PhD Dissertation

Field Weakening and Sensorless Control
Solutions for Synchronous Machines
Applied to Electric Vehicles

Author:
Elena Trancho Olabarri

February 26, 2018

eman ta zabal zazu

>

Universidad Euskal Herriko
del Pais Vasco Unibertsitatea

Thesis directors:
Edorta Ibarra Basabe
Antoni Arias Pujol

(c)2018 ELENA TRANCHO OLABARRI






tecnalia ) s uuyeRsIar poLiTECNCA

BARCELONATECH






Agradecimientos

Durante este tiempo sois muchas las personas que habéis participado en este
trabajo y os quiero expresar mi gratitud por el apoyo y la confianza que me
habéis prestado.

En primer lugar me gustaria dar las gracias a mis directores de tesis Edorta
Ibarra Basabe y Antoni Arias Pujol. Edorta, gracias por haberme animado
desde el minuto cero a embarcarme en esta aventura. Gracias por ensenarme
a investigar de verdad, por protegerme y por dejarme compartir contigo mis
altibajos emocionales. Gracias, Toni, por tus consejos, tu disponibilidad, tu
paciencia y tus master classes virtuales a través de Skype. Pocas veces se
crean buenos grupos de trabajo, y el formado por Los Tres Tenores es un buen
ejemplo. Me gustaria dar las gracias también a Inigo Kortabarria, por toda su
ayuda desde el comienzo hasta hoy.

Todo esto nunca hubiera sido posible sin el respaldo de mis companeros de
Tecnalia. Gracias a todos, a los que seguis y a los que ya no estéis. Gracias
por vuestra disponibilidad, vuestra ayuda incondicional y gracias por todas las
horas de méas dedicadas a la puesta a punto del banco de pruebas.

Quisiera agradecer la calida acogida por parte de mis companieros del grupo
de investigacién en electrénica aplicada APERT. Muchas gracias por contar
conmigo y por hacerme sentir una mas.

Finalmente, quiero dar las gracias a mi familia. A Pablo, por sacrificar
muchas tardes y sdbados de verano acompanandome a Tecnalia para rehacer
pruebas, y por aguantar con una sonrisa mis dias malos. Y a ama, aita y
Eduardo por animarme, entenderme y por hacer més faciles los dias dificiles.

A todos, muchisimas gracias de todo corazoén.

En Bilbao, Febrero de 2018.






Contents

List of Figures

List of Tables

Abstract

Resumen

Laburpena

1

Introduction

1.1 Comtext . . . . . . . . . .
1.2 Introduction to the thesis . . . . ... . ... ... ........
1.3 Objectives . . . . . . . . .
1.4 Structure of the document . . . . . . . . ... ... ... .....

Electric vehicle drive systems: Electric machines and control
2.1 Introduction and overview of an EV powertrain architecture . . .
2.2 Machine technologies for vehicle electrification. . . . . . . . . ..
2.2.1 Imtroduction . . . .. ... ...
2.2.2  Electric machine technologies including Rare-Earth Ele-
ments . ... ..o e

14

17

19

25

27
27
29
32
32

42

2.2.3  Electric machine technologies without Rare-Earth Elements 43

2.2.4  Discussion on electric machine technologies . . . . . . ..
2.3 Electromagnetic model of three-phase automotive synchronous
machines . . . . . . . ...
2.3.1 Magnetic saturation on synchronous machines. . . . . . .
2.3.2  Synchronous machine dq model . . . . . . ... ... ...

7

46



2.4 Torque control of synchronous machines . . . .. ... ... ... o1

2.4.1 Imtroduction . . . ... .. ... oL 51
2.4.2 Field oriented control . . . ... ... ... 0L 52
2.4.3 High speed operation. . . . . ... ... ... ... .. .. 60
2.4.4  Fault tolerance and limp-home capability . . .. .. ... 63
2.5 Conclusions . . . . . . . ... 64
Look-up table based flux weakening strategy including novel
voltage constraint tracking feedback 67
3.1 Imtroduction . . . . . . . . . ... 67
3.2 Operation regions of synchronous machines . . . . ... ... .. 70
3.2.1 Voltage and current constraints . . . . . . ... ... ... 70
3.2.2 Maximum Torque Per Ampere region . . ... ... ... 71
3.2.3 Field Weakening region . . . ... ... ... ... ... 76
3.2.4 Maximum Torque Per Voltage region . . . . . . ... ... 77
3.3 LUT content calculation methods considering magnetic saturation 77
3.3.1 Introduction . .. .. ... ... ... ... ... 77
3.3.2 Iterative analytical LUT calculation . .. ... ... ... 78
3.3.3 LUT calculation using optimization methods . . . . . .. 79
3.4 LUT dimensioning optimization . . . . . . . .. .. ... .. ... 81
3.5 Proposed 2D-LUT/VCT hybrid FW strategies . . ... ... .. 83
3.5.1 Imtroduction . . ... ... ... .. ... L. 83
3.5.2  Flowchart based VCT regulator . . . . .. ... ... ... 85
3.5.3 Integration based VCT regulator . . . ... ... .. ... 87
3.6 Simulationresults . . .. ... ... oo 89
3.7 Experimental results . . . . ... ... .. ... ... ... .... 95
3.8 Conclusions . . . . . . . . . .. 106
Hybrid sensorless control solution for limp-home operation of
automotive synchronous machines 107
4.1 Introduction . . . . . . . . .. .o 107
4.2 Proposed hybrid sensorless strategy . . . . .. ... ... 110
4.2.1 Phase Locked Loop based back-EMF estimator . . . . . . 111
4.2.2 High Frequency Injection technique. . . . . . . ... ... 114
4.2.3 Smooth transition procedure of the proposed sensorless
algorithm . . . . .. ... L o 117
4.3 Simulation results . . . . .. ... L Lo 121
4.4 Experimental results . . . . . . ... ... 128
4.5 Conclusions . . . . . ... L 134



5 Conclusions and future work

5.1 Conclusions and summary of the most relevant contributions
5.2 Publications derived from this thesis . . . . . .. ... ... ...

5.2.1 Publications in scientific journals . . . . . ... ... ...

5.2.2 Conference publications . . . . .. .. ... ... .. ...
5.3 Industrialization of proposed control solutions . . . . . . ... ..
54 Future work . . . . . ... L
5.5 Acknowledgements . . . . . . ... ... L.

A Vector transformations
A.1 Clarke transformation . . . . . . . . . . .. ... ... .. ....
A.2 Park transformation . . . . . . ... ... ... ...

B Second order SMC parameter tuning
C Experimental platform for EV propulsion system testing

Bibliography

135

. 135

138
138
140
143
143
144

145
145
146

149

151

156



10



List of Figures

2.1
2.2
2.3
24
2.5
2.6

2.7
2.8

2.9

2.10

2.11
2.12

2.13

3.1

3.2

EV deployment targets and predictions on the evolution of bat-
tery energy densities [1]. . . . . . .. ...
Typical EV and HEV architectures. . . . . ... ... ... ...
General EV powertrain configuration. . . . ... ... ... ...
Wiring diagram and architecture of powertrain ECUs. . . . . . .
PMSM machine rotor topologies depending on the placement of
the magnets. . . . . .. .. ... o
Typical location of ferrite magnets in a PM-assisted SynRM ro-
tor. .o
Most common SRM topologies. . . . . ... ... ... . ...
Magnetic saturation in the d- and g-axis inductances of an auto-
motive PM-assisted SynRM. . . . . . .. ... .00
Conventional FOC control structure including the required opti-
mum reference currents determination block. . . . .. ... ...
Simplified current control diagram in the z domain including a
pre-filter. . . . . ...
SMC torque control for synchronous machines. . . . . .. .. ..
Diagram of the second order SMC control algorithm for syn-
chronous machines. . . . . . . .. ... Lo oL
Symmetric and asymmetric PWM pulse generation and the de-
lays associated with their usage. . . . . ... ... ... ... ..

General diagram of a 4D-LUT based indirect torque control ap-
proach for synchronous machines. . . . . . .. .. ... ... ...
Current constraint circumferences and speed dependant voltage
limit ellipses in the synchronous dq reference frame. . . . . . ..

11



3.3

3.4

3.5

3.6

3.7
3.8

3.9

3.10

3.11
3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

Optimum trajectory example of the stator currents in the dg
plane for a SM-PMSM (Lg=Lg). . . . .« o v oo v v oot
Optimum trajectory example of the stator currents in the dg
plane for an IPMSM (Lq # Lg). . . . . . .« o o oo oo oo
Optimum operation regions: MTPA (1), field weakening (IT), field
weakening with torque reduction (IIT) and MTPV (IV). . . . ..
Proposed iterative flowchart for the offline current set-point LUT
calculation under magnetic saturation. . . . . .. ... ... ...
Speed normalization strategy. . . . . . . . ...
General diagram of the proposed current regulators with hybrid
2D-LUT/VCT based feedback control strategy. . . . . ... ...
LUT based current reference determination using the speed nor-
malization concept and proposed flowchart and integration based
VCT feedback strategies. . . . . .. ... .. ... .. ......
Flowchart based VCT for normalized speed command determi-
nation. . . . . . ...
Operation mode of the flowchart based VCT. . . . . ... .. ..
Diagram of the hybrid LUT/VCT current set-point generator
with the integration based VCT feedback control. . . . . . . . ..
Simulated IPMSM d- and g-axis inductances considering mag-
netic saturation. . . . .. ... Lo oo oo
Proposed VCT based IPMSM control strategies (simulation re-
sults). . ..
Simulated IPMSM dq plane current vector trajectory (using the
integration based VCT algorithm) and its correspondence to each
operation mode. . . . . . .. ...
Simulation results carried out for the control parameter adjust-
ment (o, B) of the flowchart based VCT strategy. . . . . . .. ..
Simulation results carried out for the control parameters adjust-
ment (o) of the integration based VCT strategy. . . . ... ...
Comparison of the VCT based alternatives using the ISE perfor-
mance index. . . . ... oL
PM-Assisted SynRM d- and ¢-axis inductances according to the
provided FEM analysis. . . . ... ... .. ... .........
PM-Assisted SynRM d- and g-axis fluxes according to the pro-
vided FEM analysis. . . . .. ... ... ... ... ...
SMC torque control, stator voltage V; control and mechanical
speed results without the VCT control strategy. . . . . . . .. ..

