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A continued fraction based 
approach for the two-photon 
Quantum Rabi Model
elena Lupo1,2, Anna Napoli1,3, Antonino Messina3,4, Enrique solano5,6,7 & Íñigo L. Egusquiza  8

We study the two photon Quantum Rabi Model by way of its spectral functions and survival 
probabilities. This approach allows numerical precision with large truncation numbers, and thus 
exploration of the spectral collapse. We provide independent checks and calibration of the numerical 
results by studying an exactly solvable case and comparing the essential qualitative structure of the 
spectral functions. We stress that the large time limit of the survival probability provides us with an 
indicator of spectral collapse, and propose a technique for the detection of this signal in the current and 
upcoming quantum simulations of the model.

The Quantum Rabi Model (QRM) and the Two-Photon Quantum Rabi Model (2γQRM) represent two basic 
models for the description of the interaction of light and matter. The first one describes a two-level system bilin-
early coupled to a quantized bosonic field mode; 2γQRM is one of its simplest generalizations, in which the 
interaction term is now quadratic in the annihilation and creation bosonic operators. The bilinear QRM for 
light-matter interaction appeared more than 80 years ago1–3. Yet interest in this model has never waned and, 
rather, it has even grown recently. This growth mainly stems from its potential application to platforms used for 
quantum technologies4. The QRM depends on two independent parameters, and the dynamical properties of 
the atom mode are qualitatively very different in different regions of the parameter space. Most of the experi-
mental Cavity Quantum Electrodynamics (CQED) setups are characterized by physical conditions inside the 
weak-coupling regime, in which the Quantum Rabi model can be effectively simplified to the exactly treatable 
Jaynes-Cummings model. So as to best describe new, more advanced quantum devices, such as superconducting 
circuits or trapped ions systems, for instance, the description of the QRM must be extended to the appropriate 
regions of the parameter space, for which the Jaynes-Cummings approximation fails.

Alternatively, one can view these newer platforms as ‘Quantum Simulators’5–7, in which one can realize models 
that had been previously discarded as ‘unphysical’. In fact, coupling constant values much higher than the ones 
typical of CQED setups have been measured in the last years, even reaching the so-called Ultrastrong Coupling 
(USC, ω ω.  g0 1 ) and the Deep Strong Coupling (DSC, ωg ) regimes in the context of circuit Quantum 
Electrodynamics cQED8–10.

In this vein of Quantum Simulation, other possibilities have appeared. For instance, the interaction 
Hamiltonian for trapped ions is non-linear, thus allowing this system to be exploited in order to investigate the 
dynamics of various QRM generalizations7,11. For these reasons, the interest in the QRM and its variants has been 
rekindled, and a strong effort to construct their solutions and to clarify the relative dynamical properties is under 
way12–18. A major role in these new developments has been played by the analytic solutions of the QRM, found 
first in 201115 and based on its representation in the Bargmann space of the holomorphic functions19. Other 
approaches, exploiting a suitable Bogoliubov transformation17, or an expansion in the basis of Heun functions, 
have also been proposed20,21.

Among the many generalizations of the QRM, the Two-photon Quantum Rabi Model (2γQRM) is of particu-
lar interest. It was introduced as an effective model for a three-level system interacting with a bosonic mode in 
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which the intermediate level can be adiabatically eliminated22–25. Even if the original phenomenological model 
was treated in the Rotating Wave Approximation22, some work on the influence of the counter-rotating terms 
has been carried out in the past26–29. The more recent possibility of realizing the 2γQRM in quantum simulators 
has sparked a new flurry of studies. In particular one should notice the recent proposal for its implementation 
in trapped ions systems and superconducting circuits11,30–32. Moreover, after Braak’s solution for the QRM, the 
same approach was applied to the determination of the 2γQRM spectrum using G-functions33,34. Alternatively 
the search of the analytic solution has also been presented as an expansion in the generalized squeezed number 
states17,35,36. An important feature of the model, namely the collapse of the discrete spectrum into a continuum at 
a value of the coupling constant g = ω/237, has also been made evident both with squeezed states38 and with the 
Bargmann space19 approach.

