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Abstract
Dopamine can influence NMDA receptor function and regulate glutamate-triggered long-

termchanges in synaptic strength in several regions of the CNS. In spinal cord, regulation

of the threshold of synaptic plasticity may determine the proneness to undergo sensitization

and hyperresponsiveness to noxious input. In the current study, we increased endogenous

dopamine levels in the dorsal horn by using re-uptake inhibitor GBR 12935. During the so-

induced hyperdopaminergic transmission, conditioning low-frequency (1 Hz) stimulation

(LFS) to the sciatic nerve induced long-termpotentiation (LTP) of C-fiber-evoked potentials

in dorsal horn neurons. The magnitude of LTP was attenuated by blockade of either dopa-

mine D1-like receptors (D1LRs) by with SCH 23390 or NMDA receptor subunit NR2B with

antagonist Ro25-6981. Conditioning LFS duringGBR 12935 administration increased

phosphorylationof dopamine- and cAMP-regulated phosphoprotein of Mr 32kDa (DARPP-

32) at threonine 34 residue in synaptosomal (P3) fraction of dorsal horn homogenates, as

assessed by Western blot analysis, which was partially prevented by NR2B blockade prior

to conditioning stimulation. Conditioning LFS also was followed by higher co-localization of

phosphorylated form of NR2B at tyrosine 1472 and pDARPP-32Thr34- with postsynaptic

marker PSD-95 in transverse L5 dorsal horn sections. Such increase could be significantly

attenuated by D1LR blockade with SCH 23390. The current results support that coinciden-

tal endogenous recruitmentof D1LRs and NR2B in dorsal horn synapses plays a role in reg-

ulating afferent-induced nociceptive plasticity. Parallel increases in DARPP-32

phosphorylationupon LTP induction suggests a role for this phosphoprotein as intracellular

detector of convergent D1L- and NMDA receptor activation.
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Introduction
Synaptic plasticity at glutamatergic synapses, including long-term potentiation (LTP) of noci-
ceptive neurotransmission, is held as a critical cellular generator of spinal sensitization and per-
sistent pain states [1,2,3,4]. Modification of synaptic plasticity threshold may enable
subthreshold conditioning stimuli to effectively trigger LTP, as shown in cortical or hippocam-
pal neurons [5,6,7]. Functional status of the NMDA receptor, intracellular calcium buffering,
kinase/phosphatase activities or priming of protein synthesis machinerymay operate as mech-
anisms of regulation of synaptic plasticity [8].

Dopamine can lower the threshold of glutamate-triggered long-term changes in synaptic
strength in both hippocampus and amygdala [6,9]. Synaptic actions of dopamine are mediated
by five different G-protein coupled receptor subtypes (D1 through 5) that are divided into two
major subclasses, viz. the D1-like (D1LRs) and D2-like receptors (D2LRs), which couple to Gs
and Gi mediated intracellular signaling systems. At the spinal cord level, dopamine exerts com-
plex actions in the modulation of centripetal transmission of noxious signals. Thus, D2LR acti-
vation inhibits afferent input [10,11,12,13], whereas D1LRs is involved in consolidating neural
plastic changes triggered by inflammatory pain [14] and regulates opioid receptor-mediated
modulation [15]. Recent work has revealed that sustained dopaminergic, D1LR-mediated
input to the spinal dorsal horn can shift the NMDA receptor to an enhanced activation state
and lower the threshold of synaptic potentiation of C-fiber-evoked excitation and [15,16].
These data imply that increased dopaminergic neurotransmission at the dorsal horn, which
has been shown to occur in states of sustained pain [17], holds the potential to profoundly alter
nociception by increasing proneness to synaptic plasticity.

Cumulative evidence suggests that dopamine may strongly influenceNMDA receptor func-
tion in the CNS. Dopamine- and cAMP-regulated phosphoprotein of Mr 32kDa (DARPP-32),
a well established target of the synaptic actions of dopamine, is a probable mediator of intracel-
lular cross-talk of dopamine and glutamate signals [18,19]. Dopamine-induced phosphoryla-
tion of DARPP-32 can promote its phosphatase-inhibitory activity [20,21]. Particularly,
cAMP-dependent PKA signaling pathway triggered by D1R activation phosphorylates the
Thr34 residue of DARPP-32 [22,23], and this phosporylated form both depletes protein phos-
phatase-1 (PP1) activity and contributes to maintenance the phosphorylated configuration of
NMDA receptor [18,19].

