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Abstract: The aim of this study is to assess if an adhesive biopolymer, sodium hyaluronate (NaHA),
has synergistic effects with s-PRGF (a serum derived from plasma rich in growth factors and a blood
derivative that has already shown efficacy in corneal epithelial wound healing), to reduce time of
healing or posology. In vitro proliferation and migration studies, both in human corneal epithelial
(HCE) cells and in rabbit primary corneal epithelial (RPCE) cultures, were carried out. In addition,
we performed studies of corneal wound healing in vivo in rabbits treated with s-PRGF, NaHA, or
the combination of both. We performed immunohistochemistry techniques (CK3, CK15, Ki67, ß4
integrin, ZO-1, α-SMA) in rabbit corneas 7 and 30 days after a surgically induced epithelial defect.
In vitro results show that the combination of NaHA and s-PRGF offers the worst proliferation rates in
both HCE and RPCE cells. Addition of NaHA to s-PRGF diminishes the re-epithelializing capability
of s-PRGF. In vivo, all treatments, given twice a day, showed equivalent efficacy in corneal epithelial
healing. We conclude that the combined use of s-PRGF and HaNA as an adhesive biopolymer does
not improve the efficacy of s-PRGF alone in the wound healing of corneal epithelial defects.

Keywords: corneal epithelial defect; cornea regeneration; serum eye drops; plasma rich plasma (PRP);
serum derived from plasma rich in growth factors (s-PRGF); hyaluronic acid (NaHA); wound healing
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1. Introduction

Integrity of the corneal epithelium is a critical requirement for correct vision function [1].
The maintenance of the epithelium is based on a balance among limbal stem function, tear quantity and
quality, the eyelid anatomy and function, and corneal sensitivity [2]. In cases of corneal injury, healing
mechanisms are activated involving cell proliferation, migration and reattachment of the epithelium
to its extracellular matrix, and cell differentiation. Factors needed for corneal wound healing are
provided by the tear film, aqueous humor, and limbal blood vessels. Furthermore, cornea epithelium
by itself is a rich source of cytokines that contribute to modulate the wound healing process [3].

Sometimes, corneal wounds persist over time and are resistant to conventional treatment, such as
artificial tears or topical antibiotics [4], lateral tarsorrhaphy [5], bandage contact lenses [6], punctual
plugs [7], and amniotic membrane transplantation [8]. Different topical growth factors have been
also tested in these persistent epithelial defects [9–13]. As wound healing demands a balanced
combination of different mediators, blood derivatives have been used to treat corneal epithelial
defects, including autologous serum [14] and platelet rich plasma [15]. One of these, s-PRGF (a serum
derived from plasma rich in growth factors) has already been used successfully as a treatment for
eye disorders [4,16,17] and its effectiveness has been proved in wound healing [4,18]. s-PRGF has
been proved to stimulate proliferation and migration of epithelial cells [18]. It has a moderate platelet
concentration and its leukocyte content has been removed [19,20].

On the other hand, eye barriers and the continuous turnover of tears can alter the absorption
of drugs instilled in the eye, so, although eye drops are an easy-to-use treatment, they must be
instilled frequently and/or at high concentrations to achieve therapeutic levels in the tissues. The high
frequency of instillation can induce a non-compliance of treatment by patients. The development of
vehicles capable of adhering to the conjunctival and/or corneal tissue is an interesting alternative
for increasing the bioavailability of ophthalmological medications. With this aim, hydrogels and
polymer micelles [21], biodegradable nanocapsules or HA coated nanospheres, and niosomes have
been reported as agents for the release of drugs on the ocular surface [22–24]. The role of liposomes
has also been investigated, although their potential is limited due to their short half-life on the ocular
surface and relatively low stability [23]. HA-coated liposomes have also been used to facilitate the entry
of drugs into human corneal epithelial (HCE) cells [25]. In all these cases, HA-coated nanovehicles
allow greater concentrations of the transported drug to enter into the cornea.

Other authors have tried other vehicles with well-known mucoadhesive properties, with the
intention of increasing the contact time of various drugs in the corneal tissue. Thus, the concomitant
use of 0.5% carboxymethylcellulose, 0.2% HA, or 0.3–0.5% hydroxypropylcellulose associated with
topical 0.5% timolol has been studied. In this case, combination with HA did not show improved
efficacy with respect to timolol alone [26]. However, some authors have concluded that an increase of
drug viscosity reduces its systemic absorption, so it could enhance the exposition of treatment to the
ocular surface [27].

Topical surfactant molecules (perfluorohexiloctane), as well as ophthalmic inserts of
methylpropylcellulose (Lacrisert®), have been developed with the intention of increasing the residence
time of the tear on the ocular surface and therein improving the quality [28,29]. Another strategy to
prolong the contact of drugs with the ocular surface is the use of contact lenses that slowly release the
drug over several weeks [30].

Specifically, to extend the contact time of the platelet lysates with the damaged ocular surface,
Sandri and colleagues studied their combination with molecules with mucoadhesive properties, such
as polyacrylic acid and chitosan [31]. Similarly, the combination of HA with autologous serum has also
been studied, suggesting that HA would facilitate the gradual release of growth factors and increase
its duration and effect on the ocular surface, so fewer instillations would be needed [32].
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HA is a bioadhesive molecule produced by the cells of the corneal matrix and is one of its main
components. It is a polyanionic glycosaminoglycan composed of disaccharide subunits of N-acetyl
glucosamine and D-glucuronic acid [33]. Depending on the number of disaccharides bound, hyaluronic
acids of different molecular weights will be formed. Among its characteristics, it is noteworthy that
it is biocompatible, biodegradable and non-toxic, and non-irritating [34,35]. It also possesses a high
capacity for binding to water and has a viscous and pseudoplastic fluid behavior with the ability to
act as a mucoadhesive polymer, which makes it possible to increase the residence time in the eye,
in addition to reducing friction during blinking and extraocular movements when it is being used
as a natural lubricant of the ocular surface that reduces epithelial damage [36]. A negative charge
would facilitate adhesion to the ocular surface, giving theoretically more corneal bioavailability to the
molecules associated with hyaluronic acid [37].