12

83

93

99



3.22

3.23

3.24

3.25

3.26

3.27

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8
4.9

4.10

4.11

4.12
4.13

4.14
4.15

SMC torque control, stator voltage V; control and mechanical
speed results with the VCT control strategy. . . . . . . ... ... 101
Torque, current and stator voltage regulation experimental re-
sults using the proposed hybrid LUT/VCT based FW strategy. . 102
Current trajectories in the dq axis (current vector reference in
red; measured current vector in blue). . . . ... ... ... .. 103
Torque control stability using the VCT strategy when changing
from motor driving to reverse braking at constant speed of 7000

)0 U 103
Worldwide harmonized Light vehicles Test Procedure (WLTP)
results. . . ..o L 104

PM-assisted SynRM efficiency map in the whole operation range. 105

General diagram of an EV sensorless control strategy, including
fault detection and control reconfiguration. . . . ... ... ... 108
PLL based rotor position estimation diagram. . . . . . . .. . .. 111
General diagram of a HFI sensorless control strategy, including
HF voltage vector injection and measured current post-processing

blocks. . . . . .. e 115
HFT sensorless strategy current processing. . . . . . . . ... ... 116
Hybrid angle estimation block diagram with the transition strat-

egy between the PLL and HFL. . . . . ... ... .. ... .... 118
Hybrid sensorless control strategy along wide speed range and
including transitions. . . . . . . . ... oL oL 119
Angle polarity determination strategy for transitions from PLL
based estimation to HFL. . . . . . . .. .. ... ... L. 120
Speed estimation process from 0 EST + « v e oo e e e e e 121
Diagram of the simulation model implemented in Matlab/Simulink

for the validation of the proposed hybrid sensorless control. . . . 121
PLL position estimation from high speed to standstill in the sim-
ulated SM-PMSM. . . . . . . . ... ... ... 123
HFT technique position estimation at low speeds and standstill in

the simulated SM-PMSM. . . . . .. ... .. ... ... ..... 124

Proposed hybrid sensorless control for 100 Nm (simulation results).125
Proposed hybrid sensorless control in four quadrant operation

(simulation results). . . . . ... ... Lo oL 126
Measured currents post-processing to obtain the rotor position. 130
Current signal processing in the frequency domain. . . . . . .. 131

13



4.16 Hybrid sensorless torque control experimental results in four quad-
rant operation. . . . . . .. ..o Lo s 132
4.17 Hybrid sensorless torque control experimental results at medium /high
speeds and interacting with the proposed VCT based FW control. 133

A.1 Clarke transformation. . . . .. ... ... ... ... ...... 146
A.2 Park transformation. . . ... ... ... .. ... .. ... ... 146
C.1 Test bench overview, including the monitoring platform. . . . . . 152

C.2 Tecnalia’s automotive test bench cabin overview, including the
machine under test (left) and the counter-load machine (right). . 152

C.3 Test bench communications. . . . . . ... ... ... ... ... 154

C.4 DYNACAR®) vehicle model. . . . ... ... ... ........ 155

14



List of Tables

2.1

3.1

3.2
3.3

4.1
4.2

4.3

5.1

Performance comparison of current EV motor technologies. . . . 47

Most significant nominal parameters of the simulated IPMSM

machine. . . . . . . . ... 89
Nominal parameters of the PM-Assisted SynRM. . . . . ... .. 97
SMC parameter settings. . . . . . . . . . ... Lo 97

Most significant nominal parameters of the simulated SM-PMSM. 122
Proposed hybrid sensorless algorithm parameter settings for SM-
PMSM simulation tests. . . . .. . .. ... oL 127
Proposed hybrid sensorless algorithm parameter settings for ex-
perimental tests in the automotive 51 kW PM-assisted SynRM
machine. . . . . . . . .. L. 128

Publications derived from this thesis and their correspondence
with document chapters. . . . . . . . .. ... ... L. 139

15



16



Abstract

Nowadays and due to environmental concerns, the automotive industry is greatly
involved with the reduction of on road vehicle pollutant emissions. Transport
electrification is considered as a key technology to achieve this goal. However,
an extensive research and development of high efficient, low cost, optimized
and reliable electric propulsion systems is required in order to achieve these
objectives.

Electric machines can be considered as the main elements of Electric Vehicle
(EV) propulsion systems. These machines must fulfil a number of particular
characteristics, such as high power and torque densities, high efficiency and
fault tolerance capability. Due to these requirements, Permanent Magnets Syn-
chronous Machines (PMSM) are the most established technologies in current
hybrid and electric vehicles. However, their high power density is achieved
thanks to rare-earth magnetic materials, whose use involves economic, environ-
mental and politic issues. Therefore, alternative rare-earth free machines are
being investigated, such as Permanent Magnet assisted Synchronous Reluctance
Machines (PM-assisted SynRMs).

Regarding the aforementioned automotive synchronous machines, the devel-
opment of efficient and reliable torque control strategies is of great importance.
Due to volume optimization requirements, electric machines suffer from high
non-linearities as a consequence of magnetic saturation. Therefore, an accurate
machine electromagnetic model is required by the controller, where magnetic
saturation phenomena cannot be neglected. Besides, mismatches between Fi-
nite Element Models (FEM) and real prototypes are usual due to manufacture
tolerances, operation temperature and ageing, leading to electric parameter de-
viations. Conventional control approaches highly depend on machine electrical
parameters, and they can eventually loss controllability when the stator volt-
age limit is reached, i.e., in field weakening or deep field weakening operation.
Additionally, fault tolerance is considered as crucial by the EV industry, being
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Abstract

limp-home capability a desirable feature for future electrified vehicles. In this
sense, a great amount of literature focused on both topics can be found in the
scientific literature.

In this thesis, a general overview of an EV powertrain system is provided.
The existing electric machine technologies for EV applications and the most
common torque control approaches for synchronous machines are then reviewed.
Once an accurate electromagnetic model for three-phase synchronous machines
including magnetic saturation is provided, Proportional Integral (PI) based
Field Oriented Control (FOC) and second order Sliding Mode Control (SMC)
approaches are thoroughly detailed.

Once the state of the art has been reviewed, this thesis proposes two novel
control solutions which improve the robustness of current automotive synchron-
ous machine torque control strategies in field weakening and deep field weaken-
ing operation regions, ensuring a reliable and efficient system performance under
parameter uncertainties. These strategies combine a Voltage Constraint Track-
ing (VCT) feedback algorithm with the well established Look-up Table (LUT)
set-point generation approach. The proposed strategies are conceived to drive
the system into a pseudo-optimal operation point when the controllability is
not guaranteed, ensuring proper field weakening operation and maintaining the
optimal current set points when deviations are small and system controllability
is ensured by LUT data.

On the other hand and considering the importance of fault tolerance in the
automotive industry, this work also proposes a novel sensorless control algorithm
to provide limp-home capability under machine encoder or resolver failures. This
strategy combines a Phase Locked Loop (PLL) based position estimator for
medium to high speed ranges, and a High Frequency Injection (HFI) technique
for low speeds and standstill. The work also focuses on the development of
a robust strategy to ensure smooth transitions between both PLL and HFI
techniques. The proposed sensorless algorithm is successfully combined with
the novel VCT/LUT approach, providing the required limp-home operation.

Simulation and experimental results obtained in an automotive grade 51 kW
PM-assisted SynRM are provided, demonstrating the validity of the proposed
strategies.

18



Resumen

Hoy en dia, la poluciéon es uno de los mayores problemas de los paises indus-
trializados. El sector de la automocién es uno de los que mas contribuye en la
emisién de gases de efecto invernadero (GHG, Greenhouse Gas), llegando a ser
responsable de hasta el 15 % del total de emisiones de CO5 de la Unién Europea.
Por ello, la industria de la automocién es uno de los sectores méas implicados
en la reduccién de emisiones de COs. Por las razones anteriormente expuestas,
la electrificacién del transporte por carretera estd en pleno auge, favoreciendo
nuevas oportunidades para la investigacion y el desarrollo industrial. Aunque
a dia de hoy uno de los mayores retos tecnoldgicos radica en el desarrollo de
baterias que incrementen la autonomia de los vehiculos eléctricos e hibridos, el
desarrollo de sistemas de propulsién eficientes, fiables, compactos y econémicos
juega también un papel relevante para la introduccién del vehiculo eléctrico en
el mercado.