The current study was undertaken to evaluate the role of D1LRs and NMDA receptors in
regulating the threshold of synaptic plasticity of C-fiber-evoked excitation in dorsal horn neu-
rons during increased dopaminergic neurotransmission. In addition, we assessed how recruit-
ment of D1LRs and NMDA receptors influenceDARPP-32 phosphorylation at residue Thr34

and phosphorylation of NMDA receptor subunit 2B at Tyr1472 at synaptic compartment in
dorsal horn neurons during hyperdopaminergic transmission.

Materials andMethods
Animal experiments were performed according to the European Communities Council Direc-
tive (86/609/ECC) on adult male Sprague Dawley rats (250–350 g). The protocols for animal
care and use were approved by the appropriate committee at the University of the Basque
Country (UPV/EHU).

Electrophysiology
Procedures were performed under urethane anesthesia (1.5 g/kg, i.p.). A tracheotomy was per-
formed to maintain an open, low-resistance airway, and cannulae were inserted into the left
common carotid artery and the right internal jugular vein for arterial blood pressure
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monitoring (mean 80–100 mmHg) and continuous infusion of Tyrode’s solution (in mM: 137
NaCl, 2.7 KCl, 1.4 CaCl2, 1 MgCl2, 6 NaHCO3, 2.1 NaH2PO4; pH 7.4) at 0.8–1 ml/h, respec-
tively. Colorectal temperature was continuously monitored and euthermia (37–38°C) was
maintained via a feedback-controlled underbody heating pad for the duration of the experi-
mental procedure. The left sciatic nerve was exposed, gently freed from connective tissue, and
placed onto platinum hook electrodes for bipolar electrical stimulation. Bilateral dorsal lami-
nectomies were performed at vertebrae T13–L1, the vertebral column was immobilized to a
rigid frame, and the dura mater overlaying lumbosacral spinal segments was carefully
removed.

Electrophysiological setup was essentially as describedpreviously [24]. Tungsten microelec-
trodes (5 MΩ) were placed into laminae I–II (100–300 μm deep and 1 mm lateral to the spinal
mid-line). The position of the tip of the recording electrode in the spinal cord was marked with
a small electrolytic lesion by delivery of an anodal current through the recording electrode
(50 μA anodal current for 10 s) and histologically verified. Single monophasic, square-wave
electrical pulses were delivered as test stimuli to the sciatic nerve trunk at a midthigh level on a
per-minute basis by means of a current-controlled stimulus isolator, and the elicited spinal
field potentials were amplified (analog bandpass set at 1–550 Hz), displayed on an oscilloscope,
and digitized at 10 kS/s and 12-bit resolution (PCI-MIO-16E acquisition card, National Instru-
ments, Austin, TX). Field potentials were evoked in superficial laminae of the spinal dorsal
horn by suprathreshold, electrical C-fiber stimulation (3–3.5 mA pulses of 0.5 ms duration)
and quantified as describedpreviously [25]. In experiments administering drugs via spinal
superfusion (cf. below), each drug concentration change lasted for 20 min, and only the last 10
evoked field potentials were extracted for analysis from the baseline control period and from
each treatment period. The areas of field potentials evoked during each treatment periodwere
compared with those recorded during a control, aCSF superfusion period, by using univariant
ANOVA and post hoc Bonferroni’s or Tamhane’s multiple-comparison tests. In experiments
aimed at inducing LTP of C-fiber-evoked field potentials, drugs were administered starting 30
min prior to conditioning low frequency stimulation, which consisted of two, 30-second trains
of 3 mA pulses of 1.5 ms duration at 1 Hz, 30 s apart.

