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Orbital magneto-optical response of periodic insulators from
first principles
Irina V. Lebedeva 1, David A. Strubbe2, Ilya V. Tokatly1,3,4 and Angel Rubio1,5

Magneto-optical response, i.e. optical response in the presence of a magnetic field, is commonly used for characterization of
materials and in optical communications. However, quantum mechanical description of electric and magnetic fields in crystals is
not straightforward as the position operator is ill defined. We present a reformulation of the density matrix perturbation theory for
time-dependent electromagnetic fields under periodic boundary conditions, which allows us to treat the orbital magneto-optical
response of solids at the ab initio level. The efficiency of the computational scheme proposed is comparable to standard linear-
response calculations of absorption spectra and the results of tests for molecules and solids agree with the available experimental
data. A clear signature of the valley Zeeman effect is revealed in the continuum magneto-optical spectrum of a single layer of
hexagonal boron nitride. The present formalism opens the path towards the study of magneto-optical effects in strongly driven
low-dimensional systems.
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INTRODUCTION
Magneto-optical phenomena originating from the loss of sym-
metry between left and right circularly polarized light in the
presence of a magnetic field are widely used for characterization
of different kinds of matter.1,2 Magnetic circular dichroism (MCD)
spectra help to assign overlapping bands and give insight into
magnetic properties of the ground and excited states. Faraday
rotation of the plane of polarization of linearly polarized light
serves as a basic operational principle for functional magneto-
optical disks and optical isolators.3 Optical excitations in the
presence of a magnetic field allow manipulation of valley
pseudospin degrees of freedom in two-dimensional mono-
layers.4–9 Giant Faraday rotation has been revealed in graphene10

and metal oxide nanosheets.11 These advances cultivate the
growing interest to development of a gauge-invariant and
computationally efficient ab initio theory of magneto-optical
response.
Although ab initio calculations of MCD spectra in molecules can

be performed nowadays in a nearly routine fashion12–16 (as
implemented in quantum chemistry codes17,18), the complete
response theory for extended systems is still under development.
The reason is that external electromagnetic fields break the
translational symmetry of such systems, which in the formal way is
expressed through unboundness of the position operator.
Although according to the modern theory of polarization,19–21

the position operator can be replaced by a derivative with respect
to the wave vector in responses to electric fields, the description
of magnetic fields is more complicated as it introduces vector
coupling to electron dynamics and leads to non-perturbative
changes in wavefunctions. Three approaches have been consid-
ered in literature to deal with these difficulties: (1) taking a long-

wavelength limit of an oscillating perturbation,22,23 (2) using the
Wannier function formalism24–27, or (3) treating perturbations of
the one-particle Green function or one-particle density matrix,27–29

which are two-point quantities summed up over all occupied
bands and having periodic and gauge-invariant counterparts.
Although wave functions in the presence of even a very small
magnetic field differ drastically from those in the absence of the
magnetic field (a plane wave for a free electron and a localized
Landau level state for an electron in the magnetic field can be
considered as an example), the gauge-invariant counterpart of the
density matrix changes perturbatively.27–29 In approach (1), proper
sum rules30,31 should be taken into account to control numerical
errors arising upon summing up non-gauge-invariant paramag-
netic and diamagnetic terms. In approach (3), such a numerical
noise is supressed automatically. Approach (3) also allows us to
work under purely periodic boundary conditions as opposed to
approach (2), where contributions of open boundaries should be
treated carefully.24–26

So far the magnetic field has been considered in the context of
static responses.22–29 In the present paper we demonstrate that
density matrix perturbation theory27,29,32 can be extended to the
case of dynamic non-linear phenomena. We focus on second-
order magneto-optical effects, i.e., the change of the optical
response in the presence of a magnetic field. Although the
approach developed here is general and can be adapted to any
first-principles framework, we decide to illustrate it using time-
dependent density functional theory (TDDFT).33,34 This method
provides a satisfactory level of accuracy at a moderate computa-
tional cost and has been widely employed in literature for
magneto-optical response of molecules.12–16 The account of
excitonic effects in the transverse optical response of solids,
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however, is not straightforward within TDDFT and is performed
here using the approach derived in ref. 35 from time-dependent
current density functional theory (TDCDFT).
The procedures for solids implemented for the present paper

form a part of the open-source code Octopus.36–38 For the sake of
simplicity, we limit our consideration to orbital magneto-optical
effects for insulators. Although the spin contribution is trivial, the
account of the Fermi surface contribution can be done for metals
by analogy with ref. 23.
In the following, we derive the equations implemented,

describe the computational scheme, give the expressions for
magneto-optial properties measured experimentally, and finally
discuss the results of calculations for molecules and solids.

