instabilities was addressed in Ref. [131], while the predictions of model, including non-Gaussianities,
were studied in models with one [271] or multiple [222, 323] 3-form fields. The implications of this
kind of fields the reheating phase were also considered in Ref. [132] while a model of Brane-world
inflation driven by a confined 3-form field on a brane hypersurface was studied in [47]. More recently,
the Hamiltonian formulation of the 3-form was studied in Ref. [81].

We begin the chapter by presenting a brief review of the main characteristics of the 3-form field
and its applications to cosmology. In Sect. 4.2, we discuss the application of a dynamical system
approach to cosmological models with 3-form fields and the importance of determining the global
stability of the model, including the fixed points at infinite values of the amplitude of the field, and
how a new dynamical system representation allows us to unequivocally determine the stability at
infinity. In the final Sect. 4.3, we address the issue of the appearance of certain types of cosmic events
in 3-form cosmology and how they can be avoided by considering an appropriate interaction between
DM and the 3-form field playing the role of DE. The main results of this chapter were published in
Refs. [80, 265].
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4.1. The 3-form field: A brief review

4.1.1. The 3-form action

The action of a 3-form field Aµνρ minimally coupled to gravity, with a canonical kinetic term and
with a potential V , is [166, 217]

S =
∫

d4x
√
−gL =

∫
d4x
√
−g
[
− 1

48F
µνρσFµνρσ − V (AµνρAµνρ)

]
. (4.1)

where Fµνρσ is the strength tensor of the 3-form, defined as [166]

Fµνρσ := 4∂[µAνρσ] = ∂µAνρσ − ∂σAµνρ + ∂ρAσµν − ∂νAρσµ . (4.2)

Here, the square brackets in the indices denote anti-symmetrisation [347]. By minimising the action
(4.1) with respect to variations of the 3-form field, we obtain the equations of motion of the 3-form
[219]

∇σFσµνρ − 12 dV
d (A2)Aµνρ = 0 , (4.3)

where we use the notation A2 = AµνρAµνρ introduced in Refs. [216, 217, 219]. Using the anti-
symmetrisation proprieties of the strength tensor, we can obtain an additional constraint on the 3-form
by taking the divergence of Eq. (4.3) which leads to [219]

dV
d (A2)∇

µAµνρ + d2 V

d (A2)2Aµνρ∇
µA2 = 0 . (4.4)

In general, any p-form field in d−dimensions has a Hodge dual (d− p)−form [166, 271, 361]. In
the case of the 3-form field Aµνρ and its field tensor Fµνρσ, which is a 4-form, the respective Hodge
duals are a vector field Bµ := (Aνρσ)∗ and a scalar field φ := (Fµνρσ)∗ that verify the following
relations

Bµ = 1
3!E

µνρσAνρσ , Aµνρ = EµνρσB
σ , A2 = − 6B2 , (4.5)

φ = 1
4!E

µνρσFµνρσ , Fµνρσ = − Eµνρσφ , F 2 = − 24φ2 . (4.6)

Here, Eµνρσ is the four dimensional Levi-Civita tensor. Using these definitions, the equation of motion
(4.3) and the constraint (4.21), the 3-form action (4.1) can then be recast either as a scalar field
theory for φ or, alternatively, as a vector field theory for Bµ. Notice, however, that in these alternative
representations, the kinetic terms for φ or Bµ are not the canonical ones. For a complete review of
these alternative descriptions, please see Ref. [271].
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4.1.2. The 3-form field as a perfect fluid

The stress-energy-momentum tensor of the 3-form obtained from the action (4.1) reads [166, 219]

[TA]µν = 1
6F

αβγ
µ Fναβγ + 6 ∂ V

∂ (A2)A
αβ
µ Aναβ −

[
1
48F

2 + V
(
A2)] gµν . (4.7)

A preferential 4-velocity vector for the 3-form can be defined using the Hodge dual Bµ [361]:

[uA]µ := Bµ√
−B2

= EµνρσAνρσ√
6A2

. (4.8)

An immediate consequence of this definition is that the 4-velocity is orthogonal to the 3-form, i.e.:

[uA]µAµνρ = 0 . (4.9)

Using the definition (4.8), we can recast the stress-energy-momentum tensor (4.7) as

[TA]µν = 2 dV
d(A2)A

2[uA]µ[uA]ν +
[

1
48F

2 − V (A2) + 2 dV
d(A2)A

2
]
. (4.10)

With [TA]µν written in this form, it is an easy exercise to define the fluid quantities (1.13)–(1.16),
with the energy density and pressure of the 3-form field reading:

ρA = − 1
48N2F

2 + V (A2) , PA = 1
48N2F

2 − V (A2) + 2 dV
d(A2)A

2 , (4.11)

while the energy flux, [qA]µ, and the anisotropic stress, [πA]µν , vanish. Thus, much like the minimally
coupled scalar field, a 3-form field can be mapped onto a perfect fluid, making it a good candidate for
applications in FLRW cosmology.

4.1.3. FLRW cosmology with 3-form fields

Let us now consider a homogeneous and isotropic universe described by the FLRW line element
(1.18). In such a Universe, the condition (4.9) for the 4-velocity [uA]µ implies that the 3-form field
is orthogonal to the unit normal that defines the spatial hypersurfaces, hence, the only non-zero
components of Aµνρ are purely spatial and can be parameterised in terms of a scalar quantity χ(t) as
[166, 216, 217, 219]

Aijk = χEijk , A2 = 6χ2 . (4.12)

In addition, from the definition of the strength tensor, cf. Eq. (4.2), we find [166, 216, 217, 219]

F0ijk =
(
χ̇+ 3 ȧ

a
χ

)
Eijk , F 2 = − 24

N2

(
χ̇+ 3 ȧ

a
χ

)2
. (4.13)
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In Eqs. (4.12) and (4.13), Eijk is the 3-dimensional Levi-Civita tensor induced on the spatial
hypersurfaces1. The equation of motion of the field χ(t) is obtained from Eq. (4.3) and reads
[166, 216, 217, 219]:

χ̈+
(

3 ȧ
a
− Ṅ

N

)
χ̇+ 3

[
ä

a
−
(
ȧ

a

)2
− ȧ

a

Ṅ

N

]
χ+ 2N2 dV

d (χ2)χ = 0 . (4.14)

Substituting Eq. (4.12) in (4.11) we find that the energy density and pressure of the 3-form field
can be written in terms of the field χ and its derivatives as [216, 217, 219]

ρA = 1
2N2

(
χ̇+ 3 ȧ

a
χ

)2
+ V (χ2) , (4.15)

PA = − 1
2N2

(
χ̇+ 3 ȧ

a
χ

)2
− V (χ2) + 2 dV

d(χ2)χ
2 . (4.16)

As such, the Friedmann equation (1.27) and the Raychaudhuri equation (1.28) in a universe filled by
a 3-form field and other matter fluids with energy density ρ(m) and P (m) become(

ȧ

a

)2
+ N2

a2 K = κ2N2

3 ρ(m) + κ2

6

(
χ̇+ 3 ȧ

a
χ

)2
+ κ2N2

3 V (χ2) , (4.17)

2 ä
a

+
(
ȧ

a

)2
− 2Ṅ

N

ȧ

a
+ N2

a2 K −N
2Λ = − κ2N2P (m) + κ2

6

(
χ̇+ 3 ȧ

a
χ

)2
+ κ2N2

3 V (χ2)

− κ2N2 dV
d(χ2)χ

2 . (4.18)

Notice that whenever the derivative of the potential vanishes, the 3-form mimics a cosmological
constant behaviour with PA = −ρA. On the other hand, if V,χ2 < 0, i.e., for potentials decreasing in
χ2, the 3-form field acquires a phantom-like behaviour as w = PA/ρA < −1. Thus, contrary to the
case of a scalar field, a 3-form field minimally coupled to gravity and with a canonical kinetic term
can violate the null energy condition ρ+ P ≥ 0 even if the potential is positive valued.

4.1.4. The critical points χc

We now focus on the case of a spatially flat Universe filled only by a 3-form. Inserting the Raychaudhuri
equation (4.18) in the evolution equation (4.14) and choosing to work with the cosmic time (N = 1),
we obtain a scalar-field-like equation of motion

χ̈+ 3Hχ̇+ V (eff)
χ = 0 , (4.19)

1The Levi-Civita tensor is defined as Eijk :=
√
h εijk, where h is the determinant of the 3-metric induced on the

spatial hypersurfaces and εijk is the Levi-Civita symbol that satisfies εijk = +1 if ijk is an even permutation of 123,
εijk = −1 if ijk is an odd permutation of 123 and εijk = 0 otherwise. The Levi-Civita tensor and symbol satisfy
EijkE

ijk = εijkε
ijk = 6.
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Figure 4.1.: Possible evolution of the χ field for (left panel) a quadratic potential V = V0(χ/χc)2 and
(right panel) a Gaussian potential V = V0 exp(−χ2/χ2

c). While the 3-form potential V is
plotted as a solid blue curve, the effective potential V (eff) defined implicitly by (4.20) is shown
as a dashed red curve. The critical points ±χc are stationary points of the effective potential
and indicate static solutions of χ(t).

with an effective potential V eff defined by the equality [216, 217]

V (eff)
χ = − 3κ2

2

(
χ2 − 2

3κ2

)
Vχ . (4.20)

Here, we have introduced the notation Vχ = dV/dχ which we will use throughout the rest of this
chapter, along with Vχχ = d2 V/dχ2 and Vχ2 = dV/d (χ2).

Equation (4.19) admits as static solutions any point χ for which the derivative of the effective
potential vanishes. This includes not only stationary points of the 3-form potential V (χ), but also the
two points χ = ±χc with χc :=

√
2/(3κ2). These play a critical role in 3-form cosmology since, as

noted in Refs. [216, 217], for non-negative-valued potentials the Friedmann equation (4.17) imposes
the constraint

(χ̇+ 3Hχ)2 ≤ 9H2χ2
c . (4.21)

For expanding Universes, this inequality implies that for large values of the field χ, more precisely for
|χ| > χc, the field decays monotonically towards the interval [−χc, χc], independently of the shape of
the potential, and once it is inside that interval it never escapes. Since this is a compact interval,
the critical points can act as local maxima or minima of the potential and therefore can correspond
to unstable or stable equilibrium points, respectively, as seen in Fig. 4.1. Notice that the constraint
(4.21) automatically implies that any static solution of Eq. (4.19) for |χ| > χc is not physically viable.

The stability of the two equilibrium points ±χc can also be understood by analysing the sign of the
second derivative of the effective potential:

V eff
,χχ (±χc) = −2V,χ (±χc)

±χc
= −4V,χ2 (±χc) . (4.22)

If V,χ2 (±χc) is positive, the points ±χc represent two maxima of the effective potential which
represent unstable equilibrium states. On the other hand, if V,χ2 (±χc) < 0 the same points represent
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two minima of the effective potential that represent stable static solutions (see Fig. 4.1).

4.2. Dynamical system analysis with 3-forms

A dynamical system approach was first employed in the context of 3-form cosmology with a DM
component in Ref. [216]. Following a usual strategy employed in cosmology, three compact variables
related to the fractional energy density of pressureless matter, eg., CDM, and to the fractional kinetic
and potential energy densities of the 3-form were introduced2

s :=
√
κ2ρm

3H2 , y := χ̇+ 3Hχ
3Hχc

, z :=
√
κ2V

3H2 , (4.23)

with 0 ≤ s ≤ 1, −1 ≤ y ≤ 1, and 0 ≤ z ≤ 1. These variables satisfy the Friedmann constraint

1 = s2 + y2 + z2 , (4.24)

which allows the elimination of one variable from the system. An autonomous dynamical system can
be obtained by defining a fourth variable X:

X := χ

χc
, (4.25)

where the rescaling is chosen so that the critical values χ = ±χc correspond to X = ±1. Using the
variables (4.23) and (4.25) we can write the evolution equations for a cosmological model with CDM
and a 3-form field as

Xx = 3(y −X) , (4.26)

yx = 1
2
[
3
(
1− y2 − z2) y + (1−Xy)λ(X)z2] , (4.27)

zx = 1
2z
[
3
(
1− y2 − z2)− (y −X +Xz2)λ(X)

]
, (4.28)

s =
√

1− y2 − z2 . (4.29)

Notice that, contrary to the case of quintessence, here we cannot separate the variable X from the
system by choosing an exponential potential. In Eqs. (4.26)–(4.28) we use a subscript x to indicate a
derivative with respect to x = log(a/a0), a notation that will be employed throughout the rest of this
chapter, and the factor λ(X) is defined as

λ(X) := −
√

6
κ2
Vχ
V

= −3VX
V

. (4.30)

The set of Eqs. (4.26)-(4.30) defines the evolution of the system in a 3-dimensional phase-spaceM
that corresponds to a half-cylinder of radius unity and infinite height: −1 ≤ y ≤ 1, 0 ≤ z ≤

√
1− y2,

2Here, we prefer the letter s for the variable related to the CDM energy density, in detriment of the letter w used in
[216].
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and −∞ < X < +∞. The borders of the half-cylinder

M0 =
{

(X, y, z) ∈ R3 : z = 0 ∧ −1 ≤ y ≤ 1
}
,

M1 =
{

(X, y, z) ∈ R3 : y2 + z2 = 1 ∧ z ≥ 0
}
, (4.31)

represent two invariant subsets of the system: the plane M0 corresponds to a model with CDM and a
massless 3-form, which has been found to be equivalent to ΛCDM [216]; the surface M1 represents
a universe filled solely by a 3-form field [131]. In refs. [65, 265] the variable X was replaced by the
compact variable3

u := 2
π

arctan (X) , (4.32)

with −1 ≤ u ≤ 1. This substitution allowed for the identification of the fixed points at infinite values
of the field χ [265], i.e. for u = ±1. Some of the new fixed points at infinite χ were found to
correspond to the asymptotic past of the system. These points are characterised by their extremely
repulsive nature [265]. With this new variable, the model is described by the set of equations

ux = 6
π

cos2
(πu

2

) [
y − tan

(πu
2

)]
, (4.33)

yx = 1
2

{
3
[
1− y2 − z2] y + λ (u) z2

[
1− tan

(π
2 u
)
y
]}

, (4.34)

zx = 1
2z
{

3
[
1− y2 − z2]− λ (u)

[
y − tan

(π
2 u
) (

1− z2)]} (4.35)

defined on the half-cylinder M̃ of unity radius and height: −1 ≤ y ≤ 1, 0 ≤ z ≤
√

1− y2, and
−1 < u < +1. The fractional energy density of DM, Ωm = s2, is given by Eq. (4.29) and the total
EoS parameter can be written in terms of the dynamical variables as

wtot = Pχ
ρm + ρχ

= −
(
y2 + z2)− 1

3λ(u) tan
(π

2 u
)
z2 . (4.36)

In addition to the subsets M̃0 and M̃1 that map M0 and M1 in the new representation, we find
that the top and bottom borders of the cylinder also represent invariant subsets of the system:

M̃± =
{

(u, y, z) ∈ R3 : u = ±1
}
. (4.37)

Since trajectories in these subsets represent dynamics where the value of the field stays at infinity,
there is no general physical interpretation to M̃±.

4.2.1. Fixed points: a new classification

The fixed points of the system (4.26)-(4.30) were classified in Ref. [216] into three different categories:
a saddle point A with (X, y, z) = (0, 0, 0) that corresponds to an unstable matter era; two points B
with (X, y, z) = (±1,±1, 0) that for some choices of the potential represent late-time attractors with

3This compact variable was first proposed in Ref. [65] where it was identified by the letter x. To avoid a potential
confusion with the nomenclature, we adopt the letter u for the compact variable, as used in Ref. [265]
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kinetic dominance of the 3-form; a set of points C corresponding to local extrema of the potential
within the interval [−χc, χc] and which can be either attractors or saddle points. In Ref. [265], we
proposed an alternative classification that takes into account the possibility of having fixed points at
u = ±1, i.e., at χ = ±∞:

• Type I: these fixed points verify z = 0 for finite values of the 3-form field χ, i.e., ufp 6= ±1.
This category therefore includes the points A and B of Ref. [216]. Solving Eqs. (4.33) and
(4.34) for u and y we find that, for choices of potentials such that λ(u) is well defined for all
values of u, any fixed point (ufp, yfp, zfp) of this category must verify

(ufp, yfp, zfp) :


ufp = 2

π
arctan (yfp) ,

yfp
(
1− y2

fp
)

= 0 ,
zfp = 0 .

(4.38)

Since the factor λ(u) is absent from (4.38) we conclude that the existence of fixed points of
Type I does not depend on the shape of the potential of the 3-form field. As will be seen below,
the same is not true for their stability.

From the condition (4.38) we can identity the fixed points (ufp, yfp, zfp) of Type I as

Type I fixed points:

p0 := (0, 0, 0) ,

p±1 :=
(
± 1

2 , ±1, 0
)
.

(4.39)

The respective sets of eigenvalues {λ} for the fixed points of Type I are

{λ}p0 =
{
−3, 3

2 ,
3
2

}
, {λ}p±1 = {−3, −3, 0} . (4.40)

Thus, we find that p0 is a saddle point (unstable) while the stability of p±1 cannot be decided by
the linear stability theory due to the presence of an eigenvalue with zero real part. Instead, we
resort to the method described in [80] (see also Refs. [65, 295]) based on centre manifold theory
[111] and find that p+

1 (p−1 ) is an attractor if λfp := λ(ufp) > 0 (λfp < 0) and a saddle-node if
λfp < 0 (λfp > 0). For solutions with λfp = 0, which are cases where the values ±χc represent
stationary points of the potential V (χ) the stability will depend on the derivatives of the factor
λ(u), i.e., on higher order derivatives of V .

Since for fixed points of Type I we have zfp = 0, we find from Eq. (4.36) that the total parameter
of EoS at the fixed points of Type I is given by wtot = −y2

fp. Therefore, p0 corresponds to a
DM-domination evolution while at p±1 , which correspond to asymptotic scenarios where the
field χ evolves towards the static solution at the critical points ±χc, we have wtot = −1. It will
be shown later that despite the value of the total EoS suggesting a de Sitter behaviour, these
points actually correspond to a divergence of the Hubble rate with constant Ḣ, i.e., to a Little
Sibling of the Big Rip (LSBR) cosmic event [77].

• Type II: in this category we consider all the fixed points that, for finite values of χ, have
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non-zero values of the variable z. Solving the system of Eqs. (4.33), (4.34), and (4.35) for
u′ = y′ = z′ = 0, we find that any solution (ufp, yfp, zfp) in this category must verify

(ufp, yfp, zfp) :



ufp = 2
π

arctan (yfp) ,

λfpz
2
fp = 0 ,

1− y2
fp − z2

fp = 1
3λfpyfpz

2
fp ,

z2
fp 6= 0 ,

(4.41)

which imply that sfp = 0 and λfp = 0, i.e., this category includes all the Type C fixed points in
Ref. [216]. Solving (4.41) we find that there exists one fixed point p2 = (ufp, yfp, zfp) per each
uλ that is a solution of λ(uλ) = 0:

Type II fixed points: p2 =
(
uλ, tan

(π
2 uλ

)
,

√
1− tan2

(π
2 uλ

))
. (4.42)

From Eq. (4.36), we obtain that for fixed points of Type II, the total EoS parameter is wtot = −1.
As such, and since Vχ = 0 at p2, i.e., Ḣ = 0, for well behaved potentials these points correspond
to de Sitter solutions.

The eigenvalues of the fixed point p2 are given by

{γ}p2 =
{
−3, −3

2 [1 + F (uλ)] , −3
2 [1− F (uλ)]

}
, (4.43)

where

F (uλ) :=

√
1 + 8

3π
cos2

(
π
2uλ

)
1 + cos

(
π
2uλ

) dλ
du (uλ) . (4.44)

We thus find that p2 represents a saddle point (unstable) whenever dλ/du(uλ) > 0, i.e.,
when uλ represents a maximum of the potential with Vχχ(uλ) < 0) and an attractor when
dλ/du(uλ) < 0 i.e., when uλ represents a minimum of the potential with Vχχ(uλ) > 0). For
solutions with dλ/du(uλ) = 0, which is equivalent to the first and second derivative of the
potential vanishing at the fixed point, a zero eigenvalue appears and an analysis based on linear
stability theory breaks down. While methods based on centre manifold theory [111] could be
used to decide the stability of the fixed point, the results would be strongly dependent on the
shape of the potential considered and a case by case analysis might be necessary. As such, we
do not explore the issue any further for now.

• Type III: here we include all the points lying on the planes u = ±1, which correspond to infinite
values of the 3-form field χ. Since the inequality (4.21) forces the 3-form field to decay to the
interval [−χc, χc], any Type III fixed point present in the system will necessarily be unstable4.

4The existence of Type III fixed points, i.e. fixed points at infinite χ, was discussed for the first time in [265], even
though the compact variable employed in Eq. (4.32) was first introduced in Ref. [65]
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Due to the appearance of divergent terms in the y′ and z′ equations (tan(πu/2) → ±∞ as
u→ ±1), extra care is needed when identifying the position of fixed points of Type III and a
general analysis for any type of potential is not possible. For example, in the case of power
law potentials we find that λ(u) ∝ 1/ tan(πu/2) and all divergences in the equations are
automatically cancelled, while in the case of a Gaussian potential with positive ξ the variable z
must vanish sufficiently fast as u→ ±1 in order to cancel the divergences of λ(u) ∝ tan(πu/2)
and tan(πu/2) and even so divergences will appear when calculating the eigenvalues of the
Jacobian of the system at the fixed points[265].

In Ref. [265], the proper identification and characterisation of the fixed points at χ-infinity encoun-
tered three main difficulties. First, the fact that a trigonometric, instead of a polynomial, relation
was employed in Eq. (4.32) made it more difficult to identify the divergence rate of the equations.
Secondly, the fact that z depends on u through the potential, means that one has to take special
care and understand what is the behaviour of z as u→ ±1. For potentials that vanish at infinite χ
the variable z may tend to zero sufficiently fast and cancel the divergent terms in u, e.g. the case of
the Gaussian potential which was extensively discussed in Ref. [265]. Finally, even after the correct
fixed points with u = ±1 were identified, their stability needed to be clarified. In order to try and
solve some of the issues regarding the dynamics at infinity, we proposed in Ref. [80] a new dynamical
system description of models with 3-forms which allowed us to properly analyse the stability of the
fixed points at infinite values of χ. We present such a description in the next section.

4.2.2. Dynamics at infinity

When a compactification scheme is employed, like the one in (4.32), some terms may appear in the
new evolution equations that diverge as the old variables approach infinity. When this happens, the
dynamical system obtained after the compactification can be written as [146, 169, 170, 204, 366]u

′

y′

z′

 = 1
g(u)

f1 (u, y, z)
f2 (u, y, z)
f3 (u, y, z)

 , (4.45)

where g(u) vanishes as u→ ±1, the functions fi are all well defined at u = ±1 and at least one of
fi’s does not vanish at u = ±1. The divergence carried by g(u) can then be washed away by defining
a new time variable τ , dτ = g−1(u) dx [146, 169, 170], such that the previous system can be written
as

∂

∂τ

uy
z

 =

f1 (u, y, z)
f2 (u, y, z)
f3 (u, y, z)

 . (4.46)

The fixed points at χ-infinity can now be identified as the points (±1, y, z) such that f1 = f2 = f3 = 0
[146, 169, 170]. A correct identification of these fixed points depends on whether or not the function
g(u) carries the divergent leading order of the equations, so that all the divergent terms are cancelled
through a proper redefinition of the time variable. If this is not the case, we run the risk of “overshooting”
in the divergence cancellation and introduce artificial fixed points in the system.
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We now present an alternative dynamical system description which tries to avoid the issues mentioned
above. We begin by employing a new compactification scheme for χ

χ

χc
= v

1− v2 , (4.47)

with v ∈ [−1, 1]. Note that the values v = ±1 correspond to χ→ ±∞. By employing the relation
(4.47), we ensure that all the divergent terms appear as powers of (v ± 1) with negative exponents,
facilitating the identification of the leading order of the divergence.

In a second step, we decompose the variable z and isolate its explicit dependence on v. To do this,
we first rescale the potential V as

V (v) = 3H2
0

κ2 V∗(v) , (4.48)

where H0 is the current value of the Hubble parameter and V∗ is a dimensionless function of v. Next,
we introduce the compact Hubble rate5

h := (H/H0)2

1 + (H/H0)2 , (4.49)

defined in the interval [0, 1], with h = 0 corresponding to a Minkowski space-time, H = 0, and h = 1
to the limit6 H → +∞. Using Eqs. (4.48) and (4.49), we can write the variable z as

z2 = 1− h
h

V∗(v) . (4.50)

We are now in a position to write the set of evolution equations for the dynamical variables (v, y, h).
From the Friedmann equation and the evolution equations (4.26), (4.27), (4.47) and (4.50), we obtain

v′ = 31− v2

1 + v2

[
y
(
1− v2)− v] , (4.51)

y′ = 3
2

{
y
(
1− y2)− 1− h

h

[
V∗(v)y + 1− v2

1 + v2
∂V∗
∂v

(
1− v2 − vy

)]}
, (4.52)

h′ = − 3 (1− h)
[
h
(
1− y2)+ (1− h)

(
1− v2

1 + v2 v
∂V∗
∂v
− V∗(v)

)]
. (4.53)

For each type of potential, we can replace V∗(v) in Eqs. (4.52) and (4.53), identify the leading
divergent term in order to proceed with the appropriate time redefinition and divergence cancellation,
and finally calculate the fixed points at infinity and study their stability. In addition, from Eqs. (4.24)
and (4.50), we can write s as

s2 = 1− y2 − 1− h
h

V∗(v) . (4.54)

5A similar compact variable related to the Hubble rate was introduced in [27].
6We are assuming expanding cosmologies, i.e. H ≥ 0.
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Let us now look at the invariant sets M0 and M1, cf. Eq. (4.31), in this new description. First,
we note that the set M0 is no longer present in the system for a general potential. Instead, the
behaviour of the system in M0 is given by the set of equations (4.51), (4.52) and (4.53) with the
null potential V∗ ≡ 0. In the case of M1, i.e. in the absence of CDM, the combination of Eq. (4.50)
with the condition z2 + y2 = 1 allows us to express h as

h = V∗(v)
1− y2 + V∗(v) . (4.55)

As such, we can drop Eq. (4.53) and rewrite Eqs. (4.51) and (4.52) as

v′ = 31− v2

1 + v2

[
y
(
1− v2)− v] , y′ = −3

2
(
1− y2) 1− v2

1 + v2
1
V∗

∂V∗
∂v

(
1− v2 − vy

)
. (4.56)

These equations are equivalent to the ones obtained in Ref. [131] in the context of 3-form inflation.

4.2.3. Example: the Gaussian potential

In the previous sections we have discussed the use of a dynamical system description to cosmological
models with a 3-form field. In particular, we introduced a new classification of the fixed points of the
system and a new compactification strategy that take into account the dynamics of the system at
infinite values of the field χ and allow us to define a global picture of the stability of the model. As
an example of the applicability of the methods defined above, we now consider the case where the
3-form has a Gaussian potential

V = V0 e−
ξ
9
χ2
χc , (4.57)

and calculate the position of the fixed points as well as their respective stability. This case was first
analysed in Ref. [265] where infinite eigenvalues were found for the fixed points of Type III and in fact
served as the motivation for the new dynamical system description presented in the last Section and
published in [80].

We begin by working out the fixed points of Type I:

Type I fixed points:
(Gaussian potential)

p0 = (0, 0, 0) ,

p±1 =
(
± 1

2 , ±1, 0
)
.

(4.58)

As can be seen from Eq. (4.40), the fixed point p0 corresponds to a saddle point (unstable) representing
an epoch of DM domination. Using an analysis based on centre manifold theory, we find that the
points p±1 represent attractors that lead the Universe into a LSBR event in the future if ξ > 0 and
become unstable saddle points if ξ < 0.

Since the Gaussian potential has only one stationary point at χ = 0, i.e., at u = 0, there is only
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one fixed point of Type II:

Type II fixed points:
(Gaussian potential)

p2 = (0, 0, 1) , (4.59)

This corresponds to a scenario where the content of the Universe is completely dominated by the
3-form potential. The eigenvalues of the Jacobian in this case are

{γ}p2 =
{
−3,−3

2

(
1 +

√
1 + 4ξ

9

)
,−3

2

(
1−

√
1 + 4ξ

9

)}
, (4.60)

which leads to the conclusion that p2 is a saddle point node for ξ > 0 [216].

Finally, there exist three pairs of Type III fixed points for the Gaussian potential:

Type III fixed points:
(Gaussian potential)


π±0 = (±1, 0, 0) ,
π±+1 = (±1, 1, 0) ,
π±−1 = (±1, −1, 0) ,

(4.61)

whose eigenvalues are7

{γ}π±0 =
{

3, 3
2 , +∞

}
, {γ}π±−1

= {3, −3, +∞} , {γ}π±+1
= {3, −3, +∞} . (4.62)

while the total parameter of EoS is wtot = −y2
fp. Therefore, π±0 correspond to a DM-dominated

epoch, while in π±±1 the energy budget is entirely dominated by the kinetic term of the 3-form.

The existence of infinite eigenvalues reflects the existence of divergences that arise from the
compactification strategy employed in the definition of the variable u. In the alternative dynamical
system representation introduced in Sect. 4.2.2, the fixed points π±0 are mapped onto a new pair of
isolated fixed points Π±0 in the space (v, y, h):

Π±0 = (±1, 0, 1) , (4.63)

with eigenvalues

{γ}Π±0 =
{

3, 3, 3
2

}
. (4.64)

The repulsive nature of these fixed point tells us that these can correspond to the asymptotic initial
state of the system, i.e., to an initial epoch entirely dominated by DM.

In the new representation, the other four points π±+1 and π±−1 are now mapped onto a continuous

7The infinite value of the eigenvalue was obtained by computing the characteristic polynomial of the Jacobian near
the fixed point and then taking an appropriate limit of the formulas obtained. In particular, we first took the limit of
z → 0 and only afterwards the limit u→ ±1. This is in accordance with the previous statement that the variable z
vanishes faster than tan(πu/2) divergence as u→ ±1.
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Figure 4.2.: The position of the fixed points in (left panel) the dynamical system {u, y, z} and in (right
panel) the new representation {v, y, h}. Matching fixed points in the two representations are
marked with the same colour. The invariant subsets M1 which correspond to the case of no
DM are highlighted in blue.

set of fixed points (cf. Fig. 4.2)

Π±+1 = (±1, +1, hfp) , Π±−1 = (±1, −1, hfp) , (4.65)

where the value of the reduced Hubble rate hfp varies in the range ∈ (0, 1]. The eigenvalues for each
solution in Π±+1 and Π±−1 are

{γ}Π±+1
= {3, −3, 0} , {γ}Π±−1

= {3, −3, 0} , (4.66)

and the existence of a null eigenvalue simply reflects the fact that Π±+1 and Π±−1 do not represent
isolated fixed points. In fact, the eigenvectors associated with γ = 0 correspond to the direction ~eh
tangent to the set. Since the other two eigenvalues have non-zero real part, every point in the sets
Π±+1 and Π±−1 is normally hyperbolic [41, 121] and the stability of the trajectories along the remaining
directions can be determined by applying the usual linear stability theory, leading to the conclusion
that π±+1 and π±−1 are saddle points. Here we point out that using the sign of the infinite eigenvalues
in (4.62) to determine the stability of the solutions according to the rules of linear stability theory
leads to the same results, an assumption used in Ref. [265].

4.2.4. Discussion

A dynamical system approach is a common technique to study the dynamics of a given cosmological
model. By studying the local stability of the fixed points of the system using methods based on
using linear stability theory and centre manifold theory [65, 111, 295], as well as the notion of normal
stability for non-isolated fixed points [41, 121], we are able to qualitatively characterise the system and
understand its possible initial and end state solutions. Within the context of late-time cosmologies
with CDM and 3-form DE, the dynamical system employed usually corresponds to mapping the model
to a semi-cylinder of unit radius and whose height corresponds either to the field χ [216] or a compact
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variable of χ [65, 265]. Such a compactification is necessary if we are to find fixed points at infinity and
therefore provide a global picture of the dynamics of the model. We stress that it is imperative that
the compactification scheme be chosen with care, since it can lead to divergences in the equations.

In this section, we have reviewed the dynamical system description of a model with CDM and a
3-form and presented the new classification of fixed points we defined in [265], which for the first time
included fixed points at infinite values of the χ field used to parameterise the 3-form. To overcome
some problems related to the stability analysis of these fixed points at infinity, a new dynamical system
description was introduced by us in [80], which was based on a different compactification scheme
[146, 169, 170, 204, 366]. In this new representation, the variable z related to the fractional potential
energy density of the 3-form is replaced by a reduced Hubble rate variable h. As a consequence, the
information regarding the individual energy density contribution of the 3-form and DM is no longer
readily available in this new representation and the graphical representation of the system becomes
less intuitive (cf. Fig. 4.2). However, these are minor setbacks as the new dynamical system allows for
a proper study of the stability of the fixed points at infinite values of the field χ, as was shown for the
case where the 3-form has a Gaussian potential.

As a final comment, we point out that in general the usefulness and applicability of a specific
dynamical system representation depends on the model at hand. The two strategies discussed in this
section are no exception–the representation {u, y, z} is perfectly capable of describing the dynamics
of the model at late-time, i.e., for finite values of χ, and provides a more intuitive interpretation of
the dynamical variables used. On the other hand, the representation {v, y, h} may be preferable to
describe the dynamics at infinity. Furthermore, both these representations fail in the case of potentials
with zeros at finite values of χ, as this can lead to the appearance of divergent terms in the evolution
equations. Such limitations appear as well in quintessence models where DE is modelled by a scalar
field and specific strategies were developed to obtain a coherent description for monomial [27] and
Starobinsky-like [26] potentials. It remains to be checked if a similar strategy could prove fruitful in
the case of a 3-form field.

4.3. The Little Sibling of the Big Rip in 3-form Cosmology

The LSBR, as first analysed in Ref. [77], is a late-time cosmological event which happens at an infinite
cosmic time and where the Hubble parameter diverges but the first time derivative of the Hubble
parameter remains finite. In the same paper, it was shown that the presence of a LSBR event in the
future of the Universe leads in a finite interval of time from the present to a dissociation of the local
structure of the Universe, which starts by destroying the large scale structures and then gradually
affects structures of smaller size. This type of behaviour can be induced by a fluid with the simple
EoS [77]

P = −ρ−A , (4.67)

where A is a positive constant, although it can appear as well in models of modified generalised
Chaplygin gas [84]. The constant A in Eq. (4.67), however small, is the leading term contributing to
Ḣ and leads the Hubble rate to diverge linearly with the cosmic time and logarithmically with the
scale factor. Here, and in the rest of this section, a dot represents a derivative with respect to the
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cosmic time (N = 1). We now show how a LSBR event appears naturally in some 3-form cosmological
models with positive-valued potentials.

As discussed in Sect. 4.1.4, the equation of motion of the χ field admits as static solutions the
critical points ±χc. These two points have the particularity of saturating the Friedmann equation in a
spatially flat Universe, leading to the constraint (4.21). If V (±χc) > 0, the only way for the static
solutions to represent physically accessible states is for the Hubble rate to diverge as χ→ ±χc and
χ̇→ 0. However, this divergence does not propagate to the first derivative of H, as we find from Eqs.
(4.17) and (4.18) that in the absence of other matter fluids

Ḣ(χ→±χc) = ∓κ
2

2 χcV,χ(±χc) = −2
3V,χ

2(±χc) . (4.68)

This means that Ḣ converges to a constant whose sign depends on the value of V,χ2(±χc). In the
case that V,χ2(±χc) < 0, near the critical points the Hubble rate grows linearly with time

H(t) ≈ H(ti)−
2
3V,χ

2(±χc) (t− ti) , (4.69)

where ti is an arbitrary constant. It can as well be shown that the Hubble rate grows logarithmically
with the scale factor

H2(t) ≈ H2(ti)−
4
3V,χ

2(±χc) log
(
a(t)
a(ti)

)
. (4.70)

This behaviour is precisely the one observed in a fluid with EoS (4.67) which leads the Universe to hit
a LSBR event in the future8. Since in this case these points represent local minima of the potential,
recall that the field χ cannot escape the interval [−χc, χc], we find that the solution leading to LSBR
final state is a local attractor.

We have just seen that in spatially flat FLRW model with just a 3-form field, if V (±χc) > 0 and
Vχ2(±χc) < 0 the universe can be led to a LSBR in the asymptotic future. We can now consider
whether the addition of other (non-interacting) matter fluids can change the end state of the Universe.
In this case, the equality (4.20) that defines the effective potential must be replaced by [216, 217]

V (eff)
χ = − 3κ2

2

(
1 + w(m)

)
ρ(m) − 3κ2

2

(
χ2 − 2

3κ2

)
Vχ , (4.71)

where quantities with the superscript (m) refer to the matter content apart form the 3-form field. If
these matter fluids respect the null energy condition ρ(m) + P (m) ≥ 0 then the previous equation
indicates that in the asymptotic future, when ρ(m) has completely decayed due to the expansion of
the Universe, the static solutions χ(t) = ±χc are recovered. Even in the case where ρ(m) evolves
towards an effective cosmological constant, the presence of the factor 1 + w(m) in Eq. (4.71) shows
that these solutions are not affected. We thus conclude that the LSBR remains a possible final state
of the Universe even in the presence of other matter fields that satisfy the null energy condition.

As discussed above, a LSBR cosmic event can occur in models where DE is modelled by a 3-form
8The conclusion that the Hubble parameter diverges as the system evolves towards the static solution depends

strongly on the assumption that the potential is positive valued at the critical points. In addition, whether the divergence
is of the type of a LSBR event requires the asymptotic value of Ḣ to be finite and positive.
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field (minimally coupled to gravity and with a canonical kinetic term) playing the role of DE, even
when the potential of the 3-form is always non-negative. In this scenario, the Universe would end up
in a final state of super-accelerated expansion, Ḣ > 0, that would eventually destroy all the structures
in it. Furthermore, such a catastrophic fate is not altered by the presence of other types of matter,
such as DM, that satisfy the null energy condition, at least as long as there is no interaction with
the 3-form. There is, however, the possibility that this scenario can be avoided by an appropriate
interaction between DM and DE. If this interaction is able to maintain the field χ away from the
critical points χc in the asymptotic future, then the LSBR might be removed as the end state of the
Universe. This possibility was considered in Ref. [265] and the main results of that work are presented
in the remainder of this section.

4.3.1. The model

Let us now consider a model of a spatially flat universe filled by a 3-form field Aµνρ with a potential
V (A2) playing the role of DE and by pressure-less matter, e.g., CDM. The evolution of the 3-form is
encoded in the scalar variable χ(t), cf. Eq. (4.12), and we consider the existence of an interaction Q
between DM and DE such that

ρ̇DM = −3Hρm −Q , ρ̇χ = −3H (ρχ + Pχ) +Q . (4.72)

Independently of the specific form of the interaction term Q in the previous equations, its sign indicates
the direction of the energy transfer between DM and the 3-form field: if Q > 0 there is an energy
transfer from DM to the 3-form field and if Q < 0 there is an energy transfer from the 3-form field
to DM. We recall that despite this interaction between the individual fluids, the total energy density
ρtot = ρm + ρχ is always conserved, in agreement with the Bianchi identities.

The Friedmann and Raychaudhuri equations (4.17) and (4.18) in this model can be written

H2 = κ2

3 ρm + κ2

6 (χ̇+ 3Hχ)2 + κ2

3 V (χ2) , (4.73)

Ḣ = − κ2

2 (ρm + V,χχ) . (4.74)

Due to the interaction with DM, the evolution equation for χ, cf. Eq. (4.14), compatible Eq. (4.72)
becomes

χ̈+ 3Hχ̇+ 3Ḣχ+ V,χ = Q

χ̇+ 3Hχ . (4.75)

From the conservation equations (4.72), we can define the effective parameters of EoS of CDM and
the 3-form as

weff
DM = Q

3HρDM
, weff

χ = − 1 + Vχχ−Q/(3H)
1
2 (χ̇+ 3Hχ)2 + V

, (4.76)
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while the total EoS parameter reads

wtot = −1 + ρm + Vχχ

ρm + 1
2 (χ̇+ 3Hχ)2 + V (χ2)

. (4.77)

Choice of potential

Having defined the main components of our model, we are now left with the task of specifying the
potential of the 3-form and the functional form of the interaction term Q. We begin by fixing the
potential of the 3-form, whose shape is essential in guaranteeing that a LSBR event occurs in the
non-interacting model, i.e., when Q = 0. With this in mind, we consider the Gaussian potential

V (χ) = V0 e−
ξ
9
χ2

χ2
c , (4.78)

where V0 and ξ are positive constants. This potential has the particularity of satisfying χVχ < 0 for
∀χ 6= 0, therefore leading to a phantom-like behaviour of the 3-form everywhere except at the origin.
Such a behaviour leads to a LSBR whenever the field χ tends to the static solutions at the critical
points χ(t) = ±χc.

Another desirable characteristic of the Gaussian potential is that, despite the phantom-like behaviour,
we can have a positive squared speed of sound of the 3-form, c2sχ, for an arbitrarily large interval
around the origin by controlling the parameter ξ. In fact, since for a 3-form c2sχ is given by [216]

c2sχ := χVχχ
Vχ

= 1− 2ξ
9
χ2

χ2
c
, (4.79)

we find that 0 ≤ c2s ≤ 1 in the interval χ ∈ [−
√

9/(2ξ)χc,
√

9/(2ξ)χc], which includes the critical
points ±χc if 0 < ξ < 9/2. Thus, at late-time the model is free of instabilities caused by a superluminal
or imaginary speed of sound of the 3-form [131, 216]. For large values of χ2, however, c2sχ becomes
increasingly negative, as such the model may not be physically viable in that regime. Nevertheless,
the model remains valid and physically relevant at late-time when χ ∈ [−χc, χc] and can be used as
a candidate for DE. In addition, for large values of χ the 3-form field behaves asymptotically as a
cosmological constant, therefore, it is possible that any instabilities arising from a negative value of c2s
are suppressed. For an extended discussion on different type of potentials, please see the Sect. 4.2 of
Ref. [265].

Choice of interaction

Finally, we look at the form of the interaction term Q. In the context of cosmological models with
3-form fields, an interacting 3-form as been considered in Refs. [65, 218, 265, 274] in the context of
models in which the 3-form field plays the role of DE, while in Ref. [132] a coupling between a 3-form
and a scalar field is considered as a mean to describe the reheating period that ends the 3-form fuelled
inflation.
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Starting from a phenomenological approach, we consider the general class of interactions

Q = 3H (ρm + ρχ)
∑
i,j=0

λij

(
ρm

ρm + ρχ

)i(
ρχ

ρm + ρχ

)j
, (4.80)

where i, j are non-negative integers and λij are dimensionless couplings that determine the strength
of each interaction term. The expression (4.80) represents a natural higher order generalisation of the
frequently considered linear interaction Q = 3H (λmρm + λDEρDE) [68] and includes as well the case
of Q = 3HλρmρDE/(ρm + ρDE), inspired from two-body chemical reactions [38, 78]. While it is not
derived from fundamental physics, its simple mathematical structure does bring some advantages as
it facilitates a dynamical systems analysis of the model at hand and in some cases even allows for
an explicit solution to be obtained. If the sum in Eq. (4.80) is truncated up to an order n such that
i+ j ≤ n, we can take advantage of the degeneracy in the λij ’s to re-write the interaction as

Q = 3H (ρm + ρχ)
n∑
i=0

αi

(
ρχ

ρm + ρχ

)i
, (4.81)

thus reducing the number of coupling coefficients from (n+ 2)(n+ 1)/2 to just n+ 1. In the following
analysis we will consider only interaction that are up to quadratic order in the expansion (4.81).
By truncating the expansion (4.81) to quadratic order, we are able to cover most of the cases of
interactions considered in the literature as well as verify if important features appear in the evolution
of the model due to the inclusion of a non-linear term.

4.3.2. Dynamical system analysis

In order to study the dynamics of our model, we now employ a dynamical system analysis. We choose
to employ the same set of variables discussed in Sect. 4.2:

u = 2
π

arctan
(
χ

χc

)
, y := χ̇+ 3Hχ

3Hχc
, z :=

√
κ2V

3H2 , s :=
√
κ2ρm

3H2 , (4.82)

which where first introduced in Ref. [65] and represent a compactification of the variables used in
Refs. [131, 216, 218, 222, 274]. We recall that {u, y, z, s} verify

−1 ≤ u ≤ 1 , 0 ≤ s ≤ 1 , 0 ≤ z ≤ 1 , −1 ≤ y ≤ 1 , (4.83)
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and satisfy the Friedmann constraint y2 + z2 + s2 = 1. With an interaction Q between DM and the
3-form turned on, the dynamical system (4.33)–(4.35) that describes the model becomes

ux = 6
π

cos2
(πu

2

) [
y − tan

(πu
2

)]
, (4.84)

yx = 1
2

{
3
[
1− y2 − z2] y + λ (u) z2

[
1− tan

(π
2 u
)
y
]}

+ κ2

6yH3 Q , (4.85)

zx = 1
2z
{

3
[
1− y2 − z2]− λ (u)

[
y − tan

(π
2 u
) (

1− z2)]} , (4.86)

s =
√

1− y2 − z2 . (4.87)

We recall that we are using x = log(a/a0) as our time variable and a subscript x indicates a derivative
with respect to x. In addition, for the case of a Gaussian potential (4.78) we can write the factor
λ(u), which is defined in Eq. (4.30), as

λ(u) = 2ξ
3 tan

(π
2 u
)
, (4.88)

and the quadratic interaction (4.81) can be written in terms of the dynamical variables as

Q = 9H3

κ2

2∑
i=0

αi
(
y2 + z2)i . (4.89)

The total EoS parameter (4.77) can now be written in terms of the dynamical system variables as

wtot = −
(
y2 + z2)− 2ξ

9 tan2
(π

2 u
)
z2 , (4.90)

while the individual effective EoS parameters, cf. Eq. (4.76), read

weff
DM = 1

1− y2 − z2

2∑
i=0

αi
(
y2 + z2)i , (4.91)

weff
χ = − 1− 2ξ

9 tan2
(π

2 u
) z2

y2 + z2 −
1

y2 + z2

2∑
i=0

αi
(
y2 + z2)i . (4.92)

The set of Eqs. (4.84), (4.85), and (4.86), complemented with Eqs. (4.88), constitutes a three-
dimensional autonomous system that defines the evolution of the dimensionless variables (u, y, z)
which encode the evolution of our model of interacting DM and 3-form. In the following sections, we
will identify the position of the fixed points of the model according to the classification defined in
Sect. (4.2) as well as study their stability. Notice, however, that the inclusion of an interaction term
leads to a modification of the conditions (4.38) and (4.41) that define the position of the fixed points
of Types I and II. Taking into account Eqs. (4.88) and (4.89), those conditions are now replaced,
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respectively, by

(ufp, yfp, zfp) :


ufp = 2

π
arctan (yfp) ,

yfp
(
1− y2

fp
)

= − 1
yfp

∑2
i=0 αi

(
y2

fp + z2
fp
)i
,

zfp = 0 ,

(4.93)

and

(ufp, yfp, zfp) :


ufp = 2

π
arctan (yfp) ,

ξyfpz
2
fp = − 3

2ξyfp

∑2
i=0 αi

(
y2

fp + z2
fp
)i
,

1− y2
fp − z2

fp = 2
9ξy

2
fpz

2
fp .

(4.94)

Replacing the equalities (4.93) and (4.94) in Eq. (4.90), we find that the value of the total EoS
parameter at the fixed points of Type I and II is not affected by the interaction and wtot = −y2

fp for
the fixed points of Type I and wtot = −1 for the fixed points of Type II.