Drug preparation and delivery
Drugs used included dopamine re-uptake inhibitor GBR 12935 (1-(2-Diphenylmethoxyethyl)-
4-(3-phenylpropyl) piperazine dihydrochloride), D1LR antagonist SCH 23390 (7-chloro-
3-methyl-1-phenyl-1,2,4,5-tetrahydro-3-benzazepin-8-ol), NR2B antagonist Ro 25–6981 ((αR,
βS)-α-(4-Hydroxyphenyl)-β-methyl-4-(phenylmethyl)-1- piperidinepropanol maleate), all
from Tocris (Bristol, UK). Stock solutions were obtained by diluting drug powder in double-
distilledwater, and working solutions were prepared in artificial CSF (aCSF) (in mM: 130
NaCl, 3.5 KCl, 1.25 NaH2PO4, 24 NaHCO3, 1.2 CaCl2, 1.2 MgSO4, 10 D-(±) glucose; pH 7.4)
immediately before delivery. All drug were administered in small volumes (10–15 μl) by con-
trolled superfusion via a silicone, 40–50 mm2 pool attached to the dorsal surface of the spinal
cord [26]. SCH 23390 and Ro 25–6981 concentrations were selected on the basis of prior pub-
lished work [16] and preliminary experiments.

Subcellular fractionation of spinal cord tissue
Biochemical fractionation of dorsal horn proteins was performedwith minor variations
according to previous studies [27,28]. Briefly, rats were deeply anesthetizedwith sodiumpento-
barbital (50 mg/kg, i.p.) and killed by decapitation. L4–L5 segments were quickly extracted into
ice-cold aCSF. Tissue was separated and homogenizedmechanically with a motor-driven glass/
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glass tissue homogenizer in ice-cold lysis buffer (10 mM Tris, pH 7.6, 320 mM sucrose, 5 mM
EDTA) containing protease inhibitors (5 mM EGTA, 1 mM PMSF, 10 U/ml aprotinin,
0.0001% chymostatin, 0.0001% leupeptin, and 0.0001% pepstatin). Dorsal horn samples ipsilat-
eral and contralateral to surgery were taken and processed separately. Homogenates were cen-
trifuged at 1000 g for 10 min to remove cell nuclei (P1) from the low supernatant (S1). S1 was
collected and centrifuged at 10,000 g during 15 min to separate a P2 pellet containing the crude
synaptosomal fraction and a cytoplasmic fraction S2 with microsomes. The P2 pellet was incu-
bated in the lysis buffer containing 0.5% Triton and centrifuged at 32,000 g for 20 min to obtain
the crude synaptic vesicle fraction (S3) and the final pellet containing the synaptic fraction
(P3). The latter was solubilized in resuspension buffer (10 mMTris, pH 8.0, 1 mM EDTA, 2%
SDS). All fractions were stored at 80°C.We have shown previously that only P3 fraction is
enrichedwith synaptic density proteins such as postsynaptic density protein PSD-95 [29].

Western blot
BCAprotein assay kit (Pierce, Rockford, IL) was used for determining protein concentration.
Identical amounts of protein (50 μg) were loaded to SDS-PAGE using 8% running gels and trans-
ferred to nitrocellulosemembranes (GEHealthcare, Barcelona, Spain). After a blocking step with
5% non-fat milk in PBST for 1 h at room temperature, membranes were incubated overnight at
4°C with primary antibody. We used an affinity-purifiedgoat polyclonal antibody against Thr 34
phosphorylatedDARPP-32 (sc-21601 from Santa Cruz Biotechnology;Santa Cruz, CA) at
1:1,000 as primary antibody. After incubationwith primary antibodies,membranes were washed
three times in PBST for 10 min and incubated with HRP-conjugated donkey anti-goat antisera
(GEHealthcare, Barcelona, Spain) 1:5,000 for 1 h at room temperature. Thermo Fisher Scientific
SuperSignal Chemiluminescent Substrate was used to detect HRP on the blots. Spectrophotome-
trywas used to determine protein concentration in each sample, and the required volume was
then calculated to load the same amount of protein (50 μg) to each lane. Reversible validated
Ponceau staining was used to check equal loading of gels [30,31]. For quantitation, protein band
densities were analyzed by using NIH ImageJ software. Student’s t-test was used for comparisons.