Para el diseno del sistema de propulsién de un vehiculo eléctrico, la eleccién
de la maquina eléctrica es un aspecto importante, ya que deben ser capaces de
operar en una serie de condiciones particulares, incluyendo el funcionamiento
a altas velocidades, junto con aceleraciones bruscas y temperaturas extremas.
Ademas, dichas maquinas deben ofrecer una serie de caracteristicas deseables,
tales como altas densidades de potencia y par. Por otro lado, deben ser efi-
cientes y, en la medida de lo posible, tolerantes a fallos. Teniendo en cuenta
estas caracteristicas, las Méquinas Sincronas de Imanes Permanentes (PMSMs,
Permanent Magnet Synchronus Machines) son, a dia de hoy, la tecnologia més
utilizada en vehiculos eléctricos e hibridos. Sin embargo, estas maquinas cuen-
tan con una alta densidad de potencia gracias al uso de materiales magnéticos
de alta densidad, entre los cuales destacan las aleaciones neodimio-hierro-boro
(NdFeB) y, en menor medida, materiales como el disprosio (Dy) y el Terbio
(Tb). El uso de estos materiales, también conocidos como tierras raras (REE,
Rare-Earth Elements), conlleva asociados una serie de problemas econémicos,
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Resumen

medioambientales y politicos. Por ello, existe un creciente interés por desa-
rrollar y producir sistemas de propulsién sin tierras raras, donde destacan las
méquinas de reluctancia sincrona asistidas por imanes de ferrita (PM-assisted
SynRM, Permanent Magnet Assisted Synchronous Reluctance Machines).

En lo que a las técnicas de control de este tipo de maquinas sincronas se re-
fiere, es fundamental el desarrollo de estrategias de control eficientes y robustas.
En este sentido, las particularidades de las maquinas électricas y los escenarios
de operacién del vehiculo eléctrico hacen que estos requisitos produzcan nuevos
retos tecnolégicos, tanto para el mundo académico como para la industria. Por
un lado, los disenos de las maquinas tienden a ser cada vez mas compactos
para, de este modo, aprovechar mejor el espacio disponible en el vehiculo. Estas
optimizaciones dan lugar a méaquinas con parametros eléctricos altamente no
lineales, causados por el efecto de la saturaciéon magnética. En este contexto,
es muy importante disponer de una caracterizacion electromagnética fiable de
la maquina. Sin embargo, las diferencias existentes entre las predicciones de los
parametros eléctricos obtenidos a partir de simulaciones basadas en elementos
finitos (FEM, Finite Element Model) y la maquina prototipo real (generalmente
debidas a la dependencia de dichos pardmetros con la temperatura, el enveje-
cimiento de la maquina y tolerancias de fabricacién, entre otros) favorecen la
aparicién de desviaciones entre los parametros eléctricos teéricos y reales. Estos
factores hacen que el uso de técnicas de control convencionales, altamente de-
pendientes del conocimiento previo de los parametros eléctricos de la maquina,
no sean lo suficientemente robustas y puedan producir problemas de contro-
labilidad en las zona de debilitamiento de campo (FW, Field Weakening) y
debilitamiento profundo de campo (deep Field Weakening).

Por otro lado, las tendencias futuras en aplicaciones de propulsion eléctrica
incluyen el desarrollo de maquinas sincronas de alta velocidad (HSEM, High
Speed Electric Machine)' con el fin de reducir, més aun, el volumen de la
maéquina eléctrica. En este tipo de maquinas, los niveles de potencia nominal y
maxima requeridas para el vehiculo se mantienen, ya que se aumenta la veloci-
dad mecénica del motor y se reduce el par requerido. En general, la region de
debilitamiento de campo se extiende en este tipo de maquinas. El desarrollo de
HSEMs conlleva una serie de nuevos retos tecnolégicos necesarios para garanti-
zar un correcto funcionamiento del sistema. En lo que a las estrategias de control
se refiere, es necesario desarrollar estrategias de control avanzadas que aseguren
un correcto control a altas velocidades, o considerar técnicas que contemplen el

1Hoy en dia se consideran méquinas HSEM aquellas que operan por encima de 10000
rpm. Sin embargo, en un futuro préximo se espera desarrollar gran nimero de maquinas para
vehiculo eléctrico e hibrido cuyo rango de operacién supere los 15000 rpm.
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Resumen

efecto de los retrasos de las sefiales en el control. Otra posibilidad radica en
el aumento de las frecuencias de muestreo de los algoritmos de control, lo que
deriva en un aumento de la frecuencia de conmutacién de los convertidores de
potencia. Por ello, cabe destacar la nueva generacién de dispositivos de potencia
basados en semiconductores de banda ancha (WBG, Wide Band Gap) como los
dispositivos de Carburo de Silicio (SiC) o Nitruro de Galio (GaN).

Ante estos dos escenarios futuros (dependencia de pardmetros eléctricos y
operacién a altas velocidades), resulta de especial interés para la industria del
vehiculo eléctrico e hibrido el desarrollo de estrategias de debilitamiento de
campo robustas.

Otro requisito indispensable para los sistemas de propulsién aplicados a los
futuros vehiculos eléctricos es la fiabilidad de los mismos. La deteccién de fal-
tas y la tolerancia a fallos son necesarias no sélo para garantizar la seguridad
del vehiculo, sino que también lo son para garantizar el funcionamiento inin-
terrumpido del sistema bajo condiciones de falta. Llevando a cabo un modelo
de modos de fallos y andlisis de sus efectos (FMEA, Failure Mode and Effect
Analysis), se deduce que un fallo de resolver (o de encoder), encargado de pro-
porcionar la posicién del rotor de la maquina e indispensable para la orientacion
de campo y para el algoritmo de control, tendria consecuencias catastréficas
para el sistema. En este sentido, numerosos estudios se centran en el desarrollo
de técnicas para la estimacion de la posicion y la velocidad del rotor, también
llamadas técnicas sensorless. El objetivo de estos estudios es, en su mayoria,
proporcionar estrategias capaces de garantizar que el vehiculo llegue a su destino
bajo condiciones de seguridad y en funcionamiento pseudo-6ptimo, a pesar de
que haya ocurrido un fallo. Este concepto es también conocido como operacion
limp-home.

Considerando todo lo anterior, en esta tesis se presenta, en primer lugar, la
arquitectura general del sistema de propulsién de un vehiculo eléctrico. En este
sentido, se incluye un estado del arte de las tecnologias de méquinas de auto-
mocién actuales y sus caracteristicas principales. A continuacién, se muestra un
modelo electromagnético detallado de una méaquina sincrona trifasica teniendo
en cuenta el efecto de la saturacion magnética. Finalmente, se explican las
técnicas de control de par comtinmente utilizadas para este tipo de aplicaciones,
donde cabe destacar el control orientado a campo (FOC, Field Oriented Con-
trol) basado en PIs y el control por modo deslizante de segundo orden (second
order SMC, Sliding Mode Conitrol). Aunque la técnica de control FOC basada
en PIs es la estrategia mas utilizada en la industria, las altas no-linealidades de
este tipo de maquinas hacen que sea interesante utilizar estrategias de control
no lineales, tales como la técnica SMC de segundo orden.
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Una vez presentado el estado del arte relacionado con la temadtica de la tesis,
se proponen dos nuevas soluciones de control para mejorar la robustez de las es-
trategias de debilitamiento de campo actuales, asegurando un comportamiento
fiable del sistema. En primer lugar, se realiza una formulacion detallada de las
cuatro regiones de operacién de las méquinas sincronas de automocién (MTPA,
Mazimum Torque per Ampere, FW y MTPV, Mazimum Torque Per Voltage), y
se presenta el analisis matematico necesario para la obtencién de las corrientes
Optimas en cada region de operacién. En concreto, esta tesis se centra en la
técnica de control indirecto FOC, donde las corrientes 6ptimas de referencia
son previamente calculadas analiticamente y almacenadas en tablas interpo-
ladas (LUT, Look-up table). Esta estrategia es comunmente utilizada en la
industria en general, y en el sector de la automocién en particular, ya que su
coste computacional es bajo comparado con otras alternativas y, ademas, es re-
lativamente simple de implementar. Sin embargo, esta estrategia en particular
ajusta las LUTs para un determinado conjunto de pardmetros eléctricos de la
maquina, pudiendo llegar a producir inestabilidades cuando existen desviaciones
de parametros, dando como resultado un incorrecto control en debilitamiento
de campo. En este sentido, se presentan dos algoritmos de control FW robustos
ante variaciones de pardmetros: (a) flowchart based y (b) integration based VCT
(Voltage Constraint Tracking).

Las estrategias de debilitamiento de campo propuestas se basan en la re-
gulacién de la tension de estator cuando el sistema entra en las regiones FW
y MTPV, asegurando que el sistema permanece siempre por debajo del limite
de tensién maximo de estator establecido. De esta manera, garantizan la con-
trolabilidad del sistema en todo su rango de operaciéon. Para ello, dirigen el
sistema hacia un punto de operacién pseudo-6ptimo cuando las desviaciones de
parametros son lo suficientemente grandes como para descontrolar el sistema.
Las dos técnicas propuestas son analizadas y comparadas en simulacién. La
validacion experimental se realiza en una PM-assisted SynRM de 51 kW, uti-
lizando la estrategia integration based VCT, dado su bajo coste computacional
y su ajuste simple. Por otro lado, el control convencional FOC basado en PI es
sustituido por el control FOC basado en SMC, dada su idoneidad para sistemas
altamente no-lineales. La validacién experimental se lleva a cabo empleando los
datos del anélisis FEM proporcionado por el fabricante para el ajuste de las
LUTSs, detectandose desviaciones debidas a la temperatura del rotor, la fabri-
cacién (tolerancias en el airgap) y al modelo FEM utilizado (modelo 2.5D). Se
confirma experimentalmente que, sin una estrategia de control robusta como
la propuesta, el sistema de propulsién pierde ampliamente su capacidad de op-
eracién. En esta aplicacién en particular, esto equivaldria a limitar a 40 km/h
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la velocidad maxima del vehiculo. Se demuestra finalmente que el uso de la
estrategia propuesta asegura un correcto funcionamiento del sistema en todo el
rango de operacién. El control FW propuesto ha sido validado en condiciones
de conduciéon mediante la aplicacién del ciclo de homologaciéon de consumos
europeo WLTP (Worldwide harmonized Light vehicles Test Procedure).