High molecular weight HA has immunosuppressive and anti-inflammatory properties by
reducing the migration of inflammatory cells [38] and by specifically inhibiting certain metalloproteases
that degrade the extracellular matrix [39]. It also has anti-angiogenic properties [40] and analgesic
effects [41]. However, small fragments of HA can have a proinflammatory and pro-angiogenic
effect [42]. In our work, we used intermediate molecular weight HA, as we wanted to assess its
mucoadhesive capacity for s-PRGF and not its anti-inflammatory synergy.

All commercial ophthalmic hyaluronic acids used as artificial tears contain concentrations between
0.1% and 0.4% hyaluronic acid. In order to mimic real clinical situations, the concentration used in our
work was 0.1% for in vitro assays and 0.2% for in vivo experiments.

Therefore, the beneficial effect of HA both in vitro and in vivo, as well as Platelet Rich Plasma
(PRP), seems to be evident, both in the field of traumatology [43] and in corneal epithelial wound
healing [18,44].

Given this “state of the art”, the aim of this study is to test if combining both treatments, s-PRGF
and HA, is synergistic in terms of in vitro migration and proliferation of corneal epithelial cells and
in vivo reduction of the time (or reduced posology) of corneal wound healing.

2. Results

2.1. In Vitro Proliferation Assays in Rabbit Primary Corneal Epithelial Cells and Human Corneal
Epithlial Cultures

We studied cell proliferation at 0, 24, 48, and 72 h in rabbit epithelial cells (RPCE) and HCE
cultures under the following treatments: 45% s-PRGF; 45% s-PRGF + 0.1% sodium hyaluronate
(NaHA) (combined treatment); 0.1% NaHA; 10% FBS as a positive/reference control; and 1% BSA as a
negative control.

Results showed that in RPCE cultures all treatments produced a time-dependent proliferation
pattern, with no significant differences within treatments at 72 h (Figure 1A). Viability in RPCE
cultures exposed to different treatments was very similar in all cases. We observed that viability
in the first 24–48 h (Figure 1B,C) was higher with FBS, the standard or reference culture medium.
However, differences decreased over time, especially under s-PRGF and control (BSA) treatments.
Thus, after 24 h of treatment, we observed highly significant differences between FBS and NaHA,
alone or combined with s-PRGF, and between FBS and the control treatment (Figure 1B). However,
there were not significant differences between FBS and s-PRGF at 24 h (p = 0.42). In addition, we
found significant differences in cell viability between cells cultured with s-PRGF in comparison to
those cultured with both NaHA treatments.

Thus, proliferation of RPCE cultures at 24 h was similar for FBS and s-PRGF treated cultures
and higher than cultures under the other treatments. At 48 h, we found significant differences within
treatments compared to FBS, with these being less than those at 24 h and completely disappearing at
72 h (Figure 1B–D).

In summary, NaHA, whether combined or not with s-PRGF, did not enhance either proliferation
capability or viability in RPCE cultures.
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Figure 1. Effect of serum derived from plasma rich in growth factors (s-PRGF), alone or combined with
sodium hyaluronate (NaHA), (A) on the proliferation and (B–D) viability of rabbit primary corneal
epithelial (RPCE) cultures. Cultures were exposed for 24, 48, and 72 h to 10% FBS; 45% s-PRGF;
45% s-PRGF and 0.1% NaHA (combined treatment); 0.1% NaHA; and 1% BSA as a negative control.
Proliferation results are expressed as proliferation rate ± standard deviation of viable cells with respect
to viable cells at t = 0. Viability results are expressed as percentages versus that with FBS (100% viability).
Statistically significant differences with respect to FBS (Φ) or to s-PRGF (#) (## p < 0.01; Φ p < 0.05;
ΦΦ p < 0.01; ΦΦΦ p < 0.001; n/s, not significant. Kruskal-Wallis test, Dunn test with Bonferroni
correction to Multiple Comparisons).

Results concerning HCE cultures showed a time-dependent proliferation pattern, except for the
1% BSA control treatment, while s-PRGF, with or without NaHA, produced a decrease in proliferation
at 24 h which was not statistically significant (Figure 2A). All treatments, especially 10% FBS, showed a
higher proliferation rate that the control treatment. In addition, we saw a positive tendency for higher
proliferation when cells were cultured with NaHA compared to s-PRGF or the combined treatment.

Regarding viability, we do not see significant differences between FBS and NaHA during the
first 48 h (Figure 2B,C). In addition, besides the FBS treatment, only the non-combined treatments
showed significant (s-PRGF) or very significant (NaHA) differences compared to the control treatment
at 48 and 72 h (Figure 2C,D).

In conclusion, s-PRGF and NaHA treatments showed better proliferative patterns in HCE cells,
whereas the combination of both did not improve it.
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Figure 2. Effect of s-PRGF, alone or combined with NaHA, on the (A) proliferation and (B–D) viability
of human corneal epithelial (HCE) cells. Cultures were exposed for 24, 48, and 72 h to 10% FBS;
45% s-PRGF; 45% s-PRGF and 0.1% NaHA (combined treatment); 0.1% NaHA; and 1% BSA as a
negative control. Proliferation results are expressed as proliferation rate ± standard deviation of viable
cells with respect to viable cells at t = 0. Viability results are expressed as percentages versus that with
FBS (100% viability). Statistically significant differences with respect to BSA (*) or to FBS (Φ) (* p < 0.05;
** p < 0.01; Φ p < 0.05; ΦΦ p < 0.01; ΦΦΦ p < 0.001; n/s, not significant. Kruskal–Wallis test, Dunn test
with Bonferroni correction to Multiple Comparisons).

2.2. In Vitro Scratch Wound-Healing Assays in RPCE and HCE Cultures

In order to evaluate the capability of the different treatments to promote migration and
re-epithelialization on RCPE and HCE cultures, we scraped off rounded areas on cell monolayers
and treated them with the following treatments: 45% s-PRGF; 45% s-PRGF + 0,1% NaHA (combined
treatment); 0,1% NaHA; 10% FBS as a positive/reference control; and 1% BSA as a negative control.
We measured the re-epithelialization process at 0, 12, 24, 36, 48, 60, and 72 h.

