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Abstract

Understanding the energetic requirement of brain cells during resting state and

during high neuronal activity is a very active research area where mathematical

models have contributed significantly by providing a context for the interpre-

tation of the experimental results. In this thesis, we present three new com-

putational predictive mathematical models to elucidate several dynamics in the

brain, comprising electrophysiological activity, cellular metabolism and hemody-

namic response. Many computational challenges had to be addressed, mostly due

to the very different characteristic times at which the electrical, metabolic and

hemodynamic events occur.

The first part of the thesis proposes a novel predictive mathematical electro-

metabolic model connecting the electrophysiological activity and the metabolism

through a double feedback mechanism based on energy demand and production.

This model sheds light on the role of the glial potassium cleaning in brain en-

ergy metabolism by integrating a four compartment metabolic model with one

describing in details the electrical activity. The results of computed experiments

performed with this model for different protocols, namely awake resting state,

transitions between resting state and neuronal activation and ischemic episodes

are in agreement with experimental observations.

In the second part of the thesis, the electro-metabolic model is expanded

to comprise the brain hemodynamic response. This is attained through a triple

feedback mechanism between the electrophysiology, metabolism and a three com-

partment hemodynamic model tracking the changes of cerebral blood flow and

cerebral blood volume through arteries, capillaries and veins. During neuronal ac-

tivation, the increase in extracellular potassium concentration triggers an increase

in the cerebral blood flow and concurrently vasodilation, ensuring the supply of

nutrients necessary for the metabolic response to sustain the increased energy

demand. The ensuing hemo-electro-metabolic model provides a better insight on

the transitions between resting state and neuronal activation.

In the third and last part of the thesis, we propose a variant of the electro-
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ABSTRACT iv

metabolic model that adequately describes the changes in the brain in connec-

tion with cortical spreading depression (CSD) waves. In addition the dynamics

of sodium and potassium, the new model accounts for chloride dynamics, the

glutamate-glutamine cycle, as well as neuronal swelling accompanied by shrink-

age of extracellular space. As illustrated with computed experiments, with this

model it is possible to follow simultaneously the changes in ionic homeostasis, the

alterations in the volumes of the cellular compartments and of the extracellular

space, and large modifications in brain metabolism during cortical spreading de-

pression waves. The model predictions, in agreement with findings reported in

the experimental literature, show a large decrease in glucose and oxygen concen-

tration and a significant increase in lactate concentration during the passing of

cortical spreading depression waves.
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Resumen

A pesar de que el peso promedio del cerebro representa tan sólo el 2% del cuerpo

humano, su elevado consumo energético ha cautivado el interés de diferentes

comunidades cient́ıficas en las últimas décadas. Como resultado de muchos años

de investigación, hoy en d́ıa está se suele atribuir la mayor parte de la enerǵıa

consumida por el cerebro a las bombas ionicas, al mantenimiento del potencial

de reposo y a la propagación los potenciales de acción [1, 2].

A pesar de que en un principio, la mayor parte del interés cient́ıfico estaba

enfocado al estudio de las neuronas, en los últimos años, la importancia del

estudio de los astrocitos ha sido reconocida [3, 4, 5, 6, 7]. Más especificamente,

los astrocitos son destacados por jugar un papel determinante a la hora de reducir

la concentración extracelular del potasio durante la activación neuronal, isquemia

o depresión cortical propagada. Asimismo, muy recientemente se ha propuesto

que debido a la proximidad de los pies terminales de los astrocitos al capilar,

estas céelulas pueden tener un rol significativo en la regulación de la respuesta

del flujo sangúıneo cerebral [1].

Las técnicas de neuroimagen disponibles hoy en d́ıa permiten visualizar difer-

entes aspectos del cerebro por separado, por lo cual es dif́ıcil de elucidar cómo

el cerebro coordina sus diferentes funciones. La actividad eléctrica del cerebro

se puede observar mediante electroencefalograf́ıa (EEG), magnetoencefalograf́ıa

(MEG) o electrocorticograf́ıa. Por otro lado, a través de la tomograf́ıa por emisión

de positrones (PET) se puede visualizar cambios en el metabolismo, mientras que

la respuesta del flujo sangúıneo se puede determinar a través de la imagen por

resonancia magnética funcional (fMRI) y, en particular, mediante la Imagen de

contraste dependiente del nivel de ox́ıgeno en la sangre (BOLD). En los últimos

20 años, los modelos matemáticos se han convertido en una herramienta impor-

tante en el estudio de diversas condiciones adecuadas y patológicas del cerebro.

En esta disertación se proponen tres modelos matemáticos que proporcionan una

visión hoĺıstica sobre los diferentes procesos que ocurren en el cerebro.

Una de las principales contribuciones de esta disertación se centra en el de-

1



RESUMEN 2

sarrollo de un modelo Hemo-Electro-Metabólico integrado, que coordina y sin-

croniza tres funciones cerebrales diferentes pero conectadas. El modelo propor-

ciona una comprensión más completa de cómo la actividad eléctrica cerebral, su

metabolismo y su respuesta hemodinámica interactúan, como se regulan mutu-

amente y cómo el deterioro de uno de estos aspectos puede provocar una inter-

rupción de los demás.

Es sabido que la actividad electrofisiológica del cerebro sólo se puede man-

tener si el conjunto de procesos bioqúımicos, que tienen lugar en el metabolismo,

es capaz de producir una cantidad adecuada de enerǵıa (ATP), que puede variar

sustancialmente según el nivel de activación neuronal. Por otro lado, la canti-

dad de enerǵıa producida por el metabolismo depende de la disponibilidad de

diferentes especies bioqúımicas y, por lo tanto, también de la cantidad de flujo

sangúıneo, ya que éste transporta glucosa y ox́ıgeno.

El acoplamiento de la electrofisioloǵıa y el metabolismo se puede encontrar

en varios art́ıculos publicados en los últimos años, tanto en la literatura sobre el

metabolismo cerebral [8, 9, 10] como en la literatura sobre la actividad electrofi-

siológica [11]. Por ejemplo, en [8], Aubert et al. incluyen en su modelo metabólico

el costo de la bomba de sodio y potasio, mientras que en [9], Cloutier et al. agre-

gan el costo del ciclo de glutamato-glutamina al modelo metabólico propuesto.

Asimismo, varios modelos relacionados con la actividad electrofisiológica, tienen

en cuenta, al menos parcialmente, la disponibilidad de algunos de los metaboli-

tos. Por ejemplo, en el modelo propuesto por Wei et al. en [11], que capta

la actividad electrofisiológica del cerebro durante diferentes patrones de disparo

neuronal, la actividad de la bomba de sodio y potasio está expresada con respecto

a la concentración disponible de ox́ıgeno.

En este trabajo, proponemos un modelo de doble retroalimentación, que no

sólo incluye el costo energético de la bomba de sodio y potasio en el metabolismo,

sino también interpone la respuesta metabólica a este costo energético. Una de

las principales dificultades en el desarrollo de dicho modelo acoplado se debe a

que los distintos procesos caracteŕısticos tienen diferentes órdenes de magnitud

en las escalas de tiempo: mientras la actividad electrofisiológica del cerebro se

ejecuta en milisegundos, la contraparte metabólica es mucho más lenta, con una

dinámica del orden de minutos. Debido a que estas escalas de tiempo son tan

drásticamente diferentes, se requiere una atención especial y un manejo computa-

cional adecuado, por lo cual desarrollamos un algoritmo de integración de tiempo

para resolver el sistema acoplado.

Esta disertación está estructurada en cinco caṕıtulos: los dos primeros caṕıtulos

están dedicados a la descripción del modelo electrofisiológico y metabólico. El

acoplamiento electro-metabólico se desarrolla en el Caṕıtulo 3, donde abordamos
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las dificultades matemáticas que surgen de las diferentes escalas de tiempo de

los dos procesos. En el Caṕıtulo 4 explicamos cómo enriquecer el modelo agre-

gando una descripción detallada de la respuesta del flujo sanguneo cerebral du-

rante la activación neuronal, acoplando nuestro modelo Electro-Metabólico a un

modelo hemodinámico en el que los cambios en el flujo sangúıneo se rastrean

a través de tres compartimentos diferentes: arterias, capilares y venas. Como

la respuesta del flujo sangúıneo es más lenta que la respuesta electrofisiológica

y metabólica, introducimos una escala de tiempo adicional en nuestro enfoque

multiescalar. El último caṕıtulo de esta tesis está dedicado a un nuevo mod-

elo matemático electro-metabólico diseñado espećıficamente para investigar la

depresión cortical propagada (CSD) y las grandes alteraciones que estas ondas

producen en las concentraciones iónicas, en las concentraciones de metabolitos y

la respuesta hemodinámica. Debido a los cambios masivos provocados por CSD,

reemplazamos el modelo de actividad electrofisiológica descrito en el Caṕıtulo 1

por un modelo más complejo espećıficamente diseñado para simular las ondas de

depresión cortical propagada (CSD). Posteriormente, abordamos el acoplamiento

de este modelo con el modelo metabólico presentado en el Caṕıtulo 2, en el cual

además consideramos los grandes cambios en las fracciones de volumen durante

el paso de las ondas CSD.

El primer caṕıtulo de esta tesis está dedicado a la descripción de la actividad

electrofisiológica del cerebro. La primera sección consiste en una revisión de los

modelos matemáticos que capturan la actividad eléctrica, a partir del modelo

clásico de Hodgkin-Huxley, y continuando con el modelo de Fitzhugh-Nagumo,

el modelo de Hindmarsh-Rose y el modelo de Izhikevich. El modelo electrofi-

siológico utilizado en los primeros cuatro caṕıtulos de esta tesis está presentado

en detalle en la segunda sección del primer caṕıtulo. Este modelo, que fue prop-

uesto originalmente por Cressman et al. [12, 13] ha sido modificado para obtener

una concentración extracelular de potasio para el cerebro en reposo de aprox-

imadamente 3 mM, como se sugiere en la literatura experimental más reciente

[14]. Luego, calibramos este modelo de manera que pueda producir la frecuencia

de 4 Hz caracteŕıstica de la neurona en reposo, y desarrollamos un mecanismo

de activación neuronal mediante el aumento temporal de las conductancias de

fuga de sodio y potasio. Los resultados obtenidos en estas simulaciones están

analizados para tres frecuencias diferentes que caracterizan el estado de reposo

alfa: 8 Hz, 10 Hz y 12 Hz. Los cambios a lo largo del tiempo en el potencial

de la membrana, la concentración de potasio extracelular, la concentración del

sodio intracelular y las variables de activación correspondientes se presentan en

la sección de resultados del Caṕıtulo 1.

El segundo caṕıtulo, dedicado al metabolismo cerebral, inicia con una intro-
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ducción a la modelación matemática asociada a los modelos metabólicos espacial-

mente agrupados en múltiples compartimentos; luego, hacemos una descripción

matemática de las tasas de transporte y de los flujos de reacción, y proseguimos

con una descripción de las principales reacciones bioqúımicas consideradas. Adi-

cionalmente, presentamos una breve reseña de dos modelos metabólicos muy re-

conocidos: el modelo de Aubert y Costalat [8] y el modelo de Cloutier [9], ambos

incluyen parcialmente el costo energético de la bomba de sodio y potasio. En

la cuarta sección del Caṕıtulo 2 presentamos el modelo metabólico utilizado a lo

largo de esta tesis; describimos la dinámica de las concentraciones de metabolitos

en los cuatro compartimentos y presentamos la descripción matemática de los

flujos de transporte entre los diferentes compartimentos y los flujos de reacción

en los dos compartimentos celulares.

El modelo metabólico que consideramos está constituido por 26 ecuaciones

diferenciales en las cuales se rastrean las especies bioqúımicas en cuatro com-

partimentos: sangre, neurona, astrocito y espacio extracelular. El sistema resul-

tante de ecuaciones diferenciales es muy ŕıgido y, por lo tanto, requiere atención

especial. En primer lugar, garantizamos la positividad de nuestras 26 especies

bioqúımicas expresándolas en forma exponencial y, posteriormente, desarrollamos

el marco matemático para resolver numéricamente dicho sistema. En particular,

utilizamos una familia de métodos impĺıcitos conocidos como las fórmulas de difer-

enciación hacia atrás (BDF, por sus siglas en inglés), diseñadas espećıficamente

para este tipo de sistemas. Posteriormente, calibramos nuestro modelo, eligiendo

la enerǵıa necesaria para los procesos de mantenimiento de manera que el ı́ndice

de ox́ıgeno glucosa (OGI), definido como la división entre el flujo de ox́ıgeno y

el flujo de glucosa entre la sangre y el espacio extracelular, caiga en el rango

sugerido en la literatura durante el estado de reposo alfa y durante la activación

neuronal sostenida. A lo largo de las simulaciones realizadas en este caṕıtulo,

el costo energético proporcionado por la actividad electrofisiológica se mantiene

constante y está determinado por el modelo descrito en el Captulo 1, para cuatro

niveles diferentes de activación: 8 Hz, 10 Hz, 12 Hz y 90 Hz. A continuación,

realizamos dos simulaciones en las cuales describimos la respuesta metabólica a

la transición del sistema de un estado de reposo de 8 Hz a un peŕıodo de tres min-

utos de activación neuronal correspondiente a una frecuencia de 90 Hz, seguido

de otro perodo de disparo neuronal de 8Hz. En el primer caso, correspondiente

a un experimento in vitro, el flujo sangúıneo se mantiene constante a lo largo de

la simulación, mientras que durante el segundo experimento aumentamos el flujo

sangúıneo un 30% durante el peŕıodo de activación neuronal, protocolo que corre-

sponde a un análisis in vivo. La última sección muestra los resultados obtenidos

para los dos protocolos de manera comparativa y de acuerdo con la literatura
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experimental.

El tercer caṕıtulo describe el modelo electro-metabólico de doble retroali-

mentación. En este caṕıtulo presentamos el método por el cual, según el con-

sumo y la demanda de ATP, realizamos el acoplamiento entre el modelo de ac-

tividad electrofisiológica y el modelo metabólico. Las diferentes escalas de tiempo

empleadas por los dos modelos requieren una consideración especial: en la ter-

cera sección describimos el enfoque computacional multiescala que desarrollamos.

Nuestro modelo ha sido probado en diferentes escenarios: primero consideramos

activaciones neuronales consecutivas, separadas por diferentes peŕıodos de re-

cuperación y evaluamos cómo la duración del peŕıodo de recuperación afecta la

segunda activación neuronal. El segundo protocolo simula un episodio isquémico,

durante el cual el flujo sangúıneo muestra una disminución del 90% durante un

peŕıodo de 90 segundos y en el tercero, un episodio isquémico es seguido por un

peŕıodo de activación neuronal. Para todos estos casos, mostramos los cursos

de tiempo del potencial de la membrana, las concentraciones iónicas, las con-

centraciónes de los metabolitos principales y las tasas de transporte y reacción.

Además, para comparar los resultados obtenidos con aquellos de la literatura,

mostramos el curso temporal del ı́ndice de ox́ıgeno-glucosa que hemos obtenido

en cada caso.

La hemodinámica del cerebro es el tema del Caṕıtulo 4, en cuya introducción

describimos los mecanismos básicos de la imagen por resonancia magnética fun-

cional (fMRI) y la imagen de contraste dependiente del nivel de ox́ıgeno en la san-

gre (BOLD) destacando además algunos debates abiertos sobre el tema en la liter-

atura. Para completar, ofrecemos una breve revisión de los modelos matemáticos

del flujo sangúıneo cerebral, incluido el modelo de Buxton [15, 16, 17] y un modelo

reciente de tres compartimentos de Barrett et al. [18]. Por otro lado, acoplamos

una extensión del modelo de Barret et al., que ha sido recientemente propuesta en

[19, 20], a nuestro modelo electro-metabólico que hemos descrito en el Capíıtulo

3 y expresamos el est́ımulo vasodilatador en términos de la concentración ex-

tracelular de potasio. Las predicciones calculadas por este modelo hemo-electro-

metabólico con triple retroalimentación son presentadas en la última sección para

dos protocolos: uno en el cual el estado de reposo es seguido por un periodo de

activación neuronal y otro donde hay dos activaciones neuronales consecutivas.

Nuestros resultados están en concordancia con la literatura más reciente.

En el Caṕıtulo 5, se propone un nuevo modelo matemático para investigar

los cambios en la actividad eléctrica y metabólica durante la depresión cortical

propagada (CSD), donde las ondas de depolarización celular, que se propagan

lentamente, están acompañadas del silenciamiento neuronal y de cambios rad-

icales en la homeostasis iónica. Después de una breve introducción sobre las
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ondas de depresión cortical propagada y de las alteraciones extremas que se pro-

ducen en las concentraciones iónicas, la morfoloǵıa celular, el metabolismo y la

hemodinámica, presentamos una breve revisión de algunos modelos matemáticos

que generan ondas de depresión cortical propagada. En particular, nos referimos

al modelo de Wei et al. [11] y al modelo de Huguet et al. [21]. En la tercera

sección de este caṕıtulo, proponemos un nuevo modelo, basado en el trabajo de

Hubel et al. en [22], espećıficamente diseñado para capturar la actividad electrofi-

siológica durante la CSD. Además, describimos cómo los parámetros del modelo

son calibrados para lograr el disparo a las frecuencias deseadas y cómo se im-

plementa el acoplamiento de este nuevo modelo electrofisiológico con el modelo

metabólico descrito en el Caṕıtulo 2. Para tener en cuenta los grandes cambios

morfológicos que se producen durante el paso de las ondas de depresión corti-

cal propagada, nuestro modelo electro-metabólico de CSD asume fracciones de

volumen variables tanto en el modelo de actividad electrofisiológica como en el

metabólico. Los resultados obtenidos, al simular las ondas de CSD con nue-

stro modelo electro-metabólico de CSD, capturan no sólo los grandes cambios en

las concentraciones iónicas proporcionadas por aumentos masivos en la concen-

tración extracelular de potasio y en la concentración intracelular de sodio, sino

también la caracteŕıstica metabólica observada t́ıpicamente durante la CSD: una

disminución significativa en la glucosa y un aumento masivo en la concentración

de lactato. Nuestro modelo predice, de acuerdo con los hallazgos experimentales

reportados en la literatura, una contracción pronunciada del espacio extracelular,

debido a la expansión de los compartimentos celulares.



Summary

The sizable energetic consumption of human brain, when considering its relatively

small weight of approximately 2% of an average human body, has captivated the

interest of different scientific communities for the past few decades. As a result

of many years of investigation on brain energetics, today it is generally agreed

that most of the energy consumed by the brain goes on driving the ionic pumps,

on maintaining the resting potential and on propagating action potentials [1, 2].

While most of the scientific interest at first was directed towards studying

neurons, in the last years, the essential role of astrocytes in the brain has been

acknowledged [3, 4, 5, 6, 7]. More specifically, astrocytes are credited with playing

a crucial role in cleaning the large concentration of extracellular potassium in the

wake of neuronal activation, ischemic events or cortical spreading depression. In

addition, recently it was proposed that due to the proximity of the astrocytic

endfeet to the capillary, they may have a very significant role on regulating the

cerebral blood flow response [1].

The neuroimaging modalities currently available visualize different aspects

of the brain separately, thus making it difficult to elucidate how the brain co-

ordinates its different functions. Brain electrical activity is observed through

electroencephalography (EEG), magnetoencephalography (MEG) or electrocor-

ticography (ECOG). Positron emission tomography (PET) monitors metabolic

events, while the blood flow response is determined via functional MRI and in

particular through the blood oxygenation dependent signal (BOLD). In the last

20 years, mathematical models have become an important tool in studying var-

ious healthy and pathologic conditions in the brain. This thesis proposes three

new mathematical models to provide a holistic view over the different processes

occurring in the brain.

One of the main achievements of this thesis is an integrated Hemo-Electro-

Metabolic model, that coordinates and synchronizes three different, yet con-

nected brain functions. The model provides a more complete understanding of

how brain electrical activity, its metabolism and its hemodynamic response in-

7
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teract, how they are mutually regulated and how the impairment of one of these

aspects can lead to a disruption of the other ones.

It is known that brain electrophysiological activity can only be sustained if

the ensemble of biochemical processes taking place in the metabolism is able to

produce an adequate quantity of energy (ATP), which can vary substantially

depending on the level of neuronal activation. In turn, the amount of energy pro-

duced by metabolism depends on the availability of different biochemical species

and therefore, also on the amount of blood flow, as it transports glucose and

oxygen.

Coupling the electrophysiology and metabolism can be found in a number of

articles published in recent years, both in the literature regarding brain metabolism

[8, 9, 10] and the literature regarding electrophysiological activity [11]. For ex-

ample, in [8], Aubert et al. include in their metabolic model the cost of the

sodium potassium pump and in [9], Cloutier et al. add the cost of the glutamate-

glutamine cycle to the metabolic model they developed. On the other hand,

various models concerning the electrophysiological activity, take into account, at

least in part, the availability of some of the metabolites. For example, in the

model proposed by [11] in Wei et al., able to capture brain electrophysiological

activity and different firing patterns, the activity of the sodium potassium pump

is expressed with respect to the available concentration of oxygen.

In this thesis we propose a double-feedback model, which not only accounts

for the energetic cost of the sodium potassium pump in the metabolism, but also

for the metabolic response to this energetic cost. A major difficulty in develop-

ing such a coupled model comes from the different orders of magnitude in the

time scales of the characteristic processes: while brain electrophysiologic activity

runs at milliseconds, the metabolic counterpart is much slower, with dynamics

of the order of minutes. These dramatically different time scales require special

attention and adequate computational handling, which we address by developing

a time integration algorithm to solve the coupled system.

This thesis is structured in five main chapters: the first two chapters are

devoted to the description of the electrophysiologic and the metabolic model.

The Electro-Metabolic coupling is discussed in detail in Chapter 3, where we

address the mathematical difficulties arising from the different time scales of the

two processes. Chapter 4 describes how to enrich the model by adding a de-

tailed description of the cerebral blood flow response during neuronal activation,

by linking our Electro-Metabolic model to a hemodynamic model in which the

changes in blood flow are tracked through three different compartments: arter-

ies, capillaries and veins. As the blood flow response is slower than the electro-

physiologic and metabolic response, one additional time scale is introduced in
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our multiscale approach. The last chapter of this thesis is dedicated to a novel

electro-metabolic mathematical model specifically designed to investigate corti-

cal spreading depression (CSD) and the large changes which occur in the ionic

concentrations, metabolites concentrations and hemodynamic response. Due to

the massive alterations triggered by CSD, we replaced the electrophysiological

activity model described in Chapter 1, with a more complex model, specifically

taylored for simulating CSD. We then address the coupling of this model with

the metabolic model presented in Chapter 2, in which we account also for the

large changes in the volume fractions during the passing of CSD waves.

The first chapter of this thesis is devoted to describing the brain electro-

physiological activity. The first section consists of a review of the mathematical

models capturing electrical activity, starting from the classical Hodgkin-Huxley

model, and continuing with Fitzhugh-Nagumo model, Hindmarsh-Rose model

and Izhikevich model. The electrophysiologic model used in the first four chap-

ters of this thesis is described in detail in the second section of the first chapter.

This model, which was originally proposed by Cressman et al. [12, 13], was mod-

ified to match an extracellular potassium concentration for the brain at rest of

approximately 3 mM, as suggested in the most recent experimental literature

[14]. We calibrated this model so that it can produce the frequency of 4 Hz

characteristic to the neuron at rest, and we developed a mechanism of inducing

neuronal activation by temporarily increasing the leak conductances of sodium

and potassium. The results obtained in these simulations are presented for three

different frequencies characterizing the alpha awake resting state 8 Hz, 10 Hz and

12 Hz. The changes over time in the membrane potential, concentration of extra-

cellular potassium, intracellular sodium and the corresponding gating variables

are presented in the results section of Chapter 1.

The second chapter dedicated to brain metabolism, starts with an introduc-

tion of mathematical modeling of spatially lumped metabolic models featuring

multiple compartments, the mathematical description of the transport rates and

reaction fluxes, and continuing with a description of the main biochemical reac-

tions we are considering. A short review of two well known metabolic models

follows: the Aubert and Costalat model [8] and the Cloutier model [9], both of

which partially include the energetic cost of the sodium potassium pump. In the

fourth section of Chapter 2 we introduce the metabolic model [41] used through-

out this thesis; we describe the dynamics of the metabolites concentrations in the

four compartments and we present the mathematical description of the transport

fluxes between the different compartments and the reaction fluxes in the two

cellular compartments. In summary, the metabolic model we consider consists

of 26 differential equations in which the biochemical species are tracked in four
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different compartments: blood, neuron, astrocyte and extracellular space. The

resulting system of differential equations is very stiff, and therefore requires spe-

cial attention. Therefore, we first guarantee the positivity of our 26 biochemical

species by expressing them in exponential form, and we develop the mathemat-

ical framework to numerically solve such a stiff system. We use a family of im-

plicit methods known as the Backward Differentiation Formulae (BDF) methods,

specifically designed for stiff systems. We then calibrate our model, by choosing

the household energy such that the oxygen glucose index (OGI) index, defined as

the ratio between the flux of oxygen and the flux of glucose between the blood

and the extracellular space, falls in the range reported by the literature during

alpha awake resting state and during sustained neuronal activation. Through-

out the simulations performed in this chapter, the energetic cost provided by

the electrophysiological activity was kept constant and was determined from the

model described in Chapter 1, for four different levels of activation: 8 Hz, 10 Hz,

12 Hz and 90 Hz. We perform two computed experiments in which we describe

the metabolic response to the system transitioning from an awake resting state

of 8 Hz to a a period of three minutes of neuronal activation corresponding to a

frequency of 90 Hz, followed by another period of 8Hz neuronal firing. In the first

case we considered, the blood flow is kept constant throughout the experiment,

corresponding to an in vitro experiment, while during the second experiment we

increase the blood flow by 30% during the neuronal activation period, protocol

which corresponds to an in vivo case. The last section shows the results obtained

for the two protocols in a comparative manner and agree with the experimental

literature.

The third chapter describes the double feedback Electro-Metabolic model. In

this chapter we describe the manner in which, based on the ATP consumption and

ATP demand, we perform the coupling between the electrophysiological activity

model and the metabolic model. The different time scales employed by the two

models, required special consideration: in the third section we describe the ad

hoc multiscale computational approach we developed. Our model is tested in

various situations: we first consider consecutive neuronal activations, separated

by different recovery periods and we assess how the duration of the recovery

period impacts the second neuronal activation. The second protocol simulates an

ischemic episode, during which the blood flow exhibits a 90% decay for a period

of 90 seconds and in the third one, an ischemic episode is followed by a neuronal

activation period. For all these cases, we show the time courses of the membrane

potential, the ionic concentrations, the concentration of the main metabolites,

the transport rates and the reaction rates. In addition, for comparison with the

experimental literature, we show the time course of the oxygen glucose index we
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obtained in each case.

Brain hemodynamics is the topic of Chapter 4, where in the introduction

section, we describe the basic mechanisms of functional Magnetic Resonance

Imaging (fMRI) and Blood Oxygenation Level Dependent (BOLD) highlight-

ing some open debates in the literature. For completeness, we provide a short

review of mathematical models of cerebral blood flow response, including the

Balloon Model [15, 16, 17] and a recent three compartment model by Barrett et

al. [18]. We couple an extension of the latter recently proposed in [19, 20] to our

Electro-Metabolic model introduced in Chapter 3 and we express the vasodila-

tory stimulus in terms of extracellular potassium concentration. The computed

predictions of this three way feed-back Hemo-Electro-Metabolic model are pre-

sented in the last section for two protocols: one where resting state is followed by

a period of neuronal activation and one where there are two consecutive neuronal

activations. Our results and are in agreement with the most recent literature.

Chapter 5 proposes a new mathematical model for investigating the changes

in electric and metabolic activity during cortical spreading depression (CSD),

where slowly propagating waves of cellular depolarizations are accompanied by

neuronal silencing and extreme changes in the ionic homeostasis. After a short

introduction to CSD waves and the extreme alterations they produce in the ionic

concentrations, cellular morphology, metabolism and hemodynamics, we present

a brief review of some mathematical models generating cortical spreading de-

pression waves. In particular, we refer to the Wei model [11] and Huguet model

[21]. In the third section of this chapter we propose a new model, based on

the work of Hubel et al. in [23], specifically designed for capturing the electro-

physiological activity during CSD. In addition, we describe how we calibrated the

model parameters to attain firing at the desired frequencies and how the coupling

with the metabolic model described in Chapter 2 is implemented. To take into

account the very large morphologic changes which occur during the passing of

cortical spreading depression waves, our coupled CSD Electro-Metabolic model

assumes variable volume fractions in both the electrophysiological activity model

and in the metabolic one. The results obtained when simulating CSD waves with

our coupled CSD Electro-Metabolic model capture not only the large changes in

ionic concentrations given by massive increases in the concentration of extracellu-

lar potassium and intracellular sodium, but also the metabolic signature typically

observed during CSD: a significant decrease in glucose and a massive increases

in lactate concentration. Our model predicts, in agreement with experimental

findings reported in the literature, a pronounced shrinkage of the extracellular

space, due to the swelling of the cellular compartments.
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Chapter 1

Electrophysiology

Brain electrophysiology is concerned with the study of the electrical activity of

neurons. In the recent years, mathematical modelling and computer simulations

have become an essential tool in uncovering fundamental mechanisms in neuro-

science: numerous mathematical models have been developed for describing a

wide range of phenomena: from characterizing the biophysical mechanisms of

current flow through individual ion channels to modeling the activity of large

populations of neurons [24]. This chapter provides an overview of mathematical

models for describing the electrical activity of the brain and the differences in the

ionic homeostasis during resting state and neuronal excitation periods. We begin

with a short review of the mathematical models for the brain electrophysiological

activity and we then concentrate on describing the electrophysiologic model we

are going to use throughout this thesis.

1.1 Review of electrophysiological models

In this section we present a general overview of the mathematical models to de-

scribe electrical activity in the brain, starting with the pioneering work by Sir

Alan Hodgkin and Sir Andrew Huxley for the ionic mechanisms underlying action

potentials. The next subsection presents the Fitzhugh-Nagumo model, reducing

the complexity of the Hodgkin-Huxley model while maintaining its essential char-

acteristics. Modifications of this model include the Hindmarsh Rose model and

the Izhikevich model, and we focus on their capacity of producing not only tonic

spiking behavior but also various bursting patterns.

13
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1.1.1 Hodgkin-Huxley model

The foundation of most of today’s electrophysiological models is the work of Sir

Alan Hodgkin and Sir Andrew Huxley [25, 26, 27], who in the middle of the

twentieth century, performed experiments on the squid giant axon and subse-

quently provided a description of the behaviour of the macroscopic ionic currents

with respect to changes in the sodium and potassium conductances in the axon

membrane.

Their discoveries led to the formulation of the Hodgkin-Huxley model (HH),

describing the dependency of the sodium and potassium conductances on voltage

and time. Every ion channel consists of one or more gates that regulate the

flow of ions through the channel [24]. In the squid axon there are three major

currents: the persistent potassium current, IK, with four activation gates, the

transient sodium current INa with three activation gates and one inactivation

gate and the Ohmic leak current, Ileak, carried mostly by chloride ions [28]. The

ionic currents are proportional to the maximum conductance characteristic to

each current (gNa, gK, gleak), multiplied by the difference between the membrane

voltage (V ) and the equilibrium voltage (VK, VNa, Vleak):

INa = gNa(V − VNa), IK = gK(V − VK), Ileak = gleak(V − Vleak).

Their sum represents the total ionic current Iion:

Iion = gNa(V − VNa) + gK(V − VK) + gleak(V − Vleak).

The empirical expressions found by Hodgkin and Huxley for the sodium and

potassium channel conductances are:

gNa = ḡNam
3h, gK = ḡKn

4, (1.1)

where n represents the open probability for the activation gate of potassium

channel, m is the open probability for the activation gate of sodium and h is the

inactivation gate for the sodium channel.

The Hodgkin-Huxley model consists of four differential equations, one de-
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scribing the change in membrane voltage over time and the others describing the

changes in the rate processes over time:

I = cm
dV

dt
+ Iion, (1.2)

dn

dt
= αn(V )(1− n)− βn(V )n, (1.3)

dm

dt
= αm(V )(1−m)− βm(V )m, (1.4)

dh

dt
= αh(V )(1− h)− βh(V )h, (1.5)

where αi, βi for i = {n,m, h} are dimensionless rate constants corresponding to

each of the gates; their expressions are listed in Table 1.1.

w m h n

αw(V ) 0.1
25− V

exp((25− V )/10)− 1
0.07 exp(−(V/20) 0.01

10− V
exp ((10− V )/10)− 1

βw(V ) 4 exp(−V/18)
1

1 + exp((30− V )/10)
0.125 exp(−V/80)

Table 1.1: Gating variables: voltage-dependent saturation functions for Hodgkin-
Huxley model.

In the original work by Hodgkin and Huxley [25, 26, 27], the parameters of the

model (see Table 1.2) were chosen such that the resting potential is approximately

0, and hence the membrane potential was shifted by 65 mV.

Name Symbol Value Units

Membrane capacitance cm 1 µF/cm2

Applied current Iion 0 µA/cm2

Sodium Nernst equilibrium potential VNa 120 mV
Potassium Nernst equilibrium potential VK -12 mV
Leak Nernst equilibrium potential Vleak 10.6 mV

Sodium maximal conductance ḡNa 120 mS/cm2

Potassium maximal conductance ḡK 36 mS/cm2

Leak maximal conductance gleak 0.3 mS/cm2

Table 1.2: Parameters values in HH model.

Figure 1.1 shows the resulting action potential and the gating variables for

the choice of parameters given in Table 1.2. In this simulation, the stimulus
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I = 2.5 µA/cm2 was applied at time t = 5 milliseconds and had a duration of 5

milliseconds. These initial conditions were obtained by setting V = 0, yielding

n(0) = 0.318, h(0) = 0.5963 and m(0) = 0.053. For this simulation, we solved the

system of differential equations (1.2) using the Matlab built-in function ode15s.

The right panel of Figure 1.1 shows the time course of the conductances defined in

equation (1.1). Notice that the amplitude of the injected current I is sufficiently

large to induce an increase in the sodium conductance and the peak of the action

potential coincides with the peak of the sodium conductance.

Figure 1.1: Voltage (left), gating variables (middle) and conductances (right) in
the Hodgkin Huxley model.

1.1.2 Fitzhugh-Nagumo model

The complexity of the Hodgkin-Huxley model was reduced in 1961 by Fitzhugh

[29], who observed that the time scale of the activation gate for the sodium

channel m is much faster than the other gates (see Figure 1.1), justifying the

assumption that the activation gate m reaches its value immediately, thus, its

value can be determined by simply setting dm
dt

= 0 while keeping h constant.

This consideration reduces (1.2)-(1.5) to the following system containing only

two differential equations.

cm
dV

dt
= I − gNa(0.8− n)(V − VNa)− gK(V − VK)− gleak(V − Vleak),

dn

dt
= αn(V )(1− n)− βn(V )n.

(1.6)

Using the fact that the V nullcline has the shape of a cubic function and

could be approximated by a straight line, Fitzhugh reduced the complexity of
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the model (1.6) even further, by proposing a polynomial model of the form:

dx

dt
= x− x3

3
− y + I,

dy

dt
=

1

γ
(x− by + a).

(1.7)

The action potential generated with this model is shown in Figure 1.2 together

with the time course for the gating variable y. For this simulation we used the

built-in Matlab solver ode15s, with the choice of parameters: a = 0.8, b = 0.7

and γ = 13. At t = 5 milliseconds, we consider a stimulus I = 0.4 having a

duration of 3 milliseconds.

Figure 1.2: Voltage (left) and the gating variable y (right) in the Fitzhugh-
Nagumo model.

1.1.3 Hindmarsh-Rose model

The Hindmarsh-Rose model is a modification of the FitzHugh-Nagumo model.