Nonetheless, useful as these analytical approaches are for the spectrum as a function of the coupling strength 
between the fermionic and bosonic subsystems, an analytical form of the eigenstates, and thus of all quantities of 
interest, is still to be obtained18. One such quantity, of particular relevance from an experimental point of view, is 
the spectral function, defined as ρ δ Ψ|Ψ〉 = 〈Ψ| − | 〉E E H( , ) ( ) , in terms of a generic state |Ψ〉 of the system. In fact 
ρ(E, |Ψ〉) contains all the information useful for generating the time evolution of |Ψ〉, namely those eigenvalues of 
the Hamiltonian whose eigenfunctions have an overlap with |Ψ〉 and the relative transition probabilities.

In this paper we put forward the spectral analysis of a factorized state σ σ| 〉 ≡ | 〉| 〉n n,  of the 2γQRM, n being 
the eigenvalue of the number operator †a a and σ being the eigenvalue of the spin operator σz. This approach, valid 
in each point of the parameter space, is an alternative to the Bargman solution of the model. To achieve this goal 
the relevant matrix element of the resolvent is presented in continued fraction form. We have thus direct access to 
two complementary quantities of interest: the spectral density and the survival probability. The structure of our 
approach allows us clean access to the dynamics of the system near the collapse point of the 2γQRM correspond-
ing to the value of g = 0.5ω.

The paper is organized as follows: we present the model and apply a unitary transformation such that the 
eigenstates factorize in a bosonic and a spin part39; then we exploit the connection between the resolvent of a 
tridiagonal matrix and continued fractions to obtain a numerical determination for the spectral function of fac-
torized states σ| 〉n, ; finally we use the previous results to study the survival probability of the vacuum state of the 
system.

the two-photon model
The Two-photon Quantum Rabi Model (2γQRM) presents an interaction which is non linear in the bosonic 
operators. The Hamiltonian can be expressed as:

ω
ω

σ σ= + + +† †H a a g a a
2

( ( ) ) (1)z x
0 2 2

where ω is the frequency of the bosonic mode, ω0 the atomic frequency and g the coupling constant between the 
two subsystems. Here and subsequently we set ℏ to 1. The spectrum of this model has been numerically calculated 
in many works11,17,27,33–37, and a link with the squeezed number states has been pointed out17,35,36. This link pro-
vides us with a better understanding of the spectrum collapse at g = ω/211,37, as follows. Define, as usual, the 
squeezing operator β = − −β †

S e( ) a a( ( ) )2
2 2

, and consider the 2γQRM for ω0 = 0, written in the basis for which σx is 
diagonal. Under squeezing transformations with squeezing parameters β = ±

ω±
− ( )tanh g1

2
1 2  one of the diagonal 

elements of the Hamiltonian becomes a harmonic oscillator. Clearly. the limit |g|→ω/2 is the limit of infinite 
squeezing. This entails, in what regards the spectrum, the collapse of eigenvalues into a continuum in the limit 
g → 0.5ω, and the (generalized) eigenstates are no longer normalizable11,37. As in11, one can rewrite the 
Hamiltonian (1) in terms of the position and momentum operators of the oscillator, = +

ω
†x a a( )1

2
 and 

= −ω †p i a a( )
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, with unit mass:
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For g < ω/2 the effective potential makes the system stable, while at the point g = ω/2 one of the two quantities 
x2 or p2 disappears and the spectrum collapses into a continuum. This is immediately obvious if ω0 = 0. Were this 
parameter different from zero, isolated eigenstates would appear. In the context of an analysis of the asymptotic 
behaviour of solutions in Bargmann space, the collapse point coincides with the limit situation, for which the 
eigenfunction is no longer normalizable11,16,37.

As is well known, the QRM Hamiltonian commutes with a parity operator, and its eigenvalues can be arranged 
in parity subspaces. In the case of the 2γQRM the symmetry is 4, since the Hamiltonian commutes with 
Π σ= −

π †
ei a a

z4 2 , whose eigenvalues are the quartic roots of unity {±1, ±i}. It follows that the full Hilbert space is 
organized in four infinite-dimensional chains:

| − 〉 ↔ | + 〉 ↔ | − 〉 ↔ | + 〉 ↔ | − 〉 ↔
| + 〉 ↔ | − 〉 ↔ | + 〉 ↔ | − 〉 ↔ | + 〉 ↔
| + 〉 ↔ | − 〉 ↔ | + 〉 ↔ | − 〉 ↔ | + 〉 ↔
| − 〉 ↔ | + 〉 ↔ | − 〉 ↔ | + 〉 ↔ | − 〉 ↔









