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Abstract

Worldwide, landslides happen every year and they cause undesired e�ects to the

human being and its goods. The delimitation of the territory by the likelihood to

experience landslides, by means of susceptibility maps, supposes the primary step

for hazard and risk assessments in order to mitigate the damages caused by these

geomorphological processes.

In the last 50 years, we passed from making landslide susceptibility maps

based on the pure observation of the terrain to fully automated and sophisticated

statistical procedures. But, this rapid increase of approaches resulted in a huge

variety of di�erent methodologies available and thus it complicates the de�nition

of standards for the landslides susceptibility analysis. The current thesis presents a

roadmap de�nition, starting from the scratch, for landslide susceptibility mapping

in a regional scale. The aim is to de�ne an updated methodological approach in

which each decision in each step of the process would be justi�ed and scienti�cally

supported.

An administrative region of 1980 km2 located in the north of the Iberian

peninsula (Gipuzkoa Province, Basque Country) was used as test study area where

several experiments and applications were carried out. Independent variables of

di�erent meaning and qualities, landslide inventories of divers types and sources,

and already known methods together with innovative approaches were tested in

order to strength the conclusions of this work.

Results indicate the need of the geomorphological inference when selecting

the independent variables by statistically driven rules and the convenience of

transforming the categorical variables into continues for the susceptibility models

calculated by statistical approaches. Moreover, the use of an e�ective surveyed
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area for calibrating the landslide susceptibility models proved to be positive when

the landslide inventory is provided by geomorphological �eld work, whereas the

use of slope units instead of the conventional pixel mapping units demonstrated

the capacity of mitigating the uncertainty introduced by the �eld-based landslide

inventory.

Additionally, the application of an algorithm for the automatic de�nition

of precipitation thresholds responsible of landslides in the study area showed

the necessary information to develop landslides occurrence forecasts basing in

precipitation predictions, highlighting the available potential resources for advancing

toward an integrated early warning system.
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Laburpena

Mundu osoan zehar, lur labainketak etengabe gertatzen dira eta haien ondorioz

gizarteak nahiz bere ondasunak kalteak pairatzen ditu. Lurraldearen zonazioa lur

labainketak jasotzeko aukeren arabera da, suszeptibilitate mapen bitartez hain

zuzen ere, mota honetako prozesu geomorfologikoek eragindako kalteak arindu eta

mehatxua eta arrisku maila ebaluatu ahal izateko oinarrizko pausoa.

Azken 50 urteotan, lurraldearen suszeptibilitate mapetan, ingurunearen

behaketa hutsean oinarritutako balorazioetatik prozedura erabat automatizatu eta

so�stikatuetara igaro gara. Bestalde, planteamendu desberdinen hazkunde azkar

horiek metodo desberdinen erabilgarritasun handia ekarri du; eta hortaz, lur

labainketen suszeptibilitate analisiaren estandarizazioa zaildu. Tesi honek bide-orri

baten de�nizioa aurkezten du, hutsetik abiatuta, lurraldearen suszeptibilitate mapen

garapenerako eskala erregionalean. Helburua ikuspegi metodologiko eguneratu

bat zehaztea da, prozeduraren pauso bakoitzean hartutako erabakiak zienti�koki

justi�katuak eta onartuak izan daitezen.

Hainbat esperimentu eta aplikazio gauzatzeko, Iberiako penintsularen ipa-

rraldean kokatua dagoen eskualde administratibo bat hautatu da (Gipuzkoako Lu-

rralde Historikoa), 1980 km2-ko ikerketa eremua hain zuen ere. Ezaugarri eta izaera

desberdinetako hainbat aldagai independente, mota eta iturri desberdinetako lur

labainketa inbentarioak eta, metodo ezagun nahiz metodo berritzaileekin batera,

ikuspegi desberdinak jorratu dira, azkenean lan honek aurkezten dituen ondorioak

lortzeko.

Emaitzen arabera, inferentzia geomorfologikoaren beharra azpimarratu daiteke

estatistikoki gidatutako arauen arabera aldagai independenteen hautaketa egiteko

orduan, hala nola ondorioztatu da aldagai kategorikoen transformazioa aldagai
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jarraietan, suszeptibilitate-modeloak garatzeko onuragarria dela. Gainera, lur

labainketen suszeptibilitate modeloak kalibratzeko ikuskatutako eremu efektiboaren

erabilera positiboa dela frogatu da, lur labainketen inbentarioa landa lanaren

bitartez eskuratu den kasuetan. Bestalde, malda unitateen erabilerak lurralde

unitate bezala, ohikoak diren pixel unitateak izan beharrean, landa laneko inbentario

batek ezarri dezakeen ziurgabetasuna arintzeko ahalmena erakutsi du.

Horretaz gain, lur labainketak gertatzeko beharrezko prezipitazio atalasa

de�nitzeko algoritmo baten aplikazioak ikerketa eremu berberean, aurreikuspenak

egiteko beharrezkoa den informazioa erakutsi du, alerta goiztiarreko sistema

baterantz aurreratzen joateko dauden aukerak zabalduz.
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Chapter 1

Lur labainketak arrisku natural ohikoenetako bat dira. Esaterako, 1900 urteaz

geroztik, eta mundu osoan, gutxienez 9.815 milioi US$-eko galera ekonomikoak

eta 68.098 hildako eragin dituztela zehazten du EM-DAT nazioarteko ezbeharren

datu baseak (EM-DATA, 2017), nahiz eta kopuru horiek nabarmenki gutxietsita

daudela kontsideratzen den. Izan ere, Petleyren arabera (Petley, 2012), 2004 eta

2012 urteen artean bakarrik 32.322 hildako kontabilizatu ziren lur labainketen

ondorioz. Uholde (%44) eta ekaitzen (%35) atzetik, lur labainketak munduan

erregistratutako ezbeharren %6 izan ziren 1970 eta 2012 urteen bitartean (CRED,

2014), baina prozesu horien eragina gizakiarengan ongi ezaguna den arren, uste da

labainketa kartogra�ek munduko malda guztien %1 baino gutxiago hartzen dutela

kontuan (Guzzetti et al., 2012). Hala ere, fenomeno geomorfologiko horien jarraipen

historikoa egitea oso zaila da, haiei buruzko datuen bilketa sistematikoen eskasia

dela eta.

Gaur egun, horrelako prozesu dinamikoen ezagutzak erronka itzela suposatzen

du oraindik. Prozesuen de�niziotik hasita, haiek ikertzeko metodologietara arte,

hainbat proposamen aurki daitezke literatura zienti�koan eta, beraz, lur labainketen

analisiaren arloa, oraindik ere, fase esperimentalean dagoela esan genezake (Fell

et al., 2008).

Hala eta guztiz ere, tesi honen gaian zeharo murgildu aurretik, zenbait kontzeptu

orokor aurkeztuko dira, testuaren irakurketan hainbatetan errepikatuko diren

terminoak egoki de�nituta geratu daitezen.

Lehenik eta behin, masa mugimenduaren (mass movement) kontzeptua

aipatu beharra dago. Lurrazaleko material bat grabitatearen ondorioz mobilizatua

izatearen prozesuari esaten zaio. Kasu honetan, uraren, izotzaren edo haizearen

garraio eragin zuzenik gabe gertatutako mugimendua da, eta mobilizazioak,

grabitatearen ondoriozkoa izanda, norantza bertikalean izan behar du. De�nizio

honen barruan onartzen da, beraz, ibilbide bertikala duen edozein lurrazaleko

mobilizazio, lurzoruaren subsidenzia prozesuak barne.

Lur labainketa (landslide edo slope failure), ordea, masa mugimendu mota bat

da. Zehazki, mobilizatua den masa mendi hegal edo malda batean zehar higitzen

denean erabiltzen da kontzeptu hau, eta ondo de�nitutako haustura azaleraren

eta mobilizatutako masaren deformazio ertainak ezaugarritzen du. Edozer dela
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ere, autoreen arabera kutsu desberdinetako de�nizioak aurki daitezke, eta de�nizio

dibertsitate horrek, hain zuzen ere, fenomeno honen azterketan diharduten diziplinen

aniztasuna islatzen du.

Hona hemen lur labainketa (landslide) terminoaren de�nizio batzuk:

• Arroka, lurzoru zein detritu (debris) masa baten mugimendua maldan behera

(Cruden, 1991).

• Grabitatearen indarraren ondorioz maldan behera mobilizatzen den arroka edo

lurzoru masa bat (Cruden & Varnes, 1996).

• Malda osatzen duten materialen beheranzko eta kanporanzko mugimendua.

Mota askotariko prozesuak barneratzen ditu, eta mobilizatutako materiala

arroka, lurzorua, betelan arti�zialak edo haien arteko konbinaketak izan

daitezke (USGS, 2004).

• Mendi hegaletan gertatzen diren lurzoru edo arroka mugimendu grabitaziona-

lak dira. Mugimendu horiek maldaren egonkortasun baldintzen eraldaketaren

ondorioz gertatzen diren orekatze prozesuak dira (Ferrer & García, 2009).

• Materialak grabitatearen eraginez mugiarazteko prozesua da, eta arriskutsua

izan daiteke gizakiari edo haren ondasunei eragiten dienean (Gutiérrez-Elorza,

2008).

Ez da erraza euskarazko termino zehatza aurkitzea ingelesezko � landslide� hitz

generikoa itzultzeko. Are gehiago, hainbat ikerlarik azpimarratu bezala (Crozier,

1986; Shanmugam & Wang, 2015), historikoki prozesu bera izendatzeko hainbat

izen proposatu dira: slope failure (Ward, 1945), mass wasting (Yatsu, 2007),

mass movement (Hutchinson, 1968), landslides (Varnes, 1958) edo slope movement

(Varnes, 1978). Euskadiko Geologoen Elkargo o�zialak �lur irristatze� terminoa

erabiltzen du (Aizpiri et al., 2014), baina tesi honetan �lur labainketa� edo � landslide�

terminoak erabiliko dira aurrerantzean prozesu horiei erreferentzia egiteko. Hala eta

guztiz ere, aipatutako de�nizioen baitan izaera oso desberdinetako masa mugimendu

ugari onartzen dira, harri jausiak edo �uxu korronteak adibidez, nahiz eta azken

horietan labainketarik ez egon edo labainketa oso eskasa izan, zentzu zehatzean.
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Halaber, errealitatean aurki daitezkeen lur labainketak hainbeste prozesu

eta faktoreren ondorio dira, ezen klasi�kazio aukera mugagabeak eskaintzen

dituzten. Eragindako arroka edo lurzoruaren propietate �sikoen arabera (Terzaghi,

1943), mugimendu moten eta abiaduraren (Sharpe, 1938), ezaugarri geoteknikoen

(Skempton & Hutchinson, 1969), klasi�kazio morfometrikoaren (Crozier, 1975)

edo prozesu eragileen araberako (Brunsden, 1993) proposamenak aurki daitezke

gaur-gaurkoz. Baina, eskala erregionaleko suszeptibilitate, mehatxu eta arriskuaren

ikerketetan Cruden eta Varnesen klasi�kazioa da zabalduena (Cruden & Varnes,

1996; Corominas & Mavrouli, 2011), zeina hauetan oinarrituta dagoen: Varnes

(1958), Varnes (1978) eta Casale et al. (1994). Gainera berriki eguneratua izan da

Hungren proposamenean (Hungr et al., 2014). Beraz, klasi�kazio horien arabera,

ondorengo lur labainketa mota nagusi hauek de�nitzen dira (ikusi 1.1 Irud.):

• Erorketak edo jausiak (falls): Haustura azalera baten ondorioz, ezponda

oso malkartsuetatik masa bat banatzean gertatzen den prozesuari esaten zaio.

Normalean arrokaz osatutako materialak izaten dira, nahiz eta metakinek

edo lurzoruek ere jasan ditzaketen horrelako prozesuak. Pareta bertikal eta

sub-bertikaletan banandutako fragmentuak erorketa librean jausten dira,

momenturen batean behintzat; baina, ezpondaren angelua murrizten doan

heinean, materialok saltoka nahiz errodatuz garraia daitezke. Mota honetako

lur labainketen eragile nagusiak izozte-urtze zikloak (krioklastia), oinarriaren

itsas edo ibai higadura, lurrikarak eta intentsitate handiko eurijasak izan ohi

dira.

• Iraulketak (topples): Iraulketa gertatzen da mendi hegalaren kanpo aldera

arroka masa bat biratzen denean, desplazatutako masaren grabitate zentruaren

azpitik dagoen puntu edo ardatz baten arabera. Estruktura bertikaleko

materialetan gertatzen dira horrelako prozesuak, zeinak diskontinuitate

planoez osatuta dauden. Mobilizatutako materialen eta dimentsioen arabera

mota desberdinak aurki daitezke. Eragile nagusiak deskonpresioa, izozte-

urtutze zikloak eta gatz meteorizazioa dira.

• Labainketak edo irristatzeak (slides): Labainketa bat, zentzu zehatzenean,

zizailatze mugimenduaren ondorioz haustura azalera batean zehar mugitzen
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den gutxi deformatutako arroka edo lurzoru masa bat da. Sarritan,

mobilizatutako materialaren sakoneraren arabera, azaleko labainketa

(shallow slide) eta sakoneko labainketa (deep slide) desberdintzen dira.

Bestalde, haustura azaleraren formaren arabera bi mota nagusi desberdintzen

dira. Labainketa errotazionaletan (rotational slide) zizailatze mugimendua

azalera ahur batean zehar gauzatzen da. Labainketa translazionaletan

(translational slide), berriz, desplazamendua azalera lau edo apur bat

ondulatuan zehar egiten da, diskontinuitate planoen ahulezia puntuak baliatuz

normalean (estrati�kazioak, failak, diaklasak). Mota honetako mugimenduak

sortzeko eragile nagusien artean eurijasak, lurrikarak, elurraren urtze azkarra

edo gizakiaren aktibitatea daude.

• Alboko hedadura (lateral spreading): Kasu honetan haustura azalera ez

da bat bateko zizailatze mugimendu baten ondorioa. Bigunagoa den azpiko

material baten azaleko arrokaren albo baterako desplazamenduari esaten

zaio, eta hainbat prozesuren eraginez gerta daitezke horrelako mugimenduak

(hausturen hedadura, geruzen tolestea, higadura, failak) (Gutiérrez-Santolalla

et al., 2005). Zenbait autoreren arabera sackung fenomenoa alboko

hedaduraren fenomenoen barruan sartuko litzateke (Jahn, 1964).

• Fluxuak (�ows): Airearen edo uraren ondorioz mobilizatutako materialaren

barne deformazioa dela eta, desplazatutako masak �uxu portaera erakusten

duenean gertatzen dira. Orokorrean materialak lurrazalean zehar mugitzen

dira eta oso distantzia luzeetan barrena mobiliza daitezke. Kasu honetan ere,

desplazatutako material motaren arabera hainbat �uxu mota desberdindu

daitezke. Kontsolidatu gabeko materialak izan daitezke, hots detritu

�uxuak (debris �ow) edo lurzoru �uxuak (soil/earth/mud �ow); edo ondo

kontsolidatutako materialak, hots arroka �uxuak (rock �ow).

• Mugimendu konplexuak (complex movements): Errealitatean lur labainke-

ta gehienek prozesu osoan zehar portaera bat baino gehiago erakusten dute,

izan mobilizatutako masaren ataletan, izan prozesuaren etapetan. Beraz, oso

ohikoa da hasieran mota zehatz bateko lur mugimendua denak, ondoren ga-

rraioan zehar beste mota bateko izaera hartzea. Horrelako kasuetan, fenomeno
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hauek mugimendu konplexuen taldean sailkatu dira. Arroka-jausiak (rock

avalanche) eta �uxu labainketak (�ow slide) dira adibide ohikoenak.

Figure 1.1: Illustration of the abbreviated classi�cation of landslides types proposed by Cruden & Varnes (1996).

Image obtained from the British Geological Survey web site. www.bgs.ac.uk (last visit at 05-06-2017).

1.1 Irudia: Cruden eta Varnesek proposatutako lur labainketa moten sailkapen sintetikoa (Cruden & Varnes, 1996).

Irudia British Geological Survey-aren web orrialdetik aterata. www.bgs.ac.uk (azkeneko bisita 2017-05-06 ).

Lur labainketa mota hauen guztien artean, magnitude oso desberdinetako

prozesuak aurkitzen dira. Badira urtean milimetro gutxi batzuk mugitzen diren lur
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masak eta baita bat-batean gertatzen diren lur labainketak, badira m3 gutxi batzuk

mobilizatzen dituzten prozesuak eta baita milioika m3 mugimenduak ere, eta badira

metro gutxi batzuetako garraioa jasaten duten materialak eta baita ehundaka, eta

zenbaitetan milaka, metrotako irismena dutenak ere. Baina, edozein dela ere lur

labainketa bakoitzaren magnitudea, lurraldean eraldaketa bat eragiten du, eta beraz,

lurraldea erabiltzen duen edozeini hots, gizakiari zuzenean edo zeharka, ondorioren

bat ekarriko dio.

Hain zuzen ere, prozesu natural horiek, gizakiari, bere ondasunei edo inguruneari

kalte egiten dietenean, arrisku (risk) bilakatzen dira, eta prozesu natural

horietakoren bat gertatzeko probabilitatea eta intentsitatea ezagutuz gero, P

mehatxua (hazard level) de�ni daiteke (Ayala-Carcedo & Olcina Cantos, 2002).

Beraz, aski jakina den bezala, lur labainketa bat jasateko aukera duten pertsonak

eta ondasunak identi�katuz gero, hots E esposaketa (expoure), eta ondasun horiek

galtzeko onargarritasun maila zehaztuz gero, hots V ahultasuna (vulnerability),

lur labainketen R arriskua de�nituko litzateke jarraian aurkezten den formula

matematikoaren bitartez (Ayala-Carcedo & Olcina Cantos, 2002):

R = PxExV (1.1)

Ekuazio hau (Eq. 1.1) edozein motatako arrisku naturalen analisian aplika

daiteke eta bertan desberdindu daitezke arriskuaren ebaluaketarako beharrezkoak

diren bi oinarrizko faktore multzoak: prozesu naturala bera aztertzen dutenak

(mehatxua) eta gizakiaren presentzia aztertzen dutenak (esposaketa eta ahultasuna).

Argi geratu da beraz, lur labainketak, kanpoko geodinamikako prozesu naturalak

izateaz gain, gizakiarentzako arrisku potentzial bat direla. Labainketa horiek eragin

ditzaketen kalteak ekidin edo, ahal den heinean, arintzeko bide eraginkorrena

lurralde antolamendua da. Ondorioz, arriskuaren ebaluaketaren azkeneko emaitza,

haren banaketa espaziala eremu geogra�ko batean zehar islatuko duen mapa bat izan

ohi da. Horrek esan nahi du, azkeneko produktu horretara iritsi aurretik, oinarrizko

faktore guztien banaketa espaziala ezagutu beharra dagoela. Alta, mehatxua,

esposaketa nahiz ahultasuna kalkulatu eta espresatzeko metodologiak ugariak dira

gaur egun, eta ez dago komunitate zienti�koak aho batez onartzen duen bide orririk.

Tesi hau mehatxuaren ebaluaketara bideratuta dago. Zehatzago esanda,
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mehatxua de�nitzeko beharrezkoa den suszeptibilitatea kalkulatzeko metodologia

proposamen bat aurkeztuko da. Izan ere, mehatxua denbora eta eremu zehatz batean

potentzialki kaltegarria izan daitekeen fenomeno baten gertatzeko probabilitateri

esaten zaio (Remondo, 2001). Beraz, de�nizio horren arabera, mehatxuak espazio

probabilitatea eta denbora probabilitatea uztartzen ditu. Suszeptibilitatea ordea,

labainketa bat ziurrenik non gerta daitekeen estimazio bat da, eta matematikoki

ingurugiro baldintza zehatz batzuen arabera labainketa bat gertatzeko espazio

probabilitatea bezala de�ni daiteke (Brabb, 1984; Guzzetti et al., 2005).

Hori dela eta, edozein arrisku natural mota behar den bezala ebaluatzeko lehen

pausoa arriskua sor dezakeen fenomenoaren suszeptibilitatea ezagutzean datza, eta

tesi honek pauso konkretu hori aurrera eramateko metodologian sakonduko du, lur

labainketen kasuan proposamen zehatz bat eskainiz. Azken �nean, lur labainketak

espazialki aurreikusten dituen modelo matematiko egoki bat sortzea da helburua,

baina, helburu hori gauzatzeko, aldez aurretik gako batzuk argitu behar dira:

• Zein aldagai erabili behar dira modelo hori kalkulatzeko? Edo nola egin

aldagaien hautaketa?

• Nola tratatu behar dira aldagai horiek?

• Zein mapa unitate erabiliko dira lurraldea banatzeko? (pixelak, malda

unitateak, unitate homogeneoak, etab.)

Horretaz gain, lur labainketak sortzeko gertaera-faktorearen gaia (triggering

factor) ere jorratuko da. Hau da, labainketak gauzatzeko probabilitate espaziala

areagotzeko, lurraldearen eta inguruneko baldintzak zeintzuk izan daitezkeen

ezagutzeaz gain, momentu zehatz batean maldaren haustura gertaraziko duen

faktorea ere ikertuko da.

Helburu orokor horiek guztiak gauzatu ahal izateko ikerketa eremu esperimental

bat aukeratu da, Gipuzkoako Lurralde Historikoa (hemendik aurrera Gipuzkoako

LH), iberiar penintsulako iparraldean kokatutako 1980 km2 inguruko lurraldea (ikusi

4 atala). Bertan, aukera metodologiko batzuen arteko froga desberdinak aplikatu

dira eta, haien emaitza eta ondorioetan oinarrituta, proposamen zehatz bat de�nitu

ahal izan da argitu gabeko gako horiei erantzun bat eman ahal izateko.
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Testua zortzi atal nagusitan banatuta dago. Sarrera atalaren ostean (Chapter

1), bigarren atalean (Chapter 2), lur labainketen suszeptibilitate eta mehatxuaren

analisiari buruzko berrikuspen historiko bat egingo da, nazioartetik hasita

Gipuzkoako LHraino aurki daitezkeen aurrekariak aipatuz eta eskuragarri dauden

metodologien aldeko eta kontrako ezaugarriak aurkeztuz.

Hirugarren atalean (Chapter 3), ikerketa honen hipotesia eta hura frogatu ahal

izateko ezarri diren helburuak zehaztuko dira.

Laugarren atalean (Chapter 4), aurretik �nkatutako helburuak betetzeko eta

hipotesia egiaztatu ahal izateko gauzatu diren esperimentuak aplikatu diren

ikerketa eremua deskribatuko da. Ikuspegi orokor batetik, lurraldearen ezaugarri

geomorfologiko eta klimatikoak, ingurugiro zehaztapenak nahiz populazioaren

banaketa aurkeztuko dira.

Bosgarren atalean (Chapter 5) ikerketa prozesuan zehar jarraitu den metodologia

azalduko da. Erabili diren datuen jatorria edo haiek biltzeko metodoak, aplikatu

diren modelo matematikoak eta softwareak eta, oro har, ikerketa honetan aurkeztuko

diren esperimentu desberdinetan jarraitu diren pausoen zehaztapenak aurkeztuko

dira.

Bestalde, seigarren atalean (Chapter 6), tesian zehar gauzatu diren hiru

esperimentuen emaitzak aurkeztuko dira. Esperimentu bakoitza helburu zehatz

batzuk lortzeko diseinatu da, eta hipotesian ezarritako ustezkoak frogatzeko

egin da. Hori dela eta, 6-I atalean, lur labainketen suszeptibilitate mapak

sortzeko beharrezkoak diren labainketa inbentarioen ezaugarriak aztertzen

dira, modelo estatistikoetako aldagai independenteen tratamendurako estrategia

desberdinen ebaluaketa jorratzen da eta aldagaien aukeraketarako bide desberdinez

eztabaidatzen da; 6-II atalean, azterketa konparatibo baten bitartez, zuzeneko landa

lanaren ondorioz sortutako labainketa inbentario bat erabiliz, suszeptibilitate mapak

sortzeko metodologia berri bat proposatzen da, eta bi mapa unitate desberdinetan

aplikatu egiten da; 6-III atalean, suszeptibilitate analisitikan, mehatxu analisira

igarotzeko lehen pausoak ematen dira, denbora informazioa erabiliz, eta ikerketa

eremurako labainketak gertatzeko euri atalase sorta bat kalkulatuz metodo

probabilistikoaren bidez.

Zazpigarren atalean (Chapter 7), aurreko esperimentuetatik ateratako ondorio
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nagusiak eta ondorio horietatik atera daitezkeen ideiak eztabaidatuko dira. Eta,

azkenik, zortzigarren atalean (Chapter 8), ikerketa honek azaleratu dituen ezagutzak

kontuan hartuta, lur labainketen suszeptibilitate eta mehatxu mapak egiteko orduan

jarraitu beharreko irizpideen proposamena egingo da.
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Chapter 2

Lur labainketen analisiak, eskala erregionalean, iraganera begira egiten dira. Izan

ere, dinamika natural batean, lur labainketak eragiten dituzten faktore gehienak

berdinak izango dira iraganean eta etorkizunean. Baina errealitatean lur labainketen

problematika ulertzeko ideia horri, gaur egungo gizakiak ingurunean eragiteko

daukan ahalmena gehitu behar zaio, dinamika natural horretan jokatzen duten

faktoreei askoz anitzagoa eta kuanti�katzeko zailagoa den faktore bat gehituz, eragin

antropikoa. Hala ere, lur labainketa analisiak errealitatearen gerturatze bat diren

heinean, Fell eta beste aditu batzuek ezarri zuten bezala (Fell et al., 2008), lur

labainketen azterketan bi baldintza hauek ematen dira onartutzat:

• Iraganean lur labainketak izan diren lekuetan, gaur egun edo etorkizunean lur

labainketak jasateko joera egongo da.

• Gaur egungo eta etorkizuneko lur labainketak, iraganean zeuden ingurune

baldintza berdinen menpe gertatuko dira.

2.1 Aurrekariak

Aipatu den bezala, naturaren zientziaren hainbat arlotan mendetako garapena izan

den arren, lur labainketen suszeptibilitatearen arloan hamarkada gutxi batzuetako

ibilbidea besterik ez da egin oraindik. Baina urte gutxitako ibilbidea izanda

ere, horrek ez du metodologia ugariren agerpena eragotzi, izan ere literaturan

metodologia oso desberdinen proposamenak aurkitu daitezke. Metodo horiek guztiak

hiru multzo nagusitan banatu daitezke: (i) ezagutzan oinarritutakoak, (ii) datuetan

oinarritutakoak edo (iii) deterministikoak (Soeters & Van Westen, 1996; Fell et al.,

2008).

Lur labainketen zonazioaren lehen proposamen formalak 70. hamarkadan

plazaratu ziren (Brabb et al., 1972; Humbert, 1970, 1977; Kienholz, 1978; Nilsen,

1979). Garai hartan ezagutzan oinarritutako metodoak, edo metodo heuristikoak,

jarraitzen ziren, zeinetan adituaren ezaguera eta esperientzia erabiltzen zen,

zuzenean (metodo geomorfologikoa) edo indizeetan oinarrituta (metodo erdi-

kuantitatiboa), lurraldearen ezegonkortasunerako joera maila ebaluatzeko. Kasu

horietan, emaitzaren kalitatea adituaren ezagutza mailak erabat baldintzatuta

geratzen da subjektibotasun oso altua emanez. Gainera, ezegonkortasun joera maila
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ezartzeko orduan hartutako erabakiak ezin dira ez egiaztatu, ezta erreproduzitu ere

(Van Westen, 1993; Cardinali et al., 2002), eta horrek gabezia garrantzitsuak uzten

ditu, batez ere egindako lanen kalitatea ebaluatu edo konparazioak egiterakoan.

Hain zuzen ere gabezia horiei aurre egin nahian, 80. hamarkadatik aurrera (Brand

& Bonnard, 1988), baina batez ere 90. hamarkadan, metodo kuantitatibo edo

estatistikoak garatzen hasi ziren (Wong et al., 1997; Hardingham et al., 1998;

Wong & Ho, 1998). Analisirako proposamen horiek metodo heuristikoetan aurki

daitekeen subjektibitate maila ahalik eta gehien murrizteko sortu ziren. Horretarako,

iraganeko ezegonkortasunak gertarazi zituzten faktoreak estatistikoki aztertzen

dira lurraldearen unitate bakoitzerako, eta datu horietan oinarriturik, oraindik

ezegonkortasunik egon ez den eremuetarako aurreikuspenak egin daitezke antzeko

ezaugarriak mantentzen badira. Era berean, metodo deterministikoak (metodo

�sikoak ere deitzen direnak) 80. hamarkadaz geroztik garatu ziren (Ward et al., 1982;

Okimura & Kawatani, 1986; Mulder & Van Asch, 1988; Mulder, 1991; Hammond

et al., 1992; Godt et al., 2008; Gökceoglu & Aksoy, 1996). Malda batean aurkitzen

diren, eta neur daitezkeen ezaugarrietan oinarriturik (malda, lurzoruaren sakonera,

lur azpiko uren sakonera, etab.) ezponda baten masaren segurtasun muga (safety

factor) kalkulatzen da, eta atalase hori gaindituz gero mobilizatzen hasiko da masa

hori. Informazio horri esker, kalkulurako erabilitako faktore bakoitzaren mugako

balioak de�ni daitezke modelo �siko batzuen arabera (adibidez, ezponda in�nituaren

modeloa edo in�nite slope model), eta beraz, maldaren portaera aurreikusi faktore

bakoitzaren momentuko balioen arabera. Hala eta guztiz ere, 2.1 taulan islatuta

geratzen den bezala, multzo bakoitzaren baitan metodologia desberdin ugari aurki

daitezke literaturan.

Geogra�ako Informazio Sistemak (GIS) eta estatistikako softwareek azken

urteotan izan duten garapenari esker, datuen tratamendua izugarri erraztu

da. Horrek lur labainketen suszeptibilitatea, garai batean metodo heuristikoak

jarraituz egiten zen denbora berean, estatistikoki edo deterministikoki baloratzea

ahalbidetu du. Beraz, ezagutzan oinarritutako metodoak alde batera utzi, eta

objektibotasuna eta erreproduzigarritasuna helburu, geroz eta modelo estatistiko

zein �siko so�stikatuagoak garatzen ari dira.

Historikoki lur labainketen suszeptibilitate eta mehatxuaren arloan egindako
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Table 2.1: List of some methods for landslide susceptibility mapping published since 1983 until 2014. Table modi�ed

by the author. Source: Malamud et al. (2014).

2.1 Taula: 1983 eta 2014 urteen bitartean argitaratutako zenbait methodologien zerrenda lur labainketen arloan.

Iturria: Malamud et al. (2014).

Knowledge based methods (Heuristic)

Certainty factor model Conventional weighting Heuristic evaluation Qualitative map combination

Knowledge based idex ap-

proach

Deterministic methods (Factor of Safety calculation)

Deterministic stability analysis Factor of safety In�nite slope stability model Newmark slope stability model

Shallow Slope Stability Model

(SHALSTAB)

Stability index mapping (SIN-

MAP)

Static factor of safety

Data driven methods (Statistical)

Bayes' theorem Bayesian logistic regression Bayesian probability model Bivariate analysis

Failure rate (FR) Frequency ratio GIS based Landslide density

Overlay Dempster-Shafer theory Evidential belief function

(EBF) model

Discriminant analysis

Kernel-based Fisher discrimi-

nant analysis

Linear discriminant analysis Quadratic discriminant analy-

sis

Quanti�cation scaling type II

Index of entropy Information entropy Maximum entropy (MAXENT) Shannon's entropy

Factor analysis Fuzzy inference system Fuzzy logic approach Fuzzy-set membership function

Gamma Operation Neuro-fuzzy approach Zadeh's fuzzy set theory InfoVal (Information Value)

model

Landslide hazard evaluation

factor (LHEF) rating scheme

Landslide nominal susceptibi-

lity factor (LNSF) methods

Landslide susceptibility index

(LSI) model

Matrix method

Multiple factor model Numerical rating scheme Ordered weighted average Ordinal scale approach using

weighting rating system

Relative e�ect method Soil stability value Statistical index (Wi) Surface cover index (SCI)

Vegetation in�uenced landslide

index (VILI)

Weight index (Wi) model Weighting factor (Wf) method Generalised linear model

(GLM)

Generalized additive model Generalized linear regression

(GLR)

Geographically weighted re-

gression (GWR)

Least squares method

Linear regression Weighted linear combination Autologistic regression Logistic regression

Rare events logistic regression Analytical hierarchical process Analytical network process Kalman �lter model

Multi-criteria decision analysis Spatial multi-criteria evalua-

tion

Genetic adaptive neural net-

work (GANN)

Neural network

AdaBoost First-order second-moment

(FOSM)

Fractal statistics Genetic programming

Geotechnical-based slope sta-

bility probability classi�cation

(SSPC)

Rock engineering system

(RES)

Rough set theory Conditional probability

Joint conditional probability Likelihood ratio Probabilistic analysis Probabilistic likelihood ratio

Probability density function Simple probabilistic method Multivariate adaptive regres-

sion splines (MARS)

Multivariate regression

Spatial regression Support vector machine (SVM) Boosted regression trees (BRT) Classi�cation and regression

trees (CART)

Decision tree Random forest Weight of evidence
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ekarpenen berrikusketa sakonagoak erreferentzia hauetan aurkitu daitezke: Soeters

& Van Westen (1996); Van Westen et al. (2008, 1997); Van Westen (2000);

Huabin et al. (2005); Van Westen et al. (2006); Chacón et al. (2006); Beguería

(2006); Van Asch et al. (2007); Kanungo et al. (2009); Pardeshi et al. (2013);

Reichenbach et al. (2018). Baina, laburbilduz, gaur egun metodo estatistikoak

eta deterministikoak dira erabilienak, eta baten edo bestearen aukera, ikerketa

bakoitzaren ikuspegi, helburu eta baliabideen arabera egingo da. Modelo �sikoetan

oinarritutako metodoek labainketa bakoitzaren portaera mekanikoaren ikuspegitik

aztertzen dituzte fenomenoak, eta eskala handiko eremuetan aplikatzeko egokiak dira

bakarrik (<1:5000) (Corominas & Mavrouli, 2011), beti ere sarrera datuen kalitate

altua eta eskuragarritasuna bermatzen baldin badira. Metodo estatistikoetan berriz,

ikuspegi orokorrago bat hartzen da, eta lur labainketa bakoitza nola gauzatu den

baino gehiago, noiz eta non gertatu den aztertzea izaten dute helburu, modelo

matematikoetan izaera desberdineko informazio espazial eta denboralak erabiliz

sarrera datu moduan. Mota horretako metodoen abantaila nagusia eskala lokal,

erregional nahiz nazionalean aplikatzeko aukera da, datu nahikoa izanez gero

beti ere. Izatez, azken urteotan sortutako bibliogra�aren berrikusketa sakon baten

arabera (Malamud et al., 2014), 1983 eta 2014 urteen artean publikatutako lur

labainketen suszeptibilitatearen eta mehatxuaren ikerketa estatistikoetan denetariko

ikerketa eremuak jorratu dira, 10 km2-tik hasita 10.000 km2 baino gehiagora arte

(2.1 Irud.).