An adaptation variable z was added to control the termination of the firing by

lowering the effective current when the neuron is firing, and by returning to zero

when the membrane potential has reached its resting value. In this manner, the

neuron does not fire indefinitely and it is capable of generating oscillations which

exhibit long intervals between the spikes [30, 31].

The model consists of three nonlinear differential equations (1.8) where x is
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the membrane voltage, y is the recovery current and z is the bursting variable.

dx

dt
= −x3 + 3x2 + y − z + I,

dy

dt
= −5x2 − y + 1,

dz

dt
= µ(4(x+ h)− z).

(1.8)

An essential feature of the Hindmarsh model is its capacity to generate two

of the most common signals: the tonic spiking, characterized by the continuous

firing of the action potentials, and the bursting behaviour, in which oscillations

appear. Numerous articles [30, 31, 32, 33] study in detail the transitions between

these states.

The time courses obtained for solving equations (1.8) with h = 1.6 and I = 2

are showed in Figure 1.3. The parameter µ represents the ratio of time scales

between fast and slow fluxes in the membrane. We performed experiments with

various values of µ: the first row of Figure 1.3 illustrates the bursting behav-

ior obtained for µ = 0.002, while in the bottom row we show the tonic firing

corresponding to µ = 0.02.

Figure 1.3: Simulation results of the Hindmarsh-Rose model with h = 1.6 and
I = 2 in two cases: µ = 0.002 (top row) and µ = 0.02 (bottom row)
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1.1.4 Izhikevich model

The Izhikevich model, like the Hindmarsh-Rose model, is able to reproduce both

spiking and bursting behaviour [34] and consists of two differential equations:

C
dv

dt
= k(v − vrest)(v − vthresh)− u+ I,

du

dt
= a[b(v − vrest)− u],

(1.9)

coupled with the following after-spike resetting:

if v ≥ vpeak then

 v = c,

u = u+ d.
(1.10)

Here v is the membrane potential, u the recovery current, C is the membrane

capacitance, a the recovery time constant, c the value to which the voltage resets

after having reached the peak value vpeak; the threshold potential is denoted by

vthresh. Whenever the depolarization exceeds vthresh the resting membrane poten-

tial vrest, a spike response is induced. The parameter d accounts for the difference

between the outward and the inward currents activated during the spike, affecting

the behavior after the spike. The parameters k and b can be determined using

the information about the membrane excitability, i.e. the rheobase and the input

resistance of the neuron [28]. As discussed in detailed in [28, 34], various classes of

firing patterns corresponding to various neuron types can be observed by varying

these parameters. In Table 1.3 we present the parameter values corresponding to

three situations: a tonic neuronal firing, a fast rythmic bursting, also known as

chattering, and an intrinsically bursting behavior.

In Figure 1.4 we show simulations obtained with model (1.9), using an explicit

forward Euler method,

Cv(t+ ∆t) = v(t) + ∆t [k(v(t)− vrest)(v(t)− vthres)− u(t) + I(t)] ,

u(t+ ∆t) = u(t) + a[b(v(t)− vrest)− u(t)],

with time step ∆t = 0.5 msec; the parameters corresponding to the three different

firing patterns are given in Table 1.3.
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Parameter Tonic Fast rythmic Intrinsically Unit
firing bursting bursting measure

Vrest -60 -60 -75 mV
Vthresh -40 -40 -45 mV
Vpeak 30 25 50 mV
C 100 50 150 pF
k 0.7 1.5 1.2 -
a 0.03 0.03 0.01 -
b -2 1 5 -
c -50 -40 -56 -
d 100 150 130 -
I 70 400 500 pA

Table 1.3: Parameter values in Izhikevich model for different neuronal firing
patterns.

In addition to the continuous firing showed in the left column of Figure 1.4,

in the center we observe high frequency bursts of spikes characterized by a very

short interburst period. On the other hand, in the right column of Figure 1.4

we see that multiple spikes are being generated at the beginning of a sufficiently

strong pulse, while further on, a regular firing pattern is formed.

Figure 1.4: Simulation of the Izhikevich model [28, 34] using parameters defined
in Table 1.3 corresponding to tonic firing (left), fast rythmic bursting (middle)
and intrinsically bursting neurons (right).
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1.2 The proposed electrophysiological model

In this section we provide a detailed description of the electrophysiologic model

we used throughout this thesis. Based on Hodgkin-Huxley model, Cressman et

al. [12, 13] features important additions as they include an ionic current for the

sodium potassium pump, an ionic current for the glial uptake and a diffusion

current of potassium outside the neighborhood. This section contains various

modifications we brought to the original model [12, 13], based on physiological

considerations. One of most important changes we have done was to adjust the ex-

tracellular potassium concentration to approximately 3mM during resting state.

This is significantly lower than the value initially proposed by Cressman [12] and

Barreto [13] but it represents the currently accepted value for the concentration

of extracellular potassium for the brain during resting state [14].

1.2.1 Description

The model for the electrophysiological activity portion of this thesis follows the

one developed by Cressman et al. in [12, 13]. Starting from the classical Hodgkin-

Huxley model for the neuron membrane potential described in Section 1.1.1,

the Cressman model introduces various essential features, including sodium and

potassium dynamics and accounts for the ionic currents induced by the sodium

potassium pump, glial potassium cleaning and potassium diffusion.

Following the Hodgkin-Huxley paradigm, the membrane potential and the

gating variables n, m and h are governed by the differential equations:

cm
dV

dt
= −INa+ − IK+ − Ileak, (1.11)

dw

dt
= ϕ(αw(V )(1− w)− βw(V )w), w ∈ {n,m, h}, (1.12)

where cm is the membrane capacitance, ϕ the time constant of the gating variables

and the saturating functions αw and βw corresponding for each gating variable

w ∈ {n,m, h}, are specified in Table 1.4.

As in the Fitzhugh-Nagumo model, Cressman and Barreto [12, 13] assume

that the activation gate for sodium m = m(V ) is much faster than the other gates,
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w m h n

αw(V ) 0.1
V + 30

1− exp(−(V + 30)/10)
0.07 exp(−(V + 44)/20) 0.01

V + 34

1− exp(−(V + 34)/10)

βw(V ) 4 exp(−(V + 55)/18)
1

1 + exp(−(V + 4)/10)
0.125 exp(−(V + 44)/80)

Table 1.4: Gating variables: voltage-dependent saturation functions.

reaching equilibrium sufficiently fast to justify the steady state approximation:

m = m(V ) =
αm(V )

αm(V ) + βm(V )
.

The equations governing the ionic currents [13] corresponding to sodium,

potassium and chloride are:

INa+ = gNa+m
3h(V − VNa+) + gNa+,leak(V − VNa+), (1.13)

IK+ = gK+(V − VK+) + gK+,leak(V − VK+), (1.14)

Ileak,Cl− = gCl−(V − VCl−), (1.15)

where gNa+ , gNa+,leak, gK+ and gK+,leak are the conductances and the leak conduc-

tances of sodium and potassium, and gCl− is the leak conductance of chloride;

their values are listed in Table 1.5. The total leak current is the sum of the leak

currents of sodium, potassium and chloride:

Ileak = gNa+,leak(V − VNa+) + gK+,leak(V − VK+) + gCl−(V − VCl−).

The reversal potentials VNa+ , VK+ and VCl− are expressed in terms of the ionic

concentrations inside and outside the membrane, and are obtained via the Nernst

equations,

VX = 26.64 ln

(
[X]ecs

[X]i

)
, X ∈ {Na+,K+,Cl−}. (1.16)

As the model does not include chloride dynamics, the concentrations of chloride

inside and outside the cell are kept constant: [Cl−]ecs=6 mM and [Cl−]i=130 mM,

yielding a reversal potential of chloride of -81.93mV.



CHAPTER 1. ELECTROPHYSIOLOGY 23

Name Symbol Value Units
Capacitance cm 1 µF/cm2

Time constant ϕ 3 1/msec

Sodium conductance gNa+ 46 mS/cm2

Potasium conductance gK+ 16.25 mS/cm2

Sodium leak conductance gNa+,leak 0.0175 mS/cm2

Potassium leak conductance gK+,leak 0.02 mS/cm2

Chloride conductance gCl 0.05 mS/cm2

Table 1.5: Parameter values for the Cressman model

In the Cressman model, the total concentration of sodium is assumed to be

conserved, while the intracellular concentration of sodium is compensated by the

potassium concentration outside the cell:

[Na+]ecs = 144 mM− β([Na+]i − 10.5 mM), (1.17)

[K+]i = 140 mM + (10.5 mM− [Na+]i), (1.18)

where 10.5 mM and 140 mM are the concentrations at rest of sodium and potas-

sium inside the neuron, and 144 mM is the resting concentration of extracellular

sodium.

The differential equations governing the intracellular concentration of sodium

and the extracellular concentration of potassium are:

τ
d[Na+]i
dt

= −γ INa+

β
− 3Jpump,Na+ , (1.19)

τ
d[K+]ecs

dt
= γIK+ − 2βJpump,Na+ − Jglia,K+ − Jdiff,K+ , (1.20)

where τ = 1000 is a conversion factor from seconds to milliseconds, the parameter

γ = 0.33 mM cm2/µC converts the electric current to mass flux [12] and β =

ηn/ηECS is the ratio between the intracellular and extracellular volume of the cell,

which in our case is β = 1.33.

In the model, Jpump,Na+ represents the ion current induced by the sodium

potassium pump, Jglia,K+ is the ion current induced by the astrocytic potassium

cleaning and Jdiff,K+ accounts for the diffusion of potassium. These ion mass
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currents are defined through the equations:

Jpump,Na+ =

(
ρ

1 + exp(25− [Na+]i)/3)

)
×
(

1

1 + exp(2.2− [K+]ecs)

)
,(1.21)

Jglia,K+ =
Gglia

1 + exp((14.7− [K+]ecs)/25)
, (1.22)

Jdiff,K+ = ε([K+]ecs − k∞), (1.23)

where ρ is the strength of the sodium potassium pump, Gglia the strength of the

glial uptake, ε is the diffusion coefficient and k∞ is the potassium bath concen-

tration.

1.2.2 Neuronal activation

In this section we provide a detailed description of the mechanism underlying

neuronal activation in our model and describing the different metabolic response

to various levels of synaptic activity.

Rather than driving neuronal activation by explicitly modelling the glutamate-

glutamine cycle as done in [9], here we rely on the fact that during the neuronal

activation the glutamate secreted by the presynaptic neuron is sensed by the

postsynaptic glutamate receptors and there is an increase of the influx of sodium

and potassium ions [35].

Mathematically, this physiological observation translates into a temporary

increase of the leak conductances of sodium and potassium for the period of

neuronal excitation:

gNa+,leak(t) = (1 + ξ(t))g0
Na+,leak (1.24)

gK+,leak(t) = (1 + ξ(t))g0
K+,leak (1.25)

where g0
Na+,leak

and g0
K+,leak

are the constant resting values of the leak conduc-

tances, and ξ = ξ(t) is the time dependent activation function that models the

effect of glutamate. The effect of this function on the neuronal firing frequency

is discussed in Section 1.2.4.

To summarize, our electrophysiological model consists of 5 differential equa-
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tions (1.11), (1.12), (1.19) and (1.20) and can be expressed as:

du

dt
= f(u, ξ), (1.26)

where u is a vector containing the unknows:

u =



V

[Na+]i

[K+]ecs

n

h


, (1.27)

while ξ is an activation function controlling the level of neuronal firing (see Figure

1.7).

1.2.3 Calibration

In light of the in-vitro experiments confirming that the excitability of the neuron

depends strongly on the concentration of potassium in the extracellular space [36],

the firing pattern of the electrophysiological model depends on the parameters

that control the extracellular potassium concentration, which in Cressman model

are k∞, εecs, Gglia, and ρ. In [12] the authors performed a bifurcation analysis

for these parameters, by considering a reduced model consisting of equations

(1.17)-(1.20), in which the fast scale effects of the complete model were ignored.

In this manner they were able to distinguish between regions characterized by

high-frequency firing bursts and regions of continuous firing.

In our case, rather than controlling the potassium level itself, we induce the

firing mechanism by controlling the input function ξ. Firstly, we performed a

manual calibration of the electrophysiological model such that the choice of the

four parameters mentioned above results in a 4 Hz background firing. With re-

spect to the original model proposed by Cressman [12], we neglected the calcium

dynamics, as it was done by the same author in a more recent publication [13].

Also, in order to be in agreement with the recent experimental literature [14]

on the concentration of extracellular potassium during resting state for a human
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brain, we downgraded the potassium bath concentration k∞ to 3 mM. The par-

titioning of the total potassium cleaning power Tp = Gglia + ρ was done such

that 60% of the total cleaning power was attributed to the glia and 40% to the

neuron. The parameter values chosen in order to obtain a firing frequency of

4Hz, characteristic for the neuron at rest, are given in Table 1.6, while the initial

conditions are showed in Table 1.7.

Name Symbol Value Units
Potassium bath concentration k∞ 3 mM
Diffusion coefficient ε 9.33 s−1

Glial uptake strength Gglia 20.75 mM/s
Neuronal pump strength ρ 13.83 mM/s

Table 1.6: Parameter values in the electrophysiological model corresponding to
a 4Hz background firing rate.

V (mV) n h [K+]ecs (mM) [Na+]i (mM)

-57.3351 0.1417 0.9177 2.9871 10.0039

Table 1.7: Initial conditions of membrane potential, ionic concentrations and
gating variables for the Cressman model.

1.2.4 Simulation results

In this section we show various results obtained from simulating our modification

of the Cressman model by using the ode15s built in Matlab solver.

In Figure 1.5 we see the membrane potential, the intracellular sodium concen-

tration, the extracellular potassium concentration and the two gates of activation,

respectively inactivation for sodium and potassium, for the parameter choice sum-

marized in Table 1.6 with the initial conditions given in Table 1.7. Setting the

activation function to ξ = 0, produces the characteristic response for the neu-

ron at rest: a neuronal frequency of 4 spikes within one second, a concentration

of intracellular sodium of approximatively [Na]i ≈ 10 mM and an extracellular

potassium concentration of [K]ecs ≈ 3 mM.
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Figure 1.5: Simulation of the Cressman model corresponding to a 4Hz back-
ground firing obtained for ξ = 0 and the parameter values defined in Table 1.6.

In the experiments above, the parameter k∞ was tuned to obtain the 4Hz

background firing. Multiple simulations to study the dependency between k∞

and the firing frequency suggest that increasing the value of the potassium bath

concentration leads to an increase in the firing frequency as shown in Figure 1.6.

Figure 1.6: Frequency dependence of the k∞ parameter. Increasing the bath
concentration of potassium produces an increase in the frequency.

As described in Section 1.2.2, the neuronal activation is modeled through

a temporary increase in the sodium and potassium leak conductances, in turn

regulated by the time dependent activation function ξ. As expected, increasing
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the function ξ leads to an increase in the firing frequency. Figure 1.7 shows the

effect of ξ on the firing frequency. In these experiments we used the parameters

as defined in Table 1.6 and we varied ξ ∈ [0, 10].

Figure 1.7: Dependence of frequency on the activation parameter ξ.

The frequency band characterized by a firing frequency between 8 and 13 Hz,

known as the alpha state, occurs during awake resting state. When simulating

the alpha state we considered three different values of the activation function:

ξ = 0.05 corresponding to 8 Hz, ξ = 0.07 corresponding to 10 Hz and ξ = 0.1

corresponding to 12Hz. In Figure 1.8 we show the time courses of membrane

potential, ionic concentrations of intracellular sodium and extracellular potassium

and gating variables n and h for these three cases. Note the change in the

intracellular sodium concentration from the first column, where it settles around

[Na]i = 10.5 mM for a 8Hz firing to the last column where [Na]i = 11.3 mM

corresponds to a firing of 12 Hz.
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Figure 1.8: Results obtained for simulating the Cressman model for ξ = 0.05
(8Hz, left column), ξ = 0.07 (10Hz, middle column) and ξ = 0.1 (12Hz, right
column).

Figure 1.9 shows the ionic currents related to sodium potassium pump and

glial potassium cleaning for the three frequencies that we consider in alpha awake

resting state. These quantities will play a role in the next chapter, where we

discuss the metabolic response during different levels of neuronal activity.
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Figure 1.9: Time course of the ionic current corresponding to the sodium potas-
sium pump (upper row) and the glial uptake (bottom row) for an alpha firing
frequency of 8Hz (left column), 10Hz (middle column) and 12Hz (right column).

The Cressman model, like the Izhikevich and Hindmarsh models discussed in

Section 1.1.4 and Section 1.1.3, can produce other firing patterns: the five bursts

that can be observed in Figure 1.10 were obtained with a modified Cressman

model where the diffusion coefficient ε is reduced to a third of its baseline value.

Figure 1.10: Bursting pattern obtained by simulating the modified Cressman
model with the parameters defined in Table 1.6 but reducing the diffusion coef-
ficient to a third of its normal value.
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Chapter 2

Brain Metabolism

Brain energetics plays an important role in neuronal activity because the latter

can be sustained only if the metabolic processes can produce enough energy to

restore the difference in the transmembrane potential.

2.1 Introduction

Spatially lumped metabolic models comprise separate compartments, established

according to physiological considerations to be investigated. Each compartment

is, in turn, characterized by its biochemical species and corresponding biochemical

reactions. The communication between compartments occurs through exchange

of biochemical species. Mathematically, spatially lumped dynamic metabolic

models are governed by systems of ordinary differential equations. Each reaction

occurring in a compartment has a corresponding reaction flux denoted by ψ;

similarly, for each exchange between compartments, there is a related transport

rate J . The aggregate of biochemical species, reaction fluxes and transport rates

for all compartments are the constituents of the metabolic network.

The mathematical description of the reaction rates depends on the type of

enzyme and the expression level [37]. The classic Michaelis-Menten form assumes

that an enzyme e interacts with a substrate S to form an enzyme-substrate eS

which is then decomposed into the enzime e and a product P :

ψ : e+ S −→ eS −→ e+ P.

33
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The corresponding reaction flux ψ can be can written as:

ψ = Vmax
[S]

Kmax + [S]
,

where Vmax is the maximum reaction velocity, Kmax is the affinity constant and

[S] the concentration of the substrate S.

On the other hand, the transport fluxes of biochemical species can take place

either via passive diffusion, as is usually the case for gases and lipids, or with the

help of a transporter. In the passive diffusion case, the transport rates can be

expressed as:

J = λ ([S]x − [S]y) ,

where [S]x and [S]y are the concentration of the species in compartment x and

y respectively. Many molecules however, are too large or too charged to pass

through the cell membrane and require carrier proteins to facilitate their cross-

membrane transport. Carrier facilitated transfers can be seen as enzymatic re-

actions in which the role of enzyme is played by a membrane bound protein X

[37]:

J : Sx +X −→ SX −→ X + Sy,

and the corresponding transfer rate can be written as:

J = Tmax
[S]x

M + [S]x
,

where M is the affinity and Tmax is the maximum transport rate. When the

carrier acts isotropically, the bidirectional transport flux can be written as:

J = Tmax

(
[S]x

M + [S]x
− [S]y
M + [S]y

)
.

2.2 Main biochemical reactions

Glycolysis refers to a chain of chemical reactions taking place in the cytosol of

the cell that convert one molecule of glucose (Glc) into two molecules of pyruvate
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(Pyr),

Glc + 2NAD+ + 2ADP + 4Pi −→ 2Pyr + 2NADH + 2ATP.

The first step of the glycolysis reaction adds one phosphate group to the sixth

carbon of the glucose molecule, producing a molecule of glucose 6-phosphate

(G6P). This process is catalyzed by the enzyme hexokinase and consumes one

molecule of ATP. In the second step, the enzyme phosphoglucose isomerase (pfg)

transforms the G6P molecule into fructose 6-phosphate (F6P), which is later

changed into fructose 1,6-phosphate (FBP) with the help of phosphofructokinase

(pfk). In this third step, one molecule of ATP is consumed.

Further on, the aldolase enzyme separates FBP into two individual molecules

consisting of three carbon atoms each: glyceraldehyde-3-phosphate (GAP) and

hydroxyacetone phosphate (DHAP), which is transformed through the enzyme

triphosphate isomerase (tim) into GAP; as a result, at the end of the fifth step,

two molecules of GAP have been produced. So far in the process two molecules of

ATP have been consumed. GAP is then transformed into 1,3 biphosphoglycerate

(BPG), with the action of the glyceraldehyde phosphate dehydrogenase (gapdh)

enzyme, in a process where one NAD+ molecule is consumed. In the seventh

step, one phosphate group is cleaned from BPG through the enzyme phospho-

glycerate kinase (PK) forming 3-phosphate glycerate (3PG), in a reaction where

two molecules of ATP are being produced. Subsequently, the enzyme phospho-

glyceromutase shifts one phosphate group from the third carbon to the second

one, therefore producing one molecule of 2-phosphoglycerate (2PG). In the next

step, through the enolase enzyme, 2PG loses one molecule of H2O and becomes

phosphoenolpyruvic acid (PEP). The last step of glycolysis consists of the con-

version of PEP into pyruvate, which occurs with the aid of pyruvate kinase and

generates two ATP molecules.

In Figure 2.1 we present a schematic overview of this process. The initial and

the end product of the glycolysis reaction (Glc, respectively Pyr) are coloured in

green while the intermediary products are given in blue. The enzyme correspond-

ing to each reaction is indicated on top of the arrow; additionally, we specify the

steps in which ATP is consumed in red and the steps in which ATP is produced
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in blue.

Figure 2.1: Glycolysis reaction: intermediate steps

Some metabolic models [9, 38] include, in addition to glucose and pyruvate,

various intermediary products. For example, in [38], the glycolysis reaction con-

sists of the following steps: the hexokinase-phosphofructokinase system (HK-

PFK), phosphoglycerate kinase (PGK) and pyruvate kinase (PK), and addition-

ally the intermediary products PEP and GAP are modelled through differential

equations. On the other hand, the glycolysis model used in [9] follows hex-

okinase, phosphoglucose isomerase, phosphofructokinase and phosphoglycerate

kinase, and the dynamic behavior of G6P, F6P, GAP and PEP is being studied.

A portion of the pyruvate produced in the glycolysis reaction enters mito-

chondria and participates in the tricarboxylic acid cycle (TCA), also known

as the Krebs cycle, where it is transformed into three carbon dioxide molecules

in a process where one ATP and five NADH are produced:

Pyr + ADP + 5NAD+ −→ 3CO2 + ATP + 5NADH.

Oxidative phosphorylation is the last stage of cellular respiration, and it com-

prises two steps: the electron transport chain and chemiosmosis. In the electron

transport chain, electrons pass from one molecule to another through a series

of redox reactions. The energy released in these reactions is then used to pro-

duce ATP in the process called chemiosmosis. In the oxidative phosphorylation

the NADH produced in the two reactions described above pass their electrons

to oxygen, with the help of some intermediary species that are embedded in the

membrane. The energy released in this process pumps H+ ions, causing them to
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move into the intermembrane space and later on, with the help of the enzyme

ATPsynthase ATP is being produced:

O2 + 2NADH + 5ADP −→ 2NAD+ + 5ATP + H2O.

Creatine phosphorylation is a reversible reaction in which one phosphate

group is transferred from phosphocreatine to ADP to form ATP:

PCr + ADP←→ Cr + ATP.

During intense activity, phosphocreatine can be used as a buffer of ATP concen-

tration.

Some of the concentrations of the species mentioned above can be measured

through nuclear magnetic resonance spectroscopy (NMR) or (MRS), a

noninvasive diagnostic test that analyzes molecules such as hydrogen protons and

uses this information in order to determine the concentration of various brain

metabolites [39].

The oxygenation status and the brain hemodynamics can be assessed through

near infrared spectroscopy (NIRS), which is a noninvasive optical image

technique in which blood flow changes associated with brain activity can be mea-

sured by using low levels of light. NIRS relies on two main tissue characteristics:

the relative transparency of tissue to light in the near infrared range, and the

oxygenation dependent light that absorbs hemoglobin features. Through this

procedure any changes in oxyhemoglobin, deoxyhemoglobin or total hemoglobin

can be detected.

2.3 Review of metabolic models

2.3.1 Aubert and Costalat models

In 2002, Aubert and Costalat [38] proposed a mathematical model to follow

the behaviour of the main metabolites during neuronal activation. The model

consists of two compartments, tissue and capillaries, and comprises of fifteen state

variables including glucose (intracellular and capillary), lactate (intracellular and
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capillary), oxygen (intracellular and capillary), pyruvate, phosphocreatine, ATP,

NADH, glyceraldehyde-3-phosphate, phosphoenolpyruvate, intracellular sodium

concentration, venous volume and deoxyhemoglobin.

Neuronal activation is attained by increasing intracellular sodium concentra-

tion, which leads to an increase in the blood flow and eventually an increase in

venous blood volume. The two input functions consist of a stimulus ξ(t) which

establishes the energetic need depending on different levels of neuronal activation

and the function Fin(t) controlling the increase in the blood flow level that occurs

during activation. The oxygen in the capillaries is used as an input for the bal-

loon model [15, 16, 17], while the BOLD signal obtained from the balloon model

and the metabolite concentrations represent the outputs. Figure 2.2 contains a

schematic representation of this model.

Figure 2.2: Schematic overview the Aubert and Costalat model.

The stimulus enters in the equation for intracellular concentration of sodium:

d[Na+]i
dt

= INa,leak − 3Jpump,Na+ + ξ(t), (2.1)

where INa,leak is the sodium leak current modelled in [38] through the Hodgkin-

Horowicz equation:

Ileak,Na =
Sm
Vi

gNa+

F

(
RT

F
ln

[Na+]ecs

[Na+]i
− V

)
, (2.2)

Jpump,Na+ represents the rate of the sodium potassium pump and depends on the
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availability of ATP and on the intracellular sodium concentration:

Jpump,Na+ =
Sm
Vi
kpump[ATP][Na+]i

(
1 +

[ATP]

Km,pump

)−1

, (2.3)

and

ξ(t) = ν1 +
ν2

τstim

exp

(
−t
τstim

)
for 0 ≤ t ≤ tend, (2.4)

drives the energetic need. The description and values of the parameters used in

equations (2.2) and (2.3) are given in Table 2.1

Description Parameter Value Unit

Membrane potential V -70 mV
Sodium conductance gNa+ 0.0039 mS/cm2

Faraday constant F 9.65 · 104 C/mol
Product between the universal rate constant and
temperature divided by the Faraday constant RT/F 26.73 mV
Ratio of membrane area and intracellular volume Sm/Vi 9 · 104 1/cm
Extracellular concentration of sodium [Na+]ecs 150 mM
Intracellular resting concentration of sodium [Na+]0i 15 mM
Transport rate constant kpump 0.29 · 10−6 cm

mM·s
Affinity constant for the sodium potassium pump Km,pump 0.5 mM

Table 2.1: Parameters used for describing the intracellular concentration of
sodium in Aubert and Costalat model [38].

The model tracks the changes in the concentration of the biochemical species,

X = {Glc, Lac, O2,Pyr, GAP, PEP, PCr, NADH, ATP}, accounting separately

when they belong to different compartments. More specifically, the concentra-

tions of glucose, lactate and oxygen are tracked separately in tissue and in cap-

illaries. To distinguish the compartment where they belong, by [X]i we denote

the intracellular concentrations and by [X]c the concentrations in the capillaries.

The steady state values of the metabolites and intermediate concentrations are

listed in Table 2.2.

[Glc] [O2] [Lac] [Pyr] [PCr] [GAP] [PEP] [NADH] [ATP]
c 4.56 7.01 0.35
i 1.2 0.026 1 0.16 5 0.0057 0.02 0.026 2.2

Table 2.2: Metabolites: List of metabolites in the two compartments (capillary
(c), intracellular (i)) and their resting concentrations (in mM).
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The dynamics of the metabolites inside the tissue is modeled through the

following differential equations [38].

d[Glc]i
dt

= jGlc − ψHK-PFK,

d[Lac]i
dt

= ψLDH − jLac,

d[O2]i
dt

= jO2 − naerojmit,

d[Pyr]

dt
= ψPK − ψLDH − ψmit,

d[GAP]

dt
= 2ψHK-PFK − ψPGK,

d[PEP]

dt
= ψPGK − ψPK,

d[PCr]

dt
= −ψCK,

d[NADH]

dt
= ψPGK − ψLDH − ψmit,

d[ATP]

dt
=
(
ψPGK − 2ψHK-PFK + ψPK − ψATPase − Jpump,Na+ + nopψmit + ψCK

)
ζ,

(2.5)

where:

ζ =

(
1− d[AMP]

d[ATP]

)−1

,

where jC denotes the transport rate of metabolite C = {[Glc], [Lac], [O2]} across

the BBB where the mathematical expressions follow (2.8) and (2.9), ψHK-PFK, ψPK

and ψPGK are the reaction rates corresponding to hexokinase-phosphofructokinase,

pyruvate kinase and phosphoglycerate kinase, respectively and ψCK represents the

rate of the creatine kinase. The ATPase flux ψATPase set to 0.149 mM/s accounts

for the energetic need required for processes other than the sodium potassium

pump. The equations for the reaction rates and the relevant parameters are listed

in Table 2.11.

The dynamics of the capillary glucose, lactate and oxygen concentrations are:

d[Glc]c
dt

= JGlc −
1

rc
jGlc,

d[Lac]c
dt

= JLac +
1

rc
jLac,

d[O2]c
dt

= JO2 −
1

rc
jO2 ,

(2.6)

where rc is the ratio between capillary volume (Vc) and intracellular volume (Vi)
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and JC for C = {Glc,Lac,O2} denotes the contribution from the blood flow,

governed by equations (2.10). In [38] the concentration of oxygen in capillaries

is expressed as the average of the arterial concentration and the concentration at

the end of the capillaries:

[O2]c =
[O2]a + [O2]c̄

2
. (2.7)

Rate equations Parameter Value Unit

Hexokinase phosphofructokinase (ψHK-PFK) kHK-PFK 0.12 s−1

kHK-PFK[ATP]

[
1 +

(
[ATP]

K1,ATP

)nH]−1
[Glc]i

[Glc]i + Kg

K1,ATP 1 mM
nH 4 -
Kg 0.05 mM

Pyruvate kinase (ψPK) kPK 86.7 mM−1s−1

kPK[PEP][ADP]

Lactate dehydrogenase (ψLDH) k+
LDH 2000 mM−1s−1

k+
LDH[Pyr][NADH]− k−LDH[Lac]i[NAD+]

k−ldh 44.8 mM−1s−1

Creatine kinase (ψCK)

k+
CK[PCr][ADP]− k−CK[Cr][ATP]

k+
CK 3666 mM−1s−1

k−CK 20 mM−1s−1

where [PCr]+[Cr] = Ptot Ptot 10 mM

Phosphoglycerate kinase (ψPGK)

k′PGK[GAP][ADP]
[NAD+]

[NADH] k′PGK 42.6 mM−1s−1

where [NADH]+[NAD+] = N N 0.212 mM

Table 2.3: Rate equations and their corresponding parameters in Aubert and
Costalat model [38].

The transport rates of glucose and lactate across the Blood-Brain-Barrier are

described following a classical Michaelis Menten formalism:

jGlc = Tmax,Glc

[
[Glc]c

[Glc]c +Kt,Glc

− [Glc]i
[Glc]i +Kt,Glc

]
,

jLac = Tmax,Lac

[
[Lac]i

[Lac]i +Kt,Lac

− [Lac]c
[Lac]c +Kt,Glc

]
,

(2.8)

where Tmax,Glc and Tmax,Lac are the maximum transport rates for glucose and

lactate and Kt,Glc and Kt,Lac are affinity constants, whose values are listed in

Table 2.4.

The oxygen transport rate depends on the intracellular concentration of oxy-
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gen ([O2]i), the capillary concentration of oxygen ([O2]c), the permeability of the

Blood-Brain-Barrier (P ), the surface Sc, the intracellular volume (Vi), hemoglobin

(Hb) and its oxiphoric power (OP) defined as the maximum number of oxygen

molecules carried by one mole of hemoglobin, as well as on the affinity constant

for oxygen KO2 :

jO2 =
PSc
Vi

(
KO2

(
Hb ·OP

[O2]c
− [O2]i

))
. (2.9)

The blood flow related contributions to the variations of glucose, lactate and

oxygen concentrations are described by:

JGlc =
2Fin(t)

Vc
(Cart,Glc − [Glc]c) ,

JLac =
2Fin(t)

Vc
(Cart,Lac − [Lac]c) ,

JO2 =
2Fin(t)

Vc

(
Cart,O2

− [O2]c
)
,

(2.10)

where Fin(t) is the input function controlling the blood flow defined in equation

(2.19), Vc is the volume of the capillaries, Cart,Glc, Cart,Lac and Cart,O2
are the arte-

rial concentrations of glucose, lactate and oxygen, which are assumed to remain

constant, and [Glc]c, [Lac]c and [O2]c the capillary concentrations.

The values of the arterial concentrations and of the other parameters in the

description of the blood flow can be found in Table 2.5.

Transport flux Parameter Value Unit

Glucose Tmax,Glc 0.0476 mM/s
Kt,Glc 9 mM

Lactate Tmax,Lac 0.00628 mM/s
Kt,Lac 0.5 mM

KO2 0.0261 mM
Oxygen Hb ·OP 8.6 mM

nH 2.73 −
PScap/Vi 1.6 s−1

Table 2.4: Parameters corresponding to the transport fluxes in Aubert and Costa-
lat model [38].
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Blood Flow parameters Arterial concentrations
Parameter Value Units Parameter Value Units

F0 0.012 s−1 Cart,Glc 4.8 mM
α 0.5 - Cart,Lac 0.313 mM
Vv,0 0.0237 - Cart,O2

8.34 mM
τv 35 s

Table 2.5: Blood related parameters and arterial concentrations

In light of the fact that a molecule of adenosine triphosphate (ATP) and

adenosine monophosphate (AMP) produces two molecules of adenosine diphos-

phate (ADP) in a reversible reaction ATP + AMP←→ 2ADP, known to be

nearly at equilibrium in the brain [38], the authors express the concentration

of ADP and AMP as a function of ATP

[ADP] =
[ATP]

2

(
−qAK +

√
q2

AK + 4qAK

(
A

[ATP]
− 1

))
, (2.11)

[AMP] = A− [ATP]− [ADP], (2.12)

where qAK is the equilibrium constant of adenylate kinase and A is the total

adenine nucleotide concentration. Furthermore, the ATP is also produced or

consumed at the rate ψCK in the reversible reaction between phosphocreatine

(PCr) and adenosine diphosphate (ADP), PCr + ADP←→ Cr + ATP, where

[PCr] +[Cr] = Ptot.

The total amount of ATP produced through the mitochondrial respiration is

the product between ψmit and nop where ψmit is the number of pyruvate moles

per unit cell volume and time which are being oxidized by the mitochondria and

nop the number of ATP moles that are being produced per each mole of pyruvate.

One of the novelties of this model is that it allows variations in the intracellular

concentration of oxygen and it account for both exchanges through the blood

brain barrier and consumption of oxygen by the mitochondria. For example, the

right hand side of the differential equation of intracellular oxygen concentration

(2.5) contains the term naeroψmit accounting for the cerebral metabolic rate of

oxygen; here naero is just a stoichiometric coefficient, while four different scenarios

are tested for ψmit.

In the first one, the number of pyruvate moles oxidized by the mithocondria
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(ψmit) is kept constant during neuronal stimulation ψmit = ψ0
mit, while in the

second, it increases according to:

ψmit(t) = (1 + αmit)ψ
0
mit for t1 ≤ t ≤ tf,

ψmit(t) = ψ0
mit for t = 0 or t ≥ tf + t1,

(2.13)

where αmit represents the rate at which the cerebral metabolic rate of oxygen

increases during activation.