RESULTS AND DISCUSSION
One-particle density matrix in electromagnetic fields
Let us consider the response to uniform magnetic and electric
fields. We use the temporal gauge, in which both of these fields
are described by the vector potential A and are given by B=∇ ×
A and E=−c−1∂tA, respectively, where c is the speed of light
(atomic units are used throughout the paper). Though the fields
are uniform, the vector potential A entering in the Hamiltonian H
is non-periodic. This gives rise to ill-defined expectation values of
quantum mechanical operators describing physical properties of
the system in the periodic basis. However, it turns out that for any
operator O ¼ Or1r2 defined for two points r1 and r2 in real space it
is possible to distinguish the periodic and gauge-invariant
counterpart ~O ¼ ~Or1r2 by factoring out the Aharonov–Bohm-type
phase27–29

φ12 ¼ �c�1
Z r1

r2
AðrÞdr (1)

so that

Or1r2 ¼ ~Or1r2exp iφ12ð Þ: (2)

Here we take ħ= e= 1 and the integral is taken along the straight
line between points r2 and r1 so that r= r2+ (r1− r2)ξ, 0 ≤ ξ ≤ 1.
This approach was previously used to derive corrections to the

gauge-invariant counterpart ~ρ of the one-particle density matrix ρ
in the static magnetic field.27,29 In the present paper, we
generalize these derivations to the case of time-dependent
electromagnetic fields by rewriting the time-dependent Liouville
equation

�i∂tρþ ½H; ρ� ¼ 0 (3)

in terms of ~ρ. Here and below the commutator of two operators
Oð1Þ and Oð2Þ is introduced as

½Oð1Þ;Oð2Þ�r1r3 ¼
Z

dr2 Oð1Þ
r1r2Oð2Þ

r2r3 �Oð2Þ
r1r2Oð1Þ

r2r3

� �
: (4)

Using Eq. (2) for the relation between ~ρ and ρ in real space, the
time-dependent Liouville Eq. (3) gives

�ieiφ13 ∂t þ i∂tφ13ð Þ~ρr1r3 ¼
Z

dr2eiðφ12þφ23Þ ~ρr1r2
~Hr2r3 � ~Hr1r2~ρr2r3

� �
:

(5)

It should be noted that ~H ¼ H0 þ δ~H, where the difference δ~H
between the gauge-invariant counterpart ~H of the Hamiltonian
and unperturbed Hamiltonian H0 is related to the local-field effects
coming from changes in the electron density induced by the
external fields and corresponds to the variation of Hartree and
exchange-correlation potentials in TDDFT (see page 1 of
Supplementary information).

Eq. (5) is equivalent to

�i ∂t þ i∂tφ13ð Þ~ρr1r3 ¼
Z

dr2eiφ123 ~ρr1r2
~Hr2r3 � ~Hr1r2~ρr2r3

� �
; (6)

where φ123= φ12+ φ23+ φ31.
This phase corresponds to the flux of the magnetic field

through the triangle formed by points r1, r2 and r3:

φ123 ¼ 1
2c B � r1 � r2ð Þ ´ r2 � r3ð Þ: (7)

The time derivative of the phase φ13 on the left-hand side of Eq.
(6) introduces the electric field

∂tφ13 ¼ E � r1 � r3ð Þ: (8)

Combining Eqs. (6)–(8), we arrive at

�i ∂t þ iE � r1 � r3ð Þð Þ~ρr1r3 ¼
R
dr2eiB� r1�r2ð Þ ´ r2�r3ð Þ=2c

� ~ρr1r2 ~Hr2r3 � ~Hr1r2~ρr2r3
� �

:
(9)

This expression is gauge-invariant and includes all corrections to
time-dependent electric and magnetic fields. Therefore, it can be
used to derive expressions for responses of any order to
electromagnetic fields.
To describe magneto-optical effects on the basis of Eq. (9), we

assume that E corresponds to the oscillating electric field of the
electromagnetic wave and B to the static magnetic field applied.
The magnetic field of the electromagnetic wave is neglected. We,
therefore, consider only the first-order corrections in E, B, and E×B.
Keeping only the terms to the first order in the magnetic field is
reasonable even for strong magnetic fields B � c=a2 � 105 T,
where a= 1 Å is taken as a typical interatomic distance.
Eq. (9) for the density matrix then takes the form

�i∂t~ρr1r3 �
R
dr2 � ~ρr1r2

~Hr2r3 � ~Hr1r2~ρr2r3
� �

¼ �E � r1 � r3ð Þ~ρr1r3
þ i

2c

R
dr2B � r1 � r2ð Þ ´ r2 � r3ð Þ

� ~ρr1r2 ~Hr2r3 � ~Hr1r2~ρr2r3
� �

:

(10)

Using that Or1r2 r1 � r2ð Þ ¼ ½r;O�r1r2 and introducing notations
for the anticommutator of two operators Oð1Þ and Oð2Þ

Oð1Þ;Oð2Þ
n o

r1r3
¼

Z
dr2 Oð1Þ

r1r2Oð2Þ
r2r3 þOð2Þ

r1r2Oð1Þ
r2r3

� �
(11)

and velocity operator V=�i½r; ~H� computed with account of all
non-local contributions to the Hamiltonian, such as from non-local
pseudopotentials, Eq. (10) can be finally rewritten as

�i∂t~ρþ ~H; ~ρ
� � ¼ � 1

2
Eþ 1

c
V ´B; r; ~ρ½ �

� 	
: (12)

This is simply the quantum Bolzmann equation with the Lorentz
driving force on the right-hand side. Unlike the singular position
operator r, the commutator ½r; ~ρ� of the position operator with the
periodic function ~ρ is well defined here and can be substituted by
the derivative with respect to the wave vector, i∂kρk, in reciprocal
space.27–29