Bereziki lur labainketen mehatxuaren azterketari lotuta, prozesu hauek zein

momentutan gertatzen diren ikertzen duten hainbat proposamen ere aurki daitezke

literaturan. Zenbait ikerlarik lur labainketak sortzen dituzten euriteen atalaseak

kalkulatzeko metodologien berrikuspen sakonak egin dituzte (Guzzetti et al.,

2007; Ramos-Cañón et al., 2015). Suszeptibilitatearen kasuan bezala, hemen ere

iraganeko datuen tratamendu estatistikoetan oinarritzen diren metodoak nagusitzen

dira, baina prezipitazioen zein parametro erabiltzen den izaten da desberdintasun

nagusia batetik bestera. Ramos-Cañónen taldeak gauzatutako berrikuspenean

prezipitazioekin lotutako 32 parametro desberdin identi�katzen dituzte aztertutako

244 artikuluen artean.
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Figure 2.1: Frequency density as a function of study areas (in km2). This graph has been obtained from Malamud

et al. (2014). Data serie 1983-2014.

2.1 Irudia: Frekuentzia dentsitatea ikerketa eremuaren azaleraren funtzio bezala adierazita (km2-tan). Gra�ko hau

Malamud et al. (2014) argitalpenetik lortu da. Datu seriea 1983-2014.

2.2 Zenbait erreferentziazko ikerketa

Lur labainketek gizartean sortzen duten eraina Brabbek argitaratutako �The World

Landslide Problem� artikuluan maisuki azaldua geratu zen (Brabb, 1991). Bertan

hitz hauek irakur daitezke:

�Landslides are generally more manageable and predictable than earthquakes,

volcanic eruptions, and some storms, but only a few countries have taken

advantage of this knowledge to reduce landslide hazards.�

Eta handik urte gutxitara Soeters eta Van Westenek lehen berrikusketa sakona

plazaratu zuten (Soeters & Van Westen, 1996), hain zuzen ere lur labainketen

inguruko ezagutzari buruz hausnartu eta haien mehatxua eta lurraldearen

kudeaketarako bide-orri bateratu bat de�nitzeko helburuarekin. Guzzeti-k, bide

horretatik jarraituz, 20 urteko ibilbidean lortutako ezagutzak bildu zituen bere

doktore tesian, �Dissertation on Landslide Hazard and Risk Assessment� (Guzzetti,

2006), eta Fell eta beste askoren lanaren ondorioz, 2008an, �Guidelines for landslide
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susceptibility, hazard and risk zoning for land use planning� argitaratu zen (Fell

et al., 2008). Azken hori Europar Komisioak �nantzatutako �Living with landslide

risk in Europe: Assessment, e�ects of global change, and risk management strategies�

dokumentuaren oinarri nagusia da, non lehen aldiz lur labainketen mehatxu eta

arriskuari dagokienez jarraitu beharreko bide-orri bat eskaintzen den instituzio

o�zial baten eskutik (Corominas & Mavrouli, 2011).

Bertan ematen diren gomendioen artean oinarrizkoena, ordea, lur labainketen

gertaeren datu baseak gauzatzekoa da. Izan ere, edozein motatako analisietarako,

iraganeko informazioa behar beharrezkoa da. Arlo horretan ahaleginak egiten ari

dira mundu mailatik hasita (Petley, 2012; Petley et al., 2005; EM-DATA, 2017),

nazio nahiz eskualde mailara arte. Adibiderik esanguratsuena Italiako kasua da.

IFFI proiektuaren bitartez (Trigila, 2007; Trigila et al., 2010), urteak daramatzate

lur labainketen gertaerak sistematikoki erregistratzen herrialde osoan, eta horrek

ahalbidetu du alerta sistema aurreratu bat ezartzea horren guztiaren inguruan.

Espainian ere, ALISSA proiektuaren bitartez, antzeko pausoak ematen ari dira

(Hervás, 2014), nahiz eta oraingoz bibliogra�an oinarritutako datu base bat den,

eta beraz, sistematikoki datuak biltzeko prozedura ezarri gabe dagoen. Katalunian

ordea, beste adibide eredugarri bat aurki daiteke, non duela hamarkada batez

geroztik, LLISCAT proiektuaren baitan, lur labainketen erregistroa sistematikoki

gauzatzen ari den (i Planells, 2007). Hala ere, oraindik lan ugari dago egiteko

arlo honetan Van den Eeckhautek eta Hervásek beren �State of the art of

national landslide databases in Europe and their potential for assessing landslide

susceptibility, hazard and risk� argitalpenean aipatzen duten moduan (Van

Den Eeckhaut & Hervás, 2012).

Izatez, azken urteotan lur labainketen suszeptibilitatea ikertzeko aplikazio

zuzen ugari argitaratu dira, baina jarraian lan honekin erlazio zuzena daukaten

erreferentzia esanguratsuenak bakarrik aipatuko dira. Esaterako, 2013an, ELSUS,

Europa osoko lur labainketen suszeptibilitate mapa, plazaratu zen lehen aldiz 1:1M

eskalan (Günther et al., 2014). Eta horren bertsio eguneratua 2018an argitaratu da

maparen erresoluzio maila 1000 m-tik 200 m-ra handituz besteak beste (Wilde et al.,

2018).

Bestalde, ikerlari batzuen ahaleginak suszeptibilitate mapa horiek sortzeko
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metodologia espezi�ko batzuetara bideratzen diren bitartean, metodo bat baino

gehiago aplikatzeko aukerak ematen dituzten softwareak sortzen konzentratzen

ari dira beste batzuk (Rossi et al., 2010; Rossi & Reichenbach, 2016; Fabbri

et al., 2004). Kasu bakoitzean espezi�kazio desberdinak aurki daitezke, baina

antzematen denaren arabera, tendentzia, datuen bilketa sistematizatzeaz gain,

haietatik sortutako suszeptibilitate mapak sistematizatzea ere badela ematen du.

Modeloak kalkulatzeko orduan eta modelo horiek mapa batean adierazteko

garaian erabiliko diren unitate espazialei dagokienez, gaur egun, hainbat aukera

daude eztabaidan. Izan ere lurraldea ikuspegi desberdinen arabera banandu

daiteke: unitate topogra�koak, unitate hidrologikoak, adibidez, malda unitateak edo

unitate erregularrak erabiliz. Eta kasu bakoitzean emaitza nahiz emaitzen beraren

interpretazioa desberdina izango da. Hausnarketa esanguratsuak aurki daitezke

mapa unitate bakoitzaren erabilerak izan dezakeen eraginari buruz (Carrara et al.,

1995; Reichenbach et al., 2018).

Tesi hau Gipuzkoako LHan gauzatu da (ikusi 4 atala). Alta, hau ez da

inguru hauetan lur labainketen suszeptibilitatea eta mehatxua lantzen den

lehen aldia. 80. hamarkadan Gipuzkoako Foru Aldundiak (GFA) lurraldearen

ikerketa geomorfologikoa enkargatu zuen eta, horren ondorioz, �Gipuzkoako Mapa

Geomorfologikoa� argitaratu zen 1:25000 eskalan (GFA, 1991). Orduko baliabideak

erabiliz eta metodo heuristikoa aplikatuz, mapa haietan identi�katutako lur

labainketa moten banaketa espaziala erakusten zen. Gaur egun, mapa haiek

eskuragarri daude formatu digitalean Euskadiko Datu Geoespazialen Azpiegituran1.

Beste aurrekari garrantzitsu batzuk Deba bailararen beheko aldean (Gipuzkoako

mendebaldean) egindako ikerketak dira. Remondok, 1954 eta 1997 urteen arteko

aireko argazkiak erabiliz eta landa lan bitarteko egiaztapenak eginez (Remondo,

2001), Deba ibaiaren behe ibilgua osatzen duten 4 udalerrietarako lur labainketen

inbentario multi-tenporala gauzatu zuen, eta metodo estatistiko bibarianteak

aplikatu zituen GISak erabiliz inguru haietako lehen lur labainketen suszeptibilitate

mapa sortzeko. Ondoren, Bonacheak inbentario hori eguneratu eta metodo bera

erabiliz (Bonachea, 2006), suszeptibilitate mapaz gain, lur labainketen mehatxu eta

arrisku mapak garatu zituen. Eta azkenik, Felicísimok eta beste batzuk, inbentario

1www.geo.euskadi.eus

25



Methodological approach for landslide analysis in a regional scale

berbera aprobetxatuz, metodo estatistiko multibariante batzuen arteko konparazioa

(multiple logistic regression, multivariate adaptive regression splines, classi�cation

and regression trees eta maximum entropy) aurkeztu zuten (Felicísimo et al., 2013).

Gipuzkoako beste eremu batean, metodo heuristikoa aplikatu da lur labainketen

mehatxua ebaluatzeko: Oiartzun ibaiaren erdi ibilguan hain zuzen (Etxeberria et al.,

2005).

2007an GFAk lurralde historiko osoa bere gain hartzen zuen lehen lur labainketen

suszeptibilitate mapa argitaratu zuen (GFA, 2007). Bertan, 80. hamarkadan

bildutako lur labainketen kokalekuen informazioa erabiliz eta discriminant analysis

metodo multibariantea aplikatuz, 1:25000 eskalako mapa digital sorta aurkeztu zen

10x10 m-ko pixel erresoluzioarekin.

Beste alde batetik, lur labainketen suszeptibilitate ikerketan gertatzen den

bezala, labainketak gertatzeko prezipitazio atalaseen ikerketak ere baditu aurrekari

garrantzitsu batzuk.

Wieczorekek ireki zuen bidea (Wieczorek, 1987), detritu �uxuen (debris �ow)

gertaeren eta euriteen intentsitatearen eta iraupenaren arteko erlazioa de�nitu

zuenean metodo enpirikoa erabiliz. Ideia horri buruz sakonago hausnartzen

dute beranduago Wieczorek eta Gladek �Climatic Factors and Debris Flows�

argitalpenean (Wieczorek & Glade, 2005).

Aplikazio zehatzetara jotzen badugu, adibide bikainak aurki daitezke nazioarteko

ikerketetan (Cuesta et al., 1999; Glade et al., 2000; Zêzere & Rodrigues, 2002; Jakob

& Weatherly, 2003; Li et al., 2011; Bui et al., 2013; Zêzere et al., 2015; Vaz et al.,

2018) baina batez ere Portugalen eta Italian, gai hau gehien landu den herrialdetan.

Brunettiren lan taldeak metodo Bayesiarra eta Frekuentista aplikatu zituzten

Abruzzo eskualdean, baina herrialde osorako aplikatzeko aukera azpimarratu zuten

(Brunetti et al., 2010). Peruccaccik eta bere kideek ikerketa eremua zabaldu

zuten eta, euri intentsitateak erabili beharrean, akumulatutako prezipitazioa erabili

zuten parametro bezala (Peruccacci et al., 2012). Beste kasu batzuetan modelo

hidrologiko bat proposatu da, algoritmo automatiko baten bitartez (Terranova et al.,

2015), lur labainketak sorrarazteko prezipitazio atalaseak de�nitzeko; bide horretatik

jarraituz, Melilloren lan taldeak lur labainketak sorrarazten dituzten eurite motak

identi�katu eta klasi�katzeko algoritmo bat proposatu zuen (Melillo et al., 2015).
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Azkenik, baliabide hauetan guztietan oinarrituta, prezipitazio atalaseak modu

automatizatuan kalkulatzeko gai den algoritmo bat proposatu zuten (Melillo et al.,

2016; Peruccacci et al., 2017). Bestalde, kontzeptualki, lurzoruaren ur saturazio

maila kontuan hartzea egokiagoa dela proposatzen duten argitalpenak aurki daitezke

(Bogaard & Greco, 2018) baita, kontzeptu horren aplikazio metodologikoak ere

(Valenzuela et al., 2018).

Gipuzkoako kasura bueltatuz, prezpitazioen eta lur labainketen arteko erlazioa

ezer gutxi landu den gai bat da, momentuz, hasierako ezaugarriketa bat bakarrik

argitaratuz (Bonachea et al., 2017).

2.3 Motivation

According to the general description of the state of the art presented in the previous

sections, the investigations displayed in the following chapters were carried out

with the motivation of �lling some gaps on the �eld of landslide susceptibility

modelling by statistical methods as well as for landslide causing precipitation

threshold calculation. Thereby, the current thesis can be considered in two levels: the

production of new or updated results for a territory related to landslide susceptibility

maps and precipitation thresholds; and the development of innovative methods and

results that contributes to progress toward a de�nitive methodological approach

within this scienti�c �eld.

Concerning the �rst level, the motivation for the work presented here comes from

the following gaps of knowledge: i) the need for an updated database for landslide

analysis in Gipuzkoa Province; ii) the necessity to produce, compare and check new

landslide susceptibility maps carried out following innovative approaches and in

di�erent scales, in order to improve the previously existing maps (GFA, 2007); and

iii) the lack of information on the landslide responsible precipitation thresholds.

Furthermore, starting from the mentioned gaps of knowledge for landslide

analysis in our study area, divers methodological questions were raised related to the

susceptibility modelling. To begin, there is still no clear the most appropriate way

to work with both, categorical and continuous, explanatory variables. In addition,

the selection of these explanatory variables to be included in the statistical models
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is usually too subjective and, as a consequence, the objectivity and reproducibility

of the approach is reduced. Also other aspects such as, the uncertainty that results

from the aleatory sampling of stable (or no-landslide) places; or the advantages or

drawbacks related to the cartographic mapping unit applied to the models, needs to

be investigated more in depth.

So, the search to solve all this gaps of knowledge resulted in the current thesis,

which involves three sequentially designed investigations.
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3.1 Hypothesis

The possibility of establishing signi�cant and quanti�able relationships between

di�erent environmental and atmospheric factors associated with the landslide

occurrence is something already accepted and demonstrated in several scienti�c

studies (see chapter 2). It is also well known that an enormous variety of methods

exist (above all statistical methods), which permit to carry out a landslide

susceptibility and hazard analysis, and, it is assumed that the choice between one

or another presents particular advantages or disadvantages against the rest. But, no

matter the statistical method applied, there are always some common steps. So, the

general hypothesis of this work maintains that there are some crucial decisions

during the evaluation process of the landslide susceptibility and hazard

in a region, that can a�ect directly the results. And this statement can be

ordered as follow:

• The landslide inventory, and moreover, the type of data represented in the

landslide inventory a�ects the results of the analysis.

• The only usage of statistical indicators does not completely ascertain the

suitability of an explanatory variable for landslide modelling.

• The choice of the mapping unit is relevant to mitigate some uncertainties

related to the input data when modelling landslide susceptibility.

• The usage of direct �eld work based landslide inventories in statistical landslide

susceptibility assessments can introduce considerable uncertainties, unless an

speci�c treatment is applied.

In addition, in order to advance toward a landslide hazard assessment in the

experimental study area, further experiments were applied under the following

hypothesis:

• Landslide occurrence is directly related to certain type of rainfalls, and this

relation can be expressed by a landslide responsible precipitation threshold.
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3.2 Objectives

The main objective of the thesis is to assess landslide susceptibility at

regional scale, using a justi�ed and scienti�cally supported method,

and incorporating precipitation thresholds responsible for landslide

occurrence. Indeed, the development of a landslide susceptibility map as well as

the calculation of precipitation thresholds responsible of landslide occurrence are

full of critical steps in which a decision has to be taken.

For this reason, and following the previously cited hypothesis order, below is

shown the speci�c objectives list, each of them related with one of the most critical

steps during the statistical analysis:

• To test di�erent landslide inventories for landslide analysis in a regional scale

in order to detect the most suitable features necessary to run susceptibility

models.

• To experiment with the available spatial digital layers, for their usage as

independent explanatory variables in landslide susceptibility analysis, as well

as to test di�erent ways for selecting, in an objective way, only the most

convenient to build the model.

• To observe and recognize the advantages and drawbacks of di�erent mapping

units in landslide susceptibility mapping.

• To prove that during the calibration, the restriction of the area in which

no-landslide data are sampled to the visible portion of the territory during

the survey (called E�ective Surveyed Area), in place to the entire area under

investigation (called Whole Area), enhances the quality of the model, in the

cases where the landslide inventory was carried out by direct �eld work.

• To detect relations between the inventoried instabilities and the rainfall

events for the calculation of landslides responsible precipitation thresholds

in Gipuzkoa Province.

Moreover, from the point of view of reproducibility, it was �xed an additional

objective related to the implementation of new and updated technologies. So, the
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usage of digital spatial data and statistical software's was prioritized in order to ease

the application of the presented approach in the future or in any other study area.
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Nahiz eta lan honetan aurkeztuko diren kontzeptualizazioak ez diren esparru

geogra�ko bakar batera mugatzen, aldez aurretik formulatutako hipotesi eta

helburuak lortu nahian aurkeztuko diren lan-metodo eta emaitzak ikerketa eremu

zehatz batean gauzatu dira, Gipuzkoako Lurralde Historikoan. Lurralde hau

aukeratzeko arrazoiak, batez ere, ondorengo hauek izan dira:

(i) Eguneroko giza jardueretan eragin zuzena suposatzen duten mota desberdine-

tako lur labainketen gertakariak egotea. Hots, errepide mozketak, etxebizitzen

ustutzeak, etab.

(ii) Lur labainketen suszeptibilitatearekin erlazionatutako ikerketen aurrekariak

egotea.

(iii) Lurralde osoa, estaltzen duen oinarrizko informazio espazial eta tematikoaren

eskuragarritasuna formatu digitalean.

(iv) Ikerketa honetatik aterako diren ondorioak kontutan hartu eta gomendioak

aplikatzeko gai den entitate administratibo propioaren izaera.

(v) Landa laneko jarduera erraztuko duen kokapen geogra�koa.

Beraz, jarraian Gipuzkoako LH ezaugarritzen duten, eta lur labainketa

prozesuekin erlazionatuta dauden, arlo nagusiak deskribatuko dira, ondorengo

ataletan aurkeztuko diren emaitzen testuinguru espazial bezala.

4.1 Kokalekua

Gipuzkoako LH Iberiar penintsularen iparraldean kokatuta dago Bizkaiko Golkoaren

hego-ekialdeko erpinean (4.1 Irud.). Piriniar mendikatearen mendebaldeko ertzak

mugatzen du ekialdetik eta Aralar eta Aizkorri-Aratz mendi zerrak hegoaldean.

Mendebaldean berriz, Deba eta Artibai ibai arroen arteko mendiek de�nitzen dute

ondoan kokatuta dagoen Bizkaiko LHrekiko muga. Azkenik, iparraldean 66 km-ko

kostaldea zabaltzen da Kantauri Itsaso aldera. 1980 km2 inguruko azalerarekin,

ondorengo erpin koordenatuek de�nitzen duten lauki zuzenaren baitan kokatua

geratuko litzateke:

Xmin = 532269;Xmax = 603631;Ymin = 4749441;Ymax = 4805769.
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88 udalerriz osatuta dagoen 717,8321 biztanleko eremu administratibo propioa

da. Bere kokalekua kontuan izanda, izaera estrategikoa dauka Iberiar penintsula eta

Europako beste herrialdeen arteko pasabide bezala (Urrestarazu & Galdos, 2008).

Izan ere, Pirinioekin alderatuta, bertan aurkitzen diren erliebeek erakusten dituzten

altuera apalagoek (0 m eta 1550 m artean) bailaren arteko komunikazioa erraztu

egiten dute, berez, ingurune menditsu bat izan arren.

Figure 4.1: Location of the Gipuzkoa Province.

4.1 Irudia: Gipuzkoako LHren kokalekua.

4.2 Ezaugarri geologikoak

Ikerketa eremua Piriniar mendi katearen mendebaldeko luzapena den heinean,

lurraldearen gehiengoa Euskal-Kantauriar Arroa izeneko unitate geologikoaren

12016ko datuak www.datuak.net-en arabera
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baitan kokatzen da, Euskal Arkua deritzon azpi unitatean zehatzago izateko

(Barnolas & Pujalte, 2004; Ábalos, 2016). Orogenesi Hertziniar edo Variskarraren

ondoren eremu guzti honek zartatze prozesu bat jasan zuen norabide ezberdinetako

urratzeak emanez. Besteak beste, Iruñako (IIE-HHM norabidean) eta Bilboko

(IIM-HHE norabidean) failak. Bi urratze hauek Euskal Arkuaren izaera eta

bilakaera baldintzatu dute, ondorengo Mesozoikoko estentsio prozesuan eta alpetar

konpresioan (Martínez-Torres, 1997; Pedreira, 2004)(4.2 Irud.).

Figure 4.2: Chronologic units and principle structural lines of Gipuzkoa. Modi�ed on the basis of EVE (1991) and

Ábalos (2016).

4.2 Irudia: Gipuzkoako unitate kronologikoak eta lerro estrukturalen antolaketa nagusia. EVEk egindako mapan

eta Ábalosen proposamenean oinarritua (EVE, 1991; Ábalos, 2016).

Bertako ezaugarri nagusia egitura erregionalen arku forma da, iparralderantz

orientatutako geruzaz, labainketa faila azpi bertikalez eta toles handiz osatua

dagoena (Barnolas & Pujalte, 2004). Egitura nagusiak, iparraldetik hegoaldera

antolatuta, Gipuzkoako Monoklinala, Iparraldeko Antiklinala, Bizkaiko Sinklinala

eta Kanpoko Antiklinala dira (Ábalos, 2016). Laburbilduz, Euskal Arkuaren

ezaugarri nagusiak ondorengo hauek dira (Barnolas & Pujalte, 2004): (i) Kretazeoan

zehar gertatutako magmatismo prozesuen existentzia; (ii) batez ere, izaera termikoko

metamor�smoen lekukoak diren azaleratzeak material Mesozoikoetan; (iii) itsas

zabaleko baldintzetan izandako potentzia handiko higakinen suzesioak Jurasiko,

Kretaziko eta Behe Paleogenoan; (iv) Euskal Kantauriar Arroan metatutako Flysch

motako turbiditen metakin garrantzitsuak.

Euskal Arkuaren ekialdean Pirinieo Axialari dagokion unitate geologikoa ere
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aurki daiteke; Bortziriko Mazizoa (González & Serrano, 1996). Piriniar mendikatea

sortu zuten mugimendu orogenikoen bultzadak, Deboniar garaian sortutako

plutoiaren azaleramendua eragin zuen, gaur egun 83 km2-ko erliebe granitiko

menditsua eratuz ipar-ekialdean (Denèle et al., 2012).

Figure 4.3: Lithological map of Gipuzkoa (Euskadiko DEA, 2014).

4.3 Irudia: Gipuzkoako mapa litologikoa (Euskadiko DEA, 2014).

Mesozoiko eta Zenozoikoan izandako bilakaera geologikoaren emaitza dira

gaur egun lurralde historikoan aurki daitezkeen material litologikoak (4.3 Irud.).

Hegoaldeko mendietan (Aralar eta Aizkorrin) tuparri (marls), kareharri (limestone),

eta kalkarenitak agertzen dira, zenbait arroka detritikoren alternantziarekin

batera. Lurraldearen erdialdean Piriniar orogenesiaren ondorioz deformatutako

deskarbonatatutako tuparriak (decarbonated marls), kareharri inpuruak (impure

limestones), o�tak (ophites), buztinak (clay), igeltsua (gypsium) eta ale lodiko
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arroka detritikoak tartekatuz doaz hainbat toles eta zamalkadura osatuz.

Ekialdean, ukimenezko metamor�smoaren ondorioz sortutako arbela (slate)

nabari da, azaleramendu paleozoikoen (granitoen) inguruan. Kosta lerroaren

paraleloan, tuparriak (marls), kareharri inpuruak (impure limestones), kalkarenitak

(calcarenites), kareharri margatsuak (marly limestones) eta ale lodiko arroka

detrikikoak (hareharriak gehien bat) tartekatuz doaz. Ekialdeko kostaldea

(Hondarribia eta Getaria artean) hareharriz eta kareharri hareatsuz osatuta

dago; mendebaldeko ertzean (Zumaia eta Mutriku artean) �ysch formakuntzaren

azaleramendua aurkitzen den bitartean. Kuaternarioko azaleko metaketak (surface

deposits) ibai nagusien aldeetan eta itsasoratze eremuetan aurkitzen dira (Campos

& García-Dueñas, 1972; Campos et al., 1983).

4.3 Ezaugarri klimatikoak

Isurialde atlantikoan kokatuta, Gipuzkoako LH klima ozeanikoaren baitan de�ni

daiteke (Urrestarazu & Galdos, 2008). Izan ere, ipar-mendebaldetik iristen diren aire

masak, ozeanoko ur epelen gainetik igarotzean hezetasun handiarekin iristen dira, lur

barneratzean ur hori prezipitatuz. Gainera, Kantauri itsasoarekin duen gertutasunak

tenperatura moderatuak eragiten ditu, urteko batez besteko tenperaturak 10◦C-14◦C

artean mantenduz (Ikusi Donostiako klimograma 4.4 Irud.).

Kostaldetik gertuko orogra�ak jasotzen dituen fronte eta aire masa hezeen

talkak eraginda, urteko batez besteko prezipitazioa 1000 eta 2200 mm artekoa da

(Uriarte, 1996). Euri hori guztia urtean zeharreko bi periodo maximoetan banatzen

da (4.4 Irud.): azaro eta urtarril artean urteko prezipitazioen %34 jasotzen da,

eta apirilean %10 (González-Hidalgo et al., 2011; Fdez-Arroyabe & Martin-Vide,

2012). Orokorrean, hiru motako euriteak dira ohikoenak (Corominas, 2006; Eusko

Jaurlaritza, 2015; Ormaetxea & Sáenz de Olazagoitia, 2017): i) Intentsitate altuko

eta iraupen motzeko ekaitzak, 10 l/m2-ko neurketak utz ditzazketenak; ii) Ekaitz

estazionarionak, intentsitate handia izatez gain, ordu bat baino gehiagoko iraupena

dutena eta iii) Fronteek ekarritako euriteak, udazken eta neguan intentsitate

ertaineko prezipitazioak uzten dituztenak, baina luzaroan iraun dezaketenak.

Lurraldean zehar, prezipitazioari dagokionez, desberdintasun esanguratsu batzuk
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Figure 4.4: Climographs for the capital of Gipuzkoa Province (data serie 1981-2013) and annual mean precipitation

map. All the data were obtained from AEMET.

4.4 Irudia: Gipuzkoako LHko hiriburuko klimograma (datu seriea 1981-2013) eta batez besteko urteko

prezipitazioen mapa. Datu guztiak AEMETetik lortu dira.

antzematen dira (4.4 Irud.). Kostaldean urte osoan zehar prezipitazio ugaria jasotzen

da beherakada lauso batekin udako hilabeteetan zehar. Kostaldetik gertuko mendi

inguruetan antzeko banaketa dute prezipitazioek, baina metatutako euria nabarmen

handitzen da kostaldetik sartzen diren aire masek, hego-ekialdeko norantzan,

mendiak gainditzean deskargatutako euriak direla eta.

Horretaz gain, urtean, batez bestean, 200 egunetan prezipitatzen du; eta beraz,

eguneroko batez besteko tasa 7.5 mm-koa da. Gainera, prezipitariorik gabeko epealdi

luzeak ez ohikoak dira, zeinak 50 urte inguruko itzulera denbora bait duten (Borja

& Collins, 2004).

4.4 Ezaugarri hidrogra�ko eta hidrologikoak

Gipuzkoako LHren erliebea, batez ere, ibai dinamikak markatutako prozesu

geomorfologikoen ondorioa da (CGS et al., 1991). Drainatze sarea bereziki dentsoa

duten sei arro hidrogra�kotan bananduta aurkitzen da ikerketa eremua (4.5 Irud.).

Arro horietan, 1550 m-ko altueratik (hegoaldeko mendi zerretan) itsas maila arteko

trantsizio azkarra gertatzen da. Prezipitazioek sortutako grabitatezko prozesuek,

higadura hidrikoak eta ibai higaduraren eraginez erliebe erabat aldapatsua eratu da,

izan ere, lurralde osoko azaleraren erdia baino gehiagok (%55) 15◦tik gorako malda
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dauka. Ezaugarri hauen ondorioz isurketa koe�ziente altuak (0.5 eta 0.7 artean) eta

kontzentrazio denbora motzak ematen dira kasu guztietan (Ibisate et al., 2000).

Kantauri itsasora urak garraiatzen dituzten 64 eta 900 km2 arteko arroez hitz

egiten ari gara (4.1 Tau.), Ebro arrora isurtzen duen hegoaldeko 19 km2 eremu

txiki baten kasuan izan ezik. Ur emariek erregimen plubial-ozeanikoa erakusten dute

(Ibisate et al., 2000) neguko emari altuekin eta udako beherakada esanguratsuekin,

nahiz eta ibai nagusiek urte osoan ura garraiatzen duten.

Figure 4.5: Location of the main river basins within the study area.

4.5 Irudia: Ikerketa eremuko ibai arro nagusien kokalekua.

Sei unitate hidrogra�ko hauek, hegoaldetik iparraldera norabidetutako eta malda

handiko bailaraz osatutako egitura hidrogra�ko dendritikoa osatzen dute, kostaldeko

hainbat errekak zuzenean itsasora isurtzen dituzten sare kataklinalekin batera.

Horien ezaugarri hidrologiko garrantzitsuenak (4.1 Tau.) torrentzialitate handiarekin

lotuta daude, prezipitazio altuen eta material iragazkaitzen gehienezko presentziaren

ondorioz (Borja & Collins, 2004). Horrek ur emarien igoerak tartekatzea dakar

maiztasun handiz. Ibaiak nahiko ahokatuta zirkulatzen dute, ubide bakarrekoak

dira eta ez oso meandriformeak; beraz, malda handiko zirkulazioak dira eta garraio

energia kontzentratuta doa (4.1 Tau.) (Ibisate et al., 2000).

Hala eta guztiz ere, azpimarratzekoa da Gipuzkoako arro bat berak ere ez
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duela bere osotasunean dinamika %100 naturala aurkezten. Izan ere arro guztietan

badira ur emariak erregulatzen dituzten urtegiak, esaterako: Urkulu eta Aixola,

Deba bailaran; Barrendiola eta Ibai-Eder, Urolan; Arriaran eta Lareo, Oria arroan;

Artikutza eta Añarbe, Urumean eta San Anton, Bidasoan.

Table 4.1: Summary table of the average hydrological and hydrographical features for the 6 principal river basins

covering the study area (URA, 2017; Rallo et al., 1992).

4.1 Taula: Ikerketa eremuko 6 ibai arro nagusien ezaugarri hidrologiko eta hidrogra�koak laburtzen dituen taula

(URA, 2017; Rallo et al., 1992).

Name
Catchment

surface (km2)

Mean

precipitation

(mm)

Water

contribution

(hm3)

Runo� Coef.

Bidasoa 64.71 1895 75.5 0.62

Oiartzun 85.78 1775 92.3 0.61

Urumea 290.8 1967 410.2 0.72

Oria 899.35 1642 800.3 0.54

Urola 342.21 1486 260.5 0.51

Deba 537.46 1552 441 0.53

Name Hmax (m) Length (km) Mean slope (%)

Bidasoa 900 66 1.36

Oiartzun 320 18.5 1.73

Urumea 600 46.5 1.29

Oria 1000 70 1.43

Urola 620 55.7 1.11

Deba 860 54 1.59
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4.5 Lurraldearen beste ezaugarri batzuk

Ingurune �sikoa ezaugarritzeaz gain, lurzoruaren estaldurak eta biztanleriaren

banaketak ere, eragin zuzena izan dezakete aztergai diren lur labainketen banaketa

espazialean. Kasu honetan, ikerketa eremua baso (%62.6), larre-belardiz (%25.5) eta

laborantza lurrez (%1.2) estalia dagoen lurralde bat izan arren gehien batean (Eusko

Jaurlaritza, 2016), gizakiak okupatutako eremu antropizatu oso kontzentratuak

agertzen dira bailara nagusien ibilguetan zehar (%6.5) (4.6b Irud.). Baso naturalen

artean espezie nagusienak pagadiak (Fagus silvatica) eta ariztiak dira (Quercus

robur, Q. pirenaica eta Q. petrea gehien bat). Landatutako basoetan berriz,

Gipuzkoako azaleraren %37.8 izanda (Eusko Jaurlaritza, 2016), espezie koniferoak

gailentzen dira (Pinus radiata, Larix europaea, Larix leptolepis edo P. laricio).

Bestalde, Gipuzkoako LHren kokaleku estrategikoak Europarako pasabide

bezala, komunikabide sare biziki dentso baten garapena ekarri du (4.6c Irud.). AP-1

autopistak (111.5 km) eta autobide nazional bik (A-1, 44 km eta A-15, 19.2 km)

gurutzatzen dute, eta ADIF2 (240 km) eta EUSKOTREN (93.1 km) trenbide sareak

zabaltzen dira bai kostaldeko eta bai barnealdeko eremuetan zehar. Horretaz gain,

bigarren mailako errepide sarea bailara eta azpi bailara guztietara hedatuta dago.