We did not find significant differences within treatments at any time when studying wound
healing evolution in RPCE cultures (Figure 3A). However, when we analyzed the percentage of wells
in which the defect in the monolayer had completely resolved, we found evident differences in cultures
treated with NaHA (alone or combined) with respect to other treatments (Figure 3B–D). Additionally,
a smaller number of completely resolved defects in cultures treated with the combined treatment was
observed, with this result being statistically significant from 48 h.
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Figure 3. Effect of s-PRGF, alone or combined with NaHA, on the re-epithelialization of rabbit
primary corneal epithelial (RPCE) cultures. Cultures were exposed for 72 h to 10% FBS; 45% s-PRGF;
45% s-PRGF + 0.1% NaHA (combined treatment); 0.1% NaHA; and 1% BSA as a negative control.
The percentage of re-epithelialized area of RPCE cultures after 48 hr (A), and percentage of wells in
which the defect in the monolayer had completely resolved at 24 (B), 36 (C) and 48 (D) hours are
shown. Statistically significant differences with respect to the combined s-PRGF + NaHA treatment (#)
(# p < 0.05; n/s, not significant. χ2 test and Fisher’s exact test).

In HCE cultures, s-PRGF treatment (alone or combined with NaHA), as well as FBS treatment,
promoted faster re-epithelialization of the defect in the monolayer from 12 h of treatment onwards,
showing significant differences at all times (Figure 4A). Furthermore, in the HCE cultures, no
statistically significant differences were found in the mean remaining denuded area (in square
millimeters) between cells treated with NaHA and control cells.

With respect to the resolution of defects in the HCE cultures, s-PRGF treatment (alone or
combined), together with FBS, produced statistically significant differences in the number of wells
in which the denuded area had been completely covered, compared with the control and NaHA
treatments, from 24 h (Figure 4B). At 36 h, almost 100% of wounds treated with s-PRGF or
s-PRGF + NaHA were completely solved, whereas none of the denuded areas had completely closed
in the control and NaHA cultures (Figure 4C,D).

We conclude that s-PRGF promotes the highest re-epithelialization in RPCE primary cultures and
HCE cells. Furthermore, NaHA does not favor this process, and hinders the re-epithelialization effect
promoted by s-PRGF.
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Figure 4. Effect of s-PRGF, alone or combined with NaHA, on the re-epithelialization of human
corneal epithelial (HCE) cells (A). Cultures were exposed for 72 h to 10% FBS; 45% s-PRGF;
45% s-PRGF + 0.1% NaHA (combined treatment); 0.1% NaHA; and 1% BSA as a negative control.
The percentage of re-epithelialized area of HCE cultures after 36 hr (A), and percentage of wells in
which the defect in the monolayer had completely resolved at 24 (B), 36 (C) and 48 (D) hours are shown.
Statistically significant differences with respect to BSA (*) or NaHA (Φ) (*** p < 0.001; ΦΦΦ p < 0.001;
n/s, not significant. χ2 test and Fisher’s exact test).

2.3. In Vivo Corneal Re-Epithelialization Assay in a Rabbit Animal Model

To perform the assay, surgically induced epithelial defects were treated with 90% s-PRGF;
90% s-PRGF and 0.2% NaHA (combined treatment); 0.2% NaHA; and PBS as a control treatment.

We did not find any adverse effects, such as corneal inflammation or neovascularization, during
the whole experiment. In addition, all animals were healthy and gained weight progressively.

The results showed that s-PRGF promoted faster corneal wound healing after day 2 of treatment
than the other treatments. The mean time to complete the closure of the epithelial defect in the s-PRGF
group was 3.11 ± 0.22 days, whereas it was 3.31 ± 0.37 days for eyes treated with any of the other
treatments (Figure 5A and Table 1). Nevertheless, we did not find significant differences among
treatments (Kruskal–Wallis). We also performed the Kaplan–Meier test to analyze the progression of
healing of eyes at intervals of half a day. Although we again observed the marked tendency for faster
epithelial closure for the s-PRGF treatment, we could not find significant differences. This fact suggests
that increasing the number of analyzed animals would be advisable.

When we analyzed the number of corneal defects that had completely healed, we found that at
day 3 after surgery, 78% of them had re-epithelialized in the s-PRGF treatment, while only 50% of them
had healed in the eyes treated with any of the other treatments. After 3.5 days, 100% of the corneal
defects had already healed with s-PRGF, compared to only 88% of the eyes treated with any of the
other treatments. However, we did not find significant differences among treatments (Chi-Square test
and Fisher’s exact test).
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Figure 5. Re-epithelialization of corneal defects in rabbit eyes. (A) Evolution of the epithelial defect 
was monitored with fluorescein staining in eyes treated with topical s-PRGF, s-PRGF and NaHA, 
NaHA, or PBS as a control treatment. (B) Histological sections of rabbit central corneas after complete 
healing were stained with hematoxylin and eosin. Corneas were processed seven days after surgery 
or at 30 days. Scale bar: 5 mm for (A), 50 µm for (B). 

Table 1. In vivo experiment assessing the progression of epithelial wound healing in rabbit eyes 
treated with s-PRGF, s-PRGF and NaHA, NaHA, and PBS as the control. The results are expressed as 
mean wound area ± standard deviation in mm2. 

Treatment 
TIME (days) 

Day 0 Day 1 Day 1.5 Day 2 Day 2.5 Day 3 Day 3.5 
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NaHA 72.57 ± 2.77 48.06 ± 8.97 37.44 ± 7.63 13.59 ± 5.26 6.14 ± 3.71 0.46 ± 0.76 0.02 ± 0.06 

No significant differences between any treatments were found (Kruskal–Wallis test, p > 0.05). 
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Figure 5. Re-epithelialization of corneal defects in rabbit eyes. (A) Evolution of the epithelial defect was
monitored with fluorescein staining in eyes treated with topical s-PRGF, s-PRGF and NaHA, NaHA, or
PBS as a control treatment. (B) Histological sections of rabbit central corneas after complete healing
were stained with hematoxylin and eosin. Corneas were processed seven days after surgery or at
30 days. Scale bar: 5 mm for (A), 50 µm for (B).

Table 1. In vivo experiment assessing the progression of epithelial wound healing in rabbit eyes treated
with s-PRGF, s-PRGF and NaHA, NaHA, and PBS as the control. The results are expressed as mean
wound area ± standard deviation in mm2.