Immunofluorescence
Deeply anesthetized rats (sodium pentobarbital; 50 mg/kg, i.p.) were perfused transcardially
with 250 ml of 0.9% saline followed by 900 ml of 4% paraformaldehyde in phosphate buffer
(PB) (0.1 M), pH 7.4. L4–L5 segments were removed, postfixedwith 4% paraformaldehyde in
PB for 4 h, and then cryoprotected for 48 h with 30% sucrose in PBS at 4°C. Coronal, 40-μm-
thick cryotome sections were serially collected in PBS and preincubated with 1% bovine serum
albumin (Sigma, St. Louis, MO) and 1% normal serum (1 h at RT). Three primary antibodies
were used in triple immunoflurescece experiments, namely goat polyclonal to Thr 34 phos-
phorylatedDARPP-32 (sc-21601 from Santa Cruz Biotechnology; Santa Cruz, CA) at 1:1.000,
mouse monoclonal to PSD-95 (MAB1596 fromMillipore, Bedford,MA) at 1:500, and a poly-
clonal antibody raised in rabbit against NR2B subunit phosphorylated at Tyr1472 (454583
fromMillipore). After preincubations with normal serum of species other than those in which
the secondary antibodies were raised, sections were sequentially incubated with Cy5 650-con-
jugated donkey anti-rabbit, Dylight 549-conjugated donkey anti-mouse, and Alexa 488-conju-
gated donkey anti-goat fluorescent antibodies (1:200; Jackson ImmunoResearch,West Grove,
PA) and mounted in Mowiol (Vector Laboratories, Burlingame, CA). Immunolabeled sections
were viewed in a Fluoview FV500 Olympus confocal microscope, and digital photomicro-
graphs were acquired sequentially to avoid overlapping of fluorescent emission spectra.NIH
ImageJ software (Intensity Correlation plug-in) [32] was used to adjust brightness and contrast,
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to obtain image co-localization overlays, as well as to perform pixel-wise intensity correlation-
based analyses of confocal photomicrographs. Pearson’s correlation coefficient and Fisher’s
exact test were used to determine and contrast co-localization values, respectively.

Results

Blockade of either NR2B or D1LRs attenuates LFS-induced LTP during
hyperdopaminergic transmission
Conditioning low-frequency (1 Hz) electrical stimulation to the sciatic nerve consistently failed
to alter the magnitude of evoked potentials in naive rats. In contrast, this same conditioning
stimulation protocol induced LTP of C-fiber-evokedpotentials during hyperdopaminergic
transmission induced by spinal superfusionwith dopamine re-uptake inhibitor GBR 12935 at
10 μM (80.20 ± 0.48% increase; p< 0.01 relative to baseline). Administration of GBR 12935
alone in separate control experiments did not significantly alter C-fiber-evokedpotentials
(15.43 ±0.49 μV�ms potential area during superfusionwith 10 μM GBR 12935 vs 15.61
±0.38 μV�ms area during superfusionwith aCSF). Whenever 1 μM SCH 23390 had been
added to the superfusate, LFS induced significant (p<0.01 relative to baseline) yet milder
potentiation of evoked responses (45.98% ± 0.32% increase from baseline, p<0.01 relative to
LTP induced in the absence of SCH 23390; Fig 1).

To test for the involvement of NR2B in LFS-induced LTP during hyperdopaminergic trans-
mission, we administered 100 μM Ro25-6981 in combination with GBR 12935. We found that
LFS still induced significant potentiation of C-fiber-evokedpotentials (28.94 ± 0.33% increase
from baseline; p<0.01 versus baseline), however synaptic potentiation was significantly lesser
than during superfusionwith GBR 12935 alone (Fig 1). Neither SCH 23390 or Ro25-6981
affected evoked potentials when administered alone at the concentrations used here, as ascer-
tained in separate control experiments.

LFS-induced increase in pDARPP-32 in dorsal horn synapses during
hyperdopaminergic transmission is partiallyprevented by NR2B
blockade
We carried out Western blots on dorsal horn homogenates extracted 120 min after application
of conditioning LFS in rats subjected to superfusionwith either GBR 12935 for 30 min or
aCSF, in order to evaluate DARPP-32 phosphorylation at residue Thr34. We found that condi-
tioning stimulation did not alter immunoreactivity for pDARPP-32 in synaptosomal fraction
dorsal horn homogenates from control rats previously superfusedwith aCSF. In contrast, a
dramatic increase in pDARPP-32-like immunoreactivity was found in homogenates from rats
subjected to GBR 12935 superfusion (Fig 2). As assessed by density analysis, such increase was
statistically significant relative to aCSF-superfused rats (p< 0.01 using the Student´s t-test; Fig
2). To determine whether NR2B activation was required for increasing DARPP-32 phosphory-
lation, we used GBR 12935 and Ro25-6981 to simultaneously increase dopamine levels and
block NR2B prior to and during conditioning LFS. By using band density analysis we found
that immunoreactivity for pDARPP-32 was significantly attenuated relative to rats superfused
only with GBR 12935 (p< 0.01 using Student's t-test; Fig 2).