Gainera, 365.4 biz/km2-ko batez besteko populazio dentsitatea izan arren,

biztanleria hetereogeneoki sakabanatuta aurkitzen da. 1000 biz/km2-tik gorako

udalerri gehienak ekialdean kontzentratzen dira, herri guztien erdiek 150 biz/km2

baino gutxiago dituen bitartean (4.6d Irud.). Izan ere, urbanizatutako lurzoruak

korridore nagusietan zehar kokatuta badaude ere, etxebizitza ugari urbanizatu

gabeko landa lurretan kokatuta aurkitzen dira.

Ondorioz, aipatutako baldintza klimatikoak, erliebearen ezaugarriak eta

gizakiaren esku hartzearen ondorioz, paisaia unitate desberdinetan kon�guratuta

dagoen lurralde batetaz hitz egiten ari gera. Baina, izan bailara fondoetako

paisaian, izan atlantiar mendiez ezaugarritutako paisaietan lurraldearen eraldaketa

garrantzitxu bat gauzatu da, batez ere, garraio azpiegituren eta hiri hazkundeari

erantzuna emateko. Horrek Gipuzkoako mendi hegaletan eragin handia izan du,

2ADIF sarearen barne kontutan hartu dira abiadura handiko trenaren azpiegitura lanen

trazatuak
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malda askoren egonkortasuna desorekatuz eta lur labainketen gertaerak emanez,

besteak beste (Corominas et al., 2017).

Figure 4.6: Description of the land cover and population distribution. a) Land cover distribution according to the

National Forest Inventory of the 2010; b) Arti�cial land cover distribution; c) Communication network obtained

from Euskadiko DEA (2014); d) Population density map. Data form 2016 obtained from Gaindegia (2018).

4.6 Irudia: Lurzoruaren estaldura eta biztanleriaren banaketaren deskribapena. a) Lurzoruaren estaldura 2010eko

Baso Inbentario Nazionalaren arabera; b) Lurzoru arti�zialaren estaldura; c) Komunikabide sarea (Euskadiko DEA,

2014); d) Biztanleriaren dentsitate mapa. 2016ko datuak Gaindegia (2018).
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This chapter aims to provide the complementary information about the basic

data and methods used in this thesis. However, it is not intended to o�er a deep

review of the di�erent methodologies applied, considering that all of them were

su�ciently discussed in previous studies (see chapter 2). Instead, it is intended

to contribute with additional material to ease the comprehension of the following

chapter 6, where results of three investigations will be presented.

These researches were sequentially designed and carried out in order to con�rm

or reject the hypothesis of this thesis and to achieve the proposed objectives. So,

chapter 5, provides the details about the data and methods that support what is

presented in sections 6-I, 6-II and 6-III.

The chapter is organized as follow. First, information about all the data used for

subsequent experiments is shown, as well as their sources or the work �ow followed

up during their collection (section 5.1). Then, details about the methods followed

up at di�erent steps for developing landslide susceptibility maps are presented in

section 5.2. This one, refers to the two di�erent approaches showed in section 6-I and

6-II. And �nally, the methods applied for the calculation of landslides responsible

precipitation thresholds and the qualitative relation between rainfalls and landslides

(section 6-III) are explained in section 5.3.

5.1 Data collection

5.1.1 Landslide inventories

Statistical landslide susceptibility models are performed according to the basic

information of presence or absence of landslides, usually encoded with 1 and 0 values

respectively. Consequently, there is no doubts about the fact that, the landslide

inventory is the �rst critical step during the landslide susceptibility modelling,

because the model equation will be completely dependant on this data. Nevertheless,

according to Guzzetti et al. (2012), the quality of a landslides map (or landslides

inventory) depends on its accuracy, and on the type and certainty of the information

shown in the map. In addition, considering that standards do not exist, the de�nition

of that accuracy is not straightforward.

For this reason, di�erent landslide inventories were tested in this study.
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Three of them were obtained through the bibliographical review, and after a

preliminary assessment of their accuracy, a fourth inventory was produced by direct

geomorphological �eld work. Additionally, an independent landslide inventory was

also carried out by means of press review, for the purpose of obtaining a set of

landslides with temporal information. The following sections explain the details

about all these inventories.

5.1.1.1 Bibliographical landslide inventories

The bibliographical landslide inventory was performed by collecting already existing

and available landslide registrations coming from three di�erent sources.

Inventory of the Basque Government

It is about a research carried out in 1995 for Gipuzkoa, Bizkaia and Araba Provinces

(INGEMISA, 1995), where by means of an exhaustive bibliographical review of the

scienti�c articles and technical reports published until that date, the inventory of

the landslides was obtained. Landslides were classi�ed as slides, falls, �ows, topples

or complex, and a detailed sheet was provided for each of them.

The UTM coordinates as well as the type of landslide information were extracted

from the sheets and a data table was created in order to summarize all the attributes.

Then, thanks to the ArcGIS 10. software of Geographic Information Systems (GIS),

only those points concerning Gipuzkoa Province (GP) were extracted. The resulting

425 points can be seen in �gure 5.1.

Inventory of the road network

This work was carried out in 2013 by order of the Provincial Council of Gipuzkoa

and was executed by the IKERLUR company (GFA, 2013). The objective was

the inspection and control of the stability along the whole road network of the

territory, providing detailed information about the �con�ictiv� points. In this case,

117 unstable points (and its UTM coordinates) were detected, classi�ed as slow

slides, falls and debris �ows (Fig. 5.2).
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Figure 5.1: Distribution of the bibliographic landslide inventory from INGEMISA (1995).

5.1 Irudia: Bibliogra�atik lortutako lur labainketen banaketa espaziala. Iturria: INGEMISA (1995).

Figure 5.2: Distribution of the bibliographic landslide inventory from GFA (2013).

5.2 Irudia: Bibliogra�atik lortutako lur labainketen banaketa espaziala. Iturria: GFA (2013).
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Inventory of the geomorphological map

The geomorphological map of Euskadi in 1:25000 scale is available in digital format

from the Infrastructure of Spatial Data Service of the Basque Council (Euskadiko

DEA, 2014) and it provides the spatial distribution of three di�erent landslides

features:

Landslide scarps: they are the main scarps of the landslides drown by polygons.

93 scarps were detected within GP.

Rock mass deposits: they are rock masses that were travelled from their original

state delimited by polygonal areas. In this case 38 polygons were located in

our study area.

Shalow slides: it shows the areas of the shallow landslides by means of polygons.

88 cases were found.

Furthermore, in order to ease the location of all these features, the central point

of each polygon was calculated (Fig. 5.3).

Figure 5.3: Distribution of the bibliographic landslide inventory from Euskadiko DEA (2014).

5.3 Irudia: Bibliogra�atik lortutako lur labainketen banaketa espaziala. Iturria: Euskadiko DEA (2014).
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5.1.1.2 Field-based landslide inventory

It concerns a single landslide inventory coming from a �eld survey (carried out

during summer 2015 and 2016) in which every landslide was documented considering

its shape and dimensions. Although the visual interpretation of aerial photographs

may be the most suitable option in order to obtain a multi-temporal landslide

inventory (Santangelo et al., 2015), the dimension of the study area together with

the time limitations concerning this project makes this technique not applicable.

Other interesting options could be the more recently developed automatic and

semi-automatic techniques such as: (i) analysis of high and very-high resolution

(VHR) digital elevation models (DEM) derived from LIDAR, (ii) visual analysis of

monoscopic high and VHR satellite images, or (iii) automatic and semi-automatic

analysis of high and VHR satellite images (Murillo-García et al., 2015). But, the

lack of resources and the need of expert management for carrying out such new

methods, made not possible their application with guaranties. Thus, it was decided

to produce the own landslide inventory by direct geomorphological �eld work.

To do so, the study area was divided in 6 portions corresponding to the six main

watersheds, and a �eld trip that spent between one or two weeks (depending on the

size of each sub-area) was carried out for each one. During the �eld trip, a random

sub-set of the bibliographical landslide points as well as some newspaper references

were used as guide-points, but every landslide found along the �eld work was

documented in a �eld-sheet as the example shown in �gure 5.4 (all the �eld-sheets

together with the digital layer of the complete �eld-based landslide inventory can be

seen in supplementary material, see Appendix A). There, apart from some general

information like the watershed and the municipality or other possible relevant factors

observed on the �eld, at least, the following basic data were collected:

The speci�c ID: a unique identi�er was given to each single landslide, where the

�rst three characters means the abbreviation of the watershed in which it was

found, followed by the identi�er number.

The type of landslide: according to the Cruden & Varnes (1996) classi�cation

shown in section 1, the typology of the slope movement was registered.

Occurrence date: in case of knowing the date in which the landslide happened,
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it was also documented, though this information was scarce.

Date in which the landslide was visited: indicates, when was documented this

information.

UTM coordinates: using the GPS the location of the landslide was registered by

means of the UTM coordinates.

Pictures of the landslide: for all the landslides found during the �eld trips,

pictures were captured for further veri�cations in case of doubts.

LANDA LANEKO ORRIA 
Unitate hidrografikoa:  Udalerria:  zk:  

Lur labainketa mota:  
 
Gertaera eguna: 
 

Egilea:  Data:  

1:5.000 orriaren zk: 
Hegaldia: 
Fotograma zk: 
  

Koordenatuak (UTM):  
     X:  
     Y:  
     Z:  

BALDINTZA FAKTOREAK 

Litologia: Malda (º): 

Lurzoruaren lodiera: Orientazioa: 

Landaretza: Makurdura: 

Hausturak: 

Lur erabilpenak (egungo eta iraganekoak): 
 
 

Azpiegiturekin erlazioa: 

ERAGIN FAKTOREAK 

Ez ohiko euri-jasa: 

Besteak (higadura, ibai dinamikak …): 

BESTELAKO EZAUGARRIAK 

Dimentsioak:  

Egoera eta garapena: 

Kalteak: 

Zuzenketa neurriak: 

Argazkiak: 

   
 

Besterik: 
 

Informazio iturriak: Landa lana 
 

Figure 5.4: Example of a �eld-sheet. Compiled in Basque language.

5.4 Irudia: Landa laneko �txaren adibidea. Euskaraz.
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Figure 5.5 summarizes the methodology used for the �eld-work based landslide

inventory collection. First, all the paths travelled during the �eld work were tracked

with the GPS. Then, apart from the data collected in the �eld sheets, the GPS

waypoints of the upper part of the crown (a), the lower part of the toe (b) and

both sides (c, d) were saved using the OruxMaps app (version 6.5.10) of the

smartphone (Fig. 5.5 II). After that, the waypoints were exported to the Google

Earth application and the landslide polygons were digitalized and named with their

ID code. Nevertheless, it has to be pointed out that a little portion of landslides

could not be visualized in the Google Earth's satellite imagery, because they were

very recent, they were undetectable due to re-vegetation or they were removed and

reconstructed before a new satellite image was taken. In such case, the landslide

digitalisation was carried out approximately using the four waypoints dimension

and the pictures captured on the �eld. Finally, the polygons were exported into the

GIS software and transformed into shape�les (*.shp) for their further processing.

Figure 5.5: Methodological work �ow scheme for the �eld-work based landslide inventory collection.

5.5 Irudia: Landa lanean oinarritutako lur labainketen inbentarioa gauzatzeko jarraitutako prozedura.

5.1.1.3 Press-based landslide inventory

Landslide location and temporal information can be collected by means of the

newspaper review (Cuesta et al., 1999). In this work, the most sold newspaper in

Gipuzkoa Province (El Diario Vasco) was chosen and was collected every report
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in which the key words �deslizamiento�, �desprendimiento� or �derrumbe� (slide,

landslide and crumble as the typical colloquial words in Spanish for referring to

landslides, respectively) was cited (see example in Fig. 5.6). Because the digital

newspaper library did not o�er any information previous to 2006, the time lap

covered by this review starts the �rst January of this year and �nishes the thirty one

December of 2015 (detailed information about all the press-based landslide inventory

is available in Appendix A).

Figure 5.6: Example of one recorded press report o�ering information about a landslide event. El Diario Vasco

13-02-2013.

5.6 Irudia: Lur labainketa bati buruz jasotako berriaren adibide bat. El Diario Vasco 2013-02-13.

As a result, 2005 reports were obtained from the newspapers review. Later

on, considering this information source, landslides that occurred within the

administrative boundaries of the GP were selected and the following information

was summarized in a data base:

Occurrence date: the date in which the landslide happened.

Occurrence moment: the exact time at which the landslide occurred. If the exact

time was not known, the approximated time was registered depending on

the accuracy of the information (night 6:00; morning 12:00; afternoon 18:00;

evening 23:59). And if only the date was known 23:59 time was registered.
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Occurrence moment accuracy: the accuracy of the information about the

occurrence time of the landslide (Exact time; Relative time; Only the day

is known). Notice that the time was transformed into Coordinated Universal

Time (UTC).

Location accuracy: the accuracy of the information about the location of the

reported landslide. At least the municipality has to be known to accept the

event in the inventory (Exact location; Relative location with less than 1 km

of error; Relative location with less than 10 km of error; Only the municipality

is known).

Type of movement: when information about the characteristics of the movement

was reported, or if the news was supported with pictures, the process was

classi�ed according to the (Cruden & Varnes, 1996) classi�cation (Slide; Rock

fall; Flow; Mixed movement). If no information was provided in this regards,

the generic word �landslide� was assigned.

Cause: if this information was reported on the news it was introduced in the

database (Rainfall; Human activity; Waves; Fluvial erosion; Wind; Unknown).

Damage type: if this information was reported on the news it was also introduced

in the database the type of damage caused by the movement (Personal;

Buildings; Communication network; Parks; Unde�ned).

However, it has to be pointed out the meaning of the landslide inventory. Each

landslide refers to a single case of terrain instability occurred at a given moment and

in a given place. Thus, it frequently happens that more than one landslide occurred

very close in time and space, due to the same rainfall event.

5.1.2 Explanatory variables

Quoting to Van Westen, after the landslide inventory, �the next crucial input data

for susceptibility, hazard and risk assessment consists of the spatial representation

of the factors that are considered relevant for the prediction of the occurrence of

future landslides� (Van Westen et al., 2008). The usage of such variables can change

depending on the type of landslide, the scale and the method in which they are

69



Methodological approach for landslide analysis in a regional scale

applied, and they directly depend on the availability of existing data and resources

(Van Westen et al., 2008; Süzen & Kaya, 2012; Budimir et al., 2015; Malamud et al.,

2014).

For an overview about the trending on the spatial variables used for landslide

susceptibility assessment, in Van Westen et al. (2008) and more recently in Malamud

et al. (2014) detailed reviews based on papers survey are available. Moreover,

Budimir et al. (2015) also o�ers the review of the most used explanatory variables

in the speci�c case of logistic regression (LR) method driven susceptibility analysis.

As a matter of fact, despite the big amount of di�erent explanatory variables

tested in the scienti�c literature, the biggest part of them can be classi�ed in one of

the following groups:

DEM and derived variables: the Digital Elevation Model (DEM) is the digital

representation of the earth surface elevation which shows, with di�erent level

of details (depending on its spatial resolution), the topography of a given study

area. Thanks to this information and the developed functionalities of the GIS

computer programs, they can be obtained divers derived variables such as the

slope gradient or the aspect, and additionally other morphometric parameters

such as the �ow accumulation or the drainage density.

Geology and Soil related variables: as landslides are movements of the terrain

down the slope, all kind of features of the terrain itself were historically used for

landslide susceptibility modelling. Starting from the lithological classi�cation

until the soil typology, going through the depth of the surface formation or

the stratigraphic orientation and so on.

Land cover variables: the land cover is another common variable which can be

represented in form of land use maps or vegetation maps, as well as, for

example, more dynamic variables such as land use change maps or normalized

di�erence vegetation index (NDVI ) evolution maps.

But, as Ayalew & Yamagishi (2005) already pointed out, the selection of the

spatial factors with major role is a di�cult task because neither universal criteria

nor guidelines exists about this issue. However, according to the same authors, there

is a consensus about the minimum conditions that every variable must meet: (i)
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to have a certain degree of a�nity with the dependent variable; (ii) to be fairly

represented all over the study area; (iii) it has to be non-uniform; (iv) it must be

expressed by any of the di�erent types of measuring scales and (v) its e�ect should

not account for double consequences in the �nal result.

The aim of this section is to present the spatial variables considered in the current

study and the method followed for their �nal selection as explanatory variables of

the landslide susceptibility models, so as to be sure that the used variables ful�l the

above mentioned conditions.

From the Infrastructure of Spatial Data Service of Euskadi (Euskadiko DEA,

2014), that compiles the basic, photographic and geoscienti�c digital cartography,

the vector layers of Lithology, Permeability, Regolith Thicknesses, Land Uses (two

layers from two di�erent sources), Vegetation, Drainage network and Transport

network by road and train were downloaded. Likewise, the DEM with 5x5 m spatial

resolution as well as SPOT 5 satellite multi-spectral imagery were used to produce

derived variables.

Taking into account the available spatial information, for this work a set of 20

original environmental variables was considered (Tab. 5.1). These below described

variables can be continuous, which means that each pixel of the layer represent a

numerical value between the minimum and maximum of the range of the variable, or

categorical, which means that each pixel belongs to a category between the di�erent

classes of the variable. Nevertheless, some of them were afterwords transformed

in order to test all the di�erent forms of presentation of variables found in the

bibliography (see section 6.1.3).

5.1.2.1 Continuous variables

Elevation

The DEM used for the elevation representation comes from the LIDAR (Light

Detection and Ranging) data capture carried out during 2012 and re-sampled in 5x5

meters cell resolution. The source raster �le is available in Euskadiko DEA (2014)

named under the code md_IDEEu_MDT_LIDAR_5M_2013.ti�, and it covers the

entire administrative boundaries of Euskadi, so before using it, the corresponding

area of the GP was clipped.
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Table 5.1: List of the original environmental variables. Land cover 3 refers to the vegetation map.

5.1 Taula: Ingurugiroko aldagi originalen zerrenda. Lurzoruaren estaldura 3 landaretza mapari dagokio.

Continuous variables

elevation slope sinusoidal slope

surface area ratio topographic wetness index curvature

pro�l curvature planform curvature distance to the river

distance to the transport net-

work

normalized di�erence vegeta-

tion index

Categorical variables

lithology permeability regolith thickness

land cover 1 land cover 2 land cover 3

aspect distance to the main river-

streams CAT

distance to transport network

CAT

Theoretically, it is worth the usage of a DEM previous to any slope instability

event in order to represent, in a more faithful way, the geometry of the surface before

the landslide occurrence. Nevertheless, the landslide inventories that will be used in

this study comes from divers sources and the occurrence moment of the most part

of events was uncertain. Only the dates of publication of the bibliographic sources

and the dates of the �eld trips were available as temporal references, and in such

case, there were landslide occurred before 1995 (section 5.1.1.1) as well as others

occurred before 2016, because the �eld trips were carried out during the summer

of 2015 and 2016. Thereby, considering that at the beginning of this thesis (2014)

they were only available DEM layers of 2008 and 2013, the most recent was chosen

in order to have a well known and observable starting point.

The variable elevation (Fig. 5.7) is quantitative and continuous, and it represents

in meters the altitude above the sea level of each regular cell. Although, the

altitude itself is hardly justi�able as landslide in�uencing factor, many authors

like Corominas (2000) found relations, usually more related with derived features

from the altitude, such as the higher precipitation or the non-existence of soils

in high altitudes. Moreover, as the DEM was necessary for other derived variables

production, the decision was taken to also test the elevation as explanatory variable.
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Figure 5.7: Elevation variable's spatial distribution.

5.7 Irudia: Altuera aldagaiaren banaketa espaziala.

Slope

The slope (Fig. 5.8) was digitally calculated as a derived product of the DEM. By

means of the ArcGIS 10 software, the maximum rate of change in value from each cell

to its neighbours was calculated, assuming that the maximum change in elevation

over the distance between the cell and its eight neighbours identi�es the steepest

downhill descent from the cell. For this reason, the calculations were carried out over

the original DEM, and then the resulting layer was clipped in order to �t the study

area. This way, border errors were avoided.

This quantitative and continuous variable is one of the basic factors considered

in every landslide susceptibility analysis. It represents the existing angle between the

terrain surface and the horizontal plane in degrees, and it shows a direct relation

with the tangent and normal cutting stress of the surface formation (Amorim,

2012). In addition, the slope in�uences very importantly the water �ow velocity

and distribution.

Sinusoidal slope

According to the observations carried out by Santacana et al. (2003) and Amorim

(2012), there are some types of landslides, like shallow slides, that usually are

concentrated in medium slope areas, decreasing their presence from 45◦ of slope on.

Such a behaviour can be explained with the lack of surface formations in very steeply
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Figure 5.8: Slope variable's spatial distribution.

5.8 Irudia: Malda aldagaiaren banaketa espaziala.

areas, being, there, more frequent the underlying rock outcrops. Thus, depending on

the type of landslides considered to the susceptibility analysis, the relation between

them and the slope may not be completely positive, because in some cases, from

45◦ of slope, the more is the slope the less is the probability of �nding landslides

(Amorim, 2012).

In order to cover as much as possible variables, a mathematical transformation

proposed in Santacana (2001), and shown in equation 5.1, was applied to the slope

variable, so as to increase its value until the 45◦, and then decrease it gradually until

90◦. This way, the value of the sinusoidal slope is high for medium values of slope,

and it is lower for �at and very steeply areas.

Sinusoidalslope = sin(2 · Slope) (5.1)

It has to be noticed that the slope values were previously transformed into

radians, because the raster calculator of ArcGIS 10 considers the sine function in

that unit of measurement.

As a result, a quantitative and continuous variable with values between 0 and 1

was obtained (Fig. 5.9).

Surface area ratio (SAR)

This variable represents the surface roughness, i.e. the variation in a real surface

respect to its ideal form of a given area. Rough or smooth surfaces, apart from
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Figure 5.9: Sinusoidal slope variable's spatial distribution.

5.9 Irudia: Malda sinusoidala aldagaiaren banaketa espaziala.

being directly related with the super�cial water runo�, can be indicators of internal

deformation structures, �ssures, tension cracks, �ow lobes, step like morphology,

scarps, or semi circular features (Van Westen et al., 2008).

For this work, the surface area ratio index was used as indicator of the level of

roughness, which calculates, basing on the DEM, the ratio of the theoretical volume

of each cell respect to the surface occupied by it. The derived layer was produced

thanks to the DEM Surface Tools plug in available for the ArcGIS 10 software 1.

As this quantitative and continuous variable is a ratio, its theoretical value ranges

between 1 and 100, though in the case of study area the maximum SAR value reaches

53.

Topographic wetness index (TWI)

It is a concept develloped by Kirkby & Beven (1979) on the �eld of basin hydrological

modelling and used as explanatory variable for landslide susceptibility modelling by

Yilmaz in several studies (Yilmaz, 2009, 2010a,b). This quantitative and continuous

variable is about a topographic index used to describe the spatial soil moisture

patterns, and according to Yilmaz (2010a) it is de�ned as follow:

TWI = ln(
a

tanβ
) (5.2)

1http://www.jennessent.com/arcgis/surface_area.htm
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Figure 5.10: Surface area ratio (SAR) variable's spatial distribution.

5.10 Irudia: SAR aldagaiaren banaketa espaziala.

where a is the local upslope area draining through a certain pixel per unit contour

length and tanβ is the local slope.

High values of TWI (Fig. 5.11) signi�es a higher amount of water collected in

each point, which may imply a big in�ltration of the surface water �ow into the

surface materials, increasing the pore water pressure and inciting the decrease of

the shear strength. The values on the following map are normalized on the range

0-100.

Figure 5.11: Topographic wetness index (TWI) variable's spatial distribution.

5.11 Irudia: TWI aldagaiaren banaketa espaziala.
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Pro�le curvature, Planform curvature and Curvature

The curvature represents the change of slope angle within a surface and it shows

the degree of concavity or convexity of a given area. In this regards, this feature

has widely been used as explanatory variable for landslide susceptibility modelling

(Biswajeet & Saro, 2007; Van Westen et al., 2008; Nefeslioglu et al., 2011; Felicísimo

et al., 2013; Alvioli et al., 2016).

The curvature layers (Fig. 5.12) were produced by the curvature tool available

in the ArcGIS 10 software, which is calculated by computing the second derivative

of the surface in each cell in a 3x3 matrix. However, the tool o�ers to the user three

di�erent options, and in this study all of them were considered with the objective of

testing every possibility. Following are listed the de�nitions for each one according

to the ArcGIS users guide:

Pro�le curvature: it shows the curvature value parallel to the slope and

indicates the direction of maximum slope. It a�ects the acceleration and deceleration

of �ow across the surface. A negative value indicates that the surface is upwardly

convex at that cell, and �ow will be decelerated. A positive value indicates that the

surface is upwardly concave at that cell, and the �ow will be accelerated. A value

of zero indicates that the surface is linear, so no acceleration neither deceleration is

expected.

Planform curvature: it shows the curvature value perpendicular to the

direction of the maximum slope. It is related to the convergence and divergence of

�ow across a surface. In this case, a positive value indicates the surface is laterally

convex at that cell and negative values indicate the surface is laterally concave at

that cell.

Curvature: the standard curvature combines both the pro�le and planform

curvatures.

Distance to the main river-streams

The euclidean distance in meters from each mapping unit to the closest river was

computed on the GIS by means of the proximity tool. This time, as well as in slope
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Figure 5.12: Spatial distribution of a) Pro�le curvature; b) Planform curvature and c) Curvature.

5.12 Irudia: a) Pro�l kurbatura; b) Kurbatura planarra eta c) Kurbatura aldagaien banaketa espaziala.

variable, the original DEM of Euskadi was used for distance calculations, and then

the study area of interest was clipped in order to avoid border errors (Fig. 5.13).

Authors like Dai & Lee (2002), Lee (2005) or Bonachea (2006) state that the

proximity to a river-stream could bring on landslides due to the lateral erosion

caused by the rivers, and thus weakening the base of the slope.

Figure 5.13: Spatial distribution of distance to the main river-streams variable.

5.13 Irudia: Ibai gertuenarekiko distantzia aldagaiaren banaketa espaziala.
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Distance to the transport network

Following the same method applied in the previous variable, the euclidean distance in

meters from each mapping unit to the closest transport infrastructure was computed.

In this case, highways, main road network as well as all the train network were

considered, although all the tunnel and bridge segments were previously removed in

order to only take under consideration the super�cial segments (Fig. 5.14).

Similar variables were used before for landslide susceptibility modelling

(Van Westen et al., 2003; Pradhan & Lee, 2010; Akgun, 2012) arguing that landslides

may be more frequent along roads, due to inappropriate cut slopes and drainage from

the roads or other lineal transport infrastructures like railways.

Figure 5.14: Spatial distribution of distance to the transport network variable.

5.14 Irudia: Garraio sarearekiko distantzia aldagaiaren banaketa espaziala.

Normalized di�erence vegetation index (NDVI)

It is about a quantitative and continuous estimate of the vegetation growth and

biomass measured by means of the surface re�ectance captured by satellite sensors.

Using the satellite images in 2.5x2.5 meters of resolution from the SPOT 5 sensors

available thanks to the Spanish National Remote Sensing Plan2, the NDVI was

calculated applying the following formula, as Yilmaz (2010a) already did:

NDV I =
IRC −R
IRC +R

(5.3)

2ftp.pnt.ign.es
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where IRC is the near-infrared portion of the electromagnetic spectrum, while R is

the red portion.

Calculations and spatial resolution re-sampling in order to stay consistent with

the rest of the variables were carried out in the ArcGIS 10 software basing on the

following two images:

• Scene ID 5 035-263 13/09/05 10:22:28

• Scene ID 5 035-264 13/08/14 10:46:46

However, the available images only made possible to partially cover the study

area, leaving the south-west corner without data. For this reason, this variable could

only be used in one part of this study (see section 6-I).

The resulting NDVI variable (Fig. 5.15) shows values between -1 and 1, where

values below 0.1 correspond to barren areas, sand, or snow. Moderate values

represent scrubs and grassland (0.2-0.3), while high values indicate temperate and

tropical rainforests (0.6-0.8) (Weier & Herring, 2000).

Figure 5.15: Normalized di�erence vegetation index (NDVI) variable's spatial distribution.

5.15 Irudia: NDVI aldagaiaren banaketa espaziala.

5.1.2.2 Categorical variables

Lithology

This is one of the most used variables in landslide susceptibility studies. Moreover, in

Felicísimo et al. (2013) it was highlighted (by means of a study carried out within a
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smaller portion of our study area) that better results of the models can be expected

when one takes into account the lithology.

Lithology, or rock typology, constitutes the geological substrate of the territory

classi�ed according to its composition and its physic-chemical behaviour. The origi-

nal layer, available in Euskadiko DEA (2014) and named CT_LITOLOGICO_25000

_ETRS89, was carried out in 1999 based on the contributions of the Geological Map

of Euskadi developed by the EVE (Ente Vasco de Energia)(Fig. 4.3).

According to this map, 21 di�erent rock typologies can be found in study area,

but knowing that the resistance against the shear tension as well as the water

in�ltration capacity could be considered similar in some of those lithologies, the

original 21 classes were re-classi�ed in 7 classes, following the expert criteria.

Table 5.2 summarizes the original lithological classes and their simpli�ed

reclassi�cation, whose geographical distribution can be observed in the simpli�ed

lithological map (Fig. 5.16).

Figure 5.16: Spatial distribution of the simpli�ed lithological classes.

5.16 Irudia: Litologia mota sinpli�katuen banaketa espaziala.

Permeability

Permeability refers to the capability of surface rocks or sediments to permit the �ow

of water through its pore spaces. This feature is directly related to the hydrological

response of the slopes allowing the in�ltration or the super�cial �ow of precipitated

rain. Consequently, it shows how easy is to reach the ground saturation, and thus, the

building up of the pore water pressure, which is considered one of the key conditions
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Table 5.2: Original lithological typologies reclassi�cation table.

5.2 Taula: Litologia mota originalen birklasi�kazio taula.

Original classes Simpli�ed classes

Dam and rivers No rock

Surface deposits Surface deposits

Alternation of detrital rocks

Clay and Detrital rock
Fine-grained detrital rocks (lutites)

Mid-grained detrital rocks (limonites)

Coarse grained detrital rocks (sandstone)

Marls, limestones, marlstones and calcarenites

alternation
Marls

Marls

Decarbonated marls

Gypsium, clay and other salts

Impure limestones and calcarenites

LimestonesLimestones

Dolomites

Granodiorites

Magmatic rocks

Coarse grained granite

Igneous rocks

Dike rocks

Ophites

Volcanic rock �ows

Pyroclastic volcanic rocks

Slates Slate
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that favours slope instabilities (Guzzetti et al., 2007). The usage of permeability

as explanatory variable was more extended on the �eld of the geotechnical, or

deterministic, analysis such as in Cho (2014), though some statistical approaches also

applied it in a regional scale, highlighting the di�culty of obtaining such information

that covers the entire study area (Duman et al., 2006; Nefeslioglu et al., 2010).

According to Bogaard & Greco (2018), the in�ltration capacity of the soil is

related more with the type of landslides than with their probability of occurrence,

considering that impermeable surfaces increases the super�cial �ow, what is

favourable for shallow landslides, and highly permeable surfaces allow the in�ltration

of the water, producing more probably deep-seated landslides.

For the current study, the permeability layer was obtained from the lithological

map of Euskadi. It o�ers the permeability distribution of the study area basing

in the porosity and the degree of �ssuration associated with the lithologies. It is

about a simpli�ed classi�cation in low, medium or high permeability together with

impermeable areas and water covered areas (Fig. 5.17).

Figure 5.17: Spatial distribution of the simpli�ed permeability classes.

5.17 Irudia: Sinpli�katutako permeabilitate moten banaketa espaziala.

Regolith thickness

The regolith thickness map of Euskadi is available in Euskadiko DEA (2014) under

the code of CT_ESPESOR_REGOLITO_25000_ETRS89 in shape�le format. The

corresponding area to the GP was clipped for the analysis carried out in this work

(Fig. 5.18). Notice that the cited map was drawn as an inference of the lithology, the
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slope and only some punctual direct measures along the studied area. As a result,

the territory was divided (apart from the water cover class) in 5 thickness classes:

0-0.5 m; 0.5-1 m; 1-2 m; 2-4 m; more than 4 m.

The more is the thickness of the altered bed rock layer, the more is the amount

of material susceptible to be moved. That is way Remondo et al. (2003), Felicísimo

et al. (2013) or Jaiswal et al. (2010) used this feature as a possible explanatory

variable in their landslide susceptibility studies.

Figure 5.18: Spatial distribution of the regolith thickness classes.

5.18 Irudia: Erregolitoaren sakonera klaseen banaketa espaziala.

The surface cover

The land cover, or some times only the vegetation, is another typical explanatory

variable used on the �eld of landslide susceptibility assessment. Fell et al. (2008)

and Van Westen et al. (2008) agree that the knowledge of the surface cover is of

critical relevance in landslide spatial distribution and, somehow, the most part of

the landslide susceptibility studies include at least one variable like that (Atkinson

& Massari, 1998; Dai & Lee, 2002; Carrara et al., 2008; Van Den Eeckhaut et al.,

2012; Trigila et al., 2015; Wang et al., 2017).

Its relevance respect to the landslide occurrence is, once again, related to the

hydrological behaviour of the slope. The roots of a given type of vegetations give to

the ground a mechanical protection against the external triggering factors, increasing

the resistance to failure, while other land uses leave the surface naked in front of the

external agents. Moreover, the di�erences in the evapo-transpiration capacity of the
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Figure 5.19: Maps of the di�erent land cover variables. a) Land cover 1; b) Land cover 2; c) Land cover 3.