Treatment
TIME (days)

Day 0 Day 1 Day 1.5 Day 2 Day 2.5 Day 3 Day 3.5

Control 72.32 ± 7.32 47.02 ± 4.84 33.28 ± 3.06 12.93 ± 3.36 6.12 ± 3.24 0.53 ± 0.99 0.06 ± 0.16
s-PRGF 71.91 ± 4.39 46.19 ± 4.06 30.22 ± 4.09 10.00 ± 3.15 3.65 ± 2.79 0.05 ± 0.10 0
NaHA 72.48 ± 5.13 45.32 ± 4.20 36.72 ± 7.74 12.46 ± 5.17 5.98 ± 3.69 0.65 ± 1.23 0.10 ± 0.27

s-PRGF + NaHA 72.57 ± 2.77 48.06 ± 8.97 37.44 ± 7.63 13.59 ± 5.26 6.14 ± 3.71 0.46 ± 0.76 0.02 ± 0.06

No significant differences between any treatments were found (Kruskal–Wallis test, p ≥ 0.05).

Analysis of hematoxylin and eosin sections of the rabbit central corneas showed complete
regeneration with normal histology of the epithelium in all corneas. However, we observed that
corneas treated with NaHA showed a less compacted epithelium in the basal layers at day 7, suggesting
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that there might be adhesion deficiencies within epithelial layers, or even between the epithelium
and stroma layers (Figure 5B). In addition, when euthanasia was performed 7 days after surgery, the
number of keratocytes in the anterior third of the stroma was influenced by the treatment, with the
s-PRGF and NaHA the only treatment that showed cells in the whole stroma. At 30 days after surgery,
treatments with NaHA (alone or combined) showed the highest cell population across the anterior
third of the stroma.

2.4. Immunohistochemical Analyses of the Epithelial Differentiation, Proliferation, Adhesion, and Fibrosis of the
Re-Epithelialized Corneas

To assess differences in the mechanisms through which the treatments performed corneal wound
healing, we used immunohistochemistry techniques to analyze cryopreserved sections of healed rabbit
corneas at 7 and 30 days after surgery. We also added a healthy control (healthy rabbit cornea, which
did not undergo surgery) and a wounded cornea (processed only 48 h after surgery, wound healing or
W-H control). Specifically, we studied the processes of differentiation, proliferation and adhesion, the
corneal barrier effect of the epithelium, and stromal fibrosis.

First, we performed a double staining for cytokeratin 3/76 (CK3), a corneal epithelium marker,
and cytokeratin 15 (CK15), a stem cell marker, in both the re-epithelialized central cornea and the
peripheral limbus. As we expected, we found CK3 positive staining and CK15 negative labeling in
the central epithelium area of all eyes (Figure 6). At the limbal area, we found positive CK15 staining
in the basal layers of all corneas (Figure 7). This staining is coherent with the presence of limbal
stem/progenitor cells, and it was especially intense in the W-H control, where these cells might be
specifically activated to regenerate the wounded epithelial area.
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Figure 6. Fluorescent immunostaining for CK3 (red) and CK15 (green) on the regenerated central
cornea of rabbit corneas after healing of the epithelial defect. Corneas were treated with s-PRGF,
s-PRGF and NaHA, NaHA, or PBS (as a control) and were processed 7 and 30 days after cornea surgery.
Control corresponds to a healthy rabbit cornea with no surgery. The W-H image shows a cornea
processed 48 h after surgery without complete re-epithelialization. Magnification 200×.
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We evaluated cell proliferation by analyzing the nuclear staining of the proliferation marker
Ki76. Results showed a higher number of positive cells at 7 days after surgery than 30 days (Table 2).
Interestingly, at 7 days, the nuclear staining was not confined to the epithelium but also appeared in
the third anterior stroma. However, proliferation in the epithelium was significantly higher than in the
stroma for all treatments, both at 7 days (p < 0.001) and at 30 days (p < 0.0001) (Wilcoxon rank sum
test). Specifically, corneas treated with NaHA showed a higher number of Ki67 proliferative cells in
both areas (epithelium and stroma) than corneas under the other treatments. Differences were highly
significant for the epithelium (Table 2). This result is consistent with that of the proliferation study in
HCE cells, in which we observed that NaHA induced higher proliferation in the short-term than the
rest of the treatments under study. At 30 days after surgery, cell proliferation was lower and occurred
merely in the corneal epithelium.
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We also studied the marker of tight junctions ZO-1, in order to evaluate the recovery of the 
barrier effect in the regenerated corneal epithelium. We observed apical staining of the epithelium in 
all corneas, which was more intense at 30 days after surgery than at 7 days (Figure 8). Of note, W-H 
corneas, which only had a cell monolayer covering the wound area, showed a positive staining as 
well, meaning that the recovering of the epithelial barrier function is a priority in wound healing.  

Figure 7. Fluorescent immunostaining for CK3 (red) and CK15 (green) on the limbal area of rabbit
corneas after healing of the epithelial defect. Corneas were treated with s-PRGF, s-PRGF and NaHA,
NaHA, or PBS (as a control) and were processed 7 and 30 days after cornea surgery. Control corresponds
to a healthy rabbit cornea with no surgery. The W-H image shows a cornea processed 48 h after surgery
without complete re-epithelialization. The dotted line shows the limit between the epithelium and
stroma layers. Magnification 200×.

We also studied the marker of tight junctions ZO-1, in order to evaluate the recovery of the barrier
effect in the regenerated corneal epithelium. We observed apical staining of the epithelium in all
corneas, which was more intense at 30 days after surgery than at 7 days (Figure 8). Of note, W-H
corneas, which only had a cell monolayer covering the wound area, showed a positive staining as well,
meaning that the recovering of the epithelial barrier function is a priority in wound healing.
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In order to study the adhesion property between the regenerated epithelium and the underlying 
stroma, we performed immunohistochemical staining for β4 integrin, a cellular component of 
hemidesmosomes. Results showed that s-PRGF treatments (combined or not) had a more intense and 
continuous staining at 7 days (Figure 9). At 30 days after surgery, we could observe a normal staining 
underlying the epithelium all along the cornea in all the treatments. In W-H samples, although a fine 
layer of regenerated epithelium appeared, we could not detect the β4 integrin staining. 

