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Abstract
Choroidal neovascularization (CNV) commonly occurs in age related macular degeneration

and pathological myopia patients. In this study we conducted a case-control prospective

study including 431 participants. The aim of this study was to determine the potential asso-

ciation between 10 single nucleotide polymorphisms (SNPs) located in 4 different genetic

regions (CFI, COL8A1, LIPC, and APOE), and choroidal neovascularization in age-related

macular degeneration and the development of choroidal neovascularization in highly myo-

pic eyes of a Caucasian population. Univariate and multivariate logistic regression analysis

adjusted for age, sex and hypertension was performed for each allele, genotype and haplo-

type frequency analysis. We found that in the univariate analysis that both single-nucleotide

polymorphisms in COL8A1 gene (rs13095226 and rs669676) together with age, sex and

hypertension were significantly associated with myopic CNV development in Spanish

patients (p<0.05). After correcting for multiple testing none of the polymorphisms studied

remained significantly associated with myopic CNV (p>0.05); however, analysis of the axial

length between genotypes of rs13095226 revealed an important influence of COL8A1 in

the development of CNV in high myopia. Furthermore we conducted a meta-analysis of

COL8A1, CFI and LIPC genes SNPs (rs669676, rs10033900 and rs10468017) and found

that only rs669676 of these SNPs were associated with high myopia neovascularization.
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Introduction

Myopia is the most common ocular disorder worldwide [1] with an approximate prevalence
rate of 27% in the United States and Western Europe [2], and has increased in the last 50–60
years [3,4]. The prevalence of myopia in Asian populations is even higher [1,2,5–9]. In some
East and Southeast Asian countries, nearly 80% of the population has myopia, whereas 10–
20% has high myopia (HM) [10–12].

HM is defined as having an as axial length�26.5 mm or�−6 diopters (D) of myopic refrac-
tive error [13,14]. Myopic axial length elongation can appear as retinal pathological changes
and ocular comorbidities that may lead to blinding disorders, including chorioretinal atrophy
and choroidal neovascularization (CNV), premature cataracts, retinal detachment, and glau-
coma. HM is a common vision-threatening disease that affects 0.5–5.0% of the population
worldwide [1,3,15]. It is now considered the fourth-most common cause of irreversible blind-
ness in developed countries after age-related macular degeneration (AMD), glaucoma, and dia-
betic retinopathy [16], leading to a substantial impact on the public health economy.
Therefore, it is crucial to elucidate the pathological mechanisms underlying HM to develop
new therapies for this disabling pathology.

Epidemiological studies have shown that both genetic and environmental factors contribute
to myopia development [17–23]. However, after years of intensive research, the precise mecha-
nisms controlling ocular growth and development of refractive errors remain unclear. Genetic
associations with HM have been investigated for several decades. Twin and family studies have
shown that myopia, particularly HM, has a high heritability [24,25]. It is now generally
accepted that there are major genetic contributions to HM, in contrast non-pathological myo-
pia appears to be multifactorial, possibly involving a large number of genes with small individ-
ual effects, and major environmental factors. Several HM susceptibility genes have been
identified in linkage and candidate gene studies, such as paired box gene 6 (PAX6) [26], colla-
gen type II alpha 1 (COL2A1) [27], collagen type I alpha 1 (COL1A1) [28,29], myocilin
(MYOC) [30,31], hepatocyte growth factor (HGF) [32], transforming growth factor beta 1
(TGFB1) [33,34], transforming growth-induced factor (TGIF) [35,36], and lumican (LUM)
[37,38].