Finalmente, en esta tesis se propone una estrategia de control de par to-
lerante a fallos de resolver. Se presenta una técnica sensorless hibrida compuesta
por un estimador basado en una PLL (Phase Locked Loop) y la técnica por
injeccién de componente de alta frecuencia (HFI, High Frequency Injection).
El estimador basado en PLL se utiliza para estimar la posicion del rotor en
rangos de velocidad medios/altos, mientras que el uso de la técnica HFI se
limita a la determinacién de la posicién a bajas velocidades y en parado. El
trabajo desarrollado en esta tesis se centra en el desarrollo de una estrategia de
transicion entre ambas técnicas, basada en bandas de histéresis y dependiente de
la velocidad. Esta estrategia tiene como objetivo el aportar robustez y seguridad
durante el periodo de transicién entre PLL y HFI. La contribucién desarrollada
tiene en cuenta el particular escenario del EV, incluyendo funcionamiento en
cuatro cuadrantes (motor y generador) y pasos por cero. Esta estrategia se va-
lida en una PM-assisted SynRM de 51 kW, ejecutandose junto con la estrategia
de debilitamiento de campo anteriormente propuesta, de forma que se obtienen
resultados satisfactorios, ya que se logra un rango de operacién suficiente como
para garantizar el funcionamiento limp-home del sistema.
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Laburpena

Gaur egun, automobilaren industria buru-belarri ari da lanean ibilgailuek sortzen
dituzten gas kutxakorren emisioak murrizteko. Testuinguru horretan, ibilgailuen
elektrifikazioa aukera egokia da helburu hori lortzeko. Horretarako, beharrezkoa
da eraginkorrak, merkeak, optimizatuak eta fidagarriak diren propultsio-sistema
elektrikoak garatzea.

Motor elektrikoak dira ibilgailu elektrikoen propultsio-sistemen osagarri na-
gusiak. Ezaugarri partikular batzuk bete behar izaten dituzte motor horiek, hala
nola potentzia-dentsitate eta eraginkortasun altua izatea, eta baita ere hutsegite-
tolerantzia gaitasuna izatea, besteak beste. Beharrizan horiek direla eta, iman
iranunkorreko makina sinkronoa (PMSM, Permanent Magnet Synchronous Ma-
chine) da, gaur egun, teknologia erabiliena ibilgailu hibrido eta elektrikoetan.
Hala ere, PMSMen potentzia-dentsitate altua lur arraroetan oinarritutako ma-
terial magnetikoei esker lortzen da. Material horien erabilerak ekonomian, in-
gurumenean eta geopolitikan izan dezakeen eragina kontua hartuta, lur arra-
roetan oinarritzen ez diren aukerak ikertzen ari da komunitate zientifikoa; hala
nola imanez lagundutako erreluktantzia sinkronoko makinak (PM-assisted Syn-
chronous Reluctance Machines, PM-assisted SynRM) kontsideratzen dira or-
dezko bideragarri bezala.

Automobilerako motor elektriko sinkrono horiei dagokienez, oso garrantzi-
tsua da eraginkorrak eta fidagarriak diren momentu elektromagnetikoaren kon-
trolerako algoritmoak garatzea. Motor horien bolumena optimizatu behar denez,
parametro elektrikoetan ez-linealtasun handiak agertzen dira saturazio mag-
netikoaren ondorioz. Beraz, makinen modelo elektromagnetiko zehatzak behar
dira kontrolagailuak doitzeko. Alde horretatik, elementu finitu (FEM) bidez au-
rreikusitako parametroen eta prototipo errealen parametroen arteko ezberdinta-
sunak nahikoa ohikoak dira, fabrikazio-tolerantzien, operazio-tenperaturaren eta
makinaren zahartzearen eraginez. Kontrol-algoritmo konbentzionalek motorren
parametroekiko oso sentikorrak dira, eta kontrolagarritasuna gal daiteke esta-
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toreko tentsio maximora iristean, hori da, eremu-murrizketa (field weakening)
eta eremu-murrizketa sakoneko (deep field weakening) operazio-eremuetan. Ho-
rrez gain, hutsegite-tolerantzia ere kontsideratzen da ibilgailu elektrikoaren in-
dustrian, ibilgailua modu degradatuan tailerrera iritsi ahal izateko matxurak
gertatzerakoan. Bi esparru horien inguruko hainbat lan aurki daitezke literatura
zientifikoan.

Tesi honetan, ibilgailu elektriko baten propultsio-sistema gainbegiratzen da,
eta aplikazio horietan erabiltzen diren motor elektrikoen teknologiak eta mo-
mentu elektromagnetikoaren kontrolerako algoritmoak berrikusten dira. Satu-
razio magnetikoa kontuan hartzen duen hiru fasedun makina sinkronoaren mo-
delo elektromagnetiko zehatza azaldu ondoren, erregulatzaile proportzional inte-
graletan eta bigarren ordenako lerradurazko kontrolean (Sliding Mode Control,
SMC) oinarritutako FOC (Field Oriented Control) kontrol-teknikak azaltzen
dira sakon.

Ondoren, ibilgailu elektrikoetako motor sinkronoak eremu-murrizketa eta
eremu-murrizketa sakonean kontrolatzeko erabiltzen diren kontrol-algoritmoen
mardultasuna hobetzen duten bi algoritmo berri proposatzen ditu tesi honek.
Era horretara, sistemaren fidagarritasuna bermatzen da parametro elektrikoen
ziurgabetasunen aurrean. Estatoreko erreferentziazko korronteak sortzeko oso
ezaguna den tauletan oinarritutako teknika (Look-up Table, LUT) eta Voltage
Constraint Tracking (VCT) motako berrelikadura konbinatzen dute proposa-
tutako teknikek. Horrela, operazio-puntu pseudo-optimo batetara eramaten da
sistema, kontrolagarritasuna bermatuta ez dagoenean. Aldiz, erreferentzia opti-
moak mantentzen ditu algoritmoak, makinaren kontrolagarritasuna bermatuta
badago.

Automobilaren industrian hutsegite-tolerantziari ematen zaion garrantzia
kontuan hartuta, posizio-sentsoreen hutsegiteen aurrean etxera itzultzeko gaita-
suna (limp-home capability) eskaintzen duen sensorless motako kontrol-algorit-
mo berri bat proposatzen du ere lan honek. PLL (Phase Locked Loop) eta
maiztasun altuko injekziozko (High Frequency Injection, HFI) teknikak konbi-
natzen ditu proposatutako algoritmoak. Tesi honetan, teknika horien arteko
trantsizio leunak eta mardulak gauzatzen dituen algoritmo berria proposatu da
ere. Azkenik, proposatutako sensorless eta VCT/LUT estrategiak konbinatuz
lortu da makina sinkronoak beharrezkoa duen etxera itzultzeko gaitasuna.

51 kW dituen automobilerako PM-assited SynRM motako motor sinkrono
batetarako lortutako simulazio-emaitzek eta emaitza esperimentalek erakusten
dute proposatutako kontrol-estrategien baliagarritasuna.
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Chapter 1

Introduction

1.1 Context

The research work resulting in this thesis has been carried out in the trans-
port business area of Tecnalia Research & Innovation (Industry and transport
Unit), in collaboration with the Applied FElectronics Research Team (APERT)
of the Electronics Technology department, University of the Basque Country
(UPV/EHU) and with the Institut d’Organitzacio i Control de Sistemes Indus-
trials of the Universitat Politécnica de Catalunya (UPC).

Tecnalia’s transport area focuses its activity in the research and development
of hybrid and electric propulsion systems, including the following topics:

e Research, design and development of advanced control strategies for au-
tomotive electric machines applied to electric and hybrid propulsion sys-
tems. Current research interests include the study of control strategies
for high speed operation, sensorless control, fault tolerant operation and
multiphase machine control.

e Research and development of optimal energy management strategies, in-
cluding energy recovery during regenerative braking, damage reduction on
mechanical components and vehicle life-cycle and autonomy range exten-
sion.

e Research in automated driving, including Advanced Driver Assistance
Systems (ADAS). Research interests in this specific field include decision-
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making systems, which enable the design of new ADAS for control sharing
between the vehicle and the driver.

e Research in new multi-material structures for weight reduction purposes.

On the other hand, the APERT research activities include the following
topics:

e Reconfigurable systems and System on Chip (SoC): Development of opti-
mized digital systems for reconfigurable logic including the research, design
and development of partial reconfiguration techniques and fault tolerant
strategies for safer and more reliable systems.

e Power and control circuitry for energy converters. Research and design
of power electronics systems used for electric energy generation, transfor-
mation and storage, being of special interest automotive and aerospace
applications.

Finally, the Division of Automatic Control at the Institut d’Organitzacio i
Control de Sistemes Industrials, which belongs to the UPC, focuses its research
interests (among others) in:

e Modelling and control of electronic power systems (generation and con-
version).

e Sensorless control of Electric Drives.

Regarding public research projects, this thesis has been partially supported
by the FP7 framework/European Commission under grant number 605075,
“Synchronous Reluctance Next Generation Efficient Motors for Electric Vehi-
cles” (SYRNEMO) project (October 2013-November 2016). The purpose of
this project was to design and validate, in an automotive test bench, a drive
including a high speed synchronous reluctance machine assisted by ferrite mag-
nets, studying its suitability for automotive applications. The consortium in-
volved in the project consisted of eight partners: Austrian Institute of Technol-
ogy (project coordinator), AVL, Centro Ricerche Fiat SpcA, Leibniz University
of Hannover, Tecnalia Research & Innovation, THIEN eDrives, University of
Bologna and Vrije Universiteit Brussel. The project delivered a fully electric
powertrain technology at TRL 5-6, to be integrated in large-scale production
of future electric vehicles. In this project, driving efficiency and environmental
compatibility where enhanced, in line with the EU policies in the field of low-
carbon transport and Green House Gas (GHG) emissions reduction for road
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transport!. In this context, Tecnalia’s activities included the design of a robust
torque control strategy ensuring controllability of the drive in the whole vehicle
operation range. In order to cope with resolver failures, a sensorless control
technique was implemented to guarantee the limp-home operation of the vehi-
cle. Tecnalia was also responsible for the powertrain testing and validation in
an automotive grade test bench, available at Tecnalia’s premises.