From (4.93) we find that the quadratic interaction (4.81) removes completely the fixed points
associated to the LSBR if

α0 + α1 + α2 6= 0 . (4.95)

If we impose this condition back on Eq. (4.88) we obtain the general form of the interactions belonging
to the class (4.81) that do remove LSBR event:

Q 6= 9H3

κ2

[(
y2 + z2)− 1

] [
α1 + α2 + α2

(
y2 + z2)] , (4.96)

which, can be recast in terms of the CDM related variable s as

Q 6= − 9H3

κ2 s2 [α1 + α2 + α2
(
y2 + z2)] . (4.97)

This condition tells us that the LSBR event is completely removed as a possible final state of the
model as long as the interaction is not proportional to a power of the DM energy density ρnm with
n ≥ 1. This result can be understood by looking at the conservation equation for DM (4.72) which
for Q = 3Hρnmg(y, z) becomes

ρ̇m + 3H
[
1 + g(y, z)ρn−1

m
]
ρm = 0 . (4.98)

For well behaved g(y, z) this equation admits as solution ρm = 0 and therefore does not exclude a
priori the possibility that the end state of the Universe is characterised by a vanishing contribution
of DM to the matter content and therefore at very late-time the 3-form field is not affected by the
presence of DM and drives the universe towards a LSBR event. Notice that this condition is completely
independent of the shape of the potential, therefore, it is not limited to the case of a 3-form with a
Gaussian potential, as long as the potential used leads to a LSBR in the future.
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General Stability

By solving the set of equalities (4.93), we can calculate the position of fixed points of Type I in terms
of the interaction couplings {α0, α1, α2} as

Type I fixed points:
(Quadratic interaction)


p̂±0 : (ufp, yfp, zfp) =

(
± 2
π

arctan (ŷ−) , ±ŷ−, 0
)
,

p̂±1 : (ufp, yfp, zfp) =
(
± 2
π

arctan (ŷ+) , ±ŷ+, 0
)
,

(4.99)

where ŷ± is defined as

ŷ2
± = 1 + α1

2 (1− α2)

[
1±

√
1 + 4α0

1− α2

(1 + α1)2

]
. (4.100)

As in the non-interacting case, we find that the existence of fixed points of Type I does not depend on
the shape of the potential and wtot = −y2

fp. By comparing Eq. (4.99) with the position of the fixed
points of Type I in the non-interacting case, cf. Eq. (4.58), we conclude that as we switch off the
interaction the pairs of fixed points p̂±0 and p̂±1 obtained above converge, respectively, to the points
p0 and p±1 of the non-interacting case.

In the regime of weak interactions, i.e., for small coefficients |αi| � 1, expanding (4.100) at first
order in the αi’s leads to

ŷ2
− ' − α0 , ŷ2

+ ' 1 + (α0 + α1 + α2) . (4.101)

Thus, the fixed points p̂±0 correspond to a scaling behaviour between CDM and DE, with a near
complete CDM dominance, if α0 < 0 and to a matter dominated epoch if α0 = 0, in which case
ŷ− = 0 and p̂±0 = p±0 . In addition, we find that the existence of the fixed points p̂±0 is dependent on the
condition α0 ≤ 0. On the other hand, the fixed points p̂±1 only exist in the system if α0 +α1 +α2 ≤ 0
and corresponds either to a scaling behaviour with 3-form dominance if α0 + α1 + α2 < 0 or to
possible LSBR events if α0 + α1 + α2 = 0. We recall that previously, cf. Eq. (4.95), we found that
the condition for the removal of fixed points associated to the LSBR was precisely α0 + α1 + α2 6= 0.

The eigenvalues of the Jacobian at p̂±0 and p̂±1 can be written in terms of ŷ2
±, α1, and α2 as

{γ}p̂±0 ,p̂±1 =
{
−3, 3

2(1− ŷ2
±),−3

[
2 (1− α2) ŷ2

± − (1 + α1)
]}

, (4.102)

where ŷ− (ŷ+) on the above formula corresponds to the case p̂±0 (p̂±1 ). We find that the Jacobian has
two negative and one positive eigenvalues if ŷ2

± 6= 1 and two negative and one null eigenvalues when
ŷ2
± = 1. This implies that p̂±0 always correspond to two saddle points, while the pair p̂±1 represent two

saddles points if ŷ2
+ 6= 1, i.e., when LSBR event is removed. In the case of ŷ2

+ = 1, we find through
methods based on centre manifold theory that the stability condition is analogous to the one found in
the case of no interaction: p̂+

1 (p̂−1 ) is an attractor if ξ > 0 and a saddle node if ξ < 0. Therefore, we
find that quadratic interactions (4.88) that do not satisfy the inequality (4.95) not only fail to remove
the fixed points associated to the LSBR event, they also do not change their stability.
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In order to find the position of the fixed points of Type II, we recast the condition (4.94) as

α2β
2 + (α1 − 1)β + (1 + α0) = 0 , (4.103)(
β − y2

fp
)
y2

fp −
9
2ξ (1− β) = 0 , (4.104)

with ufp = (2/π) arctan(yfp) and

β := y2
fp + z2

fp . (4.105)

The quantity β represents the fractional energy density of DE at the fixed point and satisfies 0 < β ≤ 1.
An immediate conclusion from Eq. (4.103) is that, for the class of interactions considered, the value
of β is determined solely by the interaction coefficients αi and does not depend on the choice of the
potential. In addition, as discussed above the total parameter of EoS is wtot = −1 independently of
the potential considered and the coupling coefficients.

The solutions to Eq. (4.103) are

β± = 1− α1

2α2

[
1±

√
1− 4α2

1 + α0

(1− α1)2

]
, (4.106)

which, at first order in the coefficients αi can be written as

β+ '
1− α1

α2
− 1− (α0 + α1 + α2) , β− ' 1 + (α0 + α1 + α2) . (4.107)

In the regime of small coefficients, |αi| � 1, the solution β+ is outside the interval (0, 1] and can be
disregarded, while the solution β− lies within the interval (0, 1] and is close to unity (β− . 1) for
α0 + α1 + α2 . 0, indicating a 3-form dominance near the fixed points. The same condition was
found for the existence of the Type I fixed points p̂±1 .

By setting β = β− in Eq. (4.104) and solving for yfp, we find that the dynamical system has at
most two pairs of fixed points of Type II:

Type II fixed points:
(Quadratic interaction
+ Gaussian potential)


p̃±1 =

(
± 2
π

arctan (ỹ+) , ±ỹ+,
√
β− − ỹ2

+

)
,

p̃±2 =
(
± 2
π

arctan (ỹ−) , ±ỹ−,
√
β− − ỹ2

−

)
,

(4.108)

where

ỹ2
± = β−

2 (1±∆) , ∆ (β, ξ) :=

√
1− 18

ξ

1− β−
β2
−

. (4.109)

For ξ > 0, we find that 0 ≤ ∆ < 1, which ensures the existence of Type II fixed points, as long as

9
ξ

(√
1 + 2ξ

9 − 1
)
≤ β− ≤ 1 , 0 < ξ <

9
2 . (4.110)
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For general values of the parameters of the model (ξ, α0, α1, α2), the expressions for the eigenvalues
of the Jacobian for the Type II fixed points are too cumbersome to be used to draw conclusions on
the stability of the system by analytical methods. An alternative strategy devised by us in Ref. [265] is
to employ the Hurwitz criterion (cf. Ref. [283] for the definition and Appendix C.1 for its application
to the cubic case) to determine whether all three eigenvalues have negative real part, in which case
the fixed point is stable, or if at least one of the eigenvalues has a positive real part, in which case the
fixed point is unstable. Let us write the characteristic polynomial of the Jacobian, J , of the dynamical
system at the fixed point as

det (J − γ I3) = a0 + a1γ + a2γ
2 − γ3 , (4.111)

where I3 is the 3× 3 identity matrix and ai, i = 0, 1, 2, are constant coefficients and the roots γ of
det(J − γI3) are the eigenvalues of the Jacobian. Then, using Hurwitz criterion we can state that all
three γ’s have negative real part if and only if

a0 < 0 , sign a1 = sign a0 , a1a2 + a0 > 0 . (4.112)

As a corollary, when a0 > 0 there is at least one positive eigenvalue and the fixed point is unstable.
Although we were not able to obtain a general result for the stability of fixed points of Type II using
this method, from analogy with the non-interaction case it might be expected that late-time attractors
are provided by the pair p̃±1 , while the pair p̃±2 gives unstable points. This was confirmed for specific
subclasses of interactions presented below.

If we consider the upper limit β− = 1 in Eq. (4.110), we find from Eq. (4.109) that ∆ = 1. In
this case, the pairs p̃±1 and p̃±2 converge, respectively, to the points p±1 and p2 obtained when Q = 0.
In fact, solving Eq. (4.106) for β− = 1 leads to the equality9 α0 + α1 + α2 = 0, of which the
non-interacting case αi = 0 is a trivial solution. Since the points p±1 belong to the Type I category
(zfp = 0), when β− = 1 the only fixed point of Type II is p̃2 = p2. The analysis of the system
around this point presents serious challenges as the interaction term in Eq. (4.85) is proportional to
1/y. This limitation of the dynamical system representation seems to arise from the choice of the
phenomenological interaction (4.89) which does not cancel this divergent factor. Nevertheless, as
stated above β− = 1 occurs only for those interactions for which the LSBR event is not removed.
For those cases, we expect that all the trajectories of interest converge to one of the fixed points
corresponding to the LSBR and not to p̃2. As such, we will not look into the stability of this point
with further detail.

The opposite limiting case occurs when β− approaches the lower bound in Eq. (4.110), i.e., when
ξ = 18(1 − β−)/β2

−. In this case, the parameter ∆ vanishes, ỹ2
− = ỹ2

+ and the two pairs of fixed
points p̃±1 and p̃±2 merge into one single pair of fixed points of Type II:

Type II fixed points for ∆ = 0:
(Quadratic interaction
+ Gaussian potential)

p̃±∆ =
(

2
π

arctan
(√

β−
2

)
, ±
√
β−
2 ,

√
β−
2

)
. (4.113)

9Notice that this implies that the interaction does not remove the LSBR event, cf. Eq. (4.95).
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Notice that since for small interaction couplings we have β− . 1, this case implies potentials that
are extremely flat around χ = 0. In addition, we find that one of the eigenvalues of the Jacobian is
always zero at p̃±∆:

{γ}p̂±∆ =
{

0 , 3F
2

(
1 +
√

1− 4G
)
,

3F
2

(
1−
√

1− 4G
)}

. (4.114)

Here, the factors F = F (α1, α2, β−) and G = G(α1, α2, β−) are defined as

F (α1, α2, β−) :=
1 + (α1 − 3)β− + 2α2β

2
−

β−
, (4.115)

G(α1, α2, β−) := 2 + (α1 − 8)β + (2α2 − 3α1 + 10)β2 − (6α2 − α1 + 3)β3 + 2α2β
4

[1 + (α1 − 3)β + 2α2β2]2
, (4.116)

and for convenience we have used Eq. (4.103) to eliminate α0 in favour of β−.

Since one of the eigenvalues vanishes, the analysis of the linearised system is not valid to fully
characterise the stability of the system near the fixed points and centre manifold theory needs to be
employed. Nevertheless, if G < 0 one of the eigenvalues of the system has a positive real part and the
fixed point is necessarily unstable. When ∆ = 0, the limit β− = 1 implies ξ = 0, which corresponds
to the special case of a 3-form with a constant potential10. In this case, the 3-form behaves as a
cosmological constant with Pχ = −ρχ and the dynamical system employed in this section becomes
degenerate as the two variables y and z can be replaced by the single variable

√
β =

√
y2 + z2 and

the variable u decouples from the rest of the dynamical system (λ(u) ≡ 0). As such, we will not
explore this case any further.

In order to identify the fixed points Type III in our model with a Gaussian potential with ξ > 0,
we assume that, as u→ ±1, the variable zfp vanishes sufficiently fast so as to cancel the divergence
of tan(πu/2), i.e., we assume that z tan(πu/2) = 0 in the limit of very large χ. This assumption is
supported by the fact that we have

z ∝
exp

[
− ξ

18 tan2
(π

2 u
)]

H
, (4.117)

which for u→ ±1 goes to zero faster than tan(πu/2) as long as the asymptotic value of H remains
positive. The fact that zfp = 0 suggests an analogy with the results found for the fixed points of
Type I. In fact, we find that as we turn on the interaction four pairs of fixed points appear

Type III fixed points:
(Quadratic Interaction)


π̂±−0 : (ufp, yfp, zfp) = (±1, −ŷ−, 0) ,
π̂±+0 : (ufp, yfp, zfp) = (±1, +ŷ−, 0) ,
π̂±−1 : (ufp, yfp, zfp) = (±1, −ŷ+, 0) ,
π̂±+1 : (ufp, yfp, zfp) = (±1, +ŷ+, 0) ,

(4.118)

where y2
fp is given by Eq. (4.100). Notice that π̂±−0 and π̂±+0 correspond to a decomposition of π+

0

10Notice that a different limit is obtained in Eq. (4.108) if we set β− = 1 without imposing ∆ = 0 first. In fact,
from Eq. (4.109) we find that unless ξ = 18(1− β−)/β2

−, the equality β− = 1 implies ∆ = 1.
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Figure 4.3.: (Left panel) The position of the fixed points of the dynamical system (u, y, z) in the case of a
Gaussian potential when the interaction between DM and DE is switched off. (Right panel)
The position of the fixed points changes when, for the same potential, we turn on a quadratic
interaction of the kind described in Eq. (4.81) with small coefficients αi. It is possible to
observe how each fixed point in the non-interacting case, except for π̂±±1, splits in two points
once the interaction is turned on. As the strength of the interaction coefficients changes, the
new fixed points move along the yellow curves. For sufficiently flat potentials, the pairs p̃±1
and p̃±2 may coalesce and give rise to the fixed points p̃±∆, cf. Eq. (4.113). To obtain this
figure we used the values ξ = 1, α0 = α2 = −0.03, and α1 = +0.03.

and π−0 , obtained in the non-interaction scenario, into a new pair of fixed points each. In addition,
π̂±−1 and π̂±+1 correspond to the two pairs π±−1 and π±+1 found when Q = 0. The eigenvalues of the
Jacobian for these fixed points are

{γ}π̂± =
{

3, 3 (1 + α1)− 6 (1− α2) y2
fp, +∞

}
. (4.119)

Under the previous assumption that an infinite but positive eigenvalue corresponds to a direction in
which the system is extremely repulsive, we find that π±±0, with y2

fp = y2
− ∼ 0 correspond to repulsive

points representing the asymptotic past, while the two pairs π±±1, with y2
fp = y2

+ ∼ 1 correspond to
saddle points.

Examples

So far, in this section we have determined the position and stability of all the fixed points of the
system when considering a quadratic interaction (4.81) between DM and the 3-form DE with generic
values for the coupling coefficients {α0, α1, α2} and under the assumption of weak interactions, i.e.,
|αi| � 1. In Fig. 4.3, we compare the position of the fixed points when Q = 0 (left panel) and when
the quadratic interaction is turned on (right panel). In general, when one of the fixed points obtained
in the non-interacting case (left panel) is affected, it decomposes into two new fixed points whose
position moves along the yellow lines, depending on the value of the interaction couplings {α0, α1, α2}.
The only exception are the points in the corners of the subset M̃0 = {(u, y, z) : z = 0} which are
displaced along the y direction without giving rise to a new solution.
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Inter. F.P. Constraints (ufp, yfp, zfp) Stability Descr.

0

p0 (0, 0, 0) Saddle DM

p±1 (±1/2, ±1, 0) Attractive LSBR

p2 (0, 0, 1) Saddle dS

π±0 (±1, 0, 0) Repulsive DM

π±+1 (±1, 1, 0) Saddle K

π±−1 (±1, −1, 0) Saddle K

I

p̂±0 −1 < αm < 0
(
± 2
π

arctan |αm|
1
2 , ±|αm|

1
2 , 0
)

Saddle S-DM

p̂±1 (±1/2, ±1, 0) Attractive LSBR

p̃2 (0, 0, 1) N/A dS

π̂±+0 −1 < αm < 0
(
±1, |αm|

1
2 , 0
)

Repulsive S-DM

π̂±−0 −1 < αm < 0
(
±1, −|αm|

1
2 , 0
)

Repulsive S-DM

π̂±+1 (±1, 1, 0) Saddle K

π̂±−1 (±1, −1, 0) Saddle K

II

p̂±0 αmm < 0
(
± 2
π

arctan
∣∣ αmm

1−αmm

∣∣ 1
2 , ±

∣∣ αmm
1−αmm

∣∣ 1
2 , 0

)
Saddle S-DM

p̂±1 (±1/2, ±1, 0) Focus Node LSBR

p̃2 (0, 0, 1) N/A dS

π̂±+0 αmm < 0
(
±1,

∣∣ αmm
1−αmm

∣∣ 1
2 , 0

)
Repulsive S-DM

π̂±−0 αmm < 0
(
±1, −

∣∣ αmm
1−αmm

∣∣ 1
2 , 0

)
Repulsive S-DM

π̂±+1 (±1, 1, 0) Saddle K

π̂±−1 (±1, −1, 0) Saddle K

III

p̂0 (0, 0, 0) Saddle DM

p̂±1 (±1/2, ±1, 0) Focus Node LSBR

p̃2 (0, 0, 1) N/A dS

π̂±0 (±1, 0, 0) Repulsive DM

π̂±+1 (±1, 1, 0) Saddle K

π̂±−1 (±1, −1, 0) Saddle K

Table 4.1.: The fixed points found for a universe filled by DM and by DE modelled by a 3-form DE with a
Gaussian potential. We present the results in the case of no interaction between DM and DE
and for the interactions I, II, and III presented in Sect. 4.3.2. For each point, we present the
constraints associated for their existence, their coordinates in {u, y, z} space, their stability
and the type of evolution they represent: DM – DM dominance; LSBR – a LSBR event; dS – de
Sitter expansion; K – 3-form kinetic dominance; S-DM – scaling solution with DM dominance.
The stability of the points p̃2 in the cases of interactions I, II and III, which is indicated as not
available (N/A), was not determined since in those cases the interaction term has divergent
factors at the fixed point.
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Inter. F.P. Constraints (ufp, yfp, zfp) Stability Descr.

0

p0 (0, 0, 0) Saddle DM

p±1 (±1/2, ±1, 0) Attractive LSBR

p2 (0, 0, 1) Saddle dS

π±0 (±1, 0, 0) Repulsive DM

π±+1 (±1, 1, 0) Saddle K

π±−1 (±1, −1, 0) Saddle K

IV

p̂0 (0, 0, 0) Saddle DM

p̂±1 −1 < αχ < 0
(
± 2
π

arctan |1 + αχ|
1
2 , ±|1 + αχ|

1
2 , 0
)

Saddle dS-K

p̃±1
1
2 −
√

9+2ξ
6 < αχ < 0

(
± 2
π

arctan
∣∣ 1+∆

2 β−
∣∣ 1

2 , ±
∣∣ 1+∆

2 β−
∣∣ 1

2 ,
∣∣ 1−∆

2 β−
∣∣ 1

2
)

Attractive dS-K

p̃±2
1
2 −
√

9+2ξ
6 < αχ < 0

(
± 2
π

arctan
∣∣ 1−∆

2 β−
∣∣ 1

2 , ±
∣∣ 1−∆

2 β−
∣∣ 1

2 ,
∣∣ 1+∆

2 β−
∣∣ 1

2
)

Unstable dS-P

p̃±∆ αχ = 1
2 −
√

9+2ξ
6

(
± 2
π

arctan
∣∣∣β−2 ∣∣∣ 1

2
, ±
∣∣∣β−2 ∣∣∣ 1

2
,

∣∣∣β−2 ∣∣∣ 1
2
)

Saddle dS-3F

π±0 (±1, 0, 0) Repulsive DM

π±+1

(
±1, + |1 + αχ|

1
2 , 0

)
Saddle K

π±−1

(
±1, − |1 + αχ|

1
2 , 0

)
Saddle K

V

p̂0 (0, 0, 0) Saddle DM

p̂±1 αχχ < 0
(
± 2
π

arctan |1− αχχ|−
1
2 , ± |1− αχχ|−

1
2 , 0

)
Saddle dS-K

p̃±1 − ξ
18 < αχχ < 0

(
± 2
π

arctan
∣∣ 1+∆

2 β−
∣∣ 1

2 , ±
∣∣ 1+∆

2 β−
∣∣ 1

2 ,
∣∣ 1−∆

2 β−
∣∣ 1

2
)

Attractive dS-K

p̃±2 − ξ
18 < αχχ < 0

(
± 2
π

arctan
∣∣ 1−∆

2 β−
∣∣ 1

2 , ±
∣∣ 1−∆

2 β−
∣∣ 1

2 ,
∣∣ 1+∆

2 β−
∣∣ 1

2
)

Unstable dS-P

p̃±∆ αχχ = − ξ
18

(
± 2
π

arctan
∣∣∣β−2 ∣∣∣ 1

2
, ±
∣∣∣β−2 ∣∣∣ 1

2
,

∣∣∣β−2 ∣∣∣ 1
2
)

Saddle dS-3F

π±0 (±1, 0, 0) Repulsive DM

π±+1

(
±1, + |1− αχχ|−

1
2 , 0

)
Saddle K

π±−1

(
±1, − |1− αχχ|−

1
2 , 0

)
Saddle K

Table 4.2.: The fixed points found for a universe filled by DM and by DE modelled by a 3-form DE with a
Gaussian potential in the case of no interaction and for the interactions IV and V in Sect 4.3.2.
For each point, we present the constraints associated for their existence, their coordinates in
{u, y, z} space, their stability and the type of evolution they represent: DM – DM dominance;
LSBR – a LSBR event; dS – de Sitter expansion; K – 3-form kinetic dominance; dS-P – de
Sitter scaling solution dominated by the potential energy of the 3-form; dS-K – de Sitter scaling
solution dominated by the kinetic energy of the 3-form; dS-3F – de Sitter scaling solution
dominated by the 3-form. The values of β− and ∆ in the case of the interactions IV and V are
given by the formulas (4.106) and (4.109). We include once more the case of no interaction
so as to facilitate the comparison of the position of the fixed points when the interactions are
turned on.
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Next, we present the results for five specific sub-classes of the quadratic interaction (4.81) that
were studied in Ref. [265]:

I) Q = 3Hαmρm – In the context of 3-forms this interaction has been studied before in Refs. [65,
274]. Comparison with Eq. (4.88) immediately shows that this type of interaction corresponds
to setting α0 = αm, α1 = −αm, and α2 = 0. Since in this case Q is proportional to the energy
density of DM the fixed points corresponding to LSBR are not removed. In fact, this interaction
affects only the fixed points p̂±0 , π̂±−0 and π̂±+0 which now correspond to scaling solutions with
DM dominance.

II) Q = 3Hαmmρ
2
m/(ρm + ρχ) – This interaction, which is quadratic in the dynamical variables y

and z can be obtained by setting α0 = αmm, α1 = −2αmm, and α2 = αmm. As in the case
of the previous linear interaction, the only affected fixed points are p̂±0 , π̂±−0 and π̂±+0 which
correspond to scaling solutions with DM dominance.

III) Q = 3Hαmχρmρχ/(ρm + ρχ) – In the context of wCDM, this type of mixed interaction has
been studied as a possible solution to the coincidence problem [38, 78]. We can map it to
the formulation in (4.88) by setting α0 = 0, α1 = αmχ, and α2 = −αmχ. As in the previous
two cases, the interaction coefficients do not satisfy the condition (4.95) and, therefore, the
fixed points corresponding to LSBR are not removed. In addition, in this case the fixed points
associated to matter dominance are not affected due to the presence of the interaction.

IV) Q = 3Hαχρχ – This linear interaction proportional to the energy density of DE is also
commonly considered in the literature in the context of wCDm models [64, 99]. A comparison
with Eq. (4.88) immediately leads to the equalities α0 = 0, α1 = αχ, and α2 = 0. Contrary
to the three previous interactions, in this case the inequality (4.95) is satisfied, meaning that
the fixed points p±1 are shifted in the phase space and the final stage of the evolution of the
Universe is no longer a LSBR. On the other hand, the position the fixed points associated to
DM dominance are not affected.

V) Q = 3Hαχχρ2
χ/(ρm + ρχ) – This interaction, quadratic in the dynamical variables, can be

mapped to the formulation (4.88) by setting α0 = 0, α1 = 0, and α2 = αχχ. Similarly to the
case IV, the fixed points associated to DE dominance are shifted from their original position,
thus removing the LSBR, while the fixed points associated to DM are left unaffected.

In Tabs. 4.1 and 4.2 we present the general characteristics of the fixed points for each interaction
and compare them with the non-interacting case. For each fixed point we present the constraints
found for its existence, the position on the {u, y, z, } space, the result of the stability analysis using
the methods delineated above11 and an identifier to which kind of behaviour it represents. For the
interactions I, II and III we did not analyse the stability of the fixed point p2 due to the presence of
divergent terms in the interaction term in Eq. (4.85). Of all the cases studied, only the interactions
IV and V are able to remove the LSBR event in the future, replacing it by attractive de Sitter points
p̃±1 representing a scaling solution with almost complete DE dominance:

ΩDE(x→ +∞) ≈ 1− |α0 + α1 + α2| , Ωm(x→ +∞) ≈ |α0 + α1 + α2| . (4.120)

11A detailed calculation of the stability of each fixed point can be found in Ref. [265].
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4.3.3. Composite Null Diagnosis

In the previous section we have applied a dynamical systems analysis to determine which subclasses of
the general quadratic interaction could remove the LSBR event from the future history of the Universe
in a model of interacting DM and 3-form DE. Out of five specific examples commonly found in the
literature, we found that two of them, QIV = 3Hαχρχ and QV = 3Hαχχρ2

χ/(ρm + ρχ), are able
to replace the LSBR by a de Sitter solution corresponding to a scaling solution with near total DE
dominance. We now explore the possibility of distinguishing these two cases between themselves and
from the non-interacting case using a cosmographic approach based on the statefinder hierarchy and
the fractional growth rate, which together form a composite null diagnosis for ΛCDM [34].

From the EoS (4.67) we can obtain the cosmographic parameters q, j, s and l, cf. Eq. (2.8), as
the Universe heads towards a LSBR event:

q ≈ − 1− 1
3 log(a) +O

[
1

log(a)

]2
, (4.121)

j ≈ 1 + 1
log(a) +O

[
1

log(a)

]2
, (4.122)

s ≈ 1 + 2
log(a) +O

[
1

log(a)

]2
, (4.123)

l ≈ 1 + 10
3 log(a) +O

[
1

log(a)

]2
. (4.124)

Replacing these expressions in the Statefinder hierarchy (2.23)–(2.25) we obtain12

S
(1)
3 ≈ 1 + 1

log(a) +O
[

1
log(a)

]2
, S

(2)
3 ≈ − 2

9 log(a) +O
[

1
log(a)

]2
, (4.125)

S
(1)
4 ≈ 1 + 1

log(a) +O
[

1
log(a)

]2
, S

(2)
4 ≈ − 2

9 log(a) +O
[

1
log(a)

]2
, (4.126)

S
(1)
5 ≈ 1 + 4

log(a) +O
[

1
log(a)

]2
, S

(2)
5 ≈ − 8

9 log(a) +O
[

1
log(a)

]2
, (4.127)

We thus find that although the limiting values of the Statefinders are the same as for13 ΛCDM, before
the Universe reaches its end state there is a deviation from the point {S(n)

1 , S
(n)
2 } = {1, 0} that

characterises that model. Interestingly, this deviation does not depend on the parameter A in the EoS
(4.67).

In the rest of this section, we will apply the statefinder hierarchy to our model of interacting DM
and 3-form DE. In order to obtain the expressions for the statefinders S(n)

1 , n = 3, 4, 5, in terms of

12In Ref. [34], the definition of the statefinders S(4)
2 and S(5)

2 depends on an arbitrary constant α. Here we have
chosen α = 3.

13In this, the LSBR differs from other cosmic events like the Big Rip, whose end-point in the Statefinder diagrams
deviates slightly from ΛCDM [24].
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the dynamical system variables we write the deceleration parameter as

q(u, y, z) = 1 + 3wtot

2 = −1 + 3
2
(
1− y2 − z2)− ξ

3 tan2
(π

2 u
)
z2 , (4.128)

where wtot was obtained in Eq. (4.90). The higher order cosmographic parameters and the corre-
sponding statefinders S(1)

n , n = 3, 4, 5 can be obtained by using the relation

d
dx

(
1
a

dn

d tnH
−n
)

=
(

1
a

dn+1

d tn+1H
−n+1

)
−
(

1
a

dn

d tnH
−n
)

[1− n (1 + q)] . (4.129)

The first of the statefinder parameters reads [265]

S
(1)
3 = 1 + ξz2

{
tan

(π
2 u
)
y

[
2− 2ξ

9 tan2
(π

2 u
)]
− tan2

(π
2 u
)[

1− 2ξ
9 tan2

(π
2 u
)]}

+ 9
2

[
α0 + α1

(
y2 + z2)+ α2

(
y2 + z2)2] , (4.130)

while the expressions for S(1)
4 and S(1)

5 are too cumbersome to be presented here.

The non-interacting case

We begin our analysis by finding the solution for the non-interacting model with DM and 3-form DE
with a Gaussian potential that best mimics the behaviour of ΛCDM model until the present time. If
we take as reference values for the present day values of the relative energy density of DM, ΩDM,0,
and of the parameter of EoS of the 3-form field, wχ,0, the following two best-fit values of the Planck
2015 mission [11, 16] for a DE model with constant parameter of EoS, w:

Ωm = 0.3065 , wd = − 1.006 , (4.131)

then we can write the following present day conditions

Ωm,0 = 1− y2
0 − z2

0 = 0.3065 , wχ,0 = −1− 2
9ξ

z2
0

y2
0 + z2

0
tan2

(π
2 u0

)
= −1.006 . (4.132)

In addition, we can fix the current value of the deceleration parameter as

q0 = −0.5340 . (4.133)

Notice that this value deviates by only 1.2% from the value of q0 found for ΛCDM model. We stress
that the values in Eq. (4.131) were obtained by fitting the wCDM model to the observational data and
therefore do not correspond to the best-fit values of the model analysed here, there DE is modelled by
a 3-form. Nevertheless, we take them as a guiding line to analyse our model.

If we fix the value of the potential parameter14 ξ, Eqs. (4.132) provide us with two out of three

14In the rest of this section we will present the results obtained for ξ = 1. This value respects the condition
0 < ξ < 9/2 that ensures that the squared speed of sound of the 3-form is positive in the interval [−χc, χc], cf.
Eq. (4.79), and at the same time it is large enough so as to not make the potential too flat around the origin. Recall
that for a constant potential the 3-form behaves exactly as a cosmological constant.
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Figure 4.4.: (Left panel) Trajectories, in the 3-dimensional space (u, y, z), of the two solutions PIz (red
thick line) and PIIz (green thick line) that were found to minimise the deviation from ΛCDM in
the case of no interaction. (Middle panel) Trajectory obtained when interaction IV is considered
with αχ = −0.03. (Right panel) Trajectory obtained when interaction V is considered with
αχχ = −0.03. On both the middle and right panels, the initial conditions are set in the past,
at redshift 6, using the values of the dynamical variables for the trajectory PIz . The thin lines
indicate the projection, on the plane yOz, of the trajectory of the same colour. The labelled
points indicate the fixed points, see Table 4.2 for the classification, near which the trajectories
pass.

necessary initial conditions for the dynamical variables {u, y, z}. In order to obtain a third condition,
in Ref. [265] we opted to minimise the quantity

dS(1)
n :=

[ 5∑
n=3

(
S(1)
n − 1

)2
]1/2

, (4.134)

with respect to the fraction of the energy density of the 3-form that, at the present time, corresponds
to the potential energy:

Pz := z2
0

y2
0 + z2

0
. (4.135)

By construction, dS(1)
n vanishes in the case of the ΛCDM model. As an indication of the sensitivity of

the statefinder parameters with respect to small perturbations of the initial conditions, we also expand
each parameter f around the solution (u0, y0, z0) as

f(u0 + δu, y0 + δy, z0 + δz) ≈ f(u0, y0, z0) +
∑

X=u,y,z
(∂Xf)(u0, y0, z0) δX

= f(u0, y0, z0)

1 +
∑

X=u,y,z

(
δ log f
δ logX

)
(u0, y0, z0)

δX

X0

 . (4.136)

The higher the absolute value of (δ log f/δ logX)(u0, y0, z0) the more susceptible the parameter is to
variations of the initial conditions. Thus, a trajectory with somewhat robust values of the statefinder
parameters should present small values of these coefficients.
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# P#
z X S

(1)
3

δ logS(1)
3

δ logX
S

(1)
4

δ logS(1)
4

δ logX
S

(1)
5

δ logS(1)
5

δ logX

I 0.02051
u0 = 0.5436

1.009
−7.554× 10−4

1.019
2.522× 10−2

1.014
1.182× 10−1

y0 = 0.8242 2.275× 10−2 −1.786× 10−2 1.972× 10−1

z0 = 0.1193 1.926× 10−2 3.621× 10−2 3.095× 10−2

II 0.9721
u0 = 0.1052

1.013
−6.063× 10−3

1.032
6.291× 10−2

0.9991
−4.478× 10−1

y0 = 0.1394 3.076× 10−2 −4.786× 10−4 4.454× 10−1

z0 = 0.8158 2.477× 10−2 4.235× 10−2 1.737× 10−1

Table 4.3.: For the two solutions PIz and PIIz , we present the current values of the dynamical variables and
the statefinder parameters using as reference the best-fit values of the Planck mission presented
in Eq. (4.131) [11, 16]. For each statefinder parameter, we present the deviation of the present
day values for small perturbations of the values of the dynamical variables. This values were
obtained for ξ = 1.

In Tab. 4.3 we present the two sets of initial conditions which minimise dS(1)
n with respect to Pz:

PIz ' 0.02051 , dS(1)
n = 0.02526 , (4.137)

PIIz ' 0.9721 , dS(1)
n = 0.03455 , (4.138)

the corresponding values of the statefinders parameters and the sensitivity coefficients δS(1)
n /δX. On

the left panel of Fig. 4.4 we also present the trajectories in the 3-dimensional space {u, y, z} obtained
from these initial conditions. Notice that situation I corresponds to a kinetic dominance of the energy
density of the 3-form at the present time and therefore the trajectory in red starts near the fixed point
π+

0 and evolves towards the final LSBR state p+
1 without approaching any other fixed point, while

II corresponds to a dominance of the potential energy at the present time and so, even though the
trajectory starts at π+

0 , if first passes near p2 before finally heading towards p+
1 .

The values of δ logS(1)
n /δ logX presented in Tab. 4.3 indicate that the statefinder parameters

are only slightly sensitive to changes of the initial conditions, from which we deduce that nearby
trajectories are also compatible with the current observations, i.e., the trajectories chosen in this way
are not special solutions of the system. Notice that due to the symmetry of the system with regards
to {u, y, z} → {−u, −y, z}, we only present the solutions with positive u0. Despite obtaining small
values in both cases I and II, the results for dS(1)

n suggest that we should pick the trajectory I if we
want a behaviour that is as close as possible to ΛCDM at the present time. This is corroborated if we
look at the temporal evolution of the fractional energy densities and EoS parameters, represented in
Figs. 4.5 and 4.6. This preference for the kinetic dominated solution from the cosmological evolution
is in concordance with the fact that a massless 3-form behaves exactly like a cosmological constant
[216].
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Figure 4.5.: The evolution of the relative energy densities of DM (blue thick curve) and DE (black thin
curve), and of the individual components that contribute to the energy density of DE: kinetic
energy (red dashed curve) and potential energy (green dot-dashed curve), in terms of the
redshift. The circles and crosses indicate, respectively, the values of ΩΛ and Ωm for the
ΛCDM model. The left panel show the evolution in the case PIz and the right panel shows the
evolution for the case PIIz .
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Figure 4.6.: The evolution of the parameter of EoS of DM (blue thick curve), of DE (red dashed curve),
and of the total fluid (green dot-dashed curve) in terms of the redshift. The left panel show
the evolution in the case PIz and the right panel shows the evolution for the case PIIz .

The cases of interactions IV and V

Having defined the background evolution in the case of no interaction between DM and the 3-form,
we now look at what happens when we turn on the interaction. In particular, we will focus our analysis
in the two cases studied in the previous section that remove the LSBR event: interactions IV and V.
According to Table 4.2, both interactions IV and V introduce two late-time attractors, p̃±1 , into the
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Inter. X S
(1)
3 S

(1)
4 S

(1)
5 Ωm wχ weff

χ weff
DM

IV

u0 = 0.5155
0.9183 0.9752 0.6560 0.3065 −1.006 −0.9761 −0.06788y0 = 0.8223

z0 = 0.1319

V
u0 = 0.5362

0.9452 0.9297 0.8061 0.3065 −1.006 −0.9858 −0.04325y0 = 0.8238

z0 = 0.1218

Table 4.4.: Present day values of the dynamical variables, the statefinder parameters, and the cosmological
parameters Ωm, wχ, weff

χ , and weff
DM, obtained for the interactions IV and V. In each case, the

present time is defined as the moment when the energy density of DM reaches the value 0.3065
[11, 16]. These results were obtained for αχ = αχχ = −0.03 and setting the initial conditions
at redshift 6 using the values of the trajectory PIz .

system as long as the interaction parameters of each interaction satisfy the inequalities

1−
√

1 + 2ξ/9
2 < αχ < 0 , − ξ

18 < αχχ < 0 . (4.139)

For the reference value ξ = 1 that we have considered for the non-interacting model, these inequalities
imply −5.277 × 10−2 < αχ < 0 and −5.556 × 10−2 < αχ < 0, values which respect our initial
assumption of weak interactions, i.e., |αi| � 1. In addition, these late-time attractors correspond to
scaling solutions with DE dominance where the Universe enters a de Sitter epoch at late-time. The
fraction of the total energy density that corresponds to DE, β−, is given for each case by

β− = 1
1− αχ

≈ 1 + αχ , β− =
1−

√
1− 4αχχ

2αχχ
≈ 1 + αχχ . (4.140)

Since we wish to study the imprints of the interactions on the evolution of the system, we opt to
select trajectories that follow the evolution of the non-interacting case in the past, where the 3-form
is subdominant with regards to DM and therefore the effects of the selected interactions are weak.
We impose initial conditions for {u, y, z} using the values of the trajectory PIz taken at redshift 6
(xini = − log 7 ' −1.946), which was found to be the one with smallest deviation from ΛCDM at
the present time. In order to facilitate the comparison of the results for the two interactions, we
choose the same value for both couplings: αχ = αχχ = −0.03. This value is sufficiently large, in
modulus, for the interactions to leave noticeable imprints on the cosmological evolution while at the
same time not saturating the constraints (4.139). We also note that this value is compatible with the
observational results obtained in Refs. [125, 154]. From Eq. (4.140) we find that this leads to the
3-form representing ∼ 97% of the energy content of the Universe in the final de Sitter state:

(Inter. IV) β− = 0.9709 , (Inter. V) β− = 0.9717 . (4.141)

The trajectories obtained are represented in the 3-dimensional space {u, y, z} on the middle (interaction
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Figure 4.7.: The evolution of the relative energy densities of DM (blue solid curve) and DE (thin solid
curve), and of the individual components that contribute to the energy density of DE: kinetic
energy (red dashed curve) and potential energy (green dot-dashed curve), in terms of the
redshift. (Left panel) Evolution of the system in the case of the interaction IV for αχ = −0.03
and ξ = 1. (Right panel) Evolution for the case of the interaction V with αχχ = −0.03 and
ξ = 1. For each case the moment of redshift 0 is defined as the moment when Ωm = 0.3065
[11, 16]. The circles and crosses indicate, respectively, the values of ΩΛ and Ωm for the ΛCDM
model.
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Figure 4.8.: The evolution of the parameter of EoS of DM (solid blue thick curve), of DE (dashed red
thick curve), and of the total fluid in terms of the redshift (dot-dashed green thick curve).
The effective EoS parameter of DM and DE are represented as a solid blue thin curve and
a dashed red thin curve, respectively. (Left panel) Evolution in the case of the interaction
IV for αχ = −0.03 and ξ = 1. (Right panel) Evolution in the case of the interaction V with
αχχ = −0.03 and ξ = 1. In each case, the moment of redshift 0 is defined as the moment
when Ωm = 0.3065 [11, 16].
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IV) and right (interaction V) panels of Fig. 4.4. Notice that each case follows closely the non-interacting
curve of the trajectory PIz (left panel) till reaching the vicinity of the fixed point p̂+

1 which, due
to the interaction between DM and DE, has been shifted away from the position {1/2, 1, 0} that
characterises the LSBR.

In Tab. 4.4, we present the values of the dynamical system variables, the statefinder parameters
and several cosmological quantities evaluated at the present time, x = 0, defined in each case as the
moment when Ωm = 0.3065 [11, 16]. 15 Using the values of the statefinder parameters in Tab. 4.4
we can calculate the measure of deviation from ΛCDM, dS(1)

n , at the present time:

(Inter. IV) dS(1)
n = 0.3544 , (Inter. V) dS(1)

n = 0.2134 . (4.142)

The smaller value for the interaction V can be explained by the fact that, for equal values of αχ
and αχχ, the quadratic interaction takes a longer time to have strong effects on the evolution of the
Universe. This can also be observed in Figs. 4.7 and 4.8, where we find that the quadratic interaction
(right panels) follows ΛCDM more closely than the linear one.

The statefinder diagnosis

Up to this point, we have discussed how to select the trajectories in the 3-dimensional space {u, y, z},
see Fig. 4.4, in the non-interacting model and when interactions of type IV and V are considered. We
now show how all these cases, despite their similar evolution, can be differentiated using the statefinder
hierarchy diagnosis [34], even though the end point in the planes {S(1)

3 , S
(1)
4 } and {S(1)

3 , S
(1)
5 } are

the same16 for a LSBR event (no interaction) and for a de Sitter phase (interactions IV and V).

In Figs. 4.9, 4.10 and 4.11 we present the evolution, from redshift 6 and till the distant future, of the
statefinder parameters S(i)

3 , S(i)
4 and S(i)

5 , with i = 1, 2, for the three cases in study: no interaction
(solid blue curve); interaction IV (dashed red curve); interaction V (dot-dashed green curve). We find
that differences in the three cases start to become more noticeable in the recent past, for redshift . 1,
in particular for the statefinders S(1)

3 , S(1)
4 and S(1)

5 (left panels). This is precisely the epoch when the
interactions, whose strength depends on the relative energy density of DE, start to become important.

In general, we find that the case where the interaction IV is turned on presents the larger deviations
from ΛCDM and from the non interacting case. This can be understood by the fact that, during the
transition from the matter dominated epoch to the latter accelerated expansion fuelled by DE, the
interaction term QV is suppressed by a factor Ωχ < 1 with regards to QIV.

One particular difference between the interacting and non-interacting models is that the statefinder
parameters seem to approach the asymptotic value from opposite directions. For example, in the case
of the statefinder S(1)

3 , the three models have the same asymptotic value S(1)
3 = 1. However, as can

observed in Fig. 4.9, after some small oscillations around redshift 1 the solid blue curve (no interaction)
15Notice that since the transfer of energy from DE to DM (the coupling coefficients are negative) delays the decay

of the energy density of DM, by fixing x = 0 in this way we are affecting the value of the redshift corresponding to
the moment in the past where the initial conditions for the integration are set. In other words, in the cases where the
interactions IV and V are turned on xini < − log(7).

16In a LSBR cosmic event, where the Hubble rate diverges while its time derivatives remain constant, any contribution
to the cosmographic parameters from terms H−(n+1)(dnH/dtn) vanishes asymptotically. As such, all the cosmographic
parameters, and consequently all the statefinder parameters, converge to their respective values in the ΛCDM model,
where dnH/dtn is asymptotically zero in the future.
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Figure 4.9.: The evolution of the statefinder parameters S(1)
3 and S

(2)
3 , in terms of the redshift for the

cases of no interaction (solid blue curve), of the interaction IV (dashed red curve) and of the
interaction V (green dot-dashed curve).
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Figure 4.10.: The evolution of the statefinder parameters S(1)
4 and S(2)

4 , in terms of the redshift for the
cases of no interaction (solid blue curve), of the interaction IV (dashed red curve) and of the
interaction V (green dot-dashed curve).
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Figure 4.11.: The evolution of the statefinder parameters S(1)
5 and S(2)

5 , in terms of the redshift for the
cases of no interaction (solid blue curve), of the interaction IV (dashed red curve) and of the
interaction V (green dot-dashed curve).
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Figure 4.12.: The statefinder diagnosis {S(1)
3 , S

(2)
3 } (top panels), {S(1)

3 , S
(1)
4 } (middle panels) and

{S(1)
3 , S

(1)
5 } (bottom panels) for the non-interacting 3-form DE model (solid blue curve),

and when the interactions IV (dashed red curve) and V (dot-dashed green green) are turned
on. The black points indicate the predictions for ΛCDM. Present day values are indicated by
a circle and direction of temporal evolution is indicated by black arrows.

seems to stabilise at S(1)
3 ∼ 1.02 without ever crossing the asymptotic value 1. In the two interacting

models, a similar oscillatory behaviour can be found around redshift 1. Afterwards the value of S(1)
3

starts to decay monotonically till it reaches a minimum value S(1)
3 ∼ 0.9. At this point, and before

the Universe approaches the final de Sitter phase, the energy budget is almost entirely dominated by
DE, Ωχ . 1, which means that QIV ≈ QV. After this point, the two curves corresponding to the
interacting models (red dashed and green dot-dashed) become indistinguishable. A similar pattern of
behaviour is observed for all the statefinder parameters plotted in Figs. 4.9, 4.10 and 4.11.

Before the end of the DM dominated epoch, i.e., for redshift & 2, the statefinders S(2)
3 , S(2)

4 and
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S
(2)
5 (right panels) single out the case of the linear interaction IV. This can be explained by the fact

that, contrary to the interaction V which is quadratic in ρχ, the interaction IV has a non-negligible
contribution to the effective EoS parameter of DE when the Universe is dominated by DM. Thus,
in this case the 3-form does not mimic exactly a cosmological constant with weff

χ ' −1 in the past.
This sensitivity of the statefinders S(2)

n to a change in the EoS parameter of DE had already been
pointed out in Ref. [34] as one of the main advantages of introducing a second family of statefinder
parameters which can break some of the degeneracies in the statefinders S(1)

n .

The effects mentioned above can be observed in Fig. 4.12, where we present the statefinder
diagnosis {S(1)

3 , S
(2)
3 } (top panels), {S(1)

3 , S
(1)
4 } (middle panels) and {S(1)

3 , S
(1)
5 } (bottom panels) of

the non-interacting model (solid blue curves) and of the two models with the interaction IV (dashed
red curves) and interaction V (dot-dashed green curves) turned on. In each map, a black point
indicates the final asymptotic state, a circle indicates present day values and the arrows indicate the
direction of temporal evolution. The imprints of the interaction IV during the DM dominated era are
particularly visible on the planes {S(1)

3 , S
(2)
3 } and {S(1)

3 , S
(1)
4 }, where the initial behaviour of the red

dashed curve diverges from that of the other two curves.

The similar future asymptotic behaviour of the curves of the two interacting models is also captured
in the statefinder diagnosis. On all panels, the red dashed and green dot-dashed curves overlap after
the minimum value S(1)

3 ∼ 0.9 is reached. Furthermore, the difference in behaviour between the
non-interacting models and the two models where the interaction between DM and DE is turned on
is clearly visible in the maps {S(1)

3 , S
(1)
4 } and {S(1)

3 , S
(1)
5 }. In the non-interacting case, the curves

approaches the final points {1, 1} from the first quadrant, while in the two interacting cases the curves
approach {1, 1} from the third quadrant. This seems to reflect the fact that in the non-interacting
case we have a late-time phantom like behaviour, while in the two cases where the interaction is
turned on, the total EoS parameter never crosses the threshold wtot = −1 (see for example Fig. 1 of
Ref. [24] for a comparison of the statefinder diagnosis in the cases of quintessence and phantom-like
behaviours).