0, 2, 4, 6, 8,
1, 3, 5, 7, 9,
0, 2, 4, 6, 8,
1, 3, 5, 7, 9, (3)
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We denote the corresponding four infinite-dimensional subspaces Sw, with w ∈ {±1, ±i}. For instance, the 
vacuum state | − 〉 ≡ | 〉| − 〉0, 0 1  belongs to the subspace S+1. Explicitly,

∑Ψ σ π| 〉 = | = − 〉 = ±
=

∞
a n w n w2 , cos( ) , for 1;

(4a)w
n

n
0

∑Ψ σ π| 〉 = | + = − 〉 = ± .
=

∞
a n iw n w i2 1, cos( ) , for

(4b)w
n

n
0

We shall now apply a transformation which factorizes the state |Ψw〉 into a bosonic and an atomic part, fol-
lowing the procedure of 39 for the QRM. In other words12, we use the parity basis. This factorization is indeed 
achieved with the rotation

σ σ= = − + + .
π σ π− − † †

T e e1
2

(1 ) 1
2

(1 ) (5)
i a a

x
i a a

x4 ( 1) 2x

This rotation transfoms the Hamiltonian into =
∼ †H T HT , explicitly
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The coupling term is now expressed as diagonal in the bosonic number operator. Under this rotation the sub-
spaces of constant 4-parity become:
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and the Hamiltonian projected into each subspace is a quadratic of the bosonic creation and annihilation 
operators,
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Thus each effective Hamiltonian ∼Hw is explicitly tridiagonal in the Fock basis.

the spectral Function and the Resolvent
In this section we derive an expression of the spectral function of a factorised state |n, σ〉 in a continued fraction 
form. The spectral function ρ |Ψ〉 |Ψ′〉E( , , ) is the matrix element ρ(E)Ψ,Ψ′ of the microcanonical density operator 
defined in the following way:

∑ρ δ ε ε δ= − = | 〉〈 | −
λ

λ λ λE E H E E( ) ( ) ( )
(9)

where H is the Hamiltonian of the model and |ελ〉 is the eigenstate of H related to the eigenvalue Eλ, ε ε| 〉 = | 〉λ λ λH E . 
Other than in quantum statistical mechanics, it appears in relation with the resolvent (E − H)−1, whose spectral 
representation is:

∫∑
ε ε

ε
ρ=

−
=

| |
−

=
− ′ −

′ ′
λ

λ λ

λ ε→ −∞

+∞

+

⟩⟨R E
E H E E E E i

E dE( ) 1 lim 1 ( )
(10)H

0

From the definition (9) one can see that the diagonal element ρ(E, |Ψ〉) contains all the spectral information 
useful in the study of the state |Ψ〉 of the system. It can be in fact interpreted as the probability distribution of the 
state |Ψ〉 to be in a particular eigenstate of the Hamiltonian:

∑ρ ε δ|Ψ〉 = 〈 |Ψ〉 −
λ

λ λE E E( , ) ( ),
(11)

2

and it is instrumental in studying the time evolution of the state.
Its numerical computation can be rather involved if attacked in terms of Bargmann functions, though. Here 

we address this issue by making use of the connection of the spectral function to the resolvent of the system. The 
distributional identities πδ=

ε ε→ ±
 i xlim P ( )

x i x0

1 1 , with ε > 0 and P principal part, determine
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ρ
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ε|Ψ = Ψ| − − |Ψ .
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1

In the factorized states basis σ| 〉n, , the resolvent of the QRM and 2γQRM can readily be expressed in contin-
ued fraction form (see40,41 or Appendix A), which makes a numerical calculation of the spectral function 
ρ σ| 〉E n( , , ) accessible. Notice that the use of continued fractions has been a staple in the treatment of the QRM, 
in different guises and forms42. Taking the rotated Hamiltonian (6), the element of the resolvent related to the 
state σ| 〉n,  is in the form:
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where we set z = E − iε for the numerical calculation of (12) and the coefficients Aj and Rj depend on the subspace 
which σ| 〉n,  belongs to: if the state has the form ± −n2 , ( 1)n  (i.e. it belongs to the subspace 



S 1) the coefficients 
are Aj = 2jω ± (−1)jω0/2 and = −R g j j2 (2 1)j ; if the state is in the form | + ± − 〉n2 1, ( 1)n  (i.e. it belongs to 
the subspace S±i) the coefficients are Aj = (2j + 1)ω  (−1)jω0/2 and = +R g j j2 (2 1)j .