5.19 Irudia: Lurzoruaren estaldura aldagaien mapak. a) Lurzoruaren estaldura 1; b) Lurzoruaren estaldura 2; c)

Lurzoruaren estaldura 3.

soils are considerable if it is an urbanized or forested land cover, and the impact of

the precipitation also changes between non-vegetated and vegetated areas, due to

the leafs interception.

Nevertheless, the surface cover could be changed and in some territories such

changes can be of a considerable relevance. For this reason, Van Westen et al. (2008)

suggested the systematic update of the land-use maps with a frequency of 1-10 years,

in order to ensure the correct land cover class corresponding to each landslide at the

moment of its trigger. In our case, despite the landslides occurrence moments were

not available, we acknowledge that the land use have changed during the last decades

in the study area. So, instead of using only one surface cover layer, that would show

the situation of a given moment not necessarily according to the landslide inventory,

three di�erent land cover maps were considered in order to �nally use the most

�tting one with our landslide inventory.

All of the following surface cover categorical variables are available in Euskadiko

DEA (2014) and they were clipped in order to extract only the area of interest.

Land cover 1: it is the corresponding part to the study area of the National

Forest Inventory of the 2010 (IFN 4), which is an update of IFN 3, carried out in
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2005. The update was carried out by aerial photo-interpretation of images obtained

in 2009 and with 25 cm of spatial resolution. The original 32 classes were re-classi�ed

by expert criteria as it is shown in table 5.3 and in �gure 5.19 a. The source layer

can be found under the code INV_FORESTAL_2010_10000_ETRS89.

Land cover 2: it is about an alternative land use layer available as part of the

Harmonised Topographical Base (BTA) which summarizes in 7 classes the land use

spatial distribution (Fig. 5.19 b). It is based in the CORINE Land Cover map of

2006, and the original classes were maintained for the analysis.

Land cover 3: it is the vegetation map available under the code

CT_VEGETACION_25000_ETRS89, whose original 11 vegetation typologies were

reclassi�ed by expert criteria in 7 simpli�ed classes ( Tab. 5.4 and Fig. 5.19 c). This

project was the updated version in 2007 of the previous vegetation map carried out

during the 1990's decade.
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Table 5.3: Reclassi�cation of the original land use classes of the Land cover 1 variable.

5.3 Taula: Lurzoruaren estaldura 1 aldagaiaren banaketa espaziala birklasi�katua.

Original classes in land cover 1 Simpli�ed classes

Marshes and swamps

Others

Water streams

Sea and Oceans

Estuaries

Dams and lakes

Industrial

Antropic

Other arti�cial surfaces

Urban equipments

Urban continuous

Urban discontinuous

Energy infrastructures

Waste infrastructures

Water furnishing infrastructures

Transport infrastructures

Telecommunications

Terciary sectory land use

Forest

ForestPlantation forest

Gallery forest

Grassland and pastures
Grass

Meadow

Cultivations
Agricultural

Agricultural mosaic with arti�cial surface

Bush

Scrubs and hedgesPasture and scrubs

Meadow with hedgerow

Coastal clifs

RockRock outcrop

Scree deposits

Beach, dunes and sand
Beach and peatlands

Peatlands
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Table 5.4: Reclassi�cation of the original typologies of the land cover 3 variable.

5.4 Taula: Lurzoruaren estaldura 3 aldagaiaren mota originalen birklasi�kazioa.

Original land cover 3 classes Simpli�ed classes

No vegetation

Others
Dam

Estuary

Erosion

Grassland Grassland

Agricultural cultivation Agricultural cultivation

Forest
Forest

Forest plantation

Scrubs Scrubs

Urban Urban

Urban park Urban Park

Aspect

According to di�erent authors, the slope aspect could be a meaningful variable to

in�uence landslide initiation. On one hand, moisture retention and vegetation is

re�ected by slope aspect, which in turn may a�ect soil strength and susceptibility

to landslides (Dai & Lee, 2002). But on the other hand, in some study areas

precipitations present a pronounced directional component by in�uence of a

prevailing wind, where the amount of rainfall falling on a slope may vary depending

on its aspect (Wieczorek et al., 1997).

For the current study, the slope aspect was derived from the DEM by means

of the speci�c tool available in ArcGIS 10 software (aspect) for this purpose. As a

result the aspect value in degrees for each mapping unit was obtained, where both 0◦

and 360◦ represent the north, and the value of -1 represents �at areas. In this case,

despite its numerical nature, those values does not represent any magnitude which

make the treatment of this variable as continuous variable meaningless. For this

reason it was re-classi�ed ( Fig. 5.20). The layer was divided in 9 classes according

to the 8 main cardinal orientations (North; North-East ; East ; South-East ; South;

South-West ; West and North-West) plus the Flat areas.
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Figure 5.20: Spatial distribution of the slope aspect classes.

5.20 Irudia: Malda orientazioa aldagaiaren banaketa espaziala.

Modi�ed variables

Distance to the main river-streams CAT: the original continuous layer

was re-classi�ed in 7 categories, following what previously other authors did

(Pourghasemi et al., 2012; Xu et al., 2012), and basing on the expert criteria together

with observations on the �eld. Each class represents the range of distance from a

given point to the closest main river-stream in meters. The classi�cation was set as

follows: 0-50 ; 50-100 ; 100-150 ; 150-200 ; 200-250 ; 250-300 and more than 300.

Distance to transport network CAT: basing on observations on the �eld,

the original continuous layer was re-clasi�ed in 8 classes representing the range of

distance in meters from a given point to the closest transport infrastructure as follow:

0-20 ; 20-50 ; 50-100 ; 100-150 ; 150-200 ; 200-250 ; 250-300 and more than 300.

5.1.3 Precipitation data

In section 6-III, precipitation data from 2006 to 2015 were used for the landslides

responsible precipitation thresholds de�nition. Such information was collected from

the Meteorological Agency of the Basque Country3 which provided the precipitation

records of each 10 minutes for 24 rain gauges within the study area (Fig. 5.21).

3www.euskalmet.euskadi.eus
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Figure 5.21: Spatial distribution of the rain gauges used to collect precipitation data.

5.21 Irudia: Prezipitazio datuak jasotako plubiometroen banaketa espaziala.

Before starting to analyse the precipitation, the original 10 minutes records were

veri�ed to ensure the completeness of the data series, and they were transformed into

hourly data for this application. In this regards, whenever a rain gauge presented

more than one month of missing values, this rain gauge was removed from the

analysis.

5.2 Susceptibility models

5.2.1 The logistic regression model

Mathematical models are simpli�ed representations of complex phenomena that

aim to explain by means of equations a given data set. Taking into account this

statement, it seems logical the fact that the accuracy of the model to simulate the

reality depends primarily on (i) the type of mathematical function chosen to explain

the data set, and (ii) the degree of representativeness of the data set respect to the

reality.

Landslides are geomorphological phenomena that occur worldwide and have

occurred during all the earth's history. However, being very local and rapid

processes their marks are often disappeared (by natural erosion and sedimentation,

vegetation coverage or anthropic reconstruction of slopes), which complicates the
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acknowledgement about all the landslides happened during the whole earth's

history for a given study area. This becomes hardly quanti�able the degree of

representativeness of any data set so, the election of the appropriate model results

even more crucial (Zêzere, 2002).

The huge increase of the computational capacity together with the socialization

of the statistical software's permeated the development of a considerable range of

functions available to model landslide susceptibility ( Tab. 2.1 in chapter 2). Among

all of then, for the analysis carried out in this thesis the Logistic Regression (LR),

by means of the logit function (Hosmer Jr & Lemeshow, 2004), was chosen.

The LR is an statistical and multivariate method which searches to analyse and

interpret the data coming from some given observations of v > 1 variables over a

set of n cases. According to Malamud et al. (2014) (Fig. 5.22), this model is the

most used for landslide susceptibility mapping, among other reasons, because in

this case, through the addition of an appropriate link function to the usual linear

regression model, the variables may be either continuous or discrete (categorical) or

any combination of both types, and they do not necessarily have normal distributions

(Lee et al., 2007). Moreover, several comparative studies in which di�erent models

were applied to the same data set concluded the LR as the most appropriate, or at

least, one of the most suitable option.

Rossi et al. (2010) carried out a comparison between LR, linear discriminant

analysis (LDA), quadratic discriminant analysis (QDA) and neural network analysis

(NNA) in a 78.9 km2 study area and arrived to the conclusion that LR and LDA

produced superior predictions and less uncertain zonations when compared to the

QDA and NNA models. Additionally, they suggested that �the combination of

landslide susceptibility zonations developed by di�erent models can provide optimal

susceptibility assessments�.

Amorim (2012) compared the results obtained by applying the LR, LDA and

NNA to the same study area of 40 km2, and concluded that �the results obtained

with the three methods are similar, with the LDA model being generally the best

performance, followed closely by the other models�.

In Felicísimo et al. (2013), LR, multivariate adaptive regression splines (MARS),

classi�cation and regression trees (CART) and maximum entropy (MAXENT)
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models were compared. According to the authors, although MAXENT and CART

presented the best prediction results, �the con�dence intervals show that MAXENT

and LR are the most stable methods, while, CART is the most unstable�.

Figure 5.22: Ranking of the most used methodologies for landslide susceptibility modelling according to the review

carried out by Malamud et al. (2014). n is the number of research papers that use a given method.

5.22 Irudia: Lur labainketa suszeptibilitate modeloak garatzeko erabilitako metodologien urrenkera. Iturria:

Malamud et al. (2014). n metodo jakin bat erabili duten artikulu zienti�koen zenbatekoa da.

5.2.1.1 The logit function

From the mathematical point of view, the LR is a regression method in which the

dependant variable is dichotomous, i.e. it can only have two possible results (for

example true or false; success or failure; yes or no). This result depends on some

given explanatory variables that can contain categorical or continuous values. The

objective of the regression is to estimate the parameters of the model in order to best

�t the observation set. Unlike in linear regressions (where the least square method

is commonly used), in this case the maximum likelihood method is used to carry

out the estimate of the model parameters.

What is interesting in binomial models, is not the result of a given value, but

how probable is a given outcome respect to the other. This relation is named odds,

and can be represented as follow,
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odds =
P

1− P
(5.4)

where P is considered, for example, the success probability and thus, 1 − P would

be the failure probability. But the problem of this expression is that it is limited

to values greater than 0 so, in order to enable working with all the real values the

logarithmic transformation is applied to the expression, resulting in,

log(odds) = log(
P

1− P
) (5.5)

In such a situation, if it is considered that the probability of success (or failure)

can be explained by one or more variables, it could be modelled following the next

equation,

log(
P

1− P
) = β0 + β1X1 + ... + βnXn (5.6)

which is equivalent to,

P =
exp(β0 + β1X1 + ... + βnXn)

1 + exp(β0 + β1X1 + ... + βnXn)
(5.7)

This is known as the logit function, whose application permit to model the

probability of a given dichotomous result considering one or more explanatory

variables.

In this regards, exp(β0), represents the value of odds when the explanatory

variable (or variables) Xn takes the value of 0, showing how much more probable is

the success respect to the failure when Xn = 0. On the other hand, exp(βn), which

is the estimate coe�cient, represents the odds ratio per increased unity of the Xn

variable. Thus, the estimates show how much increases (or decreases) the probability

of success according to the increase (or decrease) of the explanatory variable.

However, it has to be pointed out that being exponential functions, positive

values of the βn estimates, means an odds ratio grater than 1, which imply a rise

in the success probability, while negative values signi�es an odds ratio lower than

1, and so, the greater probability of the failure.

In order to model the landslide spatial susceptibility, the dichotomous variable

considered in this study was the presence or absence of landslides, encoded
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respectively with 1 and 0 values. So as that, applying the logit function, the result

would indicate the P(1) probability, i.e. the probability of landslide presence.

5.2.1.2 Statistical software

As it was previously stated, the development of the statistical software allowed the

experimentation of landslide susceptibility modelling by means of a huge range of

mathematical options. The LR analysis could not be done without the computational

systems support, so as that the βn estimates resolution, as well as many other

calculations, run during this work were carried out by two of the most powerful

statistical packages available: IBM SPSS Statistics (SPSS, 2011) and R Project

for Statistical computing (R Core Team, 2016).

The usage of those tools, allowed also, apart from the general objectives of this

thesis, to highlight operational advantages and drawbacks between them.

IBM SPSS Statistics is about a commercial software which o�ers to the user a

large range of statistical procedures ready to apply and largely tested and validated,

by means of a users friendly interface. Apart from the analytical outcomes, it also

gives the option to very easily plot and export the results in graphic and table

format.

R Project for Statistical computing is a free software environment

for statistical computing and graphics which also o�ers all kinds of statistical

approaches. Unlike SPSS, this tool presents a very simple interface in which all the

processes are called by command sequences, which allows the design of customized

codes.

5.2.2 Assessment of the bibliographical landslide inventory

Regarding to the landslide inventory coming from bibliographical sources (see section

5.1.1.1), a preliminary assessment was carried out in order to evaluate the accuracy

level of them. To do so, the Oria river basin (see section 6.1.1) was selected as a

reduced portion of the study area and a small set of landslides (around 10 %) was

chosen at random for checking them on the �eld.

With the help of the GPS, the exact location of 23 landslides coming from the

bibliographic review were visited and the presence of slope instabilities or signs of
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instabilities occurred in the past such as convex shapes resulting from a landslides,

gravitational deposits or contention measures were surveyed.

In the meanwhile, all the landslides found during the same �eld trips were

inventoried and documented. Thereby, later it was ascertained if those �newly�

inventoried landslides were already part of the bibliographic inventory or not. Results

of this assessment are shown in section 6.2.

5.2.3 Methods for explanatory variables selection

As it was previously mentioned, the selection of the explanatory variables with

major role is a di�cult task because neither universal criteria nor guidelines exists

about this issue. Depending on the statistical method adopted to calculate the

landslide susceptibility, one can choose among di�erent options such as the principal

component analysis (Baeza & Corominas, 2001), stepwise approach (Brenning, 2005)

or more sophisticated statistical analysis like in Lombardo et al. (2016). In this work,

simpli�ed and statistically oriented work �ows were proposed in two alternative

applications (see sections 6-I and 6-II), where the usage of only signi�cant variables

was ensured as well as the non-redundancy of the contributed information by each

covariate.

Nevertheless, although the rationale behind both approaches was always the

ful�lment of the conditions cited in section 5.1.2, the discover of new tools along the

development of this thesis allowed to a�ord this question in two slightly di�erent

ways for each step of the project. Hence, next lines are dedicated to the detailed

explanation of each variables selection approach applied in the Oria river catchment

and in Gipuzkoae Province.

5.2.3.1 Variables selection approach applied in the Oria river catchment

In this experiment, all the statistical calculations were carried out by the SPSS

XXII package, and before running the LR model, some descriptive statistics were

computed individually for each variable. Once the dependant variable, i.e., landslide

presence and absence sample, was prepared, the signi�cance level of each categorical

variable respect to the dependant variable was computed. This was done by means

of the Chi-Square (Chi2) test, which tabulates a variable into categories and
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calculates the Chi2 statistic based on the di�erences between observed and expected

frequencies (IBM Corporation, 1988). All classes with less than 5 cases were removed

to avoid over-estimations (Rana et al., 2015). The starting hypothesis assumes equal

expected frequencies among the categories. Accordingly, values under 0.05 signi�es

the rejection of the hypothesis, what means that the dependant variable is unequally

distributed among the categories of the analysed variable, thus this variable can

be considered signi�cantly relevant respect to the distribution of the presence and

absence of landslides.

In a similar way, the signi�cance level of each continuous variables respect to the

dependant variable was also computed. However, depending on the distribution of

the continuous variable (normal or non-normal) two di�erent statistics are usually

suggested (Pardo & Ruiz, 2002). So, �rst the Kolmogorove-Smirnof (K−S) test was

applied, where values under 0.05 implies that the variable does not follow a normal

distribution, and vice versa. According to De Winter & Dodou (2010), if a variable

presents a normal distribution, then the t-Student test should be performed. But,

if it does not present a normal distribution, then the Mann-Whitney test should

be computed. Consequently, we applied this rule, but in any case, values under

0.05 would imply the signi�cant relevance of the continuous variable respect to the

distribution of the presence and absence of landslides.

Then, those variables with signi�cance values above 0.05 were rejected, and the

independence of the remaining variables was tested by means of the correlation test

of Spearman, which is a non-parametric test that allows to highlight associations

between variables (Pardo & Ruiz, 2002). Thus, it was considered that two variables

were highly correlated if their correlation coe�cient overcame the absolute value of

0.5 with a signi�cance level of 0.01. In such a case, this couple of variables would

not be introduced together into the LR analysis, because we would be introducing

redundant information.

So, knowing the signi�cance level as well as the existing correlation between

all variables, di�erent combinations of explanatory variables were tested in the LR

using the backward Wald stepwise method (Pardo & Ruiz, 2002). The software

builds the equation starting with all variables and then removes them one by one

if their Wald statistic signi�cance value is higher than 0.1. After trying with all
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possible combinations, the most suitable set of variables was selected basing on the

classi�cation results and the discarded variables in each case by the backward Wald

method.

5.2.3.2 Variables selection approach applied in Gipuzkoa Province

During this experiment, the variable's selection procedure was also carried out

searching an objective way to choose only the most relevant explanatory variables,

regarding the landslide spatial distribution, while the independence between them

was ensured. But, this time, the LAND-SE software was used for all the calculations

(Rossi & Reichenbach, 2016). It is about an open source code developed in R

environment (R Core Team, 2016), designed for the speci�c purpose of landslide

susceptibility statistical assessment. Its structure in command lines allowed to

modify the original version of the code, so an additional module, called LAND-SVA,

was developed in order that the software gave statistical descriptive information

about the introduced explanatory variables. This new module allowed, among other

things, to compute Spearman's correlation coe�cients and to plot them graphically

(information about the availability of these codes is available in Appendix B).

This tool permitted carrying out the following approach, and furthermore, it

presents the advantage of optionally automatize the whole procedure.

To begin, all the available variables were introduced into the LR analysis using

the modi�ed LAND-SE software, and then, their pairwise collinearity was checked.

Once again, we considered collinear two variables when their correlation coe�cient

was greater than 0.5 with a signi�cance level of 0.01. At the same time, the

signi�cance p-values of the LR estimates (see section 6.8.1) were also considered

for each variable. Values higher than 0.05 indicate a weak contribution of the

explanatory variable to the model performance. So, in such a case, the variable

would not be considered statistically signi�cant and it would be removed from the

analysis (Schlögel et al., 2018). Conversely, in statistical terms, those predictors with

p-values under the threshold of 0.05 were all signi�cant. Thus, the p-value was used

as an objective indicator for the selection of the most relevant variables to be used

in the second run of the LR model. That is, only the variable with lowest p-value

would be selected in case of pairwise collinearity.
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5.2.4 Susceptibility model's validation procedures

As far as we are using simpli�ed representations in order to predict complex

phenomena like landslides, it is compulsory to evaluate the performance of every

model, before considering it as a faithful representative of the real phenomena. That

is why the validation procedure is considered one of the most important steps in

landslide susceptibility mapping (Duman et al., 2006).

In this case, thanks to the LR, it was obtained a mathematical function that was

supposed to be able of simulating the spatial distribution of the future landslides

according to a probability of its occurrence. And consequently, the assessment of

the resulting susceptibility maps should be done considering two decision rules (Can

et al., 2005):

• On the map, most of the future landslides should have to be located in areas

with high probability of landslide occurrence i.e., in high susceptibility classes.

• On the map, these high susceptibility classes should have to cover smaller areas

than low susceptibility classes. Because, if high susceptibility classes cover large

areas, all described landslides will be, logically, included within them.

In order to check the ful�lment of one, or even both, decision rules, di�erent

validation tests were applied to the models carried out during the current thesis.

But whatever was the test, there was always ensured the independence of the

validation data against the calibration data. Because, quoting Frattini et al. (2010),

the correct assessment of the model accuracy should be performed by analysing the

agreement between the model results and the observed data. And, in the case of

landslide susceptibility models, the observed data comprise the presence or absence

of landslides within a certain terrain unit of the studied area.

This agreement can be performed considering di�erent classi�cation features

when obtaining the independent landslide set. One of the most used option is the

random selection of a given percentage of landslides up to the complete inventory,

reserving them for the validation procedure. This way, validation data are scattered

within the same domain as the calibration data, that is why some authors like

Brenning (2005) named it spatial intra-domain validation. Other option could be
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the spatio-temporal intra-domain validation, which consist in test data within the

same spatial domain of the training data, but taking the landslides occurred previous

to a given date for training, and those produced later as validation (Remondo et al.,

2003). The inconvenient in this case is the di�culty to obtain temporal information

about the slope failures. Additionally, there is a third option named spatial extra-

domain validation, that performs the assessment of a model calibrated in a given

area with validation landslides occurred in a di�erent area. But the usage of such

approach should be justi�ed with a considerable similitude between both, training

and validation areas (Domínguez Cuesta, 2003).

The lack of su�cient temporal information about our landslide inventory made

no possible the adoption of the spatio-temporal intra domain approach, although

authors like Chung & Fabbri (2003) strongly recommend it. At the same time, the

moderate spatial heterogeneity due to the dimensions of our study area suggested to

avoid using the spatial extra-domain approach. So, for all the landslide susceptibility

models developed in further analysis the spatial intra domain approach was adopted.

Below are detailed all the validation tests applied to the resulting models.

Cumulative percentage curves: this is a validation test proposed by Duman

et al. (2006) where two curves are drown according to the landslide susceptibility

classes (x axis) and the cumulative percentage (y axis). One curve (curve-a in

Fig. 5.23), represents the landslide susceptibility class versus observed cumulative

percentage of the number of mapping units that include only landslides within this

class. It shows how well results satisfy the �rst decision rule previously cited. For

example, in �gure 5.23, it can be stated that considering the cut-o� value of 0.5,

approximately 80% of the observed landslides (validation landslides) are locate in the

high susceptibility values. The other curve (curve-b in Fig. 5.23), represents landslide

susceptibility class versus cumulative percentage of the number of mapping units

representing the same landslide susceptibility class. It de�nes the areal distribution

of susceptibility classes in the studied area so, in order to satisfy the second decision

rule, the cumulative area obtained from this curve for high susceptibility classes

should be small as possible. In the same example, considering the cut-o� value of

0.5, the cumulative area of the high susceptibility values is obtained as 37%, which

is considered as satisfactory result in Duman et al. (2006).
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Figure 5.23: Example of a cumulative percentage curves obtained from Duman et al. (2006).

5.23 Irudia: Akumulatutako portzentaien kurbaren adibide bat. Iturria: Duman et al. (2006).

Prediction rate curve: Chung & Fabbri (2003) proposed to plot the

cumulative percentage of validation landslides occurred within each predicted

susceptibility class, inversely ordered (y axis), together with the cumulative

percentage area covered by each susceptibility class (x axis) (see Fig. 6.6 in section

6.4). Thereby, if a landslide susceptibility map was generated randomly, then the

prediction-rate curve should be the straight line connecting two points, (0, 0) and

(1, 1), showing an area under the curve (AUC) of 0.5. On the other hand, if the

prediction has any signi�cance, then the prediction rate curve should be far above

the straight line, showing an AUC closer to 1, the higher it is its prediction capacity.

Hence, in a random prediction, if the most susceptible class cover only 10% of the

area, then it should predict only 10% of the validation landslides, whereas in a

satisfactory susceptibility map the most part of the validation landslide should be

within this class. This validation test has widely been used in landslide susceptibility

modelling (Bonachea et al., 2009; Amorim, 2012; Trigila et al., 2015; Estela et al.,

2018).

Confusion matrices: they are very commonly applied error tests in

mathematical modelling, in which the percentage of the true positive (TP ), true

negative (TN), false positive (FP ) and false negative (FN) are computed. It is

named TP when the modelled result and the observed result (validation data) are

positive, whereas, if both, prediction and validation results are negative, it is called
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TN . When the prediction shows a positive result, but observations show negative,

then it is about a FP , and inversely, if the prediction launch a negative result,

while observations indicate the opposite, it is FN . On the �eld of the landslide

susceptibility modelling, susceptibility values that overcome a given cut (usually

0.5) are usually considered as indicator of presence of landslides and considered

positive results, whereas low susceptibility values (usually under 0.5 cut of value)

are interpreted as indicator of absence of landslides, and thus, are considered negative

results. Hence, this validation test, unlike the previously mentioned ones, takes under

consideration not only how well predicts each model the presence of landslides,

but also the absence of them. Thereby, the outcomes of this test can be displayed

as a matrix, with absolute or percentage values, or as four-fold plots (also called

contingency plots) (Rossi et al., 2010).

Receiver operating characteristic (ROC) curves: they are two-

dimensional graphs in which TP rate is plotted on the y axis and FP rate is plotted

on the x axis (see Fig. 6.11 in section 6.9.1). A ROC graph depicts relative trade-o�s

between bene�ts (true positives) and costs (false positives) (Fawcett, 2006). As well

as in prediction rate curves, the area under the curve is usually calculated in order to

reduce ROC performance to a single scalar value representing expected performance,

and thereby, allow the numerical comparison between several models. That is the

case of the most part of landslide susceptibility models carried out by statistical

multivariate methods such as Carrara et al. (2008); Amorim (2012); Trigila et al.

(2015); Yilmaz (2009); Van Den Eeckhaut et al. (2012) or Schlögel et al. (2018),

among others.

Cohen's Kappa index (κ): it is another commonly used test (Guzzetti et al.,

2006; Van Den Eeckhaut et al., 2009; Rossi et al., 2010), also called Heidke skill score

(Cohen, 1960; Corominas & Mavrouli, 2011). It is about a combination of correct

and incorrect classi�ed positives and negatives results as follow:

κ =
PC − PE
1− PE

, {−∞ < κ < 1} (5.8)

where, PC is the proportion of observations correctly classi�ed as presence or absence

of landslides by the model: PC = (TP + TN)/N), and PE is the proportion
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of observations for which the agreement is expected by chance: PE = ((TN +

FN)x(TN + FP ) + (TP + FP )x(TP + FN))/N2, where N is the total number

of observations N = TP + TN +FP +FN (Rossi et al., 2010). Thereby, according

to this calculations, higher values also indicate a more accurate prediction capacity.

Model error plots: to estimate the uncertainty associated with the landslide

susceptibility value assigned to each mapping unit, it is possible to run multiple

instances of the model varying, randomly, the input data. In each run, the input

is obtained sampling the original training dataset (i.e. the landslide inventory

sample reserved for calibration) with a bootstrap technique (Rossi & Reichenbach,

2016), which means a random sampling with replacement. Thereby, model error

plots summarize the distribution of multiple results and show the mean probability

estimate of landslide spatial occurrence for each mapping unit (x-axis), ranked from

low (left) to high (right) values, related to the variation of the model estimate (y-

axis), measured by 2 standard deviations (2σ) of the probability estimates obtained

by the di�erent model runs (Guzzetti et al., 2006). Additionally, the parabolic model

�tting (i.e. using a non-linear least square method) of the resulting point cloud

describes analytically the overall model variability (see Fig. 6.11 in section 6.9.1).

Mismatch maps: additionally to the statistical or numerical performance

indicators, a graphical test was applied to some susceptibility maps, in order

to objectively compare the di�erences respect to the spatial distribution of the

susceptibility along the study area (Amorim, 2012). To do so, each mapping

unit was re-classi�ed as stable or unstable considering the cut-o� value of 0.5 of

landslide occurrence probability, and then, the compared maps were overlapped

so as to identify matches and mismatches (see Fig. 6.14 in section 6.10). Thereby

the mismatch degree between di�erent susceptibility maps was quanti�ed in

terms of amount of mismatched mapping units, and also considering the overall

mismatched area. Although this test does not show which of the models performs

the best prediction capacity, it is useful to detect changes (or agreements) in the

spatial distribution of the landslide susceptibility between two di�erent approaches

performing similar prediction capacity.
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5.2.5 Mapping units

The selection of an appropriate terrain subdivision is another critical phase in

landslide susceptibility analysis. The land surface can be divided in portions

following geomorphologic features using terrain units, topographic units, geo-

hydrological units or slope units, but also considering thematic layers resulting in

unique condition units or administrative units, as well as regular grid cells partitions

(Van Den Eeckhaut et al., 2006). As Carrara et al. (2008) pointed out, selection of

di�erent mapping units can result in considerable di�erences in the susceptibility

assessment.

According to Hansen (1984), a mapping unit is de�ned as the portion of land

surface which contains a set of ground conditions which di�er from the adjacent

units across de�nable boundaries. Two of the most extended mapping units used

in landslide susceptibility modelling are regular grid cells (pixels) and slope units

(SU), so in this thesis, both pixels and SU were tested to prepare divers susceptibility

maps. More detailed information about the issue of de�ning proper mapping units

for di�erent natural hazard analysis was widely discussed in Carrara et al. (1995)

and more recently in Reichenbach et al. (2018).

5.2.5.1 Regular grid cells

Regular grid cells consist in the subdivision of the region into pixels characterized by

their size, typically but not necessarily coinciding with the digital elevation model

(DEM) grid cells, which are used as reference mapping units. This approach presents

operational advantages in raster-based GIS applications and it allows fast processing.

That is why the most part of GIS driven analysis used this mapping unit (Lee, 2005;

Godt et al., 2008; Trigila et al., 2010; Grozavu et al., 2013).

Nevertheless, since grid-cell boundaries do not bear any relation to geological,

geomorphological or other environmental features, some authors argued that this

subdivision is not the most suitable for mapping and modelling geomorphological

landforms and processes (Carrara et al., 1991; Van Den Eeckhaut et al., 2009; Alvioli

et al., 2016).
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5.2.5.2 Slope units

The other terrain subdivision technique used in this thesis was based on the partition

of a region into sub-basins or slope units. Since a clear physiographic relation

exists between landsliding and the fundamental morphological elements of a hilly

or mountainous region, namely drainage and divide lines, this technique seems

appropriate for landslide susceptibility assessment. Nevertheless, the di�culty of

consistently drawing divide lines on topographic maps covering large areas calls for

an automatic procedure for their delineation. Moreover, many di�erent slope unit

subdivisions can be obtained for the same territory depending on the type and

degree of required homogeneity (i.e., slope gradient, elevation, curvature, aspect).

Hence, it is important to take into account the slope unit sizes to be consistent with

the characteristics of the landslide inventory and of the study area. A more detailed

discussion about such mapping units and their application in landslide susceptibility

studies can be found in Carrara et al. (1995); Alvioli et al. (2016); Schlögel et al.

(2018).

5.3 Precipitation thresholds

In the case of the study area, rainfalls are the principal triggering factor of landslides

(Remondo et al., 2005; Bonachea, 2006; Felicísimo et al., 2013; Remondo et al., 2017)

so, precipitation data and temporal information about landslide occurrence were

used in order to determine how much and in which conditions should rain to trigger

landslides.

In Chapter 6-III, it is presented the application of a methodology to search

qualitative relations between slope instabilities and rainfall events, together with the

de�nition of landslides responsible precipitation thresholds. In this regards, details

about data and methods followed in this experiment are explained in the following

sections.

104



Chapter 5

5.3.1 The algorithm for the objective reconstruction of

rainfall events and precipitation thresholds calculation

Once the precipitation data set was checked, it was carried out the reconstruction

of the rainfall events that took place in Gipuzkoa Province between 2006 and 2015,

as well as the calculation of the precipitation thresholds responsible for landslides

by means of the algorithm proposed in Melillo et al. (2015) (information about

the repository in which the original code can be found is available in Appendix B).

According to the same authors, a rainfall event was de�ned as a period of continuous

rainfall or a chronological ensemble of periods of continuous rainfall, separated from

preceding and successive rainfall events by periods with no rainfall.

For this case study, two seasonal periods were de�ned: (1) a �dry� period, when

there is a generalized decrease of the precipitation, between the months of June and

August (Urrestarazu & Galdos, 2008), and (2) a �wet� period, when frontal systems

which traverse the study area are more frequent and precipitation probability higher,

between September and May (Uriarte, 1996). Accordingly, the minimum dry period

to di�erentiate between independent rainfall events for each season was set, by

default, to 48 hours during �dry� season and 96 hours during �wet� season (Melillo

et al., 2015).

The algorithm gives the metrics for each of the detected rainfall event, including

the rainfall duration D (h); the event total cumulated precipitation E (mm); the

mean rainfall intensity I (mm/h); the peak hourly rainfall intensity Ip (mm/h) and

the maximum precipitation in 24 hours Emax24 (mm).

Additionally, as it is explained more in detail by Brunetti et al. (2010)

and Peruccacci et al. (2017), an empirical de�nition approach was adopted for

the landslides responsible precipitation thresholds calculation. Each landslide

from the inventory was linked to the closest rain gauge and the metrics of

the rainfall event related to each instability were used for further calculations.

Applying the Frequentist methodology (Brunetti et al., 2010), the algorithm gives

di�erent precipitation threshold curves for di�erent exceedance probability levels,

which assuming that the catalogue of rainfall events is su�ciently complete and

representative, it can be stated that the probability of experiencing a landslide
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triggered by rainfall below this threshold is less than the given exceedance value.

The Frequentist method consists in plotting the log-transformed values of

cumulated precipitation amount (E) respect to the duration (D) for each known

rainfall event that caused a landslide. In this regards, only the cumulated

precipitation and the duration until the landslide occurrence exact time are

considered. Thus, although more than one landslide could be related to the same

rainfall event, they do not necessarily have to present the same E andD coordinated,

unless they happened at the same exact time. Later on, the distribution of the

rainfall conditions, log(E) vs. log(D), that resulted in landslides is �tted (least square

method) with a linear equation of the type (Brunetti et al., 2010),

Log(E) = Log(α) + γ · Log(D) (5.9)

or which is equivalent,

E = α ·Dγ (5.10)

Then, the precipitation threshold for a given exceedance level Ti corresponds to the

parallel of the �tting curve in which the i % of the observations stay below the curve.

Finally, basing on the rainfall duration and the total cumulated precipitation for

the landslide associated events, the de�nition of thresholds and their associated

uncertainties for di�erent exceedance probabilities are provided applying the

bootstrapping statistical technique (Peruccacci et al., 2012).