CNV beneath the fovea is a common complication of HM and AMD and is a common
cause of visual impairment [39]. Myopic CNV (mCNV) typically occurs in the fourth and fifth
decades of life; HM is the most common cause of CNV in patients younger than 50 years of
age. Moreover, CNV can develop in highly myopic eyes in the elderly population [40]; how-
ever, most highly myopic eyes never develop mCNV. In the elderly population, the most fre-
quent cause of CNV is AMD. Both AMD and HM are caused by interactions between genetic
and environmental factors, and genetic factors are thought to strongly contribute to CNV
development in AMD patients [41–44]. Our previous studies [45]; suggested that the develop-
ment of AMD-CNV may have a common genetic origin with mCNV, but we did not find a sig-
nificant association between two-single nucleotide polymorphisms (SNPs) strongly associated
with AMD (rs1061170 [Y402H] in CFH and rs10490924 [A69S] in ARMS2) and myopic CNV
in a Spanish population. These results were confirmed in Japanese population by Nakanishi
et al [46], who found no association between mCNV development and the three most impor-
tant SNPs associated with AMD development in the Japanese population (rs1061170 (Y402H),
rs10490924 (A69S) and rs11200638 of HTRA1). More recently, Leveziel et al [47] conducted a
case-control study analyzing 15 genes associated with AMD in a North American Caucasian
population of European origin, and found that only one SNP located in the gene for the com-
plement factor I (CFI) significantly associated with mCNV. Despite the similarities between
wet AMD and mCNV in the growth of macular new microvasculature in the choroid layer,
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only this SNP involved in the pathogenesis of wet AMD was previously reported to be associ-
ated with mCNV development.

Because the prevalence of HM varies among the populations, there may also be differences
between the genetic variants associated with CNV, and potential associations in other races
and other SNPs recently found to be associated with AMD require further analysis. The pur-
pose of this study was to determine the contribution of some of the most important
CNV-AMD-associated SNPs in a Spanish population and several recently described AMD-
associated SNPs located in 4 genetic regions (COL8A1, LIPC, CFI and APOE) to the develop-
ment of mCNV in a Spanish population.

Materials and Methods

Study subjects

Two hundred fifty unrelated highly myopic Spanish Caucasian patients (147 HM patients with
mCNV, 103 HM patients without mCNV (HMnoCNV) patients) and 181 controls were
recruited from various centers of the Red Temática de Investigación Cooperativa (RETICS).
The inclusion criteria for the HM group were spherical refractive error� -6.00 diopters (D) or
an axial length� 26 mm, and age over 50 years at the time of inclusion in the study. HM
patients were divided into two groups: one group with mCNV in at least 1 eye and the other
group without mCNV, who did not present any chorioretinal degeneration and had a visual
acuity over 20/32 in both eyes. The population based control group was composed of patients
aged over 50 years with spherical refractive error> -6.00 D without any pathology in the retina
who came to annual revision. The exclusion criteria were tractional maculopathy, and/or epir-
etinal membrane in the OCT or other diseases different from HM that may occur with CNV
(e.g. wet AMD, diabetic retinopathy, pseudoxantoma elasticum, presumed ocular histoplasmo-
sis syndrome, lacquer cracks due to trauma). Patients presenting macular drusen or patients
with a family history of AMD, known genetic diseases associated with myopia, such as Stickler
or Marfan syndrome, and any ocular surgery, were also excluded, with the exception of cataract
surgery.

All procedures used in this study conformed to the guidelines of the Declaration of Helsinki.
The Institutional Review Board and the Ethics Committee of Clínica Universidad de Navarra
approved the protocols used in this study. All patients were fully informed of the purpose and
procedures, and written consent was obtained from each patient. All cases underwent detailed
ophthalmologic examination, including visual acuity assessment, dilated slit-lamp biomicro-
scopy, automatic objective refraction, measurement of the axial length by A-scan ultrasound
(UD-6000, Tomey, Nagoya, Japan) or partial coherence interferometry (IOLMaster, Carl Zeiss
Meditec, Jena, Germany), color fundus photography, optical coherence tomography, and fluo-
rescein angiography. Controls underwent visual acuity assessment, mydriasis fundus examina-
tion, and measurement of refractive error and axial length.