LFS-induced enrichment in pNR2B at pDARPP32-containing
postsynaptic sites is dependent on recruitmentof D1LRs
Prior evidence indicates that intracellular signaling linked to D1LRs promotes NR2B phos-
phorylation in prefrontal cortex neurons [33,34] and that NR2B phosphorylation is pivotal in
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glutamate-dependent central sensitization [35,36]. We assessed whether administration of LFS
during hyperdopaminergic transmission could induce NR2B phosphorylation at residue
Tyr1472 at synaptic densities containing pDARPP-32. We found that LFS increasedNR2B
phosphorylation at postsynaptic densities marked by PSD-95 in rats pretreated with GBR
12935 but not in untreated rats (Rr value of 0.78 with GBR 12935 pretreatment relative to 0.04
in absence of GBR 12935, z = -116.21, p< 0.01 at the Fisher's exact test).

As shown in Fig 3, pDARPP-32 and pNR2B were hardly co-localizedwith postsynaptic
marker PSD-95 in dorsal horn sections from either conditioned or unconditioned, otherwise
untreated rats. However, PSD-95/pNR2B/pDARPP32 co-localizationwas found to be
increased dramatically in tissue from rats that had received conditioning LFS during hyperdo-
paminergic transmission induced by spinal superfusionwith GBR 12935 (Rr 0.73 vs 0.04 in
those receiving LFS alone; z = -111.42, p< 0.01 using the Fisher's exact test). Concurrent
blockade of D1LRs, achieved by adding SCH 23390 to the spinal superfusate prior to

Fig 1. Blockade of eitherD1LRs or NR2B attenuatesLFS-induced LTP of C-fiber-evoked potentialsduringGBR
12935-induced hyperdopaminergic transmission.Mean areas of C-fiber-evoked potentials are shown prior and after
conditioning LFS during spinal superfusion with dopamine re-uptake inhibitorGBR 12935 (10 μM) either alone (solid circles)
or in combination with D1LR antagonist SCH 23390 (at 1 μM, open triangles) or NR2B antagonist Ro25-6981 (at 100 μM,
solid triangles).Asterisks indicate statistical significance at p<0.01 using the post hoc Bonferroni test following one-way
ANOVA, relative to baseline prior to conditioning LFS (n = 6 each group; error bars indicate SEM). Representative recordings
obtained 10min after conditioning stimulation in the four experimental conditions are shown at the top (scale 50 ms, 200mV;
horizontal bar delimitsC-fiber latency).

doi:10.1371/journal.pone.0162416.g001
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Fig 2. NR2B blockade reduces LFS-induced DARPP-32 phosphorylation at threonine34 in dorsal
horn synapses.Western blot of synaptosomal (P3) fraction of dorsal horn homogenates reveal higher
pDARPP-32Thr34-like immunoreactivity in rats receiving conditioning LFS during spinal superfusion with GBR
12935 relative to unconditioned rats or to those receiving conditioning stimulation during superfusion with
aCSF. Increased immunoreactivity for pDARPP-32Thr34 in the formerwas attenuated whenever Ro25-6981
had been added to the spinal superfusate prior to LFS. Image analysis of immunostained band densities
confirmed significantly higher immunoreactivity (asterisks indicate significant difference at p<0.01 using the
Student's t-test) in rats receiving conditioning LFS during spinal superfusion with GBR 12935.