Equation (13) allows us to calculate the spectral function of any factorized state σ| 〉n,  of the 2γQRM. In this 
work we show the results related to the positive parity subspace S+1. Since we are working in the rotated basis, 
from now on we use |2n, −〉 as notation for the state belonging to +

S 1.
The convergence of the continued fraction has been determined through Pringsheim’s Theorem, under the 

condition that g < ω/2 (see Appendix B). The actual computation of the continued fraction expansion involves a 
truncation in Fock space for each truncation of the continued fraction. In Fig. 1 we report the numerical deter-
mination of the the spectral density for the vacuum state of the 2γQRM at different values of g/ω. Notice that the 
parameter ε has to be fixed for the numerical evaluation. Its value is chosen in such a way it doesn’t affect the ratio 
between the peaks, and a smaller value would result only in a common scaling factor that does not bring improve-
ment in the determination of the spectral function.

The method at hand, namely the numerical computation by continued fractions of spectral functions, allows 
us to insert much higher truncation numbers than with a direct simulation with truncation in Fock space, even 
very close to the collapse point g/ω = 0.5, where the spectrum will no longer be purely discrete. Fig. 2 shows the 
spectral density as we approach the special value g/ω = 0.5, making apparent this change of the spectrum into an 
isolated discrete value and a continuum.

We now apply our technique to the collapse point g/ω = 0.5, even though Pringsheim’s theorem only guar-
antees convergence in the discrete case g/ω < 0.5. In fact the continued fraction approach allows only a discrete 
approximation of a continuum spectrum, but this is done at very high truncation numbers. In Fig. 3 the spectral 
function of the vacuum state for g/ω = 0.5 is calculated at different values of ω0. A first point of note is that the 
presence of an isolated ground state is linked to the atomic frequency ω0 being different from zero. Secondly, 
observe that the energy difference between the ground state and the continuum (Fig. 4) is not linear in ω0, as 
observed also for g/ω < 0.5 in previous papers33,34,37.

In the case ω0 = 0 the spectral function ρ | − 〉E n( , 2 , )0 , with | − 〉 ∈ +
n S2 , 1, can be calculated analytically. 

Consider the Hamiltonian of the 2γQRM projected in +
S 1 for a coupling value g = ω/2:

Figure 1. Spectral density related to the state |0, −〉 of the 2γQRM at different values of g/ω. The value of the 
atomic frequency is ω0 = 0.8ω in all cases, while ε = 0.0005 (see Eq. (12)). The truncation of the continued 
fraction is chosen in order to have convergence.
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ω ω ω
= + + − −

∼
+

† † †
H a a a a

2
( ( ) )

2
( 1) (14)

a a2 2 0 /2

We can express it in terms of x and p operators. In fact, knowing that ω= +ωa x ip( / )
2

 and 
ω= −ω†a x ip( / )

2
, we obtain:

Figure 2. Spectral density related to the state |0,−〉 of the 2γQRM at different values of g/ω, close to the collapse 
point g/ω = 0.5. The value of the atomic frequency is ω0 = 0.8ω in all cases, while ε = 0.0005 (see Eq. (12)). The 
truncation of the continued fraction is chosen in order to have convergence.

Figure 3. Spectral function related to the vacuum state |0,−〉 of the 2 γQRM in correspondence of the collapse 
point g/ω = 0.5, at different values of ω0. It can be seen that the position of the isolated ground state is dependent 
on the value of the atomic frequency. In all cases ε = 0.0005 (see Eq. (12)), while the truncation number 
exploited for the continued fraction is N = 8000.