Moving the term coming from the local-field effects to the
right-hand side,

�i∂t~ρþ H0; ~ρ½ � ¼ � 1
2

Eþ 1
c
V ´B; ½r; ~ρ�

� 	
� ½δ~H; ~ρ�; (13)

we get all terms dependent on the external fields on the right-
hand side of the equation. Differentiating the Liouville Eq. (13),
one can evaluate the derivatives of the density matrix ~ρðPÞ ¼
∂~ρ=∂P with respect to perturbations P of parameters of the
Hamiltonian, such as the electric field E or magnetic field B.
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Numerical solution of Liouville equation
In the following, we consider solution of the Liouville Eq. (13)
within TDDFT, i.e. assuming that ρ is the Kohn–Sham density
matrix and H is the Kohn–Sham Hamiltonian. The same Liouville
equation, however, describes magneto-optical effects in any other
first-principles framework and a similar computational scheme can
be used.
From the computational point of view, it is convenient to divide

the nth order derivative ~ρðPÞ of the density matrix describing the
joint response to the perturbations P= P1P2...Pn into four blocks
within and between the occupied (V) and unoccupied
subspaces (C):

~ρðPÞ ¼ ~ρ
ðPÞ
VV þ ~ρ

ðPÞ
CC þ ~ρ

ðPÞ
VC þ ~ρ

ðPÞ
CV : (14)

These blocks correspond to ~ρ
ðPÞ
VV ¼ Pv~ρðPÞPv , ~ρ

ðPÞ
CC ¼ Pc~ρðPÞPc ,

~ρ
ðPÞ
VC ¼ Pv~ρðPÞPc , and ~ρ

ðPÞ
CV ¼ Pc~ρðPÞPv , where Pv= ρ(0) and Pc= 1−

Pv are the projectors onto the occupied and unoccupied bands.
Following the density matrix perturbation theory,32 to get the

elements of the derivative of the density matrix ~ρ
ðPÞ
CV between the

unoccupied and occupied subspaces, we project the Liouville

Eq. (13) onto unperturbed Kohn–Sham wavefunctions ψ
ð0Þ
vk





E

of

occupied bands v:

LvkðΩÞ ηðPÞvk





E
¼ PcR

ðPÞ ~ρðn�1Þ; ¼ ; ρð0Þ; nðPÞ
h i

ψ
ð0Þ
vk





E
: (15)

Here the operator on the left-hand side is given by
LvkðΩÞ ¼ Ωþ H0 � ϵvk , where Ω is frequency considered and ϵvk

is the energy of the unperturbed state ψ
ð0Þ
vk





E
. The operator R on

the right-hand side includes all terms dependent on the
perturbation P coming from the right-hand side of Eq. (13) and
is determined by the derivatives of the density matrix of the
previous orders (see equations for each type of perturbation on pages
1–3 of Supplementary information). If the local-field effects are taken
into account, it also depends on the derivative of the electron density
n(P) to the perturbation P, n(P)(r1)= ρ (P)(r1, r2)δ(r1− r2) (see page 1 of
Supplementary information).
The solution of Eq. (15) corresponds to

η
ðPÞ
vk ðΩÞ





E
¼ Pc~ρðPÞðΩÞ ψð0Þ

vk





E
¼ ~ρ

ðPÞ
CV ðΩÞ ψð0Þ

vk





E

(16)

and once it is known, the elements ~ρ
ðPÞ
CV of the derivative of the

density matrix between unoccupied and occupied subspaces can
be computed as

~ρ
ðPÞ
CV ðΩÞ ¼

R
BZ

dk
ð2πÞ3

P
v

η
ðPÞ
vk ðΩÞ





E

ψ
ð0Þ
vk

D 


: (17)

The elements between the occupied and unoccupied subspaces

can be found as ~ρðPÞVC ðΩÞ ¼ ~ρ
ðPÞ
CV �Ω�ð Þ

� ��
and to obtain them, Eq.

(15) should be also solved for the frequency �Ω� . If the local-field
effects are taken into account, Eq. (15) has to be solved self-
consistently as the derivative ~ρðPÞ of the density matrix determines
the derivative of the electron density n(P), which enters on the
right-hand side of Eq. (15).
Solution of Eq. (15) is performed in the present paper using the

efficient Sternheimer approach,38–41 which corresponds to the
iterative search of the function jηðPÞvk ðΩÞi that fits into this equation
at each frequency Ω. Other approaches, such as sum over states,15

methods based on Casida’s equation,15,16 complex polarization
propagator12,13, and real-time propagation14 have been used to
compute absorption and magneto-optical spectra of molecules.
The sum over states, Casida’s equation42 and complex polarization
propagator,43,44 however, require inclusion of many well con-
verged unoccupied states. Such calculations are not feasible for
large systems, where too many KS states should be computed.
They also fail to describe properly high-energy excitations due to

poor convergence of the corresponding KS states. Casida’s
equation42 furthermore relies on the use of real wavefunctions
and cannot be straightforwardly extended to solids, where KS
states are complex.
Neither Sternheimer approach,38–41 nor real-time propagation14