5.3.2 Landslides and rainfalls characterization

In order to check the features of the landslides that were reported on the newspaper

during the analysed period of time, the frequencies of slope movements belonging to

each class of slope, lithology and land cover were calculated using the Quantum GIS

2.14.7 software (QGIS Development Team, 2009). For this analysis it was necessary

to ensure the location accuracy of the landslides, thus, this characterization was

carried out only taking into account those landslides where the exact location was

known.

On the other hand, a descriptive analysis of the total reconstructed rainfall

conditions was also carried out in order to compare them with the landslide
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associated rainfall conditions. To begin, the rainfall events were classi�ed in di�erent

typologies following two di�erent approaches. The �rst one de�nes the type of

rainfall depending on the maximum precipitation in 24 hours as it was proposed

by Alpert et al. (2002) (Tab. 5.5). The second is a classi�cation developed by

the authors which considers the combination of di�erent rainfall duration classes

and di�erent cumulated precipitation classes (Díaz et al., 2012) (Tab. 5.6). This

alternative classi�cation was proposed because it was considered interesting the

characterization of the rainfall conditions taking into account the totality of each

event and not only the maximum intensity. This way, complementary information

was added for further analysis.

Then, the relative frequencies of each rainfall type were presented for the total

rainfall events detected in the study area during the studied period, and also for the

rainfalls that cause landslides, in order to observe the di�erences.
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Table 5.5: Rainfall classi�cation suggested by Alpert et al. (2002). Emax: the maximum precipitation in 24 hours

in mm.

5.5 Taula: Alpertek proposatutako euriteen klasi�kazioa Alpert et al. (2002). Emax: 24 ordutan prezipitatutako

maximoa mm-tan.

P. Alpert's classi�cation

Emax24 (mm) Class

≤ 4 Light

4 to 16 Light - Moderate

16 to 32 Moderate

32 to 64 Moderate - Heavy

64 to 128 Heavy

128 to 256 Heavy - Torrential

256 ≥ Torrential

Table 5.6: Rainfall classi�cation proposed by the authors. D: Duration of the rainfall event in hours; E: Cumulated

precipitation in mm.

5.6 Taula: Autoreek proposatutako euriteen klasi�kazioa. D: Euritearen iraupena orduetan; E: Akumulatutako

prezipitazioa mm-tan.

Authors classi�cation

D (h) Class E (mm) Class

≤ 24 (1 day) a ≤ 15 A

24 to 72 (1 - 3 days) b 15 to 30 B

72 to 144 (3 - 6 days) c 30 to 60 C

144 to 288 (6 - 12 days) d 60 to 120 D

288 to 432 (12 - 18 days) e 120 to 180 E

431 to 719 (18 - 30 days) f 180 ≥ F

720 ≥ (30 days) g
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I Landslide susceptibility maps using logistic
regression model for the Oria river catchment
(Gipuzkoa Province). Strategies for variables

processing

Landslide susceptibility modelling demands to take many decisions that at the

end will have direct e�ects in the resulting simulation. The following section shows

the results of di�erent tests carried out in an experimental zone within our study area

that gives objective arguments to support some crucial decisions. In particular, the

�rst two objectives of this thesis were addressed since they are considered two of the

basic issues in any statistical modelling approach: Is the dependant variable's quality

reliable enough to model the landslide susceptibility? and How can be determined

in which explanatory variables depends the landslide occurrence on? or How should

these independent variables be processed?

The dependant variable, in this case, was the presence and absence of landslides

along the territory that depending on its spatial distribution the probability of

occurrence of the future landslides could be modelled. There are di�erent options

in order to obtain this information. Some authors collect the published information

(research articles, technical reports, etc ...) about the location of landslides so as

to produce a bibliography-based landslide inventory. Others dedicate long time

surveying aerial photographs and satellite imagery to get multi temporal landslide

inventories. And some others got the landslide inventories by direct observations

on the �eld (Guzzetti et al., 2012; Van Den Eeckhaut & Hervás, 2012; Hervás,

2014; Santangelo et al., 2015; Fiorucci et al., 2018). Considering the time and

resources available for this thesis project, photo-intepretation and remote sensing

techniques were not an option, thus some tests were performed in order to asses if

the bibliographical sources available were accurate enough, or instead other options

such as �eld work were more suitable.

However, the scale of the project as well as the origin of the landslide

inventory can condition the suitability of certain independent variables (Corominas

& Mavrouli, 2011), which implies the need of �nding the right set of variables. But

not only that, because if the �nal goal is the design of an standardised methodology

for landslide susceptibility, then this variables selection should be done in as much
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as objective way possible in order to ensure its reproducibility.

In addition to that, according to the consulted references (Dai & Lee, 2002; Lee,

2005; Duman et al., 2006; Van Den Eeckhaut et al., 2012; Amorim, 2012; Grozavu

et al., 2013), there are di�erent possibilities for introducing the same variable in an

statistical model like the LR. One independent variable being spatially continuous,

such as the slope, can be transformed into categorical variable by grouping its in�nite

values in di�erent classes. Or inversely, a categorical variable, such as lithology, could

be processed as a continuous by giving to each class a numerical value by means

of a certain weighting criteria. Consequently, depending on the type of processing

applied to the independent variables, the resulting model will probably be a�ected

in a given way, and so, also the �nale susceptibility map.

On this context, it was carried out the assessment of the di�erent bibliographical

sources of landslide inventories. Additionally, an experimental variables selection

procedure was tested and the comparison between several susceptibility models in

which the explanatory variables followed di�erent processing strategies was studied.

6.1 Methodological approach

6.1.1 Experimental zone

It was decided to carry out the following tests in a representative basin of the study

area in order to save time and resources, but above all, to evaluate how to proceed

at least in the �rst phase of the landslide susceptibility assessment. The selected

experimental zone was a portion of the Oria river catchment, speci�cally the part

included in the study area. The Oria river is a 78.49 km long stream with a 882.5 km2

drainage basin and a drainage density of 1,6 km·km−2 (Fig. 6.1). It is the biggest

catchment of the study area occupying the 40% of it and the 60% of its surface

presents more than 20◦ of slope gradient, with a maximum slope gradient of 88◦.

As in the rest of the study area (see chapter 4) there is a very dense

communication network (1.94 km·km−2) due to the high density of households

in non urban land. Concerning the geology, the region is structurally complex

and lithologically very diverse, with materials from Paleozoic rocks to Quaternary

sediments (see section 4.2). Thereby, from a general point of view, it corresponds
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Figure 6.1: Location of the Oria river basin (in red) which belongs to the Gipuzkoa Province (black lines).

6.1 Irudia: Gipuzkoako LHren barne (marra beltza) kokatzen den Oria ibai arroaren zatia (gorriz).

to a hilly and mountainous atlantic landscape (Mücher et al., 2010), where an

average annual precipitation of 1600 mm is registered with two maximum periods

(November-January and April) (González-Hidalgo et al., 2011) and with a persistent

daily rains as a typical feature (Fdez-Arroyabe & Martin-Vide, 2012).

6.1.2 Framework

Even though the details about the methodological procedures were explained in

chapter 5, the overall work �ow followed during this research is explained in the

next lines.

In this work, a regular grid cell of 5x5 meters of spatial resolution was used as

reference mapping unit (coinciding with the DEM, see section 5.1.2.1). This was

chosen as the optimal grid cell size considering the balance between the amount of

data to be processed (number of pixels) and the fairest possible representation of

the surface conditions of the studied area. Thus, all the further GIS analysis were

carried out on the basis of this reference mapping unit.

First, the available bibliographical landslide inventories were assessed visiting on

the �eld a random set of their landslide points, as it was detailed in section 5.2.2.
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In the meanwhile, the �eld trip was pro�ted to obtain landslide location data of

every slope instability found. To do so, the UTM coordinates of the top of main

scarp (not movilized ground) were collected from the observed landslides. With the

Google Earth app each point's position was veri�ed and corrected, in order to re�ect

the environmental conditions prior to landsliding (Wang et al., 2015). Then, using

all this information it was decided weather the available data were reliable enough

to continue and develop the landslide susceptibility models.

After the assessment, taking into account that the statistical model chosen to

develop the susceptibility models was the LR, a similar number of �landslide free�

points were obtained (Felicísimo et al., 2013; Costanzo et al., 2014). In this case,

those places without any type of landslide inventoried were considered stable areas

(or landslide free areas)(Nefeslioglu et al., 2008; Pourghasemi et al., 2013; Wang

et al., 2015). Therefore, using the ArcGIS software, a random sample of �landslide

free� points was created (the same amount as the inventoried landslides) by means

of an spatially uniform sampling scheme but excluding a 30 m bu�er zone for all

landslides so as to minimize the impact of their size (Dai & Lee, 2002).

Once the dependant variable was de�ned, these data were used to perform some

descriptive statistics and apply the variables selection approach detailed in section

5.2.3.1. For that, all the collected spatial variables described in section 5.1.2 were

tested except land cover 3 -this variable was obtained after this research was carried

out-.

Finally, in order to assess the performance of the models and to provide

objective metrics for their comparison, the 20% of the �nal landslide inventory

was reserved for validation. Crossing this validation sample with the results of

each susceptibility map, Cumulative Percentage Curves (Duman et al., 2006) and

the area under the curve (AUC) of the prediction rate curves (Chung & Fabbri,

2003) were calculated. Given the limited extent of the landslide inventory available,

this calibration/validation division was chosen (80% and 20%) in order to ensure

the maximum amount of data in the calibration of the statistical model without

compromising the availability of data for validation (Nefeslioglu et al., 2011).

124



Chapter 6

6.1.3 Variables processing strategies

One of the objectives of the study was to experiment with the available explanatory

variables, and after the bibliographic revision, it was discovered the di�erences in

the way that some variables were treated during the statistical modelling. Therefore,

the variables resulting from the selection process were transformed from continuous

to categorical, and vice versa, in order to test their suitability.

The originally continuous variables were divided and grouped in classes of a given

range in order to process them as categorical variables, according to what it was seen

in other author's works (Dai & Lee, 2002; Lee, 2005; Bonachea, 2006). Variables

of elevation and sinusoidal slope were re-classi�ed automatically using the ArcGIS

software, and divided in 5 classes applying the �equal intervals� option (i.e. all the

classes are of the same range size). NDVI was manually divided in 3 single classes

representing the water covered or no vegetation area (between -0.6 and -0.2), poor

vegetation area (between -0.2 and 0.2) and sparse vegetation area (between 0.2 and

0.4)(Weier & Herring, 2000). Concerning the categorical variables, in order to reduce

as much as possible the subjective decisions, the original classes were maintained

instead of using the reclassi�ed layers, which were done by expert criteria. The only

exception was land cover 1, where due to the big number of categories closely linked

to urban areas, they were grouped together into a new class named Urban area (all

the original classes are shown in Appendix C).

The transformation of categorical variables into continuous variables had to be

done by giving to each category a numerical value according to a given range of

magnitude. These values should be given in an objective way to avoid subjectively

driven decisions. So, in this study the landslide density (LD) approach was applied.

This approach, applied previously in Bai et al. (2010) and Grozavu et al. (2013),

considers the density of landslides presence in each category in terms of area and it

can be computed as follow:

LDi =
LAi/Ai
LA/A

(6.1)

Where, LDi is the landslide density value for class i, LAi and Ai are the landslide

area in class i and the total area of class i, respectively, and LA and A are the total
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landslide area in the studied area and the total area of the studied area, respectively.

Hence, considering di�erent combinations between the variables processing

strategies four models of landslide susceptibility were prepared. In three of them

(model A, B and C), only the processing strategy varies, using the same set of stable

and unstable points and the same explanatory variables (chosen in the selection

phase of variables). For the fourth model (model D), the explanatory variables were

selected taking into account the results of the �rst three models and following the

expert criterion. Next, the strategies applied for each model are detailed.

Model A

Model A was calculated by transforming categorical variables into binary code

confusion variables, always using the �rst class as a reference. More speci�cally,

for each of these variables, the k categories were replaced by k-1 dummy variables,

each one with values of 1 or 0, which indicates the presence or absence of one of

the categories k-1 (Van Den Eeckhaut et al., 2012). It is an automatic procedure

that provides the SPSS XXII software as an alternative to enable the introduction

of categorical variables in the RL (Pardo & Ruiz, 2002). This means that, in this

case, each class of the categorical variables will obtain its own coe�cient β. On the

other hand, the continuous variables were not transformed at all.

Model B

The continuous variables were transformed into categorical dividing their in�nite

values in grouped classes (Dai & Lee, 2002). Then the LR was carried out applying

to all the variables the same replacement of dummy variables as in model A.

Model C

In model C all the variables were processed as continuous. The landslide densities

for the classes of each categorical variables were calculated and these values were

used as relative numerical values for their transformation into continuous variables

(Zhu & Huang, 2006; Grozavu et al., 2013; Trigila et al., 2015). This methodology

avoids the creation of an excessive number of dummy variables, but requires the

previous step of the calculation of landslide densities.
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Model D

Model D was calculated following the same processing strategy of variables as in

model C. However, in this case, the set of variables introduced in the LR was modi�ed

by expert criteria taking as a reference the statistical results of the selection phase

of the variables, as well as the results of models A, B and C.

6.2 The landslide inventories

6.2.1 Assessment of the bibliographical sources

Among all the landslide data collected from three di�erent bibliographical sources

(see section 5.2.2 and Fig. 6.2a) only those located inside the experimental zone were

extracted (Fig. 6.2b). The 74% of this subset was considered as slide or shallow slide

type of movement, 11% were rock falls or rock mass deposits and 4% were �ows or

complex movements, adding to the 11% of the subset that was labelled as landslide

scarp but without specifying the type of landslide. Thus, taking into account that

di�erent typologies of slope instabilities respond to di�erent mechanisms, only the

most extended type of landslides was used for the research, i.e. slides and shallow

slides (Fig. 6.2c).

After selecting at random 23 slide locations from all the bibliographical sources

(Fig. 6.2d), they were checked on the �eld and the results are summarized in table

6.1. 10 of the check points came from the Inventory of the Basque Government

and after their surveillance on the �eld, it was ascertained that 6 of them didn't

present any slope instability's evidence even in the surroundings, while in the rest

the location was not exact though landslide evidences were found next to them.

Other 7 points came from the Inventory of the road network, and in this case all of

the surveyed locations corresponded to the exact location of slide movements. The

last 6 check points came from the Inventory of the geomorphological map, where

5 �eld visits resulted in true slides locations, although in 1 case the location was

inaccurate.
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Figure 6.2: Sampling steps for the bibliographic landslide data assessment.

6.2 Irudia: Bibliogra�atik hartutako lur labainketen laginketarako pausoak.

Table 6.1: Results of the bibliographical landslide data assessment.

6.1 Taula: Bibliogra�atik hartutako lur labainketa datuen balioespen emaitzak.

Data source
Instability

evidences

No evidences of

instability
Total

Inventory of the Basque Government 4 6 10

Inventory of the road network 7 0 7

Inventory of the geomorphological map 5 1 6
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6.2.2 The �eld based landslide inventory in the Oria river

catchment

In view of the preliminary results of the bibliographical data sources, it was decided

to collect every slide location observed during the �eld trips. This way, 325 points

corresponding to shallow and deep slides (both rotational and translational) were

inventoried by �eld work (Fig. 6.3a). Then, all the data collected on the �eld were

compared with the bibliographical landslide inventory in order to check if some of

those observed landslides were already inventoried by other sources.

Figure 6.3b shows the frequency distribution of the distance between the slope

instabilities inventoried on the �eld and the previously collected bibliographical

landslide points. It was observed that among the 325 �eld-work-based landslide

points, only the 5% was located to less than 10 meters of distance from landslide

points of bibliographical origin. Moreover, the most part of them corresponded to

the data coming from the Inventory of the road network. The 13% were placed in

the surroundings of the already inventoried slides, i.e between 10 and 50 meters of

distance to them, which suggests a correct identi�cation of the instability though

with not enough spatial accuracy. The 9% was inventoried in the vicinities of the

points o�ered by the bibliographical sources (to less than 100 meters of distance).

And all the rest (73% of the landslides collected on the �eld) was located to more

than 100 meters of distance from any other landslide already inventoried.

Figure 6.3: a) Spatial distribution of the �eld-work-based landslide inventory; b) Frequency distribution of the

distance between �eld-work-based landslide points and bibliographical source landslide points.

6.3 Irudia: a) Landa laneko lur labainketen inbentarioa; b) Landa laneko lur labainketen eta bibliogra�atik

ateratako datuen arteko distantziaren frekuentzia banaketa.
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All the results presented in this section support the idea that the bibliographical

sources of information did not o�er accurate enough data for the objectives of this

study. So, considering that the landslide inventory was the primary information in

which all the further analysis would be based on, it was taken the decision to continue

our analysis using the �eld based landslide inventory. To do so, a validation subset

was reserved for validation tests procedures (65 slide points selected at random) and

a similar amount of the rest of the �eld- work-based landslide inventory, 260 points,

was created to use them as �landslide free� points for the explanatory variables

analysis as well as for the landslide susceptibility models calibration (Fig. 6.4).

Figure 6.4: Spatial distribution of a) Calibration and b) Validation samples.

6.4 Irudia: a) Kalibrazio eta b) Balidazio laginen banaketa espaziala.

6.3 Independent variables. Analysis and selection.

Following the procedure explained in section 5.2.3.1, some descriptive statistics were

computed in order to select the explanatory variables with major role for slope

movements occurrence in our experimental zone.

As it is summarized in table 6.2, all the continuous variables performed values

under the threshold of 0.05 in the Kolmogorove-Smirnof test, which means that they

did not follow a normal distribution. Consequently, the signi�cance tests were carried

out with the Mann-Whitney test. In the case of the categorical variables, the Chi2

test was performed. Among the original 19 explanatory variables, 4 were excluded
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because they exceeded the signi�cance threshold value (marked with an asterisk in

Tab. 6.2). So, permeability, curvature, pro�l curvature and planform curvature did

not present an statistically signi�cant di�erence between the stable and unstable

points.

Table 6.2: Results of the statistical tests of Kolmogorov Smirnov (K-S), Mann Whitney and Chi2 of the explanatory

variables. Marked with asterisk (*): variables that did not show statistical signi�cant di�erence with the dependent

variable.

6.2 Taula: Kolmogorov Smirnov (K-S), Mann Whitney eta Chi2 estatistikoen emaitzak aldagai eragileetarako.

Asteriskoaz markatuta (*): aldagai dependentearekiko estatistikoki diferentzia esanguratsurik azaldu ez duten

aldagaiak.

Continuous variable K-S Mann-Whitney Categorical variable Chi2

elevation 0.05< 0 lithology 0

slope 0.05< 0 * permeability 0.09

sinusoidal slope 0.05< 0 regolith thickness 0.01

SAR 0.05< 0 land cover 1 0

TWI 0.05< 0.01 land cover 2 0

* curvature 0.05< 0.41 distance to the main

river-streams CAT

0

* planform curvature 0.05< 0.26 distance to transport

network CAT

0

* pro�le curvature 0.05< 0.34 aspect 0

distance to the river 0.05< 0.01

distance to the trans-

port network

0.05< 0

NDVI 0.05< 0

Among the remaining 15 variables, the correlation test showed high collinear

relationship between di�erent groups of variables. The continuous variables slope,

sinusoidal slope and SAR presented positive results (Tab. 6.3), thus, they were

introduced separately to the LR due to their high correlation. Likewise, in categorical

variables, understandably, both land cover 1 and land cover 2 represent the same

information, so they could not be taken into account together in the modelling

process (Tab. 6.4). Additionally, distance to the river and distance to the transport

network were also computed separated from distance to the main river-streams CAT

and distance to transport network CAT respectively, since the latter are the result

of a reclassi�cation of the former.
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Table 6.3: Correlation matrix of the continuous explanatory variables. The Spearman coe�cients (Coef.) and their

related signi�cance level (Sig.) are showed. High correlation coe�cients are highlighted in grey.

6.3 Taula: Aldagai jarraien korrelazio matrizea. Spearman koe�zientea (Coef.) eta bere esangura maila (Sig.)

erakusten dira. Korrelazio koe�ziente altuak grisez azpimarratu dira.

Variable Measure 1 2 3 4 5 6 7 8

1. elevation Coef 1

Sig. 0

2. TWI Coef -0.04 1

Sig. 0.304 0

3. NDVI Coef 0.236 -0.04 1

Sig. 0 0.313 0

4. slope Coef -0.076 -0.275 0.061 1

Sig. 0.054 0 0.117 0

5. sinusoidal slope Coef 0.076 -0.272 0.066 0.998 1

Sig. 0.052 0 0.095 0 0

6. SAR Coef -0.077 -0.28 0.068 0.987 0.984 1

Sig. 0.048 0 0.083 0 0 0

7. distance to the river Coef 0.216 -0.001 0 -0.134 -0.136 -0.139 1

Sig. 0 0.972 0.998 0.001 0.001 0 0

8. distance to the

transport network

Coef 0.36 0.013 0.293 -0.074 -0.076 -0.084 0.161 1

Sig. 0 0.749 0 0.06 0.052 0.032 0 0

Table 6.4: Correlation matrix of the categorical explanatory variables. The Spearman coe�cients (Coef.) and their

related signi�cance level (Sig.) are showed. High correlation coe�cients are highlighted in grey.

6.4 Taula: Aldagai kategorikoen korrelazio matrizea. Spearman koe�zientea (Coef.) eta bere esangura maila (Sig.)

erakusten dira. Korrelazio koe�ziente altuak grisez azpimarratu dira.

Variable Measure 1 2 3 4 5 6 7

1. lithology Coef 1

Sig. 0

2. regolith thickness Coef 0.089 1

Sig. 0.023 0

3. land cover 1 Coef 0.039 0.071 1

Sig. 0.324 0.071 0

4. land cover 2 Coef 0.029 0.094 0.548 1

Sig. 0.455 0.017 0 0

5. aspect Coef -0.002 0.006 0.101 0.086 1

Sig. 0.964 0.886 0.01 0.028 0

6. distance to transport

network CAT

Coef -0.108 -0.158 -0.187 -0.236 0.024 1

Sig. 0.006 0 0 0 0.54 0

7. distance to the main

river-streams CAT

Coef -0.064 -0.134 0.029 0.082 0.072 0.191 1

Sig. 0.102 0.001 0.459 0.037 0.067 0 0
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As a result of such inter relations between variables, 24 di�erent combinations of

10 variables were tested in a preliminary LR run, by means of the SPSS XXI software

(see tables 6.5 and 6.6). In all the computed regressions, the regolith thickness,aspect

and distance to the river were eliminated from the �nal set of estimate variables of

the model. The variables TWI and distance to the main river-streams CAT were

selected in some cases and rejected in others, but each time they were introduced to

the equation the classi�cation performance decreased, so they were not considered

as suitable explanatory variables. At the end, the highest classi�cation performance

(84.3 in Tab. 6.6) was set by the combination composed by the elevation, NDVI,

lithology, sinusoidal slope, land cover 1 and distance to transport network CAT.

Nevertheless, it can be pointed out that the usage of slope instead of sinusoidal

slope only decreases the performance in 0.1, which goes in consonance with the

very high correlation coe�cient between them. This suggests that probably the

introduction of any of those variables would not result in relevant changes in the

susceptibility model, but in order to maintain the statistically driven approach, only

the most performing combination was considered as the most suitable. In the same

way, even though land cover 1 and NDVI represent similar information about the

terrain surface, the former concerns a typological aspect and the later a numerical

indicator, apart from the fact that the automatic software does not reject none of

them among the 24 tests. Therefore, these were the explanatory variables selected

for the development of the �rst three susceptibility models.
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Table 6.5: Part I. Summary of the 24 combinations tested in a preliminary LR model run. The explanatory

variables introduced in the model in each run are marked with X. The explanatory variables composing the �nal

equation of each run are highlighted in grey.

6.5 Taula: I zatia. LR modeloaren kalkulu preliminarrean testatutako 24 konbinazioren laburpena. Kalkulu

bakoitzean erabilitako aldagaiak X bitartez adierazi dira. Azken ekuazioa osatzen duten aldagaiak grisez azpimarratu

dira.

1 2 3 4 5 6 7 8 9 10 11 12

elevation X X X X X X X X X X X X

TWI X X X X X X X X X X X X

NDVI X X X X X X X X X X X X

lithology X X X X X X X X X X X X

regolith thickness X X X X X X X X X X X X

aspect X X X X X X X X X X X X

slope X X X X

sinusoidal slope X X X X

SAR X X X X

land cover 1 X X X X X X

land cover 2 X X X X X X

distance to the river X X X X X X

distance to the main river-

streams CAT
X X X X X X

distance to the transport

network
X X X X X X X X X X X X

distance to transport net-

work CAT

Overall classi�cation

index
82.0 82.0 81.5 80.5 80.6 78.0 82.0 82.3 80.3 79.4 79.8 79.8
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Table 6.6: Part II. Summary of the 24 combinations tested in a preliminary LR model run. The explanatory

variables introduced in the model in each run are marked with X. The explanatory variables composing the �nal

equation of each run are highlighted in grey.

6.6 Taula: II zatia. LR modeloaren kalkulu preliminarrean testatutako 24 konbinazioren laburpena. Kalkulu

bakoitzean erabilitako aldagaiak X bitartez adierazi dira. Azken ekuazioa osatzen duten aldagaiak grisez azpimarratu

dira.

13 14 15 16 17 18 19 20 21 22 23 24

elevation X X X X X X X X X X X X

TWI X X X X X X X X X X X X

NDVI X X X X X X X X X X X X

lithology X X X X X X X X X X X X

regolith thickness X X X X X X X X X X X X

aspect X X X X X X X X X X X X

slope X X X X

sinusoidal slope X X X X

SAR X X X X

land cover 1 X X X X X X

land cover 2 X X X X X X

distance to the river X X X X X X

distance to the main river-

streams CAT
X X X X X X

distance to the transport

network

distance to transport net-

work CAT
X X X X X X X X X X X X

Overall classi�cation

index
84.2 84.3 82.6 82.6 82.5 80.8 84.2 84.3 82.6 82.6 82.5 80.8
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6.4 Models A, B and C. Results and comparison

Tables 6.7 and 6.8 show the coe�cients assigned to each explanatory variable by

means of which the di�erent susceptibility models were de�ned. The signs and

absolute values of the coe�cients indicate which of the environmental factors play a

decisive role in the occurrence of landslides. In categorical variables, a positive and

high value indicates an important role in favour of slope movement of that class,

while a negative value means an important role in favour of stabilization. However, it

should be noted that due to the dummy reclassi�cation applied in models A and B,

the coe�cients of the categorical classes were obtained in reference to the �rst class of

each variable, so they are about values of relative magnitude, and consequently they

are not comparable with values of other models. On the other hand, in continuous

variables, a high and positive coe�cient means that the greater the pixel value in

that variable, the greater would be the probability of occurrence of a landslide.

Conversely, if the coe�cient is negative, the presence of high absolute values would

represent a lower probability of landslide occurrence.

In view of the β values in tables 6.7 and 6.8, it can be seen that distance to

transport network CAT, sinusoidal slope and elevation present similar relative results

in models A, B and C. Although elevation did not imply almost any relevance

(coe�cient close to 0), the other two variables proved to be really signi�cant for the

three models, at least, in our experimental zone and with our landslide inventory.

Thus, the distance to the transport network CAT and the sinusoidal slope are

considered the main factors that explain the distribution of the dependent variable.

Likewise, according to these results, it could be inferred that the following values

describe the most common features on the slopes a�ected by landslides in the

Oria river basin (see Tabs. 6.7 and 6.8): sinusoidal slope values close to 1 (around

45◦ of slope); elevation between 0 and 300 m; NDVI between 0.2 and 0.4 (sparse

vegetation); distances from the transports network CAT between 0 and 20 m; land

cover 1 covered by scrub, pasture or meadows; and coarse grained detrital rocks or

marls lithology.

The cumulative percentage curves (Fig. 6.5) showed high coincidence with

respect to the instability points reserved for validation. In all cases the great
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Table 6.7: Part I: Estimate coe�cients (β) for each model result and the landslide density (LD) values for each

class. Only categorical variables.

6.7 Taula: I Atala: Modelo bakoitzaren β koe�ziente estimatuak eta LD lur labainketa dentsitate balioa klase

bakoitzerako. Aldagai kategorikoak bakarrik.

Models A B C D

β coef. β coef. LD β coef. β coef.

lithology Coarse grained detrital rocks

(sandstone)

0 0 1.346 0.615 0.827

Surface deposits -3.721 -3.207 0.5356

Alternation of detrital rocks -1.334 -1.371 0.5994

Fine-grained detrital rocks (lu-

tites)

-4.142 -3.803 0.4593

Marls, limestones, marlstones

and calcarenites alternation

-1.552 -1.611 13.561

Marls -0.884 -0.961 20.422

Decarbonated marls -2.771 -4.429 0.2845

Clay with gypsium and other

salts

-3.221 -2.849 11.025

Impure limestones and calcare-

nites

-1.516 -1.54 10.961

Limestones -4.039 -3.906 0.0503

Ophites -1.669 -1.224 26.592

Slates -3.008 -3.671 0.0674

land cover 1 Urban area 0 0 0.32 0.559 0.782

Transport infraestructures 0.002 0.576 19.193

Forest -0.332 -1.047 0.4361

Plantation forest 0.247 -0.334 0.5323

Gallery forest 23.014 22.302 0.9212

Grassland and pastures -17.491 -15.376 0

Meadow 1.374 1.038 28.446

Cultivations -2.373 -2.594 0.4198

Bush 1.528 0.96 14.334

Pasture and scrubs 1.471 1.591 0.1995

Meadow with hedgerow -20.967 -20.61 0

distance to

transport network

CAT

0 - 20 m 0 0 5.745 0.499 - -

20 - 50 m -0.52 -0.752 46.428

50 - 100 m -1.712 -1.759 30.149

100 - 150 m -1.471 -1.491 25.151

150 - 200 m -2.395 -2.536 12.551

200 - 250 m -3.391 -3.365 0.6732

250 - 300 m -2.112 -1.991 0.6295

> 300 m -3.329 -3.569 0.2682
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Table 6.8: Part II: Estimate coe�cients (β) for each model result and the landslide density (LD) values for each

class. Only continuous variables.

6.8 Taula: Modelo bakoitzaren β koe�ziente estimatuak eta LD lur labainketa dentsitate balioa klase bakoitzerako.

Aldagai jarraiak bakarrik.

Models A B C D

β coef. β coef. LD β coef. β coef.

NDVI -0.6 to -0.2 -5.342 0 16.226 -4.574 -4.587

-0.2 to 0.2 -1.124 0.9534

0.2 to 0.4 -0.216 10.395

sinusoidal slope 0 - 0.2 5.975 0 0.0595 5.312 4.853

0.2 - 0.4 2.526 0.2702

0.4 - 0.6 2.516 0.3784

0.6 - 0.8 4.559 12.982

0.8 - 1 5.265 14.433

elevation 0 - 300 m -0.002 0 16.888 -0.002 - -

300 - 600 m -0.226 0.8119

600 - 900 m -1.934 0.0979

900 - 1200 m -20.5 0

1200 - 1550 m -18.328 0

Intercept -0.829 0.431 -5.85 -5.75

majority of the validation sample (between 90% and 95%) was located in landslide

susceptibility classes greater than 0.5 probability, as it was noticed in the a-curves

of each model. In this regards, model B stood out, whose a-curve showed that

less than 5% of the landslides coincided with the lower susceptibility classes, while

in models A and C this value increased up to about 10%. Nevertheless, b-curves

indicated that not all models presented the same discrimination capacity. In model

B, high probability classes covered greater percentage of the experimental zone

(approximately 30%) than in models A and C (near 15%).

Concerning the prediction rate curves (Fig. 6.6), their shape revealed that

the three di�erent strategies for the explanatory variables processing were very

satisfactory in terms of accuracy, although small di�erences could be highlighted

between these susceptibility models. Numerically, with an AUC of 0.951, model C

o�ered the best performance followed by model A (AUC = 0.948), while model B

showed a slightly lower value (AUC = 0.938).

Apart from the validation tests of the statistical models, considering each model's

equations, landslide susceptibility maps were displayed (Fig. 6.7). Among them,
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Figure 6.5: Cummulative percentage curves for models A, B, C and D.

6.5 Irudia: Akumulatutako portzentaien kurbak A, B, C eta D modeloetarako.

Figure 6.6: Prediction rate curves for models A, B, C and D; and their corresponding area under the curve (AUC).

6.6 Irudia: A, B, C eta D modeloetarako aurreikuspen tasa kurbak; eta horien kurba azpiko azalera (AUC).
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the biggest di�erence was observed in model B, where, by means of a visual

inspection, the uniformity of the non-susceptible zones in the eastern part of the

basin (mountainous areas) stood out, compared to the higher variability showed by

models A and C in the same area.

Additionally, it was highlighted the broad similarity of the three maps, in which

the high susceptibility classes were distributed clearly following a linear pattern

similar to the drainage network. As a matter of fact, more detailed inspection of

the maps (Fig. 6.8) revealed the almost complete dependency of the distribution of

susceptibility to the variable distance to transport network CAT. This could show

some bias that the landslide inventory could have with respect to this variable, since

the information of the locations of the landslides was obtained by direct �eld work.

6.5 Results of model D

Based on the results of the �rst three models, it was concluded that (i) the elevation

had practically no e�ect on the presence or absence of the inventoried landslides

(coe�cient β very close to 0), and (ii) the distribution of the susceptibility maps

was strongly conditioned by the variable distance to transport network CAT, which

suggests that at least part of the inventory could be biased by this explanatory

variable.

For this reason, an additional susceptibility model was carried out (model D), in

which the same strategy of variables processing as in model C was applied. However,

in this case elevation and distance to transport network CAT were removed as

explanatory variables and only lithology, land cover 1, NDVI and sinusoidal slope

were used.

The susceptibility map D (Fig. 6.7) shows notable di�erences with respect to the

previous models. The probability values of landslide occurrence are not distributed

following the same linear patterns present in models A, B and C, and such di�erence

is even more evident if the zoomed portions are observed (Fig. 6.8).