Additionally, this work has been partially supported by the Basque Gov-
ernment within the regional projects KT4eTRANS (KK-2015/00047 and KK-
2016/00061) of the ELKARTEK programme, and FPGAmc (EMAITEK pro-

gramme).

1.2 Introduction to the thesis

Pollution is considered as one of the greatest problems in the industrialized
countries. Attending to several studies, transport is one of the major contribu-
tors of pollutants in urban areas. Taking into account the increasing ecological
awareness and the shortage of fossil-fuel resources, one of the most involved
sectors in the reduction of pollution is the automotive industry. The transport
electrification is opening new technological challenges and opportunities [2], such
as the development of high density batteries to increase the vehicle’s autonomy
and the design and research on efficient, low cost, optimized and reliable electric
propulsion systems [2—4].

The selection of the electric machine is one of the key aspects in the design
of an Electric Vehicle (EV) propulsion system. In general, the electric machine
must be as efficient as possible at several operation points, allowing energy
recovery during braking. Additionally, it must offer high acceleration rates for
fast starting, and it must operate at extreme ambient temperatures. Taking into
account the automotive industry context, a) high power and torque densities,
b) high efficiency, c) fault tolerance capability and d) low cost and simplicity
are desirable characteristics for electric machines [5]. In this sense, Permanent
Magnets Synchronous Machines (PMSMs) are the most established technologies
[6] due to their high power density and reduced weight [4,7].

The high power density requirements are met thanks to magnetic materi-
als, usually sintered neodymium-iron-boron (NdFeB) alloys, and other Rare-
Earth Elements (REE), such as dysprosium (Dy), whose use involve some dis-
advantages [8, 9] such as the high cost of magnetic materials, risk of deple-
tion and resource monopoly issues. Due to the above economic, environmental

Thttp:/ /www.syrnemo.eu/
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and politic reasons, there is a growing need to produce efficient rare-earth free
propulsion systems, motivating the automotive sector to investigate different
alternatives. Rare-Earth free machine technologies such as Induction Machines
(IM), Switched Reluctance machines (SRM) or Synchronous Reluctance ma-
chines (SynRM) are being considered for EV and HEV applications [9]. How-
ever, a comparison of the different machine technologies regarding relevant as-
pects such as efficiency, robustness, power density, control simplicity and costs,
among others, show that the suitability of each technology depends on the spe-
cific application, not being straightforward to determine the superiority of one
machine over the others. In this context, the contributions of this thesis will fo-
cus on both REE based Interior PMSMs and rare-earth free PM-assisted SynRM
technologies.

The development of reliable control algorithms that take into account the
particular requirements of automotive IPMSMs and PM-assisted SynRMs is of
great importance for the automotive industry. Due to machine design and opti-
mization aspects, in automotive applications it is of common practice to reduce
the volume of the machine as much as possible. These optimization require-
ments produce non-linearities in the electric parameters caused by magnetic
saturation, which can not be neglected in the machine electromagnetic model,
as they influence the control algorithm design. However, conventional control
approaches strongly depend on machine electrical parameters. Among the vari-
ety of control strategies available in the scientific literature, look-up-table (LUT)
based Field Oriented Control (FOC) strategies are one of the most commonly
used torque control techniques for automotive synchronous machines with high
saliency (IPMSMs and PM-assisted SynRMs) [10,11]. These techniques are rel-
atively simple to implement and require low computational burden. However,
deviations of the electric parameters due to machine ageing, manufacture toler-
ances, temperature dependency and the existing differences between the Finite
Element Model (FEM) data and the real machine, together with the high non-
linearities caused by the magnetic saturation phenomena can lead to control
loss and uncontrollable regeneration in the field weakening region. Thus, the
current tendency of extending the constant power region confirms the impor-
tance of relying on a robust control strategy to overcome the aforementioned
issues and ensure a correct operation of an EV drive during its whole life-cycle.

Additionally, design trends for the next generation of EV and HEV propul-
sion systems include the increase of the machine operation speed for an even
more compact drive. Nowadays, a great amount of medium speed electric drives
(5000 rpm to 8000 rpm) can be found in the market. However, drive volume
optimization requirements leads to the design of high speed electric drives ex-
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ceeding 15000 rpm [5]. This trend includes additional technological challenges to
be overcome. The required high switching frequencies forces traditional power
electronics Silicon (Si) based devices to reach their physical limits [12,13]. New
semiconductor materials such as Silicon Carbide (SiC) and Gallium Nitride
(GaN) seem to be the most appropriate candidates and are currently being
investigated [14, 15]. However, when conventional Si devices must be used,
the switching frequency limitation leads to a number of control challenges. Ad-
vanced strategies, which cope with these relatively low sampling rates and which
take into account the delays introduced by the controller, must be developed.
Additionally, an increase of the drive speed range leads to the extension of the
constant power region, making field weakening control even more relevant [16].

Taking the latter into account, a novel robust torque control strategy for
IPMSMs and PM-assisted SynRMs applied to EVs is presented in this thesis.
In order to guarantee the EV drive controllability in the whole speed/torque
operation range and during the entire propulsion system lifetime, a combination
of a robust second order SMC and a LUT/Voltage Constraint Tracking (VCT)
based hybrid field weakening control is proposed. Simulation and experimental
evidences demonstrate that the inclusion of this technique improves the overall
control algorithm robustness under parameter deviations.

Other crucial requirement for future EV drives is fault tolerance [9,17]. In
this context, it is relevant for the automotive industry to develop highly reli-
able systems that enable to complete vehicle service in derated operation mode
(limp-home operation) when significant faults occur. On the one hand, re-
search studies focused on multiphase topologies have been carried out in the
last years. Multiphase machine technologies are considered as an interesting
alternative for their application in EV propulsion systems due to their intrinsic
fault tolerance [18]. The development of Prognostic and Health Management
Systems (PHMS) is also an attractive option to increase the safety of EV end-
users [19,20]. These techniques aim to predict degradation mechanisms before
a fault occurs. Finally, the replacement of sensors by estimation techniques is
another relevant research topic regarding fault tolerance [21]. In an EV drive,
one of the most critical sensors is the resolver?, which provides the rotor position
for field orientation and control. Although a great amount of research works
provide position and speed estimation techniques to eliminate the resolver, the
automotive industry suggests to maintain such sensor for normal operation and
considers estimation techniques for sensor degradation detection and sensorless

2 Although encoders can also be used for the determination of the angular position and the
speed, resolvers are preferred in the automotive industry due to their robustness.
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limp-home operation [22,23]. The particular scenario of an automotive appli-
cation requires an appropriate sensorless performance for a wide speed range.
This thesis proposes a novel hybrid sensorless control strategy based on the
combination of two established approaches. A solution to achieve a smooth
transition between both control approaches is also proposed. Simulation and
experimental results validate the proposed strategy to be further implemented
in electric vehicles.

1.3 Objectives

The main objective of this thesis is to improve the robustness of current torque
control algorithms for automotive synchronous machines, proposing novel solu-
tions that ensure a reliable and efficient regulation performance. In this context,
the following specific objectives have been defined in order to achieve the main
goal of this thesis:

(a) To gain an in deep understanding of the most common EV machine tech-
nologies and their corresponding torque control techniques, identifying the
actual controller limitations and technological challenges.

(b) The proposal, development and validation of a robust torque control al-
gorithm under machine electrical parameter deviations and uncertainties.
This strategy will ensure system controllability in the whole operation
range, including field weakening and deep field weakening regions.

(¢) The proposal, development and validation of a fault tolerant torque control
strategy against resolver failures. This contribution will be adapted to the
particular electric vehicle scenario. Complex algorithms should be reduced
as much as possible and computational burden should be optimized in
order to guarantee a proper implementation in an automotive certified
microprocessors with limited calculation capabilities.

1.4 Structure of the document

This thesis consists of five chapters and two appendixes. Apart from this intro-
duction to the thesis, the document is organized as follows:

2. Electric vehicle drive systems: Electric machines and control. In
this chapter, an overview of an electric vehicle powertrain architecture is

32



Introduction

provided, including a review of the most common electric machine tech-
nologies and their features. After this introduction, the chapter focuses
on synchronous machines, providing the required mathematical fundamen-
tals®, summarizing the torque control strategies available in the scientific
literature. A comprehensive explanation of PI and SMC based Field Ori-
ented Control (FOC) is introduced, considering their suitability for auto-
motive synchronous machine control. Finally, this chapter discusses the
challenges derived from future trends in the electric automotive sector,
such as high speed machine operation and fault tolerance requirements.

3. Look-up Table based flux weakening strategy including novel
Voltage Constraint Tracking feedback. In this chapter, a reliable
field weakening control algorithm is proposed in order to guarantee an
electric vehicle drive controllability in the whole torque/speed operation
range, during the whole propulsion system lifetime and under parameter
uncertainties. First of all, a summary of the field weakening strategies
available in the scientific literature is provided, giving special interest to
the mathematics involved in the calculations of the optimum current tra-
jectories. After that, the thesis focuses on the LUT based field weakening
control approach, providing guidelines for LUT dimension optimization
and precalculation procedures. A combination of a robust second-order
SMC and a LUT/VCT based hybrid field weakening control is finally
proposed. Two VCT strategies are proposed and compared throughout
simulation: a flowchart based algorithm and an integration based algo-
rithm. Finally, the integration based strategy is considered due to its
lower computational burden and easier adjustment, and is experimentally
validated demonstrating the effectiveness of the proposal.