need calculation of unoccupied states. They also have a favorable
scaling of O(N2) with the system size N as compared, for example, to
O(N3) for the sum over states (refs 14,39,40). The advantage of the real-
time propagation is that it makes possible calculation of responses
for all frequencies at once. However, long propagation times are
required to achieve a good resolution. The Sternheimer approach is
more appropriate for computing the spectra in a narrow frequency
region with a high resolution. The calculations for different
frequencies can be performed in parallel. Most importantly, it is
ideally suited for implementation of the density matrix perturbation
theory considered in the present paper (see Eq. (15)).
A small but finite imaginary frequency δ is added to the

frequency Ω0 of the external perturbation to avoid divergences at
resonances38–41,43,44 so that Ω=Ω0+ iδ. This imaginary frequency
δ determines the linewidth in the calculated spectra.
To find the derivatives to the density matrix within the

occupied, ~ρ
ðPÞ
VV , and unoccupied, ~ρ

ðPÞ
CC , subspaces, one can, in

principle, also look for solution of the Liouville Eq. (12). However,
in the case when the density matrix is idempotent, like the
Kohn–Sham density matrix, the solution can be found explicitly
from the idempotency condition, ρ= ρρ, and this reduces
considerably the computational cost. The idempotency condition
in terms of the periodic counterpart ~ρ of the density matrix and to
the first order in the magnetic field can be written as27,29

~ρ ¼ ~ρ~ρþ i
2c

B � ½r; ~ρ� ´ ½r; ~ρ�: (18)

The commutator ½r; ~ρ� corresponding to i∂k~ρk in reciprocal space
is determined in the present paper within the k·p theory38,40,41

(see equations on pages 2 and 3 Supplementary information).
The polarizability α0νμ in the absence of the magnetic field and

the contribution ανμ,γ to the polarizability in the presence of the
magnetic field (ανμ= α0νμ+ ανμ,γBγ) are obtained from the current
response as

α0νμðΩÞ ¼ i
Ω Tr Vν~ρ

ðEμÞðΩÞ� �
(19)

and

ανμ;γðΩÞ ¼ i
Ω Tr Vν~ρ

EμBγð ÞðΩÞ
h i

: (20)

These polarizabilies can be used to compute the experimentally
measurable physical properties as described below.

Experimentally measured properties
The capacity of the system to absorb light is characterized using
absorbance A=−log(I/I0), which is defined through the ratio of
intensities of the incident, I0, and transmitted light, I. The
magnitudes of the electric field vectors in the transmitted, E,
and incident light, E0, at frequency Ω0 are related as E= E0 exp
(−n′Ω0l/c), where n′ is the imaginary part of the refractive index n′
= Im n and l is the distance passed by the light through the
sample studied. Since I ~ E2, it can be stated that

A ¼ 2n0Ω0 l
c ln 10 : (21)

The difference in the absorbance of the left (+) and right (−)
circularly polarized light corresponds to the MCD response and is
determined by the difference in the refractive indices n0þ � n0� for
these two light components:

ΔA ¼ Aþ � A� ¼ 2 n0þ� n0�ð ÞΩ0 l
c ln 10 : (22)

The refractive index n is determined by the equation

ϵνμEμ ¼ n2Eμ; (23)
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where ϵνμ is the dielectric tensor. For crystals, the dielectric tensor
is related to the electric susceptibility χνμ as

ϵνμ ¼ δνμ þ 4πχνμ: (24)

The latter corresponds to the polarizability per unit volume so that
χνμ= ανμ/w, where w is the unit cell volume and ανμ is given by
Eqs. (19) and (20).
In the case when the light propagation takes place along the

optical axis z and no birefingence is observed, the refractive index
in the absence of the magnetic field is equal to n0 ¼ ϵ1=2xx ¼ ϵ1=2yy .
The magnetic field provides just a small correction to this
refractive index and it can be shown from Eqs. (23) and (24)
(see pages 5 and 6 of Supplementary information) that

n± � n0 � ± i
2πχxy
n0

: (25)

Using Eq. (22), the difference in the absorbance of the left and
right circularly polarized light can be found as

ΔAz ¼ 4πΩ0 l
c ln 10 Re

χxy ðΩÞ�χyxðΩÞ
n0

h i
: (26)

Note that ellipticity θ= (E+− E−)/(E++ E−) gained by the
linearly polarized light is different just by a numerical coefficient
θ= ΔAz (ln 10)/4. The angle of Faraday rotation is determined by a
similar expression as θ but with the imaginary part of χνμ instead
of the real one1 (see page 5 of Supplementary information). In
contrast, in the magneto-optical polar Kerr effect for reflected
light, the ellipticity and angle of rotation are determined by Im χνμ
and Re χνμ, respectively.