Genotyping

We examined the available literature regarding genetic associations in AMD and the SNPs
showing the most significant associations were selected. Genomic DNA was extracted from
oral swabs using QIAcube (Qiagen, Hilden, Germany) and processed in the Laboratory of
Experimental Ophthalmology at the University of Navarra (Spain). A set of 10 SNPs in 4 previ-
ously identified AMD-associated genes (shown in S1 Table) were genotyped in the control,
HMnoCNV and mCNV cohorts using genomic DNA by allelic discrimination with validated
assays (TaqMan; Applied Biosystems, Foster City, CA, USA; S1 Table) and real-time PCR
(PE7300; Applied Biosystems), according to the manufacturer's instructions. None of the SNPs
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were in linkage disequilibrium except the SNPs in CFI, which have been classified as risk or
protective haplotypes [48,49]; therefore the haplotypes of this gene were analyzed.

Literature search strategy for meta-analysis

For the comparative study between our results and previous studies related with mCNV, we
conducted a meta-analysis of principal SNPs analyzed in this study. Potential articles were
identified by a systematic search of the ISI Web of Science, PubMed, and ScienceDirect data-
bases through June 09, 2016 using combinations of the following search terms: "collagen type
VIII alpha 1" OR " COL8A1", "polymorphism" OR "SNP" AND "CNV High myopia" without
language or publication date restrictions. All relevant publications and their reference were
manually screened to identify eligible studies (Fig 1). Selection criteria papers identified during
the literature search had to meet the following inclusion criteria for inclusion in our study: 1)
case-control or cohort design studies of humans; 2) evaluation of the association of COL8A1,
CFI and LIPC genes polymorphisms (rs13095226, rs669676, rs10033900, and rs10468017)
with neovascularization high myopia; 3) sufficient published data available for our team to esti-
mate the odds ratios (ORs) of different genotype frequencies; and 4) published original full-
text literature. Studies meeting the following criteria were excluded from the analysis: 1) insuf-
ficient reported data; 2) abstracts, review papers, and case-only studies; 3) duplication of previ-
ously published literature. Three investigators (Velazquez, Fernandez-Robredo, and Recalde)
independently extracted the data. Discrepancies between different investigators were resolved
by 2 other investigators (Garcia and Hernandez) to reach a consensus. The collected data
included: name of the first author, publication date, geographical location, numbers of cases
and controls, ethnicity, genotyping methods and matching variables (Table 1).

Statistical analyses

General characteristics (age, gender, refractive error, tobacco, HT and hypercholesterolemia)
of patients with HM (mCNV and HMnoCNV) and controls were tested using Student´s t-test
for the continuous variables age and refractive error, or chi-square test for the categorical vari-
ables sex, HTA, HC, and tobacco history. The frequencies of alleles, genotypes, and haplotypes
were calculated in all the groups and were compared using a chi-square test and Fisher’s exact
test and corresponding ORs were calculated. All SNPs analyzed in this study were in Hardy-
Weinberg equilibrium (S1 Table).

Fig 1. Flow chart for the selection of studies according to the criteria of this Meta-analysis.

doi:10.1371/journal.pone.0162296.g001
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Univariable logistic regression adjusted for all covariates was used to estimate the ORs and
95% confidence intervals (95% CI) using SNPStats software (Sole X et al., 2006). Analyses were
performed for each genetic variant independent of other variants using codominant, dominant,
recessive, and/or overdominant genetic models in base Akaike information, which chooses the
inheritance model that best fits the data. We also used a multivariate logistic regression model
to take into account all SNPs studied and environmental variables. Correction for multiple test-
ing was performed using the Bonferroni method. For SNPs showing a significant association
(rs13095226 and rs669676), to verify the influence of genotype on ophthalmological variables
(refractive power and axial length), independent regression analysis was performed. Statistical
analysis was conducted with SPSS 20.1 Software (SPSS Inc., Chicago, IL, USA). For all statisti-
cal tests, corrected p values of < 0.05 (two-tailed) were considered statistically significant. Sep-
arate meta-analyses were conducted on each of the 3 polymorphisms (rs669676, rs10033900
and rs10468017) determined from the articles during the systematic review. We used Z test to
judge the significance of the pooled ORs, and statistical significance was considered when
p < 0.05. Heterogeneity among included studies was evaluated by the 2-based test and the 2
index;< 0.10 or 2> 50% were considered statistically significant. The random effects model
was used to estimate pooled ORs when obvious heterogeneity was present; otherwise the fixed-
effects model was used. Significant publication bias was considered when p < 0.05. All statisti-
cal analyses were performed using STATA 12.0 software (StataCorp LP, College Station, TX,
USA).