doi:10.1371/journal.pone.0162416.g002
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Fig 3. D1LRblockade prevents LFS-induced NR2B phosphorylation on Tyr1472 at postsynaptic,
pDARPP-32Thr34-containing sites.High-power micrographs (scale bar equals 5 μm) of the superficial L5
dorsal horn from rats either unconditioned or receiving conditioning LFS during spinal superfusion with GBR
12935 alone or in combination with SCH 23390, showing triple immunolabeling for pDARPP-32Thr34 (blue),
pNR2BTyr1472, (green) and postsynaptic marker PSD-95 (red). Co-localization of pNR2BTyr1472- and PSD-95
immunoreactivities is displayed as yellow overlay, whereas the white overlay indicates triple co-localization
with pDARPP-32Thr34. Solid boxes in the dorsal horn drawings indicate the sites fromwhichmicrographs
were taken. Intensity correlation analysis revealed significantly higher PSD-95/pNR2BTyr1472 and PSD-95/
pNR2BTyr1472/pDARPP-32Thr34 co-localizations in rats receiving conditioning LFS duringGBR
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conditioning LFS, resulted in a lower increase in PSD-95/pNR2B/pDARPP32 co-localization
(Rr 0.17 vs 0.73 in the absence of SCH 23390, z =, p<0.01).

Discussion
In the present work, we investigated how synaptic activation of D1LRs and NMDA receptor
subunit 2B can contribute to regulating the threshold of afferent-induced synaptic plasticity in
dorsal horn neurons. In addition, we evaluated parallel changes in DARPP-32 phosphorylation
at threonine 34 and its co-localizationwith the phosphorylated form of NR2B at tyrosine 1472.

Concurrent activation of D1LRs and NR2B decreases the threshold of
afferent-induced synaptic plasticity in dorsal horn neurons
Repeated peripheral noxious stimulation can induce long-lasting changes in synaptic efficacy,
including LTP of C-fiber-evoked potentials, that are thought to critically contribute to patho-
logic pain and central sensitization in the spinal dorsal horn [37,38,39]. High-frequency affer-
ent activity, where presynaptic activation is likely to coincide with a partially depolarized
postsynaptic membrane, is assumed to best fulfill conditions for increased synaptic efficacy
and information storage in neuronal circuits [40]. In the current study, we were able to induce
LTP of C-fiber-evoked potentials during hyperdopaminergic transmission by using a low-fre-
quency conditioning stimulation protocol that otherwise consistently fails to induce potentia-
tion in basal, untreated rats (Fig 1). These findings support that threshold for synaptic
potentiation in the dorsal horn by repeated noxious input is actually dynamic and regulated
by descending dopaminergic input arising from the diencephalon, insofar as dopaminergic
innervation of the spinal dorsal horn is provided primarily if not exclusively by neurons origi-
nating in the hypothalamic A11 cell group [41,42,43,44]. In addition, our data extend previous
evidence supporting that dopamine can modulate the disposition of CNS neurons to undergo
plastic changes in synaptic efficacy. For example, tonic dopamine levels facilitate LTP forma-
tion in rat prefrontal cortex [45], and dopamine or dopamine reuptake inhibitors decrease the
thresholds for synaptic potentiation in the basolateral amygdala [46], prefrontal cortex [7] or
hippocampus [47]. A primary finding of the current study is that hyperdopaminergic neuro-
transmission lowers the threshold for synaptic potentiation of responses to noxious input, in
such a manner that afferent low-frequency input becomes effective at triggeringLTP. Previous
studies have reported that dopamine concentrations are increased at the spinal cord level dur-
ing sustained nociception following intraplantar injection of carrageenan [17]. Here, we
induced a local state of hyperdopaminergic neurotransmission by controlled superfusion of
the lumbar cord dorsum with dopamine reuptake inhibitor GBR 12935, which was circum-
scribed to the lumbosacral dorsal horn segments innervated by the sciatic nerve. Although we
did not attempt to measure dopamine levels after GBR 12935 administration, LFS may have
induced sufficient dopamine release in the dorsal horn, considering that D1LR antagonist
SCH 23390 partially prevented LTP induced by conditioning LFS (Fig 1). Furthermore, the
blocking effect of SCH 23390 supports that dopaminergic modulation was at least in part
mediated by D1LRs.

Whether increased dopamine concentration in the dorsal horn milieu is a common occur-
rence in the diverse forms of sustained or chronic pain remains to be established. Increasing

12935-induced hyperdopaminergic transmission (p < 0.01 using the Fisher’s exact test for comparisonof
Pearson’s correlation coefficients). Both increases were significantly attenuated (p < 0.01, Fisher’s exact test)
if D1LRs had been blocked by co-administeringSCH 23390 prior to conditioning LFS. Error bars indicate
SEM.

doi:10.1371/journal.pone.0162416.g003
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evidence supports that dopaminergic input to the dorsal horn is indeed instrumental in
descendingmodulation of pain via D1- and D2-type receptors, including the so-called diffuse
noxious inhibitory controls (DNIC) [11]. However, our current findings predict that increased
activity of dopaminergicmechanisms in the dorsal horn may at the same time result in
decreased threshold to activity-dependent synaptic potentiation and ultimately higher vulnera-
bility to mild peripheral input. Consistent with this view is previous evidence that strong, sus-
tained pharmacological D1LR stimulation leads to late-onset potentiation of C-fiber-evoked
potentials even in the absence of conditioning stimulation [48].