The third and the fourth scenarios rely on the dependency of ψmit on pyruvate,

intracellular oxygen, ATP and ADP. The equation used in the third case is of the

form

ψmit = Vmax,mit
[Pyr]

[Pyr] +Km,mit

1

1 +

(
[ATP]

[ADP] ·K1,mit

)nH [O2]i
KO2,i

+ [O2]i
, (2.14)

where Vmax,mit is the maximal rate of mitochondrial activity, Km,mit is the affinity

constant of pyruvate, KO2,i
is the Michaelis constant for oxygen, K1,mit is an

inhibition coefficient and nH is the Hill coefficient.

In the fourth case, an additional input function f(t) is added to the expression

used in (2.14) in order to account for the potential messengers action on the Krebs

cycle or the respiratory chain [38]:

ψmit = Vmax,mit
[Pyr]

[Pyr] +Km,mit

1

1 +

(
[ATP]

[ADP] ·K1,mit

)nH [O2]i
KO2,i

+ [O2]i
f(t). (2.15)

The quantity f(t) increases during stimulation:

f(t) = 1 + aJ
tanh(bJ(t− tJ)) + 1

2
, for t ≤ tf , (2.16)

and decreases exponentially after the end of the activation:

f(t) = 1 + a′J exp

(
tf − t
td

)
, for t ≥ tf , (2.17)

where aJ is the maximum increase fraction of the cerebral metabolic rate of

oxygen, bJ is the slope, tj the characteristic time of the increase and α′J has been
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calculated to guarantee the continuity of the function at t = tf . The description

of the blood flow follows the Buxton’s Balloon model [15, 16], a hemodynamical

model to be discussed in more detail in Chapter 4. In this model, the venous

compartment is seen as a balloon, with inflow the cerebral blood flow Fin and

whose outflow, Fout, depends on the balloon’s volume. The time course of the

venous volume satisfies the differential equation:

dVv
dt

= Fin(t)− Fout, (2.18)

where

Fin(t) =

 (1 + αF )F0 for t1 ≤ t ≤ tf

F0 for t = 0 or t ≥ tf + t1
, (2.19)

and

Fout = F0

((
Vv
V 0
v

) 1
α

+
τv
V 0
v

(
Vv
V 0
v

)− 1
2 dVv
dt

)
. (2.20)

Here F0 is the value of the blood flow during rest, αF is the increase of the blood

flow during neuronal activation and t1 marks the time at which the activation

is started and tf the final time of the activation, τv is the viscosity parameter

and V 0
v is the value of the venous volume at rest. The steady state values of the

relevant parameters are listed in Table 2.5.

The changes in deoxyhemoglobin (dHb) content per unit tissue are governed

by

ddHb

dt
= Fin(t) ·

(
Ca,O2

− [O2]c̄
)
− Fout

dHb

Vv
, (2.21)

where Ca,O2
is the arterial oxygen concentration and [O2]c̄ is the concentration of

oxygen at the end of the capillaries.

The blood oxygen-level dependent (BOLD) signal is expressed in terms of
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deoxyhemoglobin and venous volume, normalized to their resting value, i.e.

y(t) = V 0
v

k1

(
1− dHb

dHb0

)
+ k2

1−

dHb

dHb0

Vv
V 0
v


+ k3

(
1− Vv

V 0
v

)
, (2.22)

where k1 = 7E0, k2 = 2, k3 = 2E0 − 0.2, dHb0 is the resting deoxyhemoglobin

content and V 0
v is the resting volume, whose values can be found in Table 2.5.

The model predictions corresponding to four different protocols reported in

[38] agree with the experimental results reported in the literature in some but

not all cases.

2.3.2 Cloutier model

The model proposed by Cloutier et al. [9], comprising of separate compart-

ments for neuron, astrocyte, capillaries and extracellular space, extends the work

in [38, 40] by adding glycogen dynamics in the astrocyte compartment and by

extending the glycolysis model from three intermediary steps (as in [38]) to five

intermediary steps: hexokinase (HK), phosphoglucose isomerase (PFG), phospho-

fructokinase (PFK), phosphoglycerate kinase (PGK) and pyruvate kinase (PK)

(see Figure 2.1). Glycogen acts as a buffer in the transition between resting

state and neuronal activation. The kinetic parameters in the reaction rates are

calibrated according to in vivo neurochemical measurements.

The Cloutier model subdivides the tissue compartment into neurons and as-

trocytes, and follows the time course of the intracellular concentration of sodium

in each of compartment separately, while keeping extracellular sodium concen-

tration ([Na+]ecs) constant. The governing equations for intracellular sodium is

similar to equation (2.1)

d[Na+]i
dt

= I ileak,Na − 3J ipump,Na+ + ξi(t), (2.23)

for the index i specifying the neuron (i = n) or astrocyte (i = a). The sodium

leak currents Inleak,Na and Ialeak,Na in neuron and astrocyte are modeled as in [38]:

I ileak,Na =
Sm
Vi

giNa

F

(
RT

F
ln

[Na+]ecs

[Na+]i
− V

)
, (2.24)
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where giNa are the sodium conductances, Vi the corresponding volumes, F the

Faraday constant, R the perfect gas constant and T the temperature. The values

of these parameters are given in Table 2.7. The sodium potassium pump Jpump,Na+

depends on the availability of the energy supply

J ipump,Na+ =
Sm
ηi
kpump[ATP]i[Na+]i

(
1 +

[ATP]i
Km,pump

)−1

, (2.25)

as in [38]. The mathematical expressions for sodium inflow due to stimulation in

the neuron ξn(t) and astrocyte ξa(t) are of the form

ξi(t) = ν1
i +

(
ν2
i

t

tst
e
− t
tst

)
for 0 ≤ t ≤ tf

ξi(t) = 0 for t > tf,

(2.26)

where tf is the final time of the stimulation.

Following the activation triggered by the sodium inflow ξn, neuron releases

glutamate which is then taken up by astrocyte and transformed into glutamine.

This process, showed schematically in Figure 2.3, known as the glutamate cy-

cling, requires two ATP molecules to process one molecule of glutamate, one for

pumping sodium and another one for the conversion of glutamate to glutamine

and makes it possible to account for the activation of the ATPase in astrocyte

at the end of neuronal activation. The governing equations of glutamate cycling

are of the form

d[Glu]n
dt

= Ia→nGlu −RNa-Gluξ
n,

d[Glu]a
dt

= Iecs→a
Glu − Ia→nGlu ,

d[Glu]ecs

dt
= Rn-ecsRNa-Gluξ

n − ξn,

(2.27)

with glutamate release rate, glutamate uptake and glutamate transfer to neurons
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rates given by:

In→ecs
Glu = ξnRNa-Glu,

Iecs→a
Glu = Iecs→a

max,Glu

[Glu]ecs

[Glu]ecs +Km,Glu

,

Ia→nGlu = Ia→nmax,Glu

[Glu]a
[Glu]a +Km,Glu

[ATP]a
[ATP]a +Km,ATP

.

(2.28)

Figure 2.3: Schematic view over the glutamate cycling.

Compartment Sodium Glutamate
neuron 15 3
astrocyte 15 1e-6
extracellular space 150 1e-6

Table 2.6: Steady state values for the sodium and glutamate dynamics.

Description Parameter Value Unit
Membrane potential V -70 mV
Sodium conductance in the neuron gnNa 0.0039 mS/cm2

Sodium conductance in the astrocyte gaNa 0.0039 mS/cm2

Faraday constant F 9.65 · 104 C/mol
Perfect gas constant and temperature kPa RT 2577340 L/ mmol
Characteristic sodium length in the neuron Snm 40500 1/cm
Characteristic sodium length in the astrocyte Sam 10500 1/cm
Extracellular concentration of sodium [Na+]ecs 150 mM
Transport rate constant kpump 3.17 · 10−7 cm/(mM · s)
Affinity constant for the sodium potassium pump Km,pump 0.4243 mM
Sodium glutamate ratio RNa-Glu 0.075 -

Table 2.7: Parameters in the description of the intracellular concentration of
sodium and the glutamate cycling in Cloutier et al. model [9].
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The blood flow is described using the balloon model with the venous volume

changing according to

dVv
dt

= Fin(t)− Fout(t), (2.29)

where

Fin(t) = F0 + fCBF(t), (2.30)

Fout(t) = F0

[(
Vv
V 0
v

)1/x

+ τv

(
Vv
V 0
v

)−1/2
1

V 0
v

dV

dt

]
, (2.31)

and

fCBF(t) = 1 + ∆F [f(t, 2, 25)− f(t, 2 + tf, 25)] ,

where t is the post stimulation time and tf is the duration of the stimulation.The

switch function f(t, δ, α) describes the changes in the cerebral blood during stim-

ulation

f(t, δ, α) =
1

1 + e−α(t−δ) . (2.32)

Note that in (2.32) t is the time, δ is the time at which the stimulation starts

and α indicates the slope during the stimulation. The description and values of

the parameters in the description of the dynamics of the blood flow are given in

Table 2.8.

Description Parameter Value Unit
Baseline venous volume fraction V 0

v 0.0237 -
Characteristic time for venous volume dynamics τv 35 s
CBF fractional increase during activation ∆F 0.42 -
Stimulation duration tf 300 s

Table 2.8: Parameters used for describing the blood flow [9].

Since in Cloutier et al. glycolysis is described in five steps, additional metabo-

lites and intermediates are considered, namely glucose 6-phosphate (G6P), fruc-

tose 6-phosphate (F6P), glyceraldehyde 3-phosphate (GAP) and phosphoenolpyru-

vic acid (PEP). The list of the metabolites and their resting values in four com-

partments is presented in Table 2.9.
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[M] n a ecs c [M] n a ecs c
[Glc] 0.43 0.16 0.47 4.64 [GAP] 0.05 0.05 - -
[Lac] 0.28 0.89 0.37 0.33 [PEP] 0.025 0.025 - -
[O2] 0.102 0.102 - 7.46 [Pyr] 0.12 0.12 - -

[CO2] - - - 0.98 [PCr] 2.5 1.5 - -
[G6P] 0.75 0.75 - - [NADH] 0.04 0.04 - -
[F6P] 0.2 0.2 - - [ATP] 2.25 2.2 - -

Table 2.9: Steady state values for the metabolites. List of the metabo-
lites M = {Glc,Lac,O2,CO2,G6P, F6P, GAP, PEP,Pyr,PCr,NADH,ATP} in
the four compartments (neuron (n), astrocyte (a), extracellular space (ecs) and
capillary (c)) and their resting concentrations (in mM).

We denote the rates r = {HK, PG1, PGK, PPP, LDH} corresponding to the

5 steps of the glycolysis reaction: hexokinase, phosphoglucose isomerase, phos-

phofructokinase, phosphoglycerate kinase respectively lactate dehydrogenase by

ψr, and let ψmit denote the rate of the mitochondrial pyruvate oxidation, ψCK the

creatine kinase rate, ψPK the pyruvate kinase rate, and ψATPase the ATP turnover.

The kinetic equations and the values of the corresponding parameters are given

in Table 2.11. The ATP requirement during neuronal stimulation is accounted

for through the sodium potassium pump rate Jpump,Na+ , whose expression is given

in equation (2.25).

We use superscripts, e.g. jecs→n
m , to indicate the reaction flux or the transport

direction of the metabolite m from the extracellular space to the neuron. By

jc→nm we refer to the flux from the capillary to the neuron.

The changes in metabolites concentrations inside the neuron compartment
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are modeled through the following differential equations:

d[Glc]n
dt

= jecs→n
Glc − ψnHK,

d[G6P]n
dt

= ψnHK − ψnPG1 − ψnG6PDH,

d[F6P]n
dt

= ψnPG1 − ψnPFK − ψnPPP,

d[GAP]n
dt

= 2ψnPFK − ψnPGK − ψnPPP,

d[PEP]n
dt

= ψnPGK − ψnPK ,

d[Lac]n
dt

= ψnLDH − jecs→n
Lac ,

d[PCr]n
dt

= −ψnCK,

d[Pyr]n
dt

= ψnPK − ψnLDH − ψnmit,

d[NADH]n
dt

= ψnPGK − ψnLDH − ψnmit,

d[ATP]n
dt

= (−ψnHK − ψnPFK + ψnPGK + ψnPK + ψns + ψnCK)

(
1− d[AMP]n

d[ATP]n

)−1

,

d[O2]n
dt

= jc→nO2
− 3ψnmit,

(2.33)

where ψns = 15ψnmit − Jnpump,Na+
− ψnATPase.

Similarly, in the astrocyte compartment, the time course of the metabolites

is described through the following differential equations:
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d[Glc]a
dt

= jecs→a
Glc + jc→a

Glc − ψaHK,

d[G6P]a
dt

= ψaHK + ψaPG1 − ψaGLYS + ψaGLYP,

d[F6P]a
dt

= ψaPG1 − ψaPFK,

d[GAP]a
dt

= 2ψaPFK − ψaPGK,

d[PEP]a
dt

= ψaPGK − ψaPK,

d[Lac]a
dt

= ψaLDH + jecs→a
Lac − ja→c

Lac ,

d[PCr]a
dt

= −ψCKa ,

d[Pyr]a
dt

= ψaPK − ψaLDH − ψamit,

d[NADH]a
dt

= ψaPGK + ψaLDH − ψamit,

d[ATP]a
dt

= (−ψaHK − ψaPFK + ψaPGK + ψaPK + ψas + ψaCK)

(
1− d[AMP]a

d[ATP]a

)−1

,

d[O2]a
dt

= jc→aO2
− 3ψamit,

(2.34)

where ψas = 15ψamit − Japump,Na+
− ψaATPase.

In the astrocyte, the contribution of glycogen to the energy metabolism is

mediated through G6P. The authors argue that it is important to consider this

contribution because the glycogen pool in astrocyte could sustain cerebral activity

for a couple of minutes [9].

The time course of glycogen in the astrocyte is:

d[GLY]a
dt

= ψaGLYS − ψaGLYP, (2.35)

where ψaGLYS and ψGLYP are the reaction rates for the the glycogen synthase and

phosphorylase given by:

ψaGLYS = V a
max,GLYS

(
[G6P]a

[G6P]a +Km,G6P

)
(1− f([GLY]a, 4.2, 20)) ,

ψaGLYP = V a
max,GLYP

(
[G6P]a

[G6P]a +Km,G6P

)
(1 + fGLY) ,

(2.36)
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with

fGLY = ∆GLY [f(t, t0,GLY, 4)− f(t, t0,GLY + tf,GLY, 4)] .

The maximum reaction rates for synthase of glycogen from G6P, and glycogen

breakdown, denoted by V a
max,GLYP and V a

max,GLYS, are specified in Table 2.10. The

function f is the switch function used for describing the changes in the blood

flow during neuronal stimulation and was given in equation (2.32).

Description Parameter Value Unit
Maximum reaction rate for glycogen synthase Vmax,GLYS 1.53e−4 mM/s
Maximum reaction rate for glycogen phosphorylase Vmax,GLYP 4.92e−5 mM/s
Glycogen breakdown fractional increase during stimulation ∆GLY 62 -
Delay before glycogen breakdown t0,GLY 71 s
Duration of glycogen breakdown tf,GLY 403 s

Table 2.10: Parameters used for describing the glycogen dynamics in Cloutier et
al. model [9].

The model assumes that the sum of the energetic shuttles, denoted by ANP,

remains constant at the value given in Table 2.12:

[ATP] + [ADP]+[AMP] = [ANP].

In light of adenylate kinase equilibrium, adenosine diphosphate concentration can

be expressed in terms of adenosine triphosphate:

[ADP] =
[ATP]

2

(
−qAK +

√
u
)
,

and the derivative of adenosine monophosphate can be expressed as

d[AMP]

d[ATP]
= −1 +

qAK

2
− 0.5

√
u+ qAK

[ANP]

[ATP]
√
u
,

where u = q2
AK+4qAK

(
[ANP]

[ATP]−1

)
and qAK is the equilibrium constant for adenylate

kinase reaction, listed in Table 2.12.

Similarly, it is assumed that the sum of the concentrations of NADH and

NAD+ is constant:

[NADH] + [NAD+] = Ntot,
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as is the sum of the concentrations of phosphocreatine and creatine:

[PCr] + [Cr] = Ptot.

The values of Ntot and Ptot assumed by the Cloutier model are given in Table

2.12.

Kinetic equations for the neuron and the astrocyte Parameter Value Unit
Hexokinase (ψiHK)

kiHK[ATP]i

(
[Glc]i

[Glc]i + Km,Glc

)
(1− f([G6P]i, 0.6, 20))

knHK 0.051 mM/s
kaHK 0.050 mM/s
Km,Glc 0.105 mM

Phosphoglucose isomerase (ψiPG1) ψn,fm,PG1 0.502 mM/s

ψi,fm,PG1

(
[G6P]i

[G6P]i + Km,G6P

)
− ψi,rm,PG1

(
[F6P]i

[F6P]i + Km,F6P

) ψa,fm,PG1 0.483 mM/s

ψn,rm,PG1 0.503 mM/s

ψa,rm,PG1 0.451 mM/s

Km,F6P 0.06 mM
Km,G6P 0.50 mM

Phosphofructokinase (ψiPFK) knPFK 0.558 mM−1s−1

kiPFK[ATP]i

(
1 +

(
[ATP]i
K1,ATP

)nH
)−1(

[F6P]i
[F6P]i + Km,F6P

) kaPFK 0.403 mM−1s−1

Km,F6P 0.06 mM
K1,ATP 0.7595 mM
nH 4 -

Phosphoglycerate kinase (ψiPGK)

kiPGK[GAP]i[ADP]i
[NAD+]i
[NADH]i

knPGK 0.429 mM−1s−1

kaPGK 0.251 mM−1s−1

Mitochondrial pyruvate oxidation (ψimit) ψnmax,mit 0.0556 mM/s

ψnmax,mit

(
[Pyr]i

[Pyr]i + Km,Pyr

)(
[ADP]i

[ADP]i + Km,ADP

)
fm

ψamax,mit 0.0084 mM/s
Km,Pyr 0.063 mM
Km,ADP 0.00107 mM

where fm = [1− f( [ATP]i
[ADP]i

, 20, 5)]

(
[O2]i

[O2]i + Km,O2

)
Km,O2

0.00297 mM

Pyruvate kinase (ψiPK) knPK 8.61 mM−1s−1

kiPK[PEP]i[ADP]i
kaPK 2.73 mM−1s−1

Lactate dehydrogenase (ψiLDH) knLDH,f 5.30 mM−1s−1

kiLDH,f + [Pyr]i[NADH]i − kiLDH,r[Lac]i[NAD+]i
kaLDH,f 6.26 mM−1s−1

knLDH,r 0.105 mM−1s−1

kaLDH,r 0.547 mM−1s−1

Creatine kinase (ψiCK) knCK,f 0.0524 mM−1s−1

kiCK,f[PCr]i[ADP]i − kiCK,r[Cr]i[ATP]i
kaCK,f 0.0243 mM−1s−1

kn.rCK 0.0152 mM−1s−1

ka,rCK 0.0207 mM−1s−1

ATPase (excluding the Na-K pump cost) (ψiATPase) Km,ATP 0.0153 mM

V im,ATPase

(
[ATP]i

[ATP]i +Km,ATP

)
V nm,ATPase 0.0489 mM/s

V am,ATPase 0.0357 mM/s

Table 2.11: Rate equations and their corresponding parameters in Cloutier et al.
model [9].
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Description Parameter Value Unit
Total concentration of NADH and NAD+ Ntot 0.22 mM
Total concentration of PCr and Cr Ptot 5 mM
Total energy shuttles [ANP] 2.38 mM
Equilibrium constant for adenylate kinase reaction qAK 0.92 -

Table 2.12: Physical constants and known values for the reaction fluxes [9].

The changes in glucose and lactate concentration in extracellular space follow

the differential equations

d[Glc]ecs

dt
= jc→ecs

Glc +Rn→ecsj
ecs→n
Glc −Ra→ecsj

ecs→a
Glc ,

d[Lac]ecs

dt
= jn→ecs

Lac Recs→n +Recs→aj
a→ecs
Lac − jecs→c

Lac ,

(2.37)

where the transport fluxes jc→ecs
Glc , jecs→n

Glc and jecs→a
Glc obey equations (2.39).

Volume fractions Volumetric ratios
Parameter Value Parameter Value

ηn 0.45 Recs→n 4/9
ηa 0.25 Recs→a 0.8
ηecs 0.2 Rc→ecs 0.0275
ηc 0.0055 Rc→a 0.022

Rc→n 0.01222

Table 2.13: Volume fractions and volumetric ratios in the Cloutier et al. model.

The time courses of the four metabolites in the capillary compartment are

governed by the system of differential equations

d[Glc]c
dt

= jcGlc −Recs→cj
c→ecs
Glc −Ra→cj

c→a
Glc ,

d[Lac]c
dt

= jcLac −Recs→cj
c→ecs
Glc −Ra→cj

c→a
Lac ,

d[O2]c
dt

= jcO2
−Rc→aj

c→a
O2

+Rc→nj
c→n
O2

,

d[CO2]c
dt

= jcCO2
−Rc→aj

c→a
CO2

+Rc→nj
c→n
CO2

.

(2.38)

The glucose and lactate transport rates across the Blood-Brain-Barrier follow
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classical Michaelis Menten form:

jc→ecs
Glc = V c→ecs

max,Glc

[
[Glc]c

[Glc]c +Kc→ecs
t,Glc

− [Glc]ecs

[Glc]ecs +Kc→ecs
t,Glc

]
,

jc→aGlc = V c→a
max,Glc

[
[Glc]c

[Glc]c +Kc→a
t,Glc

− [Glc]a
[Glc]a +Kc→a

t,Glc

]
,

jecs→n
Glc = V ecs→n

max,Glc

[
[Glc]ecs

[Glc]ecs +Kecs→n
t,Glc

− [Glc]n
[Glc]n +Kecs→n

t,Glc

]
,

jecs→a
Glc = V ecs→a

max,Glc

[
[Glc]ecs

[Glc]ecs +Kecs→a
t,Glc

− [Glc]a
[Glc]a +Kecs→a

t,Glc

]
,

jecs→c
Lac = V ecs→c

max,Lac

[
[Lac]ecs

[Lac]ecs +Kecs→c
t,Lac

− [Lac]c
[Lac]c +Kecs→c

t,Lac

]
,

jn→ecs
Lac = V n→ecs

max,Lac

[
[Lac]n

[Lac]n +Kn→ecs
t,Lac

− [Lac]ecs

[Lac]ecs +Kn→ecs
t,Lac

]
,

ja→cLac = V a→c
max,Lac

[
[Lac]a

[Lac]a +Ka→c
t,Lac

− [Lac]c
[Lac]c +Ka→c

t,Lac

]
,

ja→ecs
Lac = V a→ecs

max,Lac

[
[Lac]a

[Lac]a +Ka→ecs
t,Lac

− [Lac]ecs

[Lac]ecs +Ka→ecs
t,Lac

]
,

(2.39)

where Vmax,Glc, Vmax,Lac are the maximum transport rate and Kt,Glc, Kt,Lac are

affinity constants for glucose and lactate. The values of these parameters are

given in Table 2.14.

Transport Flux
Glucose Lactate

Parameter Value Units Parameter Value Units

Capillary ↔ ecs
V c→ecs

max,Glc 0.0496 mM/s V ecs→c
max,Lac 0.0325 mM/s

Kc→ecs
t,Glc 8.45 mM Kecs→c

t,Lac 0.764 mM

Capillary ↔ Astrocyte
V c→a

max,Glc 0.010 mM/s V a→c
max,Lac 0.0002 mM/s

Kc→a
t,Glc 9.92 mM Ka→c

t,Lac 0.128 mM

ecs ↔ Neuron
V ecs→n

max,Glc 0.504 mM/s V n→ecs
max,Lac 0.1978 mM/s

Kecs→n
t,Glc 5.32 mM Kn→ecs

t,Lac 0.093 mM

ecs ↔ Astrocyte
V ecs→a

max,Lac 0.038 mM/s V a→ecs
max,Lac 0.0861 mM/s

Kecs→a
t,Glc 3.52 mM Ka→ecs

t,Lac 0.221 mM

Table 2.14: Parameters corresponding to the transport fluxes Cloutier et al.
model [9].

The exchange rate of oxygen between the capillaries and neurons or astrocytes

is expressed in terms of the permeability (P ) of the blood brain barrier, capillary

surface Sc, cellular compartment volume (Vn, Va), hemoglobin (Hb) and oxiphoric
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power (OP):

jc→nO2
=

PSnc
ηn

(
KO2

(
Hb ·OP

[O2]c
− 1

)−1/nh

− [O2]n

)
, (2.40)

jc→aO2
=

PSac
ηa

(
KO2

(
Hb ·OP

[O2]c
− 1

)−1/nh

− [O2]a

)
, (2.41)

where KO2 is the oxygen transport constant. The values of the relevant parame-

ters are given in Table 2.15.

The blood flow contributions to the variations of glucose, lactate and oxygen

are [38]:

jcGlc =
2Fin(t)

ηc
(Cart,Glc − [Glc]c) ,

jcLac =
2Fin(t)

ηc
(Cart,Lac − [Lac]c) ,

jcO2
=

2Fin(t)

ηc
(Cart,O2 − [O2]c) ,

(2.42)

where Fin(t) is the input function controlling the blood flow in equation (2.19),

Vc the volume of the capillaries, Cart,Glc, Cart,Lac and Cart,O2
the arterial concen-

trations of glucose, lactate and oxygen and [Glc]c, [Lac]c and [O2]c their capillary

concentration.

Blood Flow parameters Arterial concentrations
Parameter Value Units Parameter Value Units

nOP 15 Cart,Glc 4.8 mM
HbOP 8.6 mM Cart,Lac 0.313 mM
Naero 3 Cart,O2

8.34 mM
CBF0 0.012 s−1 Cart,CO2

27.5 mM
PSnc 0.220 s−1

PSac 0.245 s−1

KO2 0.0897 mM
nh 2.7

Table 2.15: Blood related parameters and arterial concentrations in the Cloutier
et al. model.
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2.4 Metabolic model

The metabolic model used in this thesis is based on that proposed by Calvetti

et al. in [41, 42], which comprises separate compartments for neuron, astrocyte,

extracellular space surrounding them and blood. Both neuron and astrocyte are

equipped with their own metabolic network and interact biochemically through

extracellular space. The latter interfaces with the blood compartment by ex-

changing some metabolites through the permeable Blood-Brain-Barrier (BBB).

Each compartment X = {b, ecs, n, a} is assumed a volume fraction, denoted by

ηX , listed in Table 2.16.

This metabolic model does not explicitly describe the glutamate - glutamine

cycling between the cellular compartments (see Figure 2.3), which was included

in previous models to account for the energetic cost of activation. In our case,

this is no longer necessary due to the fact that the energetic link is done in a

more physiological manner, being directly correlated to the changes in the ionic

concentrations which depend on the level of activation [43].

2.4.1 Blood compartment

In the blood compartment, our model follows the concentration of three sub-

stances: glucose (Glc), lactate (Lac) and oxygen (O2). We denote the metabolite

by m, where m = {Glc, Lac, O2}. To indicate the concentration in blood and the

arterial concentration of the metabolite m, we use the notation [m]b, respectively

Cart,m. The arterial concentrations are assumed to be constant and their values

are given in Table 2.16. The blood flow is a function of time q = q(t) and the

mixing ratio between the arterial and the venous blood is denoted by F , where

F ∈ (0, 1).

The concentrations of the three metabolites in blood are modeled through the

differential equations:

ηb
d[Glc]b
dt

=
q

F
(Cart,Glc − [Glc]b)− JGlc, (2.43)

ηb
d[Lac]b
dt

=
q

F
(Cart,Lac − [Lac]b)− JLac, (2.44)

ηb
d[O2]b
dt

=
q

F
(Cart,O2

− [O2]b)− JO2 , (2.45)
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where the transport rates of glucose, lactate and oxygen between blood and

extracellular space JGlc, JLac and JO2 are expressed in terms of the metabolite

concentrations in the two compartments, by using symmetric Michaelis-Menten

expressions

JGlc = Tb,Glc

(
[Glc]b

Mb,Glc + [Glc]b
− [Glc]ecs

Mecs,Glc + [Glc]ecs

)
, (2.46)

JLac = Tb,Lac

(
[Lac]b

Mb,Lac + [Lac]b
− [Lac]ecs

Mecs,Lac + [Lac]ecs

)
. (2.47)

Here Tb,Glc, Tb,Lac are the maximum transport rates, and Mb,m, Mecs,m the affinity

constants of the metabolites in blood compartment and extracellular space, given

in Table 2.17.

The oxygen in the blood can be either freely dissolved in plasma or bound to

hemoglobin. The total oxygen concentration can be written with respect to the

free oxygen concentration [O2]b,free according to Hill’s equation [44]:

[O2]b = [O2]b,free + 4 Hct [Hb]
[O2]nb,free

Kn
H + [O2]nb,free

= H
(
[O2]b,free

)
,

where [Hb] is the hemoglobin concentration in plasma, Hct the hematocrit, KH

the affinity constant and Hill’s constant is set to n = 2.5.

The transport flux of oxygen follows a modified Fick’s law:

JO2 = λb,O2

(
[O2]b,free − [O2]ecs

)κ
= λb,O2

(
H−1([O2]b)− [O2]ecs

)κ
, (2.48)

where λb,O2 is the membrane’s permeability to oxygen and κ was set to 0.1.

For notational convenience, we collect the concentrations of metabolites in

blood compartment in the vector

Cb(t) =


[Glc]b(t)

[Lac]b(t)

[O2]b(t)

 . (2.49)
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Volume fractions Blood Flow parameters Arterial concentrations
Parameter Value Parameter Value Units Parameter Value Units

ηn 0.4 Hct 0.45 Cart,Glc 5 mM
ηa 0.3 Hb 5.18 Cart,Lac 1.1 mM
ηecs 0.3 KH 36.4 · 10−3 mM Cart,O2

9.14 mM
ηb 0.04 q 0.40 mL/min

Table 2.16: Volume fractions and blood related parameters: List of the
volume fractions of the four compartments (left), values of the parameters in the
expression for blood flow (center) and arterial concentrations of glucose, lactate
and oxygen (right).

2.4.2 Extracellular space

Changes in concentrations of glucose, lactate and oxygen depend only on ex-

changes with other compartments, hence

ηecs
d[Glc]ecs

dt
= JGlc − jn

Glc − ja
Glc, (2.50)

ηecs
d[Lac]ecs

dt
= JLac − jn

Lac − ja
Lac, (2.51)

ηecs
d[O2]ecs

dt
= JO2 − jn

O2
− ja

O2
, (2.52)

where JGlc, JLac and JO2 are the fluxes from the blood to the extracellular space,

defined in (2.46), (2.47) and (2.48), and j
n/a
Glc , j

n/a
Lac and j

n/a
O2

are the transport

rates of glucose, lactate and oxygen from the extracellular space to the neuron

or astrocyte, with the convention that positive fluxes are directed away from the

extracellular space.

The transport of glucose and lactate into the cellular compartments occurs

with the facilitation of glucose (GLUT) and monocarboxylate (MCT) trans-

porters, whose rates are expressed in Michaelis-Menten form:

jn
Glc = Tn,Glc

(
[Glc]ecs

Mn,Glc + [Glc]ecs

− [Glc]n
Mn,Glc + [Glc]n

)
, (2.53)

jn
Lac = Tn,Lac

(
[Lac]ecs

Mn,Lac + [Lac]ecs

− [Lac]n
Mn,Lac + [Lac]n

)
, (2.54)

ja
Glc = Ta,Glc

(
[Glc]ecs

Ma,Glc + [Glc]ecs

− [Glc]a
Ma,Glc + [Glc]a

)
, (2.55)

ja
Lac = Ta,Lac

(
[Lac]ecs

Ma,Lac + [Lac]ecs

− [Lac]a
Ma,Lac + [Lac]a

)
, (2.56)
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where Tn,Glc, Ta,Glc, Tn,Lac and Ta,Lac are the maximum transport rates and Mn,Glc,

Ma,Glc, Mn,Lac and Ma,Lac are the affinity constants, whose values are listed in

Table 2.17.

Oxygen transport into neuron and astrocyte obeys Fick’s law with constant

permeabilities,

jn
O2

= λn,O2

(
[O2]ecs − [O2]n

)
, (2.57)

ja
O2

= λa,O2

(
[O2]ecs − [O2]a

)
. (2.58)

We collect the concentrations of metabolites in extracellular space in the vector

Cecs(t) =


[Glc]ecs(t)

[Lac]ecs(t)

[O2]ecs(t)

 . (2.59)

Flux
Blood ↔ Ecs Ecs ↔ Neuron Ecs ↔ Astrocyte

Param Value Units Param Value Units Param Value Units

[Glc]
Tb,Glc 0.02 mM/s Tn,Glc 83.33 mM/s Ta,Glc 83.33 mM/s
Mb,Glc 4.60 mM Mn,Glc 5.00 mM Ma,Glc 12500.00 mM

[Lac]
Tb,Lac 0.17 mM/s Tn,Lac 66.67 mM/s Ta,Lac 66.67 mM/s
Mb,Lac 5.00 mM Mn,Lac 0.40 mM Ma,Lac 0.40 mM

[O]2 λb,O2
0.04 1/s λn,O2

0.94 1/s λa,O2
0.68 1/s

Table 2.17: Transports: List of parameters in the expression of the transport
rates and their corresponding values. By Tc,m we denote the maximum transport
rate, while by Mc,m we denote the affinity constant in the Michaelis-Menten ex-
pressions describing the transport rate of the metabolite m = {Glc, Lac} from
compartment c, where c = {blood, neuron, astrocyte or ecs}. λc,O2 is the param-
eter in Fick’s law describing the diffusion of oxygen from compartment c.

2.4.3 Neuron and astrocyte

In the two cellular compartments, we follow the time course of the concentra-

tions of glucose, lactate, oxygen, pyruvate (Pyr), creatine (Cr), phosphocreatine

(Pcr), adenosine triphosphate (ATP), adenosine diphosphate (ADP) and the ox-

idized and reduced forms of nicotinamide adenine dinucleotide (NAD+, respec-

tively NADH). These ten metabolites, whose resting concentrations are listed in

Table 2.18, participate in the chemical reactions in Table 2.19.
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[Glc] [O2] [Lac] [Pyr] [PCr] [Cr] [ATP] [ADP] [NADH] [NAD]

b 4.51 6.67 1.24
ecs 1.19 0.04 1.30
n 1.19 0.03 1.30 0.38 10.33 3.0e-4 2.18 6.3e-3 1.2e-3 0.03
a 0.65 0.03 1.30 0.35 10.32 1.1e-3 2.17 0.03 1.2e-3 0.03

Table 2.18: Metabolites: List of metabolites in the 4 compartments (blood (b),
extracellular space (ecs), neuron (n) and astrocyte (a)) and their corresponding
resting concentrations expressed in mM.

Name Symbol Reaction
Gcl ψGcl,n/a Glc + 2 NAD+ + 2 ADP −→ 2 Pyr + 2 NADH + 2 ATP
LDH1 ψLDH1,n/a Pyr + NADH −→ Lac + NAD+

LDH2 ψLDH2,n/a Lac + NAD+ −→ Pyr + NADH
TCA ψTCA,n/a Pyr + ADP + 5 NAD+ −→ 3 CO2 + ATP + 5 NADH
OxPhos ψOxPhos,n/a O2 + 2NADH + 5ADP −→ 2 NAD+ + 5 ATP + 2 H2O
PCr ψPCr,n/a PCr + ADP −→ Cr + ATP
Cr ψCr,n/a Cr + ATP −→ PCr + ADP
ATPase ψATPase,n/a ATP→ ADP

Table 2.19: Reactions: List of the lumped reactions included in the model.
Abbreviations for the reaction names: Gcl = Glycolysis, LDH = Lactate de-
hydrogenase, reversible reaction, TCA = Tricarbocylic acid cycle, OxPhos =
Oxidative phospohorylation, PCr = Phosphocreatine dephosphorylation, Cr =
Creatine phosphorylation, ATPase = ATP dephosphorylation, mostly account-
ing for the Na+/K+ ATPase. Observe that the glutamate/glutamine cycling is
not included in the dynamic system, as they are used as a coupling between the
electrophysiology and metabolism.