Table 1. Main characteristics of eligible studies included in the Meta-analysis.

First Author Year mCNVn Controlsn Region Ethnicity Genotyping Method Matching

Leveziel et al. [47] 2012 71 196 France/USA Caucasian ABI Sex and Ethnicity

Miyake et al.[50] 2013 478 557 Japan Asian ABI Age, sex, and axial length

Velazquez Villoria et al. 2016 147 103 Spain Caucasian TaqMan Age,sex and ethnicity

doi:10.1371/journal.pone.0162296.t001

Table 2. Characteristics of the study population.

High myopia P-value 1 control group P-value 2

mCNV HMnoCNV No CNVNo HM-AMD

Number of patients 147 103 181

Age (Mean ± SD) 60.68 (±14.07) 58.58 (±13.85) ns 73.39 (±5.31) ***

Female Gender % 67.35% 69.90% ns 53.59% *

Axial Lenght (mm ± SD) 30.74 (±2.60) 29.81 (±2.61) ns 23.46 (±0.49) ***

Refractive power (Diopters ± SD) -13.30D (±4.25D) -12.84 (±4.21D) ns -1.77 (±0.93D) ***

Tobacco smokers 31.29% 27.22% ns 23.76% ns

Hypertension % 29.25% 23.33% ns 46.96% **

CNV, Choroidal Neovascularization; NA, not available; SD, Standard deviation.
1) P-value comparing HM-CNV+ with HM-CNV-
2) P-value comparing HM-CNV+ with Population based control group.

Significance:

ns p > 0.05;

* p < 0.05;

** p < 0.01;

***p < 0.001.

doi:10.1371/journal.pone.0162296.t002
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Results

The demographic characteristics of the study population are shown in Table 2. The mCNV
group showed no significant differences in age, gender, refractive error, axial length, tobacco
history, and hypertension with respect to the HMnoCNV group. Compared to the control
group, the mCNV group showed significant differences in gender (p < 0.05), very significant
differences in hypertension (p< 0.01), and highly significant differences in age, axial length,
and refractive power (p < 0.001).

Tables 3 and 4 show the allele and genotype frequencies, ORs, p-values, and corrected p-val-
ues for the candidate SNPs, associations with the mCNV vs HMnoCNV group and vs control
population. Univariate logistic regression analyses results were adjusted for age, gender, and
HT. The SNPs rs13095226 and rs669676 in COL8A1 showed a significant association with
mCNV. In SNP rs13095226, the C allele showed a significant difference between mCNV
patients and the HMnoCNV group [p = 0.034, OR = 2.0 (1.1–3.9)] but was no longer signifi-
cant after Bonferroni correction was performed (p = 0.30). Genotype analysis showed also sig-
nificant results in rs13095226 in the mCNV vs HMnoCNV groups in the recessive model
[p = 0.0097, OR NA (0.0-NA)], but were no longer significant after multiple testing correction
(p = 0.08). Furthermore, when mCNV patients were compared with the population-based con-
trol group (Table 4), both SNPs (rs13095226 and rs669676) were significantly associated with
high myopia, but no longer significant when multiple testing corrections were performed. For
the SNP rs669676, the recessive model of genotype analysis, the minor allele homozygotes (AA
versus GG-GA), showed significant differences in the mCNV group vs controls without the
HM group [p = 0.023, OR = 2.48 (1.12–5.49); however, Bonferroni correction revealed no asso-
ciation (p corrected = 0.20). Similarly, for rs13095226, allele C was related to a significant risk
of mCNV vs. in controls [p uncorrected = 0.016; OR = 2.2 (1.2–4.2); p corrected = 0.14]. Geno-
type analysis also showed significant results for the TT-CT genotypes versus CC, [p uncor-
rected = 0.0096 and OR = NA (0.0–NA) p corrected = 0.08]. The remaining SNPs evaluated
did not show a significant association with mCNV after adjusting for confounding factors.

rs13095226 was not included in the multivariate analysis because none of the HMnoCNV
participants showed the minor allele homozygote genotype (CC). Thus, only age and hyperten-
sion showed a significant association in the multivariable analysis between mCNV and
HMnoCNV [p = 0.027 OR = 0.45 (0.22–0.91), p = 0.011 OR = 0.43 (0.22–0.82) respectively]
(Table 5).