Regarding the validation tests, the curve-a and curve-b of the cumulative

percentage curves (Fig. 6.5) showed that less than 20% of the validation landslides

showed susceptibility values under 0.5. Moreover, around 80% of the experimental
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Figure 6.7: Landslide susceptibility maps for models A, B, C and D.

6.7 Irudia: Lur abainketa suszeptibilitate mapak A, B, C eta D modeloetarako.
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zone was classi�ed as a low susceptibility zone. The same information, represented

in the prediction rate curve, performed an area under the curve of 0.89 (Fig. 6.6).

6.6 Discussion

The analysis carried out in a reduced experimental zone within the complete study

area of the current thesis allowed to clarify some steps, that we considered crucial, for

landslide susceptibility modelling: (i) the available data about the landslide locations

were assessed; (ii) an explanatory variables selection approach was tested and; (iii) it

was �nd out the most suitable strategy for explanatory variables processing. Thus,

the conclusions as well as considerations obtained through the presented results are

discussed in the following lines.

Figure 6.8: Detailed zoom of susceptibility maps A, B, C and D.

6.8 Irudia: Handitutako zatia A, B, C eta D suszeptibilitate mapetan.

The aleatory check points of the landslide location data coming from di�erent

bibliographical sources showed up the limited accuracy of the bibliographical

inventory. To begin, the Inventory of the Basque Government, which is the most
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abundant source of data, provided very inaccurate landslide locations according

to the �eld visits carried out. Inventory of the geomorphological map provided

right approximated coordinates in the most part of the checked points, but the

comparison of the total set to the shallow slides directly observed on the �eld revealed

a minimum mismatch of 10 m, which was considered unacceptable considering that

the resolution of the raster layers used for the model construction, and consequently

the �nal susceptibility maps, was of 5 m. The only bibliographical source that

displayed landslide locations of enough accuracy was the Inventory of the road

network, however, the amount of data was very limited besides the fact that this

technical report only considered slope movements that a�ects the road network.

So in view of such results it was considered that the bibliographical inventory was

not a valid data set to model the landslide susceptibility in our experimental zone,

and consequently, neither in the complete study area. Instead, a �eld work based

landslide inventory was carried out and the data were used for all the further analysis

of the research. Nevertheless, despite the reliability, in terms of spatial accuracy,

provided by shallow slides locations obtained by direct observation on the �eld,

some drawbacks were detected. On one hand, the usage of one single point to

represent the theoretical environmental conditions that played a decisive role in

favour of the landslide occurrence could be considered as a source of uncertainty,

taking into account that shallow slides are processes that can cover from tens to

thousands of square kilometres. So, even if this approach leads with good results,

other techniques like the delimitation of the complete landslide area (instead of

applying an average bu�er to each point) worth being tested. On the other hand,

the approach followed in the current investigation assumes that any place in which

no landslide was inventoried is free of landslides. Such assumption is another source

of uncertainty, unless a complete multi temporal landslides inventory was done, in

which every places of the territory was surveyed and ascertained that no landslide

evidences exist. In case of bibliographical inventories no-landslide places are not

known at all, and in �eld work-based inventories such information can only be

ensured in the speci�cally visited places, which usually takes only a portion of the

real area under study.

The variables selection procedure demonstrated to be valid for the objective
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choice of explanatory variables that are directly related to the spatial distribution

of landslides and the identi�cation of variables highly correlated to each other. The

rejection of the �rst 4 variables by means of the statistical signi�cance tests was

an expected result, considering that all these predisposing factors presented very

uniform spatial distribution along the study area. In addition, the fact that the

software itself systematically eliminated other 3 variables was in agreement with the

results of other investigations (Carrara, 1983; Guzzetti et al., 1999; Remondo et al.,

2008; Yilmaz, 2009). In the case of the distance to the river, its elimination could be

due to the high density of the drainage network, which makes it probable for most

points, stable or unstable, to place near a river, and therefore the variability can be

signi�cantly reduced. Additionally, it has to keep in mind that some of the variables

were simple reclassi�cations of others, which were transformed in order to cover

the widest range of possibilities. But logically, in these cases the correlation was

practically perfect and consequently this type of variables could not be introduced

together in the model.

Thereby, it was possible to select, in an objective way, only 6 variables from a

set of 19 initial options. However, this selection did not result entirely satisfactory,

since once the LR models and the susceptibility maps were de�ned, the inadequate

e�ect of some variables was detected. First, in the case of elevation, although the Man

Witney test suggested a statistically signi�cant relation with the presence or absence

of landslides, once introduced in the LR it showed practically null e�ect within

the model, with a β estimate value very close to 0. In fact, the geomorphological

justi�cation of this variable is not straightforward, since altitude, by itself, does not

have a direct e�ect on slopes failures, though, it can represent the association of

any other variable, such as lithology or land use. Moreover, the statistical tests also

ensured the relationship between distance to the transport network CAT and the

presence or absence of landslides, but, as the landslide inventory was obtained by

�eld work, probably it had an intrinsic in�uence of this explanatory variable with

respect to the dependant variable. As a matter of fact, it was only in view of the

susceptibility maps A, B and C when the biased e�ect of distance to the transport

network CAT was manifested (Fig. 6.7). In these maps it can be observed that

the almost complete concentration of the highest susceptibility classes were found
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around the communication routes.

Following this reasoning, it was concluded that the susceptibility maps A, B

and C were not operationally acceptable. Even though the comparison of the

validation results obtained by applying di�erent strategies of explanatory variables

processing allowed, actually, the identi�cation of the procedure followed in model

C as the most suitable one. Considering the prediction capacity of these 3 models,

model A presented good results (Figs. 6.5 and 6.6), but due to the small size of

some categories, the appearance of extreme values of the coe�cients could strongly

condition the results. The same happened in the case of model B, which showed

slightly lower results, probably due to the subjective division that was applied to

continuous variables for their conversion into categorical. As an example of this

e�ect, stood out the high absolute values of the β estimates associated with the

higher elevation classes, which mask any possible in�uence of the rest of the variables.

However, despite its high prediction performance, it has to be taken into account

the large extension covered by high susceptibility classes in map B (see Figs. 6.5 and

6.6), which strongly reduces the discrimination capacity of this model. In addition,

processing all variables as categorical by means of the dummy codi�cation supposes

a considerable increase of calculation time and the interpretation of the β estimates

turns more laborious. Finally, model C presented the best results with excellent

balance between the prediction and discrimination capacity. So the transformation of

categorical variables into continuous giving a relative value based on the presence of

landslides to each of its class, such as the landslide density value, allowed mitigating

the e�ect of the smaller categories o�ering a more robust susceptibility model, as

suggested by Grozavu et al. (2013) and Trigila et al. (2015).

Once de�ned the most suitable strategy for the explanatory variables processing,

and due to the detection of elevation and distance to the transport network CAT

as inadequate variables, model D was carried out. As a result, it presented a good

prediction and discrimination capacity with an AUC value of the prediction rate

curve of 0.89 (Fig. 6.6). Moreover, the graphical representation of the model (Figs.

6.7 and 6.8) showed a spatial distribution of high susceptibility areas slightly marked

by lithological types, but much more di�used by the rest of the explanatory variables,

which o�ers a satisfactory landslides susceptibility map.
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To conclude, the tests performed during this study reached answering the

questions formulated at the beginning of this chapter, but also raised new issues

to be consider in the application of the LR model for the de�nition of a landslide

susceptibility map in general, and for the case of our study area in particular:

• In the particular case of the Oria river basin, and consequently neither in

Gipuzkoa, bibliographical landslide inventories are not of enough accuracy for

modelling the landslide susceptibility. Instead, direct geomorphological �eld

survey demonstrated to be a suitable alternative.

• Statistically oriented explanatory variables selection approach is e�ective for

eliminating no-signi�cant variables, though being statistically signi�cant does

not ascertain the suitability of a given variable. It is compulsory to ensure the

independence between the dependant and explanatory variable, as well as a

geomorphological justi�cation about their relationship.

• Transforming categorical variables into continuous is more advantageous for

the proper execution of landslide susceptibility maps using the LR model, since

this procedure avoids the creation of a large number of dummy variables, while

it maintains the maximum prediction capacity.

• Landslide inventory could provide more accurate information if the areas of

each landslide would be delimited.

• The de�nition of the places free of landslides could be a considerable source

of incertitude, even more if the landslide inventory was carried out by direct

geomorphological �eld survey.

146



References

Amorim, S. F.: Estudio comparativo de métodos para la evaluación de la

susceptibilidad del terreno a la formación de deslizamientos super�ciales:

Aplicación al Pirineo Oriental, Ph.D. thesis, Universidad Politécnica de

Catalunya, Barcelona, 2012.

Bai, S. B., Wang, J., Lü, G.Ñ., Zhou, P. G., Hou, S. S., & Xu, S.Ñ.: GIS-based

logistic regression for landslide susceptibility mapping of the Zhongxian segment

in the Three Gorges area, China, Geomorphology, 115, 23�31, 2010.

Bonachea, J.: Desarrollo, aplicación y validación de procedimientos y modelos

para la evaluación de amenazas, vulnerabilidad y riesgo debidos a procesos

geomorfológicos, Ph.D. thesis, Universidad de Cantabria, Santander, 2006.

Carrara, A.: Multivariate models for landslide hazard evaluation, Mathematical

Geology, 15, 403�426, 1983.

Chung, C. J. & Fabbri, A. G.: Validation of spatial prediction models for landslide

hazard mapping, Natural Hazards, 30, 451�472, 2003.

Corominas, J. & Mavrouli, O. C.: Living with landslide risk in Europe: Assessment,

e�ects of global change, and risk management strategies, Tech. rep., SafeLand. 7th

Framework Programme Cooperation Theme 6 Environment (including climate

change) Sub-Activity 6.1.3 Natural Hazards, 2011.

Costanzo, D., Chacón, J., Conoscenti, C., Irigaray, C., & Rotigliano, E.: Forward

logistic regression for earth-�ow landslide susceptibility assessment in the Platani

river basin (southern Sicily, Italy), Landslides, 11, 639�653, 2014.

147



Methodological approach for landslide analysis in a regional scale

Dai, F. & Lee, C.: Landslide characteristics and slope instability modeling using

GIS, Lantau Island, Hong Kong, Geomorphology, 42, 213�228, 2002.

Duman, T. Y., Can, T., Gokceoglu, C., Nefeslioglu, H. A., & Sonmez, H.: Application

of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul,

Turkey, Environmental Geology, 51, 241�256, 2006.

Fdez-Arroyabe, P. & Martin-Vide, J.: Regionalization of the probability of wet spells

and rainfall persistence in the Basque Country (Northern Spain), International

Journal of Climatology, 32, 1909�1920, 2012.

Felicísimo, Á. M., Cuartero, A., Remondo, J., & Quirós, E.: Mapping landslide

susceptibility with logistic regression, multiple adaptive regression splines,

classi�cation and regression trees, and maximum entropy methods: a comparative

study, Landslides, 10, 175�189, 2013.

Fiorucci, F., Giordan, D., Santangelo, M., Dutto, F., Rossi, M., & Guzzetti, F.:

Criteria for the optimal selection of remote sensing optical images to map event

landslides, Natural Hazards and Earth System Sciences, 18, 405�417, 2018.

González-Hidalgo, J. C., Brunetti, M., & de Luis, M.: A new tool for monthly

precipitation analysis in Spain: MOPREDAS database (monthly precipitation

trends December 1945�November 2005), International Journal of Climatology,

31, 715�731, 2011.

Grozavu, A., Ple³can, S., Patriche, C. V., M rg rint, M. C., & Ro³ca, B.: Landslide

susceptibility assessment: GIS application to a complex mountainous environment,

in: The Carpathians: Integrating Nature and Society Towards Sustainability,

edited by Kozak, J., Ostapowicz, K., Bytnerowicz, A., Wy»ga, B., et al., pp.

31�44, Springer, 2013.

Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P.: Landslide hazard

evaluation: a review of current techniques and their application in a multi-scale

study, Central Italy, Geomorphology, 31, 181�216, 1999.

Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang,

148



Chapter 6

K. T.: Landslide inventory maps: New tools for an old problem, Earth-Science

Reviews, 112, 42�66, 2012.

Hervás, J.: ALISSA: Abridged Landslide Inventory of Spain for synoptic

Susceptibility Assessment, in: EGU General Assembly Conference Abstracts,

vol. 16, 2014.

Lee, S.: Application of logistic regression model and its validation for landslide

susceptibility mapping using GIS and remote sensing data, International Journal

of Remote Sensing, 26, 1477�1491, 2005.

Mücher, C. A., Klijn, J. A., Wascher, D. M., & Schaminée, J. H.: A new European

Landscape Classi�cation (LANMAP): A transparent, �exible and user-oriented

methodology to distinguish landscapes, Ecological Indicators, 10, 87�103, 2010.

Nefeslioglu, H., Gokceoglu, C., & Sonmez, H.: An assessment on the use of logistic

regression and arti�cial neural networks with di�erent sampling strategies for the

preparation of landslide susceptibility maps, Engineering Geology, 97, 171�191,

2008.

Nefeslioglu, H. A., Gokceoglu, C., Sonmez, H., & Gorum, T.: Medium-scale hazard

mapping for shallow landslide initiation: the Buyukkoy catchment area (Cayeli,

Rize, Turkey), Landslides, 8, 459�483, 2011.

Pardo, A. & Ruiz, M. A.: SPSS 11. Guía para el análisis de datos, McGraw-

Hill/Interamericana de España, Madrid, 2002.

Pourghasemi, H., Moradi, H., & Aghda, S. F.: Landslide susceptibility mapping

by binary logistic regression, analytical hierarchy process, and statistical index

models and assessment of their performances, Natural Hazards, 69, 749�779, 2013.

Remondo, J., Bonachea, J., & Cendrero, A.: Quantitative landslide risk assessment

and mapping on the basis of recent occurrences, Geomorphology, 94, 496�507,

2008.

Santangelo, M., Marchesini, I., Bucci, F., Cardinali, M., Fiorucci, F., & Guzzetti, F.:

An approach to reduce mapping errors in the production of landslide inventory

maps., Natural Hazards and Earth System Sciences, 15, 2111�2126, 2015.

149



Methodological approach for landslide analysis in a regional scale

Trigila, A., Iadanza, C., Esposito, C., & Scarascia-Mugnozza, G.: Comparison

of Logistic Regression and Random Forests techniques for shallow landslide

susceptibility assessment in Giampilieri (NE Sicily, Italy), Geomorphology, 249,

119�136, 2015.

Van Den Eeckhaut, M. & Hervás, J.: State of the art of national landslide databases

in Europe and their potential for assessing landslide susceptibility, hazard and

risk, Geomorphology, 139, 545�558, 2012.

Van Den Eeckhaut, M., Hervás, J., Jaedicke, C., Malet, J. P., Montanarella, L.,

& Nadim, F.: Statistical modelling of Europe-wide landslide susceptibility using

limited landslide inventory data, Landslides, 9, 357�369, 2012.

Wang, Y. T., Seijmonsbergen, A. C., Bouten, W., & Chen, Q. T.: Using statistical

learning algorithms in regional landslide susceptibility zonation with limited

landslide �eld data, Journal of Mountain Science, 12, 268�288, 2015.

Weier, J. & Herring, D.: Measuring vegetation (ndvi & evi), Earth Observatory

Library of NASA, 2000.

Yilmaz, I.: Landslide susceptibility mapping using frequency ratio, logistic

regression, arti�cial neural networks and their comparison: a case study from

Kat landslides (Tokat Turkey), Computers & Geosciences, 35, 1125�1138, 2009.

Zhu, L. & Huang, J. f.: GIS-based logistic regression method for landslide

susceptibility mapping in regional scale, Journal of Zhejiang University-Science

A, 7, 2007�2017, 2006.

150



Chapter 6

II E�ective surveyed area and its role in statistical
landslide susceptibility assessment

After the tests carried out in the Oria river basin, the knowledge obtained by

that research was applied in the complete study area, in order to create a landslide

susceptibility map for the Gipuzkoa Province (see section 4). But considering the

issues raised in the previous chapter, more than obtaining the de�nitive susceptibility

map for our study area, the aim of this phase of the study was to continue

investigating about the crucial methodological steps in landslide susceptibility

modelling.

In statistical landslide susceptibility models, as the LR model adopted in this

work, the preparation of the training dataset is a fundamental and critical step.

Commonly, this requires the selection of a sample of stable (without landslides) and

unstable (with landslides) mapping units. While assuring the presence of a landslide

is straightforward, and it can be supported by the geomorphological signatures on

the slope or by direct observation of the events, the selection of landslide-free areas

is more critical. Assuming as landslide-free the locations of a study area where no

landslides were reported in a �eld survey is correct only in the unlikely circumstance

that the landslide inventory has been prepared surveying every single site of the

study area, and following homogeneous criteria. In other words, any landslide-free

location in an inventory map should have been explicitly checked to be free from

landslides.

Nowadays, there are methods based on the visual interpretation of aerial

photographs or digital processing of remotely acquired optical and radar imagery

(Catani et al., 2005; Herrera et al., 2009; Fiorucci et al., 2011; Casagli et al., 2017;

Mondini, 2017; Fiorucci et al., 2018; Alvioli et al., 2018) that allow to prepare

historical and event landslide inventories. However, the adoption of such methods

can be hampered by the lack of image accuracy classi�cation performance due to

uncertain factors. Alternatively, bibliographic sources like newspapers and news

feeds, administrative reports or scienti�c literature can be used to obtain landslide

information. Nevertheless, the downside of these type of data is that they hardly are

as accurate as required by landslide susceptibility studies, like it was demonstrated

in the Oria river basin. As a consequence, sometimes, like in this case, the best option
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to obtain a reliable landslide inventory is a straightforward geomorphological �eld

mapping. A detailed discussion about the characteristics, advantages and limitations

of di�erent approaches for landslide mapping can be found in Guzzetti et al. (2012);

Santangelo et al. (2015) and Fiorucci et al. (2018).

An operational disadvantage of �eld-based landslide mapping is the di�culty in

surveying the whole area where the susceptibility map must be carried out, since

some places can be inaccessible or not visible from the accessible places. Di�culties

in surveying the landscape a�ect the completeness and the spatial representativeness

of the landslide inventory and, as a result, inclusion of non-visible areas within a

landslide inventory introduces a bias, since presence or absence of landslides cannot

be ascertained in such portions of landscape. This uncertainty has hardly been

considered in existing studies that use �eld-based landslide inventories (Yesilnacar

& Topal, 2005; Wang et al., 2017).

In this work, we considered grid cells and slope units (Carrara et al., 1991, 1995;

Guzzetti et al., 2006; Alvioli et al., 2016; Zêzere et al., 2017; Rosi et al., 2018; Ba

et al., 2018), and investigated the e�ect of the di�erent ways of training landslide

susceptibility models within both types of mapping units.

We propose an automatic and reproducible procedure to delineate the actual area

which was explicitly surveyed in preparing a landslide inventory by geomorphological

�eld mapping, i.e. the e�ective surveyed area (ESA), and to use such relevant

information in the statistical analysis. The procedure allows to carry out the

calibration of the statistical model within the ESA and then to apply the resulting

susceptibility model to the whole area (WA) under investigation. Moreover, we

implemented an automatic approach for the delineation of the ESA in a newly

developed module named r.survey.py (see section 6.7.3). The module delineates the

theoretical visible areas from the points of view recorded during the �eld trip by

the GPS tracks. And, most importantly, the ESA, as delineated by r.survey.py, is

an objective and reproducible portion of the study area directly observed by the

geomorphologist, thus allowing to avoid arbitrary assumptions about which sites

were actually surveyed and which ones were not.

In particular, this research aims to achieve the third and fourth objectives of the

current thesis. On one hand, it is intended to observe and recognize the advantages
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and drawbacks of di�erent mapping units in landslide susceptibility mapping. On the

other hand we aim at demonstrating that the calibration of a landslide susceptibility

model within the ESA, instead of the WA (the whole study area, encompassing the

ESA), enhances the performance of model itself. Thus, we calibrated the multivariate

logistic regression model for landslide susceptibility in four di�erent ways, combining

two di�erent calibration areas (ESA and WA) with two di�erent mapping unit types:

(i) a regular grid cell partition with a ground resolution of 5 m x 5 m and (ii) an

slope unit (SU) partition (consisting in irregular terrain subdivisions bounded by

drainage and divided lines)(see section 6.7.4).

Detailed information about the area in which the following investigation was

applied can be found in chapter 4. Thereby, the next sections are organized as

follows. Section 6.7 shows the details about the data acquisition. Section 6.8

contains a general description about the software speci�cations used for applying

the multivariate method to model the landslide susceptibility and the approach

followed for validate it, as well as a detailed description about the set-up of the

di�erent models. Results are described in Section 6.9 and are further discussed in

Section 6.10.

6.7 Data preparation

6.7.1 Landslide inventory

We prepared a landslide inventory by a direct geomorphological �eld survey, as it

is detailed in section 5.1.1.2. Moreover, and also important to de�ne the ESA, we

digitalized the route followed during the �eld survey. This information was then

elaborated using a module developed for the purpose.

As a result of several �eld trips, 793 individual landslides were collected; 746 of

them were classi�ed as shallow movements (Fig. 6.9a). Our observations together

with the revised bibliographical sources (INGEMISA, 1995; GFA, 2013; Euskadiko

DEA, 2014) con�rmed that shallow slides are the most frequent type of landslide,

just like in the Oria river basin. Consequently, in order to consider only landslides

triggered by the same mechanisms, only shallow movements were used as landslide

presence when de�ning the dependent variable in the susceptibility assessment.
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Figures 6.9b and 6.9c show the distribution of landslide sizes, highlighting that

a di�erence of �ve orders of magnitude exists between the smallest and the largest

inventoried shallow slide.

Figure 6.9: (a) Distribution of the shallow slides inventory along the study area and extension of the E�ective

Surveyed Area (ESA); (b) Probability density plot of the shallow landslide size (Area in m2) distribution; (c) Box

plot of the same distribution.

6.9 Irudia: (a) Azaleko lur labaiketen inbentarioaren banaketa espaziala eta ikuskatutako eremu efektiboaren (ESA)

zabalkundea; (b) Lur labainketen azaleren dentsitate probabilitatearen banaketa kurba (m2-tan); (c) Banaketa

berdinaren bloke diagrama.

6.7.2 Explanatory variables

The group of explanatory variables used for this research, respectively to those

used in the Oria river basin, changed due to di�erent reasons. According to the

results obtained in the previous chapter, distance to transport network and its

reclassi�ed version distance to transport network CAT were rejected in order to

avoid probable biased e�ect due to the fact that the landslide inventory was done

by direct �eld work. elevation showed negligible e�ect. distance to the river, as well

as its reclassi�ed version distance to the main river-streams CAT, were not chosen

either because of the high drainage density, which reduces the variability between

stable and unstable mapping units. In the previous research (see Tabs. 6.5 and 6.6),

land cover 2 showed always lower overall classi�cation indexes in front of land cover

1, so it was decided that it was no reasons for still test its suitability. And �nally,

NDVI could not be used for the application in the Gipuzkoa Province, because this

layer did not cover the complete study area.
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As a result, a group of 13 explanatory variables were used for this investigation.

As morphometric continuous variables we used slope, sinusoidal slope, surface

area ratio (SAR), topographic wetness index (TWI), curvature, planform curvature

and pro�le curvature. And as categorical variables lithology, permeability, regolith

thickness, land cover 1 and aspect were considered, besides an additional new

variables which was not used in the Oria river tests, namely land cover 3.

For the categorical variables, we computed frequency ratio (FR) values for each

class, and used them as an alternative relative value (instead of the LD value) for

their transformation into continuous variables (Lee & Min, 2001; Yilmaz, 2009;

Trigila et al., 2015). FR is a concept introduced by Lee & Min (2001), which

has been widely used in bivariate statistical approaches on the �eld of landslide

susceptibility modelling (Süzen & Doyuran, 2004; Gorsevski et al., 2006; Yilmaz,

2009). Also, Trigila et al. (2015) suggested its utilisation as relative numerical

value for transforming categorical variables into continuous, in order to use them in

multivariate statistical approaches. Although the concept behind is similar to the

LD, the formula for computing it is slightly di�erent.

FRi =
Li/Ltot

NLi/NLtot
(6.2)

Where Li and Ltot are the amount of mapping units with landslides in class i and

in the total study area, respectively, while NLi and NLtot are the corresponding

landslide-free quantities.

In the context of this research, where a comparison was carried out between two

di�erent calibration areas, we acknowledge that the FR values can vary depending

on the portion of the territory considered as the total area (ESA or WA). However,

in order to perform a direct comparison, we decided to maintain the same FR

values (calculated considering the WA) in all regular grid cell-based susceptibility

analysis (the summary table with all the FR values corresponding to each class of

the categorical variables is shown in Appendix D).

The selection of the appropriate explanatory variables to build the landslide

susceptibility models was also carried out, in this case, by an statistically oriented

approach detailed in section 5.2.3.2. We �rst adopted grid cells as mapping units,

and applied the cited approach to ensure that only signi�cant variables were taken
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into account as well as the non-redundancy of the contributed information by each

covariate (Ayalew & Yamagishi, 2005). Then, considering the variables actually used

for the application of the LR models with grid cells, we have further restricted the

set of variables to be used with slope units (see section 6.9.2).

6.7.3 De�nition of the e�ective surveyed area

In this work we suggest the concept of ESA, and training of statistical models

therein, as an approach to be used to train a landslide susceptibility model

avoiding assumptions about the presence or absence of landslides in areas not

explicitly observed. We delimited the ESA by means of the newly developed python

module, namely r.survey.py, which can be run by means of GRASS SIG1 software

(Bornaetxea et al., 2018) (information about the repository in which the original

code can be found is available in Appendix B). Input data to de�ne the visible

area (i.e. ESA in our case) are: i) a sample of points to be considered as points

of view; ii) a DEM of the area; iii) the maximum visible distance. The sample of

points of view, in our case, was de�ned re-sampling a given number of points along

the recorded path during the �eld campaigns. This number of points depends on

the maximum distance set between them, and together with the DEM resolution

selected the results can be directly a�ected.

In a 10 km2 subset of the study area, we tested the software output using:

i) maximum distance between sampled points of 50, 100, 200 and 500 m; ii) the

original DEM at 5 m resolution and resampled versions of the DEM at 20, 50 and

100 m resolution; and iii) maximum visible distance of 500 m (the later was dictated

by the largest distance between the digitized �eld path and the farthest landslide

pixel in the subset of the study area). Results of the test are summarized in Table

6.9.

As target criteria, we considered that the best setting option was the one which

allows covering the totality of the landslides but using the less possible points (bigger

Dmax value) and the lower possible resolution in order to optimize the calculation

time. In the case of the complete study area, the maximum visible distance was set

in 1,100 m, in view that the largest distance between the digitized �eld path and

1https://grass.osgeo.org/
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Table 6.9: Results of the setting test of r.surbey in a 10 km2 subset of the study area.

6.9 Taula: Ezarpenen testaren emaitzak ikerketa eremuko 10 km2-ko azpi-eremuan.

Name Resolution (m) Dmax Percentage of landslides within (%)

Survey 5 5 50 35

Survey 6 20 50 70

Survey 7 50 50 95

Survey 8 100 50 100

Survey 9 5 100 30

Survey 10 20 100 60

Survey 11 50 100 95

Survey 12 100 100 100

Survey 13 5 200 30

Survey 14 20 200 55

Survey 15 50 200 85

Survey 16 100 200 100

Survey 17 5 500 0

Survey 18 20 500 35

Survey 19 50 500 60

Survey 20 100 500 95
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the farthest landslide pixel was 1,092 m. Then, and according to the results of Table

6.9, the rest of the settings were �xed: maximum sampling distance of 200 m, DEM

resolution of 100 m.

We can make sense of the numerical values of the parameter used in the

r.survey.py module considering that the minimum size A of an object visible from

a distance ∆ is given by Rodrigues et al. (2010) and Minelli et al. (2014):

A =
25 ∆2

c
, (6.3)

where c is a steradiant to square minutes conversion factor, c ' 1.18·107. Using ∆ =

1,100 m in Eq. (6.3), we get A = 2.6 m2, meaning that the smallest landslide in our

inventory, with size 7.3 m2, would actually be identi�able from at least one point

along the route, if the landslide sits within the ESA. The resulting ESA covered

44.24% of the entire study area and it is shown in Fig. 6.9a.

6.7.4 Slope units delineation

For SU delineation we adopted the r.slopeunit module described in Alvioli et al.

(2016) (information about the repository in which the original code can be found

is available in Appendix B). The code provides a GRASS GIS module, as the

r.survey.py code presented in this work, and it was designed for the automatic and

adaptive delineation of SUs, given a DEM and a set of user-de�ned input parameters.

The code can be used to produce several SU partitions, using di�erent combinations

of the input parameters, which can thus be tuned according to user-de�ned criteria.

We partially followed Alvioli et al. (2016), in that we selected the best SU partition

maximizing the quality of terrain aspect segmentation. In addition, we performed

preliminary tests using the LR susceptibility model, showing that the use of very

small SUs provides unrealistic results, which can be understood considering the

limited variability of variables within such small SU polygons. We concluded that,

in the case of the Gipuzkoa Province the most suitable SU partition for landslide

susceptibility zonation should be obtained with the following r.slopeunits input

parameters: �ow accumulation area threshold t = 1 km2; minimum SU planimetric

area a = 0.15 km2; minimum circular variance of terrain aspect within each SU c =

0.2; reduction factor r = 5; threshold value for the cleaning procedure cleansize =
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0.025 km2. As a result, we obtained a set of SUs which range in size from 0.026 km2

to 3.6 km2 with average 0.28 km2. A discussion of SU delineation and optimization

of input parameters can be found in Alvioli et al. (2016) and Schlögel et al. (2018),

and it is out of the scope of this work.

6.8 Modelling framework

Four landslide susceptibility maps (LS maps) were prepared by means of a statistical

approach. All the maps were obtained by means of a multivariate LR model.

Classi�cation performances were measured by means of a set of validation tests

explained in the following sections. We prepared the �rst two maps using 5 m x 5

m regular grid cells as mapping units. These two maps di�er because in one case

the LR model was calibrated within the WA, and within the ESA in the other case

(Figs. 6.14a, c). The third and fourth LS maps, instead, were prepared with di�erent

mapping units, namely with SUs instead of grid cells, where calibration data were

also changed considering data within WA in one case and within ESA in the other

(Figs. 6.14b, d). We end up with four maps, which we name as follows: WA-PM

(whole area, pixel map), ESA-PM (e�ective surveyed area, pixel map), WA-SUM

(whole area, slope unit map) and ESA-SUM (e�ective surveyed area, slope unit

map).

6.8.1 Statistical analysis

All the statistical analysis carried out in this research were done by means of a

R software's module designed for the speci�c purpose of landslide susceptibility

statistical assessment, called LAND-SE (Rossi & Reichenbach, 2016). In particular,

we used logistic regression (see section 5.2.1), one of the multivariate statistical

approaches available in the LAND-SE module, to build the landslide susceptibility

models in the test study area.

This tool allows to obtain the conventional β estimates, that maximize the

agreement between the model equation, i.e. landslide probability, and empirical

landslide data, in training area. But additionally, the implementation of the glm

(general linear model) function by the LAND-SE software is such that it is possible
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to investigate the estimated standard error of a t-statistic for the null hypothesis of

each of the coe�cients of the linear model. The p-value represents the probability

that the parameter is zero: for p-values much smaller than 0.05 the null hypothesis

(vanishing coe�cient) is rejected, thus the associated variable is signi�cant for the

�nal result. So, p-value can be considered as an objective indicator for the selection

of the most relevant variables to be used in the statistical model (Schlögel et al.,

2018).

6.8.2 Evaluation of model performance

The performance of statistical susceptibility models was evaluated comparing its

predictions with independent landslide data. Concerning this point, the de�nition

of training and validation input samples was crucial to detect how well �tted each

model to the input data itself, but also how valid was each model to predict unknown

data. So, these performances were used to evaluate the pairwise comparisons.

The statistical metrics used in this research for this purpose were: (i) confusion

matrices (contingency tables) and their graphical representation (four-fold or

contingency plots); (ii) Receiver Operating Characteristic (ROC) curves and their

associated Area Under Curve (AUC) value; (iii) classi�cation error plots; and (iv)

Cohen's Kappa index. Detailed explanation about each test can be found in section

5.2.4.

In this study the probability of landslide occurrence resulting from each model

estimate (trained either within the ESA or within the WA) and for each considered

mapping unit (either grid cells or slope units), was reclassi�ed in �ve landslide

susceptibility classes which were labelled as Very low (for susceptibility values in

the range 0-0.2), Low (0.2-0.45), Medium (0.45-0.55), High (0.55-0.8) and Very high

(0.8-1).

Moreover, in order to spatially identify the pairwise matching degree between

di�erent model estimates, mismatch maps were prepared (see section 5.2.4). Each

mapping unit was reclassi�ed as stable or unstable considering a threshold value

of 0.5. The di�erent maps, all prepared with the same mapping unit partition,

were overlapped. Then, the mismatch degree between grid cell and SU susceptibility

maps was quanti�ed in terms of number of mismatched mapping units and overall
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mismatched area.

6.8.3 Data selection for landslide susceptibility

The DEM available for the study area consists of 7.91·107 cells with 5 m resolution.

For landslide susceptibility assessment, both using grid cells (i.e. pixel based) and

SUs, we prepared raster layers corresponding to each available explanatory variable,

aligned to the DEM grid cells.

We established a rigorous sampling procedure to minimize possible statistical

biases during training/validation partition. The procedure is slightly di�erent for

the grid cell and SU mapping units cases.