Finally, we note that while the statefinder diagnosis can positively distinguish the three models
at hand, the pairs {S(1)

3 , S
(1)
4 } and {S(1)

3 , S
(1)
5 } seem to be particularly good identifiers of each

individual model. As noted in Ref. [34], the fact that S(1)
4 and S(1)

5 include higher order derivatives
of the Hubble rate makes these parameters more sensitive to small differences in the cosmological
expansion. However, the increased difficulty in calculating with precision higher order derivatives of
H from the current observational data presents a serious drawback in the use of these statefinder
parameters, in particular S(1)

5 [34].

The growth of perturbations

In order to complement the statefinder hierarchy with information from the growth of structure in our
model and complete the composite null diagnosis (CND) [127], we need to compute the evolution
of linear perturbations in the late Universe. Since we do not have a covariant formulation of the
interactions between DM and the 3-form, we compute the evolution of DM perturbations assuming
that perturbations of the 3-form remain small and can be ignored. This is somewhat justified by the
fact that at late-time the 3-form with a Gaussian potential has an EoS parameter very close to -1 and
positive c2s, which prevents the collapse of the DE perturbations.
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Figure 4.13.: (Left panel) Evolution of the fractional growth rate ε in the case of no interaction (solid blue
curve) and when the interactions IV (dashed red curve) and V (dot-dashed green curve) are
considered. (Right panel) The CND map {S(1)

3 , ε} for the same models. The point {1, 1}
indicates the prediction for the ΛCDM model and a circle indicates present day values.

During the late-time evolution of the Universe, under the assumption that we can disregard the DE
perturbations, the evolution of the modes well inside the Hubble horizon (k2 � a2H2) and within the
linear regime is given by [127, 240] (cf. Eq. (2.31))

δ̈m + 2Hδ̇m −
κ2

2 ρmδm = 0 . (4.143)

This equation can be written in terms of the dynamical system variables {u, y, z} as

(δm)xx + 1
2

[
1 + 3

(
y2 + z2)+ 2

3ξ z
2 tan2

(π
2 u
)]

(δm)x −
3
2
[
1−

(
y2 + z2)] δm = 0 , (4.144)

where we have also changed the time variable from the cosmic time t to x = log(a/a0). For each of
the trajectories defined in this section, we obtained the temporal evolution of the linear perturbation
δm by integrating Eq. (4.144) numerically since the matter-dominated era till the present time. The
initial conditions were set at redshift 6, when all relevant modes are inside the Hubble horizon. Using
the prediction of GR that δm ∝ a in a matter dominated universe, we fixed (δm)x(xini) = δm(xini) = 1,
where xini = − log(7) ' −1.946. Notice that since the CND requires a comparison with the growth
of structure in the ΛCDM model, we repeated the integration of Eq. (4.143) for that case as well.

Once the evolution of δm was obtained, we computed the growth rate (cf. Eq. (2.34))

f(x) = ∂ log(δm)
∂x

, (4.145)

and subsequently the fractional growth rate [34]

ε(x) := f(x)
fΛCDM(x) . (4.146)

111



4.3 The Little Sibling of the Big Rip in 3-form Cosmology

The results obtained for the cosmological evolution of the fractional growth rate ε in the three models
studied in this section are presented on the l.h.s. panel of Fig. (4.13). While the deviations of the
growth rate from ΛCDM are less than 1% in the non-interacting case, when the interactions IV and V
are turned on the growth rate becomes increasingly larger as the Universe evolves. This difference
reflects the increasing strength of the interactions IV and V as DE becomes the dominant component
in the Universe. Notice that the Interaction IV, being the one that is more intense for a given value of
ρχ, presents a more distinct profile.

The CND mapping {S(1)
3 , ε} is presented on the r.h.s. panel of Fig. 4.13, where we recall that

the ΛCDM model corresponds to the black point {1, 1} and the present day values of each curve
are indicated by a circle. The distinct curves obtained for each model show that the CND is a good
tool to complement the statefinder hierarchy to differentiate between DE models. We note that,
as found in Fig. 4.12, the curve corresponding to the model with the interaction IV has a distinct
initial behaviour, reflecting the fact that in that case the 3-form does not behave like a cosmological
constant in the past.

In order check if the results obtained are in accordance with current cosmological observations, we
also compare the predicted values of the growth rate with the measurements of SDSS III BOSS DR12
[312]:

f(zeff = 0.38) = 0.638± 0.080 , (4.147)
f(zeff = 0.51) = 0.715± 0.090 , (4.148)
f(zeff = 0.61) = 0.753± 0.088 . (4.149)

As can be seen from Fig. 4.13, for all the values of redshift considered, the deviation of ε from unity is
below 5% for all the cases considered, which falls well inside the 1σ interval for all the observational
points. This agreement suggests that our choice for the value of the interaction parameters αχ
and αχχ, which was motivated from constraints derived for the wCDM model, is viable from an
observational point of view. In addition, we present in Fig. 4.14 the evolution of fσ8 for the three
models considered, where σ8 is the root mean square of mass fluctuations on spheres of radius 8
h−1Mpc. The temporal evolution of σ8 was obtained through the formula [356]

σ8(x) = σ8(0)δm(x)
δm(0) , (4.150)

assuming the best-fit value of the Planck mission for the present day value σ8(0) = 0.8110 [19]. For
comparison, we also plot several available observational data points and their respective error bars,
which we enumerate in Tab. 4.5. From Fig. 4.14 we find that all models are compatible with the
data, even if the model with the linear interaction IV (red dashed curve) presents higher values at
redshift z . 0.5, which seems to spoils the agreement with the measurements at z . 0.1. We point
out that the results obtained for the ΛCDM model are indistinguishable from the blue curve of the
non-interacting model in Fig. 4.14.
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Figure 4.14.: Evolution of fσ8 in the case of no interaction (solid blue curve) and when the interactions
IV (dashed red curve) and V (dot-dashed green curve) are considered. The curve obtained
for the ΛCDM is indistinguishable from the blue curve obtained for the non-interacting case.
The various data points plotted, and respective error bars, are presented in Tab. 4.5.

z fσ8 Survey Ref.
0.02 0.428+0.048

−0.045 6dF Galaxy Survey + SNe Ia [195]

0.067 0.423+0.055
−0.055 6dF Galaxy Survey [59]

0.15 0.53+0.19
−0.19 SDSS MGS [190]

0.18 0.36+0.09
−0.09 GAMA [62]

0.3 0.49+0.08
−0.08 SDSS LRG [280]

0.38 0.44+0.06
−0.06 GAMA [62]

0.38 0.497+0.039
−0.039 BOSS DR12 [20]

0.44 0.413+0.080
−0.080 WiggleZ [61]

0.51 0.458+0.035
−0.035 BOSS DR12 [20]

0.60 0.390+0.063
−0.063 WiggleZ [61]

0.60 0.55+0.12
−0.12 VIPERS [288]

0.61 0.436+0.034
−0.034 BOSS DR12 [20]

0.73 0.437+0.072
−0.072 WiggleZ [61]

0.86 0.40+0.11
−0.11 VIPERS [288]

1.4 0.482+0.116
−0.116 FastSound [281]

1.52 0.426+0.070
−0.070 BOSS DR14 quasars [364]

Table 4.5.: Available observational data points for fσ8 at different at redshift in the interval (0, 1.52),
which are plotted in Fig. 4.14. For each data point we present, in order, the value of the
effective redshift, the value of fσ8 and its respective error, the corresponding survey, and the
reference from which the values were taken.
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4.3.4. Discussion

In this Section, we have shown how a Little Sibling of the Big Rip (LSBR) cosmic event can appear in
3-form cosmology. While in this type of event the Universe can mimic a ΛCDM behaviour until the
present time, which means that it is not ruled out by current cosmological observations, its future
behaviour is radically different from the exponential expansion fuelled by a cosmological constant and
can lead to the destruction of all structure we observe in the Universe [77]. While in models with
scalar fields a LSBR event appears only when a kinetic term with reversed sign is considered [22], in
3-form cosmology such an event can appear in models where both the kinetic and potential energy
are positive. Furthermore, the presence of other types of matter, e.g., dark matter, that respect the
null energy condition does not change the end state of the Universe. As a practical case, we have
selected the Gaussian potential for the 3-form field, which was found to be capable of driving the
Universe towards a LSBR without leading to superluminal propagation or collapse of DE perturbations
during the late-time evolution.

Once the desired potential of the 3-form field, compatible with a LSBR event, was fixed, we
addressed the possibility that an interaction between DM and DE could remove this divergence of the
Hubble rate from the future evolution of the Universe. Following a phenomenological approach, we
considered a type of quadratic interaction, cf. Eq. (4.81), that generalises some of the cases found
in the literature. Through an extensive dynamical analysis we were able to find which subclasses
of interactions can remove the LSBR. We conclude that as long as the interaction term Q is not
proportional to ρm or ρ2

m, an energy transfer from DE to DM can lead to an alternative final stage of
the Universe represented by a de Sitter expansion. However, instead of a ΛCDM type of behaviour, a
scaling behaviour between the two dark components of the Universe is obtained, where the energy
density of the Universe is almost totally dominated by DE but where DM maintains a constant residual
contribution.

After selecting two interactions of interest that remove the LSBR, one linear and one quadratic in the
3-form energy density ρχ, we employed the Statefinder hierarchy and the Composite Null Diagnostic
(CND) to find distinguishable imprints of the model. In order to best compare the evolution in the
non-interacting and interacting cases, we first selected the trajectory of the non-interacting mode
that, at the present time, minimises the deviations from ΛCDM. Using this trajectory to set initial
conditions in the past, we then obtained the trajectories for the other two models where the interaction
is turned on. Then, by mapping the trajectories of the three models in the space of statefinders
{S(1)

3 , S
(2)
3 }, {S

(1)
3 , S

(1)
4 }, {S

(1)
3 , S

(1)
5 } and {S(1)

3 , ε} we showed that both the Statefinder hierarchy
and the CND can pinpoint relevant differences between the cases under scope. More importantly, we
found sufficient evidences to discriminate, at present, between the linear and quadratic DE interaction.
For all the models considered, the results for the growth rate of the matter perturbations are within
the observational constraints of the SDSS III data [312] for the growth rate f and are compatible
with available observational points for fσ8, as shown in Fig. 4.14.

A limitation in the analysis is related to the fact that the evolution of matter fluctuations was
computed assuming that perturbations of DE could be disregarded, i.e., the DM perturbations are only
affected by the 3-form through background terms. While this assumption is somewhat justifiable by
the shape of the 3-form potential and the fact that DE behaves almost as a cosmological constant until
the present time, a full analysis would require taking into account the evolution of DE perturbations as
well. However, in order to apply the full theory of linear perturbations, a covariant description of the

114



Chapter 4. Dark Energy: 3-form field

interaction would also be necessary, preferably deduced from a total action describing the 3-form and
DM. Such an approach was undertaken in [218] for a specific type of coupling and could be generalised
by using a Lagrangian description of perfect fluids [89] and considering the presence of coupling terms
like, for example, EµνρσAµνρuσ. This type of approach has been explored recently in the literature in
the context of quintessence [58, 66, 67, 153, 291] and has the advantage of eliminating any ambiguity
in defining the interaction 4-vector Qµ both at the background level and at first order in perturbations.
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PART III

The Early Universe





5 Pre-inflation in the Third Quantisation:
possible observational imprints

5.1. Third Quantisation - A Brief Review

5.1.1. Quantum Cosmology

The field of Quantum Cosmology began in 1967 with DeWitt’s seminal paper [137] introducing his
Canonical Theory of Quantum Gravity. In it, DeWitt took the quantisation procedure for constrained
Hamiltonian systems developed by Dirac in the previous decade [138, 139] and applied it to the ADM
action of General Relativity [39], obtaining in this way a master wave equation for gravitational systems
– the Wheeler-DeWitt (WDW) equation [137, 359]. After discussing some of the general properties of
this equation, including its similarities with the Klein-Gordon (KG) equation for a scalar field, DeWitt
applied his newly introduced theory to the case of a closed FLRW universe. The Canonical Theory of
Quantum Gravity, and in particular WDW equation, served as a pivotal point of several approaches to
Quantum Gravity and Quantum Cosmology developed over the ensuing decades. In this section, we
follow [211] and briefly review the derivation of the WDW equation for a FLRW universe filled by a
minimally coupled scalar field ϕ with a potential V (ϕ).

Let us consider the classical line element for a FLRW universe (cf. Eq. (1.18)):

ds2 = −N2(t)dt2 + a2(t)
(

dr2

1−Kr2 + r2dΩ2
)
. (5.1)

We recall that N is the lapse function, the scale factor a(t) has dimensions of length and K is +1 for
a closed universe, 0 for a spatially flat universe and −1 for an open hyperbolic universe. Since the
shift vector vanishes in a FLRW geometry, the second fundamental form and its trace reduce to [211]

Kij = 1
N

ȧ

a
hij , K = 3

N

ȧ

a
, (5.2)

while the spatial extrinsic curvature reads (3)R = 6K/a2. Here and throughout this chapter, a dot
indicates a derivative with respect to the time variable t. The total action of the model can be written
as

S = SADM + Sϕ , (5.3)
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where SADM is the ADM action for GR with a cosmological constant Λ [39, 137]:

SADM = 1
2κ2

∫
dtd3xN

√
h
(
KijK

ij −K2 + (3)R− 2Λ
)
, (5.4)

and Sϕ is the action of a minimally coupled scalar field ϕ with a potential V (ϕ):

Sϕ = −
∫

dtd3xN
√
h

(
1
2g

µν∂µϕ∂νϕ+ V

)
. (5.5)

Substitution of Eqs. (5.1) and (5.2) in Eqs. (5.4) and (5.5) then leads to [211]

S =
∫

dtd3xN
√
h

{
− 3
κ2

(
1
N

ȧ

a

)2
+ 3K
κ2a2 −

Λ
κ2 + 1

2

(
ϕ̇

N

)2
− V (ϕ)

}
. (5.6)

In order to obtain the Hamiltonian formulation of this model, we introduce the canonical variables
of the minisuperspace {q1, q2} = {a, ϕ}, so that the action (5.6) can be written as

S = Vol
∫

dtN
(

1
2GAB

q̇Aq̇B

N2 − V
(
qA
))

. (5.7)

Here, we have introduced the minisuperspace metric GAB :

GAB :=
(
− 6
κ2 a 0
0 a3

)
, (5.8)

the generalised potential V:

V
(
qA
)

:= 3a3

κ2

[
Λ
3 + κ2V (ϕ)

3 − K
a2

]
, (5.9)

and the volume factor Vol:

Vol :=
∫

dr dΩ
√
h

a3 = 4π
∫

dr r2
√

1−Kr2
, (5.10)

In the case of a closed spatial geometry (K = +1), Vol corresponds to the volume of a 3-sphere of
unit radius: 2π2, where a factor 2 needs to be included so as to account for the two halves of the
3-sphere. In the cases of a flat or open spatial geometries (K = 0 and K = −1, respectively), where
the spatial hypersurfaces have infinite volume, the integral (5.10) has to be considered over a finite
region of space.

Writing the action (5.7) as S =
∫

dtL, where L is the total Lagrangian, we can define the canonical
momenta πa and πϕ as [211]

πa := ∂L

∂ȧ
= −6Vol

κ2
aȧ

N
, πϕ := ∂L

∂ϕ̇
= Vol a3 ϕ̇

N
. (5.11)
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Likewise, we can define the canonical momentum of the lapse function, πN , as

πN := ∂L

∂Ṅ
= 0 . (5.12)

The independence of the action on the derivative of N is reflected on last equality of Eq. (5.12),
which is known as one of the primary constraints1. From the definitions (5.11) and (5.12) we can
construct the canonical Hamiltonian as [211]

H = πN Ṅ + πAq̇
A − L

= N

(
1
2

1
VolG

ABπAπB + VolV (α, ϕ)
)

= NH . (5.13)

From the preservation of the primary constraint, we obtain the secondary (Hamiltonian) constraint
which can be written in terms of the Poisson bracket of πN and H as

{πN , H} = −H = 0 . (5.14)

At the classical level, this equation leads to the Friedmann equation (with N = 1)

3
(
ȧ

a

)2
= κ2

(
1
2 ϕ̇

2 − 3K
κ2a2 + Λ

κ2 + V (ϕ)
)
. (5.15)

The quantisation procedure that leads to the Wheeler-DeWitt equation follows from introducing a
wave function Ψ[a, ϕ] that describes the state of the universe and from imposing that the Hamiltonian
constraint (5.14) becomes a condition on Ψ, i.e., ĤΨ = 0 [137, 211]. The variables a and ϕ are
promoted to quantum field operators â and ϕ̂ that act on Ψ and their canonical momenta πa and πϕ
now become

πa → π̂a := − i~ ∂
∂a

, πϕ → π̂ϕ :=− i~ ∂

∂ϕ
. (5.16)

If we choose the Laplace-Beltrami operator [211]

∇2
LB := 1√

−G
∂A

(√
−GGAB∂B

)
= −κ

2

6
1
a2 ∂a (a ∂a) + 1

a3 (∂ϕ)2
, (5.17)

to fix the factor ordering in the Hamiltonian via the substitution GABπAπB → −~2∇2
LB, we arrive

to the Hamiltonian operator

Ĥ = − ~2

2Vol∇
2
LB + VolV (α, ϕ) . (5.18)

Finally, by applying this operator to the wave-function and taking into account the Hamiltonian

1A second primary constraint is obtained in the general theory from to the independence of the Lagrangian with
regards to the shift vector N i. In FLRW cosmology, where the shift vector vanishes, such a constraint does not contain
any additional information about the system.
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constraint ĤΨ = 0, we obtain the WDW equation [211][
~2κ2

12Vol
1
a2 ∂a (a ∂a)− ~2

2Vol
1
a3 (∂ϕ)2 + VolV

(
qA
)]

Ψ = 0 . (5.19)

This equation has the form of a KG equation, where the scale factor plays the role of the time variable
and ϕ that of a spatial coordinate. This led DeWitt to identify a natural KG-like inner product
between two states Ψ1 and Ψ2 [137], which in the case of the minisuperspace {a, ϕ} reduces to
[213, 214, 255]

〈Ψ1(a, ϕ),Ψ2(a, ϕ)〉 = i
∫

dϕa (Ψ∗1∂aΨ2 −Ψ2∂aΨ∗1) . (5.20)

Unfortunately, just as in the case of the KG equation, the inner product (5.20) is plagued by the fact
that it is not positive-definite. This leads to the existence of solutions with zero or negative probability
〈Ψ,Ψ〉 [137] and therefore (5.20) cannot be used in general as a probability amplitude [221].

5.1.2. Third Quantisation

For the ordinary scalar field, the problem of negative probability states was settled by reinterpreting
the KG equation within quantum field theory, which lead to the identification of the scalar field as the
quantum field of a spin 0 particle. In the Third Quantisation formalism [45, 255, 300, 306, 330], the
same approach is applied to the wave-function of the WDW equation, with a second quantisation
being applied to the WDW wave-function (thus the name Third Quantisation). In a cosmological
context, it seems only natural to identify the quanta of the second quantised WDW wave-function
field with individual universes2 within multi-universe states. This natural appearance of the concept
of the multiverse within the Third Quantisation picture has remained as the main force driving the
development of the formalism since the first tentative studies regarding a possible solution to the
cosmological constant problem [45, 168, 189, 255, 256, 306, 330] three decades ago, with very few
works published outside the field of cosmology, e.g., [257, 279]. For a review of key aspects of the
Third Quantisation formalism, we refer the reader to [202, 221].

The process of third quantising the wave-function of the WDW equation begins with introducing
the minisuperspace action [189, 300, 306]

SΨ =
∫

dqA
√
−G̃Ψ∗ĤΨ , (5.21)

for the wave-function field Ψ. Notice that here we introduce a new re-scaled minisuperspace metric
G̃AB := (1/~)GAB so that (5.21) has the proper units of an action functional. The minimisation of
Eq. (5.21) with regards to δΨ∗ leads immediately to the WDW equation (5.19), showing that the
action SΨ is dynamically equivalent the canonical quantum theory obtained from the action (5.6). If
we now employ a field redefinition Ψ→

√
~/(2Vol)Ψ and integrate the r.h.s. of (5.21) by parts we

2For a further illustration of the analogy between the Third Quantisation of the WDW equation and the second
quantisation of the KG equation, cf. the table in Fig 1 of [300] which first appeared in [330].
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can, after disregarding total derivative terms, rewrite SΨ as

SΨ =
∫

dqA
√
−G̃

(
G̃AB∂AΨ∗∂BΨ + 2Vol2

~
V(qA)Ψ∗Ψ

)
, (5.22)

which is the KG action (with a reversed sign) for a complex scalar field [268, 333] with a coordinate
dependent mass. As in the case of the complex scalar field, the action (5.22) has a U(1) symmetry
associated to the gauge transformation Ψ → e−iθΨ. Based on this symmetry we can define a
conserved current density [255]

jA = i
√
−G̃

(
Ψ∗∂A Ψ−Ψ∂A Ψ∗

)
, (5.23)

and its respective conserved charge [255]

Q =
∫

dϕ jα = −〈Ψ,Ψ〉 . (5.24)

This completes the correspondence of the wave-function Ψ of a canonically quantised FLRW universe
with a complex scalar field living in (1+1) minisuperspace.

The quantisation of the wave-function field follows along the lines of the second quantisation of the
complex scalar field. We first identify Ψ and its complex conjugate as canonical variables and define
their canonical momentum densities as

πΨ := ∂LΨ

∂(∂aΨ) = −
√
κ2

6 a ∂aΨ∗ , πΨ∗ := ∂LΨ

∂(∂aΨ∗) = −
√
κ2

6 a ∂aΨ , (5.25)

where LΨ is the Lagrangian density deduced from (5.22). The corresponding Hamiltonian HΨ is

HΨ :=
∫

dψ
(
πΨ∂aΨ + πΨ∗∂aΨ∗ − LΨ)

= −
∫

dψ
√

6
κ2

1
a

(
πΨπΨ∗ − ∂ϕΨ∂ϕΨ∗ + 2Vol2a3

~2 V(a, ϕ)Ψ∗Ψ
)
. (5.26)

Then, we promote Ψ, Ψ∗, πΨ and πΨ∗ , together with the Hamiltonian HΨ, to quantum operators
that act on a new multiverse wave-function Φ[qA,Ψ] which contains all the information regarding the
multi-universe state and whose evolution is given by the Schrödinger-like equation

i~ ∂
∂a
|Φ〉 = ĤΨ|Φ〉 . (5.27)

In order to complete the quantisation of the wave-function field, we need to define a Hilbert
space of the solutions of (5.19) re-normalisable with regards to (5.20). Here, some difficulties are
encountered since the ϕ-dependence of the generalised potential V makes a mode expansion of Ψ a
non-trivial endeavour. Different approaches to tackle this issue can be found in the literature, e.g. the
Born-Oppenheimer approximation [209, 210], the superadiabatic expansion [212, 214] or an analogy
with quantum optics [300]. This situation is nevertheless simplified in the case of a constant potential
where the squared mass term depends exclusively on the time-like variable a which we explore next.
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5.1.3. Example: Constant potential

As an example of the Third Quantisation of the wave-function of a FLRW universe, we now consider
a model with a minimally coupled scalar field with a constant potential V (ϕ) = 3H2

dS/κ
2 and a

vanishing cosmological constant3 [79, 189, 203, 213, 266, 300]. In such a case, a mode expansion of
Ψ is readily available and, using the same methods of quantum field theory, we can define annihilation
and creation operators that act on a vacuum state – the void – thus leading to an explicit description
of the system in terms of multi-universe states.

Before continuing with the quantisation procedure, we note that the Third Quantisation action SΨ

can be simplified by changing the minisuperspace coordinates from the scale factor a to α := log(a/`P)
and making the scalar field dimensionless through the redefinition ϕ → (κ2/6)1/2ϕ. This leads to
(5.22) being rewritten as

SΨ =
∫

dα dϕ
[
−∂αΨ∗∂αΨ + ∂ϕΨ∗∂ϕΨ + Ω2(α)

~2 Ψ∗Ψ
]
, (5.28)

where4

Ω2(α) := 12Vol2a3

κ2 V(α) = σ2`6P e6α
[
H2

dS −
K

`2P e2α

]
, σ := 6Vol

κ2 . (5.29)

Minimising (5.29) with regards to variations of Ψ∗ leads to the equation of motion[
~2∂2

α − ~2∂2
ϕ + Ω2(α, ϕ)

]
Ψ = 0 , (5.30)

which is equivalent to the WDW equation (5.19).

As in the case of cosmological perturbations around a FLRW background, we can use the fact
that Ω2 in (5.29) is independent of the scalar field to expand Ψ in terms of K-modes via the Fourier
expansion [213, 300]

Ψ (α, ϕ) =
∫ dK√

2π
ΨK (α) eiKϕ . (5.31)

Each of the mode functions ΨK satisfies the mode evolution equation[
~2∂2

α + Ω2
K(α)

]
ΨK = 0 , Ω2

K(α) := ~2K2 + Ω2(α) , (5.32)

which is obtained from replacing (5.31) into (5.30). Given the inner product (5.20) we can choose

3Formally, this is equivalent to a model with a massless scalar field ϕ and a cosmological constant Λ = 3H2
dS.

While this model is interesting on its own, it is well known that a flat potential is not compatible with the cosmological
observational constraints for the primordial power spectrum [15]. Nevertheless, R2 Starobinsky-like models, with a near
flat plateau on which an observationally viable inflation occurs, were given a centre-stage position since the results of
Planck mission came out [16]. Therefore, and given the lack of a complete mode expansion when the full potential is
considered, we use the constant potential model as a first approximation of these models. We expect this approximation
to be valid as long as the scalar field is far away from the minimum of the potential at ϕ = 0.

4Notice that in the case of a FLRW universe with a closed spatial section, Vol corresponds to the volume of a
3-sphere with unit radius, 2π2, and so σ reduces to the definition found in [79, 162, 266].
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the following normalisation condition for the mode functions [268, 333]

Ψ∗K∂αΨK −ΨK∂αΨ∗K = −i~ . (5.33)

In the case of a flat spatial geometry with K = 0, the general solution of Eq. (5.32) that satisfies the
normalisation (5.33) can be obtained explicitly [189]:

ΨK =

√
~π

6 sinh (πK/3)

(
C1,K J−iK3

[
B e3α]+ C2,K JiK3

[
B e3α]) . (5.34)

Here, the dimensionless constant B is defined as

B = σHdS`
3
P

3~ , (5.35)

and the linear coefficients C1,K and C2,K satisfy the relation |C1,K |2 − |C2,K |2 = 1.

By applying the same mode expansion (5.31) to the canonical conjugate momenta5, πΨ := −∂αΨ∗
and πΨ∗ := −∂αΨ = π∗Ψ, we can write the Hamiltonian of the wave-function field as [203]

HΨ =
∫

dϕ
(
π ∂αΨ + π∗∂αΨ∗ − LΨ)

= −
∫

dϕ
(
π∗π + ∂ϕΨ∗∂ϕΨ + Ω2(α)

~2 Ψ∗Ψ
)

= −
∫

dK
(
π∗KπK + Ω2

K(α)
~2 Ψ∗KΨK

)
. (5.36)

Thus, in K-space the Hamiltonian HΨ takes the form of an infinite sum of decoupled harmonic
oscillators with a time variable frequency ΩK(α)/~ [228, 229]. We are therefore in a position to apply
the full machinery of canonical quantisation for the harmonic oscillator and promote Ψ, Ψ∗, π and π∗
to quantum field operators satisfying the usual equal-time commutation relations [268, 333][

Ψ̂(α, ϕ), π̂(α, ϕ′)
]

=
[
Ψ̂†(α, ϕ), π̂†(α, ϕ′)

]
= i~ δ (ϕ− ϕ′) , (5.37)[

Ψ̂(α, ϕ), π̂†(α, ϕ′)
]

=
[
Ψ̂†(α, ϕ), π̂(α, ϕ′)

]
= 0 . (5.38)

These can be expanded in terms of K-modes as [268]

Ψ̂(α, ϕ) =
∫ dK√

2π

(
ΨK(α) eiKϕb̂K + Ψ∗K(α) e−iKϕĉ†K

)
, (5.39)

Ψ̂†(α, ϕ) =
∫ dK√

2π

(
ΨK(α) eiKϕĉK + Ψ∗K(α) e−iKϕb̂†K

)
, (5.40)

π̂(α, ϕ) =
∫ dK√

2π

(
πK(α) e−iKϕb̂†K + π∗K(α) eiKϕĉK

)
, (5.41)

5In order to minimise indices and simplify the notation, in the following treatment we drop the subscript Ψ when
writing the momenta of the wave-function field.
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π̂†(α, ϕ) =
∫ dK√

2π

(
πK(α) e−iKϕĉ†K + π∗K(α) eiKϕb̂K

)
, (5.42)

where the pairs {b̂K , b̂†K} and {ĉK , ĉ†K} act as time-independent annihilation and creation operators
of two types of universes6 characterised by the mode K. From the canonical commutation relations
(5.37) and (5.38) we find that the two types of annihilation and creation operators satisfy the usual
relations [268] [

b̂K , b̂
†
K′

]
=
[
ĉK , ĉ

†
K′

]
= δ(K −K ′) , (5.43)

[
b̂K , b̂K′

]
=
[
ĉK , ĉK′

]
=
[
b̂K , ĉ

†
K′

]
= 0 . (5.44)

The rest of the commutation relations can be derived by Hermitian conjugation of Eqs. (5.43) and
(5.44). Using the annihilation and creation operators {b̂K , b̂†K} and {ĉK , ĉ†K}, we can define a void
state, interpreted as the absence (nothingness) of universes, by the eigenvalue equations

b̂K |0K , α〉 = 0 , ĉK |0K , α〉 = 0 , (5.45)

with the absolute WDW void given by |0, α〉 =
∏
K |0K , α〉. A Fock space of states with occupation

numbers n(b)
K , for universes of type b, and n(c)

K , for universes of type c, can be constructed by successive
application of the creation operators b̂†K and ĉ†K [268]

|n(b)
K , n

(c)
K , α〉 :=

(
b̂†K

)nK (
ĉ†K

)mK
√
nK !m!

|0K , α〉 . (5.46)

These number states satisfy the relations

b̂K |n(b)
K , n

(c)
K , α〉 =

√
n

(b)
K |n

(b)
K − 1, n(c)

K , α〉 , (5.47)

b̂†K |n
(b)
K , n

(c)
K , α〉 =

√
n

(b)
K + 1|n(b)

K + 1, n(c)
K , α〉 , (5.48)

ĉK |n(b)
K , n

(c)
K , α〉 =

√
n

(c)
K |n

(b)
K , n

(c)
K − 1, α〉 , (5.49)

ĉ†K |n
(b)
K , n

(c)
K , α〉 =

√
n

(c)
K + 1|n(b)

K , n
(c)
K + 1, α〉 . (5.50)

leading to the definition of the number operators for universes of types b and c as n̂(b)
K := b̂†K b̂K and

n̂
(c)
K := ĉ†K ĉK . Via substitution in (5.24), we find that the operator corresponding to the conserved

WDW charge

Q̂ =
∫

dK
(
n̂

(b)
K − n̂

(c)
K

)
, (5.51)

counts the difference of numbers between the two different types of universes for each mode.

6In particle physics, the existence of two types of particles leads to the notion of the pair particle and anti-particle.
In this work, we will refrain from using this terminology for the quanta of the wave-function field so as to avoid the idea
of anti-universe.
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Substituting (5.39), (5.40), (5.41) and (5.42) in (5.36) and making use of the relations (5.43) and
(5.44) we can express the Hamiltonian of the third quantised wave-function field as [333]

ĤΨ =
∫

dK
(
b̂−K ĉK + b̂K ĉ−K

2 F ∗K(α) +
b̂†−K ĉ

†
K + b̂†K ĉ

†
−K

2 FK(α)

+
[
b̂†K b̂K + ĉ†K ĉK + δ(K)

]
EK(α)

)
, (5.52)

where

FK(α) := (∂αΨK)2 + Ω2
KΨ2

K , EK(α) := |∂αΨK |2 + Ω2
K |ΨK |2 . (5.53)

Since the Hamiltonian ĤΨ is a sum of decoupled individual Hamiltonians for each mode, we can write
the wave-function Φ as the product of every K-mode wave-function ΦK :

|Φ〉 =
∏
K

|ΦK〉 , (5.54)

all of which satisfy an independent Schrödinger-like equation

i~ ∂

∂α
|ΦK〉 = ĤΨ|ΦK〉 , (5.55)

obtained from inserting (5.54) in Eq. (5.27).

In the limit of very small values of the scale factor (α→ −∞) the squared frequency Ω2
K , defined

in Eq. (5.29), is dominated by the K2 term. This allows to define a BD-like void state [189] with the
lowest expectation value for the Hamiltonian (5.52):

ΨK =
√

~
2K eiKα . (5.56)

Notice that this corresponds to the asymptotic behaviour of (5.34) with C2,K = 0. Due to the
explicit time dependence of Ω2(α), this initial state will no longer correspond to the void as α→ +∞
(a → +∞). In the picture of b- and c-universes this means that new universes are created as the
system evolves and the in-out formalism can be used to compute the distribution of universes created
Refs. [189, 203, 306]. Using semi-classical considerations, the authors of Refs. [189, 203, 306] argue
that each of these individual universes follow the evolution of the semi-classical solution to the WDW
equation which satisfies the effective Friedmann equation:(

1
a

da
dt

)2
= ~2K2

σ2a6 −
K
a2 +H2

dS . (5.57)

5.1.4. Introducing interactions

One of the attractive features of the Third Quantisation formalism in treating the multiverse is the
possibility of introducing interactions between universes in a simple and straightforward way. In
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[45, 168, 189, 306, 330] this idea was explored by considering 3-point interactions between a parent
(large) universe in a sea of baby universes. This saw the introduction of cubic terms in the Third
Quantisation action, which in turn led to the appearance of non-linear modifications of the WDW
equation.

An alternative approach to the possibility of interactions in the multiverse, which finds motivation in
quantum entanglement, is considered in [28, 301–303]. There, N different universes are identified by
labelled wave-function fields ΨJ , J = 1, 2, . . . , Nuni, and mixed (quadratic) terms are introduced in the
total action, in analogy with a system of quantum entangled particles [301]. A simple phenomenological
model based on a system of coupled oscillators with time-dependent frequency was explored in [28, 302],
where the following total Hamiltonian was considered:

H(tot) =
Nuni∑
n=1

HΨn +H(int) , (5.58)

where each HΨn is of the form of the non-interacting Hamiltonian (5.36) and the interaction term
H(int) was taken to be of the form

H(int) =
∫

dϕ
Nuni∑
n=1

C(α) |Ψn −Ψn+1|2 . (5.59)

The coupling C(α), which is phenomenological in nature, was assumed to be the same for all pairs
ΨnΨn+1 and cyclic conditions were assumed, i.e., ΨNuni+1 = Ψ1 in Eq. (5.59).

The total Hamiltonian (5.58) with an interaction of the form in Eq. (5.59) can be simplified by
means of a discrete Fourier transformation [302]

Ψl = 1√
Nuni

Nuni∑
n=1

e−2πi ln/NuniΨn , Ψ∗l = 1√
Nuni

Nuni∑
n=1

e2πi ln/NuniΨ∗n , (5.60)

πl = 1√
Nuni

Nuni∑
n=1

e−2πi ln/Nuniπn , π∗l = 1√
Nuni

Nuni∑
n=1

e2πi ln/Nuniπ∗n , (5.61)

which, when inserted in (5.58) leads to

H(tot) =
∫

dϕ
Nuni∑
l=1

[
π∗KπK + ∂ϕΨ∗K ∂ϕΨK + Ωl(α,ϕ)

~2 Ψ∗K ΨK

]
. (5.62)

Here, the new squared frequency Ωl(α,ϕ) reads

Ωl(α,ϕ) := σ2`6P e6α
[

Λ
3 + κ2V (ϕ)

3 − K
`2P e2α + 4~2

σ2`6P

C(α)
e6α sin2

(
πl

Nuni

)]
. (5.63)

The shape of Eq. (5.62) shows that in passing from the n-representation to the new l-representation
we obtain a system of N uncoupled Hamiltonians, each representing a series of harmonic oscillators
whose frequency, in the approximation of ∂ϕΨ ≈ 0, is given by Ωl. Notice that the effect of the
interaction in the old representation is now translated in the presence of an additional term in Ω2

l .
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The expression for the frequency Ωl can be simplified by following [302] and writing C(α) as

C(α) = σ2

4~2
N2

uni
π2 a2λ2(a) = σ2

4~2
N2

uni
π2 `2P e2αλ2(α) , (5.64)

where the new coupling λ(α) has dimensions of length. Replacing this expression in (5.63) leads to

Ωl(α,ϕ) := σ2`6P e6α
[

Λ
3 + κ2V (ϕ)

3 − K
`2P e2α + N2

uni
π2 sin2

(
πl

Nuni

)
λ2(α)
`4P e4α

]
. (5.65)

In Ref. [302], it was argued that, through a mechanism of vacuum decay, the most probable
configuration in the l-representation is that of small l. If we assume this to be the case and consider
the limit of a very high number of universes, l� Nuni, then we can replace the sin function in (5.65)
by its limiting expression for small arguments, obtaining

Ωl(α,ϕ) ' σ2`6P e6α
[

Λ
3 + κ2V (ϕ)

3 − K
`2P e2α + l2λ2(α)

`4P e4α

]
. (5.66)

We can now make use of the phenomenological nature of the universe-universe coupling to consider the
situation when λ is a power of the scale factor – λ = λ∗(a/a∗)s, where λ∗ and a∗ are arbitrary constants
with units of length and s is a real number. Of particular interest are the cases of [75, 82, 83, 302]:
s = 2 which introduces an effective cosmological constant; s = 1 which introduces an effective
curvature term; s = 1/2 which introduces an effective dust term; s = 0 which introduces an effective
radiation term; s = −1 which introduces an effective stiff-matter term.

As in the case of a constant potential treated in the previous section, the authors of [302] use
semi-classical considerations, as well as the approximation ∂ϕΨ ≈ 0 which amounts to disregard the
momentum of the scalar field, to argue that each individual universe in the l-representation follows
the evolution dictated by the effective Friedmann equation(

1
a

da
dt

)2
= Λ

3 + κ2V (ϕ)
3 − K

a2 + l2λ2(a)
a4 . (5.67)

If we consider that the potential of the scalar field is almost constant during the evolution of the
system, V (ϕ) = 3H2

dS/κ
2, while absorbing the cosmological constant in V (ϕ), and consider the case

of a power-law dependence of λ(a), the previous equation reduces to(
1
a

da
dt

)2
= H2

dS −
K

`2P e2α + l2λ2
∗

a4
∗

(a∗
a

)4−2s
. (5.68)

As a last note, we point out that while the Third Quantisation formalism was invoked to justify the
multi-universe system, no actual quantisation of the N wave-function fields was performed up to this
point. As discussed above, this would require specifying the shape of the potential of the scalar field
in order to find a mode decomposition of the fields, so as to write the quantum analogues of Ψ and π
in terms of creation and annihilation operators. In the case of a constant potential, this would add a
new ∼ a−6 term to the effective Friedmann equation coming from the momentum of the scalar field.
However, except for the case of λ ∼ a−1, this new term is subdominant with regards to the l2 term
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I II III

Umax

K2

a- a+ a

U

=+1 =0 =-1

Figure 5.1.: The potential U in the cases of a closed, flat and open spatial geometry. For K = +1 there is
a classically forbidden region between a− and a+.

that arises from the universe-universe coupling and, therefore, we choose to disregard it.

5.2. Tunnelling in a closed universe

We now return to the case of a non-interacting universe filled by a massless scalar field with a constant
potential, which was introduced previously in Sect. 5.1.3. In such a case, the wave-function mode
function ΨK satisfies the WDW mode equation (5.32)

∂2ΨK

∂α2 +
[
K2 + Ω2

K(α)
~2

]
ΨK = 0 , (5.69)

where the mode-dependent ΩK is defined in Eq. (5.32). The evolution of this mode in the min-
isuperspace can be compared to that of a particle travelling along the semi-axis 0 < a (recall that
α := log(a/`P)) in a potential U = −Ω2

K(a)/~2, where the term K2 plays the role of the total energy
of the particle (cf. Fig. 5.1). For flat or open spatial geometries, the potential U is always non-positive
and decreasing with a, therefore ΨK represents an unbounded state which classically corresponds to a
universe that expands from a = 0 to infinite radius.

In the case of a closed FLRW universe, however, the situation becomes more interesting – due
to the opposite signs of the curvature and cosmological constant terms, the potential U becomes
positive for small values of the scale factor7 with a maximum value Umax at a = (2/3)1/2H−1

dS . This
entraps the modes with lowest mode-numbers (K2 < Umax) in a finite region I : a ∈ (0, a−) from
which, classically, they cannot escape. Thus, the classical interpretation of solutions in this region is
that of a baby universe that expands to a maximum size and then collapse. This picture is similar to

7More precisely, we find that 0 < U for 0 < a < H−1
dS .
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the situation presented8 in [306] and [71]. Another classically allowed region is III : a ∈ (a+, +∞),
where semi-classical solutions would correspond to universes that can contract from infinite radius
until reaching a = a+, at which point they bounce and start to expand in an accelerated fashion ad
infinitum. Separating these two regions, is the potential barrier which defines a classically forbidden
region II : a ∈ (a−, a+).

The border points a− and a+ that delimit the regions I, II, and III can be obtained by calculating
the positive solutions of the following cubic equation in a29.

K2 = 27
4 K

2
max

[
(HdSa)4 − (HdSa)6] , (5.70)

where

Kmax := 2σ
3
√

3~H2
dS

= π√
3

1
γ
. (5.71)

Here, the dimensionless parameter γ := ~2H2
dS/M

2
P indicates how close the energy density during

inflation is to the Planck scale. The equation (5.70) can be rewritten as a cubic equation in the
dimensionless variable x := (HdSa)2 and for K < Kmax possesses three real roots: x+, x− and −x0,
defined for each mode K as [79, 162]

x+(K) =
1 + 2 cos

(
θK
3
)

3 , (0 < x+) (5.72)

x−(K) =
1− 2 cos

(
θK+π

3
)

3 , (0 ≤ x− ≤ x+) (5.73)

x0(K) =
−1 + 2 cos

(
θK−π

3
)

3 (x0 ≤ 0) , (5.74)

where the mode dependent phase θK is given by [79, 162]

θK := arccos
[

1− 2
(

K

Kmax

)2
]

= 2 arcsin
(

K

Kmax

)
∈ [0, π] . (5.75)

In Fig. 5.2 we show how the value of x+, x− and x0 depends on the ratio K/Kmax. For 0 < K < Kmax,
we find two positive roots, x+ and x−, with x− ≤ x+, which we can associate with the two physical
scales a− := H−1

dS (x−)1/2 and a+ := H−1
dS (x+)1/2. These two roots merge for K = Kmax, with

x+(Kmax) = x−(Kmax) = 2/3, and become complex for larger values. This is in accordance with
the fact that for K larger than the Kmax barrier the modes ΨK can evolve freely in the semi-axis
0 < a. The third root −x0, which as can be seen in Fig. 5.2 can be continued for Kmax < K, is
always negative and therefore has no correspondence with a physical scale.

Using a semi-classical WKB approximation in the classically allowed regions I and III, we obtain the

8We stress that in those works the role of the total energy is played by the constants ε [306] or K̃2 [71], which
come from considering a massless conformal scalar field whose kinetic term, classically, goes as a−4. Note how this
difference is reflected in the powers of the terms of the potential barrier.

9In the present case of a closed FLRW universe, the σ factor that appears in the definition of Kmax, cf. (5.70), and
which is defined in (5.29) assumes the value σ = 12π2/κ2 = 3π/(2G), thus agreeing with the notation in [79, 162, 266].
In this case we can write Kmax = (πM2

P)/(
√

3~2H2
dS), where we recall that MP is the Planck mass.
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0.2 0.4 0.6 0.8 1.0
K2/Kmax2

-0.5

0.5

1.0

x

x+ x- -x0

Figure 5.2.: Dependence of the solutions (5.72), (5.73) and (5.74) on the mode number K. The solutions
x+ and x− are real valued for 0 ≤ K2 ≤ K2

max, merging for K = Kmax with x+(Kmax) =
x−(Kmax) = 2/3. For Kmax < K the negative root x0 can be continued even though the
phase θK assumes complex values, cf. Eq. (5.75).

pair of solutions [211, 253]

ΨI±
K =

√
~
2

e± i
~S

I
0(K)

(K2 − U)1/4 , ΨIII±
K =

√
~
2

e± i
~S

III
0 (K)

(K2 − U)1/4 , (5.76)

where SI
0 := ~

∫ α
−∞ dα′

√
K2 − U(α′) and SIII

0 := ~
∫ α

log(a+/`P) dα′
√
K2 − U(α′). The pre-factor√

~/2 is included so that Ψ±K is normalised with regards to (5.33). The classical momentum is then
given by [211]

πα = − i~∂S
K
0

∂α
= ±~

√
K2 − U . (5.77)

Equating πα in the previous equation with the canonical momentum derived from (5.6), fixing N = 1
so as to select the classical cosmic time and changing variables from α to the scale factor a leads to
the following Friedmann equation, valid both in the regions I and III depicted in Fig. 5.1:(

1
a

da
dt

)2
= ~2

σ2a6

(
K2 − U

)
= ~2K2

σ2a6 −
1
a2 +H2

dS . (5.78)

Notice that for the limiting points a = a− and a = a+ the r.h.s. of this equation vanishes, i.e.,
they correspond to bouncing points where the Hubble rate vanishes. Therefore, classical solutions of
expanding universes in region I bounce back once they reach a− and start to contract, while solutions
of asymptotically de Sitter universes in region III, which initially are contracting, will reach a minimum
size at a+ before entering a final inflating epoch. This is in accordance with the interpretation
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presented above for the wave-function with mode K as describing a particle moving in a potential U .

5.2.1. Background solutions

In order to obtain explicit solutions of Eq. (5.78), we introduce the conformal time dη := a−1dt and
change variables from the scale factor to x = (HdSa)2. The Friedmann equation (5.78) can then be
rewritten as

dη = ± dx√
(x− x+)(x− x−)(x+ x0)

, (5.79)

where x+, x− and −x0 are the real roots of Eq. (5.70). In the particular case of K = 0, which
corresponds to the model of creation from nothing analysed in [340, 341], the integral of Eq. (5.79)
in the region10 x+ < x can be expressed in terms of elementary functions. For a general value of the
mode K in the interval 0 < K < Kmax, however, an explicit integration of Eq. (5.79) requires specific
variable substitutions for each separate region. The strategy followed in [79], where the solutions were
derived in terms of elliptic integrals and Jacobi elliptic functions goes as follows.