2

For molecules, the measurements are usually performed for a
small concentration of randomly oriented molecules immersed
into a transparent solvent or in vacuum. In this case, the total
dielectric tensor of the medium can be presented as

ϵνμ ¼ n2Sδνμ þ 4πανμN; (27)

where δνμ is the Kronecker delta, nS is the refractive index of the
solvent or vacuum, ανμ is the orientationally averaged

polarizabiltiy of the molecules and N is their number density.
The orientationally averaged polarizability is given by

ανμ ¼ 1
3 α0aaδνμ þ 1

6 Beabcαab;ceνμ; (28)

where eνμ and eabc are the Levi-Civita tensors of the second and
third order, respectively, and the polarizabilities α0aa and αab,c are
computed from Eqs. (19) and (20) considering internal molecular
axes.
For molecules, it is common to use molar extinction coefficients

ϵ ¼ A=Cl, i.e., absorbance per unit length and molar concentration.
The molar concentration C in this expression is related to the
number density as C= N/NA, where NA is the Avogadro constant.
Taking into account that the concentration of the molecules is
small, the refractive index in the absence of the magnetic field
becomes approximately n0 ≈ nS+ 2πNα0aa/(3nS) and this gives the
molar extinction coefficient

ϵ ¼ 4πΩ0NA
3nSc ln 10

Im α0aa: (29)

The refractive indices for the left and right circularly polarized
light can be correspondingly expressed as

n± � n0 � ± i πNB3nS
eabcαab;c: (30)

The difference Δϵ in the molar extinction coefficients for the left
and right circularly polarized light per unit magnetic field can,
therefore, be found as

Δϵ ¼ ΔA
BCl ¼ 4πNA

3nSc ln 10
eabcRe αab;c: (31)

The formalism for calculation of the magneto-optical response
proposed in the present paper and expressions for the physical
properties listed above have been implemented in the Octopus
code.36–38 The results of the tests for molecules and solids are
presented below.

Fig. 1 Molar extinction coefficient ϵ (a, c, in M−1 cm−1) and difference Δϵ in the molar extinction coefficients for the left and right circularly
polarized light per unit magnetic field (b, d, in M−1 cm−1 T−1) for adenine (a, b, δ ¼ 0:05 eV) and cyclopropane (c and d, δ ¼ 0:02 eV) as
functions of the frequency of light Ω0 (in eV) calculated using the present solid-state formalism (solid blue lines) and standard finite-system
formulation (red dashed lines). The corresponding curves are virtually indistinguishable. The results obtained in the finite-system formulation
for linewidths δ ¼ 0:1 eV and δ ¼ 0:2 eV are shown by magenta dash-dotted lines and green-dotted lines, respectively. The experimental data
for adenine46 in water and cyclopropane47 in the gas phase are represented by circles. To show the results for different linewidths and
experimental data on the same scale, the following scaling factors are introduced: 2, 1, and 1/2 for the linewidths of 0.2, 0.1, and 0.05 eV for
the absorption and MCD spectra of adenine, 1, 1/2, and 1/10 for the linewidths of 0.2, 0.1, and 0.02 eV for the absorption spectra of
cyclopropane and 1, 1/2, and 1/20, respectively, for the MCD spectra of cyclopropane. In the calculations for adenine, the refractive index of
water is taken equal to 1.35 (ref. 65). The parts of the spectra shown lie below the ionization potential at zero temperature (6.7 and 9.4 eV for
adenine and cyclopropane, respectively, according to our calculations). Carbon, hydrogen, and nitrogen atoms in the atomistic structures are
colored in gray, white, and blue, respectively. The inset shows the first MCD peak of cyclopropane
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Results of calculations for molecules
First the tests of the developed formalism were performed for
molecules (Fig. 1) in a large simulation box with periodic boundary
conditions. Traditionally, the MCD response of molecules is
divided into A and B terms (see equations on pages 4 and 5 of
Supplementary information). The B term12,14,15 comes from
perturbations of molecular states in the magnetic field and is
present in all systems. The A term12,14,16 comes from perturba-
tions of energies of excited states with non-zero orbital angular
momenta. Such states are present only in molecules with
rotational symmetry at least of the third order. As transitions to
states with opposite orbital angular momenta are coupled to the
light of different polarization, Zeeman splitting leads to an energy
shift between absorption peaks for the left and right circularly
polarized light. The MCD response in this case is described by the
derivative of the spectral density15,16 and has second-order poles.
To check that both A and B terms are well described within the

developed formalism, we have performed the calculations for
adenine and cyclopropane (Fig. 1). Adenine is not symmetric and
only the B term contributes to the magneto-optical response.
Although we use the simplest local-density approximation (LDA)45

for the exchange-correlation contribution to the electron energy
and adiabatic approximation (ALDA) for the response, we find that
the changes in the sign of the MCD signal for adenine are properly
described as compared to the experimental data46 (Fig. 1b). The
magnitudes of the peaks for the simple optical absorption and the
B term of the magneto-optical response scale inversely propor-
tional to the linewidth, which is an input parameter of our
calculations. Using a reasonable linewidth of δ= 0.1 eV, we get
the absorption (Fig. 1a) and MCD (Fig. 1b) spectra with the
magnitude of the peaks comparable to the experimental ones.
Cyclopropane has a rotational symmetry of the third order and

its magneto-optical response has both A and B contributions. We
find that the A term is clearly dominant for cyclopropane at
linewidth δ= 0.02 eV (Fig. 1d), in agreement with previous
calculations12. However, the A and B terms scale differently with
the linewidth. B term is inversely proportional to the linewidth,
while the A is inversely proportional to square of the linewidth.
Therefore, raising the linewidth to the experimental values of δ=
0.1–0.2 eV decreases the A term relative to the B term. For these
linewidths, the shapes of the calculated curves and the
magnitudes of the peaks approach the experimental ones47 (Fig.
1c, d).
The calculations for the molecules (Fig. 1) demonstrate that the

present formalism gives the results indistinguishable from the
formulation using the position operator r (see page 4 of
Supplementary information), which is commonly applied in
literature for finite systems.12–16