In the �rst case, a grid cell was considered unstable if it is located within any

landslide area, and stable if it is outside the landslide boundaries. In the second

case, an SU was considered unstable depending on the percentage of landslide area

present within it. In any case, the 75% of the unstable mapping units together with

a similar amount of stable mapping units were used to train the LR model, and

the remaining 25%, also together with a similar amount of stable mapping units,

for validation. The choice of an equal number of stable and unstable mapping units

was done on purpose, and it is the standard procedure required by the LAND-

SE software for landslide susceptibility assessment, because the LR model requires

a balanced dataset, in which the number of stable and unstable cases are similar

(Felicísimo et al., 2013; Costanzo et al., 2014).

For regular grid cell-based models, we selected at random 558 landslides (75%) for

model training, and converted them into raster layers (84,623 unstable pixels). The

remaining 188 landslides (25%), used for validation, were also rasterized (29,247

unstable pixels). This is at variance with the usual random selection of unstable

pixels, in which a given percentage of grid cells are sampled within landslide. Here

we select whole landslides, and consider all the pixels encompassed by the landslide

bodies as training/validation samples. We ran the experiment with three di�erent

training/validation random sets, containing the above percentages, and selected the

one with the best classi�cation results. This exercise allowed us to con�rm that the

random selection of the landslide inventory would not a�ect the model results in a

relevant way, because in all the cases the model classi�cation performances were very
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similar. In order to choose one single data set to be the same for further comparative

analysis, the data set with the best classi�cation result was selected. Then, training

sets were selected as follow: 84,623 unstable pixels and an equal number of stable

pixels. These two sets were selected at random �rst within WA and then within ESA.

We ensured that unstable pixels were exactly the same in the two cases, because

we wanted the only di�erence to be that the stable pixels were sampled within the

WA, in the �rst case, and within the ESA, in the second case. Finally, in order to

guarantee the comparability of the prediction performances, one unique validation

sample was created as follow: the remaining 29,247 unstable pixels together with an

equal number of stable pixels selected at random among the remaining stable pixels

within the ESA.

Concerning the SU-based models, we �rst partitioned the study area in 6,907

SUs with the technique outlined in Section 6.7.4. SU boundaries do not match

those of the dependent or explanatory variables layers, allowing the presence of

di�erent classes, or values, inside each SU. Moreover, the presence of one single

landslide pixel within a slope unit was not considered enough to label this SU as

unstable. Therefore, instead of arbitrarily de�ning a given threshold value in order

to consider a SU as unstable, we decided to use the overall landslide density in

the WA. For this reason, we considered as unstable those SUs containing equal or

more than 0.15% of unstable pixels, and stable otherwise. We used as explanatory

variables the mean and the standard deviation of the morphometric variables for

each SU and the percentage of the area covered by each class of the categorical

layers. In 304 cases the SU contained 0.15% or more unstable pixels, so we selected

at random 228 of them (75%) for training, and the remaining 76 (25%) were used

for validation. Like in grid cell approaches, we created two di�erent training samples

where unstable SUs were exactly the same, and only the stable SUs vary in each

case. The �rst training sample includes 228 stable SUs selected at random along

the WA. The second training sample includes an equal number of stable SUs units

selected at random among those that at least partially overlap the ESA. It is true

that considering all the SUs that only overlap the ESA could introduce into the

model some that slightly are within, but whose most part stay outside. Though,

in our case, we observed that this happened fewer times than the opposite. Thus,
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considering that the ESA is an approximation of the real surveyed area, we decided,

as a conservative measure, to take into account every SU that overlap the ESA, even

though we acknowledge that it still can introduce some incertitude to the model.

But in any case this incertitude should always be less than considering the WA,

where SUs completely outside the ESA - thus, with big probability not observed -,

can be selected to train the susceptibility model. Additionally, 76 SUs labelled as

unstable were reserved from the total for validation. Then, the validation sample

was completed by adding a random selection of the same number of SUs labelled

as stable and which at least partially overlap the ESA. Thus, the validation sample

contained 152 SUs (76 unstable + 76 stable).

6.9 Results

6.9.1 Susceptibility maps using grid cells

We ran the LR model using the pixel-based datasets twice: once using the entire

training pixel sample and once using the e�ective training pixel sample as dependent

variables. We de�ned the obtained results as whole area pixel map (WA-PM) and

e�ective surveyed area pixel map (ESA-PM), respectively.

Both in WA-PM and ESA-PM, we �rst used the same 13 explanatory variables,

listed in table 6.10, and then we selected for each model assessment, the most relevant

explanatory variables considering the collinearity between each pair of variables and

the signi�cance (p-value) of the regression estimates (see section 6.7.2).

Figure 6.10 shows the result of the pairwise collinearity analysis among the 13

explanatory variables. In particular, the �gure shows the values of the correlation

coe�cients and their graphical representation using ellipses with eccentricity and

colour intensity proportional to the degree of mutual correlation and with ellipses

orientation and colour indicating direct (rightward-increasing blue ellipses) or

indirect correlation (leftward-increasing red ellipses). We �agged as collinear two

variables, once again, when their correlation coe�cient is greater than 0.5 with

a signi�cance level of 0.01. In such a case, as an objective criterion for variable

selection, the variable with highest p-value (showed in Tab. 6.10) between the two,

was rejected from the �nal run of the LR model.
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Table 6.10: Set of environmental variables introduced for WA-PM and ESA-PM models calculation, together with

the signi�cance p-value corresponding to each explanatory variable. The �nal predictors are labelled with an asterisk

and their corresponding β estimate coe�cient is shown.

6.10 Taula: WA-PM eta ESA-PM modeloetan erabilitako aldagaien zerrenda eta hauen p-balioa. Azken kalkuluan

erabilitako aldagaiak asterisko batez azpimarratu dira eta horien β koe�zienteak erakusten dira.

Variable WA-PM ESA-PM

p-value β coef. p-value β coef.

Continuous

slope 1.17·10−189 1.06·10−111

sinusoidal slope 1.00·10−155 7.57·10−134 * 0.418

surface area ratio 3.743·10−203 * -0.242 1.89·10−99

topographic wetness index 9.864·10−10 * 0.022 0.127

curvature 0.909 0.526

planform curvature 0.909 0.526

pro�le curvature 0.909 0.526

Categorical

lithology 0 * 0.894 0 * 1.125

permeability 1.496·10−33 * 0.227 7.632·10−72 * 0.401

regolith thickness 0 * 0.58 0 * 0.378

land cover 1 5.14·10−291 1.42·10−87

land cover 3 0 * 0.99 1.596·10−173 * 0.498

aspect 0 * 0.997 0 * 1.153

Intercept -3.958 -4.157
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Figure 6.10: Correlation matrix. The correlation coe�cient is only shown if the corresponding signi�cance level

is lower than the threshold value of 0.01.

6.10 Irudia: Korrelazio matrizea. Korrelazio koe�zientea bere esangura maila 0.01eko atalasea baino baxuagoa

denean bakarrik agertzen da.

As a result of the variable selection procedure we selected a slightly di�erent

set of explanatory variables as the most suitable predictors for each model (Tab.

6.10). aspect, lithology, permeability and regolith thickness presented no correlations

between any other variable and they were always associated with a p-value lower

or equal than 0.05, so we used all of them for building both WA-PM and ESA-PM.

The three curvature variables (curvature, planform curvature and pro�le curvature)

showed in all cases p-values over the threshold of 0.05, so they were rejected as �nal

predictors. land cover 1 and land cover 3 performed a high correlation coe�cient

between them (0.52) (Fig. 6.10), but the latter always showed a lower p-value, so

land cover 3 was selected as a �nal explanatory variable. slope, sinusoidal slope

and surface area ratio (SAR) are three highly correlated variables, but according

to their p-value we chose each time a di�erent option. In WA-PM, SAR was chosen

as suitable predictor, whereas in ESA-PM, sinusoidal slope. Finally, Topographic

wetness index (TWI ) did not present high correlations with any other explanatory

variable, but the relation with the variability of the dependent variable changed.

Thereby, in WA-PM we considered it as one of the �nal predictors (p-value < 0.05),
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while in ESA-PM, it was rejected (p-value > 0.05) (Tab. 6.10).

As a result, for each case, only the variables marked with an asterisk in table 6.10

were introduced in the �nal LR models, whose corresponding β estimates allowed

drawing the �nal landslide susceptibility maps (Figs. 6.14a and c).

Using the validation pixel sample, we evaluated the prediction skills of the pixel

susceptibility maps (Fig. 6.11). Inspection of the four fold, or contingency, plots

reveals that WA-PM predicted correctly the 63.58% (TP+TN) of the observed

unstable and stable mapping units, whereas ESA-PM was capable to correctly

predict a higher amount of mapping units (65.45%). The ROC curves also indicated

better prediction skills in ESA-PM (AUC = 0.7) than in WA-PM (AUC = 0.68)

and the same happened for the Cohen's Kappa index (k = 0.309 versus k = 0.272).

Moreover, the classi�cation error plots (Figs. 6.11c, f) provided an estimate of the

error associated with the predicted susceptibility values, which did not exceed 0.1

standard deviations in any case, highlighting the reliability of the results. And �nally,

the mutual mismatch map (Fig. 6.14e) showed that 14.8% (corresponding to an

extension of 293 km2) of the mapping units �ipped their landslide susceptibility

class in WA-PM and ESA-PM.

6.9.2 Susceptibility maps using slope units

Due to the subdivision of categorical variables by means of its classes; and the mean

and standard deviation calculations for morphometric variables, the introduction

of the original 13 explanatory variables would result in 56 new variables in which

many of them (all those classes belonging to the same categorical variable) would

be highly correlated. For this reason, the variable selection approach used in the

pixel-based case was not viable when working with SUs and a speci�c variable

selection approach for SU models would require further investigation. Thus, for this

work, the most appropriate set of explanatory variables, among those considered

as the most relevant in pixel-based model assessment, was selected by expert

criteria. Considering such set of variables as a starting point, we selected new

sets of explanatory variables to evaluate landslide susceptibility using SUs, i.e. to

calculate the whole area slope unit map (WA-SUM) and the e�ective area slope

unit map (ESA-SUM). Taking into account that the automatic procedure for the
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Figure 6.11: Pixel-based LR models prediction performance results: summary tables of the Cohen's Kappa index,

area under the ROC curve (AUC), overall accuracy ((TP+TN)/(TP+TN+FP+FN)) and overall error rate

((FP+FN)/(TP+TN+FP+FN)); (a,d) four fold or contingency plots; (b,e) ROC curves; (c,f) classi�cation error

plots and the quadratic regression �t curves (red line).

6.11 Irudia: Pixeletan oinarritutako LR modeloen aurreikuspen emaitzak: Cohenen Kappa indizea, ROC kurbaren

azpiko azalera (AUC), asmatze tasa eta errore tasa balioak; (a,d) kontingentzia diagramak; (b,e) ROC kurbak; (c,f)

klasi�kazio errore diagramak eta erregresio kuadratiko tendentzia kurba (gorriz).
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SUs de�nition already included the �ow accumulation calculation, used for TWI

estimation, and the aspect component, we rejected aspect and TWI to avoid spurious

correlations. We selected the following set of variables used to produce both pixel-

based maps such as lithology, permeability, regolith thickness and land cover 3, and we

added slope. The reason for choosing slope over sinusoidal slope or SAR is due to the

fact that these two are derivative variables of the former. Moreover, we consider slope

more suitable feature to describe the average morphology within SU than sinusoidal

slope or SAR, so we decided to select it in order to simplify interpretation of the

results.

Using the validation SU sample, we assessed the prediction skills of the SU

maps. For the WA-SUM the 65.13% of the 152 validation mapping units were

correctly classi�ed (TP+TN) (Fig. 6.12a). The ROC curve provided an AUC

value of 0.69, and the corresponding Cohen's Kappa was 0.302 (Fig. 6.12b).

Concerning the classi�cation error plot (Fig. 6.12c), it can be observed that in

the SUs with high and low landslide susceptibility probability (probability > 0.8

and < 0.2) the 2σ value stayed below 0.2, but variability in the estimates became

larger for intermediate susceptibilities. This reveals a considerable variation in the

stable/unstable classi�cation of the territory, which implies a low reliability, at least

for the intermediate probabilities (Guzzetti et al., 2006). For the ESA-SUM, the

63.82% of the 152 validation mapping units were correctly classi�ed (TP+TN)

(Fig. 6.12d) with AUC = 0.71, slightly larger with respect to the other SU model

assessment, whereas, the Cohen's Kappa index performed slightly worse, being k

= 0.276 (Fig. 6.12). The classi�cation error plot showed a considerable variation

in intermediate probabilities (Fig. 6.12f) while the uncertainty was lower for high

and low probabilities. Nevertheless, the quadratic �t curves indicated a lower overall

variability for ESA-SUM than for WA-SUM.

Visual inspection of the SU susceptibility maps (Figs. 6.14b, d) showed

similarities between WA-SUM and ESA-SUM. The di�erence is graphically

presented through the mismatch map (Fig. 6.14f), where 12.6% of the mapping units

(corresponding to an extension of 247 km2) changed their landslide susceptibility

class, from WA-SUM to ESA-SUM.
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Figure 6.12: SU-based LR models prediction performance results: summary tables of the Cohen's Kappa index,

area under the ROC curve (AUC), overall accuracy ((TP+TN)/(TP+TN+FP+FN)) and overall error rate

((FP+FN)/(TP+TN+FP+FN)); (a,d) four fold or contingency plots; (b,e) ROC curves; (c,f) classi�cation error

plots and the quadratic regression �t curves (red line).

6.12 Irudia: Malda unitatetan oinarritutako LR modeloen aurreikuspen emaitzak: Cohenen Kappa indizea, ROC

kurbaren azpiko azalera (AUC), asmatze tasa eta errore tasa balioak; (a,d) kontingentzia diagramak; (b,e) ROC

kurbak; (c,f) klasi�kazio errore diagramak eta erregresio kuadratiko tendentzia kurba (gorriz).
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6.9.2.1 Sensitivity test for landslide presence/absence threshold

The threshold limit to consider a SU as unstable can be a key issue in susceptibility

maps carried out by this irregular mapping unit partition. In our particular case, the

number of SUs containing at least one landslide pixel was 497, and the distribution

of the landslide density area among all of them can be shown in the following �gure

6.13. In order to con�rm that the de�nition of the threshold did not a�ect the

conclusions of this investigation, we carried out calculations using as a threshold the

5th percentile (P5, threshold 0.013%), the 50th percentile (P50, threshold 0.265%) and

the 90th percentile (P90, threshold 4.5%) of areal landslide distribution, along with

the average landslide density calculated within the ESA, i.e. 0.33%. The resulting

values of the area under the ROC curve between ESA and WA approaches for these

tests are summarized in the table below (Tab. 6.11).

Figure 6.13: Distribution of the landslide area density among slope units containing at least one landslide pixel,

in logarithmic scale. The following points are highlighted: Overall landslide density in the study area in green;

Landslide desnsity in ESA in red; 5th, 50th and 90th percentiles in yellow.

6.13 Irudia: Malda unitateen barneko lur labainketen azalera dentsitatea eskala logaritmikoan. Ondorengo puntuak

azpimarratuta daude: Ikerketa eremu osoko lur labainketa dentsitatea berdez; ESA barruko dentsitatea gorriz; 5.,

50. eta 90. pertzentilak horiz.

6.10 Discussion

In this work, we showed that the information contained in a �eld-based landslide

inventory for landslide susceptibility analysis should be critically examined, also in

combination with the mapping unit of choice.

A �eld work-based landslide inventory is by de�nition a source of uncertainty

in statistical analysis, owing to various reasons, including mapping errors, accuracy,
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Table 6.11: Comparison of AUCROC values between ESA-SUM and WA-SUM for di�erent landslide

presence/absence thresholds, and the percentage of SUs classi�ed as unstable for each threshold among SUs

containing at least one landslide pixel.

6.11 Taula: AUCROC balioen konparaketa ESA-SUM eta WA-SUM artean lur labainketa presentzia/ausentzia

atalase desberdinetarako eta ezegonkor bezala klasi�katutako malda unitateen portzentaia.

P05 WAdensity P50 ESAdensity P90

(0.013%) (0.15%) (0.265%) (0.33%) (4.496%)

ESA-SUM 0.659 0.71 0.679 0.619 0.556

WA-SUM 0.657 0.69 0.672 0.586 0.692

Unstable SUs 96.4% 61.2% 50.1% 46.5% 10.06%

subjectivity, and others. The focus of this work is the analysis of an additional

uncertainty due to use of �eld mapping, namely the fact that it is impossible to

ensure that the study area was surveyed in an homogeneous way. An objective

delimitation of the surveyed area by means of the ESA, proposed in this work along

with a module to objectively delineate the ESA, is one way to reduce this uncertainty.

The hypothesis tested in this work is that any statistical landslide susceptibility

model trained inside the ESA is by de�nition more correct than considering the

entire study area for training the model, if such ESA is representative of the WA.

The statement was borne out by the results of multivariate LR model calculations.

We acknowledge that the ESA is only an approximation of the real surveyed area,

though a much more realistic one than using the whole study area. Our de�nition

of the ESA depends on the maximum distance between points along the �eld, trips

paths and the selected resolution of the DEM. Preliminary tests in a reduced portion

of the territory provided the most suitable settings for a satisfactory de�nition of

the ESA in the particular case of Gipuzkoa Province (section 6.7.3).

In the case of the pixel-based susceptibility maps, the metrics of model prediction

performances were in agreement with our main statement about the relevance of

ESA. As a matter of fact, all the validation performance tests (confusion matrix

metrics, the area under the ROC curve and Cohen's Kappa index) presented an

improvement if the stable pixels used for training the LR model are selected within

the ESA (like in ESA-PM, Fig. 6.11a) than if they were taken from the WA (like in

WA-PM, Fig. 6.11b). In addition, the almost �at classi�cation error plots in both
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Figure 6.14: (a-d) Landslide susceptibility maps represented in �ve classes for WA-PM, WA-SUM, ESA-PM and

ESA-SUM; (e,f) Mismatch maps representing the spatial distribution of the mapping units di�erently classi�ed

using ESA between pixel models and slope unit models.

6.14 Irudia: (a-d) WA-PM, WA-SUM, ESA-PM eta ESA-SUM suszeptibilitate mapak; (e,f) ESA erabiltzean pixel

eta malda unitate mapen arteko klasi�kazio desberdintasunak adierazten dituzten mapak.
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cases (Figs. 6.11c, f) show high stability of model results. The spatial distribution of

the susceptibility classes were di�erent as well between ESA-PM and WA-PM (see

Figs. 6.14a, c), and such di�erences were highlighted in the mutual mismatch map

(Fig. 6.14e).

Another di�erence between the two pixel maps is the set of explanatory variables

selected as predictors. The variables selection approach presented in this section and

previously adopted in a similar way in Schlögel et al. (2018), demonstrated to be

e�ective and capable to detect presence of redundant information, as well as o�ering

an objective way to choose between collinear explanatory variables.

In the case of SU-based susceptibility maps, validation metrics do not present

us with clear-cut results as in the pixel-based maps. As a matter of facts, AUC

performs better in ESA-SUM while Confusion Matrix and Cohen's Kappa index

present higher prediction performance in WA-SUM (Fig. 6.12). The classi�cation

error plots show considerable variations in intermediate susceptibility probability

values, but the quadratic �t curves suggest a slightly lower variability in ESA-SUM

(Figs. 6.12c, f). We interpret these results as an indication of a smaller e�ect that

proper usage of the ESA can have in SU-based susceptibility maps, with respect

to pixel-based maps. Despite the small di�erence in model prediction performance

between WA-SUM and ESA-SUM, the reduction of the mismatch degree (Fig. 6.14f)

suggests that the usage of the ESA is equally recommendable for SU susceptibility

maps carried out by �eld work landslide inventories.

Moreover, since the threshold value for distinguishing stable and unstable SUs

could a�ect the LR model performances, we performed a sensitivity test evaluating

the LR models, for both the WA and ESA, using di�erent presence/absence

thresholds (Fig. 6.13 and Tab. 6.11). We observed that for all the cases, except in P90,

the model tests showed better performance for ESA-SUM than for WA-SUM, which

is proof that the conclusions obtained following any approach were indistinguishable.

We note that because of the high threshold de�ned in P90, the model was trained

with a very small sample of unstable SUs, which gives to the result a very poor

reliability. On the other hand, in the P5 case, the unbalance does not take place,

since each SU where at least one landslide pixel exists belongs to the unstable class,

resulting in minimum yet relevant number of unstable SUs. Therefore, we maintain
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that results of the test con�rm that SUs mitigate the relevance of the calibration

area (ESA versus WA) when building an SU-based susceptibility model with a �eld-

based landslide inventory, independently of the landslide presence threshold value.

However, we acknowledge that the search of an optimal threshold value that ensures

a balanced sample is a relevant point, though it is beyond the scope of this work.

The pixel- and SU-based maps obtained within the method presented in this

work are inherently di�erent from a conceptual point of view. We maintain that a

SU-based map probably represents a better option, for SUs bear a clear relation with

topography, they reduce mapping errors and are more useful for practical (planning)

purposes. Nevertheless, for the sake of completeness and to show di�erences between

the two approaches, we discussed pixel-based and SU-based maps independently. The

uncertainty introduced by a �eld work-based landslide inventory can be mitigated by

using SUs, resulting in more similar susceptibility maps and validation performances

in WA-SUM and ESA-SUM than in pixel models.

We acknowledge that the overall performances of the landslide susceptibility

maps presented in this section are of moderate to low prediction capacity, with

AUC values ranging between 0.68 to 0.71 and an overall accuracy which hardly

overcomes the 65% in the best case (Figs. 6.11 and 6.12). This could be due to (i)

the lack of more complete landslide inventory -since the �eld work was not developed

in the whole study area, besides the fact that completeness refers to the proportion

of landslides shown in the inventory compared to the real (and most of the times

unknown) number of landslides in the study area (Guzzetti et al., 2012; Malamud

et al., 2004)- or (ii) the use of not up-to-date thematic layers.

Thereby, though the preparation of a de�nitive landslide susceptibility map

for the study area was out of the scope of our investigation. We performed

pairwise comparative analyses in which we only changed, across the compared model

assessments, the region of logistic regression training, and the results illustrated by

this investigation support the following conclusions:

• When working with pixel mapping units, training the LS model within the

ESA is the correct approach to reduce the uncertainty inherent to the landslide

inventory.

• When working with slope unit terrain partition this uncertainty can be
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mitigated, even though it is still advantageous to train the LS model within

the ESA.

• Use of ESA should be considered, if su�cient information is available, in

preparing landslide susceptibility maps with any multivariate statistical model.

• Collecting information about the path followed during �eld campaigns for

landslide mapping is a meaningful procedure for estimating the ESA, at model

assessment time, using the module r.survey.py.
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III Landslide and rainfalls. Press inventory, rainfalls
characterization and precipitation thresholds for

Gipuzkoa Province (Basque Country)

Investigation of the methodological practices on the �eld of landslide

susceptibility are directed toward its application in the next logical steps, which

are the de�nition of the hazard, and subsequently the risk that slope instabilities

produce. This section presents the results of a methodological application where the

relation between landslide occurrence and the precipitated rain was considered as a

preliminary step toward landslide hazard and forecast studies.

As it was highlighted in the previous two studies presented in this thesis, there

is a large amount of environmental conditions that made the slope vulnerable to

failure. But, together with these conditioning factors, it can be assumed that it is a

single event that �nally a landslide is initiated at a given moment, which is called

the triggering factor.

Rainfall is one of the most usual landslide triggering factors which a�ects to

the terrain by building up of the water pressure into the ground and modifying

the balance of the slope (Guzzetti et al., 2007), and there are many researches that

attempted to determine the amount of precipitation needed to the mobilization of the

slopes (Wieczorek, 1987; Corominas & Moya, 1999; Dai & Lee, 2001; Li et al., 2011;

Brunetti et al., 2010; Ramos-Cañón et al., 2015; Zêzere et al., 2015; Piciullo et al.,

2016; Valenzuela et al., 2018). Nevertheless, for some speci�c cases, such as rock falls,

quantitative relation with rainfalls are di�cult to found citeplongoni2012de�nition.

Moreover, the problem is that precipitation thresholds can vary a lot depending

on the study area conditions and also depending on the type of data used for its

de�nition (Zêzere et al., 2015). Moreover, in the bibliography there are di�erent

approaches to calculate it. In Guzzetti et al. (2007) it is more in depth discussed the

variety of the possibilities that are available in order to empirically de�ne a landslide

initiation rainfall threshold.

By means of this application we searched to discuss if it is possible to detect the

principal features of rainfalls responsible of landslides, so we aimed at detecting

qualitative relations between the inventoried landslides and the rainfall events,

as well as the calculation of precipitation thresholds responsible of landslides in
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Gipuzkoa Province. Thereby, a sequential work �ow was de�ned in three levels:

(i) To carry out an inventory of those landslides that were reported in newspapers,

as well as their description, localization and characterization considering some

spatial conditioning factors.

(ii) To characterize the precipitation events occurred between 2006 and 2015 for

di�erent rain gauges within Gipuzkoa Province.

(iii) To detect qualitative relations between the inventoried instabilities and

the mentioned rainfall events together with the calculation of a landslide

responsible precipitation thresholds.

So, in order to achieve the presented objectives, we put in practice the approach

proposed by Melillo et al. (2015) and Melillo et al. (2016) for automatically

determining a landslide responsible precipitation threshold by means of an algorithm

for the objective reconstruction of rainfall events responsible for landslides, created

in the Istituto di Ricerca per la Protezione Idrogeologica of Perugia (IRPI). It is a

tool programmed in R open-source software for advanced statistical computing and

graphics, release 2.15.2 2, which groups a continuous record of rainfall measurements

considering a minimum dry period before and after each rainfall event, and then, each

landslide in the temporal record can be associated with a single rainfall event. The

algorithm was applied in Gipuzkoa Province (see section 4) considering a temporal

precipitation data set of 10 years and a landslide inventory based on press reports

whose temporal information were available for the same period of time. Additionally,

spatial information about slope, lithology and land cover was crossed with the

landslide inventory. And furthermore, the outputs of the software were also used

to obtain an overview of the relation existing between the precipitation patterns of

Gipuzkoa Province and the occurrence of landslides.

As in the previously presented studies, methodological details related to the

results that are presented below can be found in chapter 5, and according to the

mentioned work �ow, results are shown up as follow. First the set of landslide

points resulting from the press news survey is shown together with a general

2http://www.r-project.org
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description of the obtained data base and a synthetic characterisation of them

according to three typically used environmental variables, such as slope, lithology

and land cover (section 6.11.1). After that, the set of rainfall events de�ned by

the automatic algorithm for our study area is described and analysed (section

6.11.2). And then, landslide responsible precipitation thresholds resulting from the

probabilistic analysis carried out by the algorithm are presented (section 6.11.3).

Finally, all the results are discussed in section 6.12.

6.11 Results

6.11.1 Landslide inventory and its characterization

As a result of the press news survey detailed in section 5.1.1.3, an inventory of

339 di�erent landslide events was obtained for a period of 10 years (Fig. 6.15).

Notice that the frequency distribution of the inventoried landslides dates were mainly

concentrated in January, February and November, even though we can �nd a few

instability events in every month (Fig. 6.16). Among all these terrain instabilities, in

326 the cause of the event was de�ned as rainfall (77%) or unknown (19%), and all

the rest was related to other triggering factors di�erent from rainfalls, such as human

activity (2%), waves (1%) or �uvial erosion (0.5%). For the sake of homogeneity, only

the subset in which the cause was con�rmed as rainfall or it was unknown was used

as input for further analysis. We assumed that, with big probability, those news in

which the cause of the landslide was not speci�ed made reference, actually, to high

precipitation events (see Cause of landslide occurrence summary graph in Fig. 6.16).

In the most part of the surveyed reports (49%), only the day of the landslide

occurrence was detailed and in the 29% of cases the exact time was concreted.

Nevertheless, the information about the type of movement was seldom provided,

using in the very most reports the generic term of �landslide�. About the damages

produced by the inventoried landslides, it can be observed in the damage graph (Fig.

6.16) how the most part a�ected to human infrastructures such as the transportation

network (56%), buildings (33%) or parks (6%), whereas, only 4% did not cause

damage or they were unde�ned.

On the other hand, among all the data set, 44% of landslides were localized
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Figure 6.15: Spatial distribution of the landslide inventory obtained by press news survey.

6.15 Irudia: Egunkari berrien behaketaren bitartez lortutako lur labainketen inbentarioaren banaketa espaziala.

with exact accuracy, which were used to carry out the landslides characterization

(see Location accuracy graph in Fig. 6.16). To do so, three environmental variables

typically used for landslide susceptibility analysis were compared with landslides

locations, and the relative frequencies of the instabilities belonging to each class

were compared to the relative extension of the same class in the study area (Fig.

6.17). The selected environmental variables were the slope, the lithology and the

land cover. In order to calculate the frequencies, slope was reclassi�ed in 5 classes

as follow: 0◦-15◦; 15◦-30◦; 30◦-45◦; 45◦-60◦; more than 60◦. In case of lithology, the

simpli�ed reclassi�cation was used (see section 5.1.2.2). And for land cover the

simpli�ed version of land cover 3 layer was used (see section 5.1.2.2).

The slope distribution indicated that the majority of the inventoried terrain

instabilities happened in areas with 15◦ to 60◦ of inclination. The most part of

the study area presented moderate slope (15◦-30◦) where landslides were frequent,

but the biggest amount of landslides was hosted in slopes between 30◦ and 45◦ of

inclination, although this class covered less space than the former (Fig. 6.17a). It

was also highlighted the big amount of landslides occurring in slopes between 45◦

and 60◦ of inclination, even though the extension of the study area in this range was

scarce (1% of the study area). On the other hand, notice that a considerable part

of the inventoried instabilities happened in slopes with an inclination under 15◦.
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Figure 6.16: Summary graphs of the press-based landslide inventory.

6.16 Irudia: Egunkari berrietan oinarritutako lur labainketa inbentarioaren laburpen gra�koa.
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If we take under consideration the lithological distributions, landslides belonging

to limestone or surface deposits overcame the spatial distribution of these classes in

the study area, which suggested an important susceptibility to landslide occurrence.

In addition, clay and detrital rock together with marls also presented a considerable

amount of landslides, but indeed, they were the most common lithologies along the

study area, covering almost 60% of the territory (Fig. 6.17b).

Concerning the land cover distribution it was highlighted the big amount of

slope instabilities falling in urban areas, whereas the presence of this class in the

territory did not reach the 5%. Grassland also showed a greater relative frequency on

landslides than in the study area for the analysed inventory. Unlike, forest displayed

a lower relative frequency in landslides respect to the area covered by these classes,

because although around the 30% of the landslides occurred in forested areas, this

land cover class occupy almost the 60% of the territory (Fig. 6.17c).

6.11.2 Characterization of rainfalls

Concerning the precipitation data (obtained from the Meteorological Agency of the

Basque Country3), preliminary controls pointed out the lack of too many records

(more than one complete month missing) in two of the rain gauges, so �nally only

the information from 22 rain gauges out of the original 24 was used for this work

(see Fig. 5.21).

Considering this precipitation information a comparison between the general

rainfall characteristics in Gipuzkoa Province and the characteristics of the rainfalls

that triggered landslides was carried out following the method explained in section

5.3.2. First, for each of the 22 rain gauges the relative frequency of the rainfall event

classes de�ned in tables 5.5 and 5.6 was calculated (an average of 275 rainfall events

per rain gauge). Then, the average of the 22 results for each class was represented

in �gures 6.18 and 6.19.

During the analysis ran by the algorithm, 23 landslides, among the �rst 326, were

discarded because they could hardly be related with any rainfall event, and other 5

were manually discarded by the authors because of their confusing information, so

at the end, 298 landslides were related with the rainfall events.

3www.euskalmet.euskadi.eus
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Figure 6.17: Study area (Gipuzkoa Province) and landslides relative frequency distribution among (a) slope; (b)

lithology and (c) land cover classes.

6.17 Irudia: Ikerketa eremuaren (Gipuzkoako LH) eta lur labainketen frekuentzia erlatiboaren banaketa (a) Maldan;

(b) Litologian eta (c) Lur estalduran.
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Figure 6.18 shows the frequency distribution of the maximum 24 hours rainfall

typologies according to the Alpert et al. (2002) classi�cation for all the rainfall events

and for rainfall events that trigger landslides. It can be observed that the most part

of the total rainfall events (80%) belong to typologies from Light to Moderate-Heavy

which represent a maximum precipitation in 24 hours between 0 and 32 mm, being

the Light-Moderate typology (4 - 16 mm) the most usual (37%). Thus, it can be

stated that the most common rainfall typologies for Gipuzkoa Province, according to

this classi�cation, was Light-Moderate. Nevertheless, if we consider only the rainfalls

associated with landslides occurrence, then, the most frequent rainfall event typology

was Heavy (45%), which represents a maximum precipitation in 24 hours between

64 and 128 mm.

Figure 6.18: Rainfall types relative distribution according to Alpert et al. (2002) classi�cation.

6.18 Irudia: Eurite moten banaketa erlatiboa Alperten klasi�kazioaren arabera (Alpert et al., 2002)

A similar comparison is displayed in �gure 6.19, where two contingency graphics

show the most frequent rainfall typologies for the total rainfall events and for the

landslide associated rainfall events considering their duration (D) and their total

cumulated rain (E).

A clear di�erence can be observed between both �gures 6.19a and 6.19b, and

each one presented very clustered results. In �gure 6.19a the very most rainfall

events (33.4%) presented a typology with durations which can range between 0 h

and 24 h where the precipitated rain did not exceed 15 mm (combination a-A). But
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in �gure 6.19b the most frequent (22.8%) rainfall type durations ranged between 24

h and 72 h where the cumulated rain was between 60 mm and 120 mm (combination

b-D). Notice that there were also high frequencies (16.8%) in events of 72 h to 144 h

of duration with cumulated rains between 60 mm and 120 mm (combination c-D).

So, regarding this results, it can be stated that, in general, in Gipuzkoa Province

rainfall events spent less than 24 h of time and they cumulate less than 15 mm,

but in case that rainfalls become longer in time (1 to 5 days) and start to cumulate

precipitation over 60 mm, then landslides start to trigger.