In region I : x ∈ (0, x−), we employ the change of variable [79]

x→ ξI := arccos
(√

x+ − x−
x+ − x

x+ x0

x− + x0

)
. (5.80)

Applying the substitution (5.80) in Eq. (5.79) and integrating from ξI to ξI(x−) = 0, we obtain for
the expanding branch

HdS (η− − η) = F
(
ξI∣∣k2) , (5.81)

where η− := η(x−), F (z|m) is the elliptical integral of the first kind [7, 283] and we have introduced
as well the constants

HdS :=
√
x0 + x+ , k2 := x− + x0

x+ + x0
≤ 1 . (5.82)

The solution a(η) can then be obtained by using the relation of the elliptic integrals with the Jacobi
elliptic function sn(u|m) [7, 283] to invert the solution (5.81). After some algebra we arrive to the
solution [79]

a2(η) = a2
− −

(
a2

0 + a2
−
) (1− k̃2)sn2 [HdS (η− − η)

∣∣k2]
1− k2 sn2 [HdS (η− − η)|k2] . (5.83)

A similar change of variable [79]

x→ ξIII := arcsin
(√

x− x+

x− x−

)
, ξIII ∈

[
0, π2

]
, (5.84)

valid for x ∈ (x−, x+), can be applied to (5.79) in the region III, after which an integration from
10Notice that in this case we have x− = 0 and so the region I disappears.
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ξIII(x+) = 0 to ξIII leads to

HdS (η − η+) = F
(
ξIII∣∣k2) . (5.85)

Inverting (5.85), we then obtain the scale factor as a function of the conformal time in the asymptotically
de Sitter region [79]

a2(η) = a2
+ +

(
a2

+ − a2
−
) sn2 [HdS (η − η+)

∣∣k2]
cn2 [HdS (η − η+)|k2] . (5.86)

Applying a semi-classical WKB approximation to the classically forbidden region II, where the
potential barrier U is higher than K2, leads to the pair of tunnelling solutions

ΨII±
K =

√
~
2

e± 1
~S

II
0 (K)

(U −K2)1/4 , (5.87)

where SII
0 := ~

∫ α
log(a−/`P) dα′

√
U(α′)−K2. As noted by Coleman [120], these solutions correspond

to Euclidean instanton solutions and so, in order to obtain an evolution equation we need to perform a
Wick rotation and define a Euclidean time t̃ := −it. We can now define the Euclidean momentum as

π̃α = ±~∂S
II
0 (K)
∂α

, (5.88)

which leads to the Euclidean equivalent of the Friedmann equation (5.78)(
1
a

da
dt̃

)2
= −~2K2

σ2a6 + 1
a2 −H

2
dS . (5.89)

For K = 0 the solution of this equation in the region 0 < x < x+ gives the S4 instanton discussed in
[340, 341]. In order to find a solution for a general K within the interval 0 < K < Kmax, we can
rewrite Eq. (5.89) in terms of the conformal Euclidean time dη̃ := a−1dt̃ as

dη̃ = ± dx√
(x+ − x)(x− x−)(x+ x0)

. (5.90)

After introducing the change of variable [79]

x→ ξII := arccos
(√

x− x−
x+ − x−

)
, ξII ∈

[
0, π2

]
, (5.91)

we can integrate Eq. (5.90) from ξII to ξII(x+) = 0 and obtain

HdS (η̃+ − η̃) = F
(
ξII∣∣k2) . (5.92)

Inverting this equation we finally obtain the solution for the scale factor as a function of the conformal
Euclidean time [79]

a2 (η̃) = a2
+ −

(
a2

+ − a2
−
)

sn2 [HdS (η̃+ − η̃)] . (5.93)
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Figure 5.3.: Representation of the solutions (5.83), (5.86) and (5.93) for the squared scale factor
x := a2H2

dS as a function of the conformal Lorentzian time η and the conformal Euclidean
time η̃. The thick red line represents the evolution of the squared scale factor for a baby
universe (I) that once it reaches its maximum size traverses the Euclidean wormhole (II) and
emerges as an expanding universe (III) that starts to inflate. The classical continuation of the
evolution in the baby and inflating universes, i.e., the bouncing solutions, is shown as a thin
grey line.

A combined representation of the solutions (5.83), (5.86) and (5.93) is plotted in Fig. 5.3 as a thick
red line, showing how the two expanding branches in regions I and III, with the normalisation η− = 0,
can be connected by the instanton solution in the region II. Thus a baby universe with a < a− can
quantum tunnel through the instanton solution and emerge as an asymptotically de Sitter universe
with a+ < a, thus escaping the classical collapse. The continuation of the classical solutions in the
regions I and II, i.e., the bouncing classical solutions, are plotted in a thin grey line.

5.2.2. Quantum tunnelling

In the previous section, we have discussed how a classically forbidden region appears in a model
of a closed FLRW universe filled with a scalar field with a (near) constant potential V (ϕ). At the
semi-classical level this region corresponds to a Euclidean instanton similar to the ones found in
[340, 341] and [167]. This instanton connects the two classically allowed regions I and III (cf. Fig. 5.1)
corresponding to a baby universe and an asymptotically inflating one, thus allowing for the former
to avoid its classical collapse by tunnelling quantum mechanically through the Euclidean region II.
Following Vilenkin’s proposal for tunnelling transition [341, 342], we now calculate the probability that
this process can occur.

As discussed in [341, 342], the tunnelling probability of an outgoing wave solution traversing the
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potential barrier U can be approximated by11:

P(a−→a+)
K ≈ exp

[
− 2

~

∫ a+

a−

da
a
SII

0 (K)
]

= exp
[
− 3π

2γ I(K/Kmax)

]
, (5.94)

where I(K/Kmax) represents the following integral12

I(K/Kmax) :=
∫ x+

x−

dx
x

√
(x+ − x)(x− x−)(x+ x0) . (5.95)

The subscript (K/Kmax) is introduced here to indicate that the integral in (5.95) is a function of the
ratio K/Kmax, exclusively, as x+, x− and x0 depend on K only through the phase θK defined in
(5.75).

The integral on the r.h.s. of (5.95) can be solved directly in the extremal cases of K = 0 and
K = Kmax. For K = 0, we have x+ = 1 and x− = x0 = 0 and the integral in Eq. (5.95) becomes
trivial, leading to I(0) = 2/3. On the other hand, for K = Kmax the limits of integration are equal
and the integral vanishes: I(1) = 0. For a general value of K satisfying 0 < K < Kmax, an explicit
solution for I(K/Kmax) was obtained by us in [79] by means of the variable substitution

x→ ξ := arccos
(√

x− x−
x+ − x−

)
, ξ ∈

[
0, π2

]
. (5.96)

This leads to I(K/Kmax) being written as a linear combination of complete elliptic integrals of the first,
K(m), second, E(m), and third, Π(n|m), kinds [7, 283]:

I(K/Kmax) =



2
3 , K = 0 ,

2
3
[
CKK

(
k̃2)+ CEE

(
k̃2)+ CΠΠ

(
q2
∣∣ k̃2)] , 0 < K < Kmax ,

0 , K = Kmax .

(5.97)

The auxiliary parameters k̃ and q are defined as13

k̃ :=
√
x+ − x−
x+ + x0

and q :=
√
x+ − x−
x+

, (5.98)

while the linear coefficients CK , CE and CΠ can be written in terms of k̃, q and HdS, where the

11The quantity SII
0 (K) corresponds to the p(a) defined in [341, 342]. This correspondence is the origin of the factor

2 in the expression for the tunnelling probability (5.94) which does not appear in the expression P ≈ exp(−|SE |) found
in [341].

12Please notice that the factor 1/2 in the definition (3.2) of [79] is absorbed by the pre-factor in Eq. (5.94).
13Notice that the parameter q is unrelated to the deceleration parameter defined in Sect. 2.2.
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latter was defined in Eq. (5.82), as

CK := H3
dS

(
1− k̃2 − 3 k̃

4

q4

(
1− q2)) , (5.99)

CE := −H3
dS

(
1 + k̃2 − 3 k̃

2

q2

)
, (5.100)

CΠ := 3H3
dS

(
1− k̃2

q2

)(
k̃2 − k̃2

q2

)
. (5.101)

A detailed derivation of Eq. (5.97) can be found in the Appendix A of Ref. [79].

Inserting the solution (5.97) in the expression (5.94), we can write the tunnelling probability as [79]

PK ≈



exp
[
−π
γ

]
, K = 0 ,

exp
[
−π
γ

[
CK K

(
k̃2)+ CE E

(
k̃2)+ CΠ Π

(
κ2
∣∣ k̃2)]] , 0 < K < Kmax ,

1 , K = Kmax .

(5.102)

In this expression, the linear coefficients CK , CE and CΠ and the auxiliary parameters HdS, k̃ and q
are functions only of the ratio K/Kmax (through the angle αK). Therefore, the tunnelling probability
PK is a bivariate function of the parameter γ, which controls how close the energy scale during
inflation is to the Planck scale, and of the ratio K/Kmax, which relates the momentum of the scalar
field with the maximum of the potential barrier U . In the top panel of Fig. 5.4, we plot the tunnelling
probability as a function of γ and K/Kmax, while in the bottom panels we present the projection of PK
for different fixed values of K/Kmax (bottom-left) and for different fixed values of γ (bottom-right).

Due to the factor −(1/γ) in the argument of the exponential in Eq. (5.102), we find that the
probability that a baby universe tunnels through the potential barrier is extremely suppressed for
universes with low energy scales of inflation, as can be seen in Fig. 5.4. Then, if we consider an initial
collection of baby universes with a flat distribution of values of γ and could count the universes that are
able to surpass the potential barrier and start to inflate, we should find a final distribution of inflating
universes highly peaked around the maximum allowed values of energy scale during inflation. This is
analogous to the situation discussed in [341], where an identical suppression led to the interpretation
that universes with the highest values of the vacuum energy were the ones more probable to nucleate
and therefore “(. . . ) an observer who can do a statistical survey of all nucleating universes (. . . ) will
find that the most of the universes nucleate with φ = φmax” [341].

This suppression of the tunnelling probability can nevertheless be avoided if K is high enough, as we
find from Fig. 5.4 that PK grows monotonically with K, reaching unity when K = Kmax. This should
be expected since the Euclidean region ceases to be present in that limit, which means that even for
very small values of γ there is a small range of values of K around Kmax, for which the baby universe
is likely to tunnel through the Euclidean region and start to inflate. For universes with sub-Planckian
inflationary energy scales, like ours, this provides a mechanism to counter the exponential suppression
due to γ � 1 in the expression (5.102). Notice that current observational data set an upper limit
of 8.8× 1013 GeV for the energy scale during inflation [48], which corresponds to γ of the order of
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Figure 5.4.: The tunnelling probability PK as a function of the ratio K/Kmax and of the inflationary scale
parameter γ := ~2H2

dS/M
2
P. In the two bottom panels we plot the tunnelling probability when

(left panel, from bottom/darker to top/lighter) fixing K/Kmax = 0, 1/4, 1/2, 3/4, 95/100;
and when (right panel, from bottom/darker to top/lighter) fixing γ = 1/8, 3/8, 5/8, 7/8. The
tunnelling probability for the case of the creation of an expanding universe from nothing
(K = 0) is indicated by a dashed blue line.

10−11 ∼ 10−12 [79]. For such a small value of γ the tunnelling probability distribution is extremely
peaked around K = Kmax, meaning that unless K ≈ Kmax our universe would be extremely unlikely
to occur. Notice that the conclusion could be different if the no boundary condition of Hartle and
Hawking were to be assumed [180].

5.2.3. Discussion

In this section, we have addressed the semi-classical solution of a spatially closed universe where, in
addition to the kinetic and potential energy density of the scalar field, we account for a contribution
from the spatial curvature. In the context of the Third Quantisation of the multiverse filled by a
minimally coupled scalar field, such a scenario corresponds to the semi-classical evolution of each
individual universe created as the multiverse evolves. By considering the contribution of the (negative)
curvature term, we observed how, when the kinetic energy of the scalar field is low enough, the
effective Friedmann equation describes three separate regions of space-time: (I) a baby universe that
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grows to a maximum size and then collapses on itself and (III) a large asymptotically de Sitter universe
that shrinks to a minimum size and then starts to inflate eternally, separated by (II) a Euclidean
region which we identified as a wormhole solution. The existence of this wormhole suggests that,
while regions I and III are classically disconnected, they are linked by quantum effects. Therefore, we
can consider the scenario where a baby universe reaches its maximum size but, instead of starting
to collapse, quantum tunnels through the Euclidean region and emerges as a de Sitter-like inflating
universe. Using appropriate variable substitutions, we have obtained analytical expressions for the
background solutions for the evolution of the scale factor in each of the three regions. Such solutions
can be seen as a generalisation of the ones found for Giddings–Strominger’s instanton [167] and for
Vilenkin’s proposal of creation from nothing [341].

In addition to the background solutions, we have computed the probability for a baby universe to
tunnel through the Euclidean region using the transition amplitude proposed in [341, 342]. These
results, represented in Fig. 5.4 show that the probability for transition increases with higher values of
the kinetic energy of the scalar field, parameterised by K, and higher values of the energy density
during the inflationary regime at large a, which is parameterised by γ := ~2H2

dS/M
2
P. This effect

can be understood by the fact that the potential barrier created by the curvature term (cf. Fig. 5.1)
decreases in width and amplitude when one of these parameters increases. Since current bounds set
the scale of inflation at 8.8× 1013 GeV [48] we find that γ . 5.2× 10−11. For such a small value,
the probability of quantum tunnelling for a baby universe is extremely suppressed14 unless K ∼ Kmax.
Assuming that this was how our Universe came to existence, this extremely low value suggests that
either ours is a case with high values of K, or that the rate of production of low-K universes is high
enough that the probability of at least one baby universe to overcome the quantum barrier is close to
one.

5.3. Cosmological Perturbations in a toy model I

In the previous sections, we have reviewed several models, cf. Eqs. (5.57) and (5.68), for a semi-classical
universe where the Friedmann equation has the functional form(

a′

a

)2
= a2H2

dS

[
1− K

(aHdS)2 + Q2

(aHdS)β

]
. (5.103)

Here, we remind that a prime indicates a derivative with respect to the conformal time η. The first
term inside the brackets on the r.h.s. of Eq. (5.103) leads to an asymptotic de Sitter phase with
energy density ρdS = 3H2

dS/κ
2 at large values of the scale factor. The second term comes from the

curvature of the spatial hypersurfaces and in the third term Q is a dimensionless positive parameter
that determines the strength of a pre-inflationary epoch during which the effective EoS parameter
is given by w = −1 + β/3. For β = 6, β = 4 and β = 3, the pre-inflationary epoch in Eq. (5.103)
mimics the behaviour of a stiff-matter, radiation and dust dominated universe, respectively.

We are now interested in considering the evolution of the cosmological perturbations in these
models. As a first approach, we will treat the problem in the framework of quantum linear cosmological
perturbations around a (semi) classical background and, for simplicity, we will disregard the curvature

14Notice that in Eq. (5.102) a factor −γ−1 appears on the exponent of the tunnelling probability.
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term. To treat the evolution of the quantum perturbations, we employ the quantum operator15

constructed from the Mukhanov-Sasaki variable v := a[δϕ+ (ϕ′/H)ψ], which in single field inflation
models encodes all the information of the scalar sector (up to first order in the perturbations). Following
the usual procedure of quantum field theory, the operator v̂ can be expanded in k-modes as

v̂(η, ~x) =
∫ d3~k

(2π)3/2

[
v~k(η) ei~k·~xâ−~k

+ v∗~k(η) e−i~k·~xâ+
~k

]
, (5.104)

where a−~k and a+
~k

are time-independent annihilation and creation operators for quanta of v̂ and the
mode functions v~k satisfy the evolution equation [53, 267]

v′′~k +
(
k2 − z′′

z

)
v~k = 0 , (5.105)

and the normalisation condition [53, 267]

v~kv
∗
~k

′ − v~k
′v∗~k = i~ . (5.106)

Since the mode equation (5.105) and the normalisation condition (5.106) depend only on the magnitude
of ~k and not on its direction, in the rest of the chapter we will use the subscript k instead of ~k.

In inflationary models with no pre-inflationary effects, it is customary to fix the initial conditions
for the mode functions by imposing that in the asymptotic past the Bunch-Davies vacuum solution
[94, 115, 313]

vk '
√

~
2k e−ik(η−η0) , (5.107)

is recovered. However, if one introduces a pre-inflationary epoch, imposing these initial conditions may
be no longer valid and, in addition, the amplitude of the modes at the moment of horizon crossing
during inflation could differ widely from the initial prediction. Such variations can have consequences
for the late-time evolution of the Universe, since these quantum fluctuations are the seeds that lead
to the Large Scale Structure observed today. In the following sections, we present the results obtained
regarding the study of the effects of a pre-inflationary epoch in the models described by Eq. (5.103)
on the primordial power spectrum [49]

PR(k) = k3

2π2 |Rk|
2 = k3

2π2
|vk|2

z2 , (5.108)

and on the normalised angular power spectrum of the temperature-temperature polarisation of the
CMB [15, 352]

DTT
` =

∫ +∞

0

dk
k

[∆s
l,T (k)]2PR(k) . (5.109)

Here, ` is the multipole number and the transfer function ∆s
l,T contains all the information regarding

the evolution of the classical perturbations after the end of inflation and till the moment of the last

15In the Appendix D.3, we review the canonical quantisation procedure of the Mukhanov-Sasaki variable.
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scattering surface. The results we present next were first published in Refs. [82, 266].

5.3.1. The Model

Cosmological observations of the CMB show that at the end of inflation the primordial power spectrum,
PR, had a near scale-invariant shape with a red tilt, ns < 1, inferred at more than 5σ confidence level
[15]. Such a value excludes a pure de Sitter inflationary scenario which lead us to relax the asymptotic
de Sitter behaviour in Eq. (5.103) and replace the constant term H2

dS by a power of the scale factor
H2

dS(a∗/a)α, where a∗ is a reference scale. For positive but small values of α, this power-law inflation
behaviour leads to a slightly red-tilted PR compatible with observations16. With these considerations
in mind and after dropping the curvature term, we rewrite Eq. (5.103) as

H2 = H2
dS

[(a∗
a

)α
+ Q2

(aHdS)β

]
, (5.110)

where H := ȧ/a is the Hubble rate. The second term on the r.h.s. of the new Friedmann equation
(5.110) leads to a decelerated initial epoch if β > 2. In such a case, the comoving wavenumber of the
Hubble horizon, kH := aH, reaches the minimum value [82]

kmin := a∗HdS

[
β − α
2− α

(
2− α
β − 2

) β−2
β−α

] 1
2 [

Q2

(a∗HdS)β

] 1
2

2−α
β−α

, (5.111)

when the scale factor reaches the value [82]

atrans := a∗

[
β − 2
2− α

Q2

(a∗HdS)β

] 1
β−α

, (5.112)

during the transition from the initial decelerated epoch to inflation. Here, we recall that we are
considering values 0 . α < 1 and β > 2, therefore the parameters kmin and atrans are always real
valued and positive.

For small values of the scale factor, a� atrans, the first term on the r.h.s. of (5.110) is negligible
and we obtain the scaling behaviour H2 ∝ a−β . In this case, the potential z′′/z tracks the squared
comoving Hubble wavenumber k2

H as

z′′

z
'
(

2− β

2

)
k2
H . (5.113)

As discussed in the Appendix D.3, the general solution for the mode functions vk in this case can be

16Despite having attractive features like a simple shape for PR and the availability of analytical solutions for the
perturbations in single-field models, power-law inflation [241, 242] is ruled out by observations due to the high values of
tensor-to-scalar ratio that they predict [15]. Nevertheless, while we wait for the detection of cosmological gravitational
waves, power-law inflation models continue to be a good toy models to analyse pre-inflationary effects in the scalar
sector.
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written in terms of Hankel functions [7, 283] as

vk =
√
π~(η − ηc)

2

(
B1,kH

(1)
ν [k(η − ηc)] +B2,kH

(2)
ν [k(η − ηc)]

)
. (5.114)

Here, the minimum conformal time ηc and the order of the Hankel functions are defined as

ηc = η1 −
2

β − 2
1

a(η1)H(η1) , λ := 1
2

6− β
β − 2 , (5.115)

where η1 is an arbitrary integration constant and the linear coefficients satisfy the relation

|B1,k|2 − |B2,k|2 = −1 , (5.116)

which is derived from the normalisation condition (5.106). The Bunch-Davies vacuum solution
(5.107), minus an arbitrary phase with no physical implication, is recovered in the asymptotic future,
1� k(η − ηc), for the choice of coefficients |B2,k| = 1 and B1,k = 0. In the numerical calculations
that we present in the following sections, this will be the choice of the linear coefficients used for
setting the initial conditions of the perturbations during the pre-inflationary epoch.

In the opposite asymptotic regime, a∗ � a, the first term on the r.h.s. of (5.110) becomes dominant
and we recover a period of power-law inflation H2 ∝ a−α. As in the previous case, the potential z′′/z
tracks the comoving Hubble horizon

z′′

z
'
(

2− α

2

)
k2
H , (5.117)

and the general solution for the mode functions is

vk =
√
π~(ηc − η)

2

[
C1,kH

(1)
ν [k(ηc − η)] + C2,kH

(2)
ν [k(ηc − η)]

]
, (5.118)

with

ηc = η1 + 2
2− α

1
a(η1)H(η1) , λ := 1

2
6− α
2− α . (5.119)

Notice that in this case the conformal time is defined only for η < ηc and ηc corresponds to the
asymptotic future. The linear coefficients Ci,k, with i = 1, 2, satisfy the constraint

|C1,k|2 − |C2,k|2 = 1 . (5.120)

The Bunch-Davies solution can be recovered in the asymptotic past, when 1� k(ηc − η), if we choose
|C1,k| = 1 and C2,k = 0.

5.3.2. Parameters of the model

As stated above, we fix the initial conditions for the modes vk during the pre-inflationary era by
requiring that the BD vacuum is recovered in the limit of 1� kη (cf. Eq. (5.107) and the asymptotic
behaviour of (5.114)). For modes with wavenumber below kmin, this regime is never achieved and
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we expect to find strong modifications in the primordial power spectrum. However, for modes with
kmin � k there should be enough time between the first Horizon crossing during the pre-inflationary
era and the onset of inflation for the mode to reach the BD solution before exiting the Hubble horizon.
In this regime, we expect to recover the theoretical predictions for the primordial power spectrum PR.
We can then use this result to fix some of the parameters of our model {HdS, a∗, α, Q} presented in
Eq. (5.110). As we will show below, under certain considerations this strategy allows us to use the
cosmological observations to fix all but one of the initial parameters.

As long as Q� (a∗HdS)β , the second term on the r.h.s. of (5.110) becomes negligible for a & a∗
and the wavenumber of the mode that crosses the horizon at a∗ verifies k ≈ a∗HdS � kmin. As such,
and as long as z′′/z � (a∗HdS)2 during the transition from decelerated expansion to inflation, we
can assume that power-law inflation predictions for the primordial power spectrum are recovered for
k & a∗HdS, i.e.:

PR(k & a∗HdS) ≈ P∗R
(

k

a∗HdS

)− 2α
2−α

, (5.121)

where

P∗R = (2− α)
4

2−α

2πα

Γ
(

1
2

6−α
2−α

)
Γ
( 3

2
)

2

~2H2
dS

M2
P

. (5.122)

If we compare (5.121) with the observational fit of the Planck mission [16] and use the freedom in
choosing the value of a∗ to fix k∗ = a∗HdS, we can write the parameters {HdS, a∗, α} in terms of
the cosmological parameters {ns, As, k∗} as

α = 21− ns
3− ns

, (5.123)

HdS = π

2

√
(1− ns)As

Γ (2− ns/2)

(
3− ns

4

)1−ns2 MP

~
, (5.124)

a∗ = 2k∗
π

Γ (2− ns/2)√
(1− ns)As

(
3− ns

4

)ns
2 −1 ~

MP
. (5.125)

Notice that these relations are independent of the value of β and are valid as long as the condition
Q� (a∗HdS)β holds. Using the 2015 constraints from the Planck mission in combination with lensing
effects and external data (BAO+JLA+H0) [16], we then find

α ' 0.03275 , HdS ' 1.055× 10−5 (MP/~) , a∗ ' 2.099× 107 (~/MP) . (5.126)

As reference, we note that the present day values for the Hubble rate and scale factor are H0 ≈
1.184× 10−61 (MP/~) and a0 = H−1

0 ≈ 8.449× 1060 (~/MP). With these values, the corresponding
wavenumbers are k0 = 1 and k∗ ≈ 221.3. Notice that k0 and k∗ are dimensionless due to the fact
that the scale factor has dimensions of length and we are considering c = 1.

At this point we have fixed three of the four initial parameters of the model, leaving only Q as a
free parameter. This parameter must satisfy the initial assumption Q� (a∗HdS)β in order to validate
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the analysis presented in this subsection. Nevertheless, by looking at the shape of the potential z′′/z
during the transition between the two asymptotic epochs, we can derive more strict bounds on Q,
such that imprints of the pre-inflationary epoch appearing in the primordial power spectrum satisfy
the observational constraints. We now show how this can be achieved for the three particular cases of
interest: β = 6; β = 4 and β = 3.

Case 1: β = 6 (stiff matter)

The first case we analyse is that of β = 6, in which the Q-term in Eq. (5.110) leads to a pre-
inflationary epoch that mimics a stiff-matter-dominated universe. The appearance of this extra term
in the Friedmann equation was obtained in [266] via the momentum of the scalar field17. Classically,
this new term corresponds to the kinetic energy density of the scalar field, which means that the
initial epoch would be one of kinetic domination. An alternative way of obtaining a similar initial
epoch is by considering a model of interacting universes with a specific type of interaction coupling
[82, 302]. In that case, we can obtain a pre-inflationary era where H2 ∝ a−6, while maintaining an
extreme slow-roll regime for the scalar field in which the potential energy density remains approximately
constant during the interval of evolution even if V (ϕ) is not asymptotically flat.

In order to set lower and upper bounds on Q we analyse the shape of the comoving wavenumber
of the Hubble horizon, k2

H , and the potential z′′/z. In Fig. 5.5, we plot k2
H and z′′/z (left upper

panel) as well as their ratio (left lower panel) around the transition from decelerated expansion to
inflation. In the asymptotic regions, the potential z′′/z tracks k2

H according to Eqs. (5.113) and
(5.117). However, near the transition we observe the presence of two prominent bumps; a first smaller
bump appears close to the moment of no acceleration and a second larger one is visible when inflation
is already under way. As the value of the free parameter Q increases, the minimum of k2

H and the
bumps in the potential z′′/z are shifted upwards up, affecting higher wavenumbers, as can be seen on
the r.h.s. panel of Fig. 5.5.

We expect that the shape of the potential z′′/z can be related to potential imprints on the primordial
power spectrum. In order to check this assumption, we define three extra wavenumbers, apart from
kmin, that characterise the model (cf. left lower panel of Fig. 5.5):

a) We define ka as the mode that crosses the potential z′′/z when the ratio (z′′/z)/k2
H reaches

the local minimum before the transition to inflation. Through numerical investigation we find
ka ' 2.149kmin independently of the value of Q.

b) We define kb as the mode that crosses the potential z′′/z when the ratio (z′′/z)/k2
H reaches

the local maximum after the beginning of inflation. Through numerical investigation we find
kb ' 3.548kmin also independently of the parameter Q.

c) Additionally, we consider kc := 10kmin since when this mode crosses the potential z′′/z, the
ratio (z′′/z)/k2

H has already reached (approximately) its asymptotic value during inflation.

When computing the primordial power spectrum at the end of inflation, we will look for imprints
around kmin, ka, kb and kc. In particular, since the potential z′′/z has already reached its asymptotic
shape when the mode kc crosses the horizon, we expect that any deviation from the prediction of
power-law inflation for the primordial power spectrum should appear only in the range k . kc. Thus,

17Notice that Q = K̃ in the notation of [266].
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Figure 5.5.: Evolution of the squared comoving Hubble horizon, k2
H , the potential z′′/z and of the ratio

(z′′/z)/k2
H for the model (5.110) with β = 6 around the period of transition from the

decelerated pre-inflationary epoch to the later power-law inflation. (Left panel) The four
wavenumbers that characterise the model: kmin, ka, kb and kc; are defined based on the
shape of k2

H , z′′/z and (z′′/z)/k2
H . (Right panel) As the value of the free parameter Q

increases, the characteristic shape of k2
H and z′′/z during the transition to inflation starts to

affect increasingly higher wavenumbers. In order for imprints of the model to appear on the
observable range of wavenumbers while at the same time satisfying observational constraints,
kc should be above k0 but well below k∗.

if we are to leave PR unaffected for k & k∗, kc should be well below the pivot scale. On the other
hand, in order for any imprints to appear on the observable range of wavenumbers, kc should be
above the wavenumber corresponding to the Hubble horizon at the present time, k0. By imposing
that k0 . kc � k∗, we arrive at the following lower and upper bounds for the free parameter Q:

2.730× 10−11k3
∗ . Q� 3.541× 10−4k3

∗ , (5.127)

or, equivalently,

2.958× 10−4k3
0 . Q� 3.837× 103k3

0 . (5.128)

If we insert these values in Eq. (5.112) we are able to calculate the number of e-folds of inflation
before a = a∗ as:

2.544 < log
(

a∗
atrans

)
. 8.034 . (5.129)

145



5.3 Cosmological Perturbations in a toy model I

-7 -6 -5 -4 -3
N

-2
-1
0
1
2

kmin
2

ka
2

kb
2

kc
2

k2

-6 -4 -2 0
N

-2
-1
0
1
2

k0
2

k*
2

Q↗

k2

kH2 z''/z (pos) z''/z (neg) (z''/z)/kH2

Figure 5.6.: Evolution of the squared comoving Hubble horizon, k2
H , the potential z′′/z and of the ratio

(z′′/z)/k2
H for the model (5.110) with β = 4 around the period of transition from the

decelerated pre-inflationary epoch to the later power-law inflation. (Left panel) The four
wavenumbers that characterise the model: kmin, ka, kb and kc; are defined based on the
shape of k2

H , z′′/z and (z′′/z)/k2
H . (Right Panel) As the value of the free parameter Q

increases, the characteristic shape of k2
H and z′′/z during the transition to inflation starts to

affect increasingly higher wavenumbers. In order for imprints of the model to appear on the
observable range of wavenumbers while at the same time respecting the constraints for PR,
the characteristic scale kc should be above k0 but well below k∗.

Case 2: β = 4 (radiation)

The second case we consider is that of β = 4, where the Q-term18 in the Friedmann equation (5.110)
leads to a pre-inflationary epoch that mimics a radiation-dominated universe. In Ref. [82], this kind of
behaviour is obtained by introducing an interaction between universes where the universe-universe
couplings (cf. Eq. (5.68)) have specific dependence on the scale factor.

As in the previous case, we look at the shape of the potential z′′/z around the transition to the
inflationary era for clues on which range of wavenumbers the primordial power spectrum may have
imprints of the pre-inflationary era. We find a first bump in z′′/z near the point of no acceleration,
followed by a second bump after inflation begins (cf. the left upper of Fig. 5.6) which now appears
much less pronounced and can be better identified by analysing the ratio (z′′/z)/k2

H (left lower panel
of Fig. 5.6). As in the previous case, the minimum of the comoving Hubble horizon and the bumps of
the potential are shifted to higher wavenumbers when the free parameter Q is increased.

As before, we introduce three extra wavenumbers, apart from kmin, that characterise the model:

a) We define ka as the wavenumber of the mode that crosses the potential z′′/z when the ratio

18In Ref. [82], we employed the notation QK for the parameter Q.
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(z′′/z)/k2
H reaches the local minimum before the transition to inflation. Using a numerical

analysis, we find ka ' 1.381kmin independently of the value of Q.

b) We define kb as the wavenumber of the mode that crosses the potential z′′/z when the ratio
(z′′/z)/k2

H reaches the local maximum after the beginning of inflation. Using a numerical
analysis, we find kb ' 4.626kmin independently of the value of the parameter Q.

c) We consider kc := 10kmin since when the respective mode crosses the potential z′′/z, the ratio
(z′′/z)/k2

H has already reached (approximately) its asymptotic value during inflation.

If we consider values of the characteristic wavenumber within the range k0 . kc � k∗, so that imprints
on the power spectrum appear in the observable range without violating observational constraints, we
obtain the following lower and upper bounds for the free parameter Q:

8.931× 10−8k2
∗ . Q� 4.784× 10−3k2

∗ , (5.130)

or

4.373× 10−3k2
0 . Q� 2.343× 102k2

0 . (5.131)

Inserting the constraint (5.131) in Eq. (5.112) allows us to limit the number of e-folds of inflation
before a = a∗ as:

2.689 < log
(

a∗
atrans

)
. 8.178 . (5.132)

Case 3: β = 3 (dust)

The third and last case we analyse is β = 3, in which a pre-inflationary epoch mimics a dust-dominated
universe. This type of behaviour was studied in [82], where the Q-term in (5.110) appears due to
the introduction of a phenomenological two-universe interaction with a specific a-dependence of the
coupling (cf. Eq. (5.68)). When analysing the shape of z′′/z to try to impose bounds on Q, we now
find that while the potential still has a bump near the moment of no acceleration, no second bump in
z′′/z and (z′′/z)/k2

H appears after the beginning of inflation, as can be seen in Fig. 5.7. As expected,
higher values of the free-parameter Q shift the features of the k2

H and z′′/z upwards, thus the effects
of the pre-inflationary epoch should be seen at higher wavenumbers.

As in the previous cases, we define extra characteristic wavenumbers based on the shape of the
potential z′′/z around the transition (cf. left lower panel of Fig. 5.7):

a) We define ka as the wavenumber of the mode that crosses the potential z′′/z when the ratio
(z′′/z)/k2

H reaches the local minimum before the transition to inflation. Through a numerical
study, we find ka ' 1.001kmin independently of the value of Q. Notice that since ka coincides
with kmin it does not introduce a new characteristic scale of the model.

b) In this case no local maximum appears in (z′′/z)/k2
H after the transition to inflation. As such,

we do not define kb for β = 3.

c) We consider kc := 10kmin since when the respective mode crosses the potential z′′/z, the ratio
(z′′/z)/k2

H has already reached (approximately) its asymptotic value during inflation.
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Figure 5.7.: Evolution of the squared comoving Hubble horizon, k2
H , the potential z′′/z and of the ratio

(z′′/z)/k2
H for the model (5.110) with β = 3 around the period of transition from the

decelerated pre-inflationary epoch to the later power-law inflation. (Left panel) Based on the
shape of k2

H , z′′/z and (z′′/z)/k2
H , two characteristic wavenumbers can be defined: kmin

and kc (ka ≈ kmin). Contrary to the previous cases, no bump in the shape of z′′/z appears
after the onset of inflation. (Right panel) As the value of the free parameter Q increases,
the characteristic shape of k2

H and z′′/z during the transition to inflation starts to affect
increasingly higher wavenumbers. In order for imprints of the model to appear on the observable
range of wavenumbers while at the same time fulfilling the constraints for PR, the characteristic
scale kc should be above k0 but well below k∗.

Using kc as a reference value for the maximum wavenumber with imprints of the model, we are able
to define the following lower and upper bounds for the free parameter Q so that effects from the
pre-inflationary epoch appear on the primordial power spectrum in the range of observable modes,
while at the same time respecting the constraints around the pivot scale:

5.564× 10−6k
3/2
∗ . Q� 1.916× 10−2k

3/2
∗ , (5.133)

or

1.832× 10−2k
3/2
0 . Q� 6.307× 101k

3/2
0 . (5.134)

Finally, through substitution in Eq. (5.112) we obtain the number of e-folds of inflation before a = a∗:

2.894 < log
(

a∗
atrans

)
. 8.383 . (5.135)
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Figure 5.8.: The initial conditions for the numerical integration are set for each mode depending on whether
the wavenumber k is above or below the threshold 5kc. For modes with wavenumber k1 < 5kc,
the initial conditions are set at Nini,1 well during the pre-inflationary epoch. For modes with
higher wavenumber 5kc < k2, the initial conditions are set at some Nini,2 e-folds before the
mode exits the Hubble horizon during inflation. After the mode exits the horizon, at Nfin,
the numerical integration is stopped. For the modes with lowest wavenumbers k < kmin the
stopping point is the same as for kmin.

5.3.3. Numerical Results

The mode equation (5.105) is a second order linear differential equation for a one-dimensional complex
variable. In order to solve this equation numerically, we follow the same decomposition strategy
employed in Refs. [74–76, 83, 183, 258, 263] and therefore we introduce the variables

Xk := 1
~1/2 vk , Yk :=− 1

ikX
′
k . (5.136)

This allows us to re-write the mode equation as a set of two first order linear differential equations:

X ′k = − ikYk , Y ′k = − i
k

(
k2 − z′′

z

)
Xk . (5.137)

In addition, the normalisation condition (5.106) becomes

XkY
∗
k +X∗kYk = 1

k
. (5.138)

If we further decompose Xk and Yk into their real and imaginary components: Xre
k , X im

k , Y re
k and

Y im
k ; and change the time variable from the conformal time η to the number of e-folds N := log(a/a∗),
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i Qi (β = 6) Qi (β = 4) Qi (β = 3)

1 1.78× 10−4k3
0 3.16× 10−3k2

0 1.33× 10−2k
3/2
0

2 1.00× 10−3k3
0 1.00× 10−2k2

0 3.16× 10−2k
3/2
0

3 5.62× 10−3k3
0 3.16× 10−2k2

0 7.50× 10−2k
3/2
0

4 3.16× 10−2k3
0 1.00× 10−1k2

0 1.78× 10−1k
3/2
0

5 1.78× 10−1k3
0 3.16× 10−1k2

0 4.22× 10−1k
3/2
0

6 1.00× 100k3
0 1.00× 100k2

0 1.00× 100k
3/2
0

7 5.63× 100k3
0 3.16× 100k2

0 2.37× 100k
3/2
0

8 3.16× 101k3
0 1.00× 101k2

0 5.62× 100k
3/2
0

Qmin 2.96× 10−4k3
0 4.37× 10−3k2

0 1.83× 10−2k
3/2
0

Qmax 3.84× 103k3
0 2.34× 102k2

0 6.31× 101k
3/2
0

Table 5.1.: The values of the free parameter, Qi, for each of the eight numerical runs, as defined in
Eq. (5.141). For completeness, the values Qmin and Qmax, which correspond to the upper and
lower bounds in (5.128), (5.131) and (5.134) are also shown.

we obtain the following four-dimensional system of first-order linear differential equations

d
dN


Xre
k

X im
k

Y re
k

Y im
k

 = k

kH



0 0 0 1

0 0 −1 0

0
(

1− 1
k2

z′′

z

)
0 0

−
(

1− 1
k2

z′′

z

)
0 0 0


·


Xre
k

X im
k

Y re
k

Y im
k

 , (5.139)

subjected to the constraint

2k
(
Xre
k Y

re
k +X im

k Y im
k

)
= 1 . (5.140)

To set the initial conditions for the numerical integrations, we use the characteristic wavenumber
kc, whose value for each β was introduced in the previous section, to define two ranges of modes:

I) For k < 5kc, we set the initial conditions for the perturbations deep inside the pre-inflationary
era, at N = Nini,1 (cf. the mode k1 in Fig. 5.8). The initial values of the integration variables
are fixed using the solutions (5.114) for β = 6, 4, 3 and setting B1,k = 0 and B2,k = 1. This
choice for the linear coefficients ensures that the BD vacuum solution is recovered for modes
well inside the Hubble horizon.

II) For 5kc < k, we assume that the modes have time to reach a BD vacuum state before the onset
of inflation. Therefore, we use the solutions (5.118) for β = 6, 4, 3, with C1,k = 1 and C2,k = 0
to specify the initial values of the integration variables some Nini,2 e-folds before the moment
of horizon crossing (cf. the mode k2 in Fig. 5.8).

The convergence of the numerical solutions is ensured by stopping the numerical integration not at
horizon crossing but some Nfin e-folds after the mode has exited the comoving Hubble horizon, as

150



Chapter 5. Pre-inflation in the Third Quantisation: possible observational imprints

shown in Fig. 5.8. For modes that verify k < kmin, which never cross the comoving Hubble horizon,
we stop the integration at the same moment as for kmin.

Using the method aforementioned, we have performed eight numerical runs for each β = 6, 4, 3 and
fixing the value of the free parameter Q as

Qi = 10
β
4 ( i2−3)k

β
2
0 , (5.141)

with i = 1, 2, . . . , 8. In Tab. 5.1 we present the numerical value of each Qi for each run. We note
that all values are well below the upper limits defined for each respective β. From the results of the
numerical integrations, we have computed the primordial power spectrum PR at the end of inflation
and, using the CLASS code [63, 227], we obtained the normalised angular power spectrum DTT

`

[15] for each numerical run. The baseline 6-parameter ΛCDM model was assumed for the late-time
cosmology and the values of its parameters are the ones found from the best-fit to the 2015 data
release of the Planck mission in combination with lensing effects and external data (BAO+JLA+H0)
[16].

Case 1: β = 6 (stiff matter)

In Fig. 5.9, we present the theoretical predictions for the primordial power spectra obtained from the
different numerical runs for β = 6 and compare them with the observational fit. On the l.h.s. panel,
where we present the spectrum obtained for a single run, Q6, we can see how the shape of PR can be
related to the characteristic scales kmin, ka, kb and kc defined in the previous section:

• For k < kmin, the primordial power spectrum is highly suppressed. The suppression ends around
kmin where PR(kmin) ≈ P(fit)

R (kmin);

• For k ≈ ka, we observe a peak with a very large amplitude PR(ka) ≈ 3.6P(fit)
R (ka);

• For k ≈ kb, there is a visible knee in the spectrum after the main peak, with amplitude
PR(kb) ≈ 2.1P(fit)

R (kb);

• For k . kc, the primordial power spectrum still presents some imprints of the pre-inflationary
epoch but the deviation from the observational fit starts to become small;

• For kc < k, no distinction exists between the predictions of the model and the observational fit.

We note that no special features appear around the threshold k = 5kc between the two regions with
different rules for defining the initial conditions for the numerical integrations. This confirms that the
strategy employed does not affect the final results. On the r.h.s. panel, we present the results for all
eight runs, with lighter coloured curves corresponding to smaller value of Q. All the spectra obtained
follow the observational fit well before the pivot scale is reached.

In Fig. 5.10, we present the normalised angular power spectra DTT
` obtained from the numerical

results for PR (blue) and compare it with the theoretical prediction from the best-fit (red dashed) and
with the observational (binned) data points from the Planck mission and their respective error bars.
In both panels, lighter blue curves correspond to smaller values of the free parameter Q. The imprints
of the model on DTT

` follow the same tendency observed for the primordial power spectrum: on the
lowest multipoles the blue curves observe a suppression, followed by a strong peak on intermediate
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Figure 5.9.: (Left panel) The characteristic shape of the primordial power spectrum obtained for the model
considered in Eq. (5.110) with β = 6 (blue) compared with the observational fit (red dashed).
The imprints of the model on PR can be related to the characteristic scales kmin, ka, kb
and kc. (Right panel) As the value of the free parameter Qi increases (cf. Eq. (5.141)), the
imprints on the primordial power spectrum are blue-shifted to higher wavenumbers. Lighter
blue curves correspond to smaller values of Q. For all numerical runs, the theoretical prediction
is indistinguishable from the observational fit well before the pivot scale is reached.
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Figure 5.10.: (Left panel) The characteristic shape of the angular power spectra DTT
` obtained for the

model considered in Eq. (5.110) with β = 6 (blue) compared with the observational fit (red
dashed) and observational data points. The high peak on the primordial power spectrum
leads to an extra peak in DTT

` for intermediate `, while in the very low multipole range DTT
`

becomes suppressed. As the value of the free parameter Q becomes higher, the imprints of
the model start to affect higher multipoles. (Right panel) Zoom of the angular power spectra
in the range ` < 50. The shaded region, delimited by thin dashed lines, indicates the regions
where deviations from the observational fit can be explained by the cosmic variance, as given
by Eq. (2.62).
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values of `, while on the large multipole range all curves have a very good agreement with the
observational data. As the value of the free parameter increases, the imprints on DTT

` are shifted to
the right, with the two runs with higher values of the free parameter, Q7 and Q8, affecting the good
agreement to the data points above the ` = 30 mark. If we impose that the Planck fit is recovered for
` > 30, then we arrive at the upper bound for Q:

Q . k3
0 . (5.142)

Unfortunately, the high amplitude of the extra peak in the intermediate multipole region–as can be
seen on the r.h.s. of Fig. 5.10, the peaks are well above the curve of the observational fit and are even
above the interval defined by the cosmic variance–means that there is a very poor agreement with the
data unless Q is so small that all imprints are red-shifted away. We will show in the remainder of this
section that a much better fitting to the data is obtained in the cases of β = 4 and β = 3.

Case 2: β = 4 (radiation)

In Fig. 5.11, we present the theoretical predictions for the primordial power spectra obtained from the
different numerical runs for β = 4 and compare them with the observational fit. On the l.h.s. panel,
where we present the spectrum obtained for a single run, Q6, we can see how the shape of PR can be
related to the characteristic scales kmin, ka, kb and kc defined in the previous section from analysing
k2
H and z′′/z:

• For k . kmin, the primordial power spectrum is highly suppressed. The suppression seems to be
stronger than in the previous case, as we find that the predicted PR at k = kmin is still well
below the observational fit: PR(kmin) ≈ 0.2P(fit)

R (kmin);

• For k ≈ ka, we observe the presence of a faint knee in the primordial power spectrum. However,
in this region PR is still suppressed when compared with the Planck fit: PR(ka) ≈ 0.7P(fit)

R (ka);

• For k ≈ kb, we observe a small peak with amplitude PR(kb) ≈ 1.2P(fit)
R (kb);

• For k . kc, the primordial power spectrum predicted by the model starts to converge to the
observational fit;

• For kc < k, no distinction exists between the predictions of the model and the observational fit.

Once more, no special features appear around the threshold k = 5kc, validating the strategy employed
to define the initial conditions for the numerical integrations. On the r.h.s. panel we present the
results for all eight runs, with lighter coloured curves corresponding to smaller value of Q. All the
spectra obtained follow the observational fit well before the pivot scale is reached.

In Fig. 5.12, we present the normalised angular power spectra DTT
` obtained from the numerical

results for PR (blue) and compare it with the theoretical prediction from the best-fit (red dashed)
and with the observational (binned) data points from the Planck mission and their respective error
bars. In both panels, lighter blue curves correspond to smaller values of the free parameter Qi (cf.
Eq. (5.141)). As in the previous case, the imprints of the model on DTT

` reflect the shape of the
primordial power spectrum: on the lowest multipoles we find a strong suppression of the angular power
spectra, followed by a faint peak on intermediate values of `. On the large multipole range all curves
are in very good agreement with the observational data. As the value of the free parameter increases,
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Figure 5.11.: (Left panel) The characteristic shape of the power spectrum obtained for the model considered
in Eq. (5.110) with β = 4 (blue) compared with the observational fit (red dashed). The
imprints of the model on PR can be related to the characteristic scales kmin, ka, kb and kc.
(Right panel) As the value of the free parameter Qi increases (cf. Eq. (5.141)), the imprints
on the primordial power spectrum are blue-shifted to higher wavenumbers. Lighter blue
curves correspond to smaller values of Q. For all numerical runs, the theoretical prediction is
indistinguishable from the observational fit well before the pivot scale is reached.
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Figure 5.12.: (Left panel) The characteristic shape of the angular power spectra DTT
` obtained for the

model considered in Eq. (5.110) with β = 4 (blue) compared with the observational fit
(red dashed) and observational data points. The peak on the primordial power spectrum
leads to an extra small peak in DTT

` for intermediate `, while in the very low multipole
range DTT

` becomes strongly suppressed. As the value of the free parameter Q becomes
higher, the imprints of the model start to affect higher multipoles. (Right panel) Zoom of
the angular power spectra in the range ` < 50. The shaded region, delimited by thin dashed
lines, indicates the regions where deviations from the observational fit can be explained by
the cosmic variance, as given by Eq. (2.62).