LTP failed to occur in the current study during superfusionwith GBR 12935 in the absence
of conditioning stimulation, indicating that hyperdopaminergic transmission does not suffice
to generate LTP within the time-window evaluated here, but requires concurrent primary affer-
ent input. Moreover, we found that LFS-induced LTP was dependent on activation of the
NMDA receptor subunit 2B, as indicated by the blocking effect of NR2B antagonist Ro 25–
6981 (Fig 1). This is in line with previous data supporting that afferent-induced LTP in dorsal
horn neurons may depend on activation of the NMDA receptor [37,49,50], and specifically on
NR2B [51,52]. Glutamate-dependent plasticity associated to spinal hyperexcitability in persis-
tent pain states [53,54] involves enhanced activation of the NMDA receptor [29,13], presum-
ably due to receptor permeation [55] or phosphorylation of specific subunits [56,57].
Switching the NMDA receptor to a high activation state in dorsal horn neurons is commonly
assumed to be achieved by intense noxious input or conditioning high-frequency afferent stim-
ulation [37,49,58,59,60,61]. In basal conditions, low-frequency stimulation in vivo either only
inconsistently leads to LTP [39] or fails to do so as found here. Our current findings provide
evidence of an alternative mechanism of switching the NMDA receptor to a higher activation
state in dorsal horn neurons by mild afferent activity and concurrent increasing dopaminergic,
D1LR-mediated input. Previous reports have shown that simultaneous D1L- and NMDA
receptor-activation can enhance neural responses mediated by glutamatergic transmission else-
where in the CNS [62,63,64]. Specifically, LTP induction in CA1 requires synergistic interac-
tion between both these receptors [65], and dopamine priming in prefrontal cortical slices
facilitates LTP by a mechanism involving coincidental NMDA receptor-activation [66,67].
Extensive interactions betweenD1L- and NMDA receptors have been reported that at least
may involve heteromeric receptor complex formation and D1 receptor-mediated NMDAR
phosphorylation [68]. At the dorsal horn level, recent evidence shows that spinal nerve ligation
is followed by rapid, D1LR-dependent NMDA receptor phosphorylation and switching to a
high activation state within 90 min after injury [16].

Up-regulationof pDARPP-32Thr34 at postsynaptic, pNR2BTyr1472-
expressing neurons via convergent D1L- and NR2B receptor activation
Activation of DARPP-32 is involved in synaptic plasticity in the CNS [69,70]. In striatal neu-
rons, DARPP-32 modulates NMDA receptors via PKA [62]. PKA promotes phosphorylation
of threonine residues of DARPP-32 to facilitate synaptic plasticity [71,72], and depletion of
PKA/DARPP32 signaling disrupts D1LR-related LTP in striatum [71]. We found that LTP of
C-fiber-evokedpotentials in the spinal dorsal horn, which involves concurrent NR2B/D1LR
activation, is accompanied by changes in pDARPP-32 phosphorylation at Thr 34 in dorsal
horn synapses 90 min after afferent LFS (Fig 2). Conditioning stimulation failed to increase
pDARPP-32Thr34 levels per se, i.e. in the absence of a GBR 12935-induced hyperdopaminergic
state, supporting that DARPP-32 phosphorylation was critically dependent on increased dopa-
minergic activity. Furthermore, we found that concurrent recruitment of NR2B was required
for DARPP-32 phosphorylation to increase, as indicated by the strong attenuating effect of Ro
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25–6981 (Fig 2). This result underscores that both LTP induction and pDARPP-32 phosphory-
lation are based on the premise of concurrent recruitment of D1L- and NMDA receptors.
There is previous evidence that glutamate can trigger pDARPP-32 phosphorylation at threo-
nine 34 in neostriatal neurons, probably via nNOS/NO/soluble guanylyl cyclase/cGMP/PKG
signaling [73]. In order to evaluate whether the observed increase in pDARPP-32Thr34occurred
in NMDAR-expressing neurons, and more specifically in dorsal horn neurons where NR2B is
up-regulated after conditioning LFS, we quantitatively assessed co-localization of pDARPP-
32Thr34with the phosphorylated form of 2B subunit on its Tyr1472 residue. In confirmation of
theWestern blot findings above, confocal immunofluorescence data showed that pNR2BTyr1472