4. Hybrid sensorless control solution for limp-home operation of au-
tomotive synchronous machines. A novel hybrid sensorless strategy
is presented in this chapter. First of all, a summary of the most com-
mon sensorless techniques for synchronous machines is provided. Then,
the proposed sensorless structure, which combines a High Frequency In-
jection (HFI) technique (for low to zero speeds) and a Phase-Locked Loop
(PLL) algorithm (for medium and high speeds) is presented. A solution
to achieve a smooth transition between the PLL and the HFI strategies
is also proposed, allowing to correctly determine the rotor position po-

3A detailed description of the electromagnetic model of a synchronous machine including
magnetic saturation effect is also provided.
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larity required by the HFT algorithm when PLL-to-HFI transitions are
conducted. The developed strategy covers the required speed and torque
range that guarantees sufficient limp-home capability to the vehicle, and
also has speed reversal capabilities. These features are demonstrated in
this chapter providing simulation and experimental evidences.

5. Conclusions and future work. This chapter summarizes the conclu-
sions obtained from this work, as well as its main contributions. The
publications resulting from this work are included in this chapter, and the
future research lines are also addressed.

A. Appendix: Vector transformations. This appendix provides the
mathematical fundamentals of the Park and Clarke transformations used
in this work.

B. Appendix: Second order SMC parameter tuning. This appendix
presents the mathematical approach needed for the determination of the
second order SMC parameters required for the equivalent voltage calcula-
tions and the Super-Twisting algorithm (STA).

C. Appendix: Experimental platform for EV propulsion system
testing. The automotive test bench used for the experimental valida-
tion of both contributions is described in this appendix.
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Electric vehicle drive
systems: Electric machines
and control

2.1 Introduction and overview of an EV power-
train architecture

In recent years, environmental issues such as pollution and global warming have
encouraged researches on highly efficient systems. In this context, transport is
one of the sectors with the highest contribution on greenhouse gas (GHG) emis-
sions, contributing to the 27 % of the global COs emissions [24]. Particularly,
road transport represents 75 % of the total transport emissions [9,25,26]. For
this reason, the automotive industry is one of the sectors that is actively in-
volved in the reduction of such pollutants. The electrification of road transport
is opening new opportunities and challenges to the mechanical, electronics and
control engineers in the automotive industry [27-29].

In order to illustrate the promising future of vehicle electrification, fig-
ure 2.1(a) summarizes the results of a study carried out by the International
Energy Agent (IEA), where the evolution of the Electric Vehicle (EV) stock
up to 2030 is forecasted [1]. The Electric Vehicles Initiative (EVI) members
forecast in 20 millions the EV stock by 2020, while the Paris Declaration on
Electro-Mobility and Climate Change and Call to Action expects to reach 100
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Figure 2.1: EV deployment targets and predictions on the evolution of battery
energy densities [1].
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million electric cars by 2030. The IEA 2DS foresees an even more ambitious
deployment for EVs by 2030 (150 million). One of the most critical challenges to
be overcome in order to meet the aforementioned targets is related with battery
technologies. Although battery costs have been reduced by four from 2008 to
2015 (figure 2.1(b)), industry and government support is still required for the
deployment of these technologies in the EV market. In addition, the need of
increasing vehicle autonomies is encouraging researches to develop high density
batteries to enable longer ranges at lower prices.

Additionally, the research, design and development of efficient, low cost, low
weight, compact and reliable electric and hybrid propulsion systems (or power-
trains) is required for the successful introduction of electrified vehicle technolo-
gies in the market [2,3]. A number of vehicle architectures, such as Fuel Cell
(FC) vehicles, battery powered EVs and Hybrid EVs (HEVs)! are currently
being investigated [3,30-32]. Among them, the most mature technologies with
significant market penetration are battery powered EVs and series or parallel
HEV configurations [33], whose architectures are represented in figure 2.2. In
this context, this work will focus on EV vehicles, and other vehicular topologies
such as hybrid and FC configurations will not be considered?.

A general architecture of an EV powertrain configuration is shown in fig-
ure 2.3, where the hierarchy of the powertrain subsystems (responsible for the
motion of the vehicle), the power connections (in green) and the communica-
tion lines between the vehicle Electronic Control Units (ECUs) based on CAN
(Controller Area Network) protocol (in red) have been included [34-36]. In this
sense, the EV powertrain can be split into the following subsystems:

1. Auxiliary. In general, this subsystem consists on the power steering unit,
the hotel climate control unit and the auxiliary supply unit.

2. Energy storage. This subsystem includes the energy source (batteries,
ultracapacitors, etc.), the energy control unit and the energy recharge
unit.

3. Electric propulsion. This subsystem is comprised of a vehicle controller,
power electronic converter(s), electric motor(s), mechanical transmission
and driving wheels.

n general and depending on their configuration, HEVs can be classified as series, parallel
and series/parallel, among other configurations.

2However, it is important to point out that the contributions of this thesis regarding field
weakening operation (chapter 3) and electric machine sensorless control (chapter 4) are focused
on the electric propulsion drive; thus, these solutions could be implemented in any electrified
vehicle configuration including synchronous machine based drives.
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The auxiliary power supply subsystem provides the required power for all
the EV auxiliaries, such as for the power steering units, adapting the voltage
levels for each device. Auxiliary functionalities useful for passenger comfort,
such as climate control, are also included in this powertrain subsystem [35, 36].

The Energy Storage Subsystem (ESS) stores the electrical energy in the
battery and supplies it to the electric drive. The energy can be both provided
or absorbed, depending on the vehicle’s operating point and the state of charge
(SoC) of the battery. The ESS must be sized to fulfill the range and acceleration
requirements specified for the vehicle [37], and must also satisfy the required
cycle and calendar life. The Energy Control ECU is the main control unit of
the ESS. This unit manages the battery charge and is responsible for checking
its correct performance during normal operation, sharing information with the
powertrain management and control ECU, or with other vehicle domains. It
protects and supervises all the battery cells, aiming to extend their life-cycle,
while satisfying the electric drive power demands. Nowadays, one of the main
research topics consists on the development of advanced methods for the precise
estimation of the state-of-charge and state-of-health of the batteries [38, 39)].
Additionally, special effort is being paid in the development of batteries with
high cycling times and low maintenance costs. Lithium-ion (Li-ion) batteries
with increased battery power capabilities [37] and other technologies such as
Nickel-metal Hydride (NiMH) based batteries [40-42] or ZEBRA technology
[37,43] are being considered as promising candidates for future vehicles.

Finally, the electric propulsion subsystem is responsible for the conversion
of the electric energy (stored in the battery or other energy storage technolo-
gies) into mechanical energy throughout the power electronics and the electric
machine. Figure 2.4 shows the general diagram of the ECUs (traction ECU and
eDrive control ECU) that constitute the EV propulsion subsystem architecture.
The operation principle of the electric propulsion subsystem is as follows. The
traction ECU collects the inputs requested by the driver and, depending on the
vehicle and ESS subsystem status, calculates the optimum torque set-point in
order to ensure a comfortable driving. It is important to note that an optimal
energy management strategy must be included in the calculations [44-48]. The
eDrive control ECU controls the operation of the electric motor to produce the
required torque, according to the command received via CAN from the traction
ECU. Then, the power electronics and the electric machine convert the electric
energy into mechanical energy to propel the vehicle, or to enable regenerative
braking for battery charging [49-51].

In this context, the work carried out in this thesis focuses on the research
of advanced electric drive control strategies. Therefore, special interest is given
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Figure 2.4: Wiring diagram and architecture of powertrain ECUs.

to the control algorithms to be implemented in the eDrive control ECU, as well
as to the electric machine. In the following section, the most common machine
topologies for EV applications are reviewed.

2.2 Machine technologies for vehicle electrifica-
tion

2.2.1 Introduction

Electric machines (figure 2.4) are one of the key components of EV propulsion
systems. The particular operation requirements of EVs, such as high speed op-
eration, high acceleration rates and extreme ambient temperatures pose specific
requirements for the electric machines to be used in EV applications [5, 52].
Additionally, these machines require high torque and power densities, high effi-
ciencies throughout the full speed range and a high overload capacity [53-55].
High reliability, including fault-tolerance, is crucial [9], and low cost and sim-
ple construction is also desirable [56]. In order to meet the high power density
requirements, the state of the art technologies require high density magnetic ma-
terials to produce the rotor flux, usually sintered neodymium-iron-boron (Nd-
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FeB) alloys, and other Rare-Earth Elements (REE), such as dysprosium (Dy)
and terbium (Tb) [8]. As an example, commercial HEVs and EVs such as Toy-
ota Prius, Honda Insight, Chevrolet Volt, Nissan leaf and several vehicles from
Renault and BMW use Permanent Magnet Synchronous Machines (PMSMs)
based on REE materials [8].

The high demand of REEs in a number of sectors such as renewable energy
systems and transportation has lead to a global concern about their possible
depletion. From the economical and political perspective, the European Com-
mission and the US Department of Energy have declared the continued use of
REEs risky for their economies due to following reasons:

e Resource monopoly issues [9,57,58]. Up to date, China is the most impor-
tant supplier of REEs (around 96 % of the worldwide production comes
from this country).

e Risk of high price fluctuations [8,59]. Due to this monopoly, sudden in-
stabilities in REE prices may occur if, for example, export quotas from
China are significantly reduced [60].