154



Chapter 5. Pre-inflation in the Third Quantisation: possible observational imprints

the imprints on DTT
` are shifted to the right, with the last two runs, Q7 and Q8, affecting the good

agreement with the data points above the ` = 30 mark. If we impose that the Planck fit is recovered
for ` > 30, then we arrive at the upper bound for Q:

Q . k2
0 . (5.143)

Contrary to the previous case, the small amplitude of the extra peak that appears for ` < 30 make
this model compatible with the data. This leads to the possibility of suppressing the angular power
spectrum for the very low multipoles ` . 5. For example, for the run Q5 the peak that appears
for ` ≈ 11 is well within the error bars of the data points in that range and a suppression of DTT

`

is observed for ` < 7. Notice, however, that only the runs Q7 and Q8 are capable of achieving a
suppression at large scales that goes beyond the interval defined by the cosmic variance, as given by
Eq. (2.62).

Case 3: β = 3 (dust)

In Fig. 5.13, we present the theoretical predictions for the primordial power spectra obtained from the
different numerical runs for β = 3 and compare them with the observational fit. On the l.h.s. panel,
where we present the spectrum obtained for a single run, Q6, we can see how the shape of PR can be
related to the characteristic scales kmin and kc defined in the previous section:

• For k . kmin, the primordial power spectrum shows the highest suppression of the three cases
considered. At k = kmin we find PR ≈ 0.06P(fit)

R ;

• The suppression of PR ends near the scale kc;

• For k ≈ kc, we observe an almost indistinguishable peak in PR;

• For kc < k, no distinction exists between the predictions of the model and the observational fit.

Once more, no special features appear around the threshold k = 5kc, validating the strategy employed
to define the initial conditions for the numerical integrations. On the r.h.s. panel, we present the
results for all eight runs, with lighter coloured curves corresponding to smaller value of Q. All the
spectra obtained follow the observational fit well before the pivot scale is reached.

In Fig. 5.14, we present the normalised angular power spectra DTT
` obtained from the numerical

results for PR (blue) and compare it with the theoretical prediction from the best-fit (red dashed) and
with their observational (binned) data points from the Planck mission and respective error bars. In
both panels, lighter blue curves correspond to smaller values of the free parameter Qi (cf. Eq. (5.141)).
In contrast with the previous cases of β = 6 and β = 4, the lack of discernible peaks in the primordial
power spectrum means that no extra bumps appear on the theoretical predictions for DTT

` ; we just
observe a strong suppression of the angular power spectrum on the low multipole end of the spectrum
after which all curves track the line for the best-fit of Planck, recovering a very good agreement with
the observational data. As before, the imprints on DTT

` are shifted to the right as the value of the free
parameter increases, with the last two runs, Q7 and Q8, affecting multipoles above the ` = 30 mark.
If we impose that the Planck fit is recovered for ` > 30, then we arrive at the upper bound for Q:

Q . k3/2
0 . (5.144)
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Figure 5.13.: (Left panel) The characteristic shape of the power spectrum obtained for the model considered
in Eq. (5.110) with β = 3 (blue) compared with the observational fit (red dashed). The
imprints of the model on PR can be related to the characteristic scales kmin, ka, kb and kc.
(Right panel) As the value of the free parameter Qi increases (cf. Eq. (5.141)), the imprints
on the primordial power spectrum are blue-shifted to higher wavenumbers. Lighter blue
curves correspond to smaller values of Q. For all numerical runs, the theoretical prediction is
indistinguishable from the observational fit well before the pivot scale is reached.
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Figure 5.14.: (Left panel) The characteristic shape of the angular power spectra DTT
` obtained for the

model considered in Eq. (5.110) with β = 6 (blue) compared with the observational fit (red
dashed) and observational data points. The angular power spectrum becomes suppressed in
the low multipole range. Contrary to the previous cases, no extra peak appears at intermediate
multipoles, reflecting the absence of peaks in the primordial power spectrum. As the value
of the free parameter Q becomes higher, the imprints of the model start to affect higher
multipoles. (Right panel) Zoom of the angular power spectra in the range ` < 50. The
shaded region, delimited by thin dashed lines, indicates the regions where deviations from the
observational fit can be explained by the cosmic variance, as given by Eq. (2.62).
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Since no intermediate bumps appear in this case, it is possible to achieve a stronger suppression for
multipoles closer to the ` = 30 threshold. We note, for example that, the results for the runs Q5 and
Q6, where the line for DTT

` is lowered with regards to the Planck fit for ` . 20 without affecting the
agreement with the data for larger multipoles. However, despite the fact that the suppression at large
scales is larger than in the previous two cases, we find that only the runs Q6, Q7 and Q8 are capable
of achieving a suppression at large scales that goes beyond the error induced by the cosmic variance.

Implications for the multiverse

In this section, we have obtained upper limits for the free parameter Q computing the normalised
angular power spectrum DTT

` of the CMB and imposing that no imprints appear for multipoles above
the ` = 30 threshold. By comparing Eqs. (5.68) and (5.103), we can relate Q with the interaction
coupling λ∗ and the l-number19 that identifies the wave-function field Ψl of the universe as:

Q = k
β
2−1
∗

λ∗
a∗
l , (5.145)

which then leads to the constraint

λ∗
a∗
l . k∗

(
k0

k∗

) β
2

. (5.146)

The previous expression shows that the strength of the coupling must decrease with higher l-number
in order for the observational constraints to be respected. In Ref. [302] it was argued that through a
mechanism of vacuum decay, the most probable multiverse configurations correspond to those with
small l. If we now take l = 1, then Eq. (5.146) becomes a constraint on λ∗, which in combination
with Eq. (5.64) reads √

C(a∗)
Nuni

<
a∗σ

2π~k∗
(
k0

k∗

) β
2

. (5.147)

Thus, in order for larger values of the universe-universe coupling C(a) at a∗ to be admissible, the total
number of universe needs to grow quadratically with C(a∗). On the other hand, if we increase the
number of universes while maintaining the universe-universe coupling constant, its effect become too
weak for any observational imprints to be observed. Assuming a very large number of universes, this
suggests a very high quantum interaction between neighbouring universes or that the interaction model
needs to be altered in order to accommodate a higher number of interactions per universe. Finally,
we note that the constraint (5.147) has a dependence on the type of coupling chosen, i.e., on the
behaviour of the universe before inflation sets in, which can change the upper limits on C(a∗)/N2

uni
by a few orders of magnitude.

19Not to be confused with the multipole number `.
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5.3.4. Discussion

In this section, we have studied the effects on the primordial power spectrum PR and the normalised
angular power spectrum DTT

` originated from considering the existence of a pre-inflationary epoch
described by the model (5.110), where the behaviour of the universe before inflation is determined by
the parameter β. We have considered three cases in particular: β = 6 which leads to a stiff-matter-like
behaviour; β = 4 that leads to a radiation-like behaviour; and β = 3 in which the initial epoch mimics
a dust-filled universe. Based on the requirement that the shape of the observational fit for PR from
the Planck mission is recovered near the pivot scale, we were able to fix three of the four parameters
of the model and set upper bounds on the free parameter. A more strict bound was obtained by
requiring that the agreement of DTT

` with the data for ` > 30 is not affected. Using these constraints
we were able to impose some bounds on the parameter space of the interacting model proposed in
[28, 302].

We have shown that the range of wavenumbers where the imprints on the primordial power spectrum
appear can be predicted by looking for characteristic features on the squared comoving Hubble horizon,
k2
H , the potential z′′/z, and their ratio. While for all the three cases studied the primordial power

spectrum is strongly suppressed on the large scale limit, for β = 6 and β = 4 we find an enhancement
of PR on intermediate scales. This effect is stronger in the case of β = 6, milder in β = 4 and, in
practice, absent for β = 3. In accordance, by looking at the value of PR at k = kmin, we can be
tempted to suggest that the suppression at the lower scales is stronger for β = 3 than for β = 4 and
for β = 4 when compared to β = 6. This comparison, however, needs to be taken with some care as
the value of the free parameter Q is not necessarily directly comparable between the three cases. This
tendency for less prominent features to appear on the primordial power spectrum for lower values of β
was also obtained in [83] for cases where β ≤ 2 and in [118], where instantaneous transitions were
considered.

The new features observed on the primordial power spectra carry themselves to the angular power
spectra DTT

` calculated using the CLASS code. In particular, for the cases of β = 6 and β = 4, we
find that the peaks on PR lead to the presence of an extra peak in DTT

` for intermediate multipole
values. Nevertheless, in all the cases studied we observe a suppression of the angular power spectrum
for the lowest multipoles. This effect, which is more noticeable for lower values of the parameter β, is
in line with previous studies [83, 96, 114, 118, 122, 129, 292, 353] where a pre-inflationary epoch is
considered in order to explain the quadropole anomaly of the CMB.

The study presented here works as a first approach to find imprints on the CMB from a multiverse
picture based on the Third Quantisation interpretation of Canonical Quantum Gravity. Several levels
of approximations were taken between the more fundamental description at the level of Quantum
Cosmology and the phenomenological model used to compute the evolution of the scalar perturbation,
namely: (I) assuming that the potential of the scalar field is (approximately) constant when solving
the WDW equation that appears as the equation of motion for the wave-function field of the Third
Quantisation; (II) applying a semi-classical approximation on the wave-function field which in the
Third Quantisation can represent a multi-universe state; (III) treating the cosmological perturbations
as quantum perturbations in a (semi) classical background, just as usually done in inflationary models,
without considering possible quantum modifications to the Mukhanov-Sasaki equation; (IV) replacing
the constant term in the Friedmann equation obtained from the Third Quantisation model by a
power-law term that can give an appropriate shape of the primordial power spectrum around the pivot
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scale.

The step that seems more simple to tackle in the immediate future and probably the one with a more
direct impact on the predictions for the CMB is (III). In the treatment applied in this work, any effects
coming from an interaction between different universes enter directly only at the background level. As
such, the Mukhanov-Sasaki equation used to compute the evolution of the quantum perturbations is
not modified with regards to the usual case. Finding the corrections to this equation coming from the
universe-universe interaction in the Third Quantisation would go in the same direction of the results
obtained for Canonical Quantum Cosmology [86, 87] and LQC [17, 97, 113].

Steps (I) and (IV) are intimately related, in the sense that considering more general scalar field
potentials in the setting of quantum cosmology without imposing an extreme slow-roll approximation,
would in principle lead to the appearance of non-constant terms in the effective Friedmann equation
capable of driving primordial inflation. In such cases, step (IV) would no longer be necessary as
inflation would no longer be purely de Sitter. However, when we consider non-constant potentials of
the scalar field (or when we discard the extreme slow-roll approximation), the Fourier decomposition
in Eqs. (5.39)–(5.42) which allows for a full description of the Hilbert space of the quantised wave-
functions is no longer valid. In such cases, a more complex mode expansion procedure would have
to be used, namely a Born-Oppenheimer approximation [209, 210] or a superadiabatic expansion
[212, 214]. Following this route would rewards us with a richer description of the multiverse in the
Third Quantisation upon which we could, in principle, derive a more fundamental description of
quantum effects on the evolution of each universe.

Finally, a comment regarding step (II). The application of the semi-classical approximation to a third
quantised state has been employed since the Third Quantisation started to be explored [306]. However,
the validity of combining what are in essence two different interpretations of the WDW equation
[221] has not been explored in detail in the literature. This possible conflict in interpretation seems
particularly puzzling if we take into account that the third quantised wave-function can represent a
multi-universe state where the number of quanta can vary during the evolution of the system, while in
the semi-classical approximation we consider that we are dealing with one semi-classical universe. The
difficulties in the physical interpretation of the Third Quantisation have been pointed out since the
early 1990’s by Christopher J. Isham [202] and Karel V. Kuchǎr [221]. In Ref. [221], it is stated that
“In third-quantized gravity, the many-particle states are replaced by many-geometry states. However,
the analogy is not perfect. A three-geometry is not analogous to the position of a particle, because it
contains also information about intrinsic time.”. In the present case, this question presents itself for
example in the fact that the scale factor a is a coordinate of the minisuperspace and is also related to
the intrinsic time of the individual universes in the semi-classical approximation. Unfortunately, at
this point no conclusions on this topic can be offered, as it is connected with the very fundamental
interpretation of the Third Quantisation picture, which is not the main focus of this work.

5.4. Cosmological Perturbations in a toy model II

In the previous section, we have studied the imprints on the primordial power spectrum, PR, and on
the normalised angular power spectrum, DTT

` , coming from a pre-inflationary epoch. Such an epoch
resulted from the presence of the Q-dependent term in the effective Friedmann equation (5.110),
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which dominates in the limit of small values of the scale factor, a� a∗. This term appeared due to
considerations in a Third Quantisation picture of the multiverse and was obtained either by considering
the contribution of the momentum of the scalar field ϕ, in the case of an initial stiff-matter-like
epoch, or by introducing a universe-universe interaction with an appropriate coupling between different
universes.

The fact that we considered a decelerated pre-inflationary epoch, led to the existence of a range of
modes (with k < kmin) that never enter the comoving Hubble horizon before inflation. For modes in
this range, it was found that the primordial power spectrum is strongly suppressed, which then led to
a suppression on the low multipole end of DTT

` . Such a suppression could in principle alleviate the
issue of the quadropole anomaly of the CMB. However, on intermediate scales, we found a strong
enhancement of PR which seemed to be associated to bumps on the potential z′′/z during the
transition from the initial decelerated epoch to inflation. This results suggests that the shape of PR at
the end of inflation is strongly affected not only by the dynamics in the pre-inflationary epoch but also
during this transition. In order to test how this transition affects the final results, in the next sections
we calculate PR and DTT

` in an extension of the previous model (5.110), where a new parameter is
introduced that controls how fast the transition from the initial to the final epoch occurs.

5.4.1. The Model

As a one-parameter extension of the previous model (5.110), we consider the effective Friedmann
equation

H2 = H2
dS

[(a∗
a

)αλ
+
(

Q2

(aHdS)β

)λ] 1
λ

, (5.148)

where we recall that HdS defines the energy scale of inflation which occurs when the first term inside
the squared brackets dominates. Together with α and a∗, the value of HdS will later be fixed using
arguments from the observational data. Alternately, when the second term inside the squared brackets
dominates, the Universe can undergo a different expansion epoch. The strength of this term is
modulated by the parameter Q, while the behaviour of the Universe in this epoch is determined by
the parameter20 β. The new parameter λ has a double function. As will be made apparent below, its
magnitude dictates whether the transition is sharper21 (|λ| � 1) or takes longer to occur (|λ| � 1).
On the other hand, the sign of λ defines whether at the transition the rate of acceleration of the
universe increases (λ > 0) or decreases (λ < 0). In this work we are mainly concerned with a transition
from a pre-inflationary epoch with a decelerated behaviour to a later period of power-law inflation
and, as such, we will only consider values β > 2 and λ > 0.

The model in (5.148) can be seen as an extension of the modified Generalised Chaplygin Gas and
was first considered in [83]. It can be shown that it leads to a transition in the total EoS parameter,

20We point out that, when the second term inside the squared brackets in Eq. (5.148) dominates, the effective total
EoS parameter w can be written as w ' −1 +β/3. This situation corresponds to the limit tanh[(N −Nmid)/∆λ] = −1
in Eq. (5.149).

21In the limit of very large λ we obtain an instantaneous transition [36, 96, 110, 114, 122, 136, 176]. That case will
be discussed in detail in Sect. 5.5.
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w := P/ρ, modulated by a tanh function of the number of e-folds N := log(a/a∗):

w(N) = − 1− 2
3
Ḣ

H2 =
(
α+ β

6 − 1
)

+ α− β
6 tanh

(
N −Nmid

∆λ

)
. (5.149)

Here, we introduce the reference value

Nmid := 1
β − α

log
[

Q2

(a∗HdS)β

]
, (5.150)

which marks the moment when w reaches the mid point value between its asymptotic initial and final
values, as well as the interval

∆λ := 2
(β − α)λ , (5.151)

that characterises the number of e-folds required for the transition in w to occur. Since ∆λ ∝ λ−1, we
find that for smaller values of λ the transition takes longer to complete, while for large values of λ it
happens more abruptly, becoming instantaneous in the limit of λ→∞. Given the exponential decay
of the tanh, for small values of α the EoS parameter w in defined Eq. (5.149) reaches ∼ 99.99%
of its asymptotic value when |N − Ñ | = 5∆λ. This can be seen on the top row of Fig. 5.15 where
the interval Nmid ± 5∆λ is indicated by the shaded region and we choose the values β = 6 and
α = 0.03275 as a reference.

The comoving wavenumber of the Hubble horizon, kH , can be expressed as well as a function of N :

kH(N) = ktrans e(1−α+β
4 )(N−Ntrans)

 cosh
(
N−Nmid

∆λ

)
cosh

(
Ntrans−Nmid

∆λ

)


1
2λ

, (5.152)

where Ntrans is given by

Ntrans := 1
β − α

(
1
λ

log
∣∣∣∣β − 2
2− α

∣∣∣∣+ log
[

Q2

(a∗HdS)β

])
, (5.153)

and defines the moment of transition between the initial epoch and the final power-law inflationary
era. The characteristic wavenumber during the transition, ktrans := kH(Ntrans), can be written as

ktrans = a∗HdS

(
|β − 2|+ |2− α|

|2− α|

∣∣∣∣2− αβ − 2

∣∣∣∣
β−2
β−α

) 1
2λ [

Q2

(a∗HdS)β

] 1
2

2−α
β−α

. (5.154)

For β > 2 (and α < 2) the comoving Hubble wavenumber reaches a minimum at Ntrans which
corresponds to the moment when the Universe transits from a decelerated to an accelerated expansion,
i.e., ä(Ntrans) = 0. We thus see that Eqs. (5.153) and (5.154) are, respectively, the generalisation of
the definitions (5.112) and (5.111). For this reason, in the remainder of this section, we will use the
notation of the previous section, kmin, when referring to ktrans. As we will discuss later, for physically
reasonable values of α and β and as long as λ is not too small, the condition Q � (a∗HdS)β/2
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Figure 5.15.: (Top panels) As the value of the parameter λ increases, the EoS parameter, defined in
Eq. (5.149), takes less number of e-folds to go from its initial to its final value. The shaded
region indicates the interval where w is between 99.99% of its initial value and 99.99%
of its final value. (Bottom panels) As the value of the parameter λ increases, the curve
related to the comoving wavenumber of the Hubble horizon, k2

H , becomes sharper around
the position of its minimum at Ntrans, while the potential z′′/z starts to present increasingly
more prominent bumps. Notice that while Nmid, defined in Eq. (5.150), and Ntrans, see
Eq. (5.153), have similar values, they only coincide in the limit λ→ +∞.

ensures that both atrans � a∗ and ktrans � a∗HdS, so that when the mode k = a∗HdS crosses, the
horizon the universe is already well inside the inflationary epoch. Later on, we will use this to fix a∗
through the equality a∗HdS = k∗, where k∗ is the pivot scale from the Planck mission.

In the model at hand, the potential z′′/z can be written as

z′′

z
= k2

H(N)
[
2− ε(N) +

C(α,β,λ)(N)
∆λ

+
D(α,β,λ)(N)

∆2
λ

]
. (5.155)

where the slow-roll parameter ε reads

ε(N) = − 1
2

(H2)N
H2 = α+ p

4 + α− β
4 tanh

(
N −Nmid

∆λ

)
. (5.156)

and the functions C(α,β,λ)(N) and D(α,β,λ)(N) are defined as

C(α,β,λ)(N) = β − α
8 sech2

(
N −Nmid

∆λ

)
+ 3

2

sech2
(
N−Nmid

∆λ

)
tanh

(
N−Nmid

∆λ

)
− coth

(
N1
∆λ

) , (5.157)
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and

D(α,β,λ)(N) = sinh
(
N1

∆λ

) sinh
(
N1
∆λ

)
+ 2 sinh

(
2N−2Nmid−N1

∆λ

)
[
cosh

(
N1
∆λ

)
+ cosh

(
2N−2Nmid−N1

∆λ

)]2 . (5.158)

For convenience, in Eqs. (5.157) and (5.158) we have introduced as well N1 := ∆λ log(
√
β/α).

The first two terms inside the brackets on the r.h.s. of Eq. (5.155), which correspond to the
potential a′′/a that drives the evolution of the gravitational waves, define the shape of z′′/z away
from Nmid. On the other hand, the terms in C(α,β,λ) and D(α,β,λ), which vanish asymptotically for
N → ±∞, encode the information regarding the evolution of the background around the value Ntrans
that marks the transition from the initial to the final epoch. On the bottom row of Fig. 5.15, it can
be seen that as the transition from the initial to final epoch becomes more sudden (increasing values
of λ), the potential z′′/z starts to show the presence of peaks around Ntrans, which corresponds to
the position of the minimum of k2

H . Notice that while Nmid, defined in Eq. (5.150), and Ntrans, see
Eq. (5.153), have similar values, they only coincide in the limit λ→ +∞, i.e., when the transition
becomes instantaneous. In the last section, these peaks led to an undesired enhancement of the
primordial power spectrum at the corresponding scales which, despite the desired suppression at the
larger scales, could spoil the agreement with the CMB data at intermediate multipoles `. Next, we
consider the possibility of countering this enhancement by having a longer transitional period, i.e.,
lowering the value of the parameter β. In particular, we compute PR and DTT

` for λ < 1 in the cases
β = 6 and β = 4.

5.4.2. Parameters of the model

In Sect. 5.3.2, we discussed how, for the toy model defined in Eq. (5.110), the assumption that
Q� (a∗HdS)β/2 is a sufficient condition to assure that the system is well within the late power-law
inflationary epoch for a & a∗. This condition, together with the assumption that the modes that
exit the Hubble horizon at a & a∗ spend enough e-folds inside the horizon so as to reach a BD
vacuum state, guaranteed that the shape of the PR predicted by power-law inflation was recovered
for k & a∗HdS. In turn, this allowed us to fix the value of three of the four parameters of the model
in terms of the best-fit values of the cosmological observations, cf. Eqs. (5.123)–(5.126). We now
extend that analysis to the case of the model (5.148) and see how we can go from a five dimensional
parameter space {HdS, a∗, α, Q, λ} to a two dimensional one {Q,λ} by comparing the predictions
of the model with the best-fit values of observational data.

If we assume that the first term on the r.h.s. of Eq. (5.148) dominates, then we can expand H2 as

H2 ≈ H2
dS

(a∗
a

)α 1 + 1
λ

(
Q2

(a∗HdS)β

)λ (a∗
a

)λ(β−α)
+ . . .

 . (5.159)

We thus find that in order for power-law behaviour to be recovered around a∗, we must replace the
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condition Q� (a∗HdS)β/2 by22

Q2

(a∗HdS)β
� λ

1
λ . (5.160)

If this condition holds, we can once again use the argumentation of Sect. 5.3.2 to consider that
the prediction for the primordial power spectrum (5.121) is recovered for k & a∗HdS. Then, by a
direct comparison with the fit to PR around the pivot scale and using the ansatz k∗ = a∗HdS to fix
a∗ we recover Eqs. (5.123)–(5.125). Then, using the best-fit values of the 2015 Planck mission in
combination with lensing effects and external data (BAO+JLA+H0) [16], we can once again fix the
values of {α, HdS, a∗} as

α ' 0.03275 , HdS ' 1.055× 10−5 (MP/~) , a∗ ' 2.099× 107 (~/MP) , (5.161)

where the present day values for the Hubble rate and scale factor are H0 ≈ 1.184× 10−61 (MP/~)
and a0 = H−1

0 ≈ 8.449× 1060 (~/MP). As before, the corresponding wavenumbers are k0 = 1 and
k∗ ≈ 221.3.

Of the original five parameters, we are now left only with Q, which controls the amplitude of the
second term on the r.h.s. of Eq. (5.110) and therefore the behaviour during the pre-inflationary
phase, and with λ, which controls how many e-folds are necessary for the Universe to transit from the
initial pre-inflationary epoch to the later power-law inflation. Next, we will impose lower and upper
bounds on these parameters for the cases of β = 6 and β = 4. We remind that in these cases the
pre-inflationary era mimics, respectively, a stiff-matter and a radiation dominated universe. The case
of β = 3, which gives a pre-inflationary era that mimics a dust dominated universe, is excluded from
the analysis since in the previous section we found no peaks in the primordial power spectrum when
λ = 1.

Case 1: β = 6 (stiff matter)

In order to see if a smoother transition can improve the results of Sec. 5.3.3 for the case of β = 6, we
first analyse how the shape of the potential z′′/z around the transition from the initial decelerated
epoch to the subsequent inflation varies as we decrease the value of λ. In Fig. 5.16, we plot the
squared comoving Hubble horizon, k2

H , the potential z′′/z and their ratio for λ = 1 (lighter curve),
λ = 0.75 and λ = 0.5 (darker curve). As can be observed on the l.h.s. panel, when we decrease the
value of λ while maintaining constant the parameter Q, the pre-inflationary behaviour is not affected
but the minimum wavenumber kmin = ktrans increases and modes with higher wavenumbers start to
be affected. On the other hand, if we decrease λ while maintaining kmin constant (right panel) then
the value of Q decreases. As a consequence, the term of the pre-inflationary epoch becomes weaker
and inflation starts to dominate earlier.

Following the procedure presented in Sect. 5.3.2, we define three extra characteristic wavenumbers,
ka, kb and kc, based on the shape of z′′/z around the transition:

a) We define ka as the wavenumber of the mode that crosses the potential z′′/z at the moment
when (z′′/z)/k2

H reaches its minimum before inflation. Through a numerical investigation we
22For 0 ≤ λ ≤ 1, the r.h.s. of (5.160) defines a bijective monotonically increasing function of λ.
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Figure 5.16.: Evolution of the squared comoving Hubble horizon, k2
H , the potential z′′/z and of the ratio

(z′′/z)/k2
H around the period of transition from the decelerated pre-inflationary epoch to

the later power-law inflation for the model (5.148) with β = 6. (Left panel) Varying λ
with Q constant does not affect the pre-inflationary behaviour but alters the minimum scale
kmin. (Right panel) Varying λ with kmin constant preserves the range (kmin, kc) where the
characteristic imprints of the model are expected on PR but affects the strength of the
pre-inflationary epoch. (Bottom panels) As the value of λ becomes lower, the minimum
and maximum on (z′′/z)/k2

H become less prominent. On all panels: λ = 1 (lighter curve);
λ = 0.75; λ = 0.5 (darker curve).

find

ka '


2.149kmin , for λ = 1 ,

1.710kmin , for λ = 0.75 ,

1.439kmin , for λ = 0.5 .

(5.162)

b) We define kb as the wavenumber of the mode that crosses the potential z′′/z at the moment
when (z′′/z)/k2

H reaches its maximum after the beginning of inflation. For λ = 0.5 the local
maximum in (z′′/z)/k2

H after the onset of inflation disappears; therefore no kb is defined in this
case. Through numerical investigation, we find

ka '

3.548kmin , for λ = 1 ,

3.851kmin , for λ = 0.75 .
(5.163)

c) When the mode with wavenumber kc := 10kmin crosses the potential z′′/z, the ratio (z′′/z)/k2
H
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has already reached its asymptotic value. As such, we take kc as a reference value of the
maximum wavenumber for which we expect imprints of the model on the primordial power
spectrum.

As a general effect, we find that as λ decreases, the extrema in (z′′/z)/k2
H (and the associated

bumps in z′′/z) become less pronounced. In addition, they are shifted away from the moment of the
transition from deceleration to inflation. This loss in amplitude suggests that the strong enhancement
of PR at k ≈ ka and k ≈ kb in Fig. 5.9 may be softened by lowering λ. On the left panel in Fig. 5.17,
we show the value of N at the maximum (top line) and at the minimum (bottom line) of (z′′/z)/k2

H

as a function of the parameter λ. For λ = 0.5, the maximum is effectively removed as it is shifted to
very large values of N . For smaller values, we find that (z′′/z)/k2

H no longer reaches its asymptotic
value when kc = 10kmin crosses the potential z′′/z and, therefore, we cannot guarantee that the
shape of PR for power-law inflation is recovered at k & kc. In order to better control the results of
the numerical integrations, we restrict our analysis to λ ≥ 0.5.

In Sect. 5.3.3, we obtained the upper bound Q . k3
0 by imposing that the angular power spectrum

of the CMB is not affected for ` > 30. When this bound is saturated, i.e., Q = Q+ := k3
0, Eq. (5.111)

defines a maximum wavenumber k+
c = 10kmin(Q+) given by:

k+
c = 10k∗

(
k0

k∗

)3 2−α
6−α

[
6− α
2− α

(
2− α

4

) 4
6−α
] 1

2

≈ 1.457× 101k0 . (5.164)

A minimum k−c = k0 can also be defined by imposing the requirement that the effects of the transition
should appear on the observable range of the spectrum. By inverting Eq. (5.154), we obtain

Q(kmin, λ) = k
β/2
∗

(
kmin

k∗

) β−α
2−α

[
|β − 2|+ |2− α|

|2− α|

∣∣∣∣2− αβ − 2

∣∣∣∣
β−2
β−α

]− 1
2λ

β−α
2−α

. (5.165)

Consequently, we can define the following upper and lower bounds of Q:

Q+(λ) := Q

(
k+

c
10 , λ

)
≈ e0.9615λ−1

λ k3
0 , (5.166)

Q−(λ) := Q

(
k−c
10 , λ

)
≈ 2.958× 10−4 e0.9615λ−1

λ k3
0 . (5.167)

These bounds are shown on the r.h.s. panel of Fig. 5.17.

Case 2: β = 4 (radiation)

We next check if a smoother transition can improve the results of Sec. 5.3.3 for the case of β = 4.
In Fig. 5.16, we plot the squared comoving Hubble horizon, k2

H , the potential z′′/z and their ratio
for λ = 1 (lighter curve), λ = 0.75 and λ = 0.5 (darker curve). As we decrease the value of λ while
maintaining constant the parameter Q (left panel) the pre-inflationary behaviour is not affected but
the minimum wavenumber kmin = ktrans increases and modes with higher wavenumbers can become
affected. On the other hand, if we decrease λ while maintaining kmin constant (right panel) the value
of Q becomes lower and inflation starts to dominate earlier on.
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Figure 5.17.: (Left panel) Parametric plot in the {λ, N −Nmid} plane which shows the location of the
local extrema of the ratio (z′′/z)/k2

H for β = 6 (blue solid curve) and β = 4 (red dashed
curve). The top curves indicate the location of the maximum and the bottom curves indicate
the location of the minimum. For β = 6, the local maximum after the onset of inflation
disappears for λ ≤ 0.5. For β = 4, the local maximum after the onset of inflation disappears
for λ ≤ 0.75. For both cases, the local minimum before Nmid disappears for λ ≤ 0.4. As λ
increases to very large values, the positions of the minimum and the maximum converge to
N = Nmid. (Right panel) Upper and lower bounds of Q/kβ/20 , as a function of the parameter
λ as defined by Eqs. (5.166) and (5.167) for β = 6 and by Eqs. (5.171) and (5.172) for
β = 4. In the intervals λ ∈ [0.5, 1], for β = 6, and λ ∈ [0.75, 1], for β = 4, the peaks in the
power spectrum are softened and the value of maximum k affected by the pre-inflationary
epoch can be predicted from the shape of z′′/z near the moment of the transition to inflation.
Shaded regions indicate the subsets of the parameter space delimited by these intervals and
by the bounds imposed on Q/kβ/20 .

As in the previous case, we define three extra characteristic wavenumbers, ka, kb and kc, as:

a) We define ka as the wavenumber of the mode that crosses the potential z′′/z at the moment
when (z′′/z)/k2

H reaches its minimum before inflation. Through numerical investigation we find

ka '


1.381kmin , for λ = 1 ,

1.990kmin , for λ = 0.875 ,

1.001kmin , for λ = 0.75 .

(5.168)

b) We define kb as the wavenumber of the mode that crosses the potential z′′/z at the moment
when (z′′/z)/k2

H reaches its maximum after the beginning of inflation. For β = 0.55 the local
maximum in (z′′/z)/k2

H after the onset of inflation disappears; therefore no kb is defined in this
case. Through numerical investigation we find

ka '

4.626kmin , for β = 1 ,

6.364kmin , for β = 0.875 .
(5.169)
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Figure 5.18.: Evolution of the squared comoving Hubble horizon, k2
H , the potential z′′/z and of the ratio

(z′′/z)/k2
H around the period of transition from the decelerated pre-inflationary epoch to

the later power-law inflation for the model (5.148) with β = 4. (Left panel) Varying λ
with Q constant does not affect the pre-inflationary behaviour but alters the minimum scale
kmin. (Right panel) Varying λ with kmin constant preserves the range (kmin, kc) where
characteristic imprints of the model are expected on PR but affects the strength of the
pre-inflationary epoch. (Bottom panels) As the value of λ becomes lower, the minimum
and maximum on (z′′/z)/k2

H become less prominent. On all panels: λ = 1 (lighter curve);
λ = 0.875; λ = 0.75 (darker curve).

c) When the mode with wavenumber kc := 10kmin crosses the potential z′′/z, the ratio (z′′/z)/k2
H

has already reached its asymptotic value. We take this value as a reference value of the maximum
wavenumber for which we expect imprints of the model on the primordial power spectrum.

As in the case of β = 6, we find that as λ decreases, the extrema in (z′′/z)/k2
H (and the associated

bumps in z′′/z) become less pronounced and are shifted away from the moment of transition to
inflation, as seen on the left panel of Fig. 5.17. For λ = 0.75, the maximum is effectively removed
as it is shifted to very large values of N . For smaller values of λ, we find that (z′′/z)/k2

H no longer
reaches its asymptotic value when kc = 10kmin crosses the potential z′′/z and, therefore, we cannot
guarantee that the power-law inflation predictions for PR are recovered for k & kc. As such, we
restrict our analysis to λ ≥ 0.75.

In Sect. 5.3.3, we obtained the upper bound Q . k2
0 by imposing that the angular power spectrum

of the CMB is not affected for ` > 30. When this bound is saturated, i.e., Q = Q+ := k2
0, Eq. (5.111)

defines a maximum wavenumber k+
c = 10kmin(Q+):

k+
c = 10k∗

(
k0

k∗

)2 2−α
4−α

[
4− α
2− α

(
2− α

2

) 2
4−α
] 1

2

≈ 1.479× 101k0 . (5.170)
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i λi (β = 6) Qi (β = 6) λi (β = 4) Qi (β = 4)

1 0.5 3.823× 10−1k3
0 0.75 7.922× 10−1k2

0

2 0.6 5.268× 10−1k3
0 0.80 8.397× 10−1k2

0

3 0.7 6.623× 10−1k3
0 0.85 8.840× 10−1k2

0

4 0.8 7.863× 10−1k3
0 0.90 9.253× 10−1k2

0

5 0.9 8.987× 10−1k3
0 0.95 9.639× 10−1k2

0

6 1.0 1.000× 100 k3
0 1.00 1.000× 100 k2

0

k+
c 1.457× 101k0 1.479× 101k0

Table 5.2.: The values of the free parameters {Qi, λi} for each of the six numerical runs, as defined in
Eq. (5.173), with Qi = Q+(λi). For completeness, we present for each case the value of k+

c
used in defining Q+(λ).

A minimum k−c = k0 can also be defined by imposing the requirement that the effects of the transition
should appear on the observable range of the spectrum. Inserting k−c and k+

c in Eq. (5.165) leads to
the upper and lower bounds:

Q+(λ) := Q

(
k+

c
10 , λ

)
≈ e0.70λ−1

λ k2
0 , (5.171)

Q−(λ) := Q

(
k−c
10 , λ

)
≈ 4.37× 10−3 e0.70λ−1

λ k2
0 . (5.172)

The bounds Q+ and Q− are shown on the r.h.s. panel of Fig. 5.17.

5.4.3. Numerical Results

By applying once again the method discussed in Sect. 5.3.3, we have integrated numerically the
system of evolution equations (5.139). The evolution of the scalar perturbations vk was computed till
just after the Hubble horizon crossing during inflation. For each value of the parameter β discussed
above, i.e., for β = 6, 4, we have performed six numerical runs where the values of the free parameters
{Q ,λ} were fixed by setting Q to the maximum value Q+(λ) and changing the value of λ according
to the rule

λi = 1− β − 2
8

6− i
5 , (5.173)

with i = 1, 2, . . . , 6. In Tab. 5.2, we present the numerical values of {Qi, λi} used for each run.

Using the results of the numerical integrations, we have computed the primordial power spectrum
PR at the end of inflation and the normalised angular power spectrum DTT

` of the CMB for each
numerical run. As in the previous section, the angular power spectrum was obtained by using the
CLASS code [63, 227] and assuming the baseline 6-parameters ΛCDM model with the best-fit values
for the late-time cosmology as given in [16].

169



5.4 Cosmological Perturbations in a toy model II

Case 1: β = 6 (stiff matter)

In Fig. 5.19, we present the primordial power spectra obtained from the six numerical runs with β = 6
(cf. Tab. 5.2). From top-left to bottom-right, the first five panels present the characteristic shape of
PR for λi=1,...,5 with the position of the characteristic scales kmin, ka, kb and kc, while in the last
panel we show a superposition of all the six spectra obtained23.

As in the previous section, the power spectrum is highly suppressed for large scales, k < kmin, and
follows the Planck best-fit for small scales, kc < k, while the characteristic imprints of the transition
appear in the intermediate range kmin < k < kc. Here, we find that the strong peaks that appeared
around k ≈ ka and k ≈ kb in Sect. 5.3.3 start to become less pronounced as lower values of the
parameter β are considered. In particular, for β < 0.8 ∼ 0.9 the peak at k ≈ ka becomes sub-dominant
with regards to the peak at k ≈ kb. This effect seems to be related to the fact that, as λ decreases,
the mode ka if affected by the decrease of the two bumps of z′′/z while kb is affected only by the
decrease of the second bump – we recall that the growth of the scalar perturbations occurs when k is
below z′′/z in Fig. 5.16. For the critical value λ1 = 0.5, which corresponds to the case where the
local maximum in (z′′/z)/k2

H is no longer present, both peaks have disappeared and the primordial
power spectrum shows a transition between the small/large scale behaviours with no distinct imprints
apart from small oscillations in the intermediate range. This resembles the case in Sect. 5.3.3 where
the pre-inflationary epoch mimics a dust-dominated universe (β = 3) and where no local maximum
(z′′/z)/k2

H existed.

The angular power spectra DTT
` obtained for each numerical run are presented in Fig. 5.20, where

darker blue curves correspond to lower values of the parameter β. The theoretical predictions of
the model are compared with the spectrum obtained from the Planck best-fit (red dashed) and the
observational data points with their respective error bars. As the value of the parameter β is lowered,
we find that the amplitude of the extra peak in DTT

` for intermediate multipoles decreases and the
suppression for the low ` becomes stronger and affects an increasingly high range of multipoles. This
effect mimics the one observed in the primordial power spectrum, cf. Fig. 5.19. In addition, we find
that the two runs with lower value of λ are able to achieve a suppression at large scales that cannot
be accommodated by the cosmic variance interval, as can be seen on the r.h.s. panel of Fig. 5.20. We
single out the case of λ2 = 0.6 for which DTT

` does not deviate significantly from the Planck best-fit
for ` & 20 but becomes suppressed below that threshold, thus showing a good agreement with most
data points in the low multipole range. On the other hand, the case of λ1 = 0.5 fits very well the
data in the 20 . ` . 30 range but the suppression becomes too strong in order for the theoretical
curve to be within the error bars of most points in the ` . 15 range.

Case 2: β = 4

In Fig. 5.21 we present the primordial power spectra obtained from the six numerical runs with β = 4
(cf. Tab. 5.2). From top-left to bottom-right, the first five panels present the characteristic shape of
PR for λi=1,...,5, with the position of the characteristic scales kmin, ka, kb and kc, while in the last
panel we show a superposition of all the six spectra obtained24.

23For the case of λ6 = 1, a discussion of the shape of PR at the end of inflation can be found in Sect. 5.3.3.
24For the case of λ6 = 1, a discussion of the shape of PR at the end of inflation can be found in Sect. 5.3.3.
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Figure 5.19.: The characteristic shape of the power spectrum obtained for the model considered in
Eq. (5.110) with β = 6 (blue) compared with the observational fit (red dashed). Different
values of the free parameter λ are considered (cf. Eq. (5.173)) while kmin is maintained
constant: λ1 = 0.5 (top-left); λ2 = 0.6 (top-right); λ3 = 0.7 (centre-left); λ4 = 0.8
(centre-right); λ5 = 0.9 (bottom-left). On the bottom-right panel, we present a superposition
of all PR for λi=1,...,6, where lighter blue curves correspond to higher values of the parameter
λ. For all values of β, we find that PR is highly suppressed at large scales, k � kmin, and
indistinguishable from the observational fit at small scales, kc � k. On intermediate scales,
the primordial power spectrum presents imprints from the transition to inflation which can
be related to the characteristic scales kmin, ka, kb and kc. As the value of λ decreases, the
peaks observed in PR between kmin and kc become less pronounced, essentially vanishing in
the case of λ1 (top-left). For all the cases presented, the primordial power spectrum obtained
reproduces the Planck best-fit for k & k∗.
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Figure 5.20.: (Left panel) The characteristic shape of the angular power spectra DTT
` obtained for the

model considered in Eq. (5.148) with β = 6 (blue) compared with the observational fit
(red dashed) and observational data points. The high peak on the intermediate multipoles
observed for λ6 = 1 becomes softer as the value of the free parameter λ is lowered. At the
same time, the suppression of the spectrum for low ` becomes stronger and affects a wider
range of multipoles. (Right panel) Zoom of the angular power spectra in the range ` < 50.
The shaded region, delimited by thin dashed lines, indicates the regions where deviations
from the observational fit can be explained by the cosmic variance, as given by Eq. (2.62).

Once more, the power spectrum is highly suppressed for large scales, k < kmin, and follows Planck
best-fit for small scales, kc < k, while the characteristic imprints of the transition appear in the
intermediate range kmin < k < kc. In this case, we find that the main peak at k ≈ kb becomes less
pronounced as lower values of the parameter β are considered. For the critical value λ1 = 0.75, when
the local maximum in (z′′/z)/k2

H is no longer present, this peak has effectively disappeared. As a
consequence, no noticeable characteristic imprints are found on the primordial power spectrum at
intermediate scales, much like in the case of a dust pre-inflationary epoch discussed in Sect. 5.3.3.
Notice that contrary to the previous case, no oscillations are found in the intermediate range.

The angular power spectra DTT
` obtained for each numerical run are presented in Fig. 5.22, where

lighter blue curves correspond to lower values of the parameter β. The theoretical predictions of
the model are compared with the spectrum obtained from the Planck best-fit (red dashed) and the
observational data points and respective error bars. As the value of the parameter β is lowered we find
that the small extra peak in DTT

` for intermediate multipoles starts to disappear and the suppression
for the low ` becomes stronger and affects an increasingly high range of multipoles, an effect which
mimic the one observed in the primordial power spectrum, cf. Fig. 5.21. While curves with higher
β seem to fit better the data points in the range 6 . ` . 15, curves with lower values are almost
superimposed with the data points in the 20 . ` . 30 range which present a lower amplitude. As
can be seen on the r.h.s. panel of Fig. 5.22, all runs with λ < 1 are able to achieve a suppression
at large or intermediate scales that cannot be explained by the cosmic variance. This effect clearly
differentiates the model from the usual case of single inflation with BD initial conditions.
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Figure 5.21.: The characteristic shape of the power spectrum obtained for the model considered in
Eq. (5.110) with β = 4 (blue) compared with the observational fit (red dashed). Different
values of the free parameter λ are considered (cf. Eq. (5.173)) while kmin is maintained
constant: λ1 = 0.75 (top-left); λ2 = 0.80 (top-right); λ3 = 0.85 (centre-left); λ4 = 0.90
(centre-right); λ5 = 0.95 (bottom-left). On the bottom-right panel, we present a superposition
of all PR for λi=1,...,6, where lighter blue curves correspond to higher values of the parameter
β. For all values of λ, we find that PR is highly suppressed at large scales, k < kmin,
and indistinguishable from the observational fit at small scales, kc < k. On intermediate
scales, the primordial power spectrum presents imprints from the transition to inflation which
can be related to the characteristic scales kmin, ka, kb and kc. A label kx,y indicates near
superimposing lines corresponding, in order from left to right, to kx and ky. As the value
of λ decreases, the peak observed in PR for k ≈ kb becomes less pronounced, essentially
vanishing in the case of λ1 (top-left).
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Figure 5.22.: (Left panel) The characteristic shape of the angular power spectra DTT
` obtained for the

model considered in Eq. (5.148) with β = 4 (blue) compared with the observational fit
(red dashed) and observational data points. The small peak on the intermediate multipoles
observed for λ6 = 1 starts to disappear as the free parameter β is lowered. At the same
time, the suppression of the spectrum for low ` becomes stronger and affects a wider range
of multipoles as the value of β is lowered. (Right panel) Zoom of the angular power spectra
in the range ` < 50. The shaded region, delimited by thin dashed lines, indicates the regions
where deviations from the observational fit can be explained by the cosmic variance, as given
by Eq. (2.62).

5.4.4. Discussion

In this section, we have considered the effects of the existence of a pre-inflationary decelerated epoch
on the primordial power spectrum, PR, and on the TT -component of the angular power spectrum of
the CMB, DTT

` . This initial epoch, and its transition to a subsequent power-law inflationary era, were
implemented using Eq. (5.148), which can be seen as a one-parameter extension of the model (5.110)
considered in Sect. 5.3. The newly introduced parameter λ allowed us not only to control the number
of e-folds necessary for the transition to occur–higher |λ| leads to a quicker transition–but also to
define whether the universe accelerates (λ > 0) or decelerates (λ < 0) in the transition. Such a model
was also considered in Ref. [74, 75, 83] as a one-parameter extension of the modified Generalised
Chaplygin Gas.

We have computed the explicit form of the potential z′′/z that drives the evolution of the scalar
perturbations and have shown how changing the value of the parameter λ can modify considerably
the shape of z′′/z around the moment of the transition to inflation. For the particular cases where
the pre-inflationary epoch mimics a stiff-matter-dominated (β = 6) or a radiation-dominated epoch
(β = 4), we found that the smaller is the value of λ, the lower are the bumps in the potential z′′/z.
This in turn led to the softening of the peaks on the PR for intermediate wavenumbers and of the
extra peak on DTT

` for intermediate multipoles. At the same time, the suppression of PR and DTT
` at

large scales became stronger. However, if the value of the parameter λ is set too low, i.e., if the time
for the transition to happen is too long, the suppression at large-scales starts to affect intermediate
scales, compromising the agreement with the observational data. By imposing that the imprints of
the model are visible for modes currently inside the Hubble horizon without violating the constraints
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on PR around the pivot scale, or compromising the agreement of DTT
` with the data for ` > 30, we

were able to define upper and lower bounds on the two parameters {Q, λ} (cf. Fig. 5.17) not directly
fixed by the Planck best-fit to the cosmological parameters. Notice that the predictions for PR and
DTT
` were obtained using the maximum bounds Q+, defined in Eqs. (5.166) and (5.171), so as to

better visualise the full effects of the pre-inflationary phase and the transition to inflation. A complete
scan of this reduced parameter space for the best fit to the observational data remains to be done.

One of the hypothesis of this section was that the shapes of the comoving Hubble wavelength
k2
H := (aH)2 and of the potential z′′/z around the moment of the transition from the initial

decelerated epoch to the subsequent inflationary era are imprinted on the primordial power spectrum.
As a consequence, any deviation on PR and DTT

` from the predictions of the best-fit of Planck mission
could in principle provide us with information regarding not only a potential pre-inflationary epoch
but also about the transition itself. In order to test this hypothesis, for the two cases β = 6 and
β = 4, we have defined four characteristic wavenumbers based on the shape of k2

H and z′′/z around
the transition: kmin, ka, kb and kc; and compared them with the regions of PR where imprints from
the model appear. As a general rule, we found that PR is suppressed until k . kmin and tracks the
prediction of the best-fit of Planck mission for kc < k. In addition, ka and kb are associated to the
bumps observed in the intermediate range kmin < k < kc, whose amplitude can be directly related to
the amplitude of the features in z′′/z that led to the definition of ka and kb. We can thus conclude
that the imprints of the model on k2

H := (aH)2 and z′′/z can serve as indicators for the features in
the primordial power spectrum.