The mass balance of the ten species in the two cellular compartments, is
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expressed by the set of equations:

ηj
d[Glc]c
dt

= jc
Glc − ψc

Gcl,

ηj
d[Lac]c
dt

= jc
Lac + ψc

LDH1 − ψc
LDH2,

ηj
d[O2]c
dt

= jc
O2
− ψc

OxPhos,

ηj
d[Pyr]c
dt

= 2ψc
Gcl − ψc

LDH1 + ψc
LDH2 − ψc

TCA,

ηj
d[PCr]c
dt

= −ψc
PCr + ψc

Cr,

ηj
d[Cr]c
dt

= ψc
PCr − ψc

Cr,

ηj
d[ATP]c

dt
= 2ψc

Gcl + ψc
TCA + 5ψc

Oxphos + ψc
PCr − ψcCr − ψcATPase,

ηj
d[ADP]c

dt
= −2ψc

Gcl − ψc
TCA − 5ψc

Oxphos − ψc
PCr + ψcCr + ψcATPase,

ηj
d[NADH]c

dt
= 2ψc

Gcl − ψc
LDH1 + ψc

LDH2 + 5ψc
TCA − 2ψc

OxPhos,

ηj
d[NAD+]c

dt
= −2ψc

Gcl + ψc
LDH1 − ψc

LDH2 − 5ψc
TCA + 2ψc

OxPhos,

(2.60)

where c = {n,a}, jc
Glc, j

c
Lac and jc

O2
are the transport rates from the extracellular

space defined in equations (2.53)-(2.58). By ψ we indicate the rate corresponding

to each reaction occurring in the neuron and the astrocyte, they are concentration

dependent and their mathematical expressions are given in Table 2.20.

We define the phosphorylation state as the ratio between the ATP concentra-

tion and the ADP concentration in the two compartments:

pn =
[ATP]n
[ADP]n

, pa =
[ATP]a
[ADP]a

, (2.61)

and the redox state, as the ratio between the concentration of NADH and NAD+:

rn =
[NADH]n
[NAD+]n

, ra =
[NADH]a
[NAD+]a

. (2.62)
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Reaction Parameter Units Neuron Astrocyte

Glycolysis (ψGcl) VGcl mM/s 0.26 0.25

VGcl
1/p

µGcl+1/p
1/r

ψGcl+1/r
[Glc]

[Glc]+KGcl
,

KGcl mM 4.60 3.10
µGcl 0.09 0.09
ψGcl 10.00 10.00

Lactate dehydrogenase (ψLDH1) VLDH1 mM/s 1436.00 4160.00

VLDH1
r

ψLDH1+r
[Pyr]

[Pyr]+KLDH1

KLDH1 mM 2.15 6.24
ψLDH1 0.10 0.10

Lactate dehydrogenase (ψLDH2) VLDH2 mM/s 1579.83 3245.00

VLDH2
1/r

ψLDH2+1/r
[Lac]

[Lac]+KLDH2

KLDH2 mM 23.70 48.66
ψLDH2 10.00 10.00

TCA cycle (ψTCA) VTCA mM/s 0.03 0.01

VTCA
1/p

µTCA+1/p
1/r

ψTCA+1/r
[Pyr]

[Pyr]+KTCA

KTCA mM 0.01 0.01
µTCA 0.01 0.01
ψTCA 10.00 10.00

Oxidative phosphorylation (ψOxPhos) VOxPhos mM/s 8.18 2.55

VOxPhos
1/p

µOxPhos+1/p
r

ψOxPhos+r
[O2]

[O2]+KOxPhos

KOxPhos mM 1.00 1.00
µLDH1 0.01 0.01
ψLDH1 0.10 0.10

Creatine phosphorylation (ψCr) VCr mM/s 16666.67 16666.67

VCr
p

µCr+p
[Cr]

[Cr]+KCr

KCr mM 495.00 495.00
µCr 0.01 0.01

Creatine dephosphorylation (ψPCr) VPCr mM/s 16666.67 16666.67

VPCr
1/p

µPCr+1/p
[PCr]

[PCr]+KPCr

KPCr mM 528.00 528.00
µPCr 100.00 100.00

ATP dephosphorylation (ψATPase) Jpump,base mM/s 0.0811 -

H1/2 + E
1/2
s Jglia,base mM/s - 0.1897

Jpump,act mM/s 0.4444 -
Jglia,act mM/s - 0.1933

Table 2.20: Reactions rates: Michaelis-Menten type expressions for the reac-
tion fluxes in neuron and astrocyte and the values of the respective parameters.

The concentrations of all the metabolites in neuron and astrocyte are collected
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into the vectors Cn(t) and Ca(t)∈ R10.

Cn/a(t) =



[Glc]n/a(t)

[Lac]n/a(t)

[O2]n/a(t)

[Pyr]n/a(t)

[PCr]n/a(t)

[Cr]n/a(t)

[ATP]n/a(t)

[ADP]n/a(t)

[NADH]n/a(t)

[NAD+]n/a(t)



. (2.63)

The expression for ATP dephosphorylation reaction (see Table 2.19), not ex-

pressed in terms of metabolite concentrations, will be discussed in more detail in

the following chapter, where the coupling between the electrophysiological and

metabolic model is addressed. We define ψATPase as the sum of the energetic cost

towards housekeeping tasks H, and the energetic cost for signaling Es

ψnATPase = H1 + E1
s , ψaATPase = H2 + E2

s . (2.64)

In this chapter, the signaling costs E1
s and E2

s are assumed to be constant and

their values depend on the activation level. On the other hand, quantifying the

household energy continues to be topic debated in recent literature [45, 2]. We

will revisit these energetic costs in Section 2.4.5.

2.4.4 Mathematical considerations

After collecting the concentrations of the metabolites in the four compartments

in a vector

C(t) =


Cb(t)

Cecs(t)

Cn(t)

Ca(t)

 ∈ R26, (2.65)
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we can write the differential equations of the metabolic model compactly in the

form

dC

dt
= f(C). (2.66)

For simplicity, equation (2.66) deals with the metabolites concentrations. This

aspect will be revisited in the next chapter where we will address the roles of

blood flow and ATP dephosphorylation.

To guarantee the positivity of the concentrations, we make the change of

variable:

Cj = C0eUj , 1 ≤ j ≤ n. (2.67)

Writing

C = h(U), where X =


U1

...

Un

 , (2.68)

and applying the chain rule, it follows that

dCj
dt

=
dhj(U)

dt
=

n∑
k=1

∂hj
∂Uk

dUk
dt

, (2.69)

which can be written in shorthand notation as

dC

dt
=

d

dt
(h(U)) =

∂h

∂U

dU

dt
. (2.70)

Differentiating (2.68) with respect to the variable X, we obtain:

∂hj
∂Uk

= hjδj,k,

which, in our case, becomes

∂h

∂U
= diag(h(U)) = Λ(U), (2.71)
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and we can write our initial system (2.66) with respect to the variable X as

dU

dt
= Λ(U)−1f(h(U)), (2.72)

H(U) = Λ(U)−1f(h(U)), (2.73)

the system (2.66) becomes:


dU

dt
= H(U)

U(t0) = U0

. (2.74)

Due to the different characteristic time scales of the metabolic processes, the sys-

tem (2.74) is stiff: special care must therefore be given to its numerical solution.

Backward Differentiation Formulae (BDF), a family of implicit methods, are well

suited for this purpose. The BDF linear multistep methods are characterized by

the following formulas:

a) BDF1

Un+1 − Un = dtH(tn+1, Un+1), (2.75)

b) BDF2

Un+2 −
4

3
Un+1 +

1

3
Un =

2

3
dtH(tn+2, Un+2), (2.76)

c) BDF3

Un+3 −
18

11
Un+2 +

9

11
Un+1 −

2

11
Un =

6

11
dtH(tn+3, Un+3), (2.77)

d) BDF4

Un+4 −
48

25
Un+3 +

36

25
Un+2 −

16

25
Un+1 +

3

25
Un =

12

25
dtH(tn+4, Un+4), (2.78)

where dt represents the step size: tn = t0 + ndt.

Introduce the vector Hv = [Hv
1 H

v
2 H

v
3 H

v
4 ]t which contains the right hand
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side of each of the equations (2.75)-(2.78), we can write

Hv
1 = Un+1 − Un − dtH(tn+1, Un+1), (2.79)

Hv
2 = 3Un+2 − 4Un+1 + Un − 2dtH(tn+2, Un+2), (2.80)

Hv
3 = 11Un+3 − 18Un+2 + 9Un+1 − 2Un − 6dtH(tn+3, Un+3), (2.81)

Hv
4 = 25Un+4 − 48Un+3 + 36Un+2 − 16Un+1 + 3Un − 12dtH(tn+4, Un+4). (2.82)

The nonlinear equations (2.79)-(2.82), are solved by Newton’s Method, hence

the value of U at t = n+ 1 is:

Un+1 = Un − J−1
Hv
·Hval, (2.83)

where we can write the Jacobian JHv formally as

JHv =


-dt

−2dt

−6dt

−12dt


∂H

∂U
.

The (j, k) element of the Jacobian matrix of the function H:

∂H

∂U
=


∂H1

∂U1

· · · ∂H1

∂Un
...

...
∂Hn

∂U1

· · · ∂Hn

∂Un

 ,

is

(
∂H

∂U

)
j,k

=
∂Hj

∂Uk
=

∂

∂Uk

(
1

hj(U)
fj(U)

)
= − 1

hj(U)2

∂hj
∂Uk

fj(U) +
1

hj(U)

∂fj
∂Uk

(U).

From (2.71), we have

1

gj(U)2

∂hj
∂Uk

fj(U) = δj,k
1

hj
fj(U) = δj,kHj(U),



CHAPTER 2. BRAIN METABOLISM 69

hence,
∂H

∂U
= −diag(H) + Λ−1 ∂f

∂U
.

We calculate the partial derivative of f with respect to U by an application of

the chain rule:

∂fj
∂Uk

=
n∑
`=1

∂fj
∂C`

∂h`
∂Uk

=
n∑
`=1

∂fj
∂C`

h`δ`,k =
∂fj
∂Ck

hk,

and write it in matrix notation as

∂f

∂U
=
∂f

∂C
Λ.

In summary,
∂H

∂U
= −diag(H) + Λ−1 ∂f

∂C
Λ.

Given the stoichiometric matrix S ∈ R26×26 and the vector Ψ(C) ∈ R26 col-

lecting the convection terms in blood, the transport rates and the reaction fluxes:

Ψ =



B

J

jn

ja

ψn

ψa


, (2.84)

we can express f as

f(C) = SΨ(C). (2.85)

More specifically, the stoichiometric matrix S ∈ R26×26 is of the form

S =


I3×3 −I3×3

I3×3 −I3×3 −I3×3

S1 O10×3 S2

S1 O10×7 S2

 , (2.86)



CHAPTER 2. BRAIN METABOLISM 70

where I is the identity matrix, O the null matrix, S1 ∈ R10×3 and S2 ∈ R10×7

S1 =



1 0 0

0 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0



, S2 =



−1 0 0 0 0 0 0

2 −1 1 −1 0 0 0

0 1 −1 0 0 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 −1 1

0 0 0 0 0 1 −1

2 0 0 1 5 1 −1

−2 0 0 −1 −5 −1 1

2 −1 1 5 −2 0 0

−2 1 −1 −5 2 0 0



.

The vector B in (2.84) contains the first term of the right hand side of each

equation (2.43)-(2.45):

B =



q

F
(Cart,Glc − [Glc]b)

q

F
(Cart,Lac − [Lac]b)

q

F
(Cart,O2

− [O2]b)

 ,

while J is the vector of the fluxes from blood to extracellular space defined in

equations (2.46)-(2.48). The vectors jc, c = {n, a}, contain the transport fluxes

from extracellular space to neuron and astrocyte, whose mathematical expres-

sions were given in (2.53)-(2.58), while the reaction rates given in Table 2.20 are

collected into the vector ψc.
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J =


JGlc

JLac

JO2

 , jc =


jc

Glc

jc
Lac

jc
O2

 , ψc =



ψGcl,c

ψLDH1,c

ψLDH2,c

ψTCA,c

ψOxphos,c

ψPCr.c

ψCr,c


, where c = {n, a}.

2.4.5 Calibration

The recent literature on brain energetics [45, 2] emphasizes the fact that most

of the energy consumed by the brain goes toward activating the sodium potas-

sium pump, maintaining the ion gradients and restoring the membrane potentials.

Other energy needs go towards other processes including neurotransmitter pack-

ing into vesicles and neurotransmitter recycling. The energy required for these

secondary processes is referred to as household energy, while the signaling energy

refers to the energetic cost of the sodium potassium pump Jpump,Na+ and glial

uptake Jglia,K+

E1
s = sηnJpump,Na+ , (2.87)

E2
s = s

ηecs

2
Jglia,K+ , (2.88)

where ηn and ηecs are the volume fractions of neuron and extracellular space and s

is a parameter introduced to compensate for considering different total volumes.

In this chapter, the energetic cost of the sodium potassium pump and glial

uptake are treated as inputs obtained from the electrophysiological model and

are dependent on the level of neuronal activation.

To properly calibrate our model, we set the household energy (H1 and H2)

and the parameter weighting the energetic need (s) so that the Oxygen Glucose

Index (OGI) is in agreement with values reported in literature. The OGI is

defined [46, 47] as:

OGI =
JO2

JGlc

, (2.89)
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where JGlc and JO2 are the fluxes of glucose and oxygen from the blood to the

extracellular space; see equations (2.46) and (2.48). We consider OGI during

four different levels of neuronal activity: 8 Hz, 10 Hz, 12 Hz and 90 Hz. The

first three frequencies correspond to the alpha resting state [48, 49, 50], while

the last one corresponds to a neuronal activation period. In our simulations, we

used the input of the energetic cost of the sodium potassium pump and the glial

potassium cleaning which were obtained from the electrophysiological model. The

8 Hz frequency corresponds to activation factor ξ = 0.05, the 10 Hz frequency

to a ξ = 0.07, the 12 Hz frequency to ξ = 0.1 and the 90 Hz to ξ = 2.5. Each

case carries a different signaling cost (E1
s and E2

s ), and we vary the household

energy H1 and the parameter s, while maintaining constant the ratio between

the household energy of the neuron and astrocyte:

H2 = 0.833H1.

Figure 2.4 shows the corresponding OGI values: the three frequencies in the alpha

state range are rendered through colour maps, while the OGI during neuronal

activation (90 Hz frequency) is shown in the form of red curves. Our results are

in agreement with OGI values reported in literature: ranging from 4 to 4.5 during

neuronal activation and 5 to 5.5 during resting state [51, 46, 52, 47, 53].
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Figure 2.4: OGI analysis: cross scales parameter s versus household energy H1.
OGI values for three frequencies characterizing the awake resting state: 8 Hz (top
row), 10 Hz (middle row) and 12 Hz (bottom row). The colour map shows OGI
regions as the cross scaling parameter s ranges from 0.2 to 0.25 and the household
energy H1 ranges from 4 to 4.9 mM/min. The OGI values corresponding to the
neuronal activation are shown using the red curves.

In light of these results, in the remainder of this thesis we set a household

energy H1 = 4.3 mM/min and the proportionality parameter s = 0.23, so as
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to have an OGI index of approximately 5.2 during resting state and 4.2 dur-

ing neuronal activation, values which are in agreement with recent experimental

literature [46, 52, 47, 53].

2.4.6 Results

In this section we show the response of the metabolic model described in the

previous sections to neuronal activation. We consider a total simulation time of

30 minutes, during which we induce a three minutes neuronal activation, while

the remainder 27 minutes are spent in awake resting state with firing frequency

of 8 Hz. The transition between resting state and activation is attained through

the different ATP requirements dictated by the two states:

ψATPase,n =


H1 + sηnJpump,act if t ∈ [2, 5]

H1 + sηnJpump,base elsewhere

, (2.90)

ψATPase,a =


H2 + sηecs

2
Jglia,act if t ∈ [2, 5]

H2 + sηecs
2
Jglia,base elsewhere

(2.91)

where Jpump,act, Jglia,act, Jpump,base, Jglia,base are the values of the sodium potassium

pump, respectively for the glial potassium cleaning corresponding to the two levels

of activation.

We consider the following two protocols, which differ on the blood flow re-

sponse during neuronal activation

A: The blood flow is constant throughout the neuronal activation (in vitro).

B: The blood flow increases by approximatively 30% during the sustained ac-

tivation (in vivo).

According to hemodynamic experimental literature [54], the blood flow response

to neuronal activation is slightly delayed at the start and the end of the neuronal

stimulation. We model this physiological response by using a piecewise model

q(t) = A(t)q0, where A(t) is described in Table 2.21, with a delay of di = 2

seconds at the beginning of the stimulation and df = 5 seconds at the end of the

neuronal activation. If we denote the initial time of activation by ti, then the
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blood flow increase starts at ti + di and it reaches 130% of its resting state value

at ti + di + ri, where ri = 10 seconds represents the ramping time response to

the start of the neuronal activation. Similarly, once the activation has ended, we

consider a ramping time response of rf = 20 seconds.

Time [t0, ti + di) [ti + di, ti + di + ri) [ti + di + ri, tf + df) [tf + df, tf + df + rf) [tf + df + rf, T )

A(t) 1 1 + δ
t− ti − di

ri
1 + δ e−α(t−tf−df) a+ b 1

Table 2.21: Blood flow regulation during sustained neuronal activation
(Protocol B). The definition of the activation function A(t) can be seen in the
table above, where the first row shows the periods in time at which the function
is defined according to its corresponding cell on the bottom row. The graph
underneath the table shows the resulting blood flow course where q0 represents
the baseline blood flow, δ gives the increase of blood during neuronal activation,
ti and tf are the initial respectively final time of the activation, di and df are
delays in the blood flow response and ri and rf are the ramping time response
to the beginning and the end of the stimulus. The values and the units of all
these parameters are given in Table 2.22. The parameters α, a and b are chosen
such that the continuity of the blood flow function is ensured throughout the
experiment: α = 0.1, a = 0.35, and b = 0.95.

Param Value Description Unit
q0 0.4 Baseline blood flow mL/min
δ 0.3 Blood flow increment during neuronal activation -
ri 10 Ramping time response to the start of the activation s
rf 20 Ramping time response to the end of the activation s
di 2 Delay time in response to the start of the activation s
df 5 Delay time in response to the end of the activation s

Table 2.22: Parameters corresponding to the activation function A(t) defined in
Table 2.21.
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Using the blood flow protocols defined above, we run two simulations: one

with protocol A and another with protocol B. Both protocols induce a three

minutes neuronal activation starting at t = 2 minutes. The results are presented

in a comparative manner in Figures 2.5-2.10. In all figures blue dashed lines refer

to Protocol A while red lines refer to Protocol B. In these tests we can observe the

behavior of the brain metabolites during neuronal activation when blood supply

is constant (in vitro) or increased (in vivo).

Figure 2.5 shows the time course of the concentrations of glucose, lactate and

oxygen in the four compartments. As expected, the activation period t ∈ [2, 5] is

characterized by high consumption of glucose and oxygen, accompanied by high

production of lactate. More specifically, the decrease in glucose concentration in

neuron and extracellular space is of approximately 65% under protocol A and 63%

under protocol B, both compared to its value during the awake resting state. The

consumption of glucose is much higher in the astrocyte compartment, where we

record a decay to 89% in the case of protocol B and 88% in the case of protocol

A of its value during the resting state. In neuron, astrocyte and extracellular

space, the concentration of lactate exhibits a big increase from its baseline value:

65% under protocol A and 75% under protocol B. In the case of oxygen, we note

a decay of 90% in the neuron, 76% in the astrocyte and 50% in the extracellular

space.

As expected, we see very different behaviors under the two protocols in the

blood compartment. Under protocol A, we observe an immediate decrease of 4%

of glucose concentration below resting value, while under protocol B, we see an

initial increase of 2% followed by a slow decrease. The same response also holds

for the level of oxygen in blood: if the blood level is kept constant throughout

the neuronal stimulation, we notice a decay of 5% in the case of oxygen, while

under the increased blood flow protocol, the oxygen shows an increase of 4%

compared to its baseline value and is followed by a dip at the end of the activation.

Both protocols show a significant lactate production during neuronal activation,

slightly bigger under protocol A.
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w

Figure 2.5: Neuronal activation: in vivo and in vitro. Time course of
metabolite concentrations in the neuron (top row), astrocyte (second row), ex-
tracellular space (third row) and blood compartment (bottom row). In blue we
see the concentrations when the blood flow is kept constant throughout the neu-
ronal activation (protocol A), while the continuous red line shows the metabolites
under protocol B, in which the blood flow exhibits an increase of 30% during the
three minutes neuronal stimulation as described in Table 2.21.

Figure 2.6 shows the transport rates of glucose, lactate and oxygen from blood

compartment to the extracellular space, with a higher increase in the cerebral

metabolic rate of oxygen under protocol B (15% over its baseline value) than

under protocol A (13% above baseline). This shows that due to the higher amount

of blood flow available, the transfer of oxygen from the blood to the extracellular

space is higher than before. The same holds for glucose flux from the blood

compartment to the extracellular space, which has an increase of 40% under

protocol B and 38% under protocol A, both calculated with respect to the value
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of this flux during awake resting state. These flux values are used to calculate

from (2.89) the OGI index, whose time course under the two protocols is showed

on the bottom right corner of Figure 2.6. At the beginning of the activation,

there is a spike in OGI for both protocols, followed by an 18% decrease below the

resting state value.

Figure 2.6: Neuronal activation: in vivo and in vitro. First row: Cere-
bral metabolic rate of glucose (left) and lactate (right). Bottom row: Cerebral
metabolic rate of oxygen (left) and the resulting Oxygen-Glucose Index (right).

Figure 2.7 shows a depletion of pyruvate during the three minutes of the

activation period: the concentration decreases by 84% in the neuron and by

59% in the astrocyte. As expected, the phosphorylation rates in neuron and

astrocyte dramatically decrease during the activation period, due to the larger

requirement of ATP during activation than during awake resting state. In both

neuron and astrocyte, phosphorylation rate exhibits a decrease of approximatively

98.5% during the increased blood flow protocol B, and a 99.5% decrease when

considering the blood flow constant. On the other hand, during activation, redox

state increases 8 fold in the neuron and 4 fold in the astrocyte.
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Figure 2.7: Neuronal activation: in vivo and in vitro. Time course of
pyruvate, phosphorylation states and redox states in the neuron (top row) and
astrocyte (bottom row).

Figure 2.8 illustrates the rates at which metabolites are transported from the

extracellular space to the cellular compartments; glucose and oxygen transport

rates substantially increase in the neuron during the activation period, while

decaying in the astrocyte. On the other hand, the lactate flux dramatically

decreases during activation to a negative value, and indicating that there is lactate

exiting from the neuron to the extracellular space during the activation. Similarly,

the lactate flux in the astrocyte is negative during baseline and increases slightly

during activation.

Figure 2.8: Neuronal activation: in vivo and in vitro. Metabolic fluxes
between the extracellular space and the neuron (top row) and between the ex-
tracellular space and the astrocyte (bottom row).
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The reaction fluxes in the two cellular compartments are shown in Figures

2.9 and Figure 2.10. The rate of glycolysis increases during activation in neuron,

while dropping in astrocyte after an initial peak. Similar patterns are observed

for the flux of the TCA cycle and oxidative phosphorylation fluxes, as well as for

lactate dehydrogenase net flux.

Figure 2.9: Neuronal activation: in vivo and in vitro. Reaction fluxes
in the neuron (top row) and astrocyte compartments: glycolysis (left), TCA
(middle) and oxidative phosphorylation (right).

Figure 2.10: Neuronal activation: in vivo and in vitro. Reaction fluxes
in the neuron (top row) and astrocyte compartments: lactate dehydrogenase
balance flux (left) and creatine phosphorylation balance flux (right).
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Chapter 3

Electro-Metabolic model

3.1 Introduction

In the previous two chapters we described two important aspects of brain dy-

namics: electrophysiology and metabolism. Despite their strong interconnection,

these two aspects have been long studied in a separate manner by two scientific

communities: one concerned with the study of the electrical properties of the

brain cells and the other with the study of the main biochemical reactions occur-

ring in the brain. In this chapter, we couple the two perspectives on the basis

of their energetic production and consumption. On one hand, electrophysiologi-

cal activity requires a sufficient amount of ATP, produced through the complex

biochemical reactions occurring in the brain. On the other hand, the amount of

energy produced depends on the availability of the different metabolites, and is

dictated by the electrophysiology. This process is sketched in Figure 3.1.

In this chapter we describe a double feedback Electro-Metabolic model and

propose an algorithm to deal with the dramatically different time scales of the

processes: milliseconds for the electrophysiology and minutes for the metabolism.

In the numerical results section we report simulations of awake resting state,

consecutive neuronal activations and ischemic episodes.

83
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Figure 3.1: Schematic representation of the Electro-Metabolic model emphasiz-
ing the two dynamics through the ATP supply and demand [43]. pn and pa
are the phosphorylation states of neuron, respectively astrocyte, ψATPase,n and
ψATPase,a are the ATP dephosphorylation fluxes in neuron and in astrocyte, while
ξ(t) is the stimulus which induces neuronal activation and it is an input for the
electrophysiology subunit. q(t) is the blood flow while Cart,X(t) are the arterial
concentrations of glucose, lactate and oxygen, all of which represent external
inputs for the metabolic subunit.

3.2 Double-Feedback Model

A partial coupling of brain electrophysiology and metabolism was proposed by

Aubert et al. in [38], where the energetic cost of the sodium potassium pump is

added to the metabolic model, as described in Section 2.3; however, its major lim-

itation is that their uni-directional approach does not account for how metabolic

response affects electropysiological activities.

The double feedback mechanism described in this chapter includes the en-

ergetic cost of the electrophysiological activity in the metabolism and accounts

for the metabolic response in the electrophysiological activity. This coupling of

the electrophysiology and metabolism is based on the ATP supply and demand,

rather than explicit modeling of the glutamate cycles as in [9].
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3.2.1 Metabolism to Electrophysiology

To account for the metabolic response to the energetic cost demanded by the

electrophysiology, we modify the expressions of the sodium potassium pump and

the glial uptake given in Chapter 1, in equations (1.21) and (1.22) into (see [43]):

Jpump,Na+ =
pn

µp + pn

(
ρ

1 + exp(25− [Na+]i)/3)

)(
1

1 + exp(2.2− [K+]ecs)

)
(3.1)

Jglia,K+ =
pa

µg + pa

Gglia

1 + exp((14.7− [K+]ecs)/25)
, (3.2)

where pn = pn(t), pa = pa(t) are the phosphorylation states in the neuron and

astrocyte, and µp = 0.1, µg = 0.1 are affinity constants.

The modified pump activity model is such that, if the phosphorylation states

determined by the metabolism are not sufficiently large, the sodium and potas-

sium ion fluxes slow down, leading to an imbalance in ionic concentrations. We

remark that the astrocytic potassium flux Jglia,K+ is not directly dependent on

ATP, but takes into account a metabolic cost to account for potassium cleaning

by the astrocyte [55]. After the addition of the metabolic feedback, the electro-

physiological model (1.26) becomes

du

dt
= f(u, ξ, pn, pa), (3.3)

where ξ is the stimulus controlling the activation, as explained in Section 1.2.2.

3.2.2 Electrophysiology to Metabolism

The electrophysiological feedback is encoded into the metabolic model through

the energetic cost of the ion pump action [43]. The ATP dephosphorylation

reaction: ATP → ADP releases a binding energy of ∆E = 30.5 kJ/mol which

can be used to maintain the pump actions. It is also well known that one ATPase

is required for the exchange of three sodium ions for two potassium ions, therefore,

the following stoichiometric relation holds for both cells:

ATP + 3Na+
i + 2K+

ecs → ADP + 3Na+
ecs + 2K+

i .
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The mass balance equations for intracellular sodium and extracellular potassium

defined in (1.17) and (1.18) can be written with respect to the ATPase fluxes as:

ηn
d[Na+]i
dt

= −γηnI+
Na − 3ψATPase,n,

ηecs
d[K+]ecs

dt
= γηnI

+
K − 2ψATPase,n − 2ψATPase,a − εecs([K

+]ecs − k∞).

If we denote by INa+,leak the leak sodium current induced by the increase of

membrane permeability given by the function ξ:

INa+,leak = gNa+,leak(t)(V − VNa+),

and by I0
Na+,leak

the average sodium leak current obtained during resting state, we

can model the sodium current that acts alongside the neurotransmitter activity

as:

INa+,act(t) =

 INa+,leak(t)− I0
Na+,leak

if ξ(t) > 0

0 if ξ(t) = 0
. (3.4)

In light of the relation above between glutamate release and sodium ion cur-

rents, we assume a glutamate-glutamine flux relation of the form:

Jglu =
γ

σ
INa+,act, (3.5)

where σ accounts for the energetic cost of the glutamate-glutamine cycling during

synaptic activity. The value of σ was established in [43] according to the following

considerations [45]:

1. The cost of each molecule of glutamate taken up by astrocyte and trans-

formed into glutamine is of approximately 2.33 ATP, of which 1.33 ATP

go towards glutamate uptake and the other 1 ATP is spent on glutamate

conversion to glutamine.

2. A vesicle contains 4000 glutamate molecules. The energetic cost in neuron

for vesicle packing is of 0.33 ATP per glutamate molecule.

3. When the glutamate molecules located inside a vesicle are released into the
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synaptic cleft, 15-200 non-NMDA dependent sodium channels open with

mean opening time in the range of 0.6-1.4 milliseconds. The release of

each glutamate vesicle causes the entrance of 200.000 sodium ions in the

postsynaptic neuron.

4. The presence of glutamate in the synaptic cleft opens the NMDA dependent

channels for approximately 50 milliseconds, which allows the entrance of

180.000 sodium and 10.000 calcium ions per vesicle. The removal of the

extra calcium requires the activation of the calcium-sodium pump, whose

1:3 calcium to sodium ratio means that in order to extrude 10.000 ions of

calcium, 30.000 ions of sodium enter.

In summary, for each vesicle containing 4000 glutamate molecules there are

410.000 sodium ions entering postsynaptic neuron. Consequently, we assume

that the number σ of sodium ions entering the neuron for each molecule of gluta-

mate released in the synaptic clef is approximately 103. In Chapter 2, the ATP

dephosphorylation fluxes in neuron and astrocyte were expressed as the sum of

the household energy H and signaling energy Es. We add to this sum the ener-

getic cost of glutamate recycling, arriving at the following expression for ATPase

fluxes:

ψATPase,n = H1 + s
(
ηnJpump,Na+ + 0.33

γ

σ
INa+,act

)
, (3.6)

ψATPase,a = H2 + s
(ηecs

2
Jglia,K+ + 2.33

γ

σ
INa+,act

)
, (3.7)

where γ is a conversion factor for transforming the electric current into a mass

flux that depends on the cell geometry as discussed in Chapter 1.

We indicate explicitly the dependence of the metabolic system (2.66) on the

dephosphorylation fluxes ψATPase,n and ψATPase,a, on the blood flow q and on the

arterial concentrations Cart by writing:

Λ
dC

dt
= g(C,Cart, ψATPase,n, ψATPase,a, q), (3.8)

where the ATPase fluxes are, in turn, functions of the electrophysiological activ-
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ity:

(ψATPase,n, ψATPase,a) = Θ(u).

Conversely, in the equation for the electrophysiological system, we indicate ex-

plicitly the dependence on the phosphorylations states in the neuron (pn) and

astrocyte (pa) and write:

du

dt
= f(u, pn, pa, ξ). (3.9)

where the phosphorylation states depend on the metabolite concentrations:

(pn, pa) = θ(C).

To summarize, the governing differential equations of our Electro-Metabolic

model [43] are given by (3.8) and (3.9).

3.3 Multiscale computational approach

The Electro-Metabolic model that we proposed in [43] couples two different mod-

els with dramatically different typical time scales; the milliseconds range of the

electrophysiological model proposed in Chapter 1 and the minute range for the

metabolic model discussed in Chapter 2. This difference in the orders of magni-

tude of the time scales makes the computation of the Electro-Metabolic model

predictions very challenging. Therefore, we dedicate this section of the thesis to

address the multiscale nature of our coupled model from a computational point of

view. The electrophysiological propagation is carried out with a finer discretiza-

tion than the metabolic one, and at the end of each slow step, we synchronize the

coupling quantities [43]. Throughout this thesis, we denote by ∆t the coarser time

scale of the metabolism and by ∆τ the finer time scale of the electrophysiology.

In Chapter 2, where we described how to compute the predictions of the

metabolic system (2.66) and we introduced a change of variable (2.67) that guar-

antees the non-negativity of the solutions, we advocated using a BDF solver to

address the stiffness of the system.

In the simulations of the Electro-Metabolic model, we proceed in a similar



CHAPTER 3. ELECTRO-METABOLIC MODEL 89

manner: starting from equation (3.8), we make the change of variable:

Cj = h(Uj) = C0 exp(Uj),

and we obtain the ordinary differential equation system:

du

dt
= Λ(U)−1g(h(U), ψATPase,n, ψATPase,a, q) (3.10)

= Φ(h(U), ψATPase,n, ψATPase,a, q), (3.11)

that we solve by with a time numerical integrator based on the BDF solver. More

specifically, letting

tj = j∆t, j = 0, 1, ..Jmax, Jmax =
T

∆t
− 1,

and

Uj = U(tj), (3.12)

Φj = Φ
(
Uj, ψATPase,n(tj), ψATPase,a(tj), q(tj)

)
. (3.13)

The BDF time integrator of order r estimates Uj from the value Uj−`, 1 ≤ ` ≤ r

at r previous time instances and some scalars αj and β by solving an equation of

the form
r∑
`=0

α`Uj−` = ∆tβΦj,

with a few steps of the Newton method. Denoting the r-step BDF-based inte-

grator symbolically as Br, we can write

Uj = Br(Φj, Uj−1).

We see from (3.13) that Φj is a function of the ATP dephosphorylation fluxes in

neuron and astrocyte (ψATPase,n(tj), ψATPase,a(tj)), which are in turn obtained by

numerically integrating the electrophysiology model over the interval (j∆t, (j +

1)∆t). The time step ∆τ used for the numerical time integration in the elec-

trophysiology model is much smaller than the ∆t used for the metabolic one.

Moreover, the electrophysiology system is independent of the time at which



CHAPTER 3. ELECTRO-METABOLIC MODEL 90

is updated at the metabolic time scale and can be computed on the interval

[0, ∆t]. To update the electrophysiologic portion we employ a built-in Matlab

ode15s stiff integrator, which uses an adaptive ∆τ . Given the interpolation grid

τ = [τm]m=0,...,Mj
of the electrophysiology in (0,∆t), we compute the values of

Jpump,Na+(τm), Jglia,K+(τm) and INa+,act(τm) at each time instant τm. These values

are then inserted into equation (3.6) and (3.7) which returns the value of the

ATPase dephosphorylation fluxes in neuron and astrocyte ψATPase,n/a(τm) at each

electrophysiologic time instant. To input this value into the metabolism model,

we first need to compute the energetic cost between two successive updates of the

metabolism, which is achieved by averaging ψATPase,n/a over the interval (0,∆t)

through a quadrature rule.

Additionally, to insert the metabolic cost into the electrophysiology through

the phosphorylation states pn and pa, we proposed in [43] the following predictor-

corrector iteration scheme. At first, the values of the phosphorylation states are

those computed at the last metabolic state, then they are updated by interpo-

lating their previous values and the newly computed ones. Algorithmically, for

j = 0, 1, . . . , Jmax define a time grid τ0, τ1, . . . τMj
of the time interval [0,∆t] and

let:

τ =


τ0

τ1

...