Results of calculations for solids
To test the developed formalism for solids we have applied it to
bulk silicon and a monolayer of hexagonal boron nitride. For these
periodic systems, we set the linewidth at δ= 0.1 eV, which is
sufficient to resolve the important features of the spectra. As we
use LDA for our test calculations, the excitation energies are
systematically underestimated. To adjust the position of the peaks
we apply the scissor operator, i.e., rigidly shift the spectra, to
include the correction to the band gap known from GW
calculations.48–50 It should be, nevertheless, emphasized that the
same code can be used with more advanced functionals like
hybrid ones, which provide an improved description of the
excitation energies. The approach can be also straightforwardly
translated into the many-body framework.
Although account of local-field effects through Eq. (13) even

within the simplest ALDA approximation is very important for
molecules, for silicon and boron nitride, such adiabatic effects
provide a minor correction to the spectra (see Fig. 2 of

Supplementary information). The account of long-range exchange
and correlation interactions in solids is, on the other hand, crucial
for description of excitons. To take them into account we follow
the approach proposed in ref. 35 in the TDCDFT framework. In this
approach, non-adiabatic local-field effects are introduced through
the exchange-correlation electric field

ExcmacðΩÞ ¼ iΩ
w

R
w dr

R
dr0 f̂xcðr; r0;ΩÞδjðr0;ΩÞ; (32)

where tensor f̂xcðr; r0;ΩÞ is the TDCDFT exchange-correlation
kernel and δj(r′, Ω) is the induced current density. This field
together with the macroscopic electric field Emac gives the
macroscopic Kohn–Sham electric field EKSmac ¼ Emac þ Excmac.
The macroscopic polarization

PmacðΩÞ ¼ �i
Ωw

R
w drδjð~r;ΩÞ; (33)

is related to the macroscopic Kohn–Sham electric field EKSmac
through the Kohn–Sham electric susceptibility tensor χ̂KS and to
the macroscopic electric field Emac through the net susceptibility
tensor χ̂:

PmacðΩÞ ¼ χ̂KSðΩÞ EmacðΩÞ þ ExcmacðΩÞ
� �

¼ χ̂ðΩÞEmacðΩÞ
(34)

Neglecting microscopic current components in Eq. (32), i.e.,
replacing the induced current density δjð~r0;ΩÞ by its unit cell
average, and using Eq. (33), the exchange-correlation electric field
is written as

ExcmacðΩÞ ¼ β̂ðΩÞPmacðΩÞ; (35)

where

β̂ðΩÞ ¼ � Ω2

w

R
w dr

R
dr0 f̂xcðr; r0;ΩÞ: (36)

Substitution of Eq. (35) into Eq. (34) gives

1
χ̂ðΩÞ ¼ 1

χ̂KSðΩÞ � β̂ðΩÞ: (37)

In the simplest case, β̂ can be assumed static and isotropic, i.e.
βνμ= βδνμ. Then the longitudial and transverse components of the
electric susceptibility tensor are given by

χxxðΩÞ ¼ χKSxx
1�βχKSxx ðΩÞ (38)

and

χxyðΩÞ � χKSxy

1�βχKSxx ðΩÞð Þ 1�βχKSyy ðΩÞð Þ ; (39)

respectively. In these expressions, we neglect the terms of the
second order in the transverse components of χ̂KS.
It should be noted that Eq. (38) for the longitudinal response is

equivalent to the head term of the long-range contribution (LRC)
to the exchange-correlation kernel48,49,51 in TDDFT, which
corresponds to f ðLRCÞxc ðqÞ ¼ �β=q2 in reciprocal space. However,
the latter model does not describe properly the transverse
response. Eq. (39) gives an adequate expression for the transverse
response thanks to the tensorial nature of the exchange-
correlation kernel f̂xcðr; r0;ΩÞ in the TDCDFT framework.
Let us first discuss the results for bulk silicon (Fig. 2). Figure 2b

shows that the spectra Re=Im ϵxy for the transverse component of
the dielectric tensor calculated even without account of excitonic
effects follow qualitatively the shapes of the experimental curves2

at the direct absorption edge. The analysis of optical transitions at
the Γ point of the Brillouin zone, where the highest valence and
lowest conduction bands are formed by triply degenerate p-like
states (Γ025 and Γ15, respectively),

52 reveals significant contributions
that can be attributed to the A term (Fig. 2d). Two inequivalent
contributions come from excitations with the change in the
magnetic quantum number lz from 0 to ±1 and vice versa. The
ratio ϵxy=ϵxx for each of them at the resonance frequency
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characterizes the relative frequency shift in the magnetic field
ϵxy
ϵxx