5.5. Revisiting Instantaneous Transitions

In the previous Sects. 5.3 and 5.4, we have seen how the existence of a pre-inflationary epoch of
decelerated expansion can leave strong imprints on the predicted primordial power spectrum at the end
of inflation and on the angular power spectrum of the CMB. The nature of these imprints, i.e., whether
PR is enhanced or suppress with regards to the scenario with no pre-inflationary epoch, and the scales
at which they appear depend not only on the type of evolution during the pre-inflationary epoch but
also on how the transition to inflation occurs. In Sect. 5.4, we considered the phenomenological model
(5.148) where the parameter λ controls the number of e-folds necessary for the universe to go from
the initial decelerated epoch to the final power-law inflationary stage. By considering low values of this
parameter, i.e., for λ < 1, we were able to soften the high amplitude peaks that appeared in the cases
of a pre-inflationary epoch that mimics a stiff-matter-dominated universe or a radiation-dominated
universe, as seen in Figs 5.19 and 5.21.

Alternatively, one could consider the opposite situation of very fast transitions and study the effects
of taking very large values of λ on the scalar perturbations. Of particular interest is the limit of
λ→ +∞, which corresponds to an instantaneous transition, a situation that is often considered in the
literature [12, 35, 36, 50, 96, 110, 114, 118, 122, 136, 157, 176, 200, 224, 252, 326]. In that limit,
the asymptotic solutions (5.114) and (5.118) for the pre-inflationary epoch and the later inflationary
epoch are valid until the moment of the transition. An explicit relation between the linear coefficients
in the two epochs can then be deduced by fixing the boundary conditions for the linear perturbations
at that moment. Unfortunately, there seems to be some confusion over the appropriate matching
conditions, as different authors have used different strategies with significant implications on the final
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primordial power spectra obtained. Among the various choices present in the literature we find:

i) Continuous vk and v′k at the moment of the transition – [96, 118, 122];

ii) Continuous vk but discontinuous v′k at the moment of the transition – [176];

iii) Continuous Rk and R′k at the moment of the transition – [114];

iv) Continuous Rk and Φk at the moment of the transition – [35, 36, 50, 110, 157].

v) Continuous vk and Φk at the moment of the transition in perfect fluids – [200].

Of course, not all of these strategies are equivalent and the discussion on the proper derivation
of the matching conditions led to a series of contentious papers being published in the mid 90’s
[100, 136, 175–178, 252]. As pointed out in Ref. [252], this divergence in the results seems to
arise form a difficulty in defining the proper physical hypersurface associated to the transition, with
[175–178] using the conformal time η and [100, 136, 252] using an intrinsic variable of the matter fluid,
such as the energy density or the value of the scalar field. More recently, another choice of matching
conditions has been considered, derived from imposing the continuity of vk and v′k [96, 118, 122] or
Rk and R′k [114]. While the former comes from considering (incorrectly, as will be shown below) that
the approximation z′′/z ≈ a′′/a holds at the moment of the transition, the latter seems to be derived
from the convenience of imposing continuity of the perturbed variables rather than from physical
considerations.

In Refs. [136, 252], the general matching conditions for scalar perturbations are deduced by imposing
that on the hypersurface that defines the transition, the induced spatial metric hij and the extrinsic
curvature Σij are continuous25. By considering that the perturbed hypersurface is defined by the
condition q = q0 + δq = 0, where q is a 4-scalar, the following gauge-invariant matching conditions
are obtained for the scalar perturbations26 [136, 252][

ψ +Hδq
q′0

]
±

= 0 , (5.174)

[E]± = 0 , (5.175)

[
ψ′ +HA+

(
H′ −H2) δq

q′0

]
±

= 0 , (5.176)[
B − E′ + δq

q′0

]
±

= 0 . (5.177)

In scalar field models where a jump in the EoS parameter is caused by a step-like feature of the potential
V (ϕ) at ϕhyp [224, 326], it is natural to define the hypersurface by the condition ϕ = ϕ0 +δϕ = ϕhyp.

25At the background level, these same conditions imply the continuity of the scale factor a and the Hubble rate H.
26The quantities A , B and ϕ in Eqs. (5.174)–(5.177) are the scalar potentials that parameterise the perturbed

FLRW line element, cf. Eq. (A.9).
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The identifications δq = δϕ and q′0 = ϕ′0 follow and the previous matching conditions become

[R]± = 0 , (5.178)
[E]± = 0 , (5.179)[

Ψ′ +HΦ− κ2a2

2 ϕ′0δϕ

]
±

= 0 , (5.180)[
R−Ψ
H

]
±

= 0 , (5.181)

where we recall that Φ and Ψ are the gauge-invariant Bardeen potentials [46] and R is the comoving
curvature perturbation [49]. The second condition (5.179) does not carry relevant physical information
as it can always be satisfied by means of a gauge transformation [136] and in models with a minimally
coupled scalar field, the third condition (5.180) is automatically verified due to the (i− 0) component
of the perturbed Einstein equations. Then, using the equality of the two Bardeen potentials in scalar
field models, we arrive at the matching conditions used in [35, 36, 50, 110, 157]:

[R]± = 0 , [Φ]± = 0 . (5.182)

5.5.1. A divergence in z′′/z

The main focus of this section is to consider the limit λ → +∞ in the toy model presented in
Sect. 5.4. In this limit the interval ∆λ, Eq. (5.151), that determines how many e-folds are necessary
for the transition to occur vanishes, thus, the transition occurs instantaneously at N = Nmid

27. This
instantaneous change in behaviour can be seen in the Friedmann equation (5.148) which now reads

H2(N) λ→±∞= H2
dS

[
Q2

(a∗HdS)β

]1−Θ(α,β,λ)(N−Nmid)

e−[β+(α−β) Θ(α,β,λ)(N−Nmid)]N , (5.183)

where

Θ(α,β,λ)(N −Nmid) = Θ
(

sign [λ(β − α)] (N −Nmid)
)

=
{

Θ (N −Nmid) , for sign [λ(β − α)] > 0 ,
1−Θ (N −Nmid) , for sign [λ(β − α)] < 0 ,

, (5.184)

and Θ(x) is the Heaviside step function. We note that the first line on the last equality of Eq. (5.184)
corresponds to cases where the rate of acceleration of the Universe increases at the transition, e.g.,
by going from a decelerated pre-inflationary epoch to inflation, while the second line corresponds to
cases where the rate of acceleration decreases.

At the level of the EoS parameter w, given by Eq. (5.149), and of the slow-roll parameter ε, given

27Notice that Ntrans, defined in Eq. (5.153), which marks the moment at which the point of no acceleration in the
transition between the initial decelerated and the later power-law inflation is reached, converges to Nmid as λ→ +∞.
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by Eq. (5.156), we observe a step-like discontinuity at N = Nmid:

w(N) λ→±∞= β − 3
3 + α− β

3 Θ(α,β,λ)(N −Nmid) , (5.185)

ε(N) λ→±∞= β

2 + α− β
2 Θ(α,β,λ)(N −Nmid) . (5.186)

In the rest of this section we will use Eq. (5.186) to re-parameterise the model in terms of the value of
the slow roll parameter before and after the transition ε+ := ε(Nmid < N) and ε− := ε(N < Nmid).
This allows us to generalise our results for arbitrary ε± ∈ (0, 1) ∪ (1, 3] while at the same time
simplifying the notation, meaning that we can easily accommodate any pair of initial/final epochs
with decelerated or accelerated expansion with the exclusion of epochs with pure de Sitter expansion
or with zero acceleration.

The continuity of the scale factor and of the Hubble parameter in (5.183) leads to the continuity of
the comoving Hubble horizon, Eq. (5.152), which now reads

kH(N) λ→±∞= k∞trans e[1−ε−−(ε+−ε−)Θ(N−Nmid)](N−Nmid)

=

k
∞
trans e(1−ε−)(N−Nmid) N < Nmid ,

k∞trans e(1−ε+)(N−Nmid) Nmid < N ,
(5.187)

where the value at the moment of the transition is given by

k∞trans := lim
λ→±∞

ktrans = a∗HdS

[
Q

(a∗HdS)ε−
] 1−ε+

ε−−ε+

. (5.188)

In contrast, in the potential z′′/z, which depends on the slow-roll parameter ε and its derivatives,
we find that discontinuous and divergent terms appear as λ is taken to infinity. We note that some
care needs to be taken when deriving the asymptotic shape of z′′/z as a direct substitution of the
tanh and sech functions in the expressions (5.157) and (5.158) leads to non-linear combinations of
the Θ function and the Dirac delta function that are not well defined from a mathematical point of
view. Instead, a proper computation of the limit of Eq. (5.157) and (5.158) for very large λ leads to28

z′′

z
= k2

H(N)
{

2− ε(N) +
[
ε− − ε+

2 − 3
2 log

(
ε−

ε+

)]
δ(N −Nmid)

− log
(
ε−

ε+

)
δN (N −Nmid)

}
. (5.189)

While for N 6= Nmid the potential z′′/z reduces to a′′/a = k2
H(2 − ε), which is the potential that

drives the production of tensorial perturbations, at N = Nmid we must take into account the presence
of terms with a Dirac delta function and its derivative. As we will show below, these divergent terms
lead to a discontinuity at the level of vk and v′k at the moment of transition and are crucial in the
validity of the long-wavelength approximation (k2 � z′′/z) for scales way above the value of a′′/a
around the transition [224, 326].

28The derivation of Eq. (5.189) is presented in the Appendix (D.5). We are grateful to José M. M. Senovilla and
Mikel A. Urkiola for useful suggestions and comments regarding this issue.
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5.5.2. Matching conditions for Rk and vk

In order to calculate the jump in vk and its derivative at N = Nmid, it is easier to change to the
comoving curvature perturbation Rk = vk/z, whose evolution equation obtained from (5.105) reads

d2Rk
dN2 +

(
3− ε+ εN

ε

) dRk
dN +

(
k

kH

)2
Rk = 0 . (5.190)

In the limit of λ→ +∞, we find that the previous equation can be written as

d2Rk
dN2 +

[
3− ε− − (ε+ − ε−)Θ(N −Nmid)− log

(
ε−

ε+

)
δ(N −Nmid)

]
dRk
dN + k2

k2
H

Rk = 0 .

(5.191)

As deduced in the Appendix D.6, the presence of a δ function in the friction term leads to a jump in
the derivative dRk/dN at N = Nmid:

dRk
dN (N+

mid) = ε−

ε+
dRk
dN (N−mid) , (5.192)

while at the same time Rk remains continuous29. The same boundary conditions were deduced in
Ref. [36] based on the results of [110, 136]. From Eq. (5.192) and the continuity of Rk, we find that
the correct boundary conditions lead to a discontinuous jump of vk and its N -derivative during the
transition:

vk(N+
mid) =

√
ε+

ε−
vk(N−mid) , (5.193)

dvk
dN (N+

mid) =
(√

ε+

ε−
−
√
ε−

ε+

)
vk(N−mid) +

√
ε−

ε+
dvk
dN (N−mid) . (5.194)

Equation (5.193) can be translated to the following matching condition for v′k:

v′k(N+
mid) = k∞trans

(√
ε+

ε−
−
√
ε−

ε+

)
vk(N−mid) +

√
ε−

ε+
v′k(N−mid) . (5.195)

Interestingly, the same boundary conditions (5.193) and (5.194) can be obtained by considering
the long-wavelength approximation (k2 � z′′/z) [224, 326] even for the modes that are inside the
comoving Hubble horizon and verify a′′/a � k2 at the moment of transition30. This apparently
contradictory result31 can be understood by the fact that, while for N 6= Nmid the evolution of the
scalar perturbations is dictated by a′′/a whose value can be below or above k2 for a given mode, at
the moment of the transition the potential z′′/z has an infinite value due to the presence of terms
with a Dirac delta function and its derivative. Therefore, the condition k � z′′/z becomes valid for

29Due to the continuity of the comoving Hubble horizon, the derivative R′k satisfies the same boundary condition
(5.192) as dRk/dN .

30A derivation of this result can be found in the Appendix D.7.
31The good agreement of the long wavelength approximation with the numerical results for all scales in a scalar field

model with a jump in the potential is mentioned as a source of surprise by the authors of [224]. Here, we see that the
long wavelength approximation leads precisely to the exact correct matching conditions for all k.
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all k in an infinitesimal neighbourhood of N = Nmid.

In the limit of instantaneous transitions (λ → +∞) discussed in this section, the asymptotic
solutions (5.114) and (5.118) (cf. Appendix D.3 for a derivation of these solutions) can be extended
up to the moment of the transition at N = Nmid. By integrating (5.187), we obtain the conformal
time η as a function of N :

η − η(Nmid) = 1
k∞trans

e[ε(N)−1](N−Nmid) − 1
ε(N)− 1

=


1

k∞trans

e(ε−−1)(N−Nmid) − 1
ε− − 1 N < Nmid ,

1
k∞trans

e(ε+−1)(N−Nmid) − 1
ε+ − 1 Nmid < N .

(5.196)

Furthermore, by setting η(Nmid) = 0, we can write vk during the whole evolution of the system as

vk(N < Nmid) =
√

~
2k

√
π

2

√
q

|ε− − 1| exp
[
ε− − 1

2 (N −Nmid)
]

×
[
C−1,kH

(1)
ν−

(
q

|ε− − 1| exp
[
(ε− − 1)(N −Nmid)

])
+C−2,kH

(2)
ν−

(
q

|ε− − 1| exp
[
(ε− − 1)(N −Nmid)

])]
, (5.197)

vk(Nmid < N) =
√

~
2k

√
π

2

√
q

|ε+ − 1| exp
[
ε+ − 1

2 (N −Nmid)
]

×
[
C+

1,kH
(1)
ν+

(
q

|ε+ − 1| exp
[
(ε+ − 1)(N −Nmid)

])
+C+

2,kH
(2)
ν+

(
q

|ε+ − 1| exp
[
(ε+ − 1)(N −Nmid)

])]
. (5.198)

To simplify the notation, here we have introduce the re-scaled wavenumber q := k/k∞trans. We recall
that the order of the Hankel functions can be written in terms of the value of the slow-roll parameter
ε before and after the transition, ε±, as

ν± = 1
2

∣∣∣∣3− ε±ε± − 1

∣∣∣∣ . (5.199)

In addition, the linear coefficients C±1,k and C±2,k satisfy the constraint∣∣∣C±1,k∣∣∣2 − ∣∣∣C±2,k∣∣∣2 = sign(1− ε±) . (5.200)

Using the matching conditions (5.193) and (5.195) we are able to relate the two pairs of coefficients
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{C−1,k, C
−
2,k} and {C+

1,k, C
+
2,k} through the linear transformation(
C+

1,k

C+
2,k

)
= sign(1− ε+)

(
Pk Qk

Q∗k P ∗k

)
·

(
C−1,k
C−2,k

)
, (5.201)

and its inverse (
C−1,k
C−2,k

)
= sign(1− ε−)

(
P ∗k −Qk
−Q∗k Pk

)
·

(
C+

1,k

C+
2,k

)
. (5.202)

It follows from the normalisation condition (5.200) that Pk and Qk must satisfy the constraint
|Pk|2 − |Qk|2 = sign(1− ε+) sign(1− ε−). The full expressions of Pk and Qk for ε± ∈ (0, 1)∪(1, 3]
can be found in the Appendix D.8. It can be checked that in the limit of no transition, i.e., if ε+ = ε−,
the transformations (5.201) and (5.202) reduce to the identity transformation.

The transformation (5.201) allows us to fully describe the evolution of the mode functions during
the late power-law inflation in terms of the evolution during the initial pre-inflationary epoch, which
is encoded in the linear coefficients C−1,k and C−2,k. Next, we will show how this allows us to derive,
analytically, the theoretical prediction for the primordial power spectrum for a model with arbitrary
initial conditions for the scalar perturbations where an epoch of power-law inflation is preceded by a
pre-inflationary epoch with an abrupt transition.

5.5.3. The imprints on PR

Let us go back to considering the case of power-law inflation. If we impose arbitrary initial conditions
for the mode functions vk, encoded in the linear coefficients C+

1,k and C+
2,k, the prediction for the

primordial power spectrum at the end of inflation reads

PR(k) = ~ k2

8π
|ηend − ηc|

z2
end

∣∣∣H(1)
ν (k|ηend − ηc|)

∣∣∣2
×
(
|C+

1,k|
2 + |C+

2,k|
2 + 2 Re

[
C+

1,k (C+
2,k)∗ e2iθ+

k

])
. (5.203)

Here, ηc is an integration constant and θ+
k is the phase of the H(1)

ν+ function at ηend. For comparison,
we note that in a scenario of power-law inflation with BD-like initial conditions, the prediction for the
primordial power spectrum at the end of inflation is

PBD
R (k) = ~ k2

8π
|ηend − ηc|

z2
end

∣∣∣H(1)
ν (k|ηend − ηc|)

∣∣∣2 . (5.204)

We thus find that the ratio between PR(k) with arbitrary initial conditions and PBD
R is encoded almost

entirely in the coefficients C+
1,k and C+

2,k:

PR(k)
PBD
R (k)

= |C+
1,k|

2 + |C+
2,k|

2 + 2 Re
[
C+

1,k (C+
2,k)∗ e2iθ+

k

]
. (5.205)
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In particular, for modes that are well outside the Hubble horizon at the end of inflation, the phase
θ+
k ≈ −π/2 due to the asymptotic behaviour of the Hankel functions for very small argument [7, 283]

and the ratio (5.205) reduces to

PR(k)
PBD
R (k)

= |C+
1,k − C

+
2,k|

2 . (5.206)

The linear transformation (5.201) relates the solution for vk during power-law inflation with the
solution for vk during a pre-inflationary epoch that ends abruptly at some Nmid e-folds before the
pivot scale crosses the horizon. Therefore, inserting Eq. (5.201) in Eq. (5.206) allows us to compute
the imprints on the primordial power spectrum due to the presence of a pre-inflationary epoch whose
initial conditions are encoded in the linear coefficients C−1,k and C−2,k:

PPI
R (k)
PBD
R (k)

= |Pk −Q∗k|2
(
|C−1,k|

2 + |C−2,k|
2
)
− 2Re

[
C−1,k(C−2,k)∗(Pk −Q∗k)2

]
. (5.207)

As discussed in Sect. 5.3.1, during epochs of decelerated (accelerated) expansion with constant 1 < ε−

(ε− < 1), the BD vacuum solution (5.107) is recovered for modes well inside the Hubble horizon, i.e.,
when kH � k, if the linear coefficients satisfy C1,k = 0 and |C2,k| = 1 (|C1,k| = 1 and C2,k = 0).
By imposing any of these two conditions in Eq. (5.207), we obtain the following simplified expression:

PPI
R (k)
PBD
R (k)

= |Pk −Q∗k|2 = π2

4
∆0 + ∆1q + ∆2q

2

|1− ε+||1− ε−| , (5.208)

where the factors ∆i, with i = 0, 1, 2, are defined as

∆0 :=
[(

ε+

ε−

) 1
2

(3− ε+)Θ(1− ε+)−
(
ε+

ε−

)− 1
2

(3− ε−)Θ(1− ε−)
]2

(Jqν+)2|Hq
ν− |

2 , (5.209)

∆1 := − 2
[(

ε+

ε−

) 1
2

(3− ε+)Θ(1− ε+)−
(
ε+

ε−

)− 1
2

(3− ε−)Θ(1− ε−)
]

×

[(
ε+

ε−

) 1
2

sign(1− ε+)Jqν+J
q
1+ν+ |Hq

ν− |
2

−
(
ε+

ε−

)− 1
2

sign(1− ε−)(Jqν+)2Re[Hq
ν−(Hq

1+ν−)∗]
]
, (5.210)

∆2 :=

∣∣∣∣∣
(
ε+

ε−

) 1
2

sign(1− ε+)Jq1+ν+H
q
ν− −

(
ε+

ε−

)− 1
2

sign(1− ε−)Jqν+H
q
1+ν−

∣∣∣∣∣
2

. (5.211)

For shortness, here and throughout the rest of this section, we adopt the following notation:

Hq
ν− := H

(1)
ν−

(
q

|1− ε−|

)
, Hq

1+ν− := H
(1)
1+ν−

(
q

|1− ε−|

)
,

Jqν+ := Jν+

(
q

|1− ε+|

)
, Jq1+ν+ := J1+ν+

(
q

|1− ε+|

)
. (5.212)
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Figure 5.23.: The ratio PPI
R /PBD

R , given in Eq. (5.208), as a function of the normalised wavenumber
q := k/k∞trans for an inflationary final epoch with ε+ = α/2 ' 0.01638 and different values of
ε−. (Top panel) blue solid curve – pre-inflationary epoch mimicking stiff-matter; red dashed
curve – pre-inflationary epoch mimicking radiation; green dot-dashed curve – pre-inflationary
epoch mimicking dust. (Bottom panel) blue solid curve – accelerated pre-inflationary epoch
with ε− = ε+ + 0.01; red dashed curve – no transition (ε− = ε+); green dot-dashed curve –
accelerated pre-inflationary epoch with ε− = ε+ − 0.01.

In Fig. 5.23, we plot the ratio PPI
R /PBD

R as a function of the normalised wavenumber q for ε+ = 0.01638
and for different values of ε−. Notice that in the limit of ε+ = ε−, i.e., when there is no transition, the
r.h.s. of Eq. (5.208) reduces to unity (cf. r.h.s. panel of Fig. 5.23) as ∆0 and ∆1 vanish identically
and, making use of the Wronskian identities for the Bessel and the Hankel functions (cf. Eq. (10.5.4)
of Ref. [283]), it is possible to write ∆2 = (4/π2)|1− ε+||1− ε−|q−2.

At this point, we note that in deriving the expression (5.208), we have only assumed that 0 < ε± ≤ 3
and ε± 6= 1. Therefore, this expression remains valid for any combination of accelerated/decelerated
initial and final epochs, as long as the considered modes are well outside the Hubble horizon at ηend.
In fact, while the initial motivation for this section is to find the imprints on the primordial power
spectrum after the end of a power-law inflation, Eqs. (5.203)–(5.205) are valid as well for epochs
where 1 < ε+, as are Eqs. (5.206)–(5.208) as long as k � kH at ηend. ,
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Figure 5.24.: Comparison of the asymptotic formulas (5.216) for short wavelengths, and (5.213) and
(5.214) for long wavelengths (dashed curves) with the full expression (5.208) (red solid curve)
for PPI

R /PBD
R . We recall that the re-scaled wavenumber is defined as q = k/k∞trans, where

k∞trans is given by Eq. (5.188). (Top panel) Results for an initial epoch that mimics a stiff-
matter-dominated universe (ε− = 3) and a final power-law inflation epoch (ε+ = 0.01638).
(Bottom panel) Results for initial and final inflating epochs where the rate of acceleration
decreases at the transition (ε− = ε+ + 0.01 and ε+ = 0.01638).

Long wavelength limit

We now analyse the long wavelength behaviour, q � |ε+ − 1|and q � |ε− − 1|, of Eq. (5.208). Using
the asymptotic behaviour of the Bessel and Hankel functions for small argument [7, 283], we find that
if neither the initial or final epochs mimic a universe dominated by stiff-matter, ε± 6= 3, to leading
order in q, the r.h.s. of Eq. (5.208) reduces to

PPI
R (k)
PBD
R (k)

(q � |1− ε±|) = 1
4

[(
ε+

ε−

) 1
2

(3− ε+)Θ(1− ε+)−
(
ε+

ε−

)− 1
2

(3− ε−)Θ(ε− − 1)
]2

× Γ2(λ−)
Γ2(1 + λ+)

|1− ε−|2λ−−1

|1− ε+|2λ++1

(q
2

)2(λ+−λ−)
. (5.213)
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On the other hand, if the initial epoch has ε− = 3 this expression should be replaced by32

PPI
R (k)
PBD
R (k)

(q � |1− ε±|) = 1
6

[(
ε+
) 1

2 (3− ε+)Θ(1− ε+) log
(q

2

)
+ 2

(
ε+
)− 1

2
]2

× 1
Γ2(1 + λ+)

1
|1− ε+|2λ++1

(q
2

)2λ+

. (5.214)

From Eqs. (5.213) and (5.214), we find that for long wavelengths the ratio PPI
R /PBD

R evolves as a
power of the re-scaled wavenumber q, whose exponent depends on the orders λ+ and λ−. More
precisely, we find that PPI

R /PBD
R converges to 0 if λ− < λ+, and diverges for λ+ < λ−. This behaviour

is evident in both panels of Fig. 5.23 for q � 1.

In Fig. 5.24 we compare the asymptotic formula (5.213) (dashed curve) with the full expression
(5.208) (red solid curve) for the cases of ε− = 3 (top panel) and ε− = ε+ + 0.01 (bottom panel).
We note that for a decelerated pre-inflationary epoch followed by a power-law inflationary period, a
suppression at large scales is obtained for most of the cases of interest, including the ones studied
in previous sections where we considered initial stiff-matter-, radiation- and dust-like behaviours.
However, if ε− becomes too close to 1 the primordial power spectrum might become enhanced instead.

Alternatively, if we consider two successive epochs of power-law inflation, the behaviour at very
long wavelengths depends critically on whether the rate of acceleration increases or decreases at the
transition. If it increases (ε+ < ε−), the exponent of q is negative and the ratio (5.213) diverges as
we consider larger and larger scales. Notice, however, that for q ≈ 1 there might exist an intermediate
region where PPI

R is actually suppressed with regards to PBD
R , as can be seen on the top panels of

Figs. 5.23 and 5.24. On the other hand, if the rate of acceleration decreases at the time of the
transition (ε− < ε+), the ratio (5.213) vanishes as q → 0, meaning that we recover a suppression
of the primordial power spectrum at large scales. Nevertheless, if the values of ε− and ε+ are very
close, the exponent 2(λ+ − λ−) might become so small that any suppression/enhancement would
only be significant at scales larger than the Hubble horizon today, i.e., for modes that are outside the
observable range at the present time.

Finally, we point out that when the final epoch represents a period of power-law inflation with
ε+ � 1, which is the case of interest in this work, and we take into account that PBD

R ∼ kns−1, then
at very large scales PPI

R behaves as

PPI
R (q � |1− ε±|) ∼

k
3− 3−ε−

|1−ε−| , for ε− 6= 3 ,

k3 log2(k) , for ε− = 3 .
(5.215)

This is precisely the shape of PR during the pre-inflationary epoch for modes outside the Hubble
horizon. For 0 < ε− < 3/2, the exponent on the first line of the r.h.s. of the previous equation is
negative, meaning that PPI

R diverges for small k, while for 3/2 < ε− ≤ 3 it vanishes as k → 0. In the
limiting case of ε− = 3/2, which corresponds to a pre-inflationary epoch that mimics a dust-dominated
universe, the primordial power spectrum converges to a non-vanishing constant at very large scales.

32A derivation Eqs. (5.213) and (5.214) can be found in the Appendix D.9.
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Short wavelength limit

We now look at the short wavelength limit, |ε+ − 1| � q and |ε− − 1| � q, of Eq. (5.208). Using the
asymptotic behaviour of the Bessel and Hankel functions for large argument [7, 283] we find that, to
leading order in q−1, the ratio (5.208) is given by33

PPI
R (k)
PBD
R (k)

(|1− ε±| � q) ≈ cosh
[
log
(
ε+

ε−

)]
− sinh

[
log
(
ε+

ε−

)]
sin
(

2q
1− ε+ − πλ

+
)
. (5.216)

This shows that in a scenario where a pre-inflationary epoch transitions instantaneously to an
ensuing power-law inflation, the primordial power spectrum at the end of inflation will present an
oscillatory behaviour at small scales, with an amplified mean value 〈PPI

R /PBD
R 〉 and standard deviation

σPPI
R /P

BD
R

:=
√
〈(PPI
R /PBD

R )2〉 − 〈PPI
R /PBD

R 〉2 given by:

〈PPI
R /PBD

R 〉 = cosh
[
log
(
ε+

ε−

)]
, σPPI

R /P
BD
R

= 1√
2

sinh
[∣∣∣∣log

(
ε+

ε−

)∣∣∣∣] . (5.217)

Such an oscillatory behaviour is evident in both panels of Fig. 5.23 for 1� q. In Fig. 5.24, we compare
the asymptotic formula (5.216) (dashed curve) with the full expression (5.208) (solid red curve) for
the cases of ε− = 3 (top panel) and ε− = ε+ + 0.01 (bottom panel). Notice that the agreement
between the two formulas becomes increasingly better for 1� q.

If we assume that (5.216) is valid for k & k∗, and impose that the mean value of PPI
R (k∗) is within

the 1-σ interval of As as measured by the Planck mission [16]: As = (2.142± 0.049)× 10−9; then
we can derive the constraint 0.81 < ε−/ε+ < 1.24. Taking into account the observation-motivated
value α = 2ε+ = 0.03275, cf. Eq. (5.126), this constraint translates into

0.013 < ε− <0.020 , ⇔ 0.027 < β < 0.041 , (5.218)

where we recall β is the original parameter that defines the behaviour during the pre-inflationary epoch,
cf. Eq. (5.183). Alternatively, a more strict constraint can be obtained by imposing that the mean
value plus the standard deviation are within the aforementioned 1-σ interval of As. In this case, we
obtain 0.97 < ε−/ε+ < 1.03, which after fixing α = 2ε+ = 0.03275 leads to

0.016 < ε− <0.017 , ⇔ 0.032 < β < 0.034 . (5.219)

Note that these results clearly exclude the possibility of a decelerated pre-inflationary epoch with an
instantaneous transition. We note that the constraints (5.218) and (5.219) are in agreement with the
constraints presented in Tables IV and V of Ref. [36] for ` > 30.

5.5.4. Comparison with numerical Results

Finally, we compare the analytical expression (5.208) for the case of an instantaneous transition to
inflation, λ → +∞, with the numerical results obtained from numerically integrating the system
(5.139) for the model (5.148) with increasingly higher λ, i.e., in cases where the characteristic interval

33A derivation of this result is presented in the Appendix D.10.
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Figure 5.25.: Comparison of the primordial power spectrum (red dashed curve) obtained from the analytical
formula (5.208) with the numerical results obtained for the model (5.148) with increasingly
faster transitions: λ = 1 (darker blue curve); λ = 2; λ = 10; and λ = 100 (lighter blue
curve). As the value of λ increases, the numerical results tend towards the shape of the
analytical prediction for increasingly higher wavenumbers. For large wavelengths (low k), the
analytical prediction for instantaneous transitions captures the correct tilt of PR but not the
correct amplitude. (Top panel) Results for a pre-inflationary epoch mimicking stiff-matter
(β = 6). (Middle panel) Results for a pre-inflationary epoch mimicking radiation (β = 4).
(Bottom panel) Results for a pre-inflationary epoch mimicking dust (β = 3).

for the transition, ∆λ, is gradually shortened, cf. Eq. (5.151).

In Fig. 5.25, we present the results obtained for the cases where the pre-inflationary epoch mimics
(top panel) a stiff-matter-dominated universe with- ε− = 3, (middle panel) a radiation-dominated
universe with ε− = 2, and (bottom panel) a dust-dominated universe with ε− = 3/2. For all the cases,
we compute numerically the primordial power spectrum for four different values of λ: 1, 2, 10 and
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100; and fix ε+ to the observationally motivated value α/2 ' 0.01638, cf. Eq. (5.126). Independently
of the pre-inflationary behaviour, we find that, as the value of λ increases and the period of transition
becomes smaller, the ratio PPI

R /PBD
R tends to converge to the shape defined by Eq. (5.208).

At large scales, i.e., for k < kmin, we find that the asymptotic expressions (5.213) and (5.214)
correctly predict the power-law, or power-law and log, dependence of the spectrum but not the
amplitude. For lower values of λ, the numerical results show that a correction factor needs to be
applied to these formulas in order to recover the correct behaviour.

On the other hand, for kmin < k we find that, as λ increases, the peaks observed in the previous
sections start to transform into the oscillatory behaviour predicted by the short wavelength approxima-
tion (5.216). In addition, the value of the highest wavenumber affected by the oscillation grows with λ.
This was to be expected, as the bumps in the potential z′′/z around the transition increase and start
to affect modes with higher wavenumbers as the interval of transition becomes shorter. Nevertheless,
for each value λ there is a wavenumber above which the usual prediction of power-law inflation is
recovered. This corresponds to the modes whose wavenumber is much larger than the bumps of z′′/z
around the transition. A similar picture is obtained in Figs. 4 and 5 of Ref. [36]. Notice, however, that
in [36] only the range 1 < q is plotted, meaning that the behaviour observed for the largest scales is
not captured.

5.5.5. Discussion

In this section, we have revisited the topic of instantaneous transitions in the pre-inflationary universe
and its implications in the primordial power spectrum at the end of inflation. Over the past three
decades, various works can be found in the literature with often contradictory results regarding the
matching conditions for the perturbation variables at the moment of the transition between different
epochs34. Following the seminal work of Deruelle and Mukhanov [136], we reviewed the correct
matching conditions in a scenario of an instantaneous transition resulting from a discontinuity in the
potential of a minimally coupled scalar field, which imply the continuity of the Bardeen potentials Φ
and Ψ and of the comoving curvature perturbation R at all scales.

After identifying the model introduced in Sect. 5.4 as a phenomenological mapping of a scalar field
model, we considered the limit of λ→ ±∞ which leads the characteristic interval of the transition to
shrink to zero, i.e., corresponds to an instantaneous transition. We showed how, in this limit, the EoS
parameter w = P/ρ and the slow-roll parameter ε present a step-like discontinuity at the moment
of the transition, while the potential z′′/z, which controls the evolution of the scalar perturbations,
diverges at the moment of the transition due to the presence of terms with a Dirac delta function and
its derivative. This contrasts with the behaviour of the potential a′′/a which remains finite, despite
having a discontinuity at the transition. As such, we have shown explicitly that the approximation
z′′/z = a′′/a, often encountered in the literature [96, 118, 122], is not valid at the moment of the
transition. We hope that these results can help to the discussion on the proper matching conditions
for scalar perturbations in the case of instantaneous changes of EoS in the pre-inflationary universe.

Using the continuity of the comoving curvature perturbation Rk, we showed that the divergence
in the potential z′′/z at the moment of the transition leads to a discontinuity in R′k, as derived in

34See, for example, Ref. [252] for a discussion regarding this issue.
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Ref. [36], and then calculated the boundary conditions for the Mukhanov-Sasaki variable vk and
its derivative. By combining this result with the known general solutions for vk in terms of Hankel
functions, we were able to explicitly define a transformation that relates the linear coefficients of
those solutions before and after the transition, thus allowing us to predict the shape of the primordial
power spectrum at the end of inflation based on the initial conditions set in the pre–inflationary
epoch. Notice that similar transformations were defined in Refs. [118] and [96], albeit in those works
the continuity of vk and v′k or of Rk and R′k was considered. A further interesting result found in
our analysis is that the same matching conditions for vk and v′k can be obtained by using the long
wavelength approximation (k2 � z′′/z) at the moment of the transition, even for the modes that are
well inside the comoving Hubble horizon (k2

H � k2) and that satisfy the condition a′′/a� k2. That
such an approximation works at all scales can be justified by the fact that z′′/z diverges, i.e., has
infinite values, at the particular moment of the transition.

Given that he main focus of this chapter was to study the effects of pre-inflationary epochs on
the primordial power spectrum (and on the CMB), we then explicitly calculated the ratio PPI

R /PBDR
between the primordial power spectrum at the end of inflation in a scenario with a pre-inflationary
epoch with arbitrary initial conditions, PPI

R , and the primordial power spectrum predicted by a standard
inflationary scenario with Bunch-Davies (BD) initial conditions, PBDR . In particular, we considered the
case where a BD vacuum state is recovered during the initial epoch when the condition z′′/z � k2 is
met and analysed the shape of PPI

R /PBDR for physically relevant modes which are well outside the
Hubble horizon at the end of inflation. The asymptotic expressions for the behaviour at large and
small scales were then obtained. We found that for k < kmin, where kmin is the value of the Hubble
horizon at the moment of the transition to inflation, the shape of PR during the pre-inflationary epoch
is preserved at later times. On the other hand, for kmin < k the primordial power spectrum becomes
amplified and develops an oscillatory behaviour.

By assuming that the pivot scale k∗ = 0.05 Mpc−1 falls within this oscillatory regime, we were able
to impose lower and upper bounds on the initial value of the slow-roll parameter ε = −Ḣ/H2, so
that the prediction for the primordial power spectrum is compatible with the observational constraints.
These bounds, which allow for a minimal change of up to 3% in the value of ε at the moment of the
transition, are compatible with the results of previous studies [36] and clearly exclude the possibility of a
decelerated pre-inflationary epoch (with an instantaneous transition to inflation). Notice, however, that
these constraints were obtained assuming that the instantaneous change in the EoS parameter and in
the slow-roll parameter are introduced by a discontinuity of the potential of the scalar field at the value
ϕhyp. Such a condition uniquely defines the hypersurface of the transition at the perturbative level and,
consequently, imposes the appropriate boundary conditions for the perturbation variables. However,
if the condition that defines the discontinuity of the EoS parameter and the slow-roll parameter is
changed, see for example Ref. [136] where a transition of the EoS parameter is imposed at a fixed
ρhyp, the boundary conditions for the perturbation variables may differ from the ones obtained here,
possibly leading to different imprints on the primordial power spectrum.

Finally, we have compared the analytical predictions for the case of the instantaneous transition with
the numerical results obtained for the toy model II introduced in Eq. (5.148). As shown in Fig. 5.25,
the analytical and the numerical results for the primordial power spectrum coincide up to a maximum
wavenumber when the parameter λ is fixed at large values, i.e, for very fast transitions. This result
corroborates the analysis presented above, showing that the analytical expressions obtained capture
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the correct limiting behaviour of the model for very fast transitions between the initial and the final
epochs. Furthermore, the disagreement, at very low scales kmin � k, between the numerical results
and the analytical expressions can be explained by the fact that, for finite λ, the bumps in z′′/z near
the transition to inflation are very large but have a finite maximum value. Therefore, modes with k2

above this maximum will be in a BD-like vacuum at the onset of inflation and the usual prediction of
power-law inflation is recovered.
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Final Comments





6 General Conclusions

In this thesis, we have presented the results obtained during the last four years of research regarding
three different scenarios that explore possible extensions of the Standard Model of Cosmology: modified
theories of gravity in the late-time Universe (cf. Chapter 3), dynamical dark energy (DE) described
by a 3-form field (cf. Chapter 4) and effects of quantum cosmology in the primordial Universe (cf.
Chapter 5). For each case, we have explored different methodologies that allow us to better understand
the dynamics of the model at hand. Likewise, we have computed the theoretical predictions for
different cosmological observables and compared them with the available data from the observations,
in order to decide on the physical viability of the model and define constraints on its parameters.

In Chapter 3, we have studied the effects that a modified theory of gravity, namely metric f(R)-
gravity, can have on the evolution of the Universe and on the cosmological observables, in particular
at late-time. Following the line of reconstruction efforts in f(R) gravity, also known as designer
f(R) approach [103, 106, 133, 143], we have presented in Sect. 3.2 a novel method to f(R) actions
compatible with the evolution of a universe that is characterised by a given barotropic equation of
state. This new strategy is based on mapping the modifications of gravity to an effective fluid and
can be used to find appropriate solutions for f(R). Using our reconstruction method, we have been
able to obtain, for the first time, a complete analytical mapping of the modified generalised Chaplygin
gas (mGCG) in f(R)-gravity in the absence of other types of matter. We recall that this type of
fluid generalises the original Chaplygin gas model [57, 60, 205] and has found applications in several
areas of Cosmology, from describing a pre-inflationary evolution, to providing a unified description of
the dark sector of the Universe. Given the complexity of the solutions found–a common drawback
in reconstruction methods–and the number of free parameters of the model, we then focused our
attention in the case where the mGCG interpolates between the behaviour of a radiation fluid and of a
cosmological constant. This case was found to be particularly interesting since it can also be applied
to model the transition from inflation to the Hot Big Bang cosmology (see for example [74]) and to
unify DE with another (hypothetical) dark component–dark radiation (DR). Furthermore, it was found
that the complexity of the analytical solutions is greatly reduced in this specific case, which allowed us
to have a better control of the solutions obtained and to perform a more detailed analysis of their
physical viability. In particular, we were able to define the intervals in the 1-dimensional parameter
space where solutions can be obtained that satisfy the conditions of f(R)-gravity for physical viability
and stability.

In the subsequent Sect. 3.3, we have considered the possibility of explaining DE and DR in terms
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of modifications of gravity introduced by an f(R) theory. In particular, we have used the mGCG
model to describe an effective f(R) fluid that mimics radiation in the distant past and a cosmological
constant around the present time. Even though the vacuum solutions obtained with the aforementioned
reconstruction method could not be employed in this case–we were also considering the presence of
radiation, CMB photons and relativistic neutrinos, and of pressureless matter, DM and non-relativistic
baryons–we obtained a numerical solution compatible with the model that satisfied all the requirements
for being physically acceptable. In addition, we were able to derive a full analytical solution in the
asymptotic past, when the mGCG behaves like radiation and the modifications to gravity become
stronger. Using this asymptotic behaviour, we were able to show that the R4/3 dependence of the
numerical solution at large R was a generic feature of the model and not an artifice of the initial
conditions. By employing a cosmographic approach we were able to constrain the model at the level
of the FLRW background, guaranteeing that it mimics almost exactly the evolution of ΛCDM with a
radiation component and that we recover GR with a cosmological constant since the matter era till
the present time.

In order to break this degeneracy at the background level, we then proceeded to study the evolution
of the linear cosmological perturbations, since well inside the early radiation dominated epoch till the
present time. We found that, as long as the initial conditions imposed were analogous to the ones
derived from single field inflation in GR, no significant imprints from the modifications of gravity are
obtained at the level of the linear perturbations for large and intermediate scales, i.e., for wave-numbers
k . keq ≈ 0.01 Mpc−1 where keq is the wave-number of the mode corresponding to the moment
of radiation-matter equality. However, for keq . k, we found that the evolution of the matter
perturbations started to deviate from the predictions of the ΛCDM model; in particular, for these scales
we observed a higher growth rate of matter and a change in the amplitude and in the slope of the
matter power spectrum. These results were found to be in perfect agreement with the predictions of
metric f(R)-gravity [134]. Furthermore, we have shown that, for keq . k, the gravitational potentials
do not remain constant and instead grow with time. This result corroborates other works found in the
literature that criticise the use of the quasi-static approximation in f(R) gravity [55, 134]. In order to
make the model compatible with the observational constraints of the matter power spectrum at small
scales, i.e., for large k, one possibility is to reduce the amount of DR considered. This would reduce
the strength of the effects of modifications to gravity during the whole evolution of the model which
could, in principle, blue-shift the imprints of the model to larger k (smaller scales) and therefore avoid
the tight constraints on the matter power spectrum in the range 2× 10−2h Mpc−1 . k . 2× 10−1

h Mpc−1 [19]. We note the final results of the Planck mission [19] have brought further down the
value of the number of effective degrees of freedom, reducing the deviation from the prediction of the
Standard Model of particles, Neff = 3.046 [249], and favouring a very small contribution from DR.
However, given that in this work the fraction of relativistic content corresponding to DR was . 1.4%,
as derived from the best-fit values of Planck 2015 [16] and used in our published work [264], it is not
clear whether the agreement with the observations at the level of the matter power spectrum can
be achieved, while at the same time maintaining a sufficiently significant contribution of DR to Neff
that cannot be explained by a statistical fluctuation of the data. An alternative approach that could
alter the predictions of the model at the perturbative level is related to the initial conditions for the
linear perturbations that are imposed during the radiation dominated epoch. Since the deviations from
GR were dominant in this initial epoch, we lacked a mechanism to unequivocally define the initial
conditions for the numerical perturbations. In order to overcome this difficulty, we took advantage of
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the linearity of the evolution equations for the perturbations to obtain four solutions with different
initial conditions and then look for the combination that better fitted the results from GR. In addition,
we assumed that the initial conditions satisfied a power-law dependence on the wave-number k, as
predicted by single field inflation; the validity of this assumption requires a more detailed investigation.
In the future it might be of interest to explore whether general and consistent initial conditions can be
obtained for the perturbations when the dominant term in the f(R) action is R4/3 or, more generally,
Rn.

In Chapter 4, we have explored the possibility of explaining the late-time acceleration of the Universe,
not through a modification of the laws of gravitation, but by considering a new dynamical field, in
particular a massive 3-form field, that can play the role of DE. In the last decade, p-forms have drawn
attention in the literature as alternatives to the minimally coupled scalar field [166, 216, 217, 219].
The 3-form was found to be well suited for applications in FLRW cosmology, as it can be naturally
mapped to perfect fluid without the need for imposing any additional constraints or special multi-field
configurations. In fact, a 3-form field was originally introduced to describe an effective cosmological
constant [142], a behaviour which is recovered for constant potentials. In order to better understand the
dynamics of models with this kind of field, in Sect. 4.2, we investigated the use of a dynamical system
analysis in models with 3-forms and DM, a method which can be extremely useful in understanding
cosmological models with extra dynamical degrees of freedom [44]. Due to the particular constraints
in the evolution of the 3-form, we found that the asymptotic past of the system should correspond
to states with infinite amplitude of the 3-form field, independently of the shape of the potential. As
such, we stressed the importance of obtaining a global picture of the dynamics of the model which
includes the behaviour at infinity. To this end, a novel dynamical system description was presented,
in which an intuitive interpretation of the dynamical variables is forfeited in exchange for a better
control of the behaviour at infinity. As an example, we applied this new representation to the case of
the Gaussian potential V ∝ e−αχ2 , where α is a constant that controls the flatness of the potential
around the origin, and showed that the new representation allows us to lift some ambiguities that
were previously found in the study of the stability of the fixed points at infinity. We note that while
this new description is not suitable to all kinds of potentials, e.g., it presents problems for potentials
with zeroes at finite values of the 3-form field, it can serve as a guideline for future applications.

In Sect. 4.3, we analysed the occurrence of a Little Sibling of the Big Rip (LSBR) event in models
with 3-form fields [77]. This type of cosmic event, which is not ruled out by the current observations,
occurs due to a phantom-like behaviour of DE that leads, in resemblance to the Big Rip singularity
and the Little Rip cosmic events, to a divergence of the Hubble H rate in the distant future and
to the eventual destruction of the structure observed in the Universe. The LSBR is characterised
by the fact that the first derivative of the Hubble rate remains finite and positive during the whole
future evolution, meaning that the blow-up of H and the dissociation of structure take a longer time
to occur than in the Little Rip or the Big Rip [77]. Within the context of 3-form cosmology, the
LSBR can appear even in the cases where the field has a canonical kinetic term and a positive-valued
potential, in contrast with scalar field models where a phantom kinetic term or a negative valued
potential are necessary for such a cosmic event to occur. In particular, we found that a LSBR can
occur whenever the 3-form potential V (χ) satisfies the conditions V > 0 and dV/dχ2 < 0 at the
critical points χ = ±χc = ±

√
2/(3κ2) and that the existence of other types of non-interacting matter

that verify the null energy condition does not prevent this catastrophic fate of the Universe. However,
the LSBR can in principle be avoided if an appropriate interaction is considered between DM and DE,
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that prevents the energy density of DM from decaying completely and, consequently, shifts the field χ
away from the critical points that correspond to a LSBR.