τMj

 ,u
j,τ =


uj,0

uj,1

...

uj,Mj

 ,u
j = uj,0,uj,Mj = uj+1,0,

The predictor-corrector sequence is performed twice with the midpoint quadra-

ture rule to compute the ATPase fluxes [43]. The implementation details are

explained in Algorithm 1.
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Algorithm 1 Multiscale Metabolic Update

1. Given: the metabolite concentrations {U0, U−1, . . . U−r+1} at the previous
r time instances

2. For j = 0, . . . , Jmax

Calculate pjn and pja from (2.61).

Set pj+1
n = pjn, pj+1

a = pja

Predictor Step:

Define

fn(τ) = pjn
(
1− τ

∆t

)
+ pj+1

n
τ

∆t

fa(τ) = pja
(
1− τ

∆t

)
+ pj+1

a
τ

∆t

Step 1: Compute uj+1,τ from fn(τ), fa(τ) and uj using a time
integrator based on BDF;

Approximate fn(τ) and fa(τ) in τ by computing

pj,mn =
(
1− τm

∆t

)
pj,0n + τm

∆t
p
j,Mj
n

pj,ma =
(
1− τm

∆t

)
pj,0a + τm

∆t
p
j,Mj
a

Evaluate J j,m
pump,Na+

, J j,m
glia, K+ and Ij,m

Na+,act
at the fine scale from

(3.1), (3.2) and (3.4).

Evaluate the ATPase fluxes in the fine scale from (3.6) and
(3.7).

Update the ATPase fluxes in the coarse scale model:

ψATPase,n((j + 1)∆t) = 1
2∆t

Mj−1∑
m=0

ψj,mATPase,n(τm+1 − τm−1)

ψATPase,a((j + 1)∆t) = 1
2∆t

Mj−1∑
m=0

ψj,mATPase,a(τm+1 − τm−1)

Step 2: Compute Uj+1 by integrating numerically Φj+1 from
(3.13) with a time integrator based on BDF

Uj+1 = Br(Φj+1, Uj).

Corrector Step: Update pj+1
n and pj+1

a via (2.61) using the most
recent value of Uj+1

Repeat from Predictor Step

End j
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3.4 Results

In this section we present the computed predictions of the coupled Electro-

Metabolic model. All results were computed using a self-developed Matlab code.

In the first example we consider two consecutive neuronal activations accompa-

nied by an increase in the blood supply as explained in Chapter 2, Protocol B,

Figure 2.21. In the second example, we simulate a short ischemic event during

which the blood supply is reduced by 90 percent and we analyze the behaviour

of the main metabolites and ionic concentrations during such a drastic reduction

of blood. The third example simulates an ischemic event followed by a neuronal

activation.

3.4.1 Consecutive neuronal activations

In the first experiment we consider two brief consecutive neuronal activations,

each lasting 3 minutes, separated by a resting period. The awake resting state

characterized by a frequency of 8Hz is obtained by setting the stimulus ξ to 0.05,

while for the neuronal activations, characterized by a frequency of 90Hz, the

stimulus ξ is set to 2.5.

As the system transitions from the awake resting state to neuronal activation,

we closely follow the electrophysiologic and metabolic changes. The blood flow

protocol used in this example increases by 30% during each neuronal stimulation,

as shown in Table 2.21.

According to the model prediction, neuronal activation is accompanied by

a big increase in intracellular sodium concentration and extracellular potassium

concentration, a large consumption of glucose and oxygen and a massive produc-

tion of lactate, in agreement with recent experimental work [56, 57, 35]. However,

the neuronal response depends on the resting time between two consecutive acti-

vations. We further investigate how recovery time changes the system’s behavior

in the second activation in the following subsections, where we consider two cases:

one where the resting period is 5 minutes and another one where the period is 10

minutes.

In both situations, the neuronal frequency does not immediately return from

90Hz to the 8Hz alpha awake resting state. As a matter of fact, at the end of
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each activation, our model is able to capture a very short gap in the firing known

in the literature as the slow after-hyperpolarization effect (sAHP). This

effect has generated a lot of interest over the last years in the literature [58, 59,

60] as many authors are interested in determining the mechanisms that greatly

influence sAHP. In [58], Gulledge et al. observe how trains of action potentials

produce a 20 seconds after-hyperpolarization effect, which is mainly mediated

by the sodium-potassium pump. On the other hand, Shah et al. investigate

in [60] the role of the calcium channels in generating the sAHP effect, while in

[61], Turner et al. assess the role of the IKCa channels in producing the sAHP

in hippocampal pyramidal cells. In our numerical experiments, the slow after-

hyperpolarization effect lasts approximately 16 seconds and it coincides with a

drop in the extracellular potassium concentration under the baseline value.

Resting time: 5 minutes

The action potential and corresponding frequency are shown in Figure 3.2 to-

gether with the intracellular sodium and extracellular potassium concentrations.

In this simulation, we allowed a resting time of five minutes between the neuronal

activations. Intracellular sodium concentration increases from 10.5 mM during

the awake resting state to 16 mM during the two neuronal activation periods,

while extracellular potassium concentration increases from 3 mM to 3.05mM.

During the neuronal stimulation periods, the model predicts a reduction of the

amplitude of the action potential, in agreement with the literature [35].
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Figure 3.2: Consecutive activations with a 5 minutes interval between.
Upper row. Left: action potential (black) and corresponding firing frequency
(magenta). Right: time course of extracellular potassium concentration. Bottom
row: Detail of the action potential and frequency around the time t = 5 min
when the first activation is stopped. Right: time course of intracellular sodium
concentration.

Time courses of the concentrations of the main metabolites in the blood com-

partment are showed in Figure 3.3 together with the corresponding transport

fluxes of glucose, lactate and oxygen from the blood to the extracellular space

and from the extracellular space to the two cellular compartments. At the begin-

ning of the first neuronal activation, the concentration of glucose increases by 2%,

followed by a sudden decrease of 4%. By the start of the second activation, the

glucose concentration in blood had recovered to 99% of its baseline value, before

showing a similar behavior to that during the first activation, except for a slightly

lower initial increase of 1.5% above baseline. Lactate concentration in the blood

compartment increases, during the first activation, by 37% with respect to the

resting state value and is followed by a decrease to a lower value. At the begin-

ning of the second activation, lactate concentration had only recovered to 91% of

its resting value, and exhibits a smaller increase to 30% above its baseline value

during the second neuronal activation event. Oxygen concentration in the blood

compartment exhibits a modest increase of 4.3% above baseline during neuronal

activation, followed by a decrease at the end of the activation, and then by a fast

return to 99% of baseline value, after 5 minutes. The transport fluxes between
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blood and the extracellular space increase by 38% above baseline for glucose, 15%

for oxygen, while the lactate flux decreases 6 fold from its resting state value.

Figure 3.3: Consecutive sustained activations with a 5 minutes interval
between. Time course of metabolite concentrations in the blood (top row):
glucose (left), lactate (middle), and oxygen (right). Metabolic fluxes between
compartments (bottom row): oxygen (black), lactate (red), and glucose (blue)
between blood and extracellular space (left), between extracellular space and
neuron (middle), and between extracellular space and astrocyte (right).

The first row of Figure 3.4 shows the time course of the concentrations of

glucose, lactate and oxygen in neuron, astrocyte and extracellular space, while

the second row captures the behavior of pyruvate, the phosphorylation and redox

states in the two cellular compartments. During activation, glucose concentration

decays by 64% of its resting state value in the neuron and extracellular space, and

even more in the astrocyte, where it falls 87% below baseline. At the end of the

5 minutes resting period, glucose returns to 89% of its initial value in the neuron

and extracellular space, and just 85% in astrocyte. In the second neuronal activa-

tion period, which starts with a lower glucose concentration, the decay is slightly

larger in the astrocyte, where glucose concentration drops by 88% of baseline,

while in neuron and extracellular space the decay is of 64%. Concurrently, lac-

tate concentration shows a large increase of 65% over baseline value during the

neuronal activation, at the end of which it starts decreasing. Once the 5 minutes

resting period has ended, lactate concentration is 88% of baseline value. During

the second neuronal activation, the increase in lactate concentration is slightly
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smaller, topping at 53% above the resting state value. While oxygen consumption

varies in the different compartments, with its concentration decreasing by 90%

in neuron, 75% in astrocyte and 50% in extracellular space, its recovery time is

much shorter than for glucose and lactate. At the end of the 5 minutes resting

period, oxygen concentrations recover to 97% of their baseline value in all three

compartments.

Figure 3.4 shows a significant consumption of pyruvate in both cellular com-

partments during neuronal activation, more pronounced in neuron, where the

concentration drops 83% below its baseline value, while in astrocyte, it drops

60% below the resting state. In both compartments the recovery tops at 84% of

its baseline value by the start of the second neuronal activation. The decrease

in pyruvate during the second activation is larger than before, reaching a 84.5%

decay in neuron and a 63% decay in astrocyte.

The effect of energetic requirement during the neuronal activations on the sys-

tem can be clearly observed in Figure 3.4, where we see that during the 3 minutes

neuronal stimulations, the phosphorylation states in the cellular compartments

are almost entirely depleted: 99.8% below baseline value in the neuron and 97.7%

in astrocyte, with an almost full recovery, up to 98% in neuron and 95% in astro-

cyte of initial baseline values. The redox states, which exhibit a massive increase

during activation, 8 fold in the neuron and 4 fold in astrocyte, have fully recovered

at the end of the 5 minutes resting period.
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Figure 3.4: Consecutive sustained activations with a 5 minutes inter-
val between. Time course of metabolite concentrations in the neuron (in red),
astrocyte (blue) and extracellular space (black): glucose (top left), lactate (top
middle), oxygen (top right), and pyruvate (bottom left). Time course of phos-
phorylation (bottom middle) and redox (bottom right) states.

Figure 3.5 shows the time course of the main reaction fluxes. The panel on the

top row shows that the fluxes of glycolysis, tricarboxylic acid cycle and oxidative

phosphorylation exhibit a significant increase during the activation periods in

neuron, and an initial increase followed by a slight decrease in astrocyte. All fluxes

return to their initial pre-activation value by the start of the second activation.

The lactate dehydrogenase flux shows a large increase during neuronal stimulation

in neuron, while in astrocyte, an initial increase is followed by a significant decay.

Phosphocreatine fluxes in neuron and astrocyte show a slight increase during

activation, and a large decrease at the end.

The OGI index calculated according to (2.89) is shown in Figure 3.5. Within

the first seconds of the first neuronal activation, the OGI increases by 10% with

respect to the baseline value of 5.15, after which it slowly decreases until it reaches

the value 4.25 at the end of the neuronal activation. The five minutes recovery

time are sufficient for the index to reach 95% of its initial value. During the

second neuronal activation, the initial spike is lower than before: 5% above the

resting state value, while the minimum value of 4.20 recorded at the end of the

activation is slightly lower than the minimum during the previous activation.
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Figure 3.5: Consecutive sustained activations with a 5 minutes inter-
val between. Reaction fluxes. Top row: glycolysis (left), TCA (middle) and
oxidative phosphorylation (right) in neuron (red) and astrocyte (blue). Middle
row: lactate dehydrogenase balance flux (ΨLDH1−ΨLDH2, left), and creatine phos-
phorylation balance flux (ΨPCr −ΨCr, middle) in the neuron; time course of the
cerebral metabolic oxygen rate of glucose (right). Bottom row: lactate dehydro-
genase balance flux (ΨLDH1−ΨLDH2, left), and creatine phosphorylation balance
flux (ΨPCr −ΨCr, middle) in astrocyte; time course of the OGI index (right).

Resting time: 10 minutes

The results of the previous section show that the metabolites do not return to

their initial resting state value at the same speed. In the first protocol, while

some metabolites, like oxygen, recover very fast, others are significantly slower,

like glucose, lactate and pyruvate.

Here, we considered two neuronal activation periods of 3 minutes each, but we

extended the in between resting period to 10 minutes. In Figure 3.6 we visualize

the action potential, the intracellular concentration of sodium and the extracel-

lular concentration of potassium. We observe that the different period allowed

between activations is not of relevance in this case and therefore, we obtain iden-

tical results to the one seen in Figure 3.2, probably because the electrophysiology
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time scale is much faster than the time scale of the metabolism.

Figure 3.6: Consecutive activations with a 10 minutes interval between.
Upper row. Left: action potential (black) and corresponding firing frequency
(magenta). Right: time course of extracellular potassium concentration. Bottom
row: Detail of the action potential and frequency around the time t = 5 min
when the first activation is stopped. Right: time course of intracellular sodium
concentration.

Figure 3.7 displays the time course of the metabolites in the blood compart-

ment. In this case, the differences between the time courses of the metabolites

during the first and the second activation are minimal, because the larger resting

period in between the activations has allowed the metabolites to fully return to

their initial resting state values prior to the second activation. More specifically,

by the start of the second activation period, glucose and oxygen concentrations

returned to their initial values, while lactate is 96% of it.

Similar observations are in order for the concentrations in extracellular space,

in neuron and astrocyte, where the recovery is up to 98% for glucose, 100%

for oxygen, 95% for lactate and 94% for pyruvate. The phosphorylation states

are almost entirely replenished by the start of the second activation: 98.9% in

astrocyte and 99.7% in neuron.
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Figure 3.7: Consecutive sustained activations with a 10 minutes interval
between. Time course of metabolite concentrations in the blood (top row):
glucose (left), lactate (middle), and oxygen (right). Metabolic fluxes between
compartments (bottom row): oxygen (black), lactate (red), and glucose (blue)
between blood and extracellular space (left), between extracellular space and
neuron (middle), and between extracellular space and astrocyte (right).

The reaction fluxes, showed in Figure 3.9, have fully reestablished their initial

values at the end of the ten minute resting state period, as did the OGI index.

Figure 3.8: Consecutive sustained activations with a 10 minutes inter-
val between. Time course of metabolite concentrations in the neuron (in red),
astrocyte (blue) and extracellular space (black): glucose (top left), lactate (top
middle), oxygen (top right), and pyruvate (bottom left). Time course of phos-
phorylation (bottom middle) and redox (bottom right) states.
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Figure 3.9: Consecutive sustained activations with a 10 minutes inter-
val between. Reaction fluxes. Top row: glycolysis (left), TCA (middle) and
oxidative phosphorylation (right) in neuron (red) and astrocyte (blue). Middle
row: lactate dehydrogenase balance flux (ΨLDH1−ΨLDH2, left), and creatine phos-
phorylation balance flux (ΨPCr −ΨCr, middle) in the neuron; time course of the
cerebral metabolic oxygen rate of glucose (right). Bottom row: lactate dehydro-
genase balance flux (ΨLDH1−ΨLDH2, left), and creatine phosphorylation balance
flux (ΨPCr −ΨCr, middle) in astrocyte; time course of the OGI index (right).

3.4.2 Metabolite recovery dependence on the period of

time between activations

In the previous section we investigated the general electro-metabolic behavior

during two consecutive activations when the length of the resting time in between

is either 5 or 10 minutes. To study how the length of the resting state between

the activation affects the recovery of the main metabolites, we performed various

experiments where we varied the time interval between 2 and 20 minutes. The

results are summarized in Figure 3.10, where we show in percentages, the recovery

of glucose and lactate, with respect to the corresponding baseline value. We

observe that the concentration of glucose requires a larger time in order to recover



CHAPTER 3. ELECTRO-METABOLIC MODEL 102

its initial value than the concentration of lactate. However, in the case of both of

these metabolites, a 20 minutes recovery period was sufficient for them to reach

their baseline values.

Figure 3.10: Return to initial conditions vs length of time interval be-
tween consecutive activations Relative recovery of glucose (left) and lactate
(right) concentration in neuron (red) and astrocyte (blue) at the start of the
second activation as a function of the interval between consecutive activations.

3.4.3 Ischemia

The third protocol that we consider simulates a brief ischemic event, during which

the blood flow is reduced by 90%, starting at t = 2 minutes and lasting Td = 1.5

minutes. This dramatic decrease starts within r1 = 5 seconds from the onset of

the ischemia and once the ischemic episode has ended, the blood flow increases

gradually and returns to its resting state value over a period of r2 = 2 minutes.

This physiological behavior is modeled mathematically by expressing the blood

flow via the piecewise linear function defined in Table 3.1.

The significant reduction of blood flow is expected to impact differently neu-

rons and astrocytes, because of their different functions in maintaining neuronal

firing. More precisely, we anticipate a rise in the extracellular potassium con-

centration, due to the decreased glial metabolic activity. The high potassium

concentration increases the excitability of the neuron, but due to the very low

supply of oxygen, the pump action can not be sustained.
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Time [t0, t1) [t1, t1 + r1) [t1 + r1, t2) [t2, t2 + r2) [t2 + r2, T )

A(t) 1 1− δ
t− t1
r1

1− δ 1− δ
(

1− δ
t− t2
r2

)
1

Table 3.1: Blood flow regulation during transient ischemia. The blood
flow activation function used to simulate one ischemic episode. In the top row
of the table are indicated the time intervals where the function is defined as
described in the corresponding cell in the bottom row. The resulting blood flow
time course is plotted in the graph underneath the table. Here q0 is the blood
flow baseline, δ denotes the blood flow reduction from its baseline value, t1 and
t2 are the initial and final moment of the ischemic episode.

Figure 3.11 shows the effect of such a drastic reduction of the blood flow on the

action potential and the ionic concentrations. As expected, during the ischemic

event we see a large increase of intracellular sodium and extracellular potassium

concentration, while the neuronal firing ceases within the first seconds of ischemia,

returning to its baseline state once the normal blood flow is reestablished. The

frequency, showed as a magenta curve in Figure 3.11, shows that the system

transitions from a firing rate of 8Hz to 0Hz, and then back to 8Hz.
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Figure 3.11: Transient ischemia: electrophysiology. Upper row: action
potential (black) and corresponding firing frequency (magenta) in the left panel;
and time course of extracellular potassium concentration in the right one. Bottom
row: Detail of the action potential around the time of the ischemic event in the
left panel, and the time course of intracellular sodium concentration in the right
one.

The metabolism responds to the ischemic episode, as shown in Figures 3.12

and 3.13; we observe a very large consumption of glucose and oxygen and a large

production of lactate in all the four compartments. The decay in glucose concen-

tration is more significant in astrocyte, where it falls by 90% of its initial value,

compared to neuron and extracellular space, which exhibit a 60% decay, and the

blood compartment, where it decays by 50%. The oxygen supply is almost en-

tirely depleted in the blood compartment and in the two cellular compartments,

while in the extracellular space, oxygen concentration decreases by 85% of its nor-

mal value. The anaerobic metabolism, causes a significant production of lactate,

which increases 3 fold over resting state in neuron, astrocyte and the extracellular

space and approximately 2 fold in the blood compartment.

The transport fluxes of glucose, oxygen and lactate between blood and extra-

cellular space and between the extracellular space and the two cellular compart-

ments are displayed in the bottom row of Figure 3.12. In particular, the flux of

oxygen from blood to the extracellular space shows a decrease of approximately

64% during ischemia, while at the end of the ischemic episode, increases by 13%

over the baseline value. Similarly, the glucose flux from blood to extracellular
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space decreases by 38% of its baseline level during ischemia, while at the end of

the episode it shows a 40% increase. On the other hand, the lactate flux from

the blood to the extracellular space has a 7 fold decrease.

Figure 3.12: Transient ischemia: blood concentrations and transport
rates. Time course of metabolite concentrations in blood (top row): glucose
(left), lactate (middle), and oxygen (right). Transport rates fluxes between com-
partments (bottom row): oxygen (in black), lactate (red), and glucose (blue)
between blood and extracellular space (left), between extracellular space and
neuron (middle), and between extracellular space and astrocyte (right).

The left panel in the bottom row of Figure 3.13 shows a large decay in pyruvate

concentration in neuron and astrocyte during the ischemic episode, all the way

to 95% of baseline value in neuron and 90% in astrocyte. As expected, due to the

very low supply of blood and therefore reduced glucose and oxygen availability,

the phosphorylation states, shown in the middle panel of the bottom row, drop

to 0 immediately as it starts. Concomitantly, as shown in the right panel of

Figure 3.13, there is a surge in redox state, whose peak is approximately double

in neuron than in astrocyte.
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Figure 3.13: Transient ischemia: metabolite concentrations. Time course
of metabolite concentrations in neuron (red), astrocyte (blue) and extracellular
space (black): glucose (top left), lactate (top middle), oxygen (top right), and
pyruvate (in neuron and astrocyte, bottom left). Time course of phosphorylation
(bottom middle) and redox (bottom right) states in neuron and astrocyte.

Figure 3.14 displays the time course of the reaction fluxes. During the 90

seconds ischemic event, there is a sharp increase in the rate of glycolysis, con-

comitantly with a significant decrease in the TCA and oxidative phosphorylation

fluxes, which reach values above the baseline once the blood flow is reestablished.

The inhibition of oxidative metabolism occurs simultaneously with a surge in

the anaerobic metabolism, as indicated by the large production of lactate from

pyruvate and the very high rate of phosphocreatine kinase shown in the first two

panels on the bottom row of Figure 3.14. The oxygen glucose index, shown in

the last panel of Figure 3.14 exhibits a significant 50% decrease during ischemia

and requires approximately 20 minutes to return to its initial baseline value.
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Figure 3.14: Transient ischemia: reaction fluxes. Reaction fluxes. Top row:
glycolysis (left), TCA cycle (middle) and oxidative phosphorylation (right) in
neuron (red) and astrocyte (blue). Middle row: lactate dehydrogenase balance
flux, with positive direction indicating lactate production (left), creatine phos-
phorylation balance flux (middle) in neuron and oxidative cerebral metabolic
rate of glucose (right). Bottom row: lactate dehydrogenase balance flux, with
positive direction indicating lactate production (left), creatine phosphorylation
balance flux (middle) in astrocyte and time course of the OGI index (right).

3.4.4 Ischemia followed by neuronal activation

The numerical experiment presented in this section is a combination of the two

previous protocols, a transient ischemic event followed by resting state and a

neuronal activation. The ischemic event starts at ti = 2 minutes into the simu-

lation, and has a duration of 1 minute and 30 seconds, followed by a 10 minute

awake resting state period, at the end of which, there is a three minutes neuronal

activation, starting at time ti = 13.5 minutes and ending at tf = 16.5 minutes.

The blood flow protocol used in this experiment, showed schematically in Figure

3.15, combines the two previous protocols. As in the previous cases, in agreement

with experimental literature, during an ischemic event and during neuronal ac-
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tivation, there is some delay in the blood flow response. For the ischemic event,

we consider a very small ramping time r1 = 5 seconds during which the blood

flow drops fast to 10% of its normal value, while at the end of the ischemic event,

the blood requires a much longer time to reach its baseline value which we set

in agreement with experimental work to r2 = 2 minutes. In the case of neuronal

activation, we account for the delay attributed to the response of the blood flow

to the stimulus ξ, chosen as in Section 3.4.1 and Section 2.4.6 to be ξ = 2.5 for

t ∈ [13.5, 16.5], yielding a frequency of 90Hz. These delay times and the cor-

responding parameters were discussed in detail in Section 2.4.6; see also Table

2.21.

Figure 3.15: Blood flow regulation during transient ischemia followed by neu-
ronal activation. The blood flow function used to simulate a transient ischemic
event, followed by a 10 minute awake resting state and a three minutes neuronal
activation. The initial time of the ischemic event is ti = 2 minutes, while its final
time is tf = 3.5 minutes. The neuronal activation starts at t1 = 13.5 and it ends
at t2 = 16.5 minutes.

In Figure 3.16 we show predictions of action potential, its corresponding fre-

quency and time course of the ionic concentrations. In the first panel we see how

the neuronal firing stops during the ischemic event, recovers to the awake resting

state corresponding to an 8Hz frequency and it sustains a 90Hz frequency for

a three minute period, after which we see a return to the awake resting state,

preceded first by a slow after-hyperpolarization effect.
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Figure 3.16: Transient ischemia followed by activation. Left: action poten-
tial (black) and corresponding firing frequency (magenta). Middle: time course
of the extracellular potassium concentration. Right: time course of intracellular
sodium concentration.

Figure 3.17 and Figure 3.18 display the metabolic response in the ischemia-

activation protocol. Notice that while for some metabolites the response is very

similar under ischemia and under neuronal activation, like for glucose, lactate

and oxygen in neuron, astrocyte and extracellular space, for others the behavior

is opposite, like glucose in the blood compartment drastically decreases during

ischemia but it slightly increases during activation. In both situations, lactate

exhibits an increase but, as expected, this increase is more significant during

ischemia than during activation.

Despite the very large decrease in glucose and oxygen, and the very large

increase in lactate during the ischemic event, their concentrations return to their

initial values in the ten minutes after the ischemic event ends, and therefore, the

system is able to sustain the neuronal activation. The same holds for the metabo-

lites whose concentrations are shown in Figure 3.18; even though each metabolite

has its own recovery time, most have reached 80% of their awake resting state

value when the activation starts, which leads to a sufficient production of ATP,

ensuring the energetic demand is met.
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Figure 3.17: Transient ischemia followed by activation Time course of
metabolite concentrations in blood (top row): glucose (left), lactate (middle),
and oxygen (right). Transport rates between compartments (bottom row): oxy-
gen (in black), lactate (in red), and glucose (in blue) between blood and extracel-
lular space (left), between extracellular space and neuron (middle), and between
extracellular space and astrocyte (right).

Figure 3.18: Transient ischemia followed by activation. Time course of
metabolite concentrations in neuron (in red), astrocyte (in blue) and extracellular
space (in black): glucose (top left), lactate (top middle), oxygen (top right), and
pyruvate (bottom left). Time course of phosphorylation (bottom middle) and
redox (bottom right) states in neuron and astrocyte.
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Figure 3.19: Transient ischemia followed by activation. Reaction fluxes.
Top row: glycolysis (left), TCA cycle (middle) and oxidative phosphorylation
(right) in neuron (red) and astrocyte (blue). Middle row: lactate dehydrogenase
balance flux ΨLDH1 − ΨLDH2 in neuron (left), creatine phosphorylation balance
flux ΨPCr − ΨCr in neuron (middle); cerebral metabolic oxygen rate of glucose
(right). Bottom row: lactate dehydrogenase balance flux ΨLDH1 − ΨLDH2 in
astrocyte (left); creatine phosphorylation balance flux ΨPCr − ΨCr in astrocyte
(middle); OGI index (right).

3.5 Dependency of the firing rate on blood flow

Throughout this chapter we studied cases in which the blood flow was either

increased, e.g. during the neuronal activations in Section 3.4.1, or decreased, e.g.

during the ischemic episode described in Section 3.4.3. In the first situation, we

observed that an increase of 30% in the blood flow is sufficient for maintaining a

frequency of approximately 90Hz for a period of 3 minutes. On the other hand,

in the ischemic event, during which the blood flow was reduced by 90%, the

neuronal firing ceased within the first seconds. In this section we study for how

long the neuron-astrocyte unit can sustain a specific frequency for a given steady

blood flow.
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To this end, we performed multiple simulations using three different blood

flow values: the baseline cerebral blood flow value q0, a 30% increase in the blood

flow (q = 1.3q0) and a 70% decrease in the baseline blood flow q = 0.3q0. For each

of these situations, we simulated different levels of neuronal firing, corresponding

to frequencies between 4Hz and 100Hz. For each of the these frequencies and

for each blood flow value we recorded the maximum amount of time that the

neuron-astrocyte unit is able to sustain the firing. We noticed that while a 70Hz

frequency can be sustained for one hour under the increased 30% blood protocol,

for the baseline protocol q = q0, the same frequency can be sustained for only 10

minutes, while for the decreased blood flow q = 0.3q0 the frequency can only be

maintained a couple of seconds.

The right panel of Figure 3.20 shows the OGI obtained for each frequency

under the three blood flow protocols: q = q0, q = 0.3q0 and q = 1.3q0. For

normal and increased blood flows we observe a phase transition from aerobic

metabolism (OGI > 5) to anaerobic metabolism (OGI ≈ 4), while in the case

q = 0.3q0, as expected, due to the insufficient oxygen supply, the OGI is very low

for all levels of activation.

Figure 3.20: Left: maximum time interval during which the system can sustain
firing at a given frequency as a function of the cerebral blood flow. Right: Depen-
dency of the OGI on the firing frequency and the blood flow. The phase transition
from high to low OGI marks the switch from aerobic to anaerobic metabolism.

3.6 Energetic cost

Figure 3.21 shows the energetic cost attributed to signaling processes in each

of the protocols considered in this chapter: consecutive neuronal activations, is-

chemia and ischemia followed by neuronal activation. The periods corresponding

to neuronal activation are indicated by a gray shadow in the left and right panels
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of Figure 3.21. As expected, during the activation period, most of the energetic

cost attributed to signaling occurs in neuron rather than in astrocyte; during

activation, the ATP turnover shows a 6.5 fold increase with respect to baseline in

neuron, while in astrocyte there is a very modest increase of 3% over the resting

state value. During ischemia, we see a rapid drop in the energy levels in both cells.

In neuron, however, ATP turnover rapidly recovers to baseline once the normal

blood flow is reestablished, while in astrocyte because of the energy expenditure

associated with potassium clearing, an additional four minutes are needed in or-

der to recover to baseline values, suggesting that the signaling functions of the

astrocyte are more affected by the ischemia.

Figure 3.21: ATP turnover from the signaling activity: Protocol 1 (left):
two consecutive activation events; Protocol 2 (middle): a transient ischemia
episode; Protocol 3 (right) a transient ischemia followed by an activation event.
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Chapter 4

Hemodynamics response

Most of the recently developed noninvasive neuro-imaging techniques rely on the

strong coupling between the cerebral blood flow, neuronal activity and energy

requirements [54]. In this chapter we focus on the behavior of the cerebral blood

flow and how it relates to metabolism and neuronal activity. As previously seen,

an insufficient amount of blood translates into an inadequate supply of glucose

and oxygen that could lead to impairment of the neuronal activity (see Chapter

3, Section 3.4.3).

It is well known [62, 15, 63, 64] that an increase in the neuronal activity is

followed by a rapid increase in both the cerebral blood flow (CBF) and cere-

bral blood volume (CBV), referred to as functional hyperemia; although this

phenomenon has been extensively observed, its purpose and its detailed mecha-

nisms remain a very active research topic [18, 65]. Through functional Magnetic

Resonance Imaging (fMRI) it can be seen that even a very brief stimulus (2 sec-

onds finger tapping) can induce a change in the cerebral blood flow level, which

translates into a weak blood-oxygen-level dependent (BOLD) signal change [63].

In the previous chapters, we modeled the blood flow as a piecewise continuous

function with a 30% increase in connection with a neuronal activation period. In

this chapter, instead, we model the hemodynamic response by proposing a three

compartment blood model which accounts separately for arteries, capillaries and

veins.

We begin by making a short introduction with respect to the basic mecha-

nisms of fMRI and BOLD, we comment on the current debates in this hemo-

dynamic community and we give a brief review of the existing mathematical

hemodynamical models. We start by reviewing the classical Balloon (Buxton)

117



CHAPTER 4. HEMODYNAMICS RESPONSE 118

Model [15, 16, 17], and continue with Barrett’s three compartment model [18]

and an alternative derivation and extension [19, 20] which we solve for the cere-

bral blood flow, used as input to our Electro-Metabolic model. Subsequently, we

explain how we couple the electro-metabolic and hemodynamic models and pro-

pose an algorithm to address the multiple time scales. We conclude the chapter

with numerical simulations of the three way feed-back Hemo-Electro-Metabolic

model.

4.1 Introduction

In the regulation of cerebral hemodynamics, carbon dioxide plays a very impor-

tant role because of its vasodilatory properties. When this gas is present in a

big concentration, it triggers a condition known as hypercapnia, that leads to

vasodilatation, while when the amount of carbon dioxide is too low, a condition

referred to as hypocapnia, it induces vasoconstriction [66].

The Blood Oxygenation Level Depend (BOLD) contrast signal in functional

MRI (fMRI) studies is sensitive to the change in the magnetic field that depends

on the oxygenation state of hemoglobin [67]. The BOLD signal was discovered

by Ogawa et al. [68] while performing experiments on rats, anesthetized and

exposed to a gas mixture containing 10 percent of carbon dioxide and 90 percent

of oxygen. The authors noticed that the MRI-contrast was susceptible to the

blood oxygenation level and can be determined by the correlation between the

blood flow and the oxygen extraction factor. BOLD fMRI quickly became an

alternative approach to positron emission tomography (PET), with the great

advantage of relying on an intrinsec contrast agent, rather than on exogenous

contrasts agents needed for the latter [68, 64]. This noninvasive nature of BOLD

fMRI removes the limitation with respect to the the number of measurements

that can be taken on one research subject and it provides temporal information

regarding the onset and the offset of the hemodynamic change.

Motivated by the initial results obtained on rodent brains, two years later,

Ogawa et al. performed a similar analysis on human volunteers under normoxic

physiological conditions [64] and validated the assumption that the BOLD con-

trast can be used to track the changes occurring in the oxygenation level during
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neuronal activation in the human brain. In the original experiments, the neu-

ronal activation was in response to visual stimulation [64]. Further research on

the topic linked the BOLD contrast to changes in cerebral blood flow and cerebral

blood volume [54].

The BOLD contrast has transformed fMRI into an essential neuro-imaging

tool for studying the brain, whose advantages include its non-invasive nature,

the relative low cost, general availability and good spatial resolution [67]. Alter-

native brain imaging modalities include Positron Emission Tomography (PET),

MagnetoEncephalography (MEG), ElectroEncephalography (EEG) and Near In-

frared Spectroscopy (NIRS) [67].

Despite the intensive research and the great advances made in BOLD imag-

ing, the question as to what BOLD is really measuring remains open. During

neuronal stimulation, arterioles in the nearby region dilate, providing a bigger

supply of blood, and implicitly nutrients and oxygen. In the case of the venous

compartment, the results derived from using MRI measurements and the results

obtained when examining a single vein (via two-photon microscopy) are not in

full agreement. On one hand, the authors using MRI to investigate the effects

of hypercapnia and hypocapnia on the CBF and on the venous cerebral blood

volume reported big changes in both these values [69].

During hypercapnia, an elevation of both CBF and venous cerebral blood vol-

ume (vCBV) was observed, although the change in the CBF was much greater,

while during hypocapnia, a significant reduction in CBF and vCBV was recorded.

In [69, 66], Chen and Pike prove that the BOLD signals obtained during hypocap-

nia are identical to those obtained during neuronal activation.

Two-photon microscopy technique allowed in vivo visualization of vessels in

the brain, on rats [70] and mice [65] during neuronal activation, but these exper-

iments show very little or no venous ballooning [65, 70], contradicting previous

results and the classical mathematical models. It can be argued that these dis-

crepancies can result from methodological differences including the species con-

sidered, the length of the stimulation or the type of anesthesia [18]. For example,

in [65], the authors report a delayed increase in venous cerebral blood volume

that can be observed only when the duration of the stimulation is greater than

or equal to 20 seconds, thus explaining why it would not have been noticed in
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[70], due to the shorter duration of stimulus (4 seconds).

Another essential factor when considering animal experiments is the type of

anesthetic used. Isoflurane, the anesthetic used in [70], is vasodilative and may

affect the vascular response [66]. For a review of the possible effects that the

different anesthetic agents have on the general physiology, on how they interfere

with the cortical neuronal processing and the way in which they can suppress the

vascular cell activity we refer the reader to [71].

4.2 Review of hemodynamical models

In the recent years, great progress has been made with respect to studying the

hemodynamics of the brain and in particular, with the development of neuroimag-

ing techniques like PET or fMRI, which allow to map brain activation patterns

[15]. However, in order to interpret the big amount of data resulting from all

these measurements and to provide a better understanding of the effects of the

neuronal activation on the blood flow, mathematical models are needed.