Figure 6.19: Contingency graphics. Rainfall event relative distribution according to the event duration and event

cumulated rain in: a) Rainfall events; b) Landslide trigger rainfall events, in Gipuzkoa Province (2006-2015). The

meaning of the letters (a-g ; A-F) is summarized in Tab. 5.6

6.19 Irudia: Kontingentzia taularen gra�koa. Euriteen banaketa erlatiboa euritearen iraupenaren eta

akumulatutako euriaren arabera: a) Eurite guztietan; b) Lur labainkatek izandako euriteetan, Gipuzkoako LHan

(2006-2015). Hizkien esan nahia 5.6 taulan ikus daiteke.

6.11.3 Landslides responsible rainfall threshold

We calculated objectively cumulated precipitation (E) and rainfall duration (D)

based thresholds, for di�erent exceedance probability levels, adopting the software

described in Melillo et al. (2016). Each exceedance level represented the percentage

of observations that stayed below a given threshold, so it can be interpreted as the

error probability of such threshold. Below, we present the precipitation threshold

equations proposed by the software considering the data obtained in our study area.

These equations showed the minimum threshold of cumulated precipitation (E) that

was expected to produce landslides for a given period (D). In this case, T5 represents

the curve above which landslide occurrence was expected with a 95% of probability,

and T1 represents so with a 99% of probability (Fig. 6.20).
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T5 : E = (4.4± 0.7)D(0.47±0.04) (6.4)

T1 : E = (3.0± 0.5)D(0.47±0.04) (6.5)

Additionally, the uncertainty range of the thresholds (represented by the ±

values), obtained by the bootstrap technique, was also provided (Peruccacci et al.,

2012). This shows the level of variability of the resulting curves respect to the

introduced data (Figs. 6.20b and 6.20c).

Figure 6.20: Landslide responsible precipitation thresholds for Gipuzkoa Province: a) All rainfall events in

logarithmic scale; b) Only rainfall events that trigger landslides in logarithmic scale (the di�erence between light

and dark blue dots is result of the overlapping); c) T1 and T5 thresholds in decimal scale.

6.20 Irudia: Lur labainketak sortzeko eurite atalaseak Gipuzkoako LHrako: a) Eurite guztiak eskala logaritmikoan;

b) Lur labainketak izan diren euriteak bakarrik eskala logaritmikoan; c) T1 eta T5 atalaseak eskala dezimalean.

6.12 Discussion

The case study presented in this section shows the application of an approach

that permitted the management of landslide occurrence data and precipitation

data in order to obtain an overview of the behaviour of the slope instabilities

in a given territory respect to their triggering because of rainfalls. By using the
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approach proposed in Melillo et al. (2015), all the analytical part of the procedure

was done automatically. In addition, landslides characterization and rainfall events

characterizations tests were carried out, and during these analyses some important

aspects were highlighted, which are detailed as follow.

First, it was highlighted the big number of landslides falling in urban land cover

class (Fig. 6.17c). Considering that this class represents the spatial distribution of

the most part of the human goods likely to be a�ected, it is logical to �nd that all the

analysed landslide events except the 4% caused damages (Fig. 6.16). Furthermore,

these results suggested that being a landslide inventory based on press reports,

the landslide inventory was probably biased, because landslides that appear on the

newspapers are mainly those that have caused some kind of negative e�ect to the

humans, or their goods. So, the information provided by the landslide inventory

cannot be considered as a representation of the general behaviour of landslides, but

only of landslides which directly a�ects to humans or their activity.

Nevertheless, slope and lithology (Figs. 6.17a and 6.17b) are less related to the

human activity than land cover. So, comparison of their relative distribution allowed

to highlight if the presence of landslides in one or another class was given to the

general presence of such class along the study area, or instead, the landslides are

more likely to occur in one speci�c class than in others, concluding which are the

most recurrent classes for the landslides with impact on humans. Thus, considering

the limitation of the landslide inventory, the analysed data suggested that slopes

with inclination between 15◦ and 60◦ with limestone or surface deposits are the

most likely to be a�ected by rainfall induced landslides. Apart from that, clay and

detrital rocks together with marls also presented considerable number of landslides,

but it could be due to the large territory that they occupy in the study area. Indeed,

this behaviour agrees with the results of Remondo et al. (2003) and Bonachea (2006),

whose more detailed analysis in a smaller portion of our study area also reveals the

importance of such materials respect to the landslide occurrence.

Referring to the rainfall data, the survey of the characterization tests (Figs.

6.18 and 6.19) showed that, for the studied 10 years, the most common rainfall

event typology in Gipuzkoa Province and the typology responsible of landslide

triggering were considerably di�erent. This suggests that landslide occurrence is
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closely related to a concrete type of rainfall. Furthermore, the classi�cation of the

rainfall events allowed the identi�cation of precipitation types that were more likely

to cause landslides in Gipuzkoa Province. According to the Alpert et al. (2002)

classi�cation, landslides in our study area were triggered mainly by rainfall events

that contain a maximum cumulated precipitation in 24 hours of at least 64 mm and

less that 128 mm (Fig. 6.18). Likewise, the alternative classi�cation which considers

the duration of the whole rainfall event and its cumulated precipitation presents

similar results. According to this classi�cation, the events of 1 to 4 days that can

cumulate between 60 mm and 120 mm were the most likely of causing slope failures

(Fig. 6.19).

The information provided by these classi�cations allows the responsible entities

to obtain a general idea of the relation between rainfalls and landslide occurrence,

although this generalization would be better supported by a longer data set to

consider this rainfall pattern as a reliable trend. Moreover, although the extension of

the studied area is relatively small, in section 4.3 is pointed out that the precipitation

distribution presents slight spatial heterogeneities. So another improvement of this

approach may include the division of the study area in more homogeneous portions

in terms of precipitation, and perform the analysis separately.

Apart from the above mentioned general relationships, basing in 298 landslide

observations and their special and temporal information, the automatic software

proposed a set of landslides responsible precipitation thresholds for Gipuzkoa

Province. Equations 6.4 and 6.5 indicated the threshold above which the 95% or 99%

of the inventoried landslides were placed and the range of uncertainty associated with

the input data (all the thresholds proposed by the algorithm for di�erent exceedance

levels are shown in Appendix E). So, it was considered reasonable to expect that,

in the future and in this study area, the same kind of landslides will be mostly

triggered if the threshold is overcome. Thereby, this information could be considered

as an approximation toward a future data supported early warning system design,

as suggested in Fell et al. (2008).

On the other hand, the analysis followed in this work should be interpreted

considering some important topics. To begin with, rainfall events were de�ned

automatically according to user set up values, such as the minimum interval without
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precipitation (48 and 96 hours in this case). The rationale behind this option is the

di�erent rhythm of soils returning to under saturated state along the year (Melillo

et al., 2015, 2016), and though in this work these intervals were de�ned by expert

criteria, we acknowledge that considering soil moisture data like in Valenzuela et al.

(2018), uncertainties related to the antecedent soil conditions could be reduced,

which can be important above all for medium and long duration rainfall events

triggering landslides, as suggested by Zêzere et al. (2015). Furthermore, the empirical

method applied by the software, presented several drawbacks. As it is more in depth

discussed in Peruccacci et al. (2012), it has to be pointed out that the resulting

threshold is highly dependent, not only from the quality and extension of the data,

but also from its distribution, allowing the underestimation of large rainfall events

with landslides. Thus, it has to be taken into account, that all the results are based

on a given data set, and so we cannot do statistical inferences about the population

outside the data set unless we know the relation between the data set (landslide

inventoried) and the total population (the totality of occurred landslides). As we

never know the totality of the occurred landslides, hence, we do not know how

representative is our data set, and so, it is not possible in statistical terms to do

a prediction. This threshold have to be considered as a suggestion of occurrence

of landslides based on a given data set. And, for the same reason, if it would be

used in a landslide warning system, the thresholds may result in false positives,

as it is illustrated in the considerable amount of rainfall events plotted above the

thresholds in �gure 6.20a. Nevertheless, by means of the bootstrap approach, the

statistical uncertainty associated with the data set was quanti�ed.

To conclude, this study put in practice a very powerful tool which contributes to

the de�nition of the rainfall needed (in quantity and quality) to trigger landslides,

an information that, together with an appropriate susceptibility map, could be used

to develop landslides occurrence forecasts. At the same time, some basic spatial

data were added to the procedure in order to complement this outcome with the

information about some physiographic features, such as land cover, lithology and

slope, where landslides are most likely to occur. Additionally, the data about rainfall

events produced by the software was pro�ted to identify the most common rainfall

typologies in Gipuzkoa Province for the studied period and based in two di�erent
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classi�cations, as well as the particular type of rainfalls responsible of landslides.
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The current thesis presents a depth re�ection about divers methodological

approaches applied for landslide analysis at di�erent levels in a regional scale. The

principal objective was the de�nition of an updated methodological approach in

which each decision in each step of the process would be scienti�cally supported.

The research project was based on three sequential approaches applied in a test

study area, where di�erent options about some steps, that are considered of relevant

importance, were experimented: i) the landslide inventory assessment and the

explanatory variables processing strategies issue addressed in the tests carried out in

the Oria river catchment; ii) the proper usage of the �eld-based landslide inventory

as well as the mapping unit partition issue tackled in the applications carried out in

Gipuzkoa Province; and iii) the de�nition of a preliminary precipitation threshold

responsible of landslide triggering as a sample of the direction that landslide analysis

in a regional scale should go, in order to advance from susceptibility assessment

toward hazard knowing.

This chapter brings together the knowledge obtained by these three approaches

showed in previous sections and discuss the most important �ndings in order to o�er

impartial answers to the objectives of this work, considering them as questions to

be solved.

Nonetheless, though the usage of statistical and data mining methodologies are

widely recognized as the most suitable approaches for landslide susceptibility and

hazard assessments, mainly because of their capacity of ensuring the objectivity and

reproducibility of the models, the huge amount of existing mathematical variants

leaves the discussion about the de�nitive mathematical model yet far to be solved.

For this reason, in this thesis other more basic questions were addressed, and even

though only the Logistic Regression model was tested, the main conclusions obtained

through this work should be considered equally applicable for any other statistical

or data mining method, since the management of the introduced data is similar in

the most part of them.

To begin with, landslide data issue was tackled. It is the very basic

information source, necessary for every landslide susceptibility and hazard modelling

independently of the mathematical approach used (Corominas & Mavrouli, 2011).

That is why the �rst objective of the thesis was to test di�erent landslide
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inventories for landslide analysis in a regional scale in order to detect the

most suitable features necessary to run susceptibility models. We start from

the idea that the knowledge of every landslides occurred along the history of a given

landscape is fairly impossible, so the completeness and representativeness of each

landslide inventory is usually assumed, which gives an unknown uncertainty from

the very beginning (Guzzetti et al., 2012). Once this is assumed, the �rst condition

that a landslide inventory must ful�l is the spatial accuracy, because logically if

the spatial information extracted from a given landslide location is incorrect, the

complete model will show erroneous results. In this regards, the assessment tests

carried out in the Oria river catchment with the available landslide data coming

from the bibliographical sources showed that, for the particular case of Gipuzkoa,

such source of information was not suitable. On the other hand, spatial accuracy

can be ensured by carrying out a �eld-work based inventory, as it was done in both

tests showed in sections 6-I and 6-II, but in such case some other important aspects

have to be considered. First, if the data acquisition was done by single points, like

in section 6-I, the uncertainty related to the landslide size have to be o�set by

the application of a bu�er to the inventoried points, whereas if the areas of the

complete landslide were collected, then this uncertainty could be eliminated, like in

section 6-II. Second, the fact of being a landslide information obtained by direct

�eld survey a�ects to the approach that should be followed during the statistical

analysis, where the usage of an E�ective Surveyed Area (ESA) for calibrating the

model was proved to be a suitable option in order to reduce uncertainties about the

location of landslide-free places. Nonetheless, there are still other uncertainties to

be solved in further studies. It is acknowledged that the discrimination between the

source area and the run-of area for each inventoried landslide would provide even

more accurate information, but these information was not collected during the �eld

work.

Apart from the spatial accuracy, the temporal information can also play a key roll

(Soeters & Van Westen, 1996; Zêzere, 2002). Above all in landslide analysis related

to the hazard modelling, this is an essential data that usually presents di�culties to

obtain (Bonachea et al., 2017). Field-work based landslide inventory can not o�er

such information, thus, in section 6-III press reports were used to collect landslide
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occurrence dates information, which in some cases was very accurate. It has to be

acknowledge the potential of press reports as data sources, but apart from being very

time consuming, frequently additional information such as the type of landslide or

its magnitude is lacking and the spatial accuracy is not always ensured.

As a consequence, as shown in the applications carried out during the thesis,

the collection of a landslide inventory with exact spatial and temporal accuracy

is a very di�cult task, even more if they are landslides occurred in the past. So

the balance between location accuracy and occurrence dates information should be

assessed depending on the purposes of each research. For susceptibility modelling

spatial accuracy should be prioritized, even though the temporal information could

allow spatio-temporal intra-domain approaches to validate the models, instead of the

spatial-intra-domain approach followed in this thesis. In hazard related studies, such

as the de�nition of the precipitation threshold responsible for landslides, temporal

data becomes more import than the landslide occurrence location.

One possible solution to ful�l both requirements could be the development

of a multi temporal landslide inventory by means of aerial photo interpretation

of �ights performed in di�erent years (Guzzetti et al., 2012; Santangelo et al.,

2015). This would o�er relative temporal information to the very accurate landslide

locations allowing spatio-temporal intra-domain validations, apart from the fact

that uncertainty about landslide-free places could be solved avoiding the usage

of the ESA. As a drawback, this method is even more time consuming than the

press reports survey considering the extension of our study area, and the temporal

accuracy does not reach enough resolution for precipitation thresholds calculations

(Remondo, 2001). Such level of detail could only be reached with a systematic

collection of data about landslide occurrences in real time, where government

administration, civil protection and even the citizens themselves should take part

(Trigila et al., 2010; i Planells, 2007).

Automatic and semi-automatic techniques for landslide detections by means of

high and very-high resolution satellite imagery worth taking under consideration,

besides their applicability has still not been enough tested (Alvioli et al., 2018). In

addition, such imagery are relatively recent and in some cases involves the need of

high budget, which di�cult their usage for long terms multi-temporal inventories in
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a regional scale, being more suitable for event related inventories in a local scale.

The second objective of this thesis was related to the other essential ingredient

necessary to build landslide statistical models, that is the management of the

information about the spatial conditions that brings on the destabilisations of a

slope. Thus, this thesis aimed to experiment with the available spatial digital

layers, for their usage as independent explanatory variables in landslide

susceptibility analysis, as well as to test di�erent ways for selecting, in an

objective way, only the most convenient to build the model. Thereby, 20

original environmental variables were tested in di�erent applications, 11 of them were

continuous layers of raster type and 9 categorical layers displayed in vector form.

So, the �rst doubt that arises in this regards is usually if all these variables can be

used together in statistical models independently of their continuous or categorical

condition (Amorim, 2012; Felicísimo et al., 2013; Pourghasemi & Rahmati, 2018).

This depends on the mathematical model used for the project. In particular, the

Logistic Regression applied in this work is able to admit both types of explanatory

variables, however, the tests carried out in section 6-I showed that the transformation

of categorical variables into continuous giving a relative value based on the presence

of landslides to each of its class, allowed mitigating the e�ect of the smaller categories

o�ering a more robust susceptibility model without loosing the model performance.

Thus, this strategy could be considered as a standard approach which permits the

adaptation of the explanatory variables to any type of mathematical modelling.

Moreover, two options were tested to give a relative value based on the presence of

landslides to each class, landslide density value in section 6-I and frequency ratio in

6-II, both of them with satisfactory results.

Nevertheless, in the case of susceptibility models, the introduction of all the

variables together was not considered a correct approach, because if no exploration is

done about the individual relation of each variable respect to the presence or absence

of landslides or even the pairwise relationship of the variables is not tested, irrelevant

explanatory variables could be introduced to the models or on the other hand,

redundant information could be taken under consideration. In both cases the results

would be aggravated. As an objective way to solve this issue, two statistically driven

variables selection approaches were applied depending on the statistical software
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used for the modelling process (see sections 6-I and 6-I). Such procedures permitted,

in both cases, the objective selection of a reduced set of explanatory variables

among a wider initial list of available spatial information, which suggests this

practice as highly recommendable for landslide susceptibility modelling. However,

results of the applications carried out in the Oria river catchment highlighted

that statistical techniques, by their own, are not entirely capable of detecting

inappropriate variables, becoming imperative the surveillance of a geomorphologist

that conceptually justify the usage of such variables.

As a matter of fact, it was pointed out that even though the variables overcome

the statistical tests, the application of certain approaches condition the availability

of some explanatory variables. Such is the case of distance to the transport network,

whose usage in a susceptibility model carried out by �eld-work based landslide

inventories resulted in highly biased susceptibility maps. Likewise, aspect and

topographic wetness index (TWI ) were considered unsuitable explanatory variables

if the model was built using an slope unit mapping partition. Anyway, this does

not mean that these variables has nothing to do with the presence or absence of

landslides, but only that they can not be used if these speci�c approaches are applied.

Moving on to the third objective, it concerns, above all, the cartographic aspect

of the models mapping, though it also involves important considerations to take

into account from the conceptual point of view. In this regards, it was stated as

objective the observation and recognition of the advantages and drawbacks

of di�erent mapping units in landslide susceptibility mapping. Thus, in

section 6-II two of the most used terrain partitions were compared, regular grid cells

(also called pixels) and slope units.

In the case of regular grid cells, the main advantage of its usage is related to

the operational facilities that this partition o�ers for spatial digital information

processing. As raster �les are already organized following the same regular structure

and vectorial layer can easily be transformed into raster, the exact coincidence

between pixels in di�erent layers can be ensured if the same resolution and alignment

is provided to each spatial variable. This allows the easy application of statistically

driven variables analysis before de�ning the �nal set of variables to be introduced in

the model. Moreover, if the performance tests are observed, validation results showed
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�better� values in pixel based models than in slope unit based modes (such as higher

AUC and k values), however, it doesn't necessarily mean that regular grid partition

models perform better than slope unit models, since this apparent improvement

could only be due to the di�erences in the amount of data processed by the model.

Notice that in section 6-II pixel models were calibrated with 169,246 data whereas

slope units only with 456. Indeed, this could be considered as a drawback, since the

regular grid partition of the terrain is actually an arbitrary subdivision of the relieve

that has nothing to do with its topographical nor morphological features, and this

could result in the overestimation of the model performance comparing to the real

behaviour of the slopes (Carrara et al., 1995; Alvioli et al., 2016; Reichenbach et al.,

2018).

In addition, using pixel partition it has to paid attention to the

calibration/validation sampling, because as a single landslide area will be partitioned

in several pixels, the random selection of landslide-presence data could result in that

some pixels that belonging to the same landslide are used for calibration and others

for validation, which is not acceptable from the conceptual point of view (Brenning,

2005). For this reason, the calibration/validation partition was carried out previously

to the raster transformation of the landslide inventory in section 6-II. Furthermore,

in the speci�c case of models run by �eld-based landslide inventories, regular grid

cells showed higher sensibility to the incertitude introduced by the non veri�cation

of landslide-free data, becoming necessary the usage of an e�ective surveyed area

delimitation.

Such drawbacks can be solved by using slope units. As this irregular terrain

partition bear a clear relation with topography, it can be considered more suitable

for modelling the future behaviour of slopes from a conceptual point of view.

Incertitudes introduced by the usage of a �eld-based landslide inventory can be

mitigated and the sampling of complete landslides boundaries in calibration or in

validation sets is ensured. Nevertheless, there are still some issues that demands

further investigations in order to use the slope unit partition with all the guaranties

in landslide susceptibility models. The de�nition of an appropriate threshold of

landslide density to classify slope units as landslide-presence or landslide-free worth

being explored, in favour of standardisation of this approach and in order to
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ease comparisons between di�erent results. Also, objective selection of explanatory

variables for landslide susceptibility models carried out by slope units is still an

unsolved question, that for the moment demands the usage of pixel partition for a

preliminary analysis.

The fourth objective of this thesis refers to an speci�c test carried out during

the project. Namely, to prove that during the calibration, the restriction

of the area in which no-landslide data are sampled to the ESA, in place

to the WA, enhances the quality of the model, in the cases where the

landslide inventory was carried out by direct �eld work. As it is more in

depth discussed in section 6.10, it was proved that the usage of an E�ective Surveyed

Area enhances the performances of the model, if a �eld-based landslide inventory

is used for its calibration. Thereby, implications that this new approach involves at

di�erent levels of the landslide susceptibility modelling has already been discussed

in the previous paragraphs.

The �fth objective set on this work is related to the application of an automatized

methodology that de�nes the minimum precipitation needed to generate landslides.

As rainfalls are the principal triggering factor of slope instabilities in our study area,

it was attempted to detect relations between the inventoried instabilities

and the rainfall events for the calculation of landslides responsible

precipitation thresholds in Gipuzkoa Province. This preliminary experience

allowed to assess the potentiality of such methodology and to train the necessary

practices for carrying it out correctly in the future, in order to develop hazard

analysis or even, combined with susceptibility maps, the design of an integrated

early warning system.

The approach followed in section 6-III showed promising results, above all

because it was veri�ed the accessibility of the necessary precipitation data and

the suitability of the press-based landslide inventories, though the quality of

the later could be considerably improved with the systematic data collection

network that reports the landslide events. By means of such data, the used

algorithm proved to be able, in a mathematically consistent and reproducible way,

of de�ning relations between precipitation and landslide occurrence, which could

imply several applications apart from calculating precipitation thresholds, such
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as landslide occurrence frequency analysis, rainfall typology characterisations or

landslide occurrence temporal predictions based on meteorological forecasts (Zêzere

et al., 2015; Bogaard & Greco, 2018).

Nevertheless, it has to be pointed out that the results displayed in section 6-III are

only experimental results, so they can not be considered yet entirely applicable. On

the one hand, because the precipitation and landslide occurrence data set only covers

a period of 10 years, thus the real climatic behaviour of the precipitations was not

properly represented, allowing the unbalanced in�uence of climatically anomalous

years. On the other hand, the real performance of the thresholds was not validated,

for which data of the landslide occurrences and precipitations of successive years

would be needed in order to compare the cumulated precipitation and the duration

of each new rainfall event that triggered a landslide with the de�ned threshold in

a given exceedance probability level. Furthermore,the division of the study area

in homogeneous precipitation portions could allow more accurate thresholds; the

consideration of the antecedent rainfalls or the soil moisture state would improve the

knowledge of the slopes response against rainfalls; or the more appropriate selection

of the rain gauge (not necessarily the closest one) would also enhance the approach.

Indeed, during the development of the current thesis, a newly version of the

algorithm tested in section 6-III has been published (Melillo et al., 2018), where

several improvements such as the consideration of the soil water saturation or the

automatic selection of the representative rain gauge has been included. Hence, it is

worth doing e�orts collecting proper data in order to pro�t the potentials of such

promising tool.

Besides the main objectives discussed until now, this work also followed a

secondary goal related to the implementation of new and updated technologies. For

the analysis carried out, two principal types of software were used: statistical analysis

software (such as SPSS or R project) and geographical information systems (such

as ArcGIS, QGIS or GRASS). These can be classi�ed as commercial software (like

SPSS and ArcGIS) or free software (like R project, QGIS and GRASS). According

to the experience acquired during the current thesis, it was concluded that actually

the most part of approaches followed could be carried out with any software, be

commercial or free. It is only a matter of time dedication until understanding the
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speci�c functionalities of each one. However, the main drawback of commercial

programs, apart from the necessary budget for their utilization, is their hardly

customizable condition, which di�cult the development of new approaches or work

�ows if they were not previously available among the options of each software. In

addition to that, if the work �ow is organised in di�erent phases, in most of the

cases it is not possible to automatize the complete process, obligating the user to

carry out the analysis step by step, which increases the risk of error as well as the

processing time.

So, in favour of objective and reproducible methodologies it is worth the usage

of command lines like free software, such as R project or GRASS, which allows the

development of completely customizable codes like LAND-SE, r.survey or r.slopunit,

to advance toward the de�nition of standards in landslide analysis.

To �nish, as was already stated, the focus of this work was directed to the

methodological approaches more than to the production of de�nitive landslide

susceptibility maps or precipitation thresholds, which implies that there is still

considerable work to do, above all in what concerns the data collection. Results

suggest that the approaches tested in the current thesis could give really useful

and applicable results if more accurate and extended landslide inventories were

available for the analysed study area. In this regards, in the next chapter some

recommendations are suggested in order to obtain more performing results.
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Basing on the results showed up and discussed during the current thesis some

recommendations are suggested in order to ensure good practices in some crucial

steps when carrying out landslide susceptibility models and precipitation thresholds.

In particular the following list of recommendation is adapted to the speci�c case of

Gipuzkoa Province, although they are equally recommended to any other study area:

• The very �rst condition to obtain reliable landslide susceptibility models as

well as precipitation thresholds is the availability of landslide events data with

enough spatial ant temporal accuracy. After assessing the available data bases

that cover the entire territory of Gipuzkoa, it has been concluded that at

the moment, only �eld work based landslide inventory o�ers enough spatial

accuracy, and press-based data do so o�ering temporal accuracy. Although

these data sources allowed the relatively rapid collection of information,

in a regional scale there is high probability of underestimating the real

magnitude of the events. Thus, for the sake of the development of as much

as accurate possible landslide inventory, it is recommended the preparation

of a multi-temporal inventory of the past landslides by means of

aerial photo interpretation and �eld survey, while a systematic data

collection network is organized to register the information about

new landslides. Even if this work could spent several years or even decades,

it is of major priority if good performing results are aimed, independently of

the mathematical approach used to construct the model.

• It is equally important to update and upgrade the spatial digital layers

freely available, in order to always have access to as widest as possible

set of explanatory variables. In this regards, the transformation of the

categorical variables into continuous is recommended by giving a relative

value based on the presence of landslides to each class, like for example

landslide density value or frequency ratio.

• Concerning the previous two points, the roll of the administrative councils is

of major importance. Above all, the systematic collection of new landslide

events data by means of standardised protocols should take part of the

activities developed after the knowledge of events like landslides. This way
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such information can be available to the scienti�c community in order to carry

out reliable susceptibility, hazard and risk models.

• The selection of the explanatory variables should be carried out in as much

as objective way possible, for which two statistically driven approaches are

proposed in this work. However, this statistically driven decision rules

should always be supervised by a geomorphologist in order to avoid

eventual con�icts between any explanatory variable and the followed

approach to construct the model.

• Although this explanatory variables selection can only be applied using grid

cell terrain unit partition, it is recommended to carry out susceptibility

maps by means of slope unit terrain partition. If possible, it is worth

using landslide inventory from multi temporal aerial photo interpretation

in order to allow spatio temporal intra domain validation and to avoid

uncertainties related to landslide-free location assumption. If �eld-based

landslide inventory is used, the application of the E�ective Surveyed Area

during the calibration of the model is proposed.

• As data about the moment of landslide occurrence increase, it is worth

calculating new precipitation thresholds using the algorithm used

in this work and carry out temporal validations partitioning the data set in

two subsequent period of time.

To �nish, as an approximation to the recommendations proposed in this chapter,

the current thesis leaves to the public administrations the following relevant

outcomes: i) a new landslide data base collected by means of the �eld work; ii)

a landslide susceptibility map carried out for the Oria river catchment as a test

study area; iii) two landslide susceptibility maps performed for the complete area

of Gipuzkoa Province (one using grid cells and the other using slope units as

cartographic mapping units), which imply a di�erence in terms of the used data

as well as the methods followed comparing to the previously existing map; and iv)

the �rst data driven landslide responsible precipitation thresholds for the Gipuzkoa

Province.
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APPENDIX A: Supplementary material about

landslide inventories

All the landslide inventory data produced in the current thesis are available in

the supplementary material folder, in the CD attached to the current thesis. The

following �les can be found there:

• Field_work_landslide_inventory_Gipuzkoa_2018.shp:

Contains all the georeferenced polygons concerning each landslide localized by

�eld work, as well as the corresponding attributes table.

• Field_work_sheets.pdf :

Contains every single �eld sheet corresponding to each localized landslide by

�eld work.

• Landslide_occurrence_time_data.xlsx:

Contains a data table in which the landslide information obtained by press-

report has been compiled.

Any utilisation of these data must be followed by the following reference:

Bornaetxea, T.: Methodological approach for landslide analysis in a regional scale.

Data collection, susceptibility models and precipitation thresholds. Application in

Gipuzkoa province (Basque Country), PhD. thesis, Euskal Herriko Unibertsitatea

(EHU/UPV), 2018.
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APPENDIX B: Software codes

The following web sites o�er the direct access to the original and open source codes

used during di�erent phases of the studies developed in the current thesis.

LAND-SE

https://www.geosci-model-dev.net/9/3533/2016/gmd-9-3533-2016.html

The additional module LAND-SVA can be found in:

https://github.com/maurorossi/LAND-SVA/

r.slopeunits

https://www.geosci-model-dev.net/9/3975/2016/gmd-9-3975-2016.html

r.survey

https://www.nat-hazards-earth-syst-sci.net/18/2455/2018/

Algorithm for precipitation thresholds

http://geomorphology.irpi.cnr.it/tools/rainfall-events-and-landslides-thresholds/ctrl-

t-algorithm
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APPENDIX C: Urban area class reclassi�cation

Table A1: Land cover 1 classes reclassi�ed as Urban area in section 6-I

A1 Taula: Hiritar bezala birklasi�katuak izen diren lur estaldura 1eko klase originalak 6-I atalean.

Industrial Other arti�cial surfaces Energy infrastructures

Urban equipments Urban continuous Urban discontinuous

Waste infrastructures Water furnishing infrastructures Telecommunications

Terciary sectory land use
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APPENDIX D: Frequency Ratio values

Table A2: Frequency Ratio values for each class of categorical variables used in section 6-II

A2 Taula: 6-II atalean erabiltzen diren FR balioen taula aldagai kategorikoetarako.

Variable FR Variable FR

Lithology Permeability

No rock 0.013 Water 0.018

Surface deposits 0.247 Low 1.223

Clay and Detrital rock 1.785 Medium 0.621

Marls 0.764 High 0.777

Limestones 0.468 Impermeable 0.963

Magmatic rocks 0.678

Slate 0.876

Land cover 1 Regolith thickness

Water 0.007 Water 0.233

Antropic 0.957 0 - 0.5 meters 0.463

Beach and turberas 0 0.5 - 1 meters 0.616

Forest 0.756 1 - 2 meters 1.514

Crops 1.725 2 - 4 meters 0.902

grassland 1.833 More than 4 meters 2.901

Scrub and hedges 0.798

Rock 0.809

Land cover 3 Aspect

No vegetation 0.616 Flat 0.123

Grassland 1.719 North 1.152

Agricultural cultivation 3.122 North - East 1.041

Forest 0.804 East 0.84

Scrubs 0.278 South - East 0.536

Urban 0.585 South 0.918

Urban Park 0.086 South - West 1.026

West 1.015

North - West 1.338
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APPENDIX E: Landslides responsible precipitation

thresholds

The following graphs show the precipitation threshold calculated for Gipuzkoa

Province and for di�erent α exceedance levels following the procedure explained

in section 6-III.
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Glossary

Glossary Basque - English.

Euskera - Ingelera glosarioa.

Euskera Ingelera Euskera Ingelera

Ahultasuna Vulnerability Iraulketa Topple

Alboko hedadura Lateral spreading Jausia Fall

Arrisku Risk Kokalekua Location

Arroka Rock Konplexu Complex

Atalase Threshold Labainketa Slide

Azaleko Shallow Lohi Mud

Detritu Debris Lur Earth

Erorketa Fall Lur labainketa Landslide / Slope failure

Errotazional Rotational Lurzorua Soil

Espesaketa Exposure Lurzoruaren erabilera Land use

Eurite Rainfall Lurzoruaren estaldura Land cover

Ezaugarri geologikoak Geological features Mada unitate Slope unit

Ezaugarri hidrogra�koak Hydrographic features Malda Slope

Ezaugarri hidrologikoak Hydrologic features Masa mugimendu Mass movement

Ezaugarri klimatikoak Climatic features Mehatxua Hazard

Fluxu Flow Modelo Model

Gertaera faktorea Triggering factor Sakona Deep

Gipuzkoako Foru Aldundia Provincial Council of Gipuzkoa Sarrera Introduction

Gipuzkoako Lurralde Historikoa Gipuzkoa Province Suszeptibilitate Susceptibility

Ikerketa eremua Study area Translazional Translational

Ikuskatutako eremu efektiboa E�ective surveyed area
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Glossary English - Basque.

Ingelera - Euskera glosarioa.

English Basque English Basque

Climatic features Ezaugarri klimatikoak Mass movement Masa mugimendu

Complex Konplexu Model Modelo

Debris Detritu Mud Lohi

Deep Sakona Provincial Council of Gipuzkoa Gipuzkoako Foru Aldundia

Earth Lur Rainfall Eurite

E�ective surveyed area Ikuskatutako eremu efektiboa Risk Arrisku

Exposure Espesaketa Rock Arroka

Fall Erorketa/Jausia Rotational Errotazional

Flow Fluxu Shallow Azaleko

Geological features Ezaugarri geologikoak Slide Labainketa

Gipuzkoa Province Gipuzkoako Lurralde Historikoa Slope Malda

Hazard Mehatxua Slope unit Mada unitate

Hydrographic features Ezaugarri hidrogra�koak Soil Lurzorua

Hydrologic features Ezaugarri hidrologikoak Study area Ikerketa eremua

Introduction Sarrera Susceptibility Suszeptibilitate

Land cover Lurzoruaren estaldura Threshold Atalase

Landslide / Slope failure Lur labainketa Topple Iraulketa

Land use Lurzoruaren erabilera Translational Translazional

Lateral spreading Alboko hedadura Triggering factor Gertaera faktorea

Location Kokalekua Vulnerability Ahultasuna
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