Figure 4. Energy difference between the ground state and the continuum part of the spectrum in varying the 
two-level parameter ω0.
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ω ω ω
= − − −

∼
+

+ −H x
2 2

( 1) (15)
x p2 2 0 ( 1)/42 2

In the case ω0 = 0 the Schrödinger equation takes the form ω ω− |Ψ 〉 = |Ψ 〉x x E x( /2) ( ) ( )2 2  and the eigenstates 
coincide with the position operator eigenstates |x〉. Therefore, the spectral function related to the state |2n, −〉 can 
be expressed in terms of the Hermite polynomials Hm(ξ):

ρ
π

ω
ω ω

− =
+

+
ω− −E n

n
H E

E
e( , 2 , ) 1

4 (2 )!
( / 1/2 )

( /2) (16)
n

n E
0

2
2

/ 1/2

These functions present a divergence at E = −ω/2, while the zeros of ρ −E n( , 2 , )0  are determined by the 
zeros of ω +H E( / 1/2 )n2

2 . Notice further the normalization

∫ ρ | − = .
ω−

∞
⟩E E nd ( , 2 , ) 1 (17)/2 0

We can now contrast and calibrate the numerical results at ω0 ≠ 0 for the first six states of the subspace +
~S 1 with 

the corresponding analytical expression (16), in Fig. 5. Clearly the qualitative structure is well tracked by our 
numerical procedure, setting aside the divergence of ρ0 at E = −ω/2. In particular, notice the number of nodes in 
the corresponding spectral functions. Moreover, in Fig. 6 we plot the ratio between the two quantities. Even if the 
polynomial trend of the truncated continued fraction can not track the exponential trend of (16), in a range of 
high energies for which the Hermite trend contributes mostly, we can notice a constant value which is due to the 
atomic term in the Hamiltonian (8) becoming progressively less relevant.

the survival probability of the vacuum state
The results of the previous section can be exploited for the determination of an important dynamical quantity: 
the survival probability, that is, the probability of finding the system in its initial state after a time evolution of 
interval t.

The connection between the spectral function ρ(E, |Ψ〉) and the survival probability is given through the sur-
vival amplitude = 〈Ψ| |Ψ〉 = 〈Ψ| |Ψ〉Ψ

−A t U t e( ) ( ) iHt  by Fourier transform,

Figure 5. Comparison between the the spectral functions related to the first six states belonging to +
S 1, between 

the cases ω0 = 0.8ω and ω0 = 0 (whose analytic form is known) at the collapse point g/ω = 0.5. In all cases 
ε = 0.0005, while the truncation number exploited for the continued fraction is N = 24000.

Figure 6. Plot of the ratio between the two cases compared in Fig. 5. It can be seen that for high energies the 
ratio between the spectral function in the case ω0 ≠ 0 and the exact case ω0 = 0 is constant.
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∫ ∫ ∑

∑

ρ ε δ

ε

|Ψ〉 = 〈 |Ψ〉 −

= 〈 |Ψ〉 = 〈Ψ| |Ψ〉.
λ

λ λ

λ
λ

− −

− −λ

E e E E e E E

e e

d ( , ) d ( )

(18)

iEt iEt

iE t iHt

2

2

That is,

∫ ρ= = |Ψ〉Ψ Ψ
−P t A t dEe E( ) ( ) ( , ) (19)

iEt2
2

with the integration on the domain defined by ρ(E, |Ψ〉).
Let us now focus on the vacuum state of the 2γQRM. It is of interest since it can be prepared as the ground 

state in the decoupled or strong coupling regime ( ω .g/ 0 1), and then adiabatically moved to larger couplings. 
In terms of the eigenenergies Eλ and the transition probabilities ε〈 | − 〉λ 0, 2, which can be derived from its spec-
tral function, the survival probability of the vacuum state |0, −〉 can be written as:

∑ ε= 〈 | − 〉
λ

λ−
− λP t e( ) 0,

(20)
iE t

0,
2

2

This connection provides us with a numerical technique to compute the survival probability, through numer-
ical computation of the spectral function. The fact that we do not use matrix inversion, diagonalization, nor 
exponentiation in the process means that the point of the truncation can be much higher than what could be 
reasonably achieved with Fock space expansions for the survival probability. This numerical advantage allows us, 
in particular, an analysis of the survival probability for the 2γQRM close to the collapse point g = ω/2.