While the cerebral blood flow increases during neuronal activation by 20-

60% of its resting state value, only a rather modest increase of 10-20% has been

experimentally observed in the cerebral metabolic rate of oxygen [48, 52, 51, 72]:

this uncoupling has been intensively studied in the last decade, [73, 74] but is not

yet completely understood. To provide a description of this phenomenon, Buxton

et al. developed a mathematical model of a vein as an expandable balloon with the

ability of expanding or contracting, depending on the blood flow changes during

neuronal activation [16, 15, 17, 75]. Recently, a more complex hemodynamic

model consisting of three compartments has been proposed by Barrett et al. [18]

to track the cerebral blood flow and volume in arteries, capillaries and veins. A

main difference between the Buxton model [16] and this model is that Barrett

et al. consider the ballooning in the arterial compartment, rather than in the

venous one, while assuming that all compartments are able to dilate.

The balloon model [15, 16, 17] is a bio-mechanical model that describes the

changes in the blood volume during activation. Its name originates from the

fact that the venous compartment is modeled as an expandable balloon, with

inflow the cerebral blood flow fin and whose outflow is an increasing function
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fout of the balloon volume. The two dynamical variables tracked are the total

deoxyhemoglobin (dHb) and the volume of the balloon Vv(t).

The time course of the venous volume v is governed by the equation:

dv

dt
=

1

τ0

(fin(t)− fout(v)) . (4.1)

Under the assumption that there is no capillary contribution and that all the de-

oxyhemoglobin is located in the venous compartment [15], the deoxyhemoglobin

content per unit tissue volume, denoted by dHb satisfies the differential equation:

d

dt
dHb =

1

τ0

(
fin(t)

E(t)

E0

− fout(v)
dHb(t)

v(t)

)
, (4.2)

where the first term is the rate at which deoxyhemoglobin enters the venous

compartment, while the second one represents the clearance rate from the tissue.

Moreover, E is the oxygen extraction fraction and E0 is the oxygen extraction

factor at rest, which is usually set to 0.4 [16, 17]. τ0 is the mean transit time

through the venous compartment at rest τ0 = v0
f0

where f0 is the resting flow

and v0 is the resting blood volume fraction. The oxygen extraction fraction is

modeled as:

E = 1− (1− E0)fin ,

where the inflow of blood fin is a trapezoidal function with rise time between 4

and 6 seconds and variable duration [15, 16].

In the original description of the balloon model [15], the outflow function fout

was set so that different effects could be illustrated. The same authors have later

proposed an expression for the outflow function which accounts for the viscoelastic

properties of the blood vessels [16]:

fout(v) = v
1
α + v−

1
2 τv

dv

dt
, (4.3)

where τv is a viscosity parameter and α = 0.5.

From equations (4.1) and (4.3) we obtain the following expression for the
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outflow:

fout(v) =
1

1 + τ0
τv

√
v

(
fin(t) +

τ0

τv

√
vv1/α

)
, (4.4)

whereas the BOLD signal is calculated in [15, 16, 38] as:

y(t) = v0

(
k1(1− dHb) + k2

(
1− dHb

v

)
+ k3 (1− v)

)
, (4.5)

where k1 = 7E0, k2 = 2 and k3 = 2E0 − 0.2.

Figure 4.1 illustrates time course of the venous volume and the deoxyhe-

moglobin obtained from simulating the balloon model for the choice of paramters:

α = 0.5, τ0 = 2 and τv = 5.

Figure 4.1: Simulation with the balloon model for α = 0.5, τ0 = 2 and τv = 5

4.3 Blood flow model

Recently, Barrett et al. [18] proposed a more complex model with separate com-

partments: arteries, capillaries and veins, which allows tracking blood flow and

blood volume in the different vascular components. The main idea behind the

Barrett model resides in the correspondences between hemodynamics and elec-

trical circuits, with blood playing the role of electric current, and blood pressure

that of voltage. Based on these observations, the classical Ohm’s law could

be rewritten as the product of blood flow and resistance. In addition, vascu-

lar compliance, intended as capacity of a vessel to dilate, can be interpreted as

capacitance, defined as the ability of a conductor to store electric charge.
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Figure 4.2: Electrical circuit representation of the model designed by Barrett et
al. in [18].

Let us first denote the blood volume by v, the flow by f and the resistance by

r and introduce indeces j = {1, 2, 3} to account for the three vascular compart-

ments. Then, the time course of the cerebral blood volume of a compartment

with respect to time can be written in terms of the flow inside and outside the

compartments,

dvj
dt

= fj−1(t)− fj(t), where j = {1, 2, 3}. (4.6)

The pressure at the entrance of the compartment is given by:

pj(t) =
1

2
rj(t)fj−1(t) +

vj(t)

cj(t)
, where j = {1, 2, 3}, (4.7)

where the viscous resistance rj can be expressed in terms of the length of the

compartment lj and the blood volume vj

rj(t) =
l3j

vj(t)2
, (4.8)

while cj represents the compliance and it measures the ability of the vessel to

dilate. In the model of vascular compliance proposed by Barrett et al. [18],

steady state is characterized by a linear relationship between the compliance and

the blood volume, dynamic viscoelastic effects and changes in the compliance for
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the active smooth muscle dilation or contraction [18]:

cj(t)

c∗j
=
κj − vj(t)

v∗j

κj − 1
− νj

dvj(t)

dt
+ sj(t), where j = {1, 2, 3}, (4.9)

where by κj we denote the stiffness coefficient, νj is a viscoelastic coefficient, s

the vasodilatory stimulus, while by c∗j and v∗j we denote the baseline value of the

compliance, and blood volume, respectively.

The vasodilatory stimulus in [18] is built on observations of the behavior of

the CBF during neuronal application, namely a rapid increase shortly after the

onset of the stimulation, an initial overshoot followed by a plateau and once the

stimulation is over, a decay back to the baseline value. Mathematically, this is

expressed as:

s1(t) =


sup(t), t < tmax

sdecay(t), tmax ≤ t ≤ tend

sdown(t), t > tend

, (4.10)

where tmax is the time at which the maximum stimulus smax is reached, while

sup(t), sdecay(t) and sdown(t) are defined as

sup(t) =
1

2
smax

[
1 + erf

(
t− (t0 + τup

2
)

32−1/2τup

)]
, (4.11)

sdecay(t) = (smax − s∗) exp

(
tmax − t
τdecay

)
, (4.12)

sdown(t) = send exp

(
tend − t
τdown

)
, (4.13)

where erf is the error function, t0 and tend are the initial time and respectively,

final time of the simulation. s∗ represents the baseline value of the stimulus and

τup, τdecay and τdown are time constants. Lastly, send is the value of the stimulus

at tend.

In [18] the vasodilatory stimulus is applied only to the arterial compartment,

while the stimulus functions for the capillaries and the venous compartments are

set to 0

s2(t) = 0, s3(t) = 0. (4.14)
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This choice was based on the experimental data by Drew et al. [65] obtained

by applying two photon microscopy on anesthetized mice, suggesting that the

changes in the venous and capillary compartment during neuronal activation are

not significant unless the stimulus considered has a longer duration.

The total pressure pr is the sum of the pressure drops over each compartment:

∆pr =
3∑
j=1

∆pj(t), where j = {1, 2, 3}. (4.15)

Equations (4.6), (4.7), (4.8) and (4.15), for j = {1, 2, 3}, yield a system of

seven differential algebraic equations.

Parameter Description Artery Capillary Vein
v∗ Baseline volume fraction 0.29 0.44 0.27
r∗ Baseline resistance 0.74 0.08 0.18
l∗ Length 0.39 0.25 0.23
c∗ Baseline compliance 0.46 2.02 2.97
ν Viscoelastic coefficient 31 163 122
κ Stiffness coefficient 1.29 1.51 ∞

Table 4.1: Baseline values and corresponding parameters to the three compart-
ments: arteries, capillaries and veins as considered by Barrett et al. in [18]

In order to compare the model predictions with experimental results in [65,

70], the authors of [18] consider stimuli of different durations (1 second, 6 seconds

and 30 seconds). Their results show that the onset of the stimulation is charac-

terized by a great increase in the CBF, followed by a slower increase, reaching a

peak of 53% above baseline for the 6 seconds stimulus and 65% for the 30 seconds

stimulation. Similarly, the CBV increases during stimulation, up to 11% above

baseline for the short stimulus and to 16% for the 30 seconds stimulus. It was

observed that during the longer stimulation, the rise for the CBV was steeper

than for the CBF and that in all cases CBF recovered to its baseline level faster

that the CBV.

In this model, the dilation in the arteries accounts for 88% of the total increase

in volume, with the remaining 12% partitioned between capillaries and veins.

Similar to the behavior described in [65], increasing the stimulation time from 6

to 30 seconds, produced additional dilation in the capillaries and veins, which now
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account for 15% and 21% respectively, while the arterial contribution is decreased

to 64% of the total volume change.

In summary, Barrett’s results suggest that during neuronal activation, the

arteries account for most of the change in CBV and CBF, while the veins and

the capillaries become an essential part only when the stimulus duration is large

enough.

One drawback of the model proposed by Barrett et al. is the assumption that

the vasodilatory stimulus is known and is expressed in the parametric form (4.10).

One very active topic of debate in the literature regards the compartment on

which the stimulus acts upon. In [18], the authors assume that the stimulus acts

only on the arterial compartment, in conflict with various experimental reports

[69, 66] and the classical Balloon Model [15, 16, 17]. These aspects are discussed

in detail in [19].

In [19, 20], the authors formulate an inverse problem of the hemodynamic

response with the objective of estimating the stimulus in each hemodynamic

compartments, rather than only in the arterial one, as in [18], or the venous one,

as in [15, 16, 17]. In this way, the stimulus, and implicitly the compliance in

each compartment can be deduced, based on data obtained directly from mea-

surements of the cerebral blood flow.

The presence of the derivative of the volume in (4.9) transforms the system

formed by the equations (4.6), (4.7), (4.8) and (4.15) into a system of differential

algebraic equations (DAEs), whose solution requires special consideration, as

discussed in detail in [20], where an efficient solution has been found.

Having the solution of the system above, the blood flow can be computed by

averaging the flows between the three compartments [76]:

CBF(t) =

∑3
j=1 vj(t) [fj−1(t) + fj(t)]∑3

j=1 vj(t)
. (4.16)

4.4 Hemo-Electro-Metabolic coupling

In this section we describe how the hemodynamic model discussed in the previous

section is coupled to the Electro-Metabolic model presented in Chapter 3. One of

the basic feedback mechanisms affecting the coupling is the fact that the output
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of the hemodynamic model provided by equation (4.16) becomes an input for the

Electro-Metabolic model. Another important modification is that the arterial

stimulus function s1(t), defined in (4.10), is given with respect to the extracellular

potassium concentration [K+]ecs(t) provided by the Electro-Metabolic model. As

in [18], the stimulus in the other two compartments (venous and capillary) is

set to 0. The fundamental feedback mechanisms underlying the Hemo-Electro-

Metabolic coupling are showed schematically in Figure 4.3.

Figure 4.3: Schematic representation of the three-way feedback loop.
The output of the Electro-Metabolic Model over the time interval [tj, tj + ∆t]
comprises the extracellular potassium profile Kj, leading to the integrated potas-
sium signal σj and, through integration over the interval [Ti, Ti + ∆T ] , to the
hemodynamic stimulus si that serves as an input for the hemodynamic model.
The hemodynamic model determines the cerebral blood flow profile that regu-
lates the metabolic model through nutrient supply. The only external inputs are
the arterial concentrations of glucose, oxygen and lactate (Cart,X), and the neu-
ronal activation function describing an electrophysiological signal ξ arriving from
outside the unit through the presynaptic axon.

Following [77], we assume that the high concentration of extracellular potas-

sium triggers a calcium wave in the nearby astrocytes, that reaches the arterioles

through the end feet, and therefore provokes an increase in the arterial compli-

ances as modelled in equation (4.9). On the other hand, high compliance causes

an increase in the arterial volume and a decrease in the resistance (4.8). The

latter leads to an increased downstream pressure which causes an increase in the

capillary and venous volumes. In Figure 4.4 we illustrate the interaction between
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the electrophysiology, metabolism and hemodynamic response in two cases: in the

left part, we consider the system at resting state, while on the right we illustrate

the neuronal activation [76].

Metabolism

Metabolism End	foot

MetabolismResting	State Neuronal	Activation

Metabolism

Metabolism

Vasodilation

End	foot

Metabolism

Figure 4.4: Schematics of the integrated Hemo-Electro-Metabolic
model. The neuron (blue) and astrocyte (salmon) compartments are assigned
separate compartments, but there is no division between the pre- and post-
synaptic neuron, nor between the soma and end feed of astrocytes. A separate
compartment is reserved for blood, separately accounting for arterial, capillaries
and venous components in the hemodynamic module. In line with current under-
standing, we assume that the extra blood volume rushing to the activation site
in response to a vasodilation stimulus in the arterioles triggered by the neuronal
activation via increased potassium concentration in extracellular space (ecs) is
accommodated by a change in the volume of the blood vessels. The uniform
yellow background in the left panel indicates the higher sodium concentration in
the extracellular space at rest: in the right panel the lilac cloud illustrates the
temporary increase in extracellular potassium concentration during the repolar-
ization phase due to the sodium potassium pump activation, also responsible for
the increase in energy demand, symbolically denoted by yellow starts.

As shown in Figure 3.1, the external inputs to the Electro-Metabolic model

are the activation function ξ(t) which controls the level of neuronal activity,

the arterial concentration Cart,X, X = {Glc,Lac,O2} and the blood flow q(t).

The only input needed by the blood flow model is the vasodilatory extracellular

potassium dependent stimulus. The concentration of extracellular potassium, an

output of the Electro-Metabolic model, can be used to model the vasodilatory

stimulus s(t):

s(t) =
(
[K+]ecs(τ)−Kbase,max

)
∗ w,

=

t∫
0

(
[K+]ecs −Kbase,max

)
w(t− τ)dτ, (4.17)

where Kbase,max is the maximum extracellular potassium concentration corre-
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sponding to the awake resting state, and w is a weight function of the form

w(t) = exp

(
− t
χ

)
, χ = 0.6514 sec. (4.18)

The kernel w captures the fading off of the vasodilatory stimulus after the astro-

cytes and the diffusion have cleared the potassium in excess from the extracellular

space. The integral (4.17) is computed over an interval of three seconds, the time

constant χ was chosen so that after a three seconds period, the kernel had de-

creased to only 1% of its maximum value.

4.5 Multiple time scales

In this section we discuss the multiple time scales that characterize the Hemo-

Electro-Metabolic model and propose a numerical scheme in order to compute

the model predictions.

As in the Electro-Metabolic Model described in Chapter 3, we consider a

time step ∆τ corresponding to the electrophysiological model, which is of the

order of milliseconds and is adaptively selected by the built-in Matlab function

ode15s, and a metabolic time step, denoted by ∆t, which is set to ∆t = 0.05

sec. In addition, we account for the slower changes in the blood flow response by

considering a third time step ∆T which is set to ∆T = 1 second.

Here we describe the numerical procedure developed in order to compute the

predictions of the three-feedback Hemo-Electro-Metabolic model:
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Algorithm 2 Hemo-electro-metabolic coupling

Given: The arterial concentrations Cart,X of glucose, lactate and oxygen and a
neuronal activation function ξ(t)
Initialize: Ti = 0, t = 0, α > 0 and χ > 0.
Repeat: At each iteration i:

1. Take a step in the time units of the hemodynamic model: Update

Ti = Ti−1 + ∆t.

2. Take 20 steps of length ∆t, the time units of the metabolic model: For
j = 0, . . . 20,

a. Update tj = tj−1 + ∆t

b. Compute the model predictions for the electrophysiology model and
generate the extracellular potassium curve Kj(τ), where τ ∈ Ij =
[tj, tj + ∆t].

c. Compute the model predictions for the metabolic model: Compute
the average potassium concentration over Ij such that

σj =

∫
Ij

(Kj(τ)−Kbase,max
j )dτ.

3. Compute the model predictions for the hemodynamic model:

a. Define the vasodilatory stimulus value at time Ti as a scaled and
weighted sum of the potassium values,

si = α < w, σi >,

where σ is the three seconds window of the potassium values at each
time t ∈ [Ti, Ti + ∆T ] such that σ = [σi−2 σi−1 σi] and w is the weight
function defined in equation (4.18).

b. Compute the cerebral blood flow at the current time T

CBFi = CBF(Ti)

4.6 Results

In this section we present the results obtained when computing the predictions

of the Hemo-Electro-Metabolic model described throughout this chapter. First,

we consider a protocol where we discuss the case of the system transitioning from

an awake resting state to a three minutes neuronal activation characterized by

a 90 Hz frequency, followed by a recovery to the awake resting state. In this
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case, we analyze the changes that occur not only in the electrophysiology and

metabolism, as in Chapter 3, but also in the blood flow response. The second

case is a simulation of two neuronal activations, between which we have an 11

minutes period of awake resting state. As in Chapter 3, we analyze the recovery

of the main concentrations.

4.6.1 Neuronal activation

In the first computed example, the system is transitioning from an awake resting

state of 8Hz corresponding to a stimulus ξ = 0.05 to a neuronal activation char-

acterized by a frequency of 90 Hz, for which the activation function was set, as

usual, to ξ = 2.5. The neuronal stimulation starts at t = 1 minute and lasts 3

minutes. Figure 4.5 shows the electrophysiologic and hemodynamic response.

Our model [76] predicts an initial CBF increase of 77% over baseline value,

lasting approximately 15 seconds, after which the relative cerebral blood flow

settles at 26% above baseline for the activation period, in agreement with recent

literature [78]. A similar spike is observed also in the firing frequency showed

in the second panel of Figure 4.5, which briefly tops at 107Hz before stabiliz-

ing at 90Hz throughout the neuronal activation period. As expected, during

the neuronal stimulation the amplitude of the action potential decreases and

is accompanied by an increase in the ionic concentrations of both intracellular

sodium and extracellular potassium. As in Chapter 3, we observe the slow after-

hyperpolarization effect, characterized by a 16 seconds neuronal silencing once

the activation has ended.
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Figure 4.5: Dynamical model predictions of the changes in the electrophysiology
and hemodynamic response as the system switches from resting state to high firing
for a three minutes period: In each panel, the neuronal activation is indicated
by a gray shadow. Left to right: Relative cerebral blood flow, action potential
(black) and its associated frequency (magenta), time course of the intracellular
sodium concentration (black) and extracellular potassium concentration (red).

The top row of Figure 4.6 shows the metabolic response in the blood compart-

ment. Note that the initial spike in the relative cerebral blood flow is concomitant

to the initial increase in the concentrations of glucose and oxygen. After this brief

increase, glucose slowly decreases and continues its descent for 20 seconds after

the activation is over. At the same time, we observe a large production of lactate

in the blood compartment, which reaches a 37% increase over the baseline level.

The oxygen shown in Figure 4.6 refers to the total concentration of oxygen which,

as explained in Chapter 2, is composed of the oxygen which is freely dissolved in

plasma and the oxygen that bounds to hemoglobin. After the initial increase at

the beginning of the activation, oxygen concentration stabilizes at a value that

is 3% over the baseline. Once the activation had ended, there is a dip of 5% in

oxygen concentration in blood, followed by a fast recovery to the baseline value.

The time courses of the metabolites corresponding to the cellular compart-

ments and extracellular space are shown on the two bottom rows of Figure 4.6,

where we see that during neuronal activation glucose concentration falls to only

35% of its resting state value in the neuron and extracellular space, while in the

astrocyte, where there is a higher glucose consumption, it drops to 13% of its

baseline value. As expected, there is a significant lactate production in the neu-

ron, astrocyte and the extracellular space, where lactate concentration increases

by 66% of its baseline value. Not surprisingly, there is a much higher consumption

of oxygen during neuronal stimulation, with a 90% decay in concentration in neu-

ron, 76% in astrocyte and 50% in extracellular space. The phosphorylation states
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in the cellular compartments are almost depleted at the end of the activation,

suggesting that all the ATP produced is used to satisfy the energetic requirement

[76], while redox states exhibit a very large increase during activation, 8 fold in

neuron and 4 fold in astrocyte.

The high pyruvate consumption in the cellular compartments during the neu-

ronal activation period is shown in the first panel of the bottom row of Figure

4.6, as well as by the large increase in the TCA flux shown in Figure 4.7: 83% in

the neuron and 59% in the astrocyte.

Figure 4.6: Time course of metabolites concentrations as the system switches from
resting state to high frequency firing for a three minutes period: In each panel,
the neuronal activation period is indicated by a gray shadow. Top row: Blood
compartment. Left to right: glucose, lactate and oxygen. Second row: glucose,
lactate and oxygen in the neuron (red), astrocyte (blue) and extracellular space
(black). Bottom row: pyruvate, phosphorylation and redox in neuron (red) and
astrocyte (blue).

The transport fluxes for glucose, lactate and oxygen between extracellular

space and cellular compartments, and between blood and extracellular space are

displayed in Figure 4.7. The flux of glucose from blood to extracellular space

shows an increase of 39% above resting state value, while the flux of oxygen
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between the same compartments increases by 15%, passing from 1.49 mM/min

during resting state to 1.71mM/min during neuronal activation, in agreement

with experimental literature [53, 79]. From these fluxes, we calculate from equa-

tion (2.89) the oxygen glucose index (OGI), shown in the last panel of the third

row of Figure 4.7. Notice that at the start of the activation, the OGI index ex-

hibits a brief increase of 10% over baseline, which occurs simultaneously with the

initial increase in blood flow, followed by a fast decrease of 18% below the resting

state. Our model predicts an OGI value of around 5.15 during resting state and

4.2 during neuronal activation, in agreement with recent literature [51, 53, 47, 52].

Lactate flux from the blood to extracellular space shows a very significant 6

fold drop during neuronal activation. Additionally, the lactate transport between

extracellular space and neuron, shown in the first panel of Figure 4.7, exhibits a

shift in direction during neuronal activation, with lactate moving from the neuron

back to the extracellular space. A similar behavior can be observed for the lactate

dehydrogenase flux in neuron: during resting state, the prevailing direction is

towards pyruvate production, while during activation it shifts towards lactate

production. Astrocyte exhibits a different pattern: the prevailing direction is

towards lactate production during resting state, followed by a brief switch to

pyruvate production at the beginning of the activation and followed by a return

to lactate production.

The glycolysis and oxidative phosphorylation fluxes presented in the first two

panels of Figure 4.7 show large increases during neuronal activation in neuron. In

astrocyte, the glycolysis flux increases during the first seconds of the activation

and is followed by a fast drop, which continues for a couple of seconds after the

activation ends. The oxidative phosphorylation flux in astrocyte has a very small

decrease during activation, and it is followed by a sudden increase at the end of

the activation.
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Figure 4.7: Time course of the transport and reaction fluxes as the system
switches from resting state to high frequency firing for a three minutes period: In
each panel, the neuronal activation period is indicated by a gray shadow. Left to
right. Top row: Transport fluxes for oxygen (black), lactate (blue) and oxygen
(red) from the extracellular space to the neuron, from the extracellular space to
the astrocyte and from the blood to the extracellular space. Second row: Glycol-
ysis, oxidative phosphorylation and tricarboxylic acid cycle in the neuron (red)
and in the astrocyte (blue). Third row: lactate dehydrogenase balance flux in the
neuron, creatine phosphorylation balance flux in the neuron and the OGI index.
Last row: Lactate dehydrogenase balance flux in the astrocyte, creatine phospho-
rylation balance flux in the astrocyte and the oxidative cerebral metabolic rate
of glucose.

4.6.2 Consecutive neuronal activations

In the previous section we described the behaviour of the cerebral blood flow,

ionic concentrations and metabolites when the system transitions from an awake
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resting state to neuronal activation. In this section of the thesis we discuss the

recovery time needed for the metabolites and ionic concentrations to return to

their baseline value after activation. As observed in Section 3.4.1 and Section

3.4.2, each metabolite has its own characteristic time required for reaching its

normal state, once the activation has ended. Not allowing a sufficient period of

resting state in between the activations, can lead to problems in sustaining the

second neuronal activation, as described in Section 3.4.2, Figure 3.10.

The computed experiment that we present here consists of two consecutive

neuronal activations of three minutes duration each, separated by a period of 11

minutes of awake resting state. More specifically, the first activation starts at

t = 1 minute and it ends at t = 4 minutes, while the second activation starts at

t = 15 minutes and it ends at t = 18 minutes.

Figure 4.8: Dynamical model predictions of the changes in the electrophysiology
and hemodynamic response as the system switches from resting state to high
firing for a three minutes period for two neuronal activations, each having a
duration of 3 minutes with a resting period of 11 minutes in between: In each
panel, the neuronal activation is indicated by a gray shadow. Left to right:
Relative cerebral blood flow, action potential (black) and its associated frequency
(magenta), time course of the intracellular sodium concentration (black) and
extracellular potassium concentration (red).

Figure 4.8 shows the electrophysiologic and hemodynamic response during the

transition to neuronal activation, followed by the 11 minutes awake resting state,

after which a second neuronal activation starts. The neuronal activations are

identical to those described in the previous section. After each neuronal activa-

tion period there is a slow after-hyperpolarization effect lasting approximately 16

seconds, after which the normal firing rate is resumed. Accordingly, at the end of

each activation the potassium value exhibits a 16 seconds period during which it

falls below the normal firing rate, coinciding with the slow after-hyperpolarization

effect period, after which potassium recovers back to its resting state. Sodium
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concentration reaches its normal concentration immediately after the activation

is over. The cerebral blood flow fully recovers by the time start of the second

activation and therefore provides an appropriate supply of metabolites.

The metabolic response to the consecutive neuronal activations is captured

in Figure 4.9. The eleven minutes of resting period between the two activations,

were enough for most of the metabolites to reach their initial state. However, for

example, while the concentration of glucose in neuron, extracellular space and

blood compartment reaches its normal value before the start of the second ac-

tivation, the concentration of glucose is the astrocyte is slower, reaching 98% of

its initial value. Lactate recovers up to 95% of its resting state value in neuron,

astrocyte and extracellular space and a recovery to 97% in the blood compart-

ment. Compared to glucose and lactate, oxygen requires a much shorter period

in order to fully reach its baseline value. In in the case of pyruvate and the phos-

phorylation state, we observe a recovery to 99% of their initial value. Owing to

the full recovery of the cerebral metabolic flow and the fact that the metabolites

are almost entirely replenished at t = 15 minutes, the second neuronal activation

can be sustained.

The fluxes considered in our model are showed in Figure 4.10, where we

observe full recovery to the baseline value before the start of the second activation.



CHAPTER 4. HEMODYNAMICS RESPONSE 138

Figure 4.9: Time course of metabolites concentrations as the system switches from
resting state to high frequency firing for two consecutive neuronal activations,
each having a duration of three minutes with a resting period of 11 minutes
in between: In each panel, the neuronal activation periods are indicated by a
gray shadow. Top row: Blood compartment. Left to right: glucose, lactate and
oxygen. Second row: glucose, lactate and oxygen in the neuron (red), astrocyte
(blue) and extracellular space (black). Bottom row: pyruvate, phosphorylation
and redox in neuron (red) and astrocyte (blue)
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Figure 4.10: Time course of the transport and reaction fluxes as the system
switches from resting state to high frequency firing for two consecutive neuronal
activations, each having a duration of three minutes with a resting period of 11
minutes in between: In each panel, the neuronal activation period is indicated
by a gray shadow. Left to right. Top row: Transport fluxes for oxygen (black),
lactate (blue) and oxygen (red) from the extracellular space to the neuron, from
the extracellular space to the astrocyte and from the blood to the extracellular
space. Second row: Glycolysis, oxidative phosphorylation and tricarboxylic acid
cycle in the neuron (red) and in the astrocyte (blue). Third row: lactate dehy-
drogenase balance flux in the neuron, creatine phosphorylation balance flux in
the neuron and the OGI index. Last row: Lactate dehydrogenase balance flux
in the astrocyte, creatine phosphorylation balance flux in the astrocyte and the
oxidative cerebral metabolic rate of glucose.
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Chapter 5

Cortical Spreading Depression

Cortical spreading depression (CSD) are very slow propagating waves of intense

cellular depolarizations, accompanied by a period of suppressed neuronal activity

and an extreme alteration of the ionic homeostasis [80, 81]. This phenomenon

has been studied intensively in recent years, as it was observed to occur spon-

taneously in various neurologic pathologies like stroke, traumatic brain injury

or subarachnoid hemorrhage, where it can provoke additional brain damage or

severely slows down the patients’ recovery process [82, 81, 83, 84, 85]. On the

other hand, in healthy brain CSD is a reversible process that does not cause brain

damage [5, 86, 87, 88], and in fact its beneficial properties against future ischemic

episodes are currently under investigation [89, 90, 91, 88, 89].

In this chapter we propose a new unified electro-metabolic model that accu-

rately describes the processes underlying brain electrophysiological activity and

metabolism during the passing of multiple cortical spreading depression waves.

We begin with a short introduction outlining the consequences of CSD waves in

human brain: utmost changes in ionic homeostasis, extreme energetic demand,

morphologic changes and altered vascular response. We then provide an overview

of the published mathematical models that can capture the essential features of

CSD. In Section 5.3 we describe a novel electrophysiologic model specifically de-

signed for modeling CSD waves, while in Section 5.4 we provide details about the

computational challenges of our coupled electro-metabolic model and we present

computed experiments.

143
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5.1 Introduction

Cortical spreading depression waves have been observed to appear spontaneous

after head trauma and in ischemic, hypoglycemic or hypoxic brain tissue [82].

These waves can also be triggered in the healthy brain by means of electrical,

chemical or mechanical stimuli, by inhibiting the sodium potassium pump’s ac-

tivity or simply as a result of an insufficient energy supply [92, 93]. Among the

chemical agents that can initiate a CSD event in experimental settings, the most

common are potassium ions, glutamate and the acetylcholine [93]. In general,

a potassium bath concentration of at least 10-12 mM [88, 94, 85, 81] is known

to trigger a self propagating wave moving slowly across the cortex, although a

much lower potassium bath concentration is needed in the case of Familial Hemi-

plegic Migraine (FHM) patients, who exhibit a particular mutation in the calcium

channel [88, 92].

CSD detection: neurophysiologic techniques

The short duration of cortical spreading depression events and the small cor-

tical volume affected make its detection extremely difficult when using the tra-

ditional noninvasive electroencephalography (EEG) [82]. Therefore, the typi-

cal neurophysiologic technique used for investigating CSD is electrocorticog-

raphy (ECOG), which records the electrical activity of the cerebral cortex

through electrodes placed directly on the surface of the brain. Among other

procedures used for studying this phenomenon, we mention the classical micro-

dialysis technique, which requires individual samples to be collected hourly.

This approach, although unsuited to distinguish between the different spread-

ing depression waves, follows the behavior of the main metabolites during CSD

characterized by a dip in the concentration of glucose and an increase in the

concentration of lactate. Various researchers investigate CSD with two-photon

imaging [94], which makes it possible to monitor not only changes in redox states

but also changes in capillary perfusion and in cell morphology during the passing

of cortical spreading depression waves.

CSD electrophysiologic and metabolic signature

Cortical spreading depression induces very large increases in extracellular

potassium concentration, reported to rise from the baseline value of 3-4 mM
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to more than 80 mM, matched by large decreases in the concentrations of ex-

tracellular sodium and extracellular chloride. Restoring the ionic homeostasis

comes with one of the biggest energetic costs ever observed in brain [81, 5],

which in turn, cause large increases in both aerobic and anaerobic metabolism

[81] with a significant 50% depletion of ATP concentration [95, 96]. CSD waves

induce a large decrease in extracellular glucose concentration and a very large

increase in extracellular lactate concentration [83, 97, 80, 81, 96]. In order to

shed light on the changes in metabolites concentrations during spreading depo-

larizations, Lourenćo et al. [80] recently developed a dual biosensor capable of

simultaneously monitoring changes in the concentrations of glucose and lactate

and brain electric activity [80]. Experiments on rats under urethane anesthesia

where spreading depolarizations were induced mechanically through the insertion

of a needle prick, show a 51% decrease in glucose concentration and a 66% in-

crease in lactate concentrations with respect to their initial values [80]. Higher

oxidative phosphorylation rates and increased oxygen demand during CSD waves

were confirmed by many authors [98, 99] and, as expected, the spreading depo-

larizations lead to substantial increases in the cerebral metabolic rates of glucose

and oxygen [81, 83, 97, 100, 5].

Moreover, multiple CSD episodes were shown to cause cumulative changes

in metabolite concentrations [101, 97]: more specifically, glucose in extracellular

space exhibits a stepwise decay with each passing CSD wave [97], and a similar

behavior was observed for oxygen concentration [102, 103].

Morphology during CSD

Cortical spreading depression waves are known to produce an extreme shrink-

age of the extracellular space, whose volume was reported to decrease from 50

to 78% below its resting state value [104, 105, 106, 81, 107]. While it is widely

accepted that the neuronal cells swell and that there is a pronounced loss of den-

dritic spines [88, 94], there is an ongoing debate in the literature regarding the

changes in astrocyte morphology: some authors suggest that the astrocyte also

swells during CSD episodes [105, 104, 106], while others report that the increase

in the astrocytic volume is negligible [94].

Hemodynamic response during CSD

In normoxic brain, once a cortical spreading depolarization is initiated, the
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cerebral blood flow tries to match the very high energetic demand through an

extreme hyperemia, often reported to be in the range of 100 to 250% above

the baseline value [80, 83, 81, 82]. This vasodilation, attributed to nitric oxid

and arachidonic acid metabolites [108], can be sustained only for 1-2 minutes

[81, 82, 80], after which the blood flow is reported to exhibit either a mild 20-

30% decay or to return to its baseline value [81]. It has been remarked that

blood flow measurements vary substantially with respect to the species considered

[90, 109, 110], the anesthetic agent used [71, 111], the baseline cerebral blood flow

value and the CSD triggering mechanism [90].

The hyperemic response is significantly lower or even absent when CSDs occur

in injured brain, most likely due to the fact that the nitric oxide concentration is

not optimal and the potassium concentration is very high [108].

The alterations in the electrophysiology, metabolism, morphology and hemo-

dynamics associated with CSD are presented schematically in Figure 5.1.

Figure 5.1: A schematics of the changes that occur during CSD from four perspec-
tives: the metabolism, the electrophysiology, the hemodynamics and the cellular
morphology.
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Role of astrocytes in CSD

While most research done in the last century has regarded neuronal cells as

the main players in human brain, in the recent years multiple authors have shifted

their attention to the study of astrocytes, their interaction with neurons [4, 3, 7]

and the their role in various neurological pathologies [112, 113, 114, 115, 116,

117, 6]. In CSD in particular, glial cells are responsible for clearing extracellular

potassium and glutamate [118, 5, 119], regulating the ionic composition of the

extracellular space, its size and geometry [120, 121], as well as mediating the

cerebral blood flow response [1, 5, 122].

It was recently observed that regions of the brain characterized by a larger

number of glial cells, in particular astrocytes, are less susceptible to CSD [81,

5, 123, 106, 124, 125]. Factors that were reported to contribute greatly to the

spreading of the waves are high density of neuronal cell bodies and small extra-

cellular space, and the propagation speed of cortical spreading depression was

observed to take place at a much lower pace in regions with large number of

astrocytes [119].

While most CSD studies concentrate on the cerebral cortex, Karunasinghe

et al.[124] studied the appearance of these waves in Substantia Nigra (SN), a

basal ganglia structure found in the midbrain, responsible for eye movement,

learning, motor planning and reward [124]. This region’s utmost importance

comes from the fact that the death of the dopaminergic neurons is responsible

for Parkinson’s disease. In their study Karunasinghe et al. analyzed individually

the two components of Substantia Nigra: Substantia Nigra pars compacta (SNc)

and Substantia Nigra pars reticulata (SNr) and they observed that SNc has a

remarkable resistance to SD waves. This is believed to be due to the larger

number of astrocytes, the lower density of neurons and the larger extracellular

space present in this region of the brain.