Based on the significant association of rs13095226 and rs669676 before applying Bonferroni
correction, we independently analyzed the ophthalmological parameters refractive power and
axial length to determine the influence of the genotype on the distribution of these variables
(Fig 2). Our results showed a significant association (p = 0.023) between the CT/CC genotype
of rs13095226 and a longer axial length (Fig 2A), but this association was not found with the
refractive power (Fig 2B). rs669676 showed no significant association either with axial length
or number of diopters (Fig 2C and 2D).

Furthermore, we evaluated the inferred haplotype frequencies in the CFI gene showing a
strong association with AMD in previous studies between the mCNV and HMnoCNV groups,
which are shown in Table 6. None of the haplotype frequencies were significantly different
after multiple testing corrections. Haplotype analyses between the mCNV group and the popu-
lation-based control group for the CFI gene showed no significant associations (data not
shown).

We also conducted a meta-analysis of the 3 principal SNPs identified in previous studies
(rs669676, rs10033900, and rs10468017). After systematic review, only two studies (Leveziel
et al. [47] and Miyake et al. [50]) met the review requirements. A separate meta-analysis of
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these 3 SNPs revealed that only the rs669676 SNP presented significant association with
mCNV (OR 1.47; IC95% 1.0–2.1) (Fig 3 and S2 Table). The rs10033900 showed high heteroge-
neity with I-squared values of 68.9% and we used the random-effect model to evaluate this
SNP, while the fixed effect model was used for rs10468017 and rs669676.

Discussion

CNV is a major cause of visual impairment in highly myopic patients and is the second leading
cause of neovascular maculopathy after AMD. CNV is a common process in both diseases [39]
and it can be difficult or impossible to distinguish between CNV resulting from excessive axial
elongation and CNV attributable to the etiology of wet-type AMD in highly myopic eyes

Fig 2. Axial length and refractive error of Col8A1 gene SNPs (rs13095226 and rs669676) genotypes.

(A-B) Axial length showed statistically significant differences between CC/CT vs TT genotypes of

rs13095226, whereas no differences were found for Refractive error. (C-D) Axial length and Refractive error

(respectively) did not show differences between GG/GA vs AA genotypes of rs669676.

doi:10.1371/journal.pone.0162296.g002

Table 5. Multivariable logistic regression analysis between mCNV and HMnoCNV.

B Sig. OR 95% CI

Lower Upper

mCNV vs HM No CNV

Tobacco (1) 0.848 0.006 2.33 1.27 4.28

Age -0.558 0.096 .57 .29 1.10

Reference: Good response.

B: multivariate logistic regression value, Sig: P-value significance (< 0.05), OR: Odds Ratio, CI 95%: 95%

confidence interval.

doi:10.1371/journal.pone.0162296.t005
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[39,54–56]. Thus, we hypothesized that SNPs associated with neovascularization in wet AMD
may have be related to mCNV.

Our previous study [45] of CFH and ARMS2 was conducted in a cohort> 30 years of age,
with subjects showing no significant differences. Recent studies have suggested the importance
of other genetic regions in the development of wet AMD. Thus, we evaluated 10 new AMD-
associated SNPs located in 4 different genes (COL8A1, LIPC, CFI and APOE) in an older
population.