Due to these reasons, there is a growing need to replace or, at least, reduce
the consumption of REEs. In this way, one interesting solution consists on re-
cycling REEs, although in 2011 less than 1 % of REEs were recycled due to
technological difficulties and lack of incentives [61,62]. Researches focused on
the reduction of the usage of heavy rare earth materials (such as Dy) are also
being carried out [63,64]. Another solution, which is attracting considerable
attention in the automotive sector, is the replacement of rare-earth Permanent
Magnets (PMs) by other materials, such alnico or ferrites. While the alnico
PMs are not widely used due to their ease of demagnetization [9], the ferrite
magnets are considered promising candidates to replace REE PMs because of
their high electric resistivity, reduced price and their easy production [65,66].
Finally, the usage of other rare-earth free machine technologies, such as Induc-
tion Machines (IMs), Switched Reluctance Machines (SRMs) and Synchronous
Reluctance Machines (SynRMs) is also being considered for automotive appli-
cations [6].

In this sense, the following section reviews the commonly used machine tech-
nologies in the EV sector. This state of the art is concluded with a brief tech-
nological comparison between the reviewed alternatives.
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2.2.2 Electric machine technologies including Rare-Earth
Elements

In the last years, PMSMs have been widely used in EVs and HEVs propul-
sion systems. Although some researches have been carried out to reduce their
magnet mass [63,67], rare-earth PMs are commonly used in most of the appli-
cations [68,69]. Since no excitation current is required, PMSMs have a high
efficiency around the base speed [4] and high power density, which allows man-
ufacturing light motors with high torque production capabilities. Compared to
IMs, PMSMs of the same ratings can be constructed with between 30 % and
60 % less weight and with an efficiency improvement of 5% around the base
speed [8].

However, PMSMs have some drawbacks, such as the need of additional cur-
rent during field weakening operation, which leads to an increase of the power
losses at high speed operation. Demagnetization problems induced by high ro-
tor temperatures or high stator currents can also occur [9]. In addition, their
overload capability is restricted by the magnet characteristics [53]. In any case,
nowadays PMSMs are considered as the most suitable machines for EV and
HEV applications [4,70,71]. According to a survey conducted in [6], up to 2010,
56 % of commercial electrified vehicles had PMSMs installed, showing a clear
trend towards them in the near future.

Depending on the location of the magnets on the rotor, PMSMs can be
broadly classified into two types (figure 2.5): Interior PMSMs (IPMSM), which
have the permanent magnets buried inside the rotor, and Surface Mounted
PMSMs (SM-PMSMs), which have their permanent magnets mounted on the
surface of the rotor [4,72]. In SM-PMSMs, the permanent magnets are directly
facing the air gap and stator armature winding, making Ly ~ L4. Therefore,
the reluctance torque is almost null and only magnetic torque can be produced.

In contrast and due to the salient poles, the d-axis reluctance in IPMSMs is
higher than the one in the g-axis; as a consequence, Lq < L. The reluctance
variation in the magnetic flux flow generates a reluctance torque in addition to
the magnetic one, increasing the machine torque production capability [73,74].
As in IPMSMs magnets are distant from the stator, less Foucault current losses
are produced, causing less overheating. Thus, they are more protected against
partial demagnetization [75].

In general, SM-PMSMs contain a smaller rotor diameter and inertia (which
provides a good dynamic performance), while IPMSMs provide an extended
field weakening operation range [72,76]. Taking into account that saliency pro-
duces additional torque, increasing the power density, rare-earth IPMSM are the
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Figure 2.5: PMSM machine rotor topologies depending on the placement of the
magnets.

most used machines in EV applications [4,77,78]. Finally, it must be taken into
account that this saliency also facilitates the application of certain sensorless
strategies [79-81], making this type of machine interesting for the implementa-
tion of electric drives including fault tolerant features.

2.2.3 Electric machine technologies without Rare-Earth
Elements

Induction Machines

Up to date, Induction Machines (IMs) can be considered as one of the most
matured technologies in AC machines [8,53]. According to [6], up to 2010, 29 %
of electrified vehicles included this technology, being the trend towards IMs
clear for the next years. Thus, currently this is the most popular rare-earth free
technology. Some examples of commercial vehicles using IM technologies are the
Tesla sport cars [82], General Motors EV1 [83] and a number of models provided
by Renault, Daimler or BMW [8,84]. The most important advantages of this
type of machine are their low cost, their robustness and their independence of
PMs [85].
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The dominant losses in IMs are the copper losses [53]. Due to the lower
magnetization current in the range of field weakening, the copper losses are
reduced and the IM provides a good efficiency at high speeds [9,53]. Thus, it
can be considered as a good alternative for sport cars which are intended to
operate at high speeds.

In these type of machines, the constant power region can be extended up to
4 or 5 times the base speed, being this a key demand for current EVs [3,9]. In
contrast, IMs show a number of drawbacks, such as control limitations at low
speeds and the need of high starting currents [8,9]. The required magnetization
current and the copper losses in the rotor decrease the efficiency around the base
speed when compared to PMSMs. The magnetization current can be reduced
including an air gap as small as possible, but this requires tight tolerances
during fabrication, increasing production costs. Additional heat is produced in
the rotor as a result of the losses, which requires cooling and restricts overload
capabilities [53].

Due to their lower torque density and less efficiency, IMs are commonly used
in full EVs and not in HEVs, where space restrictions are relevant.

Synchronous Reluctance Machines

Synchronous Reluctance Machines (SynRMs) can be considered as an alterna-
tive to conventional PMSMs. In these machines, the rotor is manufactured with-
out magnets [86,87] or assisted with small magnets (PM-assisted SynRM) [88].

The structure of a SynRM is similiar to an IPMSM. The main difference
relies on the fact that the rotor is manufactured in a way that the asymmetry
between the d- and g-axes is maximized. Therefore, the produced reluctance
torque is maximized, the power density is increased and the field weakening
performance at high speeds is improved [75]. Although conventional SynRMs
do not have a high torque density, the design of a rotor with multiple flux barriers
and the inclusion of ferrite PMs (to create a flux barrier on the quadrature axis)
results in a high-saliency rotor (figure 2.6) with an increased power density and
improved overall efficiency [8,86,89]. In terms of performance, the constant
power region of a ferrite PM-assisted SynRM can be extended 3 or 4 times the
base speed, resulting similar to the constant power region of an IPMSMs. As a
drawback, demagnetization problems may arise at low operation temperatures,
which can be avoided by preheating the machine before start or by following a
proper design [90].

These features make the ferrite PM-assisted SynRM one of the most promis-
ing candidates for the next generation of EV and HEV drives [8,9]. According
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Figure 2.6: Typical location of ferrite magnets in a PM-assisted SynRM rotor.

to [91], modern ferrite PM-assisted SynRMs can produce 75 % of the torque of
an IPMSM for the same size and liquid cooling technology. In this context, a
significant amount of research has been carried out in the last years regarding
SynRMs and PM-assisted SynRMs, with special attention on machine design
and optimization aspects [92-95].

Switched Reluctance Machines

Switched Reluctance Machines (SRMs) can be considered as another promising
rare-earth free machine candidates for EV applications [9]. In SRMs, the stator
has wound field windings (similar to DC motors), and the rotor has neither
windings, nor PMs (figure 2.7) [96]. Their operation is very different when
compared to synchronous machines and IMs. At the excitation moment of each
stator pole, the nearest rotor pole tends to come to the minimum reluctance
position, producing torque [97].

SRMs have some advantages such as a simple structure, flexibility of control,
high efficiency, lower cost, inherent fault tolerance and good thermal character-
istic [3,98,99]. As the machine rotor does not have any windings or perma-
nent magnets, this technology is suitable for very high speed drive applica-
tions [8,100,101]. SRMs offer a wide constant power region (up to 7 times the
base speed) [9,102], being suitable for gearless EV drives. Their low rotor inertia
provides fast acceleration capabilities, which is also an important requirement
in the automotive industry [103].

High torque ripple, high noise and vibrations are the most important draw-
backs of the SRM technology [104]. In order to produce maximum torque and
reduce the torque ripple, many investigations have been carried out focused on
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Figure 2.7: Most common SRM topologies.

the SRM design, [9,105]. However, nowadays there are few available commer-
cial EVs including SRM technologies. Range Rover and Toyota are currently
working on this technology, which represents 1 % of the available electrified ve-
hicles [6,8,9]. However, SRMs are expected to be potential candidates for the
next generation of EVs.

2.2.4 Discussion on electric machine technologies

A great amount of scientific literature regarding the feasibility of these electric
machine technologies for EV and HEV applications has been published in the
last two decades. In this section, the most important conclusions provided by
this literature have been briefly summarized.

According to several studies [6,53-55,84,98], it is concluded that the most
established machine technologies are the PMSMs and IMs. As concluded in
[4,106-108], considering their advantages and neglecting their high costs and
REE dependency, PMSMs offer the best performance for their application in
EV propulsion systems. However, the current effort in the research, develop-
ment and design of rare-earth-free machine technologies is increasing the interest
towards PM-assisted SynRMs or SRMs [9].

A qualitative comparison of the most relevant machine technologies consider-
ing a number of aspects and including economic factors is provided in table 2.1.
It is concluded that the suitability of each machine technology would depend on
the specific application, not being possible to assess the superiority of a partic-
ular technology over the others. However, considering their preponderance, the
work carried out in this thesis will focus on synchronous machines with high re-
luctant torque, i.e., IPMSMs. Additionally, contributions will also be extended
to non-rare earth based PM-assisted SynRM technologies, as they share the
same control approaches with the IPMSMs.
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Table 2.1: Performance comparison of current EV motor technologies.