Finally, by detecting the α-SMA protein, we analyzed the differentiation process from 
keratocytes to myofibroblasts in the wounded area as a sign of fibrosis. We did not detect positivity 
in the cytoplasm of the stromal cells of the repaired tissues in any case (data not shown).  

Figure 8. Fluorescent immunostaining for ZO-1 on rabbit central corneas after healing of the epithelial
defect. Rabbit corneas were treated with s-PRGF, s-PRGF and NaHA, NaHA, or PBS (as a control), and
were processed 7 and 30 days after cornea surgery. Control corresponds to a healthy rabbit cornea
with no surgery. The W-H image shows a cornea processed 48 h after surgery without complete
re-epithelialization. Magnification 200×.

In order to study the adhesion property between the regenerated epithelium and the underlying
stroma, we performed immunohistochemical staining for β4 integrin, a cellular component of
hemidesmosomes. Results showed that s-PRGF treatments (combined or not) had a more intense and
continuous staining at 7 days (Figure 9). At 30 days after surgery, we could observe a normal staining
underlying the epithelium all along the cornea in all the treatments. In W-H samples, although a fine
layer of regenerated epithelium appeared, we could not detect the β4 integrin staining.

Finally, by detecting the α-SMA protein, we analyzed the differentiation process from keratocytes
to myofibroblasts in the wounded area as a sign of fibrosis. We did not detect positivity in the
cytoplasm of the stromal cells of the repaired tissues in any case (data not shown).
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3. Discussion 

It has been shown that HA improves in vitro proliferation and migration of corneal and 
conjunctival epithelium [44,45]. Moreover, it stabilizes the epithelial barrier of the corneal surface by 
binding to its corneal and conjunctiva receptor, hialadherin CD44 [46]. It has been also proven that 
HA helps migration and proliferation of fibroblasts [27]. In addition, it has no cytotoxicity to epithelial 
cells of the ocular surface, has antioxidant properties, and tends to reduce the toxic effects of 
preservatives [47]. However, other studies have indicated that HA specifically influences the 
migration of corneal epithelial cells, but not the proliferation, so that the benefit of HA in the healing 
of corneal wounds would be related to rapid cell migration [48].  

Table 2. Number of Ki67 positive cells in rabbit corneas treated with s-PRGF, s-PRGF and NaHA, 
NaHA, and PBS as the control. The results are expressed as mean number of cells ± standard deviation 
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Figure 9. Fluorescent immunostaining for β4 integrin on rabbit central corneas after healing of the
epithelial defect. Rabbit corneas were treated with s-PRGF, s-PRGF and NaHA, NaHA, or PBS (as a
control) and were processed 7 and 30 days after cornea surgery. Control corresponds to a healthy rabbit
cornea with no surgery. The W-H image shows a cornea processed 48 h after surgery without complete
re-epithelialization. Magnification 200×.

Table 2. Number of Ki67 positive cells in rabbit corneas treated with s-PRGF, s-PRGF and NaHA,
NaHA, and PBS as the control. The results are expressed as mean number of cells ± standard deviation
in seven different areas of the central corneas at 7 and 30 days after surgery.

Treatment

7 Days PBS s-PRGF s-PRGF + NaHA NaHA

Epithelium 17 ± 10 4 ± 2 16 ± 15 43 *** ± 20
Stroma 2 ± 1 1 ± 1 2 ± 1 5 ± 4

30 days PBS s-PRGF s-PRGF + NaHA NaHA

Epithelium 12 ± 6 5 Φ ± 2 7 ± 3 4 ΦΦ ± 2
Stroma 0.3 ± 0.5 0.3 ± 0.5 0.3 ± 0.5 0.4 ± 0.8

Statistically significant differences with respect to s-PRGF (*) or PBS (Φ) (Φ p < 0.05; ΦΦ p < 0,01; *** p < 0.001,
Kruskal–Wallis test, Dunn test with Bonferroni correction to Multiple Comparisons).

3. Discussion

It has been shown that HA improves in vitro proliferation and migration of corneal and
conjunctival epithelium [44,45]. Moreover, it stabilizes the epithelial barrier of the corneal surface
by binding to its corneal and conjunctiva receptor, hialadherin CD44 [46]. It has been also proven
that HA helps migration and proliferation of fibroblasts [27]. In addition, it has no cytotoxicity to
epithelial cells of the ocular surface, has antioxidant properties, and tends to reduce the toxic effects of
preservatives [47]. However, other studies have indicated that HA specifically influences the migration
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of corneal epithelial cells, but not the proliferation, so that the benefit of HA in the healing of corneal
wounds would be related to rapid cell migration [48].

Taking into account these results and based on the premise that HA has bioadhesive properties,
we set out to assess whether the combination of the blood product s-PRGF with HA was able to
increase the exposure time of the blood product to the cornea, so that the number of instillations in the
treatment of the corneal epithelial defect could be reduced, thus facilitating therapeutic compliance in
the case of clinical treatments. To this aim, we performed in vitro proliferation and migration assays,
as well as in vivo assays in a rabbit model of an induced corneal epithelial defect.

Our proliferation results show that HA (in our case, sodium hyaluronate or NaHA) alone favors
the proliferation of the human corneal epithelial line HCE, with better results than s-PRGF and the
combination of both. However, the effect of NaHA on the capacity of induction of proliferation on the
rabbit primary cells RPCE is similar to that of the other treatments, including the reference treatment
with FBS and the negative control (BSA). On the other hand, the analysis of the Ki67 proliferation
marker confirms a greater proliferative effect of NaHA on the central corneal epithelial cells (as well as
on stromal keratocytes), with respect to the rest of treatments. This difference in proliferation rates
according to the cell type studied may be due to the fact that the HCE are more differentiated cells
and are more sensitive to certain signals in the microenvironment, while the RPCE are cells with
greater intrinsic power since they contain progenitor epithelial cells. According to certain authors, the
ability to stimulate proliferation on corneal epithelial cells depends on the concentration of EGF in the
medium they are cultured with [13]. We observed, in the primary cultures, equivalent proliferation
rates with medium containing EGF (s-PRGF treatment, combined or not combined with NaHa), or
not containing EGF (NaHA and even in the BSA control treatment). Therefore, we propose that the
proliferation of RPCE cells is independent, in the short term, from the medium to which they are
exposed, since they have an intrinsic proliferation capacity. However, HCE epithelial cells mimic cells
in the central cornea and show increased proliferation in response to HA.