In order to test this hypothesis, we have studied a model with interacting DM and DE, in which DE
is described by a 3-form field with a Gaussian potential. Taking a phenomenological approach, we have
considered a class of quadratic interactions that can accommodate several of the phenomenological
interactions considered in the literature. Through a comprehensive study of the system based on a
dynamical system approach, we have been able to show that the LSBR can indeed be avoided if and
only if the interaction term is not proportional to the energy density of DM or to its square. We point
out that, while these results have been obtained for a 3-form field with a Gaussian potential, they
can be generalised for any potential that leads to a LSBR in the absence of interactions. We used
the statefinder hierarchy, a diagnostic tool based on a cosmographic approach, and the composite
null diagnosis, which complements the statefinders with information regarding the growth of matter
perturbations, to characterise the non-interaction model and two interacting cases where the LSBR
is removed as the end state of the Universe: QIV ∝ αχHρχ and QV ∝ αχχHρ

2
χ/(ρm + ρχ). In

order to facilitate the comparison of the results obtained, we imposed the same value for the coupling
constants αχ = αχχ = −0.03. This value ensured that the energy transfer was from DE to DM, as
required to prevent the complete decay of DM, and satisfied the observational constraints derived
for the wCDM model [125], which were used as guidelines in our work. For each case, we selected
the trajectories whose evolution closely mimics the ΛCDM model till the present time and confirmed
that the statefinder hierarchy and the composite null diagnosis are able to positively distinguish
between the three cases at hand and between the ΛCDM model. In particular, we have found that
the mapping {S(1)

3 , S
(1)
4 } is preferable to identify the characteristic imprints of the model close to

the present time, while {S(1)
3 , S

(2)
3 } is particularly efficient in detecting deviations of DE from the

behaviour of a cosmological constant during the past matter dominated era. In order to check the
compatibility of the results with the observational data, we compared the predicted values for the
growth rate f with the measurements of SDSS III BOSS DR12 [312]: f(zeff = 0.38) = 0.638± 0.080,
f(zeff = 0.51) = 0.715± 0.090, and f(zeff = 0.61) = 0.753± 0.088. In addition, we have computed
the evolution of fσ8 in all the three models and compared the results with the predictions of ΛCDM
and with the available data points and respective error bars. Despite an increase in the growth rate
of matter fluctuations, which becomes more noticeable near the present time when the interactions
becomes stronger, we have found that all the models are compatible with the observations.

Finally, in Chapter 5, we have analysed the possibility of finding imprints from a pre-inflationary
era in models inspired by the Third Quantisation [45, 255, 306, 330]. This formalism is based on an
alternative interpretation of the Wheeler–DeWitt equation of Canonical Quantum Gravity that draws
parallels with the Klein–Gordon equation and with the quantum field description of a minimally coupled
scalar field. Within the context of cosmology, the Third Quantisation leads, in a natural way, to the
concept of the multiverse–the quanta of the theory are individual universes–and provides a formalism to
study possible universe-universe interactions. In a first instance, we have considered in Sect. 5.2 a toy
model of a multiverse filled by a massive scalar field minimally coupled to gravity. When a closed spatial
section of the FLRW is considered (K = −1), a finite potential barrier emerges in the minisuperspace
which, for low values of the kinetic term of the scalar field, divides the space-time in two classical
regions where the semi-classical, I and III, separated by a classically forbidden region II (cf. Fig. 5.1).
Using a semi-classical approximation, we have computed the analytical solutions for the scale factor
in the two classical regions–in the region I the solutions obtained represent small recollapsing baby
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universes and in the region III the semi-classical solutions represent initially contracting universes
that start to inflate after reaching a minimum size–and inside the region II, where the solutions
represent Euclidean wormholes that connect the two classical regions. Using Vilenkin’s proposal for
the probability to tunnel through a potential barrier [341, 342], we have computed the probability
for a small baby universe to traverse the Euclidean wormhole and emerge as an inflating universe.
We have found that the probability of tunnelling is exponentially suppressed for physically acceptable
values of the scale of inflation, in conformity with the case of creation from nothing [341]. However,
for the cases where the kinetic energy density of the scalar field is sufficiently close to the maximum
of the potential barrier, the probability that the baby universe traverses the wormhole approaches
unity. This provides a mechanism to make more likely the appearance of an initially inflating universe
like our own.

In Sect. 5.3, we have considered a similar model (model I) of a multiverse filled by a massive
scalar field and where universe-universe interactions where introduced, inspired by effects of quantum
entanglement [28, 302]. By using a discrete Fourier transform, it is possible to obtain a new non-
interacting representation of the model where the effects of the quantum entanglement appear instead
as a new term in the effective Friedmann equation of each individual universe. This term leads to the
existence of a pre-inflationary era, in which different types of behaviour can be obtained by considering
different couplings between universes. Using, as a first approach, the techniques employed in the
study of quantum cosmological perturbations during inflation, we have calculated the imprints of
the model in the primordial power spectrum, PR, and in the angular spectrum of the CMB, CTT` .
We have found that the existence of a pre-inflationary epoch can lead to a suppression of PR and
CTT` at large scales (low k and `), in accordance with previous studies where similar models where
considered [83, 122, 292]. This effect can in principle alleviate some of the anomalies of the CMB first
detected by WMAP and confirmed by Planck [19], like the low quadropole anomaly (the lack of power
measured for ` = 2) and the dip in the angular power spectrum in the range 20 . ` . 30. However, it
was found that the pre-inflationary era also leads to the appearance of high amplitude peaks in PR
and CTT` at intermediate scales, and effect which partially spoils the agreement with the data. This
effect was found to be more intense in the case of a pre-inflationary epoch that mimics a universe
dominated by stiff-matter than in the cases where the initial epoch mimics a radiation dominated or a
dust dominated universe. By comparing the results obtained with the observational constraints from
the CMB observations [18], we were able to impose constraints on the parameters of the model and
discuss its implications for the interaction couplings between the different universes in the original
representation. In particular, we have imposed upper bounds on the ratio C(a∗)/N2

uni, where C(a∗)
defines the strength of the interaction at the reference scale a∗ and Nuni is the number of universes
in the model. While in the present work we were not able to impose individual constraints on C(a∗)
or Nuni, a future more detailed exploration of the implications of the Third Quantisation on the
primordial Universe might provide us with a mechanism to improve the bounds on these parameters.

We have found that the general features of the imprints of the model in PR can be predicted
from the shape of z′′/z, the potential that drives the evolution of the scalar perturbations, around
the onset of inflation. In particular, the amplitude and position of the new peaks in the primordial
power spectrum can be related to the two bumps that appear in z′′/z around the moment when
inflation begins, suggesting that the period of the transition to inflation also leaves imprints in PR.
This relation was confirmed in Sect. 5.4, where we considered a 1-parameter extension (model II)
of the model I, with the extra parameter λ controlling how abrupt is the transition to inflation, i.e.,
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how many e-folds does it take for the Universe to go from the initial pre-inflationary epoch to the
final asymptotic power-law inflation. We found that by increasing the period of the transition, i.e.,
by lowering the value of λ, the amplitude of the two bumps in z′′/z was decreased, thus softening
the peaks in the primordial power spectrum and, consequently, in the angular power spectrum of the
CMB. In this way, we were able to improve the agreement of the model with the observational data.
In order to derive constraints for the parameters of the model, we imposed that no imprints of the
pre-inflationary era should appear near the pivot scale of Planck mission k∗ = 0.05 Mpc−1 [18] or
on multipoles above ` = 30. We point out that the extension introduced in the model II was purely
phenomenological and was inspired from the previous model. It is possible that a further exploration
of the Third Quantisation might be able to embed such a behaviour within that formalism.

In Sect. 5.5, we have analysed the effects of an instantaneous transition from a pre-inflationary
epoch to inflation. Using the model II in the limit of very large values of the parameter λ, we have
derived the matching conditions for the Mukhanov–Sasaki variable at the moment of the transition
and showed that they correspond to the matching conditions obtained by following the reasoning of
Deruelle and Mukhanov [136] in a scalar field model where the transition is provoked by a discontinuity
in the potential (see also Refs. [36, 110]). In this case, the Mukhanov–Sasaki variable and its
derivative become discontinuous at the moment of the transition. In addition, we found that due
to the appearance of divergent terms in the potential z′′/z at the moment of the transition, the
long wavelength approximation of the Mukhanov–Sasaki equation, k2 � z′′/z, predicts the correct
behaviour of the linear perturbations during the transition for all scales, even for modes inside the
comoving Hubble horizon, (aH)2 � k2. We studied the imprints left by the transition in the primordial
power spectrum at the end of inflation and showed that an oscillatory regime is obtained for the
modes that verify (aH)2 � k2 at the moment of the transition to inflation. By comparing the
predictions of the model with the constraints on PR around the pivot scale k∗ = 0.05 Mpc−1, we
have excluded sudden transitions in the primordial Universe, except for the cases there the slow-roll
parameter ε = −Ḣ/H2 varies by less than 3% during the transition, in agreement with previous
studies [36]. In order to corroborate our results, we performed a comparison with the numerical
integrations obtained from considering increasingly large values of the parameter λ. For λ� 1, we
found that the numerical results for PR are well approximated by the analytical formulas in the case
of an instantaneous transition. We stress that the results obtained are specific to scalar field models
where the instantaneous transition is obtained from a discontinuity in the scalar field potential at
ϕhyp. As such, the matching conditions for the Mukhanov–Sasaki variables and the imprints in the
cosmological observables may change in a model where a sudden transition is defined by a different
condition.

As a final comment, we point out that the three main themes explored in this thesis (f(R)-gravity,
3-form DE, pre-inflation in the Third Quantisation) are only a small number of possibilities within
the plethora of models and theories that have been proposed over the last few decades in order to
explain several phenomena of our Universe. The existence of such an amount of concurrent proposals
in Theoretical Cosmology can sometimes give the impression that we are lacking a guiding light,
possibly from a lack of sufficient observational data, that is capable of discerning which model or
theory is best suited to understand the laws of physics at high energies or at large scales. At the same
time, it is worth reminding that we are currently living in a golden age of precision cosmology, where
cosmological parameters are calculated with percent precision, and it is expected that we will soon
enter the next stage of accuracy Cosmology [285, 339], which will focus on bringing equally under
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control the systematic errors of observational missions. During this period, several state of the art
observational missions have allowed us to map the cosmos with an unprecedented resolution, both at
low redshift and at the time of the last scattering surface. In addition, we are watching the first steps
of the field of gravitational wave astronomy [2, 3], which has opened to us a completely new way of
probing the cosmos and has already allowed us to impose severe constraints on possible modifications
to GR [126, 147]. Together with the numerous efforts to search for DM, advances in lensing astronomy
and the maturing of the numerical codes that will allow us to understand better complex processes of
non-linear collapse and galaxy formation, the next few decades have the potential to become exquisite
times for Cosmology and Astronomy where answers might start to appear for fundamental questions
such as What is the nature of dark matter (DM) and dark energy (DE), which combined account
for roughly 95% of all the content of the Universe? Is General Relativity (GR) the correct theory of
gravitation at the classical level or does it need to be modified in order to explain phenomena at
astronomical and cosmological scales? What is the road to a full quantum description of gravity?
If so, we might soon witness a revolution of Physics akin to the advent of General Relativity and
Quantum Mechanics in the beginning of the twentieth century. Hopefully, as the poet says, the times
they are a-changin’.
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PART V

Appendix





A Linear perturbations around a FLRW
background

In this appendix we review some key aspect of the Theory of Linear Cosmological Perturbations. Linear
perturbations around a FLRW background were first considered by Lifshitz [234] and were extensively
studied in subsequent decades, including seminal works by Hideo Kodama and Misao Sasaki [215]
and Viatcheslav F. Mukhanov, H. A. Feldman and Robert H. Brandenberger [270], a thorough study
of cosmological perturbations in extended theories of gravity by Jai-chan Hwang [196, 197] and J.-c.
Hwang and Hye-rim Noh [198, 199], as well as more recent contributions by David Wands and Karim
A. Malik [246–248] among others.

From a formal point of view, linear perturbations around a background metric can be introduced
by considering a one-parameter family of space-times (Mε, ĝε), ε ∈ R, of 4-dimensional manifolds
manifold Mε and Lorentzian metrics ĝε, in which we single out one element (M0, ĝ0) that will
represent the background geometry [251, 294]. By requiring that all Mε can be mapped onto M0
through a diffeomorphism fε [251, 294]

fε :M0 × R −→ Mε , (A.1)

we can relate tensors in Mε with tensors in M0 via pullback, f∗ε , and pushforward, df−1
ε , operations.

In this way, we can construct a one-parameter family of metrics gε on M0, each of which is related
to the metric ĝε on Mε through gε := f∗ε ĝε, as well as a new tensor δgε defined as the difference
between the two metrics gε and g0 [251, 294]:

[δgε]µν := [gε]µν − [g0]µν . (A.2)

The tensor [δgε]µν defined in (A.2) fully encodes the deformation of the geometry described by
[gε]µν with regards to the geometry imposed by [g0]µν . In a cosmological setting we can identify
(M0, ĝ0) with the highly symmetrical cosmological background and (Mε, ĝε) with a more realistic
description of our Universe where (small) departures from homogeneity and isotropy are considered.
In general, however, working with the full perturbation tensor proves too difficult for any sensible
computation. Instead, we can point to the smallness of such inhomogeneities and anisotropies, as
suggested by the observations [16], and employ a perturbative approach.

If we assume that the mapping (A.1) is differentiable up to order N , we can approximate δgε using
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A.1 Gauge transformations

a Taylor expansion of the metric gε around the nominal value ε = 0:

[δgε]µν = [gε]µν − [g0]µν ≈
N∑
n=1

εn

n! [ δ(n)gε]µν , (A.3)

where δ(n)gε := (dngε/dεn)ε=0. In a similar manner, we can expand the perturbation δXε for any
tensor Xε as

δXε = Xε −X0 ≈
N∑
n=1

εn

n! δ
(n)Xε . (A.4)

where δ(n)X := (dnXε/dεn)ε=0. Since in this thesis we are interested in studying the evolution of
small linear perturbations around a FLRW background, we disregard terms of order O(ε2) in the
expansions (A.3) and (A.4). As long as these linear perturbations remain small, their evolution can be
fully obtained in a consistent way by perturbing the action up to second order in ε, or by perturbing
the field equations up to first order in ε. In order to simplify the notation, we identify unperturbed
tensors by an overbar, X0 = X̄, and the linear perturbations δ(1)Xε will be referred to simply as δX.
In addition, we drop the ε subscript from perturbed tensors, i.e., Xε = X = X̄ + δX.

A.1. Gauge transformations

As we expand the geometry of the Universe beyond the FLRW background, we are confronted with
the issue of dealing with the appearance of gauge degrees of freedom. Although these are spurious in
nature, the general covariance of GR implies that selecting a particular gauge corresponds to specifying
a particular way of mapping the perturbed universe to the background geometry. Thus, a gauge
transformation generated by an infinitesimal vector ξµ is associated to an infinitesimal coordinate
change [46, 198, 270]

xµ → x̃µ + ξµ . (A.5)

In the remainder of this section we adopt the notation ξ0 = δt and ξi = Diξ. Since there is no a priori
physical argument to choose a particular gauge fixing, we are faced with ambiguities in how to relate
the perturbation variables with physical observable quantities. This gauge issue was tackled by James
M. Bardeen by pointing out that “only gauge-invariant quantities have any inherent physical meaning”
[46] and therefore re-writing the theory of cosmological perturbations in terms of gauge-invariant (GI)
variables was necessary.

In order to define such variables, we require a rule that dictates how a given tensorial quantity
X
α1...αp
β1...βq

changes under a gauge transformation generated by an infinitesimal vector1 −ξµ [248]:

X
α1...αp
β1...βq

→ X̃
α1...αp
β1...βq

= e−LξXα1...αp
β1...βq

, (A.6)

1In another example of lack of uniformity of notation in the literature, here we reverse the sign of the transformation
generator with regards to [248] so that we have the same sign in the coordinate transformation rule as Refs. [46, 198, 270].
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where Lξ is the Lie derivative with respect to the vector ξµ [347]

LξX
α1...αp
β1...βq

= ξµ∂µX
α1...αp
β1...βq

−Xα1...µ...αp
β1...βq

∂µξ
αi +X

α1...αp
β1...µ...βq

∂βiξ
µ . (A.7)

If we now consider a gauge transformation generated by an infinitesimal vector that vanishes in the
background, i.e., ξµ = δ(1)ξµ, then the background value of any quantity Xα1...αp

β1...βq
is left unaffected

while its first order perturbation δXα1...αp
β1...βq

changes according to the rule

δ(1)X
α1...αp
β1...βq → δ(1)X

α1...αp
β1...βq − LξX̄

α1...αp
β1...βq

. (A.8)

Eq. (A.8) allows us to calculate the gauge transformation of any cosmological perturbation and look
for appropriate GI quantities that can represent physical quantities.

A.2. The perturbed metric

The FLRW line element up to linear perturbations in the scalar sector can be written as [49, 198, 246]

ds2 = −N2 (1 + 2A) dt2 + 2NaDiB dtdxi + a2 [(1− 2ψ)γij + 2D(i∂j)E
]

dxidxj , (A.9)

where the four degrees of freedom in the scalar sector are encoded in the four potentials A = A(t, ~x),
B = B(t, ~x), ψ = ψ(t, ~x) and E = E(t, ~x). In Eq. (A.9), Di is the covariant derivative constructed
from the 3-metric γij = γij(~x) and in this section we use γij to raise and lower purely spatial indices.
From the perturbed line element (A.9) we can write the perturbation of the metric gµν and of its
inverse2 gµν as

δgµν =

−2N2A N aDjB

N aDiB −2a2 (ψγij −DiDjE)

 , (A.10)

δ[g−1]µν =

 2N−2A N−1 a−1 DjB

N−1 a−1 DiB 2a−2 (ψγij −DiDjE
)
 . (A.11)

To first order in perturbations, the unit 4-vector normal to the spatial hypersurfaces nµ reads [246]

nµ = −N
(
1 +A, ~0

)
, nµ =

(
1−A
N

, −∂
iB

a

)
, (A.12)

which shows that the scalar potential A can be seen as the relative perturbation of the lapse function
δN/N . From Eq. (A.12), we can compute the perturbed expansion scalar θ, the shear tensor σij and

2Here, we use the notation δ[g−1]µν to refer to the linear perturbation of the inverse metric gµν , which at
first order in perturbations differs from the perturbation of the metric with raised indices by a difference of sign:
δ[g−1]µν = −ḡµρḡνσδgρσ = −δgµν .
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the acceleration vector aµ in a perturbed FLRW universe as [246]

θ := 3
N

ȧ

a
− 3
N

(
ψ̇ + ȧ

a
A

)
+ 1
a2∇

2σ , (A.13)

σij := 0 +
(

DiDj −
γij
3 ∇

2
)
σ , (A.14)

ai := 0 + ∂iA , (A.15)

where ∇2 := DiDi is the Laplacian operator for the metric γij . In Eq. (A.14) we have introduced as
well the scalar shear potential3

σ := a
( a
N
Ė −B

)
. (A.16)

Since we are dealing only with scalar perturbations, there is no contribution to the vorticity tensor
ωµν , which also vanishes in a FLRW background. From Eq. (A.13) we can identify the perturbation
of the Hubble rate as4

δH = − 1
N

(
ψ̇ + ȧ

a
A

)
+ 1

3a2∇
2σ . (A.17)

The perturbation of the intrinsic curvature is given by

δ(3)R = 4
a2

(
∇2 + 3K

)
ψ , (A.18)

and, therefore, the potential ψ is often called the curvature perturbation.

The four scalar potentials that encode the perturbations of the metric gµν in the scalar sector
change under a gauge transformation as

A→ A− Ṅ

N
δt− δ̇t , B → B + N

a
δt− a

N
ξ̇ , ψ → ψ + ȧ

a
δt , E → E − ξ . (A.19)

Notice that both A and ψ are gauge independent with regards to purely spatial gauge transformations,
as is the scalar shear potential defined in (A.16)

σ → σ −Nδt . (A.20)

Using only geometrical quantities, there are only two GI potentials that can be constructed:

Φ := A− σ̇

N
, Ψ := ψ + ȧ

a

σ

N
. (A.21)

These potentials were first identified by Bardeen [46] and they coincide with the scalar potentials A
and ψ in the Newtonian gauge defined by B = E = 0 (which implies σ = 0).

3The quantity defined in (A.16) corresponds to σ̃ in Ref. [246] and to χ in Ref. [198].
4The perturbation δH as given in (A.17), is defined as −κ/3 in the notation of Ref. [198].
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A.3. Christoffel symbols

The Christoffel symbols that define the connection are given in term of the metric gµν by [347]

Γρµν := 1
2g

ρσ (∂µgσν + ∂νgµσ − ∂σgµν) . (A.22)

Inserting (A.9) in Eq. (A.22), we find that the components with at least one temporal index read
[198, 248]:

Γ0
00 = Ṅ

N
+ Ȧ , (A.23)

Γ0
0i = 0 + Di

(
A+ ȧ

N
B

)
, (A.24)

Γ0
ij = aȧ

N2 γij −
a2

N2

[
ψ̇ + 2 ȧ

a
(ψ +A)

]
γij + DiDj

[
− a

N
B + a2

N2

(
Ė + 2 ȧ

a
E

)]
, (A.25)

Γi00 = 0 + N2

a2 Di

[
A+ a

N

(
Ḃ + ȧ

a
B

)]
, (A.26)

Γi0j = ȧ

a
δij − ψ̇δij + DiDjĖ , (A.27)

while for the purely spatial components we find [198, 248]:

Γiij = 1
2∂

iγij −
ȧ

N
DjB − 3Djψ + Dj∇2E , (A.28)

Γijk = 1
2
(
2γil∂(jγk)l −Diγjk

)
− ȧ

N
γjkDiB −

(
2δi(jDk) − γjkDi

)
ψ

+
(
DjDkDi + DkDiDj −DiDjDk

)
E . (A.29)

A.4. The Ricci and Einstein tensors

The Ricci tensor can be calculated in terms of the Christoffel symbols as [347]

Rµν = ∂ρΓρµν − ∂νΓρµρ + ΓσµνΓρσρ − ΓσµρΓρσν . (A.30)
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Using the previous results, we can obtain the individual elements of the perturbed Ricci tensor [198]

R00 = − 3
(
ä

a
− Ṅ

N

ȧ

a

)
+ 3

[
ψ̈ +

(
2 ȧ
a
− Ṅ

N

)
ψ̇ + ȧ

a
Ȧ

]
+ N2

a2 ∇
2
(
A− σ̇

N

)
, (A.31)

R0i = 0 + 2∂i
(
ψ̇ + ȧ

a
A

)
+
[
ä

a
+ 2

(
ȧ

a

)2
− Ṅ

N

ȧ

a
+ 2N

2

a2 K

]
a

N
DiB + 2

(
N2

a2 K
)
∂i
σ

N
, (A.32)

Rij = a2

N2

[
ä

a
+ 2

(
ȧ

a

)2
− Ṅ

N

ȧ

a
+ 2N

2

a2 K

]
γij + γij∇2

(
ψ + ȧ

a

σ

N

)

− a2

N2

[
ψ̈ +

(
6 ȧ
a
− Ṅ

N

)
ψ̇ + ȧ

a
Ȧ+ 2

(
ä

a
+ 2

(
ȧ

a

)2
− Ṅ

N

ȧ

a

)
(ψ +A)

]
γij

+ DiDj

[
ψ −A+ σ̇

N
+ ȧ

a

σ

N
+ 2 a

2

N2

(
ä

a
+ 2

(
ȧ

a

)2
− Ṅ

N

ȧ

a
+ 2N

2

a2 K

)
E

]
. (A.33)

while the perturbed Ricci scalar reads [198]

R = 6
N2

[
ä

a
+
(
ȧ

a

)2
− Ṅ

N

ȧ

a
+ N2

a2 K

]

− 6
N2

[
ψ̈ +

(
4 ȧ
a
− Ṅ

N

)
ψ̇ + ȧ

a
Ȧ+ 2

(
ä

a
+
(
ȧ

a

)2
− Ṅ

N

ȧ

a

)
A− 2N

2

a2 Kψ

]

+ 2
a2∇

2
[
2ψ −A+ σ̇

N
+ 2 ȧ

a

σ

N

]
. (A.34)

Finally, the individual components of the perturbed Einstein tensor Gµν := Rµν − 1
2Rδ

µ
ν read [198]

G0
0 = − 3

N2

[(
ȧ

a

)2
+ N2

a2 K

]
+ 6
N2

[
ȧ

a
ψ̇ +

(
ȧ

a

)2
A− N2

a2 Kψ

]
− 2
a2∇

2
(
ψ + ȧ

a

σ

N

)
, (A.35)

G0
i = 0− 2

N2 ∂i

[
ψ̇ + ȧ

a
A+

(
N2

a2 K
)
σ

N

]
, (A.36)

Gi0 = 0 + 2
a2 ∂

i

[
ψ̇ + ȧ

a
A− a

N

(
ä

a
−
(
ȧ

a

)2
− Ṅ

N

ȧ

a
− N2

a2 K

)
B +

(
N2

a2 K
)
σ

N

]
, (A.37)

Gij = − 1
N2

[
2 ä
a

+
(
ȧ

a

)2
− 2Ṅ

N

ȧ

a
+ N2

a2 K

]
δij

+ 2
N2

[
ψ̈ +

(
3 ȧ
a
− Ṅ

N

)
ψ̇ + ȧ

a
Ȧ+

(
2 ä
a

+
(
ȧ

a

)2
− 2Ṅ

N

ȧ

a

)
A− N2

a2 Kψ

]
δij

− 2
3a2 δ

i
j∇2

(
ψ −A+ σ̇

N
+ ȧ

a

σ

N

)
+ 1
a2

(
DiDj −

1
3δ

i
j∇2

)[
ψ −A+ σ̇

N
+ ȧ

a

σ

N

]
.

(A.38)
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Chapter A. Linear perturbations around a FLRW background

A.5. Fluid variables

While in the FLRW background the fluid elements are at rest with the comoving frame, i.e., the fluid
4-velocity uµ coincides with the unit normal nµ [246, 248], this is no longer necessarily true in the
perturbed universe where a fluid element can move with respect to the comoving frame with a peculiar
velocity ∂iv = aδui, where v is the scalar velocity potential. Imposing the constraint uµuµ = −1 at
first order in the perturbations we find that δu0 = −A/N , which then allows us to write [198, 248]

u0 = −N (1 +A) , ui = a ∂i (v +B) , (A.39)

u0 = 1
N

(1−A) , ui = 1
a
∂iv . (A.40)

Notice that we can choose the comoving frame simply by setting v+B = 0 in which case we promptly
recover δuµ = δnµ (cf. Eq. (A.12)).

The perturbed stress-energy-momentum tensor Tµν , cf. Eq. (1.12), reads

Tµν = (ρ+ P ) ūµūν + P ḡµν + 2ū(µq̄ν) + π̄µν

+ (δρ+ δP ) ūµūν + δP ḡµν + 2 (ρ+ P ) ū(µδuν) + Pδgµν

+ 2
(
δu(µq̄ν) + ū(µδqν)

)
+ δπµν , (A.41)

where δρ and δP are, respectively, the perturbations of the energy density and of the isotropic pressure.
While in a FLRW background level the energy flux q̄µ and the anisotropic stress π̄µν vanish, the same
does not apply necessarily to the perturbations δqµ and δπµν . In fact, the orthogonality conditions
uµqµ = 0 and uµπµν = 0 imply only that the non-zero components of the δqµ and δπµν are purely
spatial. In addition, since we are only interested in perturbations within the scalar sector, we can
decompose the perturbations δqi and δπij in terms of scalar potentials q and Π as

δqi = 1
a
∂iq , δπij =

(
DiDj −

1
3γij∇

2
)

Π . (A.42)

Using Eqs. (A.39)–(A.42), we can write the individual components of the perturbed stress-energy
momentum tensor Tµν as5

T 0
0 = − ρ− δρ , (A.43)

T 0
i = 0 + a

N
Di

[(
ρ̄+ P̄

)
(v +B) + q

]
, (A.44)

T i0 = 0− N

a
Di
[(
ρ̄+ P̄

)
v + q

]
, (A.45)

T ij = P̄ δij + δPδij + 1
a2

(
DiDj −

1
3δ

i
j∇2

)
Π . (A.46)

5As pointed out in [197], most works on cosmological perturbations found in the literature use the energy frame
defined by the condition qµ = 0. As such, the off-diagonal elements δT 0

i and δT i0 usually are written in terms of
the peculiar velocity potential v and the metric potential B. In the general case, however, the perturbation q also
contributes to the off-diagonal terms of the stress-energy-momentum tensor, as seen in Eqs. (A.44) and (A.45). A
frame invariant 4-velocity can then be defined by uµ + qµ/(ρ+ P ).
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A.5 Fluid variables

The energy density perturbation is often written in terms of the fractional energy density perturbation
δ, also called density contrast,

δ := δρ

ρ̄
. (A.47)

In addition, the isotropic pressure perturbation δP can be decomposed into its adiabatic and non-
adiabatic part as [248, 337]

δP = δP (ad) + δP (nad) = c2a δρ+ δP (nad) , (A.48)

where c2a := ˙̄P/ ˙̄ρ is dubbed the adiabatic squared speed of sound. Following the literature, we expand
δP (nad) as [54, 337]

δP (nad) =
(
c2s − c2a

) [
δρ+ ˙̄ρ a

N
(v +B)

]
, (A.49)

where c2s corresponds to the squared speed of sound in the rest frame of the fluid defined by v+B = 0:

c2s := δP

δρ

∣∣∣∣
r.f.

. (A.50)

Inserting (A.49) in Eq. (A.48) and making use of the background continuity equation we finally obtain6

[22, 54, 337]

δP = ρ̄

[
c2sδ − 3 ȧ

a

(
c2s − c2a

)
(1 + w̄) a

N
(v +B)

]
. (A.51)

The energy density and pressure perturbations transform as true scalars under a gauge transformation

δρ→ δρ− ˙̄ρ δt , δP → δP − ˙̄P δt , (A.52)

while the velocity potential v transforms as

v → v + a

N
ξ̇ . (A.53)

Using the metric perturbations, we can construct GI quantities that reduce to δρ, δP and v in the
Newtonian gauge as [46]

δρ(N) := δρ− ˙̄ρ σ
N
, δP (N) := δP − ˙̄P σ

N
, v(N) := v +B + a

N
Ė . (A.54)

Similarly to the comoving shear potential, the combination v +B is invariant with regards to purely
spatial gauge transformations

v +B → v +B + N

a
δt . (A.55)

6Please note that here we are assuming non-interacting fluids, in which case the continuity equation reads
˙̄ρ = −3(ȧ/a)(ρ̄+ P̄ ). In the case of interacting fluids, the changes to the continuity equation will be reflected in
Eq. (A.51).
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Chapter A. Linear perturbations around a FLRW background

We can therefore construct alternative GI invariant quantities for the energy density and pressure
perturbations which reduce to δρ and δP in the comoving gauge (v +B = 0) as

δρ(C) := δρ+ a

N
˙̄ρ (v +B) = δρ(N) + a

N
˙̄ρv(N) , (A.56)

δP (C) := δP + a

N
˙̄P (v +B) = δP (N) + a

N
˙̄Pv(N) . (A.57)

These quantities are of particular importance when discussing the matter power spectrum. Notice
that GI quantities related to the density contrast δ can be constructed by using Eq. (A.47), e.g.,
δ(N) := δρ(N)/ρ̄.

Another GI quantity of interest is the GI comoving curvature perturbation R, defined as [49]

R := ψ − a

N

ȧ

a
(v +B) = Ψ− a

N

ȧ

a
v(N) . (A.58)

This variable gains special relevance in the context of inflation and reheating as it becomes constant
at large scales during a period of adiabatic evolution, for example in the case of single field inflation
driven by a minimally coupled scalar field. From Eqs. (A.48) and (A.52), we find that δP (nad) is GI,
as are the energy flux potential q and the anisotropic stress perturbation Π due to the fact that their
background quantities vanish.

A.6. Multiple fluids

Let us now consider a setting of multiple, possibly interacting, fluids j, each with its own stress-energy-
momentum tensor [T(j)]µν such that

Tµν =
∑
(j)

[T(j)]µν . (A.59)

If for each fluid we define a 4-velocity vector [u(j)]µ, given by (A.39) and (A.40), with a velocity
potential v(j), then we can decompose [T(j)]µν as in Eq. (A.41). This allows us to define the
energy density ρ(j) = ρ̄(j) + δρ(j), the isotropic pressure P(j) = P̄(j) + δP(j) and the energy flux q(j)
and anisotropic stress Π(j) potentials that contribute to [T(j)]µν through spatial tensors defined by
Eq. (A.42). The individual components of the perturbed [T(j)]µν can then be written in terms of these
quantities by an adequate substitution in Eqs. (A.43)–(A.46). In addition, from the condition (A.59)
we can also derive the relations between the individual and total quantities as

δρ =
∑
(j)

δρ(j) , δP =
∑
(j)

δP(j) , (A.60)

δ =
∑
(j)

ρ̄(j)

ρ̄
δ(j) , v =

∑
(j)

ρ̄(j) + P̄(j)

ρ̄+ P̄
v(j) , (A.61)

q =
∑
(j)

q(j) , Π =
∑
(j)

Π(j) . (A.62)
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A.6 Multiple fluids

As in the case of the total pressure perturbation, each δP(j) can be decomposed into its adiabatic
and non-adiabatic component

δP(j) = δP
(ad)
(j) + δP

(nad)
(j) = c2a,(j) δρ(j) + δP

(nad)
(j) , (A.63)

where now c2a,(j) := ˙̄P(j)/ ˙̄ρ(j) is the adiabatic squared speed of sound of the fluid j. The individual
non-adiabatic parts can be decomposed as in (A.49). However, if we take into account the possible
existence of interactions between the different fluids, then Eq. (A.51) must be replaced by [337]

δP(j) = c2s,(j)δρ(j) −
(
c2s,(j) − c

2
a,(j)

)[
3 ȧ
a

(
ρ̄(j) + P̄(j)

)
−N Q(j)

]
a

N

(
v(j) +B

)
. (A.64)

Due to the additive property of the total pressure perturbation, we find that apart from the intrinsic
non-adiabatic term δP

(nad)
(j) , each fluid contributes to the total non-adiabaticity by a relative term

proportional to the difference c2a,(j) − c2a [248]:

δP =
∑
(j)

(
δP

(ad)
(j) + δP

(nad)
(j)

)
=
∑
(j)

c2aδρ(j) +
∑
(j)

(
c2a,(j) − c

2
a

)
δρ(j) +

∑
(j)

δP
(nad)
(j)

= δP (ad) + δP (rel) + δP (int) . (A.65)

The relative non-adiabatic term can also be expressed as

δP (rel) = 1
6ρ̇
a

ȧ

∑
(j),(l)

ρ̇(j)ρ̇(k)

(
c2a(j) − c

2
a(k)

)
Sjk , (A.66)

where Sjk is the relative entropy perturbation7 between the fluids j and k [247, 248]

Sjm := −3 ȧ
a

(
δρ(j)

ρ̇(j)
−
δρ(k)

ρ̇(k)

)
. (A.67)

Thus, a condition for adiabaticity in a multi-fluid scenario with vanishing δP (nad)
(j) is

δρ(j)

ρ̇(j)
−
δρ(k)

ρ̇(k)
= 0 , (A.68)

which for non-interacting fluids becomes

δρ(j)

ρ(j) + P(j)
−

δρ(k)

ρ(k) + P(k)
= 0 . (A.69)

Finally, we note that all the individual fluid quantities transform under a gauge transformation as
the respective total matter quantities, cf. Eqs. (A.52) and (A.53), and that analogous gauge invariant

7A slightly different definition of the relative entropy perturbation, which coincides with (A.67) in the case of
non-interacting fluids, is given in Ref. [215].
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Chapter A. Linear perturbations around a FLRW background

quantities can be constructed using the rules (A.54), (A.56) and (A.57). Notice that by construction
Sjl is gauge invariant.

A.7. Einstein field equations

At a classical level, the evolution of the linear perturbations of the metric around a fixed background
is dictated by the first order perturbation of Einstein field equations

δGµν = κ2δ[T (m)]µν , (A.70)

For simplicity, from this point onward we choose to work in the Newtonian gauge (B = E = 0) where
the perturbed line element (A.9) is reduced to the particular simple form8 [49, 198, 246]

ds2 = −N2 (1 + 2Φ) dt2 + a2(1− 2Ψ)γijdxidxj . (A.71)

In addition, we will disregard the spatial curvature of the Universe (K = 0). With these considerations,
the (0− 0), (0− i), (i− i) and (i− j), with i 6= j, components of Eq. (A.70) read

ȧ

a
Ψ̇ +

(
ȧ

a

)2
Φ− N2

3a2∇
2Ψ = − κ2N2

6 ρ̄ δ(N) , (A.72)

∂i

(
Ψ̇ + ȧ

a
Φ
)

= − κ2aN

2 ∂i

[(
ρ̄+ P̄

)
v(N) + q

]
, (A.73)

Ψ̈ +
(

3 ȧ
a
− Ṅ

N

)
Ψ̇ + ȧ

a
Φ̇ +

[
2 ä
a

+
(
ȧ

a

)2
− 2Ṅ

N

ȧ

a

]
Φ

−1
3
N2

a2 ∇
2 (Ψ− Φ) = κ2N2

2 δP (N) , (A.74)

DiDj (Ψ− Φ) = κ2DiDjΠ . (A.75)

In order to take full advantage of the linearity of the equations, we apply a Fourier decomposition of
the perturbations

X(t, ~x) =
∫ d3~k

(2π)3/2X~k(t) ei~k·~x , X~k(t) =
∫ d3~k

(2π)3/2X(t, ~x) ei~k·~x , (A.76)

which allows us to re-arrange Eqs. (A.72)–(A.75) as two constraints

k2

a2 Ψ~k = − κ2

2 ρ̄ δ
(C)
~k

, (A.77)

Ψ~k − Φ~k = κ2Π~k , (A.78)

8More precisely, we work with the GI variables defined above, Φ, Ψ, δρ(N), δP (N) and v(N), that in the Newtonian
gauge coincide with the perturbations A, ψ, δρ, δP and v.
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A.8 Conservation Equations

and two evolution equations for the Bardeen potentials

Ψ̇~k + ȧ

a
Φ~k = − κ2aN

2

[(
ρ̄+ P̄

)
v

(N)
~k

+ q
]
, (A.79)

Ψ̈~k +
[
3(1 + c2a) ȧ

a
− Ṅ

N

]
Ψ̇~k + ȧ

a
Φ̇~k+

[
2 ä
a

+ (1 + 3c2a)
(
ȧ

a

)2
− 2Ṅ

N

ȧ

a

]
Φ~k

+ c2aN
2 k

2

a2 Ψ~k = κ2N2

2 δP
(nad,N)
~k

− κ2N2

3
k2

a2 Π~k . (A.80)

The first of the constraint equations, Eq. (A.77), is nothing more than the Poisson equation which
relates the gravitational potential with the matter distribution and which reduces to Newton’s law of
gravitation in the Minkowskian limit. The second equation, Eq. (A.78), leads to the well known result
in GR of the equality of the Bardeen potentials in the absence of anisotropies and Eq. (A.79) relates
the GI perturbation of the Hubble rate, cf. Eq. (A.17), with the total momentum as

δH
(N)
~k

= −κ
2a

2

[(
ρ̄+ P̄

)
v

(N)
~k

+ q
]
. (A.81)

Finally, for an adiabatic evolution and in the absence of anisotropies, Eq. (A.80) provides a closed
equation for the gravitational potential Ψ. In particular, for an EoS with constant w = c2a we obtain

d2Ψ~k

dx2 + 5 + 3w
2

dΨ~k

dx + w
k2

a2H2 Ψ~k = 0 . (A.82)

In the long wavelength limit (k2 � a2H2), the last term on the l.h.s. of this equation can be
disregarded which allows us to find the explicit general solution

Ψ~k(x) = C1 + C2 e−
5+3w

2 x . (A.83)

In a matter-dominated universe where w = 0, this solution is valid even for modes well inside the
Hubble horizon which do not satisfy the long wavelength limit.

A.8. Conservation Equations

While the metric perturbations are governed by the perturbed Einstein equations, the evolution of the
matter variables for each fluid j is dictated by the first order perturbation of the conservation equation

∇µδ[T(j)]µν + δΓµµρ[T̄(j)]ρν − δΓρµν [T̄(j)]µρ = [δQ(j)]ν , (A.84)

where [δQ(j)]ν is the first order perturbation of the energy-momentum transfer 4-vector. Following
[247, 337], we decompose [δQ(j)]ν as

[δQ(j)]0 = −N
(
Q̄(j)A+ δQ(j)

)
, [δQ(j)]i = ∂i

[
f(j) + a Q̄(j) (v +B)

]
. (A.85)
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Chapter A. Linear perturbations around a FLRW background

Here, we point out that v is the total peculiar velocity potential. The two new scalar quantities δQ(j)
and f(j) are GI by construction and satisfy the constraints∑

j
δQ(j) = 0 ,

∑
j
f(j) = 0 . (A.86)

In the Newtonian gauge and in Fourier space9, the temporal and spatial components, respectively,
of Eq. (A.84) read [247, 337]

δ̇ρ
(N)
(j) + 3 ȧ

a

(
δρ

(N)
(j) + δP

(N)
(j)

)
− N

a
k2
[(
ρ̄(j) + P̄(j)

)
v

(N)
(j) + q(j)

]
= 3

(
ρ̄(j) + P̄(j)

)
Ψ̇−N

(
ΦQ̄(j) + δQ(j)

)
, (A.87)

∂0

[(
ρ̄(j) + P̄(j)

)
v

(N)
(j) + q(j)

]
+ 4 ȧ

a

[(
ρ̄(j) + P̄(j)

)
v

(N)
(j) + q(j)

]
+ N

a

(
δP

(N)
(j) −

2
3
k2

a2 Π(j)

)
= N

a

[
−
(
ρ̄(j) + P̄(j)

)
Φ + f(j) + a Q̄(j)v

(N)
]
. (A.88)

If we decompose the isotropic pressure perturbation into its adiabatic and non-adiabatic components,
according to Eq. (A.64), and then replace the energy density perturbation δρ(N)

(j) by the density contrast
δ

(N)
(j) , the previous equations can be re-written as [247, 337]

δ̇
(N)
(j) + 3 ȧ

a

(
c2s,(j) − w̄(j)

)
δ

(N)
(j) −

(
1 + w̄(j)

) [
9
(
ȧ

a

)2 (
c2s,(j) − c

2
a,(j)

)
+ N2

a2 k
2

]
a

N
v

(N)
(j) −

N

a
k2 q(j)

ρ̄(j)

= 3
(
1 + w̄(j)

)
Ψ̇−N

Q̄(j)

ρ̄(j)

[
Φ− 3 ȧ

a

(
c2s,(j) − c

2
a,(j)

) a

N
v

(N)
(j)

]
−N

δQ(j)

ρ̄(j)
, (A.89)

v̇
(N)
(j) + ȧ

a

(
1− 3c2s,(j)

)
v

(N)
(j) + N

a

(
c2s,(j)

1 + w̄(j)
δ

(N)
(j) −

2
3
k2

a2
Π(j)

ρ̄(j) + P̄(j)

)
+ 1
ρ̄(j) + P̄(j)

(
q̇(j) + 4 ȧ

a
q(j)

)

= N

a

{
−Φ +

f(j)

ρ̄(j) + P̄(j)
+

a Q̄(j)

ρ̄(j) + P̄(j)

[
v(N) −

(
1 + c2s,(j)

)
v

(N)
(j)

]}
. (A.90)

In the case of non-interacting fluids and in the energy-frame where q(j) ≡ 0, these equations reduce to

δ̇
(N)
(j) + 3 ȧ

a

(
c2s,(j) − w̄(j)

)
δ

(N)
(j) −

(
1 + w̄(j)

) [
9
(
ȧ

a

)2 (
c2s,(j) − c

2
a,(j)

)
+ N2

a2 k
2

]
a

N
v

(N)
(j)

= 3
(
1 + w̄(j)

)
Ψ̇ , (A.91)

v̇
(N)
(j) + ȧ

a

(
1− 3c2s,(j)

)
v

(N)
(j) + N

a

(
c2s,(j)

1 + w̄(j)
δ

(N)
(j) −

2
3
k2

a2
Π(j)

ρ̄(j) + P̄(j)

)
= −N

a
Φ . (A.92)

9In the remainder of this section, we omit the subscript ~k in order to simplify the notation. Nevertheless, in the
equations that follow, all the perturbation variables should be interpreted as representing the Fourier mode obtained
from the expansion (A.76).
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B f (R)-gravity

B.1. Cosmography in metric f(R)-gravity

The coefficients Ai, Bi and D introduced in Eqs. (3.76)–(3.79) are defined as

A0 = [j0 − q0 − 2 (1 + ΩK,0)] l0
−
[
3s0 + (7 + 9w0) j0 + 6q2

0 + (41− 9w0 + 12ΩK,0) q0 + 2 (11− 9w0) (1 + ΩK,0)
]
s0

−
{[

3q0 + 16 + 6w0 + 4ΩK,0 + 9 (1 + w0) c2a,0
]
j0 − (20 + 9w0) q2

0

+2
(
32 + 30w0 − 9 (1 + w0) c2a,0 + (8 + 9w0) ΩK,0

)
q0

+6 (1 + ΩK,0)
(
2 + 5w0 − 6 (1 + w0) c2a,0 − 2ΩK,0

)}
j0

− 3q4
0 − (25− 9w + 12ΩK,0) q3

0

− 3
[
4 (8− 7w) + 3 (1 + w0) c2a,0 + 4 (5− 3w) ΩK,0 + 4Ω2

K,0
]
q2
0

− 6
[
(12− 29w) + 6 (1 + w0) (1 + ΩK,0) c2a,0 + (16− 35w0) ΩK,0 + (4− 6w0) Ω2

K,0
]
q0

− 4 (1 + ΩK,0)2 [5− 21w0 + 9 (1 + w0) c2a,0 + 2ΩK,0
]
, (B.1)

B0 = − [j0 − q0 − 2 (1 + ΩK,0)] q0l0

+
[
3q0s0 + (4q0 + 6 + 6ΩK,0) j0

+6q3
0 + 4 (11 + 3ΩK,0) q2

0 + 22 (1 + ΩK,0) q0 − 12 (1 + ΩK,0)2
]
s0

+
{

2j2
0 +

[
3q2

0 + (10 + 4ΩK,0) q0 − 6 (1 + ΩK,0)
]
j0

+17q3
0 + 4 (13 + 2ΩK,0) q2

0 + 54 (1 + ΩK,0) q0 + 36 (1 + ΩK,0)2
}
j0

+ 3q5
0 + 4 (7 + 3ΩK,0) q4

0 + 2
(
59 + 33ΩK,0 + 6Ω2

K,0
)
q3
0 + 12

(
6 + 7ΩK,0 + Ω2

K,0
)
q2
0

− 4 (1 + ΩK,0)2 (19 + 4ΩK,0) q0 − 64 (1 + ΩK,0)3
, (B.2)

A2 = 9 (1 + w0) s0 + 3
(
2 + 3c2a,0

)
(1 + w0) j0 + 9 (1 + w0) q2

0

+ 3 (1 + w0)
(
22− 3c2a,0 + 6ΩK,0

)
q0 + 6 (1 + ΩK,0) (1 + w0)

(
7− 3c2a,0

)
, (B.3)

B2 = − 6 (q0 + 1 + ΩK,0) s0 − 2 [j0 + q0 − (1 + ΩK,0)] j0 − 6q3
0 − 2 (25 + 9ΩK,0) q2

0

− 2
(
37 + 43ΩK,0 + 6Ω2

K,0
)
q0 (B.4)
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A3 = − 3 (1 + w0) l0 − 3 (1 + w0)
(
1 + 3c2a,0

)
s0 + 3 (1 + w0)

(
3q0 + 12 + 3c2a,0 + 4ΩK,0

)
j0

+ 9 (1 + w0)
(
5− c2a,0

)
q2
0 + 3 (1 + w0)

[
26− 27c2a,0 + 2

(
5− 3c2a,0

)
ΩK,0

]
q0

+ 12 (1 + ΩK,0) (1 + w0)
(
1− 6c2a,0

)
, (B.5)

B3 = − 6 (q0 + 1 + ΩK,0) s0 − 2 [j0 + q0 − (1 + ΩK,0)] j0 − 6q3
0 − 2 (25 + 9ΩK,0) q2

0

− 2
(
37 + 43ΩK,0 + 6Ω2

K,0
)
q0 (B.6)

D0 = − [j0 − q0 − 2− 2ΩK,0] l0
+
[
3s0 − 2j0 + 6q2

0 + 2 (25 + 6ΩK,0) q0 + 40 + 40ΩK
]
s0

+
[
(10 + 3q0 + 4ΩK,0) j0 + 11q2

0 + 2 (2− ΩK,0) q0 − 6
(
3 + 5ΩK,0 + 2Ω2

K,0
)]
j0

+
[
3q3

0 + 2 (17 + ΩK,0) q2
0 + 12

(
15 + 8ΩK,0 + Ω2

K,0
)
q0 + 6

(
41 + 61ΩK,0 + 10Ω2

K,0
)]
q0

+ 8 (1 + ΩK,0)2 (13 + ΩK,0) , (B.7)

In the presence of J fluids with fractional energy density Ω(j), j = 1, . . . , J, we can make use of the
relations

Ω(m) =
J∑

j=1
Ω(j) , (B.8)

wΩ(m) =
J∑

j=1
w(j)Ω(j) , (B.9)

c2a (1 + w) Ω(m) =
J∑

j=1
c2a,(j)

(
1 + w(j)

)
Ω(j) , (B.10)

to expand AiΩ(m)
0 as

AiΩ(m)
0 =

N∑
n=1
Ai,(j)Ω(j),0 , (B.11)

where Ai,(j), i = 0, 2, 3 are defined by Eqs. (B.1)–(B.5) in which w0 and c2a,0 are replaced by the
present day values of the EoS parameter, w(j), and of the adiabatic squared speed of sound, c2a,(j), of
the fluid j.