Our results showed that only the COL8A1 gene was significantly associated with mCNV in
a Caucasian Spanish population before multiple analysis correction. In the SNP rs13095226,
the C allele showed OR = 2.0 for developing CNV in Spanish high myopic patients. For SNP
rs669676, the recessive model of genotype analysis, GG-GA versus AA showed similar risk ORs
vs the control group (OR = 2.4). These results indicate that this gene is important in the devel-
opment of myopic CNV. We verified the influence of this SNPs using quantitative ophthalmo-
logical variables. Our results showed that heterozygotes and minor allele homozygotes of
rs13095226 (dominant model, CT/CC) had significantly higher axial length than patients pre-
senting major allele homozygosis (TT). Furthermore our results showed that the rs13095226
genotype is associated with axial length (Fig 2A), but not with refractive power (Fig 2B). This
may be because refractive power is influenced not only by the axial length of the eye, but also
by the corneal keratometry and the lens. These results confirm the influence of this protein in
axial growth and thus CNV development resulting from excessive axial elongation.

COL8A1 encodes one of the two alpha chains of collagen type VIII, a major component of
ocular basement membranes such as Bruch's membrane and choroidal stroma [57]. Collagen
VIII is produced by muscle cells and macrophages in the vascular wall. This protein regulates

Table 6. Haplotype analyses of LD blocks in the CFI gene.

SNPs Haplotype Freq

mCNV

Freq

HMnoCNV

P-Value OR

rs11728699/rs6854876/rs7439493/

rs13117504

GCAG 0.444 0.507 1.00

TGGC 0.484 0.424 0.17 1.32 (0.89–

1.97)

GCGC 0.045 0.029 0.46 1.55 (0.48–

5.01)

TGAG 0.027 0.029 0.77 0.70 (0.05–

9.05)

rs10033900/rs11726949 CC 0.568 0.614 1.00

TC 0.356 0.382 0.35 1.22 (0.81–

1.85)

TT 0.045 0.035 0.8 0.86 (0.27–

2.72)

CT 0.015 0.024 0.78 0.79 (0.16–

4.02)

rs13117504/rs10033900 GC 0.4412 0.501 1

CT 0.370 0.331 0.32 1.25 (0.81–

1.92)

CC 0.139 0.137 0.49 1.23 (0.68–

2.22)

GT 0.049 0.031 0.72 1.23 (0.39–

3.90)

Freq mCNV: Frequency of Myopic Choroidal Neovascularization, Freq HMnoCNV: Frequency of High

Myopic eyes without Choroidal Neovascularization, P-value significance (<0.05), OR: Odds Ratio

doi:10.1371/journal.pone.0162296.t006
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Fig 3. Forest plots of the association of polymorphisms and susceptibility to mCNV. A) Impact of

rs669676 in mCNV. B) Impact of rs10033900. C) Impact of rs10468017.

doi:10.1371/journal.pone.0162296.g003
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matrix metalloproteinases activity and endothelial cell migration mediated by vascular endo-
thelial growth factor during angiogenesis. Col8A1 protein may lead to direct or indirect struc-
tural alterations in the Bruch’s membrane, which is a risk factor for mCNV. [58] Numerous
studies have investigated the association between alterations in genes encoding the different
collagen types and the development of HM, finding discrepant results between different popu-
lations[59–64]. Furthermore, many of the syndromes caused by alterations in collagen are
associated with the development of HM resulting from excessive axial elongation [65–69].
Taken together, our results and those obtained in other studies [44,47,51,70,71] indicate the
importance of COL8A1 in retinal angiogenesis, both in pathological myopia and AMD. This
may be related to alterations in COL8A1 which can alter its expression to favor angiogenesis in
these patients. This may be because proteins expressed by this gene stabilize the phenotype of
endothelial cells [72]. During angiogenesis, where the differentiated phenotype is lost, the con-
trol and regulation of type VIII collagen may play a key role in processes in which new blood
vessel formation is required and when excessive blood vessel formation is a pathological event
(neovascularization).

Leveziel et al [47] previously studied the SNP rs669676 and only found a significant associa-
tion with mCNV in multivariable analysis, which was no longer significant after correction for
multiple testing. In our study, the recessive model of genotype analysis of the SNP rs669676
showed significant differences in mCNV vs controls without the HM group. Validating the
results obtained by Leveziel et al, a comparison between highly myopic cohorts with or without
CNV in rs669676 frequencies showed no statistically significant differences, but meta-analysis
results of our study together with the Leveziel et al, showed a significant association of
rs669676 with with mCNV. So, we confirmed a statistically significant association of the
rs669676 validating the importance of the COL8A1 gene in the development of mCNV.