5.2 Review of mathematical CSD models

The increased attention granted in the recent years to the study of the mech-

anisms underlying cortical spreading depression, created the need for complex

mathematic models able to capture this phenomenon [126, 127, 23, 21, 128]. In
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this section we describe two such models: a mathematical model developed by

Wei et al. in [11], able to capture different firing patterns, among which also

CSD waves, and another model proposed by Huguet et al. in [21] which focuses

specifically on CSD.

5.2.1 Wei model

The model developed by Wei et al. in [11] is based on the Cressman model, de-

scribed in Chapter 1, to which it adds chloride and oxygen dynamics. Moreover,

the exterior concentration of sodium and the interior concentration of potassium,

previously defined as algebraic equations, are now modeled as differential equa-

tions.

The differential equation governing the membrane potential is given by:

cm
dV

dt
= −INa+ − IK+ − ICl− −

Jpump,Na+

γ
, (5.1)

where cm is the membrane capacitance, INa+ , IK+ and ICl− are the sodium, potas-

sium and chloride currents defined through (1.13), (1.14), (1.15), Jpump,Na+ the

current induced by the sodium potassium pump and γ a factor used in order

convert the current given in µA/cm2 into mM/s.

As in the Hodgkin-Huxley model, the dynamics of the gating variables n, m

and h follows:

dw

dt
= αw(V )(1− w)− βw(V )w, w ∈ {m,n, h}, (5.2)

where αw and βw are the corresponding saturation functions for each gating

variable w ∈ {m,n, h} and are given in Table 5.1.

w m h n

αw(V ) 0.32
V + 54

1− exp(−(V + 54)/4)
0.128 exp(−(V + 50)/18) 0.032

V + 52

1− exp(−(V + 52)/5)

βw(V ) 0.28
V + 27

exp((V + 27)/5)− 1

4

1 + exp(−(V + 27)/5)
0.5 exp(−(V + 57)/40)

Table 5.1: Gating variables: voltage-dependent saturation functions for the Wei
model.
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The reversal potentials VNa+ , VK+ and VCl− are obtained through the Nernst

equations,

VX =
26.64

zX
ln

(
[X]ecs

[X]i

)
, X ∈ {Na+,K+,Cl−}, (5.3)

where z is the valence corresponding to the ion X.

The differential equations governing the intracellular [X]i and extracellular

[X]ecs concentration of sodium, potassium and chloride are given by:

τ
d[Na+]i
dt

=
(
−γINa+ − 3Jpump,Na+ − Jnkccl

)
vi,

τ
d[Na+]ecs

dt
=
(
γβINa+ + 3βJpump,Na+ + βJnkccl

)
vecs,

τ
d[K+]i
dt

=
(
−γIK+ + 2Jpump,Na+ − Jkcc2 − Jnkccl

)
vi,

τ
d[K+]ecs

dt
=
(
γβIK+ − 2βJpump,Na+ − Jdiff − Jglia − 2Jg,p + β (Jkcc2 + Jnkccl)

)
vi,

τ
d[Cl+]i
dt

= (γICl − Jkcc2 − 2Jnkccl) vi,

τ
d[Cl+]ecs

dt
= (−γβICl + βJkcc2 + 2βJnkccl) vecs,

(5.4)

where τ = 1000 is a conversion factor used for transforming seconds into millisec-

onds and β the ratio between the intracellular volume vi and the extracellular

volume vecs, which will be discussed later on. The scalar γ is a conversion factor

for the transformation of current µA/cm2 into concentration in mM/s defined as:

γ =
1

100

S

F · vi
(5.5)

where the Faraday constant F is the product of the Avogadro constant NA =

6.023 · 10−23 mol−1 and the elementary charge e = 1.602 · 10−19 C. The surface

area S depends on the intracellular volume according to

S = 4π

(
3vi
4π

) 2
3

. (5.6)

Chloride, the main permeant anion, has an important role in various physio-

logical processes. In [11] its dynamics is accounted for in the model, through

two cotransporters: Na+/K+/2Cl− denoted by NKCC1, and K+/Cl− denoted by
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KCC2, whose fluxes are of the form

Jkcc2 = Ukcc2 ln

(
[K+]i[Cl−]i

[K+]ecs[Cl−]ecs

)
Jnkcc1 =

Unkcc1

1 + exp (16− [K+]ecs)

(
ln

(
[K+]i[Cl−]i

[K+]ecs[Cl−]ecs

)
+ ln

(
[Na+]i[Cl−]i

[Na+]ecs[Cl−]ecs

))(5.7)

where Ukcc2 and Unkcc1 are the strengths given to the cotransporters (see Table

5.2). The NKCC1 cotransporter is modeled in (5.7) as a function of extracellular

potassium concentration, in line with experimental results suggesting that high

concentration of [K]ecs leads to activation of NKCC1 [11].

The model also includes the dynamics of the extracellular concentration of

oxygen, governed by the differential equation:

τ
d[O2]ecs

dt
= −αγ(Jpump,Na+ − Jg,p) + εo([O2]∞ − [O2]ecs), (5.8)

where α is a conversion factor between pump current expressed in mM/s and

change in the concentration of oxygen expressed in mgL−1s−1, ε0 is a diffusion

coefficient obtained from Fick’s law and [O2]∞ is the bath concentration of oxygen.

The current induced by the sodium potassium pump Jpump,Na+ , the current

induced by the glial potassium cleaning Jglia,K+ and the current corresponding to

the sodium potassium pump on glia Jg,p have the following expressions:

Jpump,Na+ =

(
ρ

1 + exp(25− [Na+]i)/3)

)
×
(

1

1 + exp(3.5− [K+]ecs)

)
,

Jg,p =
1

3

(
ρ

1 + exp(25− [Na+]gli)/3)

)
×
(

1

1 + exp(3.5− [K+]ecs)

)
,

Jglia =
Gglia

1 + exp((18− [K+]ecs)/25)
,

(5.9)

where ρ is the strength of the sodium potassium pump and Gglia is the strength

of the glial uptake. Following [12, 13], the diffusion of the potassium away from

the extracellular space is modeled as

Jdiff,K+ = ε([K+]ecs − k∞), (5.10)

where ε is the diffusion coefficient and k∞ is the concentration of potassium in

the bathing solution.
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To describe the dependency of the sodium potassium pump on the oxygen

supply, the strength of the pump ρ is modeled as a sigmoid function of the

oxygen concentration:

ρ =
ρmax

1 + exp((20− [O2]ecs)/3)
, (5.11)

while Gglia and ε, previously considered constant in the Cressman model [12], are

now written with respect to the bath oxygen concentration:

Gglia =
Gglia,max

1 + exp((2.5− [O2]∞)/0.2)
, (5.12)

εk =

(
1

1 + exp((β − 20)/2)

)(
εk,max

1 + exp((−[O2]∞ − 2.5)/0.2)

)
, (5.13)

where ρmax, Gglia,max and εk,max represent the maximal strength of the sodium

potassium pump, glial uptake and respectively the potassium diffusion and are

given in Table 5.2. Note that the expression of the diffusion of potassium depends

on β, which represents the ratio between the intracellular and extracellular vol-

ume. In this manner, the diffusion of potassium outside the cell, will be limited

by the ratio of the two volumes.

In equations (5.4), vi and vecs denote the intracellular and extracellular vol-

ume. In the Wei model [11], the dynamics of the volume of the cell was modified

such that the sum between the intracellular and the extracellular volume of the

cell is constant at 114.29% of its initial neuronal volume:

v̄i = v0
i

(
1.1029− 0.029 exp

(
πecs − πi

20

))
,

where v̄i denotes the expected intracellular volume calculated with respect the

extracellular (πecs) and intracellular osmotic pressure (πi), which are given by the

sum of all the ions in the extracellular, and intracellular space:

πi =[Na+]i + [K+]i + [Cl−]i + r1 · [A−]i,

πecs =[Na+]ecs + [K+]ecs + [Cl−]ecs + r2 · [A−]ecs.
(5.14)

The concentration of intracellular and extracellular anions was set to: [A−]i = 132
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mM and [A−]ecs = 18 mM and r1 and r2 have the following expression:

r1 =
v0
i

vi
, r2 =

1

β0

v0
i(

1 + 1
β0

)
v0
i − vi

,

The change in the volume of the cell as is modeled as

dvi
dt

=
v̄i − vi

250
, (5.15)

where 250 is a time constant expressed in milliseconds, and the extracellular

volume was calculated as:

vecs =

(
1 +

1

β0

)
v0
i − vi, (5.16)

where β0 is the initial ratio of the intracellular and extracellular volume and v0
i

is the initial volume of the cell. The ratio β is updated with respect to the

intracellular volume obtained from equation (5.15):

β =
vi
vecs

. (5.17)

Name Symbol Value Units

Capacitance cm 1 µF/cm2

Time constant ϕ 3 1/msec

Sodium conductance gNa+ 30 mS/cm2

Potasium conductance gK+ 25 mS/cm2

Sodium leak conductance gNa+,leak 0.0247 mS/cm2

Potassium leak conductance gK+,leak 0.05 mS/cm2

Chloride conductance gCl 0.1 mS/cm2

Oxygen diffusion coefficient ε0 0.17 s−1

Conversion factor α 5.3 g/mol
Maximum strength of the Na/K pump ρmax 2.32 mM/s
Maximum strength of the glial uptake Gglia,max 3.48 mM/s
Maximum potassium diffusion coefficient εk,max 0.25 s−1

Intracellular concentration of sodium of glia [Na+]gli 18 mM
NKCC1 cotransporter strength Unkcc1 0.1 mM/s
KCC2 cotransporter strength Ukcc2 0.3 mM/s
Ratio of intra/extracellular volume β0 7
Initial volume of the cell v0

i 1.436e−15

Table 5.2: Parameter values for the Wei model
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Using the parameters listed in Table 5.2 and the initial conditions in Table 5.3,

we performed multiple simulations with the Wei model using an explicit forward

Euler method. We have varied the parameters k∞ and O∞ and we have obtained

various firing patterns. For each pair of parameters, we considered a 60 seconds

burn-in period and a final time of 100 seconds.

V -60.74 [K]ecs 2e−15 [Cl+]ecs 2.3e−14

m 0.049 [K]i 2.08e−13 [Cl+]i 1.3e−14

h 0.981 [Na]ecs 3.2e−14 [v]i e−15

n 0.096 [Na]i 2.3e−14 [O2]ecs 26.96

Table 5.3: Initial conditions for the Wei model.

In Figure 5.2 we show that depending on the choice of k∞ and O∞ we can

distinguish 5 different neuronal firing patterns: wave of death (dark blue), no

firing (blue), tonic firing (green), bursts (orange) and spreading depression (yel-

low). Since we are particularly interested in describing the last three situations,

we choose one case for each particular region to illustrate in Figures 5.4, 5.3, 5.6

respectively.

Figure 5.2: Bifurcation diagram for the Wei model with the parameters defined
in Table 5.2. The colour coding gives five different neuronal firing patterns: the
dark blue indicates the wave of death described in [129], the blue shows no firing,
in green we see regions characterized by tonic firing, in orange we get a bursting
pattern, while the pairs (k∞,O∞) corresponding to the yellow region indicate the
formation of CSD waves.
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To illustrate the tonic firing we set k∞ = 12 mM and O∞ = 22 mg/L, marked

in Figure 5.2 with a circle, while the bursting patterns were obtained by setting

k∞ = 10 mM, O∞ = 20 mg/L marked by the blue cross. The mixed spreading

depression for the case k∞ = 20 mM and O∞ = 20 mg/L, is represented in Figure

5.2 by the green star in yellow region.

Figures 5.3, 5.4 and 5.6 capture these different firing patterns by showing

the membrane potential and the ionic concentrations for the three situations:

bursting pattern, tonic firing and mixed spreading depression.

Figure 5.3: Bursting pattern from the Wei model with k∞ = 10 and O∞ = 20.
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Figure 5.4: Tonic firing pattern from Wei model with k∞ = 12 and O∞ = 22.

Figure 5.5 zooms inside of the membrane potential for an interval of one

second. Notice that the amplitude of the spikes differs, unlike in the other elec-

trophysiological models considered. This is because the Nernst potential depends

on both exterior and interior ionic concentrations, which in this case are modelled

through differential equations.

Figure 5.5: Magnification of the action potential in the Wei model for k∞ = 12
and O∞ = 22.
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Figure 5.6: Mixed spreading depression from the Wei model with k∞ = 20 and
O∞ = 20.

5.2.2 Huguet model

The model developed by Huguet et al. [21] is based on Hodgkin Huxley type

models like the Wei model described in the previous section, or the Cressman

model reviewed in Chapter 1. Unlike in the other models, where the only role of

the astrocyte is an extracellular potassium buffer, Huguet et al. include a detailed

biophysical description of astrocytes based on experimental results. This is in full

agreement with the most recent literature acknowledging that astrocytes have

been severely overlooked and their role in the brain is much more significant than

initially thought [4, 3, 7].

Huguet et al. investigate whether astrocytes have a role in preventing or as-

sisting the propagation of cortical spreading depression waves. More specifically,

they study the role of the gap junctions connecting neighboring astrocytes. It

has been previously shown that in the rat hippocampus, each astrocyte is con-

nected on average to 11 of its neighbors and these connections are realized mostly
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through Cx43 , which is the main connexin that forms gap junctions between as-

trocytes [130]. Interestingly, in the experimental literature, these gap junctions

have proven to be both beneficial and detrimental during CSD, depending on the

gravity of the injury [21, 130]. On one hand, during an initial stage of ischemic

injury, the gap junctions seem to enhance neuron viability [130], while on the

other hand, if the injury is moderate or severe they can increase the spread of

the ischemic brain injury [131].

In [21], the authors consider a network consisting of fifty pairs of neuron-

astrocyte cells. The ignition of the cortical spreading depression wave is done by

injecting potassium inside of the extracellular space, for the middle cells M =

{24, 25, 26, 27}. Mathematically, this is achieved by adding a constant in the

right hand side of the differential equation of the extracellular potassium. This

mathematical model is built specially to simulate CSD and it consists of the basic

mechanisms required to induce such a depolarization wave, i.e. for the neuron

model there is a sodium current which is voltage dependent (as in [12] and [11]),

a slow inactivating sodium current, a fixed leak current, while for the astrocytic

model there is a potassium current and a small leak current.

Huguet et al. suggest that the initiation of a CSD wave can be successfully

prevented if the maximum conductance of the gap junction, the number of con-

nections with the neighboring astrocytes and the strength of the pump are all

sufficiently large. Their computer experiments, which agree with the experi-

mental work, confirm that once a cortical spreading depression wave has been

initiated, the gap junctions can contribute to its amplification [21]. One limita-

tion of the Huguet model is that it does not include cell swelling, as explained

in the previous section, neuronal swelling and extracellular space shrinking can

gravely affect the ionic homeostasis.

5.3 CSD electrophysiologic model

5.3.1 Description

For describing the massive changes that occur in the ionic concentrations and

membrane potential during cortical spreading depression, we used an electrophys-
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iologic model based on the work of Hubel et al. in [23]. In the previous section

we described the Wei model which, like many other models [12, 13, 22, 126, 127]

focuses on capturing transitions between different neuronal firing patterns: tonic

firing, bursts and SD. Below, we present a model specifically tailored for charac-

terizing cortical spreading depression, that follows electroneutrality, mass conser-

vation principle and osmotic equilibrium. In addition, it accounts for the large

morphologic changes characteristic to CSD waves and it also includes glutamate

dynamics.

The rate equations corresponding to membrane potential and gate dynamics

are built on the classic Hodgkin-Huxley model:

τcm
dV

dt
= −INa+ − IK+ − ICl− − Jpump,Na+ , (5.18)

τ
dw

dt
= ϕ(αw(V )(1− w)− βw(V )w), w ∈ {h, n}, (5.19)

where cm is the membrane capacitance, V represents the membrane potential, n

is the activation gate corresponding to potassium activation while h is the gating

variable attributed to sodium activation.

As in [12, 13], the gate for sodium inactivation m is modelled through an

adiabatic approximation of the form:

m =
αm

αm + βm
,

where αm/n/h and βm/n/h are the Hodgkin-Huxley voltage saturated functions

given in the Table 5.4.

w m h n

αw(V ) 0.1
V + 30

1− exp(−(V + 30)/10)
0.07 exp(−(V + 44)/20) 0.01

V + 34

1− exp(−(V + 34)/10)

βw(V ) 4 exp(−(V + 55)/18)
1

1 + exp(−(V + 14)/10)
0.125 exp(−(V + 44)/80)

Table 5.4: Gating variables: voltage-dependent saturation functions in the CSD
model [23].

The ionic currents of sodium (Na+), potassium (K+) and the leak current

of chloride, are a slightly modified version of those proposed by Hodgkin and
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Huxley:

INa+ = gNa+m
3h(V − VNa+) + gNa+,leak(V − VNa+) + INMDA

Na+ + IAMPA
Na+ + Ico

Na+ ,

IK+ = gK+n4(V − VK+) + gK+,leak(V − VK+) + INMDA
K+ + IAMPA

K+ + Ico
K+ ,

ICl− = gCl−(V − VCl−) + Ico
K+ ,

where gNa+ , gNa+,leak, gK+ and gK+,leak are the conductances and leak conductances

of sodium and potassium respectively, gCl− the conductance of chloride and are

listed in Table 5.5. INMDA
Na+/K+ and IAMPA

Na+/K+ are the currents induced by the NMDA

and AMPA channels and will be discussed later on. VNa+ , VK+ and VCl− are the

Nernst potentials for sodium, potassium and chloride:

Vx =
26.64

zx
ln

(
xe
xi

)
,where x = {Na+,K+,Cl−} (5.20)

where zx is the valence of each ion x.

Parameter description Symbol Value Unit

Sodium conductance gNa+ 100 mS/cm2

Potassium conductance gK+ 40 mS/cm2

Chloride conductance gCl− 0.05 mS/cm2

Sodium leak conductance g0
Na+,leak

0.0135 mS/cm2

Potassium leak conductance g0
K+,leak

0.05 mS/cm2

Capacitance C 1 µF/cm2

Faraday’s constant F 97485 C/mol
Time constant ϕ 3 1/msec
Sodium valence zNa +1 -

Potassium valence zK +1 -
Sodium valence zCl -1 -

Table 5.5: Ionic conductances, membrane capacitance, ionic valences and time
constants in the CSD model [23].

The changes in the ionic concentrations over time are tracked both inside (i)

and outside the cell (ecs). In addition, Hubel et al. [23] consider three com-

partments: soma (i), glia (g) and extracellular space (ecs). However, the ionic

concentrations in the glia are not explicitly modeled but set to mantain the bal-

ance between glia and extracellular space. Each of the three compartments is

attributed its own volume denoted by ωj (j = {ecs, i, g}), which will change over
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time.

The rate of the sodium potassium pump is defined as

Jpump,Na+ =

(
ρ

1 + exp(15− [Na+]i)/3)

)
×
(

1

1 + exp(5.5− [K+]ecs)

)
, (5.21)

where ρ is the strength of the sodium potassium pump.

The differential equations describing the dynamics of potassium and chloride

in the soma are given by:

τ
d[K+]i
dt

= −γ(IK+ − 2Jpump,Na+). (5.22)

τ
d[Cl−]i
dt

= γICl− . (5.23)

where τ = 103 is a conversion factor and γ is used for converting the current from

µA/cm2 to mM:

γ =
Am
F · 10

, (5.24)

F is the Faraday constant and Am is the membrane surface area and are listed

in Table 5.6.

Parameter description Symbol Value Unit

Membrane surface Am 18000 µm2

Intracellular volume ω0
i 7500 µm3

Extracellular volume ω0
ecs 2500 µm3

Glial volume ω0
g 7500 µm3

Table 5.6: Membrane surface and the initial volumes of the soma, extracellular
and glial compartments in the CSD model [23]

In this model, the electroneutrality of the fluxes across the membrane is in-

sured: the sum of the ionic concentrations in the soma is constant and equals the

sum of the initial ionic concentrations: [Na+]i + [K+]i + [Cl−]i = Na0
i + K0

i + Cl0i .

The intracellular concentration of sodium is thus

[Na+]i = Na0
i + K0

i − Cl0i − [K+]i + [Cl−]i (5.25)

The extracellular concentrations of sodium, potassium and chloride are expressed
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such that the mass conservation and electroneutrality principles hold:

[Na+]ecs = Na0
ecs + Na0

i − [Na+]i −∆Naglia, (5.26)

[K+]ecs = K0
ecs + K0

i − [K+]i −∆Kglia −∆Kbath, (5.27)

[Cl−]ecs = Cl0ecs + Cl0i − [Cl−]i −∆Clglia. (5.28)

The terms ∆Kglia and ∆Kbath in (5.26)-(5.28) represent the ion exchange with

the glia cells, respectively, an external potassium bath, while the fluxes of sodium

and chloride to the glia are approximated by:

∆Naglia = −0.2∆Kglia (5.29)

∆Clglia = 0.8∆Kglia (5.30)

The astrocyte’s crucial role in clearing the potassium and the glutamate re-

leased in huge quantities into the extracellular space during cortical spreading

depression has been largely studied in the recent years [5, 118, 119]. The potas-

sium regulation schemes proposed in this model [23] are given by a coupling to

an extracellular potassium bath and a glial buffering. These two schemes were

analyzed first in a separate manner in previous published work of Hubel et al.: the

mechanisms underlying extracellular potassium bath were investigated in [126],

while glial buffering was studied in detail in [127]. In the current model, the

buffering of the glial potassium is modeled as [23]:

τ 2d∆Kglia

dt
= Jglia,K+ , (5.31)

where

Jglia,K+ = −

[
λrel − λ1

(
1 + exp

(
5.5− [K+]ecs

2.5

))−1
]

∆Kmax
glia −∆Kglia

∆Kmax
glia

(5.32)

with Kmax
glia being the upper bound of the potassium uptake, λrel the constant

release rate, listed in Table 5.7.

The diffusive coupling to the bath is written as:

τ 2d∆Kbath

dt
= Jdiff, (5.33)
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where the diffusion current is defined as:

Jdiff = λ([K]ecs −Kbath),

with λ the diffusion coefficient listed in Table 5.7.

Parameter description Symbol Value Unit

Strength of the sodium potassium pump ρ 6.46 µA/cm2

Diffusion coefficient λ 1e− 4 1/msec
Glial potassium uptake parameter λ1 1.44e− 2 mM/msec
Glial potassium release rate λrel 5.1e− 3 mM/msec
Potassium bath concentration Kbath 4 mM
Maximum uptake glial capacity ∆Kmax

glia 350 fmol

Table 5.7: Parameters in the CSD model: Strength of the sodium potassium
pump, diffusion coefficient, potassium bath concentration, the uptake and release
glial parameters.

It is well known in the documented literature [121, 105, 5, 81] that cortical

spreading depression waves induce swelling in neurons and glia and a very large

shrinkage of the extracellular space. This is believed to be an osmosis driven

phenomenon, in which the volumes change in order to maintain the equilibrium

between soma, glia and extracellular space. We denote the volumes of these three

compartments by ωi, ωg, ωecs respectively.

The total matter in the intracellular and extracellular space Ni/ecs is the sum

of all the ionic concentrations, the impermeable anions Ai/ecs and neutral matter

Xi/ecs:

Ni = [Na+]i + [K+]i + [Cl−]i + Ai +Xi (5.34)

Necs = [Na+]ecs + [K+]ecs + [Cl−]ecs + Aecs +Xecs (5.35)
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Ion
Initial concentration (mM)

Intracellular (i) Extracellular (ecs)

Na0 15 144
K0 140 4
Cl0 9 130
A 146 18
X 5 19

total 315 315

Table 5.8: Initial concentration of ions, impermeable anions and neutral matter in
the intracellular and extracellular space. The initial glial content N0

g was chosen
such that the glia is in equilibrium with the extracellular space, and therefore
N0
g = 315.

The total glial content is modeled as:

Nglia = N0
g + ∆Naglia + ∆Kglia + ∆Clglia, (5.36)

where N0
g is the initial glial content, chosen such that the glial cell is in balance

with the extracellular space.

The osmotic equilibrium equations are

Ni

ωi
=
Necs

ωecs

=
Ng

ωg
=
Ntot

ωtot

, (5.37)

and therefore, the volume changes in the three compartments are given by:

ωj = Nj
ωtot

Ntot

with j = {i, ecs, g}, (5.38)

where Ntot = Ni +Necs +Ng is the total number of ions and ωtot = ωi +ωecs +ωg

is the total volume.

In the electrophysiologic model, Hubel et al. included also glutamate dynam-

ics, the brain’s main excitatory neutrotransmitter, known to be released in large

amounts during cortical spreading depression [132]. When glutamate concentra-

tion is high, glutamate binds to the AMPA and NMDA receptors, which activate

and trigger the release of additional glutamate and potassium, that later on dif-

fuse in the nearby cells, contributing to the propagation of the CSD waves. In

this model, it is assumed that all synapses are involved in the CSD event due to

the high synchronous neuronal activity. Additionally, the neuronal connections
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are split equally between presynaptic and postsynaptic, as it is assumed that each

neuron experiences both presynaptic and postsynaptic activity.

The glutamate release mechanism depends on the membrane potential and it

gradually increases for depolarizations which exceed a critical potential Vcr:

Irel(V ) =

 NsynRmax

(
V − Vcr

Vhi − Vcr

)2
[Glu]i

[Glu]max

for V ≥ Vcr,

0 for V < Vcr,

(5.39)

where [Glu]i is the intracellular amount of glutamate and is expressed as the

difference between the total amount of glutamate [Glu]max and the currently

released glutamate [Glu]rel:

[Glu]i = [Glu]max − [Glu]rel, (5.40)

while Rmax is the maximal release late of glutamate and Vhi is the highest mem-

brane potential value.

Parameter description Symbol Value Unit

Maximal release rate Rmax 1.4e-5 fmol/msec
Critical membrane potential Vcr -50 mV
Highest membrane potential Vhi 50 mV
Number of activated synapses during SD Nsyn 5000 -
Available glutamate for signaling [Glu]max 10 fmol

Table 5.9: Parameters associated to glutamate release in the CSD model

We denote the averaged values of the concentrations of glutamate in extra-

cellular space and cleft by [Glu]ecs, respectively [Glu]c. The release of glutamate

molecules gives an extracellular concentration of:

[Gl]ecs =
[Glu]ecs

ωecs

τ, (5.41)

and a cleft concentration of:

[Gl]c =
[Glu]c
ωenNsyn

τ. (5.42)

At high concentrations, glutamate binds to the AMPA and NMDA recep-
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tors causing the channels to open and therefore allowing the ions of sodium and

potassium to flow through. The opening probability of the AMPA and NMDA

gates is denoted by rAMPA, respectively rNMDA, and their dynamics is modeled

in [23] by Hodgkin-Huxley formalism with added dependence on the available

concentration of glutamate in the cleft [Gl]c:

τ
drAMPA

dt
= [Gl]cαAMPA(1− rAMPA)− βAMPArAMPA, (5.43)

τ
drNMDA

dt
= [Gl]cαNMDA(1− rNMDA)− βNMDArNMDA. (5.44)

The AMPA currents for sodium and potassium obey:

IAMPA
Na+ = gAMPArAMPA(V − VNa+), (5.45)

IAMPA
K+ = gAMPArAMPA(V − VK+), (5.46)

where gAMPA is the conductance of the AMPA channels given in Table 5.10, and

VNa+ and VK+ are the Nernst potentials for sodium, potassium and chloride given

in equation (5.20).

For maintaining their normal physiological function, NMDA channels require

a certain magnesium concentration [132]. It was observed that when the mem-

brane potential is at rest, there is a flow of external magnesium ions into the pore,

where they bind tightly, blocking further ion permeation [133], while in state of

strong depolarization, magnesium ions are repelled from the pore, permitting the

flow of ions [133]. This physiological mechanism of NMDA channels is captured

in the mathematical expression proposed by Hubel et al. for the NMDA currents:

INMDA
Na+ = gNMDArNMDA

V − VNa+

1 + 0.33[Mg2+] exp(−0.07V − 0.7)
, (5.47)

INMDA
K+ = gNMDArNMDA

V − VK+

1 + 0.33[Mg2+] exp(−0.07V − 0.7)
, (5.48)

where gNMDA is the conductance of the NMDA channels, while [Mg2+] is the

extracellular concentration of magnesium (see Table 5.10).

Glutamate present in the synaptic cleft is cleared into the extracellular space
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through diffusion at a rate

IGlu, diff = −AσNsyn
DG

∆x

(
[Glu]ecs

ωecs

− [Glu]c
ωenNSD

syn

)
, (5.49)

where DG is the diffusion coefficient of glutamate, Aσ the cross section area and

∆x the cutoff distance from the synapse where the concentration of glutamate in

the extracellular space is at steady state [23].

Parameter description Symbol Value Unit
Gating constant for AMPA receptor αAMPA 1.1 mM· msec
Gating constant for AMPA receptor βAMPA 0.19 1/msec
Gating constant for NMDA receptor αNMDA 0.072 mM· msec
Gating constant for NMDA receptor βNMDA 0.0066 1/msec
Maximum conductance of AMPA receptor ḡAMPA 0.486 mS/cm2

Maximum conductance of NMDA receptor ḡNMDA 0.139 mS/cm2

Maximal [Glu] uptake rate from the cleft to the neuron νmax
c→i 0.03 mM/msec

Extracellular magnesium concentration [Mg2+] 1.2 mM
Cross section area Aσ 6.3e-3 µm2

Glutamate diffusion coefficient DG 0.3 µm2/msec
Distance from the cleft to the stationary [Glu]ecs ∆x 20 µm

Table 5.10: Parameters associated glutamate diffusion in the CSD model.

The chemical reaction for glutamate uptake is:

Glu + B
k+1

k−1
GluB

kr
Gluup + B

where Glu indicates the glutamate concentration in the extracellular space or

in the cleft, B the concentration of free binding sites through which glutamate

can be transported into the neurons or glia, GluB the concentration of bound

glutamate, that can be released back or be taken into the cell and Gluup that of

buffered glutamate. Under the assumption that the reaction chain is stationary

with B constant, the velocity of glutamate uptake into the cell can be expressed

as [23]:

ν = Bkr
Glu

Glu +Km

, (5.50)

where Km =
k−1 + kr
k+1

.

The maximal uptake velocities from extracellular space to neuron and to glia
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are expressed as:

νmax
ecs→i = 0.12νmax

c→i
ω0

ecs

ωecs

, (5.51)

νmax
ecs→g = 0.24νmax

c→g
ω0

ecs

ωecs

, (5.52)

where νmax
c→i is the uptake velocity from the cleft to the neuron, assumed constant

(see Table 5.10), while the maximal uptake velocity νmax
c→g from cleft to glia and is

νmax
c→g = 4νmax

c→i . (5.53)

The uptake velocities are expressed in Michaelis Menten form

vic = νmax
c→i

[Gl]c
[Gl]c +Km

· ωen
τ
Nsyn, (5.54)

viecs = νmax
ecs→i

[Gl]ecs

[Gl]ecs +Km

· ωecs

τ
, (5.55)

vgc = νmax
c→g

[Gl]c
[Gl]c +Km

· ωen
τ
Nsyn, (5.56)

vgecs = νmax
ecs→g

[Gl]ecs

[Gl]ecs +Km

· ωecs

τ
, (5.57)

where ωen is the volume in the glial envelope and Km is the affinity constant for

the uptake system given in Table 5.11.

One molecule of glutamate is cotransported with three ions of Na+ and one

ion of Cl−, while one ion of K+ is released. This yields, the following cotransport

currents [23]:

Ico
Na+ =

3τ

γ

(
vic + viecs

)
, (5.58)

Ico
K+ = −τ

γ

(
vic + viecs

)
, (5.59)

Ico
Cl− = −τ

γ

(
vic + viecs

)
. (5.60)

where γ is the conversion factor defined in (5.24).

The variation over time of glutamate in cleft is modeled as a function of the

glutamate release flux into the synaptic cleft Irel, the diffusive glutamate flux

from cleft to extracellular space IGlu,diff and the corresponding uptake velocities
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from cleft to soma νic and glia νgc . Similarly, the variation over time of glutamate

in extracellular space depends on the diffusive glutamate flux and the uptake

velocities from extracellular space to soma νiecs and to glia νgecs:

d[Glu]c
dt

= Irel − IGlu,diff − νic − νgc , (5.61)

d[Glu]ecs

dt
= IGlu,diff − νiecs − νgecs, (5.62)

The amount of glutamate transported from cleft to the intracellular, extracellular

and glial compartments is expressed with respect to the corresponding uptake

velocities νic and νgc and glutamate recycling rate krec:

d[Glu]ic
dt

= νic − krec
[Glu]ic

[Glu]max

, (5.63)

d[Glu]gc
dt

= νgc − krec
[Glu]gc

[Glu]max

, (5.64)

d[Glu]ecs
c

dt
= IGlu, diff, (5.65)

where IGlu, diff is the glutamate diffusion current given in equation (5.49).

The change over time of glutamate in extracellular space depends on the rate

at which it is transported from extracellular space to soma and glia,

d[Glu]iecs

dt
= νie − krec

[Glu]iecs

[Glu]max

, (5.66)

d[Glu]gecs

dt
= νge − krec

[Glu]gecs

[Glu]max

. (5.67)

The rate at which glutamate is released is given by:

d[Glu]rel

dt
= Irel −

krec

[Glu]max

(
[Glu]ic + [Glu]gc + [Glu]iecs + [Glu]gecs

)
. (5.68)

To summarize, the electrophysiologic model consists of 17 differential equa-

tions: (5.18), (5.19), (5.22), (5.23), (5.31), (5.33), (5.43), (5.44), (5.61)-(5.68).

For simplicity, we define a vector Gv containing all glutamate concentrations

tracked in the CSD model, whose dynamics is given in equations (5.61)- (5.68):

Gv =
[
[Glu]c [Glu]ecs [Glu]ic [Glu]gc [Glu]ecs

c [Glu]iecs [Glu]gecs [Glu]rel

]
. (5.69)
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Parameter description Symbol Value Unit

Uptake velocity from cleft to soma νmax
c→i 0.03 mM· msec

Affinity constant for glutamate uptake km 0.03 mM
Glutamate recycling rate krec 0.001 fmol/msec
Maximum glutamate concentration [Glu]max 10 fmol

Table 5.11: Parameters associated to glutamate uptake in the CSD model.

5.3.2 Calibration

In this section we analyze the effect of glial potassium uptake parameter λ1, glial

potassium release λrel and strength of the sodium potassium pump ρ on the du-

ration on the cortical spreading depression waves. Using the Matlab software, we

performed various computer simulations during which we recorded the duration

of the CSD events for three separate cases:

a. We varied λrel while keeping λ1 and ρ constant and equal to the values in

Table 5.7. The left panel of Figure 5.7 shows that the duration of the CSD

events increases with decreasing λrel.

b. We varied λ1 while maintaining the values of ρ and λrel constant. The right

panel of Figure 5.7 shows an increasing CSD duration with increasing λ1.

c. We varied ρ while setting λ1 and λrel equal to the constant values given in

Table 5.7. Figure 5.8 shows that there is very small increase in the duration

of the cortical spreading depression events with increasing strength of the

pump.

Figure 5.7: Duration (in seconds) of the cortical spreading depression waves when
considering: a variable λrel (left) and variable λ1 (right).
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Figure 5.8: Duration (in seconds) of the cortical spreading depression waves when
allowing the strength of the sodium potassium pump to variate in the interval
ρ ∈ [4, 10].

In light of the fact that the parameter controlling the strength of the sodium

potassium pump had very little effect on the duration of the cortical spreading

depression event, in the next simulation we set ρ = 6.46µA/cm2 (as given in Table

5.7), and allowed both λ1 and λrel to vary in the intervals: λ1 ∈ [0.014, 0.02] and

λrel ∈ [4.5, 5.1]. Figure 5.9 captures through the colour maps the CSD duration,

expressed in seconds, for each pair (λ1, λrel).