In Fig. 7 we report the numerical determination of the survival probability at different values of g/ω. Near the 
collapse point g = ω/2 interference effects become predominant. This was to be expected from the spectral density 
depicted in Fig. 2, since the density of eigenstates means that small frequencies (small energy differences) will play 
a major role in the survival probability. Indeed the long time behaviour of the survival probability becomes flatter, 
as seen in the last graph of Fig. 7.

We also compute the survival probability for g/ω = 0.5 at different values of ω0, as portrayed in Fig. 8. We again 
see that the survival probability for |0, −〉 presents a dominant constant value, dependent on the atomic parame-
ter, after a short transient. This can be understood by looking at the form of the Survival Probability −P t( )0,  in 
terms of the spectral function,

∫ε ρ= 〈 | − 〉 + −
ω

−
−

∞ −P t E E e( ) 0, d ( , 0, ) ,
(21)

iEt
0, 0

2

/2

2

and application of the Riemann–Lebesgue lemma. Indeed, we know that ρ | − 〉E( , 0, ) is integrable - in fact, as 
pointed out above, it is normalized to 1. Therefore the Fourier transform above tends to zero at infinity. To be 
more precise, only the discrete part of the spectrum contributes to the long time behaviour,

⟨ ⟩⟩ ε= | | − | .
→∞

| −P tlim ( ) 0, (22)t
0, 0

4

Moreover, the case ω0 = 0 (the blue line in Fig. 8) agrees with the analytical exact result from ρ | − 〉E( , 0, )0 :

Figure 7. Survival Probability related to the vacuum state |0,−〉 of the 2γQRM, approaching to the collapse 
point g/ω = 0.5. The quantity is calculated through the spectral function of the state considered (see 
related section). For all cases ω0 = 0.8ω.
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(1 )( / 1/2) 2

(1 ) 2
2 2

2

Notice the asymptotic 1/t behaviour, that is due to the 1/(E + ω/2)1/2 divergence in the integrand.
As ω0 grows, a discrete point will appear in the spectrum, and thus a constant term in the long time behaviour 

of the survival probability. The subleading term will be generically of form 1/t, since the leading behaviour of the 
Fourier transform of the continuum part will be 1/t or faster decay.

Conclusions and perspectives
In this work we have studied numerically spectral functions for the Two Photon Quantum Rabi Model (2γQRM) 
and the corresponding survival probabilities. These two quantities are more readily amenable to numerical treat-
ment than direct diagonalization of the Hamiltonian, as is shown by the much higher truncation numbers we can 
achieve in this approach.

Since there are indeed several proposals for quantum simulation implementation of the 2γQRM11,30–32, our 
improved numerical approach will prove beneficial for their analysis.

This improvement of numerics has allowed us to investigate further the collapse point, at which the spec-
trum becomes continuous. This is indeed the result recovered both from spectral functions and from survival 
probabilities.

As all numerics are suspect in the environment of a drastic structural change, such as the spectral collapse 
at hand, we have proposed an independent check by comparing spectral functions at the collapse point for the 
exactly solvable case with ω0 = 0, expressed in terms of Hermite polynomials, with those corresponding to ω0 ≠ 0. 
The qualitative structure, in particular the number of modes and the large energy/short time behaviours, is main-
tained as expected, thus providing us with a calibration tool.

In particular we note that a signature of the collapse of the spectrum into a purely continuous one would be 
that all survival probabilities necessarily tend to zero. In the case at hand there is a remaining relevant discrete 
point in the spectrum, and the long time limit of the survival probability is a constant, determined by the projec-
tion of the initial state onto the corresponding proper eigenstate.

The direct measurement of such a phenomenon in the survival probability might not be immediately possible 
in the different platforms in which the 2γQRM is a good description of the dynamics for some range of the 
parameters. However, there are alternatives to detect the spectral collapse, one of which we now put forward. 
Consider thus that there is another eigenstate of the full system which can be coupled to the discrete element of 
the +

S 1 subspace. In such a situation, the long term behaviour of the survival probability for any state in the +
S 1 

subspace will be given by coherent Rabi oscillations, providing us with a target for detection.
Notice a very recent alternative proposal to investigate the spectral collapse, in this case for the 2γQRM with 

full quadratic coupling, studying a two-time correlation for the output field in a driven system43.
In summary, we have investigated further the rich phenomenology of the 2γQRM, with emphasis on the 

numerically computable spectral functions and survival probability, and we suggest new avenues for the explora-
tion of the spectral collapse.