On the other hand, our results suggest that a negative interaction between s-PRGF and NaHA
occurs, so that the proliferative capacity of the HCE cells decreases when both are combined with
respect to any of them alone. This result is supported by studies by other authors who have tested
other mucoadhesive polymers, such as polyacrilic acid, combined with the platelet lysate in rabbit
primary cultures, in both corneal epithelial cells and keratocytes. They show that cell proliferation is
lower than when using platelet lysate alone [31].

However, the combination of HA with PRP on chondrocytes (mesodermal cells, such as corneal
fibroblasts) improved cell proliferation, although not in a statistically significant manner [49], while
significant changes in the expression levels of certain inflammatory markers and extracellular matrix
proteins were observed. In addition, randomized controlled studies showed improvement in the
clinical outcome of osteoarthritis of the knee when treated with HA and PRP with respect to PRP at
three months, as well as with respect to HA at one year [50].

Considering this, we can conclude that the combination of s-PRGF and NaHA does not act
synergistically in the proliferation of some kinds of cells of ectodermal origin, such as the corneal
epithelium, and could even disadvantage the proliferative effect that HA has. Conversely, this
combination does favor the proliferation of some kinds of mesodermal cells [43,49]. All of this suggests
that the effect of the PRPs or the HA, or the combination of both, is dependent on the cell type and that
it can also favor different biological functions depending on the case.

To study the effect of the combination of NaHA and s-PRGF on corneal re-epithelialization, we
performed an in vitro wound healing assay in HCE cells and RPCE cells. We observed that the NaHA
alone is not as good as s-PRGF alone for re-epithelialization. In fact, s-PRGF alone is the treatment
that best stimulates corneal re-epithelialization. However, NaHA alone stimulates cell migration to a
greater extent in primary cultures (RPCE) than in the HCE cell line. On the other hand, the combination
of both did not provide any benefit in most of the assays, or was even counterproductive in the in vitro
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test with RPCE, in which the addition of NaHA to the blood product impairs the re-epithelialization
capacity of s-PRGF.

The fact that NaHA favors, in a certain way, the epithelial closure of the RPCE could be explained
by the fact that HA is an essential component of the niche matrix of limbal progenitor cells [51], so that
more undifferentiated cells, such as the RPCE (which still retain the HA receptors), when in contact
with HA, could migrate more actively than differentiated corneal epithelial cells (HCE).

We did not observe significant differences in the in vivo re-epithelialization capacity between any
of the treatments used (s-PRGF, NaHA, both combined, or PBS as the control treatment), although
s-PRGF offered a tendency to achieve better results both in the evolution of the area of the corneal
defect and in the number of defects totally closed at certain times. In other in vivo studies performed
on mesodermal tissues, different results have been found: Cartilage repair of better quality is achieved
when PRP is combined with HA, compared to HA alone [52], and excellent results with the combination
of HA and PRP in the repair of pressure ulcers and surgical wounds have also been reported [53].
However, other authors have shown equal cartilage repair capacity histologically in an in vivo model
when using PRP, with respect to the combined use of PRP and HA [54].

Our histological analysis by hematoxylin and eosin staining showed correct epithelia in all
cases, although those treated with NaHA were more disorganized than those undergoing other
treatments or healthy controls. In addition, a greater density of fibroblast cells was observed in the
anterior stroma of the corneas treated with NaHA, alone or combined with s-PRGF, at 30 days after
in vivo scraping surgery. It has been described that stromal cells, possibly myofibroblasts, migrate
to the superficial layers of the stroma to help close the exposed area [55]. By Ki67 cell proliferation
labeling, we have demonstrated that NaHA induces proliferation in both epithelial and stromal cells,
mainly in the first days after injury. The rapid initial epithelial proliferation may be the reason for
the disorganization of the epithelia in the corneas under this treatment. However, the proliferation
(Ki67 positive cells) obtained in the anterior stroma suggests that the accumulation of cells in that
area is not only due to the cell proliferation process, but is also the result of cell migration, as other
authors have described. In the case of combined treatment, s-PRGF can also contribute to this, since
the histological images show the highest cell density for this treatment. In addition, we have already
demonstrated through transwell-type migration experiments that s-PRGF exerts a chemotactic effect
on corneal keratocytes [18].

The immunohistochemical analysis revealed similar results for the CK3 and CK15 markers, as
well as for the ZO-1 protein, between the different treatments. CK15 is a marker of progenitor cells of
the corneal epithelium [56], whose positivity is restricted to the basal layers of the limbal epithelium.
Our results confirm the presence of these cells in the sclero-corneal limbus of all the corneas studied.
When these cells divide and differentiate towards corneal epithelial cells, during their displacement
of centripetal and ascending form in the cornea, they progressively express a greater labeling of the
CK3 [57,58]. Similarly, the epithelial cells located in the most anterior part of the corneal epithelium
express the protein belonging to the tight junction ZO-1 [59]. In all treatments, both at 7 days and
30 days after surgery, we observed a similar labeling of both proteins, demonstrating that all treatments
achieve re-epithelialization of damaged corneas, generating a mature and functional corneal epithelium.
It is curious to observe how the barrier function of the corneal epithelium (positivity for ZO-1) is
established from the very beginning of the repair of the lesion, being observed even in those incipient
epithelia formed by a single cell monolayer. Therefore, we could suggest that the establishment of the
corneal barrier function is a priority in corneal healing.

Regarding the adhesion property between the newly repaired epithelium and the underlying
extracellular matrix, our results show that it could be favored by treatment with s-PRGF. Thus, the
β4 integrin protein is one of the components that forms part of the hemidesmosome-type junctions
between the epithelium and the matrix [60], in order to achieve a compact and stable tissue. At short
follow up times (7 days post-surgery), corneas treated with s-PRGF, alone or in combination, show
the most intense and continuous labeling for β4 integrin, suggesting that this hemoderivative favors
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epithelial adhesion and that the combination with NaHA does not diminish this effect. This data is
very important, since it can explain the efficacy of s-PRGF in the treatment of persistent and recurrent
corneal epithelial defects [4].