B.2. The extra degree of freedom δF

In metric f(R)-gravity, the variable δF := δ(1)fR represents a new scalar degree of freedom at the
level of first order perturbations. Being a scalar quantity, δF transforms under a gauge transformation
as

δF → δF − ˙fRδt . (B.12)
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As such, we can construct two GI quantities that reduce to δF in the Newtonian and comoving gauges
as

δF (N) := δF − ˙fR
σ

N
, δF (C) := δF + ˙fR

a

N
(v +B) . (B.13)

Using the relation δF = fRRδR we can write the new scalar degree of freedom δF in terms of the
metric potentials as

δF = − 6
N2 fRR

[
ψ̈ +

(
4 ȧ
a
− Ṅ

N

)
ψ̇ + ȧ

a
Ȧ+ ∂0

(
1
N

ȧ

a

)
A− 2N

2

a2 Kψ
]

+ 2
a2 fRR∇

2
[
2ψ −A+ σ̇

N
+ 2 ȧ

a

σ

N

]
. (B.14)

This equation has no analogue in GR, as both δF on the l.h.s. and fRR on the r.h.s. vanish in the
limit of vanishing fR.

B.3. The modified Einstein equations

The first order perturbation of the modified Einstein field equations is given by Eq. (3.34)

(1 + fR)δGµν +
(
R̄µν + δµν�−∇µ∇ν

)
δfR − δ(1) (∇µ∇ν − δµν�) fR = κ2[δT (m)]µν . (B.15)

The first and third terms on the l.h.s. of the previous equation can be expanded in terms of the
perturbations of the metric as

(1 + fR)δGµν = (1 + fR)
[
δµσR̄ρν + 1

2δ
µ
ν R̄ρσ − δµν ∇̄(ρ∇̄σ) + 1

2
(
ḡµλḡνσ + δµσδ

λ
ν

)
∇̄ρ∇̄λ

]
δgρσ

− (1 + fR)
(
R̄+ 1

2 �̄
)
δgµν + (1 + fR)1

2
(
δµν �̄− ∇̄µ∇̄ν

)
δgρρ , (B.16)

δ(1) (∇µ∇ν − δµν�) fR = −
(
∇̄ρ∇̄νfR

)
δgµρ + δµν

(
∇̄σ∇̄ρfR

)
δgρσ

+ 1
2∇̄ρfR

[
2δµν ∇̄λδg

ρ
λ + ∇̄ρ (δgµν − δµν δg

σ
σ)− ∇̄µδgρν − ∇̄νδg

ρµ
]
.

(B.17)

This allows us to calculate the first order perturbation of (0− 0), (0− i), (i− i) and (i− j), with
i 6= j, components of the modified Einstein equations (3.34) in the so called gauge-ready form as:

(1 + fR)
[
ȧ

a
ψ̇ +

(
ȧ

a

)2
A− N2

a2 Kψ −
N2

3a2∇
2
(
ψ + ȧ

a

σ

N

)]
− 1

2
˙fR
[
ψ̇ + 2 ȧ

a
A

]
− 1

2

[
ȧ

a
˙δF −

(
ä

a
− Ṅ

N

ȧ

a

)
δF

]
+ 1

6
N2

a2 ∇
2
(
δF − ˙fR

σ

N

)
= −κ

2N2

6 δρ , (B.18)
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Di

{
(1 + fR)

[
ψ̇ + ȧ

a
A+

(
N2

a2 K
)
σ

N

]
+ 1

2
ȧ

a
δF − 1

2
˙fRA
}

= −κ
2Na

2 Di

[(
ρ̄+ P̄

)
(v +B) + q

]
, (B.19)

(1 + fR)
[
ψ̈ +

(
3 ȧ
a
− Ṅ

N

)
ψ̇ + ȧ

a
A+

(
ä

a
−
(
ȧ

a

)2
− Ṅ

N

ȧ

a

)
A− N2

a2 Kψ

]

− N2

3a2 (1 + fR)∇2
(
ψ −A+ σ̇

N
+ ȧ

a

σ

N

)
+ 1

2

[
˙fR
(
Ȧ+ 2ψ̇

)
+ 2

(
f̈R −

Ṅ

N
˙fR
)
A

]
− 1

2

[
¨δF +

(
2 ȧ
a

+ Ṅ

N

)
˙δF
]

+ 1
2

[
ä

a
+ 2

(
ȧ

a

)2
− Ṅ

N

ȧ

a
+ 2N

2

a2 K

]
δF

+ N2

3a2∇
2
(
δF − ˙fR

σ

N

)
= κ2N2

2 δP , (B.20)(
DiDj−

1
3δ

i
j∇2

){
(1 + fR)

[
ψ −A+ σ̇

N
+ ȧ

a

σ

N

]
−
(
δF − ˙fR

σ

N

)}
= κ2

(
DiDj −

1
3δ

i
j∇2

)
Π . (B.21)

We now consider the particular case of spatially flat geometry in the Newtonian gauge and with q = 0.
In Fourier space, we can write these equations in terms of gauge invariant quantities as

(1 + fR)
[
ȧ

a
Ψ̇~k +

(
ȧ

a

)2
Φ~k + 1

3
N2

a2 k
2Ψ~k

]
− 1

2
˙fR
[
Ψ̇~k + 2 ȧ

a
Φ~k

]
− 1

2

[
ȧ

a
˙δF (N) −

(
ä

a
− Ṅ

N

ȧ

a

)
δF

(N)
~k

]
− 1

6
N2

a2 k
2δF

(N)
~k

= −κ
2N2

6 δρ
(N)
~k

, (B.22)

(1 + fR)
(

Ψ̇~k + ȧ

a
Φ~k

)
+ 1

2
ȧ

a
δF

(N)
~k
− 1

2
˙fRΦ~k = −κ

2Na

2
(
ρ̄+ P̄

)
v

(N)
~k

, (B.23)

(1 + fR)
[

Ψ̈~k +
(

3 ȧ
a
− Ṅ

N

)
Ψ̇~k + ȧ

a
Φ~k +

(
ä

a
−
(
ȧ

a

)2
− Ṅ

N

ȧ

a

)
Φ~k

]

+ 1
3 (1 + fR) N

2

a2 k
2 (Ψ~k − Φ~k

)
+ 1

2

[
˙fR
(
Φ̇~k + 2Ψ̇~k

)
+ 2

(
f̈R −

Ṅ

N
˙fR
)

Φ~k

]

− 1
2

[
¨δF (N)
~k

+
(

2 ȧ
a

+ Ṅ

N

)
˙δF (N)
~k

]
+ 1

2

[
ä

a
+ 2

(
ȧ

a

)2
− Ṅ

N

ȧ

a

]
δF

(N)
~k
− 1

3
N2

a2 k
2δF

(N)
~k

= κ2N2

2 δP
(N)
~k

, (B.24)

(1 + fR)
(
Ψ~k − Φ~k

)
− δF (N)

~k
= κ2Π~k . (B.25)

B.4. f(R) mapping of the mGCG for β = 1/3

In this section, we show how the solutions (3.113)–(3.116), obtained for the f(R) mapping of the
mGCG with β = 1/3, can also be derived from the general solution (3.109). We begin by setting
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β = 1/3 in Eqs. (3.110) and (3.111), which allows us to write the solution g+(y) in Eq. (3.109) as

g+(y) =
(

1 + 1
2

1
1 + α

)
1

1 + α
(y − 1) y F

[
1 + 1

1 + α
, 2 + 1

2
1

1 + α
; 2 + 5

4
1

1 + α
; y
]

+ 3
2

1
1 + α

(
1 + 5

4
1

1 + α

)(
y − 5

6

)
F

[
1

1 + α
, 1 + 1

2
1

1 + α
; 1 + 5

4
1

1 + α
; y
]
. (B.26)

Then, by using the contiguous relation (15.5.19) of Ref. [283] with a = b+1 − 1, b = b+2 − 1 and
c = b+3 − 2, we can write Eq. (B.26) in a simplified form as

g+(y) = 5
4

1
1 + α

(
1 + 5

4
1

1 + α

)
F

[
−1 + 1

1 + α
,

1
2

1
1 + α

; 5
4

1
1 + α

; y
]
, (B.27)

which is proportional to g1(y) in Eq. (3.113).

At the same time, the solution g−(y) in Eq. (3.109) becomes

g−(y) = 1
4

1
1 + α

y−
5
4

1
1+α

{(
1− 5

4
1

1 + α

)
y F

[
−1

4
1

1 + α
, 1− 3

4
1

1 + α
; 1− 5

4
1

1 + α
; y
]

−
(

1− 3
4

1
1 + α

)
(y − 1) y F

[
1− 1

4
1

1 + α
, 2− 3

4
1

1 + α
; 2− 5

4
1

1 + α
; y
]}

. (B.28)

In order to simplify this expression, we point out that the relations (15.5.13) and (15.5.15) of Ref. [283]
can be combined to give

F [a , b , c− 1 , y] = (c− a− 1) (c− b− 1)
(c− 1) (c− a− b− 1)F [a , b , c , y]

− ab

(c− 1) (c− a− b− 1) (1− y)F [a+ 1 , b+ 1 , c , y] . (B.29)

By setting a = b−1 , b = b−2 and c = b−3 in the previous equation, we obtain

F

[
−1

4
1

1 + α
, 1− 3

4
1

1 + α
, 1− 5

4
1

1 + α
, y

]
= 2

1− 1
1+α

1− 5
4

1
1+α

F

[
−1

4
1

1 + α
, 1− 3

4
1

1 + α
, 2− 5

4
1

1 + α
, y

]
−

1− 3
4

1
1+α

1− 5
4

1
1+α

(1− y)F
[
1− 1

4
1

1 + α
, 2− 3

4
1

1 + α
, 2− 5

4
1

1 + α
, y

]
, (B.30)

which, after substitution in Eq. (B.28) leads to the reduced expression

g−(y) = 1
2

α

(1 + α)2 y
1− 5

4
1

1+αF

[
−1

4
1

1 + α
, 1− 3

4
1

1 + α
, 2− 5

4
1

1 + α
, y

]
. (B.31)

Notice that g−(y) In Eq. (B.31) is proportional to the solution g2(y) in Eq. (3.114). Finally, by
applying the linear transformation (15.8.4) of Ref. [283] to the solutions (B.27) and (B.31), we can
obtain g3(y) and g4(y).
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C 3-form field

C.1. Hurwitz criterion for cubic Polynomials

Let P3(z) be a polynomial of degree 3 on z with real coefficients ai (i = 0, 1, . . . , 3) and a3 6= 0:

P3(z) = a0 + a1z + a2z
2 + a3z

3 . (C.1)

According to Hurwitz criterion [283], all roots of P3(z) have negative real parts if and only if for

D1 = a1 , D2 =

∣∣∣∣∣a1 a3

a0 a2

∣∣∣∣∣ , D3 =

∣∣∣∣∣∣∣
a1 a3 0
a0 a2 0
0 a1 a3

∣∣∣∣∣∣∣ , (C.2)

we have a0 6= 0, D2 > 0 and signD1 = signD3 = sign a0.

Let us now consider an autonomous dynamical system

~x′ = ~f (~z) , (C.3)

with at least a fixed point at ~x = ~xfp. Let J ≡ ∇ ·~f be the Jacobian of the system and evaluated at
the fixed point ~xfp. The characteristic polynomial of J , pJ(γ), is defined by

pJ(γ) = det (J − γI3) = a0 + a1γ + a2γ
2 − γ3 , (C.4)

where I3 is the 3× 3 identity matrix. Following Hurwitz’s criterion, we find that pJ is stable if

a0 6= 0 , sign a1 = sign a0 , a1a2 + a0 > 0 . (C.5)
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D Third Quantisation

D.1. Conserved Noether current of the wave-function field

The Lagrangian density of the wave-function field Ψ in the Third Quantisation scheme is (cf. Eq. (5.22))

LΨ =
√
−G̃

(
G̃AB∂AΨ∗∂BΨ + 2Vol2

~
V(qA)Ψ∗Ψ

)
. (D.1)

Under an infinitesimal transformation Ψ→ Ψ + δΨ this Lagrangian density transforms as

δLΨ =
√
−G̃

[
G̃AB (∂AδΨ∗∂BΨ + ∂AΨ∗∂BδΨ) + 2Vol2

~
V(qA) (δΨ∗Ψ + Ψ∗δΨ)

]
= ∂A

[√
−G̃

(
δΨ∗∂AΨ + δΨ ∂AΨ∗

)]
+
[
−∂A

(√
−G̃G̃AB∂BΨ

)
+ 2Vol

~
V(qA)Ψ

]
δΨ∗

+
[
−∂A

(√
−G̃G̃AB∂BΨ∗

)
+ 2Vol

~
V(qA)Ψ∗

]
δΨ . (D.2)

Notice that the last two lines of this equation vanish if the equations of motion of Ψ and Ψ∗ hold.
Under an infinitesimal transformation of Ψ→ e−iθΨ the variation δΨ is given by −iθΨ and we can
identify the Noether conserved current of Ψ (cf. Eq. (5.23)) jA as

jA = i
√
−G̃

(
Ψ∗∂AΨ−Ψ ∂AΨ∗

)
. (D.3)

D.2. Interacting Hamiltonian

In Sect. 5.1.4, a system of N interacting wave-function fields Ψn with an interaction term (5.59)

H(int) =
∫

dϕ
N∑
n=1

C(α) |Ψn −Ψn+1|2 , (D.4)
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was considered. We now show how, by means of a discrete Fourier transformation (5.60) and (5.61),
such a Hamiltonian can be re-written as the sum of N non-interacting Hamiltonians. Using the inverse
Fourier transformations

Ψn = 1√
N

n∑
n=1

e2πi ln/NΨl , Ψ∗n = 1√
N

N∑
n=1

e−2πi ln/NΨ∗l , (D.5)

πn = 1√
N

N∑
n=1

e2πi ln/Nπl , π∗n = 1√
N

N∑
n=1

e−2πi ln/Nπ∗l , (D.6)

we can expand the interaction Hamiltonian as

H(int) = 1
N

∫
dϕ

N∑
n=1

C(α)
N∑
l=1

e−2πi ln/NΨ∗l
(

1− e−2πi l/N
) N∑
l′=1

e2πi l′n/NΨl′

(
1− e2πi l′/N

)
= 1
N

∫
dϕ

N∑
n,l,l′=1

C(α) e−2πi (l−l′)n/NΨ∗l Ψl′

(
1− e−2πi l/N

)(
1− e2πi l′/N

)

=
∫

dϕ
N∑

l,l′=1
C(α) δll′Ψ∗l Ψl′

(
1− e−2πi l/N

)(
1− e2πi l′/N

)

= 2
∫

dϕ
N∑
l=1

C(α) Ψ∗l Ψl

[
1− cosh

(
2πl
N

)]

= 4
∫

dϕ
N∑
l=1

C(α) Ψ∗l Ψl cosh2
(
πl

N

)
. (D.7)

Thus, in the new l-representation, H(int) contributes only to the self-interaction term of the wave-
function fields Ψl, leading to the appearance of the additional l-dependent term in Eq. (5.63). Since
the terms in π∗nπn and Ψ∗nΨn lead to the appearance of terms in π∗l πl and Ψ∗l Ψl, respectively, the
total Hamiltonian in the new representation does not have interaction terms.

D.3. Single field inflation

In the context of single field inflation, where the primordial acceleration is driven by a single canonical
scalar field minimally coupled to gravity – the inflaton, the scalar sector has one dynamical degree
of freedom which, at the linear level of cosmological perturbations, can be identified with the GI
Mukhanov-Sasaki variable [215, 269, 270, 311]

v := a

(
δϕ+ ϕ̄′

H
ψ

)
. (D.8)

The evolution equation for v is obtained from the second order action [53, 267]

δ2S = 1
2

∫
dη d3~x

[
(v′)2 −DivDiv + z′′

z
v2
]
, (D.9)
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which is analogous to the action of a scalar field in a flat space-time and with an effective time-
dependent mass z′′/z. The variable z introduced in the last term of the action (D.9), defined as
z := a(ϕ̄′/H), allows us to relate v with the comoving curvature perturbation R = v/z. Minimisation
of (D.9) with regards to variations δv then leads to the Mukhanov-Sasaki equation [53, 267]

v′′ −
(
∇2 + z′′

z

)
v = 0 . (D.10)

Writing the canonical momentum density as πv = ∂L/∂v′ = v′, we arrive at the Hamiltonian

H =
∫

d3~x (πvv′ − L) = 1
2

∫
d3~x

[
π2
v + DivDiv −

z′′

z
v2
]
. (D.11)

We can now proceed with the canonical quantisation procedure by elevating v and πv to quantum
operators v̂ and π̂v which satisfy the usual equal-time commutation relations

[v̂(η, ~x1), π̂v(η, ~x2)] = i~δ3(~x1 − ~x2) , (D.12)

[v̂(η, ~x1), v̂(η, ~x2)] = [π̂v(η, ~x1), π̂v(η, ~x2)] = 0 . (D.13)

These operators can then be decomposed in Fourier space via the expansion1[53, 268]

v̂(η, ~x) =
∫ d3~k

(2π)3/2

[
v~k(η) ei~k·~xâ−~k

+ v∗~k(η) e−i~k·~xâ+
~k

]
, (D.14)

π̂v(η, ~x) =
∫ d3~k

(2π)3/2

[
v′~k(η) ei~k·~xâ−~k

+ v∗~k
′(η) e−i~k·~xâ+

~k

]
, (D.15)

where â−~k and â+
~k

are, respectively, the annihilation and creation operators of quanta of the field v̂
and satisfy the standard commutation relations[

â−~k1
, â+

~k2

]
= δ3(~k1 − ~k2) , (D.16)

[
â−~k1

, â−~k2

]
=
[
â+
~k1
, â+

~k2

]
= 0 . (D.17)

The mode functions v~k(η) in Eq. (D.14) satisfy the evolution equation [53, 268]

v′′~k +
(
k2 − z′′

z

)
v~k = 0 , k2 := ~k · ~k . (D.18)

In addition, by imposing the consistency between the commutation relations (D.12), (D.13), (D.16)

1From this point onward, we will follow the convention adopted in [53] for the mode expansion of the quantum field
v̂, while at the same time maintaining the use of the angular unitary Fourier transformation used in [267–270]. For this
reason, some normalisation factors and signs in the mode functions might differ from the ones found in [267–270] while
the powers of (2π)1/2 in Fourier space will differ from the ones found in [53].
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and (D.17), we obtain the normalisation condition for the mode functions [53, 268]

v~kv
∗
~k

′ − v′~kv
∗
~k

= i~ . (D.19)

Using the mode decomposition (D.14) and (D.15), we can write the quantum operator for the
Hamiltonian as [268, 333]

Ĥv(η) = 1
2

∫
d3~k

[
â−~k
â−
−~k
F~k(η) + â+

~k
â+
−~k
F ∗~k (η) +

(
2â+
~k
â−~k

+ δ3(0)
)
E~k(η)

]
, (D.20)

where

E~k(η) := |v′~k|
2 +

(
k2 − z′′

z

)
|v~k|

2 , F~k(η) := v′~k
2 +

(
k2 − z′′

z

)
v2
~k
. (D.21)

If we define an instantaneous vacuum state |0〉 in the usual way by the relation â−~k |0〉 = 0, then the
vacuum expectation value of the Hamiltonian (D.20) at a time η0 is

〈0|Ĥv(η0)|0〉 = δ3(0)
2

∫
d3~k E~k(η0) . (D.22)

In order to find the vacuum state with lowest energy expectation value, we must minimise each E~k(η0)
separately. In the case of k2 � z′′/z, the normalisation (D.19) lead us to the conclusion that the
lowest energy vacuum state corresponds to the Bunch-Davies vacuum [94, 115, 313]:

v~k =
√

~
2k e−ik(η−η0) . (D.23)

Mode functions for P/ρ = const.

While in general the mode equation (D.18) can only be solved numerically, for particular cases we are
able to find analytical solutions for v~k. Here, we present a re-derivation of the general solution for the
mode functions when the EoS parameter w := P/ρ is constant2. In such a case, the proportionality
factor between the variable z and the scale factor a becomes constant:

z

a
= ϕ′

H
=

√
−2 Ḣ

H2 =
√

3(1 + w) , (D.24)

and, consequently, the mode equation (D.18) reduces to

v′′~k +
(
k2 − a′′

a

)
v~k = 0 . (D.25)

To find the explicit form of a′′/a as a function of the conformal time η, we begin by writing the

2In the context of models with one minimally coupled scalar field, this behaviour appears as an attractor solution for
exponential potentials [124, 231, 363].
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Friedmann equation as (
a′

a

)2
= a2

1H
2
1

(a1

a

)1+3w
, (D.26)

where a1 is an arbitrary constant and H1 is the value of the Hubble rate at a = a1. By integrating
the previous equation and setting η(a1) = η1, we obtain

a1H1(η − η1) =


2

1 + 3w

[(
a

a1

) 1+3w
2

− 1
]
, for w 6= − 1

3 ,

log
(
a

a1

)
, for w = − 1

3 .

(D.27)

For w > −1/3, the conformal time in (D.27) is defined in the interval (ηc, +∞), where we introduce
the critical value ηc := η1 − 2/(1 + 3w)(a1H1)−1, while for w < −1/3 we find that η ∈ (−∞, ηc).
In the boundary case of w = −1/3, the conformal time is defined in the entire real axis.

By inverting (D.27) and differentiating twice with regards to the conformal time, we are able to
find the explicit expressions for the potential a′′/a when the parameter of EoS is constant:

a′′

a
= 1− 3w

2
(a1H1)2[

1 + 1+3w
2 a1H1(η − η1)

]2 = 1− 3w
2 a2H2 . (D.28)

This expression is valid for all values of w. In the special case of w = −1/3, the r.h.s. of Eq. (D.28)
reduces to the constant a2

1H
2
1 . Substitution in the mode equation (D.25) then leads to the trivial

general solution [83]

v~k = A−

√
~
2k̃

e−ik̃η +A+

√
~
2k̃

e+ik̃η , (D.29)

where k̃ :=
√
k2 + a2

1H
2
1 . The solution (D.29) resembles the solutions for a Minkowski space-time

with a modified wave-number. In addition, the normalisation condition (D.19) imposes the relation
between the linear coefficients

|A−|2 − |A+|2 = 1 . (D.30)

In the general case w 6= −173, the solution (D.29) is no longer valid. Nevertheless, by means of the
substitutions η → η̃ := |η− ηc| and v~k → u~k := v~k/

√
η̃, we can express (D.25) as a Bessel differential

equation [7, 283]:

(kη̃)2 d2u~k
d(kη̃)2 + (kη̃)

du~k
d kη̃ +

[
(kη̃)2 − λ2]u~k = 0 , ν := 3

2

∣∣∣∣ 1− w
1 + 3w

∣∣∣∣ . (D.31)

The solutions of this equation can be written as a linear combination of the Hankel function H(1)
ν and
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H
(2)
λ [7, 283]:

v~k =
√
π~ η̃
2

[
B1H

(1)
ν (kη̃) +B2H

(2)
λ (kη̃)

]
, (D.32)

where B1 and B2 are arbitrary constants. Due to the normalisation condition (D.19), the linear
coefficients B1 and B2 satisfy

|B1|2 − |B2|2 = ∓1 . (D.33)

On the r.h.s. of the previous equation, the upper negative sign corresponds to w > −1/3, while the
lower positive sign corresponds to w < −1/3.

In the short-wave limit, kη̃ � 1, the Hankel functions behave as

H(1)
ν (x) ∼

√
2
πx

ei(x−λ2 π− 1
4π) , H

(2)
λ (x) ∼

√
2
πx

e−i(x−λ2 π− 1
4π) . (D.34)

Comparing Eq. (D.34) with the BD vacuum in Eq. (D.23), we find that the solution (D.32) reduces
to the Bunch-Davies vacuum for kη̃ � 1 if we impose (i) B1 = 0 and |B2| = 1 for w > −1/3 and (ii)
|B1| = 1 and B2 = 0 for w < −1/3. Notice that in the case of pure de Sitter inflation, the order
parameter is half-integer and therefore we can use the relations between the spherical Bessel functions
of the third kind with the Hankel functions to write (D.32) as

v~k = −B1

√
~
2k

(
1 + i

k(η − ηc)

)
e−ik(η−ηc) −B2

√
~
2k

(
1− i

k(η − ηc)

)
eik(η−ηc) . (D.35)

D.4. Background quantities in the Model II

In this section, we compute the explicit dependence of the background quantities of the toy model
presented in Sect. 5.4 with regards to the number of e-folds, N = log(a/a∗), where a∗ is a reference
scale. We begin by re-writing (5.148) as

H2(N) = 2 1
λH2

dS exp
[
β − α

2 Nmid −
α+ β

2 N

]
cosh

1
λ

[
N −Nmid

∆λ

]
, (D.36)

where we recall that per Eqs. (5.150) and (5.151) we have

Nmid := 1
β − α

log
[

Q2

(a∗HdS)β

]
, ∆λ := 2

(β − α)λ . (D.37)

From the expression (D.36) for the Hubble rate, we can obtain the comoving Hubble horizon:

kH(N) = a∗HdS exp
[
β − α

4 Nmid +
(

1− α+ β

4

)
N

]cosh
(
N−Nmid

∆λ

)
2


1

2λ

. (D.38)
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By differentiating this expression once with regards to N and equating it to zero, we find that kH has
an extremum whenever the condition

2− α
2− β = −

1− tanh
[
N−Nmid

∆λ

]
1 + tanh

[
N−Nmid

∆λ

] . (D.39)

holds for some N = Ntrans. Inverting this relation, we can define Ntrans corresponding to the
extremum of kH as

Ntrans := Nmid + ∆λ

2 log
∣∣∣∣β − 2
2− α

∣∣∣∣ = 1
β − α

log
(∣∣∣∣β − 2

2− α

∣∣∣∣ 1
λ Q2

(a∗HdS)β

)
. (D.40)

We note that the comoving Hubble horizon has a minimum if β > 2 and α < 2 and a maximum if
β < 2 and α > 2. Notice that since ä = (1/a)(a′/a)′ = (1/a)k′H , an extremum of the comoving
Hubble horizon corresponds to a moment of no acceleration, i.e., ä = 0. By setting N to Ntrans in
Eq. (D.38), we can calculate the value of kH at the extremum:

ktrans := kH(Ntrans) = a∗HdS

(
|β − 2|+ |2− α|

|2− α|

∣∣∣∣2− αβ − 2

∣∣∣∣
β−2
β−α

) 1
2λ [

Q2

(a∗HdS)β

] 1
2

2−α
β−α

. (D.41)

We note that ktrans defined in Eq. (D.41) is the generalisation of kmin in Eq. (5.111), while Eq. (D.40)
corresponds to the generalisation of Eq. (5.112). By inserting Eqs. (D.40) and (D.41) in Eq. (D.38)
we can re-write the comoving Hubble horizon in a simplified form as

kH(N) = ktrans e(1−α+β
4 )(N−Ntrans)

 cosh
(
N−Nmid

∆λ

)
cosh

(
Ntrans−Nmid

∆λ

)


1
2λ

. (D.42)

The EoS parameter w, defined in Eq. (5.149), and the first slow-roll parameter, ε, of the model
can be obtained by differentiating Eq. (D.36) once with regards to N and dividing the result by 2H2.
This leads to

w(N) = − 1− 1
6

(H2)N
H2 =

(
α+ β

6 − 1
)

+ α− β
6 tanh

(
N −Nmid

∆λ

)
, (D.43)

ε(N) = − 1
2

(H2)N
H2 = α+ β

4 + α− β
4 tanh

(
N −Nmid

∆λ

)
. (D.44)

Then, by using the definition of the variable z := aϕ̇/H = a
√

2ε in conjunction with the chain rule
∂η(·) = aH ∂N (·), we obtain the expression for the potential z′′/z:

z′′

z
= k2

H

[
2− ε(N) +

C(α,β,λ)(N)
∆λ

+
D(α,β,λ)(N)

∆2
λ

]
, (D.45)
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where the functions C(α,β,λ)(N) and D(α,β,λ)(N) are defined as

C(α,β,λ)(N) := 3− ε
2ε εN

= β − α
8 sech2

(
N −Nmid

∆λ

)
+ 3

2

sech2
(
N−Nmid

∆λ

)
tanh

(
N−Nmid

∆λ

)
− coth

(
N1
∆λ

) , (D.46)

D(α,β,λ)(N) := 1
2

(
εNN
ε
− 1

2
(εN )2

ε2

)

= sinh
(
N1

∆λ

) sinh
(
N1
∆λ

)
+ 2 sinh

(
2N−2Nmid−N1

∆λ

)
[
cosh

(
N1
∆λ

)
+ cosh

(
2N−2Nmid−N1

∆λ

)]2 , (D.47)

N1

∆λ
:= log

(√
β

α

)
. (D.48)

Notice that while the first equality in each of the definitions (D.46) and (D.47) is valid for any model
of single field inflation, in writing the second equality we have imposed the model dependent expression
(D.44). As discussed in Sect. 5.4.1, the terms of the potential z′′/z that depend on C(α,β,λ) and
D(α,β,λ) define the shape of the potential around the transition from the initial epoch to the later
power-law inflation. On the other hand, it can be checked that the the r.h.s. of Eqs. (D.46) and
(D.47) vanishes asymptotically for very large (positive and negative) values of N , i.e., C(α,β,λ) and
D(α,β,λ) do not contribute to the shape of the potential z′′/z in the asymptotic initial and final epochs
where the EoS parameter is constant.

D.5. The limit of z′′/z for large λ

In this section, we present the derivation of the shape of the potential z′′/z in the case of instantaneous
transitions. This requires the calculation of the limiting expression, for very large λ, of the terms
∆−1
λ C(α, β, λ)(N) and ∆−2

λ D(α, β, λ)(N) that appear in the expansion (5.155). In order to better
understand how to take such limits, we work in Fourier space using the following convention for the
Fourier transform F and its inverse F−1:

Fω[f(N)] :=
∫ +∞

−∞

dN√
2π
f(N)e−iωN = f(ω) , (D.49)

F−1
N [f(ω)] :=

∫ +∞

−∞

dω√
2π
f(ω)eiωN = f(N) . (D.50)
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Applying a Fourier transform to ∆−1
λ C(α, β, λ)(N), we find

C(α, β, λ)(ω)
∆λ

= 1
∆λ

β − α8 Fω
[
sech2

(
N −Nmid

∆λ

)]
+ 3

2Fω

 sech2
(
N−Nmid

∆λ

)
tanh

(
N−Nmid

∆λ

)
− coth

(
N1
∆λ

)


= e−iωNmid

β − α8 Fω∆λ

[
sech2(Ñ)

]
+ 3

2Fω∆λ

 sech2(Ñ)
tanh(Ñ)− coth

(
N1
∆λ

)
 , (D.51)

where Ñ := ∆−1
λ (N −Nmid). We now note that taking the limit λ→ +∞ in the previous expression

corresponds to selecting the 0-mode of the Fourier transform. As such, we can write

C(α, β, λ)(ω)
∆λ

λ→+∞= 1√
2π

[
β − α

4 − 3
2 log

(
β

α

)]
, (D.52)

and by applying the inverse transform, we obtain

C(α, β, λ)(N)
∆λ

λ→+∞=
[
β − α

4 − 3
2 log

(
β

α

)]
δ(N −Nmid) . (D.53)

The Fourier transform of ∆−2
λ D(α, β, λ)(N) can be decomposed as

D(α, β, λ)(ω)
∆2
λ

λ→+∞=
sinh

(
N1
∆λ

)
∆2
λ

Fω

 sinh
(
N1
∆λ

)
+ 2 sinh

(
2N−2Nmid−N1

∆λ

)
[
cosh

(
N1
∆λ

)
+ cosh

(
2N−2Nmid−N1

∆λ

)]2


= ω sinh
(
N1

∆λ

)
e−iω(Nmid+N1

2 )
{
− iFω∆λ

[(
cosh

(
N1

∆λ

)
+ cosh(2N )

)−1
]

+
sinh

(
N1
∆λ

)
ω∆λ

Fω∆λ

[(
cosh

(
N1

∆λ

)
+ cosh(2N )

)−2
]}

,

(D.54)

where N := ∆−1
λ (N −Nmid − 1

2N1) and on the first term of the second equality, we have performed
an integration by parts. In order to eliminate the ∆−1

λ factor on the last line of Eq. (D.54), we rewrite
(ω∆λ)−1 in terms of the Fourier transform of the sign function:

D(α, β, λ)(ω)
∆2
λ

= −iω sinh
(
N1

∆λ

)
e−iω(Nmid+N1

2 )
{
Fω∆λ

[(
cosh

(
N1

∆λ

)
+ cosh(2N )

)−1
]

+
√
π

2 sinh
(
N1

∆λ

)
Fω∆λ

[sign(N )]Fω∆λ

[(
cosh

(
N1

∆λ

)
+ cosh(2N )

)−2
]}

. (D.55)

Once more, taking the limit λ→ +∞ corresponds to selecting the 0-mode of the Fourier transforms

233



D.6 A jump in dR~k/dN for large λ

in the previous expression, resulting in

D(α, β, λ)(ω)
∆2
λ

λ→+∞= − 1√
2π

log
(
β

α

)
iω . (D.56)

By applying an inverse Fourier transform to the previous equation, we obtain

D(α, β, λ)(N)
∆2
λ

λ→+∞= − log
(
β

α

)
δN (N −Nmid) . (D.57)

Finally, by inserting Eqs. (D.53) and (D.57) in Eq. (5.155), we obtain the expression in Eq. (5.189),
i.e.,

z′′

z
= k2

H(N)
{

2− ε(N) +
[
β − α

4 − 3
2 log

(
β

α

)]
δ(N −Nmid)

− log
(
β

α

)
δN (N −Nmid)

}
. (D.58)

D.6. A jump in dR~k/dN for large λ

The evolution equation for the comoving perturbation R~k is (cf. (5.190))

d2R~k
dN2 +

(
3− ε+ εN

ε

) dR~k
dN +

(
k

kH

)2
R~k = 0 . (D.59)

In the limit of very large λ, we find that the slow-roll parameter ε has a discontinuity given by a Θ
function, as seen in Eq. (5.186) and, therefore, its derivative εN gives rise to a Dirac delta function.
In order to obtain the proper limit of the quotient εN/ε in the second term of Eq. (D.59), we follow
the same method applied in Sect. D.5 and find

εN
ε

β→+∞= − log
(
β

α

)
δ(N −Nmid) . (D.60)

By inserting this result, as well as Eq. (5.186), in Eq. (D.59), we obtain

d2R~k
dN2 +

[
6− β

2 − α− β
2 Θ(N −Nmid)− log

(
β

α

)
δ(N −Nmid)

] dR~k
dN + k2

k2
H

R~k = 0 . (D.61)

If we compare Eq. (D.61) with the Mukhanov-Sasaki equation with the potential given in eq. (D.58),
we find that the divergent terms that appear on the potential z′′/z are replaced by a single divergent
term, a Dirac delta function, in the coefficient of dR~k/dN in Eq. (D.61). The presence of this terms
suggests that the derivative dR~k/dN has a discontinuity at N = Nmid. However, since this means
that δ(N) is multiplied by a discontinuous function, a direct integration of (D.61) to find the jump in
the derivative of the comoving curvature perturbation can be tricky [102, 174]. Instead, we choose
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the ansatz

dR~k
dN = elog( βα )Θ(N−Nmid)f~k(N) , (D.62)

where f~k(N) is by hypothesis a continuous function at N = Nmid. Then, inserting Eq. (D.62) in
Eq. (D.61), leads to

df~k
dN +

[
6− β

2 − α− β
2 Θ(N −Nmid)

]
f~k + e− log( βα )Θ(N−Nmid) k

2

k2
H

R~k = 0 . (D.63)

For Rk continuous at N = Nmid, this equation is compatible with the continuity of f~k, confirming
that the exponential in (D.62) carries the discontinuity of the derivative of the comoving curvature
perturbation. Therefore, we obtain following the boundary condition (5.192):

dR~k
dN (N+

mid) = β

α

dR~k
dN (N−mid) . (D.64)

D.7. Matching conditions in the long-wavelength
approximation

In the long-wavelength regime k2 � z′′/z, the general solution of the mode evolution equation (5.105)
reads:

v~k = z(η)
(
C1~k + C2~k

∫ η

ηini

dτ
z2(τ)

)
= z(N)

(
C1~k + C2~k

∫ N

Nini

dÑ
z2(Ñ)kH(Ñ)

)
, (D.65)

where we recall that z = a
√

2ε(N). Since both ε and kH are finite at N = Nmid, the integral on the
r.h.s. of the previous equation does not contribute to the jump of v~k in the transition to inflation.
Thus, by evaluating Eq. (D.65) at N = N+

mid and N = N−mid, we obtain

v~k(N+
mid)

v~k(N−mid)
= atrans

√
2ε+

atrans
√

2ε−
=
√
ε+

ε−
, (D.66)

which is equivalent to the first matching condition (5.193).

On the other hand, after differentiating (D.65) with regards to the number of e-folds, we find that

dv~k
dN = zN (N)

(
C1~k + C2~k

∫ N

Nini

dÑ
z2(Ñ)kH(Ñ)

)
+

C2~k
z(N)kH(N)

=
(

1 + 1
2
εN
ε

)
v~k(N) +

C2~k
z(N)kH(N) . (D.67)

The discontinuity, at the time of the transition, on the second term on the r.h.s. of the last equality in
Eq. (D.67) can be washed away by multiplying both sides by

√
ε. Then, by evaluating

√
ε(dv~k/dN)
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at N = N+
mid and N = N−mid, we obtain

√
ε+

dv~k
dN (N+

mid)−
√
ε−

dv~k
dN (N−mid) =

√
ε+v~k(N+

mid)−
√
ε−v~k(N−mid) . (D.68)

Finally, by using Eq. (D.66) to eliminate v~k(N+
mid) in Eq. (D.68), we obtain the second matching

condition (5.194).

D.8. The coefficients P~k and Q~k

The coefficients P~k and Q~k introduced in Sect. 5.5.3, which constitute the matrix of the linear
transformation (5.201), are defined, for ε± ∈ ]0, 3] \ {1}, as

P~k = iπ4
1√

|ε− − 1||ε+ − 1|

×

{[(
ε+

ε−

) 1
2

(3− ε+)Θ(1− ε+)−
(
ε+

ε−

)− 1
2

(3− ε−)Θ(1− ε−)
]
Hq
γ−(Hq

γ+)∗

− q

[(
ε+

ε−

) 1
2

sign(1− ε+)Hq
γ−(Hq

1+γ+)∗ −
(
ε+

ε−

)− 1
2

sign(1− ε−)Hq
1+γ−(Hq

γ+)∗
]}

, (D.69)

and

Q~k = iπ4
1√

|ε− − 1||ε+ − 1|

×

{[(
ε+

ε−

) 1
2

(3− ε+)Θ(1− ε+)−
(
ε+

ε−

)− 1
2

(3− ε−)Θ(1− ε−)
]

(Hq
γ−)∗(Hq

γ+)∗

− q

[(
ε+

ε−

) 1
2

sign(1− ε+)(Hq
γ−)∗(Hq

1+γ+)∗ −
(
ε+

ε−

)− 1
2

sign(1− ε−)(Hq
1+γ−)∗(Hq

γ+)∗
]}

.

(D.70)

Here, γ± = (1/2)|3− ε±|/|1− ε±|, cf. Eq. (5.199), and q := k/k∞trans is a renormalised wave-number,
where k∞trans is the value of the comoving Hubble horizon at the moment of the transition, as defined
in Eq. (5.188). In addition, we use the notation

Hq
γ± := H

(1)
γ±

(
q

|1− ε±|

)
, Hq

1+γ± := H
(1)
1+γ±

(
q

|1− ε±|

)
. (D.71)

For ε+ = ε−, one can easily check that the terms inside the curly brackets on the r.h.s. of Eq. (D.70)
cancel each other, leading to Q~k = 0. At the same time, we find that if we impose ε+ = ε− in
Eq. (D.69), the first term inside the curly brackets vanishes and, using the Wronskian equalities for
the Hankel functions [7, 283], we find that the second term inside the curly brackets leads to P~k = 1.

236



Chapter D. Third Quantisation

D.9. Long-wavelength limit of PPI
R /PBD

R

In this section, we compute the long-wavelength approximation, q � |ε+ − 1|and q � |ε− − 1|,
of Eq. (5.208). Using the asymptotic behaviour of the Bessel and the Hankel functions for small
argument and non-zero order [7, 283], i.e., for γ± 6= 0 which corresponds to ε± 6= 3, we find that to
leading order in q, the terms ∆0, ∆1q and ∆2q

2 in Eq. (5.208) read

∆0 ≈
1
π2

[(
ε+

ε−

) 1
2

(3− ε+)Θ(1− ε+)−
(
ε+

ε−

)− 1
2

(3− ε−)Θ(1− ε−)
]2

× Γ2(γ−)
Γ2(1 + γ+)

|1− ε−|2γ−

|1− ε+|2γ+

(q
2

)2(γ+−γ−)
, (D.72)

∆1q ≈
2
π2

[(
ε+

ε−

) 1
2

(3− ε+)Θ(1− ε+)−
(
ε+

ε−

)− 1
2

(3− ε−)Θ(1− ε−)
]

×

[(
ε+

ε−

)− 1
2

(3− ε−) sign(1− ε−)
]

Γ2(γ−)
Γ2(1 + γ+)

|1− ε−|2γ−

|1− ε+|2γ+

(q
2

)2(γ+−γ−)
, (D.73)

∆2q
2 ≈ 1

π2

[(
ε+

ε−

)− 1
2

(3− ε−) sign(1− ε−)
]2

Γ2(γ−)
Γ2(1 + γ+)

|1− ε−|2γ−

|1− ε+|2γ+

(q
2

)2(γ+−γ−)
. (D.74)

Notice that on the second lines of Eqs. (D.73) and (D.74), we have used the equality Γ(1+z) = zΓ(z)
and the definition of γ± to eliminate Γ(1 + γ−). Adding Eqs. (D.72), (D.73) and (D.74), we obtain

∆0 + ∆1q + ∆2q
2 ≈ 1

π2

[(
ε+

ε−

) 1
2

(3− ε+)Θ(1− ε+) +
(
ε+

ε−

)− 1
2

(3− ε−)Θ(ε− − 1)
]2

× Γ2(γ−)
Γ2(1 + γ+)

|1− ε−|2γ−

|1− ε+|2γ+

(q
2

)2(γ+−γ−)
. (D.75)

Here, we note that in the case of a transition from an accelerated epoch with ε− < 1 to a decelerated
epoch with 1 < ε+ the previous expression vanishes, indicating that beyond-leading-order terms need
to be considered in Eqs. (D.72), (D.73) and (D.74). However, since we are interested mainly on
the case where the universe is inflating for Nmid < N (i.e., ε+ < 1), we will not explore such cases.
Finally, substitution in (5.208) leads to (5.213).

In the case that the initial epoch mimics a universe dominated by stiff matter (ε− = 3 and γ− = 0),
the asymptotic expressions (D.72), (D.73) and (D.74) are no longer valid since the Hankel functions
of zero order behave instead as a logarithm for small argument [7, 283]. In this case the asymptotic
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D.10 Short wavelength limit of PPI
R /PBD

R

behaviour of ∆0, ∆1q and ∆2q
2 is given by

∆0 ≈
4
π2

(
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, (D.76)

∆1q ≈
8
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1
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, (D.77)

∆2q
2 ≈ 4
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3

)−1 1
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. (D.78)

By adding Eqs. (D.76), (D.77) and (D.78), we obtain

∆0 + ∆1q + ∆2q
2 = 4

π2

[(
ε+

3

) 1
2

(3− ε+)Θ(1− ε+) log
(q

2

)
+ 2

(
ε+

3

)− 1
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2
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. (D.79)

Finally, a substitution of the previous result in Eq. (5.208) leads to Eq. (5.214).

D.10. Short wavelength limit of PPI
R /PBD

R

In this section, we compute the short wavelength approximation, |ε+ − 1| � q and |ε− − 1| � q,
of Eq. (5.208). We recall that this expression relates the primordial power spectrum at the end of
power-law inflation in a scenario with a pre-inflationary epoch with constant EoS parameter, PPI

R ,
with the primordial power spectrum obtained in power-law inflation with BD-like initial conditions.
Using the asymptotic behaviour of the Bessel and the Hankel functions for large argument [7, 283],
we find that in Eq. (5.208) the leading term for large q is given by ∆2q

2. In the short wavelength
approximation this term reads, cf. Eq. (5.211),

∆2q
2 ≈ 4|1− ε+||1− ε−|

π2

×
[
cosh

(
log
(
ε+

ε−

))
− sinh

(
log
(
ε+

ε−

))
sin2

(
2q

|1− ε+| − πγ
+
)]

. (D.80)

A substitution the previous result in Eq. (5.208) leads to the asymptotic formula (5.216).
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[83] M. Bouhmadi-López, P. Chen, Y.-C. Huang, and Y.-H. Lin, “Slow-roll inflation preceded
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thesis, Universidad del Páıs Vasco - Euskal Herriko Unibertsitatea, Leioa, Spain, (2016).

[295] A. D. Rendall, “Cosmological models and center manifold theory”, General Relativity and
Gravitation 34, 1277-1294 (2002), [arXiv:gr-qc/0112040].

[296] A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and
a cosmological constant”, The Astronomical Journal 116, 1009-1038 (1998), [arXiv:astro-
ph/9805201].

[297] H. P. Robertson, “Kinematics and World-Structure”, The Astronomical Journal 82, 284 (1935).

[298] H. P. Robertson, “Kinematics and World-Structure II.”, The Astronomical Journal 83, 187
(1936).

[299] H. P. Robertson, “Kinematics and World-Structure III.”, The Astronomical Journal 83, 257
(1936).
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