� ΔmzBzΔlz
δ ; (40)

where Δmz is the change in the orbital magnetic dipole moment
and Δlz is the change of the magnetic quantum number (see
explanation on page 5 of Supplementary information). Corre-
spondingly, we can estimate the effective g-factors g=−Δmz/
μBΔlz, where μB is the Bohr magneton, and they are found to be
g= 3.5 in Γ025 ! Γ15 transitons with lz= 0→ ±1 and g=−0.40 for
lz= ±1→ 0. Note that nearly the same values are obtained using
explicit expressions for the band magnetic dipole moments from
refs 23,53 (see page 4 of Supplementary information). Thus, unlike
absorption, transitions lz= 0→ ±1 prevail in the magneto-optical
response at the band edge. The domination of the A term is
consistent with the experiments, where Re=Im ϵxy (Fig. 2b) look
similar to derivatives of Im=Re ϵxx (Fig. 2a).
To model excitonic effects in silicon, we use Eq. (37) with β=

0.2. This value fulfils the empirical law β ¼ 4:615=ϵ1 � 0:213,
where ϵ1 is the static dielectric constant, derived for a set of
semiconductors with continuum excitons.48,49 The account of the
excitonic effects further improves agreement of the calculated
spectra for silicon with the experimental data (Fig. 2a, b).
It should be noted, however, that although the magnitudes of

peaks in the longitudinal component ϵxx of the dielectric tensor
agree very well with the experimental results,54 the magnitudes of
the peaks in the transverse component ϵxy are about a factor of
two smaller than in the magneto-optical measurements.2 As
discussed above for molecules, the magnitudes of peaks in
magneto-optical calculations are strongly dependent on the
linewidth assumed. The ratio of the magnitudes of peaks coming
from the A term and those corresponding to the simple
absorption scale inversely proportional to the linewidth (see Eq.
(40)). Therefore, agreement with the experimental magneto-
optical spectra should be improved once the linewidth in the
calculations is reduced. Fine-tuning of the linewidth is, however,
beyond the scope of the present paper.
In boron nitride (Fig. 3), the magneto-optical response of

continuum states starts from a prominent peak at the band edge

(Fig. 3b). In this material, the first optical transitions take place at
the K± points in the corners of the hexagonal Brillouin zone, where
phase winding of wavefunctions related to the C3 symmetry
imposes coupling to only one light component of the left (+) or
right (−) circular polarization.55–57 Accordingly, contributions to
the magneto-optical spectra from the K± points can be described
by a second-order pole (Fig. 3c). The map of contributions from
different k-points (Fig. 3d) shows that the response is mostly
provided by narrow regions in reciprocal space and the sign of the
response is opposite in two such regions. Therefore, it can be
concluded that the A term is dominant at the band edge of boron
nitride.
Clearly such a magneto-optical response is related to the valley

Zeeman effect.4–8 As the density of states in two-dimensional
materials tends to the Heaviside step function in the limit of zero
linewidth, the A term related to its derivative approaches a delta
peak. Thus, discrete peaks in continuum magneto-optical spectra
of two-dimensional materials are indicators of the Zeeman
splitting.
From the comparison of magneto-optical and optical spectra for

boron nitride, we estimate that the change of the magnetic dipole
moment upon the excitation at the K± points is Δm±

z � ∓ 1:8μB.
Explicit calculations of the magnetic dipole moments using
expressions from refs 23,53 give ∓0.95μB and ∓2.8μB for the
valence and conduction bands, respectively, which agrees very
well with our estimate. The valley g-factor for the edge of the
continuum spectrum according to our calculations is, therefore,
gvl ¼ �2Δmþ

z =μB ¼ 3:6.
Up to now we have neglected excitonic effects in boron nitride.

They, however, are known to be very strong.50 To describe the first
bound exciton in boron nitride we set the parameter β in Eq. (37)
at β= 17.5 to reproduce the binding energy of 1.4 eV that follows
from the Bethe–Salpeter calculations50 (Fig. 3a). The absorption
(Fig. 3a) and magneto-optical (Fig. 3b) spectra computed using
this parameter are very similar to those of symmetric molecules
like cyclopropane (Fig. 1c, d). The valley g-factor deduced from the
ratio Im ϵxy=Im ϵxx at the excitonic peak is ~1.8. It is, therefore,
reduced twice compared to the result for the edge of the

Fig. 2 Calculated components ϵxx a and ϵxy b of the dielectric tensor of silicon as functions of the frequency of light Ω0 (in eV) for the
magnetic field of 1 T along the z axis. The real and imaginary parts are shown by solid and dashed lines, respectively. The results obtained with
and without account of excitonic effects correspond to red and black lines, respectively. The calculated data are blue-shifted in energy by
0.7 eV to take into account the GW correction to the band gap.48,49 The experimental data from refs 2,54 for ϵxx and ϵxy are shown by symbols.
The experimental data for ϵxy are scaled by a factor of 1/2. Squares correspond to the real parts and circles to the imaginary ones. The
transitions at the Γ point of the Brillouin zone are indicated by the vertical gray line. Calculated contributions to Im ϵxx c and Im ϵxy d from the
Γ point: total contribution (triangles), contribution from all transitions Γ025 ! Γ15 to the A term (blue dashed lines) and contributions from
transitions Γ025 ! Γ15 with the magnetic quantum number lz ¼ 0 ! ±1 (green solid lines) and ±1 ! 0 (black dash-dotted lines) to the A term.
Total Re ϵxy is shown by diamonds
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continuum spectrum. To confirm our estimate, a photolumines-
cence experiment for boron nitride could be performed by
analogy with the measurements for WSe2 (refs 4–6) and MoSe2
(refs 6–8) monolayers (see page 7 of Supplementary information
for discussion of g-factors observed for these materials). It should
be noted that the qualitative shapes of the spectra computed with
account of the excitonic effects do not depend on the parameter β
used (see Fig. 3 of Supplementary information) and the valley g-
factor changes only by 30% in the interval of β from 10 to 20.
To summarize, in spite of simplifications made in the present