4. Materials and Methods

4.1. Ethics Statements

This study was performed in accordance with the ARVO Statement for the Use of Animals in
Ophthalmic and Vision Research. The procedures and experimental designs were approved by the
Animal Experimentation Ethics Committee of the University of the Basque Country UPV/EHU (Permit
license: CEBA/49-P03-02/2010/ANDOLLO VICTORIANO, 2011/03/11) and fulfill European and
national laws.

4.2. Isolation and Expansion of Rabbit Primary Corneal Epithelial (RPCE) Cultures

To obtain RPCE cultures, 0.5 × 0.3 cm explants of corneas, including the limbal area, were seeded
in plastic culture wells, with the corneal stroma down. We used corneas from the eyes of three
2.0–2.5 kg female New Zealand rabbits. The cells that grew from the explants were maintained at 37 ◦C
under 5% CO2 in DMEM: Ham′s F12 mix with 2 mM L-glutamine (Lonza, Verviers, Belgium) and
1% penicillin–streptomycin (Lonza), together with 10% fetal bovine serum (FBS; Lonza). This culture
medium was also supplemented with 10 ng/mL EGF (Sigma, St. Louis, MO, USA), 5 µg/mL insulin
(Sigma), and 0.1 µg/mL cholera toxin (Gentaur Molecular Products, Brussels, Belgium). The positive
staining for corneal epithelial markers was confirmed by immunolabeling. Cells were positive for the
CK3 corneal epithelial, as well as for the CK15 and vimentin corneal epithelial stem/progenitor cell
markers (Data not shown or Figure S1).

4.3. Human Corneal Epithelial (HCE) Cell Line Culture

SV-40 immortalized HCE cells were kindly provided by Dr. Araki-Sasaki et al. These cells were
cultured at 37 ◦C under the same conditions as the RPCE cells, with the addition of the supplement
0.5% DMSO (Sigma) to the culture medium.

4.4. s-PRGF Preparation

For human s-PRGF preparation, blood was collected by venipuncture in tubes with 3.8% sodium
citrate as an anticoagulant (BD Biosciences, Franklin Lakes, NJ, USA). Blood was centrifuged for 8 min
at 460× g. After collection of the complete supernatant fraction above the buffy coat, in order to
induce clot formation, calcium chloride (Braun, Barcelona, Spain) was added at a final concentration of
22.8 mM. After incubation of the samples for 2 h at 36 ◦C, the fibrin clot was retracted and removed;
the remaining fraction was the s-PRGF [61].

For rabbit s-PRGF preparation, the human protocol varied as follows: Blood was centrifuged for
8 min at 650 g. Following addition of calcium chloride, samples were incubated for 1 h at 36 ◦C [18].

For in vitro assays, the complement was heat inactivated in s-PRGF, and samples from several
individuals pooled to obtain representative blood preparations that could provide reproducible results
with minimal interindividual variability. Samples were stored at −20 ◦C.

For in vivo assays, autologous s-PRGF was obtained and stored at −20 ◦C until use.

4.5. Bioadhesive (Hyaluronic Acid) Preparation

We used an ophthalmic grade sodium hyaluronate (NaHA) with a molecular weight
of 200–400 kDa (Abarán Materias Primas SL, Barcelona, Spain) in PBS (phosphate buffered
saline solution).
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4.6. In Vitro and In Vivo Treatments

RPCE and HCE cells were cultured under the following treatments for in vitro experiments: 1%
BSA (Bovine serum albumin); 10% FBS; 45% s-PRGF; 45% s-PRGF and 0.1% NaHA; and 0.1% NaHA.
The above products were diluted in supplemented culture medium (Table S1).

We used the following treatments for in vivo experiments: PBS; 90% s-PRGF; 90% s-PRGF and
0.2% NaHA; and 0.2% NaHA. The above products were diluted in PBS.

4.7. Cell Proliferation Assays

For these experiments, 3000 HCE cells (2500 in the case of RPCE cells) were seeded per well in
96-well plates. After synchronizing the cultures using DMEM:F12 with 1% BSA (Table S1) for 16 h,
culture medium was substituted by the treatments to be tested (Table S1). Cell proliferation was
analyzed at 0, 24, 48, and 72 h. Proliferation was described in terms of proliferation rate ± SD of
viable cells, with respect to viable cells just before exposure to treatment (t = 0 h). This was measured
using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide or MTT assay (Sigma-Aldrich),
as previously described [61]. Optical densities at 540 nm were determined using a microplate
reader (ELx800 Microplate Reader, BioTek® Instruments, Winooski, VT, USA). All experiments were
performed in quadruplicate and repeated in three biological replicates.

4.8. In Vitro Wound Healing Assays

These experiments were performed as previously described [1]. Briefly, 25,000 RPCE culture cells
(20,000 in the case of HCE cells) were seeded per well in 96-well plates and left to form monolayers.
Once the cultures were synchronized by using DMEM:F12 with 1% BSA (Table S1) for 16 h, a circular
central epithelial defect was created using a tip. Wells were divided in groups depending on the
treatment (Table S1). After that, areas from which cells had been scraped away were photographed
every 12 h with a phase contrast microscope (Nikon Eclipse TS 100; Nikon, Tokyo, Japan) and the
images were acquired with the ProgRes CapturePro 2.6 software (Jenoptik, Jena, Germany). The size of
the denuded areas was quantified using ImageJ software (developed by Wayne Rasband at the Research
Services Branch, National Institute of Mental Health, Bethesda, MD). The closure rate was described
in terms of the mean remaining denuded area ± SD in square millimeters. All the experiments were
performed at least in quintuplicate (5 wells) and repeated in three biological replicates of RPCE and
HCE cultures. For wound healing experiments in HCE cells (with high proliferation capacity), cells
were previously treated with 10 µg/mL of mitomycin C for 3 h at 37 ◦C and washed three times with
PBS after that. Afterwards, HCE cells were separated from the well by using EDTA-trypsin, and then
seeded. In the case of RPCE cells, this step was not needed.