One of the most important systems related to the development of wet AMD is the comple-
ment system. In this study, we analyzed complement factor I (CFI), which showed no associa-
tion both individually and as CFI SNPs haplotypes. This may be because the complement
system is more closely associated with the etiology of AMD and less with that of HM. In AMD,
waste substances excessively accumulate between the layers of the retina, leading to chronic acti-
vation of the complement system [73]. However, HM is caused by excessive axial eye growth
and does not appear to be related to chronic activation of the complement system as in AMD.

Moreover, the results of the studies that analyzing the association between CFI and mCNV
have not been replicated. Leveziel et al reported an increased risk of mCNV associated with the
T allele of rs10033900, which is located 2781 base pairs upstream of the 3´-untranslated region
of the CFI gene, in a Caucasian US population with European ancestry [47]. However, Miyake
et al found no association between this SNP and mCNV in a Japanese population [50]. Because
the results of the previous studies were not consistent, we evaluated all haplotypes in the CFI
gene previously found to be associated with CNV in AMD [48,74]. We found no association
between this gene and mCNV.

Previous studies have not shown consistent results. We performed a meta-analysis based on
previously published data, but found no significant associations. The large heterogeneity (I-
squared 68.9%) observed in the meta-analysis can be explained by the different ethnic origins
of the populations studied, which may have led to different responses of the SNPs. Additional
studies are needed to elucidate the importance of these genes in the development of myopic
CNV, particularly those focused on rs13095226 of COL8A1. This is the first study examining
this SNP in mCNV; a previous study evaluated wet AMD and found no significant association
in Chinese patients [75]. There are at least two main strengths to this study. First, all partici-
pants were from a similar ethnic background, reducing the heterogeneity in different popula-
tions. Second, the mCNV group was compared not only with HM without CNV patients, but
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also with a population-based control group. Both HM cohorts had a high myopic genetic pro-
file; therefore, we compared these cohorts with a control group of very advanced age to rule out
the genetic predisposition for developing CNV (both mCNV and AMD-CNV). However, there
were some limitations to this study. First, the sample size was low, and no cases had the CC
genotype for rs13095226 in the population-based control group or HM without CNV. Thus,
multivariate logistic regression analysis of this genetic region could not be conducted. How-
ever, allele analysis showed significant differences in the C allele of SNP rs13095226 in mCNV
patients vs the HMnoCNV group, and further studies with a larger sample size are needed to
replicate these genes and other candidate loci for this important vision-threatening complica-
tion of HM. The second limitation is that the groups showed demographic differences particu-
larly in terms of age, but these subjects were included to obtain a population-representative
control group with lower expectations of having CNV. Furthermore, to minimize the possible
influence of these differences, we adjusted for all confounding factors using logistic regression
analysis and found no new significant associations.

In summary, the results of this study showed that age and HT were significantly associated
with CNV development in highly myopic Caucasian patients and that COL8A1 plays an
important role in axial elongation of the eye and possibly in the CNV. The function of COL8A1
in remodeling of the extracellular matrix of the sclera may involve genetic pathways in the
development of CNV in highly myopic eyes in elderly Caucasian populations. Furthermore,
additional studies are needed to determine whether any of the SNPs analyzed are associated
with the size of the CNV.

Supporting Information

S1 Table. Characteristicsof the Candidate SNPs genotyped. SNP: Single nucleotide polymor-
phism (dbSNP1D); MAF: Minor allele frequency, HWE: exact test for Hardy-Weinberg equi-
librium. �Excluded from analysis because all patients showed CC genotype.
(DOCX)

S2 Table. Meta-analysis results of three SNPs (rs669676, rs10033900 and rs10468017) in
mCNV. OR; odds Ratio, D+L pooled OR; random effect model OR, I-V pooled ES; fixed effect
model OR, d.f.; degree of freedom.
(DOCX)
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