paper for the test calculations, the developed formalism gives
realistic results for the magneto-optical response. It provides a
unified description of finite and periodic systems and automati-
cally takes into account gauge invariance. Furthermore, it can be
straightforwardly extended to the case of higher-order responses
to arbitrary electromagnetic fields.
The efficiency of the implemented procedures for magneto-

optics is comparable to standard linear-response calculations of
polarizability in the absence of the magnetic field. When local-field
effects are included self-consistently, the calculations of magneto-
optical spectra for molecules take the same time as polarizability.
For solids, the responses at ±Ω0 ± iδ are needed for magneto-
optics as compared only to ±Ω0+ iδ for simple optics (see the
detailed explanation on pages 7 and 8 of Supplementary
information) and, therefore, the calculations of magneto-optical
spectra take twice as long as those of polarizability.

METHODS
The interaction of valence electrons with atomic cores is described using
Troullier-Martins norm-conserving pseudopotentials.58 For molecules, the
density-averaged self-interaction correction59 is applied to avoid spurious
transitions to diffuse excited states. The efficient conjugate-gradients
solver60 is used for the calculation of eigenstates with the tolerance of
10−10 and mixing parameter for the Kohn–Sham potential of 0.2 for
molecules and 0.1 for solids. The semiconducting smearing is applied. The
magnetic gauge correction from ref. 61 is added in calculations of
magneto-optical spectra of the molecules within the finite-system
formulation. The quasi-minimal residual (QMR) method62 (qmr_symmetric
and qmr_dotp for the molecules and solids, respectively) with the final
tolerance of 10−6 is used to solve linear equations for projections of

derivatives of the density matrix onto unperturbed wavefunctions (Eq.
(15)). The local-field effects in the ALDA approximation are taken into
account through a self-consistent iteration scheme similar to the ground-
state DFT.
For molecules, the size of the simulation box of 24 Å and the spacing of

the real-space grid of 0.14 Å are sufficient for convergence of the magneto-
optical spectra. Only the Γ point is used in this case. The geometry of the
molecules is optimized till the maximal residual force of 0.01 eV/Å using
the fast inertial relaxation engine (FIRE) algorithm.63 For boron nitride, we
consider the rectangular unit cell of 4.294 Å × 2.479 Å × 24.0 Å with four
atoms. For silicon, the cubic unit cell of 5.38 Å size with 8 atoms is studied
and the grid spacing is increased to 0.25 Å. Integration over the Brillouin
zone is performed according to the Monkhorst-Pack method.64 Time-
reversal and crystal symmetries are taken into account to reduce the
number of k-points considered. To take into account time-reversal
symmetry, the average of the polarizabilities at frequencies Ω and −Ω is
computed for irreducible k-points. Three thousand irreducible k-points are
needed for convergence of the magneto-optical spectra for boron nitride
and 6600 for silicon and these are achieved using shifted k-point grids (see
the results of calculations using different k-point grids in Figs. 1 and 2 of
Supplementary information).

Code availability
Our implementation is available through the development version of the
Octopus code at https://gitlab.com/octopus-code/octopus.git and will be
available in future releases at https://octopus-code.org. The code is
provided under the GNU General Public License. The manual and tutorials
can be found at https://octopus-code.org.

DATA AVAILABILITY
The datasets generated during the current study are available in the Mendeley Data
and NOMAD repositories, https://doi.org/10.17632/749ztg4c9r.1 and https://doi.org/
10.17172/NOMAD/2019.02.13-1, respectively.
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Fig. 3 Calculated components ϵxx a and ϵxy b of the dielectric tensor of boron nitride monolayer as functions of the frequency of light Ω0 (in
eV) for the magnetic field of 1 T along the z axis directed out of the plane. The real and imaginary parts are represented by solid and dashed
lines, respectively. The results obtained with and without account of excitonic effects correspond to red and black lines, respectively. The data
for ϵxx and ϵxy obtained with account of excitonic effects are multiplied by 1/10 and 1/50, respectively, to show all the results on the same
scale. The calculated data are blue-shifted in energy by 2.6 eV to take into account the GW correction to the band gap50. The transitions at the
K and M points of the Brillouin zone are indicated by vertical gray lines. Boron and nitrogen atoms in the atomistic structure are colored in
magenta and blue, respectively. c Calculated contributions to ϵxx (black lines) and ϵxy (blue lines) from the K points of the Brillouin zone.
d Calculated contributions to Re ϵxy ´ 103 from different points (kx, ky, 0) (in Å−1) of the Brillouin zone of the 4-atom cell for Ω0= 7.8 eV
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