was dramatically up-regulated at postsynaptic sites in the dorsal during hyperdopaminergic
transmission horn 90 min after LFS, as assessed by increased co-localizationwith PSD-95, a
scaffolding protein present in postsynaptic densities (Fig 3). Further, we found that immuno-
fluorescence for pDARPP-32Thr34 was highly co-localizedwith immunopositive signal for
pNR2BTyr1472 after LFS, confirming that pDARPP-32Thr34 largely occurs in neurons in which
LFS induced functional up-regulation of NR2B. There is evidence implicating the NMDA sub-
unit 2B is in spinal hyperexcitability ad pain, as NR2B is known to mediate allodynia and
hyperalgesia during neuropathic pain [35,74] and increased phosphorylation of this protein on
Tyr1472 has been reported in superficial laminae of dorsal horn after peripheral lesion [53,75].
Consistently, disruption of PSD-95 interaction with NR2B in dorsal horn neurons reduces
pNR2BTyr1472 and attenuates mechanical and thermal hypersensitivity in bone cancer pain
[76]. Our current finding that pDARPP-32Thr34 and pNR2BTyr1472 both are up-regulated and
co-clustered at postsynaptic densities is highly suggestive of the involvement of DARPP-32 in
synaptic potentiation in dorsal horn neurons. This view is consistent with the reported involve-
ment of pNR2BTyr1472in NR2B-dependent hippocampus LTP induced by chronic visceral pain
[77], as well as with the reported prevention of ischemia-associatedLTP by genetic
pNR2BTyr1472depletion [78]. Importantly, postsynaptic up-regulation of pDARPP-32Thr34 and
pNR2BTyr1472 that followed conditioning LFS was critically dependent on dopaminergic
D1LR-mediated input, in light that it could be induced only during inhibition of dopamine re-
uptake with GBR 12935 and was sensitive to D1LR blockade. These observations are in general
agreement with previous reports showing that D1LR activation can both increase pNR2BTyr1472

trafficking in prefrontal cortical neurons [33] and induce phosphorylation of carboxy-terminal
terminus of NR2B in dendrite spines [34].

The current results support that convergence of glutamatergic and dopaminergic inputs to
the spinal dorsal horn plays a critical role in regulating afferent-induced synaptic plasticity.
Convergence of D1L- and NMDA receptor-mediated signals has been reported to modulate
LTP in CA1 [79], and close interplay among DA receptors, DARPP-32 activity and glutamater-
gic transmission has been suggested to underlie cognitive aspects of striate function [69].
NMDAR/D1LR interaction appears to require postsynaptic mobilization of intracellular Ca+2
and protein kinase A (PKA) [64]. At the spinal cord level, PKA has been implicated in central
sensitization and persistent pain [35,74]. Unfortunately, the current unavailability of drugs to
selectively inhibit DARPP-32 precludes the possibility of directly assessing its participation in
LTP formation. However, indirect evidence strongly supports this possibility. Experiments in
KO mice for DARPP-32 have revealed that a D1LR-PKA-DARPP-32 pathway is critically
involved both in corticostriatal LTP and LTD [69], and phosphorylation of DARPP-32 has
been reported during LTP in the hippocampus-prefrontal pathway [70], where it has been
interpreted as linked to gene expression for LTP maintenance. In addition, we show that con-
vergent NR2B- and D1LR-mediated input is required both for inducing LTP of C-fiber-evoked
evoked potentials and for postsynaptic pDARPP-32Thr34/pNR2BTyr1472 up-regulation in dorsal
horn neurons. By virtue of its unique position to act as detection sensor of convergent
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glutamate and dopamine inputs to the dorsal horn, DARPP-32 may play a role in spinal hyper-
excitability and pain by regulating the threshold for afferent-induced synaptic potentiation.
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