Figure 8. Survival Probability of the vacuum state |0,−〉 of the 2γQRM in correspondence of the collapse point 
of the spectrum g/ω = 0.5, at different values of the atomic frequency ω0. The case ω0 = 0 is consistent with the 
analytical result (23).

Appendix A: the continued fraction form of the resolvent
In each subspace of defined four-parity Π4 the rotated Hamiltonian ∼H  is tridiagonal in the basis of Fock states. For 
instance, the 2γQRM Hamiltonian projected in the subspace of positive parity +

S 1 is (see Eq. (8)):

ω ω π= + + −










∼
+

† †
†

H a a g a a a a( ( ) ) 1
2

cos
2 (24)

1
2 2

0
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Since the elements 〈 − | | − 〉
∼

+n H m2 , 2 ,1  are non-zero only if m = n, n ± 1, the matrix form of the projected 
Hamiltonian assumes a tridiagonal form in the basis |2n, −〉:

=













∼
+

�
�

� � � �

H

A R
R A R

R A R

0 0
0

0
(25)

1

0 1

1 1 2

2 2 3

where ω ω= 〈 | | 〉 = − −
∼

+A n H n n2 2 2 ( 1) /2n
n

1 0  and = 〈 | | − 〉 = 〈 − | | 〉 = −
∼ ∼

+ +R n H n n H n g n n2 2 2 2 2 2 2 (2 1)n 1 1 .
As regards to the resolvent related to this Hamiltonian, = −

∼
+

−∼
+

R z z H( ) ( )H 1
1

1
, we can see that its diagonal 

elements 〈 − | | − 〉∼
+

n R z n2 , ( ) 2 ,H 1
 can be expressed in a continued fraction form. If one is interested only in the 

first element 〈 − | | − 〉∼
+

R z0, ( ) 0,H 1
 the continued fraction form can be achieved also through the Recursive 

Projection Method40. However, since it is a general property of the tridiagonal matrices one can exploit the itera-
tive relation of tridiagonal matrix minors for the determination of a generic element of the resolvent41.

In this section we show how to obtain equation (13), namely the continued fraction form of the element 
σ σ〈 | | 〉∼ †n TR T n, ,H , with σ|Ψ〉 = | 〉†T n,  state belonging to any one of the four subspaces (7). We derive the 

expression for |Ψ〉 ≡ − ∈ +
n S2 , 1. Since the form of the Hamiltonian ∼H  in any of the subspaces ± ±

S i1,  is the 
same as (25), the derivation of the diagonal element of the resolvent does not change from the one in the subspace 
+
S 1.

From the theory of linear algebra the inverse of a square matrix Q is the matrix of elements Qij = Δij/det(Q), 
where Δij = (−1)i+jdet(Mij) is the (i, j)-cofactor and Mij is the first minor, obtained by eliminating the i-th row and 
the j-th column. We use the following notation: D0 as the determinant of −

∼
+z H( )1 , Dk as the corresponding 

determinant of the matrix resulting from eliminating the first k rows and k columns, and ∼Dk as the determinant of 
the matrix given by the restriction to the first k + 1 rows and columns of the same matrix. So we have:

= − +
~D z Hdet( ) (26a)0 1

~
�
�

� �

�

�
�

=







−
−







=







−
−

−







+

+ + +D
z A R
R z A R D

z A R
R z A R

R
R z A

det
0

det

(26b)

n

n n

n n n n
n

n n

1

1 1 2

0 1

1 1 2

Since the sub-matrix obtained by removing the n-th row and n-th column of −
∼

+z H( )1  has a block-tridiagonal 
form, applying the formula for the inverse matrix we have:

〈 − | − | − 〉 =
Δ

−
=

∼
∼

∼+
−

+

− +n z H n
z H

D D
D

2 , ( ) 2 ,
det( ) (27)

nn n n
1

1

1

1 1

0

Moreover, D0 can be written in terms of ∼
−Dn 1 and Dn+1 using the Laplace formula for the matrix 

determinant:

= − = − − −
∼ ∼ ∼∼

+ − + + − + − +D z H z A D D R D D R D Ddet( ) ( ) (28)n n n n n n n n n0 1 1 1 1
2

1 2
2

2 1

Thus Eq. (27) takes the form:

=
− − −

∼

∼ ∼
− +

+ + + − −

D D
D z A R D D R D D

1
( ) / / (29)

n n

n n n n n n n

1 1

0 1
2

2 1
2

2 1

Using similar arguments a recursive formula for Dn/Dn−1 and ∼ ∼
+D D/n n 1 can be obtained:

=
− −

=
− −

∼

∼ ∼ ∼
− − + + + + −

D
D z A R D D

D
D z A R D D

1
( ) /

1
( ) / (30)

n

n n n n n

n

n n n n n1 1
2

1 1 1 1
2

1

Applying iteratively the two formulas (30) the two quantities Dn/Dn−1 and ∼ ∼
+D D/n n 1 can be expressed in a con-

tinued fraction and a finite continued fraction form respectively:

=
− − − − − −−

−

−

−
D D

z A
R

z A
R

z A
/ 1

( ) ( ) ( ) (31a)n n
n

n

n

n
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2
1
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~ ~ =
− − − − −−
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D D

z A
R

z A
R

z A
/ 1

( ) ( ) ( ) (31b)
n n

n

n

n
1

1

1
2

1
2

0

Substituting them in equation (30) we obtain the continued fraction form of a diagonal element of the resol-
vent (13).
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Appendix B: Convergence of the continued fraction expansion
We want to study the convergence of the continued fraction form we have given for the element 〈 − | | − 〉∼

+
R0, 0,H 1

 
of the resolvent:

ε ω ε ω ω ε ω ω
− | | − =

− + − − − − − − − + −+
⟨ ⟩~R

E i
g

E i
g

E i
0, 0, 1

/2
2
2 /2

12
4 /2 (32)H

0

2

0

2

0
1

Define for this case a0 = 1, an = g22n(2n − 1) for n ≥ 1, and bn = E − iε − 2nω + (−1)nω0/2 for n ≥ 0. The con-
tinued fraction at hand is

− | | − =
− − −

.
+

⟨ ⟩~R a
b

a
b

a
b

0, 0,
(33)H

0

0

1

1

2

2
1

This continued fraction can be written as

ω
α α α− − −

.

1/ 1 1
(34)0 1 2

with

α ω= = = .+
+

c b c
a c

c, 1 , 1/n n n n
n n

1
1

0

The form of an makes it easy to provide an explicit form, namely
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Notice that the coefficients αn are adimensional. We can now use the Stirling approximation to obtain their 
asymptotic behaviour,

α ω
= −

Γ Γ

Γ
++

−( ) ( )
( )g

O n4
16

( ),n2 1

2

2

1
2

1
4

3
4

1

α = −
Γ

Γ Γ
+ .−( )

( ) ( )
O n4 ( )n2

3
4

1
2

1
4

1

We shall now see that, if g2 < ω2/4, Pringsheim’s sufficient convergence criterion allows us to conclude conver-
gence for complex energy. In order to see this, consider rewriting the continued fraction as

ω
α α α

ω
β β β− − −

=
− − −

 

c1/ 1 1 / 1 1 ,
(35)0 1 2 0 1 2

for some real c. This is achieved by defining the coefficients βn by β =
α

+
+

n c2 1
n2 1  and β2n = cα2n. Let 0 < δ ≪ 1 be a 

small positive real number. Choose c as

δ
ω

= −
+

Γ Γ

Γ
.
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2 4 (36)
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2
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Then, asymptotically,

β δ= + ++
−O n2 ( ),n2 1

1

β
δ

ω
=

+
+ .−

g
O n1

2
( )n2

2

2
1

In order to fulfill, asymptotically, Pringsheim’s criterion |βn| > 2, we require
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thus inside the normal region before the collapse.
The asymptotic convergence does not guarantee convergence of the resolvent if the energy is one of the real 

eigenvalues; it is enough for our purposes, though, since in order to determine the relevant spectral function we 
have to compute the limit of the imaginary part of the resolvent.
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