Figure 5.9: Duration of the cortical spreading depression event obtained for each
pair (λ1, λrel).

To be in agreement with the literature [81, 134] which place cortical spreading

duration between one and three minutes, we chose the values: λrel = 5 · 10−3
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mM/msec and λ1 = 1.6 · 10−2 mM/msec for which we obtain a duration of

approximatively 75 seconds.

5.3.3 Results

In this section we present the results obtained when performing a Matlab simu-

lation of the CSD model described with parameters λrel = 5 · 10−3 mM/msec and

λ1 = 1.6 · 10−2 mM/msec. We set the final simulation time to T = 30 minutes

and we used the Matlab built-in solver ode15s as our time integrator. The initial

conditions are listed in Table 5.12, where the notation G0
v refers to the initial

conditions of the vector Gv defined it (5.69), and O6×1 is a vector containing 6

zeroes.

V (mV) n h [K+]i (fmol) [Cl−]i (fmol)

71.1 0.07143807 0.9774849 1050 67.5

∆Kbath ∆Kglia rNMDA rAMPA G0
v

0 0 0 0 O6×1

Table 5.12: Electrophysiology CSD model: Initial conditions of membrane
potential, ionic concentrations, gating variables and glutamate.

The left upper panel of Figure 5.10 shows the membrane potential, for which

we observe the formation of 6.5 CSD events, each characterized by a duration of

75 seconds.

The changes in the ionic concentrations of extracellular and intracellular

sodium, potassium and chloride are shown in the two right panels. In agree-

ment with recent literature [81, 135, 89, 93], our results show very large increases

in the concentration of extracellular potassium and intracellular sodium, from 4

mM to 90 mM and from 15 mM to 60 mM, while intracellular potassium de-

creases from 144 mM to 90 mM and extracellular sodium from 140 mM to 30

mM.
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Figure 5.10: Electrophysiologic activity CSD model for kbath = 12 mM, λrel =
5 · 10−3 mM/msec, λ1 = 1.6 · 10−2 mM/msec, and ρ = 6.46µA/cm2. First row:
Membrane potential (left) and ionic concentrations for extracellular potassium
(blue), intracellular sodium (red) and intracellular chloride (green). Bottom row:
The left panel shows the changes in the volume fractions corresponding to the
three compartments: neuron (black), glia (red) and extracellular space (blue),
while on the right hand side we observe the ionic concentrations of intracellu-
lar potassium (black), extracellular sodium (magenta) and extracellular chloride
(cyan).

The changes in volume fractions are shown in the left bottom panel in Figure

5.10, where ηn, ηa and ηecs are the ratios of the volume of each compartment and

the total volume ωtot = ωi + ωg + ωecs:

ηn =
ωi
ωtot

, ηa =
ωg
ωtot

, ηecs =
ωecs

ωtot

, (5.70)

The volume of extracellular space presents a very pronounced shrinkage of

77% compared to its baseline value, while the volume of the neuron and the glia

show increases of 16%, respectively 14% above baseline values. These results are

in agreement with recent findings showing a shrinkage of the extracellular space

between 50% to 78% [105, 104, 88, 107].
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5.4 Coupled electro-metabolic CSD model

To study CSD, we developed a double-feedback mechanism [136] to couple the

electrophysiology and metabolism. The novelty of this model with respect to the

one described in Chapter 3 is given by the many additional details included in

the electrophysiologic model, specifically tailored to simulate CSD wave.

The first step in the coupling is to insert the metabolic feed-back into the

electrophysiologic model, as discussed in Chapter 3 and 4

Jpump,Na+ =
pn

pn + µ

(
ρ

1 + exp(15− [Na+]i)/3)

)
×
(

1

1 + exp(5.5− [K+]ecs)

)
,

Jglia,K+ = − pa
pa + µ

[
λrel − λ1

(
1 + exp

(
5.5− [K+]ecs

2.5

))−1 ∆Kmax
glia −∆Kglia

∆Kmax
glia

]
,

where µ is an affinity constant, pn and pa are the phosphorylation states in neuron

and astrocyte.

We emphasize the dependence of the model describing the electrophysiological

activity during CSD on the phosphorylation states pn and pa and on the variable

volume fractions, by writing it formally as:

du

dt
= f(u, pn, pa, ηn, ηa, ηecs), (5.71)

where ηn, ηa and ηecs are the volume fractions of neuron, astrocyte and extracel-

lular space and and u is the vector:

u = [V n h [K+]i [Cl−]i ∆Kbath ∆Kglia rAMPA rNMDA Gv]
t,

The metabolic model described in Chapter 2 is summarized as

d[M ]

dt
= F ([M ], [M ]art, ψ

n
ATPase, ψ

a
ATPase, q, ηn, ηa, ηecs) , (5.72)

where [M ] denotes the concentration of metabolite M , [M ]art the arterial con-

centrations of glucose, lactate and oxygen while q gives the cerebral blood flow.

The large energetic demand from electrophysiology during CSD enters in the
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metabolic model through the ATPase fluxes ψATPase:

ψnATPase = Hn + sIcpump, (5.73)

ψaATPase = Ha + sIcglia, (5.74)

where Icpump and Icglia are the values of the sodium potassium pump and potassium

glial uptake taken from the electrophysiologic model and converted to mM/sec:

J cpump,Na+ =
γ

τωi
Jpump,Na+ , (5.75)

J cglia,K+ =
1

τ
Jglia,Na+ . (5.76)

To summarize, coupling the electrophysiologic model given by equation (5.71)

with the metabolic model described by equation (5.72) results in a system of 43

differential equations. The very different time scales involved in the two models,

are addressed using the algorithm developed in Chapter 3.

5.5 Results

In this section we present the results obtained for simulating our coupled electro-

metabolic CSD model using the Matlab software for a time interval of 30 minutes

while the potassium bath solution kbath is kept constant at 12 mM, the typical

threshold inducing CSD waves [88, 94, 81].

In light of recent literature pointing at the important role of astrocytes on

regulating the vascular response and clearing the extracellular potassium and

glutamate during cortical spreading depression [5, 81], we performed two differ-

ent numerical experiments: one in which the volume of neuron equals that of

astrocyte (protocol A), and another where the volume of astrocyte is twice the

one of neuron (protocol B). The values corresponding to the volumes of the two

cellular compartments are listed, for both protocols, in Table 5.13.

Another aspect that must be taken into account when writing a model for cor-

tical spreading depression is related to the hemodynamic response. In normoxic

brain, at the onset of a cortical spreading depression wave, there is a very large

increase in cerebral blood flow, reported to be in the range from 100% [97, 95]
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to 130% [83, 80, 82] up to 200% [137] above resting state value. This hyperemic

response to the high energetic requirement during cortical spreading depression

[81], begins with a delay of 15-20 seconds with respect to the start of the CSD

wave, and it can only be sustained for short periods typically in the range of 1

to 2 minutes [82, 81]. The experimental literature reports that, at the end of the

hyperemia period, the cerebral blood flow either returns to its baseline value or

it displays a mild vasoconstriction of 20-30% of its value [88, 82, 138].

In line with these observations, our computed experiment considers an in-

crease in blood flow of 130% above baseline, lasting 90 seconds, after which the

blood flow decreases by 30%. The behavior of the cerebral blood flow during

CSD is modeled as a piecewise continuous function given by equation (5.77) and

illustrated in Figure 5.11. We denote by ti the time at which the first CSD

wave starts and as indicated in the literature, we consider that the hemodynamic

response has a delay of td = 20 seconds.

q(t) =



q0, for t < t1

q0

(
1 + 1.3 t−t1

tr1

)
, for t1 < t < t1 + tr1

2.3q0, for t1 + tr1 < t < t1 + tr1 + th

q0

(
a · e−α(t−t1−tr1−th) + b

)
, for t1 + tr1 + th < t < t1 + tr1 + th + tr2

0.7q0, for t > t1 + tr1 + th + tr2

(5.77)

where t1 = ti + td, q0 is the baseline value of the cerebral blood volume, tr1 and

tr2 are the ramping times during which the blood flow increases, respectively,

decreases, th is the duration of the hyperemic response and the values a = 1.628

and b = 0.6701 were chosen such that the function f(t) is continuous. All the

parameters regarding blood flow dynamics are listed in Table 5.13.
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Figure 5.11: Cerebral Blood Flow Response to Cortical Spreading De-
pression. The cerebral blood flow is modeled as a piecewise continuous function
starting from the initial value q0, which increases by 130% for a period of 90
seconds and is followed by a mild 30% decrease below its resting state value.

Electro-metabolic CSD model Hemodynamic response
Parameter Value Units Parameter Value Units

λ 1e-4 1/msec ti 126 sec
λrel 5e-3 mM/msec td 20 sec
Gglia 1.6e-2 mM/msec tr1 30 sec
kbath 12 mM tr2 40 sec
µpump 0.1 - th 90 sec
µglia 0.1 - α 0.1 -

s 8250 - q0 0.4 mL/min

Protocol A
ω0
i 7500 µm3

ω0
g 7500 µm3

ω0
ecs 2500 µm3

Protocol B
ω0
i 5000 µm3

ω0
g 10000 µm3

ω0
ecs 2500 µm3

Table 5.13: Parameters in the coupled electro-metabolic CSD model.

Figure 5.12 shows the time course of the membrane potential, the ionic con-

centrations of sodium, potassium and chloride in the intracellular and extra-

cellular compartments and the alterations in the volume fractions for the two

protocols considered. Under protocol A, the simulation of our double-feedback

electro-metabolic CSD model for a time span of 30 minutes produces 6 cortical

spreading depression waves: the first one, accompanied by a pronounced hyper-
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emic response, has a duration of approximately 85 seconds, while the following

waves are significantly larger, lasting about 110 seconds. Under protocol B,

during the 30 minutes simulation time, we observe only 3 cortical spreading de-

pression waves, in agreement with the recent literature reporting the propagation

of the CSD waves is significantly slower in regions of the brain with a much larger

number of astrocytes [119].

Figure 5.12: Electrophysiological activity during cortical spreading de-
pression. The membrane potential (i), the ionic concentrations of intracellular
and extracellular sodium, potassium and chloride (ii, iii) and the variation over
time in the volume fractions (iv) during SD for the two protocols: the left column
A. shows the case for which the volume of the neuron equals the one of the as-
trocyte (Protocol A), while the middle column B. captures the case in which the
astrocytic volume is two times larger than the neuronal one (Protocol B). Column
C. shows the results obtained for the uncoupled electrophysiologic model when
considering the volumes as defined in Protocol B.
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Under both protocols, the ionic concentrations show a large increase in the

concentration of extracellular potassium and intracellular sodium and a more

modest increase in intracellular chloride. The pivotal role that astrocytes play in

clearing the extracellular potassium, is clear when comparing the ionic dynamics

during Protocol A and Protocol B; while in Protocol A the extracellular potas-

sium increases up to 93 mM, under Protocol B, the increase is limited to 80 mM,

in agreement with recent literature [81, 89, 93].

In Figure 5.12 column C., we present the results obtained when simulating

Protocol B, without considering the coupling with the metabolism. We observe

how the model produces a single CSD wave and it fails to reproduce consecutive

CSDs as in columns A. and B. This simulation confirms that cortical spreading

depression waves are the outcome of the complex interaction between electro-

physiology, metabolism and hemodynamics.

Figure 5.13 shows the time course of the main metabolites during the passing

of the multiple CSD waves. Our results capture the typical metabolic response

reported in recent literature [81, 83, 97, 80, 95], showing a significant decay in

glucose concentration, accompanied by a massive increase in lactate concentra-

tion, a dramatic decrease in oxygen level, indication of the very large energetic

need confirmed by the reduced phosphorylation and the redox.

The predictions of our model, which agree with various experimental results

[81, 80, 97] show a piecewise steady decay in glucose and oxygen concentration,

with each passing wave. In panel A1.i. of Figure 5.13, we note a decay of 58%

below baseline for the concentration of glucose in neuron and extracellular space

during the first cortical spreading depression, with further decays by another 10%

in the second CSD wave. Each subsequent CSD event causes a slight decrease

in glucose concentration, which is 30% of its initial value in the sixth CSD wave.

The glucose consumption is even greater in the astrocytic compartment, with a

decay of 65% below resting state during the first CSD, and a continuous decay

up to 89% during the sixth wave.
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Figure 5.13: Metabolic response to cortical spreading depression under
protocol A (rows A1. and A2.) and protocol B (rows B1. and B2.).
Concentration of glucose, lactate and oxygen in neuron (red), astrocyte (blue)
and extracellular space (black). Concentration of pyruvate in neuron (red) and
astrocyte (blue), phosphorylation state (A2.ii. and B2.ii.) in neuron (red) and as-
trocyte (blue) and redox states (A2.iii. and B2.iii.) in neuron (red) and astrocyte
(blue).

Our model predicts an initial increase of 65% above baseline for lactate con-

centration during the first CSD followed by a further rise to up to 70% above

resting state value for the following passing waves, in agreement with experi-

mental results placing lactate increase between 63% [97] and 80% [96, 95] above

baseline.

The concentration of oxygen in the extracellular space exhibits a 50% decrease

during the first CSD wave, after which it increases by 44% above its initial value.
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The second CSD episode produces a further drop in extracellular oxygen con-

centration: 54% decrease with respect to its baseline, which continues to decay

slightly with each passing wave. In the astrocyte, the consumption of oxygen is

more significant: 69% below baseline in the case of the first CSD wave and drops

to 80% below baseline in the second wave. As expected, the predicted oxygen

consumption in neuron is even greater: 90% decay during the first wave, reach-

ing a 93% drop for the last observed CSD wave, as described by various authors

[81, 94, 88].

As in the case of glucose and oxygen, pyruvate concentration also undergoes

a stepwise depletion with each passing CSD wave. At the end of the first wave,

pyruvate concentration exhibits an overshoot, tops up at 65% above baseline in

neuron and 57% above baseline in astrocyte, after which it drops to 87% of its

initial value in neuron and 50% of its initial in astrocyte.

The massive energetic demand during CSD is illustrated in Figure 5.13, panel

A2.ii. where we see a 99% depletion in the phosphorylation state in the neuron

and a 75% depletion in astrocyte during the passing of the first wave, which

becomes more pronounced during the following waves, reaching: 99.5% decay in

neuron and 97.5% in astrocyte, both compared to their resting state value. The

increased energetic cost can also be observed in the redox states, shown in panel

A2.iii., where it increases 10 fold in neuron and 4 fold in astrocyte. Notice that

due to the initial hyperemia, the increase in the redox state (see panel A2.iii.)

during the first CSD wave is slightly lower than during the following waves.

Figure 5.14 shows the time course of glucose, lactate and oxygen in the blood

compartment and the transport fluxes of these three species from blood to ex-

tracellular space, and from extracellular space to the two cellular compartments.

In the case of the first CSD wave, due to the hyperemic response, we observe an

increase above baseline for glucose and oxygen concentrations in blood compart-

ment of 4.5% and 19% respectively. Once the hyperemia ends, for the following

CSD waves, the concentrations in blood of glucose and oxygen exhibit a decay of

5%, 16% respectively. For lactate concentration in blood, we observe an initial

increase of 23% above baseline during the first CSD and is rising to to 53% above

resting state during the following CSD waves, when the vasoconstrictions limits

the availability of oxygen during the following CSDs. The transport fluxes indi-
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cated in the second and bottom row show an increase to 25% above baseline for

oxygen from blood to extracellular space during the first CSD wave and a 14%

increase during the following CSDs, while for glucose transport flux from blood

to extracellular space we note a 43% increase above baseline. The lactate flux

from blood to extracellular space shows an 8 fold decay during the first CSD,

which then reduces to a 4 fold drop during the following CSD episodes. In case

of oxygen, the transport fluxes from the extracellular space to neuron show an

initial 40% increase above resting state for the fist CSD, after which it reaches

29% above baseline during the following CSD waves; for the transport rate of

glucose we see a 4 fold increase, while for the flux of lactate between ECS and

neuron there is a 3 fold decay during CSD, where we see a shift in direction,

suggesting that during CSD waves, unlike during resting state, lactate is trans-

ported from neuron to extracellular space. On the other hand, the transport rate

of lactate between extracellular space and astrocyte starts at a negative value, it

briefly changes direction at the onset of each CSD event, showing a very short 6

fold increase over baseline, after which it drops under 0 for the remainder of each

CSD wave.
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Figure 5.14: Metabolic response in the blood compartment during the
passing of multiple CSD waves. First two rows (A1. and A2.) correspond
to protocol A, for which ηn = ηa, while the following two rows (B1. and B2.)
show the results obtained under protocol B, where the glial volume is doubled.
Rows A1. and A2. show the concentrations of glucose, lactate and oxygen in
the blood compartments, while rows B1. and B2. display the transport fluxes
of these three metabolites between blood and extracellular space, extracellular
space and neuron, and extracellular space and astrocyte, respectively.

The reaction fluxes predicted by our model are shown in Figure 5.15; we see

large increase above resting state values for the glycolysis flux, which rises 7.5 fold

during the first CSD and 6.7 fold during the following ones, as well as in the TCA

flux, which in neuron shows a 2.4 fold increase and in astrocyte a more modest

25% increase. Similarly, the oxidative phosphorylation flux in the right upper

panel presents an increase of 53% during the first wave, is followed by an increase

of 39% above baseline value during the next CSD events, while in astrocyte, it
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decays to 83% of its resting state. Lactate dehydrogenase flux in neuron changes

its direction during the CSD events, showing that lactate is converted to pyruvate

at a very large rate, while in astrocyte, the change of direction occurs for a very

short period and just at the end each CSD event. Creatine phosphorylation fluxes

in neuron and astrocyte increase during CSD and are followed by a large decay

at the end of each event. The oxygen glucose index (OGI) starts from a resting

state values of 5.15, increases briefly at the onset of each CSD, and is followed

by a strong decrease to 4.

The results we obtained under Protocol B are in agreement with recent lit-

erature [119], which suggests that the duration of cortical spreading depression

waves is enlarged in regions of the brain characterized by a larger number of as-

trocytes. Our computed experiment under Protocol B shows 3 CSD waves: the

first one has a duration of 370 seconds, while the following ones last 330 seconds.

The cleaning role of the astrocytes can be visualized in Figure 5.12 where we see a

lower increase in the extracellular potassium concentration compared to Protocol

A. From the metabolic point of view, due to the higher availability of ATP, the

glycolysis and TCA fluxes are slightly lower in Protocol B, as are the LDH1 flux

and creatine phosphorylation fluxes in neuron.
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Figure 5.15: Reaction flux for the electro-metabolic CSD model. The
panels in rows A1., A2. and A3. show the reaction fluxes corresponding to
protocol A, while those in rows B1., B2. and B3. display the fluxes under protocol
B. Rows A1. and B1. Left to right: glycolysis flux (i), tricarboxylic acid cycle
flux (ii) and oxidative phosphorylation (iii). Rows A2. and B2. Left to right:
lactate dehydrogenase balance flux for neuron (i), creatine phosphorylation flux
for neuron (ii), cerebral metabolic rate of glucose oxidation (iii), Rows A3. and
B3. Left to right: lactate dehydrogenase balance flux for astrocyte (i), creatine
phosphorylation flux for astrocyte (ii) and oxygen glucose index (iii)
.
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Conclusions

This thesis focuses on integrated computational predictive models of brain activ-

ity based on the double-feedback between electric and metabolic activity during

rest and activation, based on ATP demand and consumption. The first two chap-

ters of this thesis are dedicated to the mathematical models employed for describ-

ing the electrophysiological activity and metabolism, while the last three chapters

are concerned with developing the mathematical framework and overcoming the

multi-scale problems arising from the coupling of the two under different healthy

and pathological situations: awake resting state, neuronal activation, ischemia

and cortical spreading depression.

Electro-metabolic model

The coupling of the electrophysiologic and metabolic models is addressed in Chap-

ter 3, where we discuss the differences in characteristic time scales: milliseconds

for the electrophysiology and minutes for the metabolism; we also propose a

mathematical algorithm in order to compute the solutions of the coupled model

under different protocols. Our simulations show how the ion homeostasis and

metabolism adjust to the transitions between resting state and neuronal activa-

tion, ischemia and a combined case of an ischemic event followed by activation.

In the first protocol, awake resting state (8 Hz) is followed by two consecutive

neuronal activations corresponding to 90 Hz frequency. The model predictions, in

agreement with recent literature [35] show that the membrane potential decreases

in amplitude for the periods corresponding to neuronal activations. In addition,

our model is able to capture also the slow after-hyperpolarization effect, char-

acterized by the short neuronal silencing at the end of each neuronal activation,

before recovering to the awake resting state and increases in the concentrations

of extracellular potassium and intracellular sodium.

The metabolic response shows up in the model predictions as a significant

consumption of glucose and oxygen, accompanied by a large production of lac-

187
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tate. Moreover, due to the large energetic cost demanded by sustaining neuronal

firing at a high frequency, there is a large decrease in the phosphorylation states

and an increase in redox states. We remark that the phosphorylation state in

astrocyte, whose decrease is not as significant as the one in the neuron, requires

a much larger period to recover once the activation had stopped. This supports

the hypothesis that it is the astrocyte task to clear the potassium from the ex-

tracellular space, present in large concentrations following activation, even after

the sodium potassium pump has sufficient ATP to retake its normal function.

The second protocol simulates an ischemic event of 1 minute and 30 seconds,

during which the blood flow is decreased by 90%. Due to the diminished supply

of oxygen, we observe a more pronounced increase in lactate and larger decreases

in glucose and phosphorylation states, than in the case of the neuronal activation.

The inability of the metabolic system to produce enough ATP leads to the cessa-

tion of neuronal firing and to rises in the concentrations of intracellular sodium

and extracellular potassium.

Hemo-Electro-Metabolic model

The fourth chapter focuses on the blood flow response during neuronal activation

and the coupling of hemodynamic and Electro-Metabolic model. Here, the cere-

bral blood flow and cerebral blood volume are tracked in three compartments:

arteries, capillaries and veins.

In our coupled Hemo-Electro-Metabolic model, the extracellular potassium

concentration defines the vasodilatory stimulus which is inputed in the blood flow

model. The predictions of our computed experiment agree with the experimental

literature [78]; at the start of the neuronal activation we observe an initial increase

of the cerebral blood flow up to 77% above its resting state, after which the

blood flow stabilizes at around 26% above resting state. The initial spike in the

blood flow coincides with an initial spike in the concentration of extracellular

potassium: at the end of each neuronal activation, our model predicts a slow

after-hyperpolarization effect of 16 seconds, which coincides with the period that

the extracellular potassium concentration drops under its baseline value.

As in Chapter 3, the metabolic response to the neuronal activation is given

by a large consumption of glucose and oxygen and massive production of lactate,

with a significant decrease in the phosphorylation state and increase in redox

state. The predictions of our model result in an oxygen glucose index of approx-

imately 5.15 during awake resting state and around 4.2 during stimulation, in

agreement with values suggested in the literature [51, 53].
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CSD Electro-metabolic model

In the fifth chapter we propose a new Electro-Metabolic double feedback model

for studying cortical spreading depression waves (CSDs). The electrophysiologic

model employed for simulating CSD is much more complex than the one used in

the previous chapters, as it tracks the concentrations of sodium, potassium and

chloride in neuron, glia and extracellular space, comprises glutamate dynamics

and it accounts for the changes in the volumes of the three compartments during

the passing of the CSD waves [23]. The coupled Electro-Metabolic CSD model is

based on ATP demand and consumption and assumes variable volume fractions.

In agreement with the literature [104, 105, 106, 81, 107], the predictions of our

computed experiment show a shrinkage of the extracellular space which decreases

by approximately 77% from its baseline value, and swelling of the neuron and

glia of approximately 16%, respectively 14% above resting state values.

As reported in the experimental literature [81, 89, 93], the predicted ionic con-

centrations of extracellular potassium and intracellular sodium show very large

increases, while the concentrations of intracellular potassium and extracellular

sodium present a significant decrease. Restoring the ionic gradients requires a

very large amount of energy, which can be observed in our results in the mas-

sive consumption of the phosphorylation states and the large production of redox.

The results obtained with our computed experiment outline the typical metabolic

signature observed during CSD [81, 83, 97, 80, 95]: significant decays in glucose

and oxygen concentrations, extreme increase in the concentration of lactate ac-

companied by a decrease in pyruvate concentration.

It was recently noted in the literature that the regions of the brain charac-

terized by a larger number of astrocytes are less susceptible to CSD [81, 5, 125,

124, 106]. To test how the predictions of our model would change with an uneven

ratio of neuron and astrocyte volume fractions, we performed a second computed

experiment with double volume fraction for astrocyte than for neuron. Our re-

sults suggest that the speed of the cortical spreading depression waves decreases

when passing brain regions with larger number of astrocytes [119]. Moreover,

the number of cortical spreading depression waves observed during a 30 minutes

simulation time decreases from 6 to 3. This supports the astrocytes crucial role in

clearing the extracellular potassium and glutamate, present in large amount fol-

lowing CSD [5, 118], and in mediating the cerebral blood flow response [5, 1, 122].

Next steps

The modeling paradigm for this thesis only considered lumped models: a natu-

ral extension of our coupled Electro-Metabolic model would be adding a spatial

component. The spatial variability would be particularly important when sim-
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ulating cortical spreading depression waves, that travel across the cortex at a

speed of a couple of millimeters per minute and can encounter barriers, for exam-

ple white matter or large cerebral arteries [81]. As already discussed in Chapter

5, the propagation of the CSD waves is significantly slowed down in regions

with larger astrocyte density. As the extensive experimental literature suggests

[124, 123, 125], the susceptibility to CSD varies greatly between different brain

regions and in some, CSD can not be triggered [124]. Understanding these as-

pects is of utmost importance and could guide prevention strategies, especially for

patients with traumatic brain injury, in which CSD waves were proven to either

provoke additional brain damage or severely slow down the recovery process.

Developing a spatially distributed Electro-Metabolic CSD model would allow

us to better understand the CSD propagation by observing all the electrophysio-

logic and metabolic variations, depending on the onset region of the CSD waves

and on the density of astrocytes. The first step towards a distributed Electro-

Metabolic model is to consider a model for the diffusion of bath potassium to

the neighboring cells [139]. From the mathematical point of view, the complexity

of the distributed model increases substantially, as it involves using either finite

differences or finite elements for our current multi-time scale problem.

In summary, developing a spatially distributed coupled Electro-Metabolic

model would be very beneficial for the mechanisms underlying CSD propagation

and its characteristic alterations in the ionic and metabolites concentrations.
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[74] Romain Valabrègue, Agnès Aubert, Jacques Burger, Jacques Bittoun, and

Robert Costalat. Relation between cerebral blood flow and metabolism

explained by a model of oxygen exchange. Journal of Cerebral Blood Flow

& Metabolism, 23(5):536–545, 2003.

[75] Takayuki Obata, Thomas T Liu, Karla L Miller, Wen-Ming Luh, Eric C

Wong, Lawrence R Frank, and Richard B Buxton. Discrepancies between

bold and flow dynamics in primary and supplementary motor areas: appli-

cation of the balloon model to the interpretation of bold transients. Neu-

roImage, 21(1):144–153, 2004.

[76] Gabriela Capo Rangel, Jamie Prezioso, Luca Gerardo-Giorda, Erkki Som-

ersalo, and Daniela Calvetti. Brain energetics plays a key role in the co-

ordination of electrophysiological activity, metabolism and hemodynamics:

evidence from an integrated computational model. submitted.

[77] Jessica A Filosa, Adrian D Bonev, Stephen V Straub, Andrea L Mered-

ith, M Keith Wilkerson, Richard W Aldrich, and Mark T Nelson. Local

potassium signaling couples neuronal activity to vasodilation in the brain.

Nature neuroscience, 9(11):1397, 2006.

[78] Pamela Moses, Mishaela DiNino, Leanna Hernandez, and Thomas T Liu.

Developmental changes in resting and functional cerebral blood flow and

their relationship to the bold response. Human brain mapping, 35(7):3188–

3198, 2014.

[79] Felix W Wehrli, Zachary B Rodgers, Varsha Jain, Michael C Langham,

Cheng Li, Daniel J Licht, and Jeremy Magland. Time-resolved mri oxime-

try for quantifying cmro2 and vascular reactivity. Academic radiology,

21(2):207–214, 2014.



BIBLIOGRAPHY 217

[80] Cátia F Lourenço, Ana Ledo, GA Gerhardt, and Rui M Barbosa. Nneu-

rometabolic and electrophysiological changes during cortical spreading de-

polarization: multimodal approach based on a lactate-glucose dual micro-

biosensor arrays. Scientific reports, 7(1):6764, 2017.

[81] Cenk Ayata and Martin Lauritzen. Spreading depression, spreading depo-

larizations, and the cerebral vasculature. Physiological reviews, 95(3):953–

993, 2015.

[82] Martin Lauritzen, Jens Peter Dreier, Martin Fabricius, Jed A Hartings,

Rudolf Graf, and Anthony John Strong. Clinical relevance of cortical

spreading depression in neurological disorders: migraine, malignant stroke,

subarachnoid and intracranial hemorrhage, and traumatic brain injury.

Journal of Cerebral Blood Flow & Metabolism, 31(1):17–35, 2011.

[83] Baptiste Balança, Anne Meiller, Laurent Bezin, Jens P Dreier, Stephane

Marinesco, and Thomas Lieutaud. Altered hypermetabolic response to cor-

tical spreading depolarizations after traumatic brain injury in rats. Journal

of Cerebral Blood Flow & Metabolism, 37(5):1670–1686, 2017.

[84] Delphine Feuerstein, Andrew Manning, Parastoo Hashemi, Robin Bhatia,

Martin Fabricius, Christos Tolias, Clemens Pahl, Max Ervine, Anthony J

Strong, and Martyn G Boutelle. Dynamic metabolic response to multi-

ple spreading depolarizations in patients with acute brain injury: an on-

line microdialysis study. Journal of Cerebral Blood Flow & Metabolism,

30(7):1343–1355, 2010.

[85] Michelle L Rogers, Delphine Feuerstein, Chi Leng Leong, Masatoshi Tak-

agaki, Xize Niu, Rudolf Graf, and Martyn G Boutelle. Continuous online

microdialysis using microfluidic sensors: dynamic neurometabolic changes

during spreading depolarization. ACS chemical neuroscience, 4(5):799–807,

2013.

[86] Maiken Nedergaard and Anker Jon Hansen. Spreading depression is not

associated with neuronal injury in the normal brain. Brain research, 449(1-

2):395–398, 1988.

[87] Xiao-Yuan Lian and Janet L Stringer. Energy failure in astrocytes increases

the vulnerability of neurons to spreading depression. European Journal of

Neuroscience, 19(9):2446–2454, 2004.

[88] Takahiro Takano and Maiken Nedergaard. Deciphering migraine. The Jour-

nal of clinical investigation, 119(1):16–19, 2009.



BIBLIOGRAPHY 218

[89] Maiken Nedergaard and Anker Jon Hansen. Characterization of cortical

depolarizations evoked in focal cerebral ischemia. Journal of Cerebral Blood

Flow & Metabolism, 13(4):568–574, 1993.

[90] David W Busija, Ferenc Bari, Ferenc Domoki, Takashi Horiguchi, and Kat-

suyoshi Shimizu. Mechanisms involved in the cerebrovascular dilator effects

of cortical spreading depression. Progress in neurobiology, 86(4):417–433,

2008.

[91] Takashi Horiguchi, James A Snipes, Bela Kis, Katsuyoshi Shimizu, and

David W Busija. The role of nitric oxide in the development of cortical

spreading depression-induced tolerance to transient focal cerebral ischemia

in rats. Brain research, 1039(1-2):84–89, 2005.

[92] Turgay Dalkara, Nicholas T Zervas, and Michael A Moskowitz. From

spreading depression to the trigeminovascular system. Neurological sci-

ences, 27(2):s86–s90, 2006.

[93] George G Somjen. Mechanisms of spreading depression and hypoxic spread-

ing depression-like depolarization. Physiological reviews, 81(3):1065–1096,

2001.

[94] Takahiro Takano, Guo-Feng Tian, Weiguo Peng, Nanhong Lou, Ditte Lo-

vatt, Anker J Hansen, Karl A Kasischke, and Maiken Nedergaard. Cortical

spreading depression causes and coincides with tissue hypoxia. Nature neu-

roscience, 10(6):754, 2007.

[95] Warren R Selman, W David Lust, Svetlana Pundik, Yinong Zhou, and

Robert A Ratcheson. Compromised metabolic recovery following sponta-

neous spreading depression in the penumbra. Brain research, 999(2):167–

174, 2004.

[96] Günter Mies and Wulf Paschen. Regional changes of blood flow, glu-

cose, and atp content determined on brain sections during a single pas-

sage of spreading depression in rat brain cortex. Experimental neurology,

84(2):249–258, 1984.

[97] Delphine Feuerstein, Heiko Backes, Markus Gramer, Masatoshi Takagaki,

Paula Gabel, Tetsuya Kumagai, and Rudolf Graf. Regulation of cerebral

metabolism during cortical spreading depression. Journal of Cerebral Blood

Flow & Metabolism, 36(11):1965–1977, 2016.

[98] Jonas C Fordsmann, Rebecca WY Ko, Hyun B Choi, Kirsten Thomsen,

Brent M Witgen, Claus Mathiesen, Micael Lønstrup, Henning Piilgaard,



BIBLIOGRAPHY 219

Brian A MacVicar, and Martin Lauritzen. Increased 20-hete synthesis ex-

plains reduced cerebral blood flow but not impaired neurovascular coupling

after cortical spreading depression in rat cerebral cortex. Journal of Neu-

roscience, 33(6):2562–2570, 2013.

[99] Francesca Galeffi, George G Somjen, Kelley A Foster, and Dennis A Turner.

Simultaneous monitoring of tissue po2 and nadh fluorescence during synap-

tic stimulation and spreading depression reveals a transient dissociation be-

tween oxygen utilization and mitochondrial redox state in rat hippocampal

slices. Journal of Cerebral Blood Flow & Metabolism, 31(2):626–639, 2011.

[100] Keiji Adachi, Nancy F Cruz, Louis Sokoloff, and Gerald A Dienel. Labeling

of metabolic pools by [6-14c] glucose during k+-induced stimulation of glu-

cose utilization in rat brain. Journal of Cerebral Blood Flow & Metabolism,

15(1):97–110, 1995.

[101] Parastoo Hashemi, Robin Bhatia, Hajime Nakamura, Jens P Dreier, Rudolf

Graf, Anthony J Strong, and Martyn G Boutelle. Persisting depletion of

brain glucose following cortical spreading depression, despite apparent hy-

peraemia: evidence for risk of an adverse effect of leao’s spreading depres-

sion. Journal of Cerebral Blood Flow & Metabolism, 29(1):166–175, 2009.

[102] Bert Bosche, Rudolf Graf, Ralf-Ingo Ernestus, Christian Dohmen, Thomas

Reithmeier, Gerrit Brinker, Anthony J Strong, Jens P Dreier, and Johannes

Woitzik. Recurrent spreading depolarizations after subarachnoid hemor-

rhage decreases oxygen availability in human cerebral cortex. Annals of

neurology, 67(5):607–617, 2010.

[103] Jens P Dreier, Sebastian Major, Andrew Manning, Johannes Woitzik,

Chistoph Drenckhahn, Jens Steinbrink, Christos Tolias, Ana I Oliveira-

Ferreira, Martin Fabricius, Jed A Hartings, et al. Cortical spreading is-

chaemia is a novel process involved in ischaemic damage in patients with

aneurysmal subarachnoid haemorrhage. Brain, 132(7):1866–1881, 2009.

[104] Tomás̆ Mazel, Zuzana S̆imonová, and Eva Syková. Diffusion heterogeneity

and anisotropy in rat hippocampus. Neuroreport, 9(7):1299–1304, 1998.

[105] Tomás̆ Mazel, Frank Richter, Lýdia Vargová, and Eva Syková. Changes
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