4.9. In Vivo Rabbit Corneal Re-Epithelialization Assays

Seventeen adult 2.0–2.5 kg female New Zealand white rabbits (33 eyes) were included in the
study. They were under diary observation to assess their welfare. Initially, each rabbit underwent
surgery in the right eye and the left eye was then operated on two to three weeks after the right eye
had recovered.

The corneal epithelium inside a 9-mm corneal trephine circular mark was scraped off with an
ophthalmic blade as previously described [1], without the limbal area being involved. Postoperatively,
until the epithelial closure was complete, every rabbit was treated twice a day with topical
dexamethasone and chloramphenicol (Deicol® ophthalmic ointment, Alcon laboratories, Barcelona,
Spain), diclofenac drops (Voltaren® drops, Allergan, Irvine, CA, OSA), and with one of the treatments
under study. Rabbits were randomized for each surgical intervention into one of the following four
groups: (1) PBS (control), (2) 90% s-PRGF, (3) 90% s-PRGF and 0.2% NaHA, and (4) 0.2% NaHA.
PBS was used for the dilution of treatments. In addition, the order in which the animals in the different
experimental groups were treated was randomized.
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To assess the size of the residual epithelial defect, the eyes were photographed with and without
fluorescein once a day, with a ruler placed in the same plane as the ocular surface, and always at the
same time of day. Wounded areas were measured using ImageJ software and results were expressed
as mean wound area ± SD in mm2. Rabbit eyes were also examined for signs of corneal inflammation
and neovascularization.

4.10. Immunocytochemistry and Histochemical Analysis

The positive staining for corneal epithelial markers of primary cultures was confirmed by
immunolabeling for CK3, CK15, and vimentin markers. Single cells were spin onto microscope
slides using a cytospin (Cytofuge; Fisher Scientific, Houston, TX, USA). Cells were fixed with 2%
paraformaldehyde (Table S2) and immunostaining was performed in the same manner as with tissue
sections (see below).

After both eyes of each animal had been operated on and followed-up; that is, 7 days after
surgery for the left eyes and 30 days after surgery for the right eyes, half of the corneas from each
treatment were fixed in 2% paraformaldehyde and posteriorly included in paraffin to perform H-E
staining. Tissue sections were observed with a phase contrast microscope (Nikon Eclipse TS 100)
and images were acquired with the ProgRes CapturePro 2.6 software. We evaluated the structural
integrity and histological characteristics of the cornea, as well as the regeneration of the epithelium
and cell infiltration.

The other half of the corneas from each treatment were included in OCT (Optimal Cutting
Temperature) compound (TissueTek®, Sakura Finetek, NL) and frozen below −80 ◦C. Tissue sections
of 10 µm were made with a Leica CM 3050S cryostat (Leica Biosystems, Barcelona, Spain) and stored
below −20 ◦C until immunofluorescent staining, according to conventional protocols. Briefly, sections
were fixed using 2% paraformaldehyde or acetone (Table S2) and permeabilized in the former case with
phosphate-buffered saline (PBS) solution containing 0.5% Triton X-100 (Sigma) for 10 min. To minimize
nonspecific signals, sections were incubated for an additional hour with blocking solution, consisting of
PBS containing 0.1% Triton X-100 (PBT) with 5% BSA and 10% FBS. After that, sections were incubated
at 4 ◦C overnight with the appropriate primary antibodies at the respective dilutions in blocking
solution (Table S2). After the sections were washed with phosphate-buffered saline, the samples were
incubated with Alexa Fluor secondary antibodies (Invitrogen) (Table S2) for 1 h at room temperature
and protected from light. The DNA specific dye DAPI (1 µg/mL, Sigma) was used to detect nuclei.
Finally, the sections were mounted with Fluoromount-g (Electron Microscopy Sciences, Hatfield, PA,
USA) and photographed with a fluorescence microscope (Zeiss, Göttingen, Germany).

4.11. Statistical Analysis

R program, version 3.4.0. (R Foundation for Statistical Computing, General Public License,
University of Auckland, New Zealand) was used to calculate means and standard deviations and
to perform statistical tests. To assess the statistical significance of two mean differences we used the
Wilcoxon rank sum test. For the statistical comparison of mean differences between treatments we
used the Kruskall–Wallis test and Dunn’s test with Bonferroni correction to Multiple Comparisons.
For qualitative variables we used the Chi-squared test and Fisher’s exact test. The Kaplan–Meier
estimator was also used to study the number of days that corneal epithelial defects took to heal
completely. Differences were considered statistically significant when p-values were <0.05.

5. Conclusions

In summary, we must bear in mind that the use of biopolymers associated with medications
in the eye has its limitations, since they can produce blurred vision after instillation for longer
than usual [62,63]. In addition, we have not found additional benefit in terms of in vivo corneal
epithelial wound healing when used in combination. Therefore, it is possible that the HA used in the
concentrations employed in clinical practice (0.1–0.4%) creates a shield that restricts the contact of the
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s-PRGF components with their receptors [25], or acts by seizing growth factors, instead of as a vehicle
that facilitates long-standing contact of growth factors with the ocular surface, making their combined
use have a worse effect than their use alone.

It is critical when evaluating the results of the combination of HA and PRP to perform different
tests in which different molecular weights and concentrations of the HA are studied (our HA has
200–400 kDa) with different concentrations and formulations of the PRP it is combined with [64].
In this sense, discrepancies are again found among authors who suggest that L-PRP (leukocyte-rich
PRP) has more anti-inflammatory and anabolic effects [65] and others that affirm the opposite [66].

On the other hand, HA is a necessary component of the limbal niche. HA has a very significant
role in the maintenance of the phenotype of the limbal progenitor cells [52], so damage to the HA that
forms the limbal niche produces an alteration in epithelial corneal regeneration. Similarly, PRP also
seems to maintain the undifferentiated phenotype of mesenchymal stem cells [67,68].

In addition, the combination of PRP and HA seems to favor the viability and proliferation of
mesenchymal stem cells [69]. However, it remains to be demonstrated that the combination of PRP with
HA is superior to the use of each of the treatments separately in the maintenance of the undifferentiated
phenotype of the corneal scleral limbal cells.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/7/
1655/s1.
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