Performance IMs SRM PMa. SynRM PMSMs
Fault tolerance low high high high
Power density moderate moderate high high

Efficiency moderate high high high
Cost medium low medium high
Wide speed range ® 4 4 4
Reliability high high moderate moderate
Control simplicity o« 4 o« &
Typ. control tech. FOC/DTC | DITC/ADITC FOC/DTC FOC/DTC
Eff. at base speed 79-86 % 85-89 % 87-93 % 91-96 %

Torque ripple low high low low

Acoustic noise low moderate moderate moderate
Manufacturing costs moderate low moderate high

From the aforementioned literature, it can be also concluded that currently
three-phase technologies are dominant for automotive synchronous machines.
However, future trends are focused on providing fault tolerance to the propul-
sion system (in order to complete service under faulty conditions, although in
derated operation mode). This desirable feature makes multiphase machines
technologies an interesting research topic for their application in the automo-
tive industry [109,110]. Being the three-phase technology the most common
in current EVs, the contributions of this thesis will be implemented for such
architectures. However, multiphase systems could also benefit from the pro-
posed control techniques, as these techniques could be particularized for the
multiphase scenario.

2.3 Electromagnetic model of three-phase auto-
motive synchronous machines

In this section, a detailed description of the electromagnetic model of a three-
phase automotive synchronous machine is provided, as its knowledge is necessary
in order to propose novel control algorithms, and is also required for the devel-
opment of precise simulation models for the early design stages, where control
algorithm validation is carried out.
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2.3.1 Magnetic saturation on synchronous machines

When the total flux (which depends on the stator and rotor currents and on the
PM flux) increases in the machine, saturation of the ferromagnetic parts may
appear. This phenomena is known as magnetic field saturation, or just magnetic
saturation. This effect occurs when an increase of the induced current does not
increase the strength of the magnetic field proportionally [111]. As one of the
main targets on automotive drives is to reduce the volume of the machine as
much as possible, it is common that these machines exhibit high non-linearities
(figure 2.8) due to the magnetic saturation phenomena.
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Figure 2.8: Magnetic saturation in the d- and g-axis inductances of an automo-

tive PM-assisted SynRM.

For an TIPMSM, when a high current value is applied in the g-axis, the iron
saturates and, therefore, the d- and g-axis inductance values decrease, reducing
the flux production capability of the machine [112]. On the other hand, when
high negative d-axis current values are applied, they generally oppose to the
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saturation produced by the permanent magnet flux and the iron desatures [112].
As a result, the d-axis inductance increases. However, in some particular cases,
such as in PM-assisted SynRMs with low PM flux linkage, the effect of the d-
axis current can produce the opposite effect, introducing more saturation and
reducing the inductances. As an example, the highly non-linear inductances of
the PM-assisted SynRM machine studied in this thesis are presented in Figure
2.8, showing the aforementioned tendencies.

Inductances determine a large part of the electric machine behaviour and
play an important role in the electromagnetic torque and voltage expressions,
affecting directly the control precision, field weakening operation and dynamics.
The particular requirements of EVs, such as the design of compact but powerful
drives makes magnetic saturation not negligible and therefore required in the
development of high fidelity machine models [112-115]. Taking this into account,
in the following, the mathematical expressions that describe the behaviour of an
automotive synchronous machine will be reformulated considering the magnetic
saturation effect.

2.3.2 Synchronous machine dq model

Once the voltage equations of a three-phase synchronous machine are trans-
formed into the synchronous dq reference frame (appendix A), the electromag-
netic model of the machine can be based on the following stator voltage equa-
tions:

dV4(ig,1

Vg = Rsid + % - welpq(idaiq)v (21)
dW,(iq,1 .

Vg = Rsiq -+ % + we\Ild(zd7zq)7 (22)

where vq, v, iq and i, are the d- and g-axis stator voltages and currents;
R, is the stator resistance, we is the motor electrical speed and ¥,4(i4,1,) and
U, (iq,74) are the magnetic fluxes considering the non-linearities produced by
the magnetic saturation. The mathematical relationship between the d- and
g-axis fluxes, the Lq(iq,4q) and Ly(iq,14) inductances and the PM flux ¥, (i)
can be described as follows [112]:

Va(ia,iq) = Lalia,iq)ia + Wpm (iq), (2.3)
Wqlia, iq) = Lq(ia; iq)iq- (2.4)
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As the influence of 74 in the saturation of the d-axis inductance and the PM
flux cannot be easily decoupled, for simplicity, it is considered that i; does not
affect ¥, and all its contribution influences the value of Lg [112].

Replacing (2.3) and (2.4) in (2.1) and (2.2), the stator voltage equations can
be rewritten as:

va = Raia + %[Ld(id,iq)id Uy ig)] — weLyiasig)ig = (2.5)

= Rgiq + La(iq, iq)% + idiaLdéi.z’ i) % + idaLdézj ia) %
ﬁ‘l’ngq(iq) B e Lyfi ig)ig (2.6)
va = Raig + SLy(ia1,)ia) + welLaliasig)ia + Upmlig) = (2.7)

dt
. o diy . OLy(ig i) 0ia . OLy(ia,iy) Oi
— Ry, + L q q\ld; %q a\ld,tq) Olq
st Lq(ia, i) G+ ia 5, = Hlo— 5 =

Fwe[Lq(ia,iq)iq + Vpm (ig)]. (2.8)

Considering that the variation of the inductances with respect to the cur-
rents are small enough during transients, the following simplifications can be
considered:

OLaliarie) o o, OLoliaia) o
Dia 0l

OLaliaia) o, o OLaliasia) o o O¥ymlia) -

T di,

(2.9)

=~ (); 0. (2.10)

Thus, the machine electromagnetic model can be reformulated, obtaining
the equations that correspond to the well known variable DQ (VQD) modelling
approach [116]:

vg = Rgig + Lg(iq, ZQ)cTtd —weLy(ia,1q)iq, (2.11)
) . dig RN .
vg = Rgig + Lg(ia, zq)d— + welLq(ia,iq)ia + Ypm(iq)]. (2.12)

The VDQ approach is accurate enough for this particular application. How-
ever, if the application requires a more accurate model during transients, it is
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recommended to use the flux based equations given by (2.1) and (2.2). Al-
though other machine model approaches can be found in the scientific litera-
ture [117,118], in this work VDQ and flux based machine models have only been
considered.

Once the voltage equations have been determined, the electromagnetic torque
can be determined using the following expression:

3 N N
Tem = §P[\I/d(ld’zq)lq = V(i iq)ial, (2.13)

where P is the machine pole-pair number.
Taking into account (2.3) and (2.4), (2.13) can be rewritten as follows:

T = S Py (ig)ia + [Laliasig) ~ Lolia iglliaia}. (2.14)

From (2.14), it can be deduced that the total torque production of a syn-
chronous machine is obtained as a combination of two terms, i.e., the magnetic
torque 3/2PW¥,,,,, (iq)iq and the reluctance torque 3/2P [Ly(iq, iq) — Lq(id,%q)] talq
components.

As it has been advanced at the beginning of this chapter, in the particular
case of SM-PMSM (where Lg(iq,iq) = Lq(i4,%4)), the reluctance torque can be
neglected, and only the magnetic torque produced by the PMs is responsible
for the total torque production. On the other hand, considering a conventional
synchronous machine with a certain degree of saliency (L4(iq,iq) 7 Lq(id,q)),
it can be derived that the higher the difference Ly(ig,4) — Lq(ia,74), the higher
the reluctant torque. In this sense, the reluctance ratio L, (iq,%q)/La(%4,%q)
is commonly defined. Therefore, these machines should be designed in a way
that this ratio is maximized in order to obtain the sufficient torque from the
reluctance torque component and maximize its power density.

2.4 Torque control of synchronous machines

2.4.1 Introduction

As stated in section 2.1, the eDrive control ECU is responsible for the torque
production (commanded by the traction ECU) of the electric machine. Despite
a variety of control approaches have been studied in recent years, such as non
linear adaptive control techniques [119,120], fuzzy logic based strategies [121,
122] or Model Predictive Controls (MPC) [123,124], PI based Field Oriented
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Control (FOC) and Direct Torque Control (DTC) are the most commonly used
control approaches for EV synchronous machines [125-127].

DTC control techniques directly control the electromagnetic torque and the
stator flux modulus, not requiring current regulator loops [10,128]. The ab-
sence of coordinate transforms (appendix A) and PI controllers, together with
the required low computational burden and their simple implementation make
DTC control a widely adopted control strategy [125,127,129]. In addition,
the regulators have little sensitivity to detuned parameters when compared to
other control approaches [127]. In recent years, many researches have been car-
ried out for the integration of advanced controllers such as fuzzy logics [130] or
model predictive controls [131,132] with traditional DTC strategies. However
and in general, DTC produces high current and torque ripples, generating high
acoustic noise [125,133]. DTC also complicates torque control at low speed
operation [125,126] and presents variable switching frequency behaviour. So-
lutions can be implemented to overcome the aforementioned limitations [127],
such as the implementation of DTC schemes for constant switching frequency
operation [134,135], introduction of advanced control techniques such as fuzzy or
neuro-fuzzy strategies [136,137] or advanced flux estimators in order to improve
the low speed behaviour [138].

One of the main advantages of DTC is its fast dynamic response. However, in
this particular application, such dynamics are not required, as transient must be
slow enough to ensure passenger’s comfort. Thus, considering the disadvantages
related to the DTC approach, the most mature FOC approach has been selected
in this thesis. Although the PI based FOC is the most common control approach,
non linear controllers such as second order Sliding Mode Control (SMC) can
be considered as appropriate when the synchronous machine to be controlled
presents high non linearities [139]. In this context, this section focuses in the
review and detailed analysis of both the PI based and second order SMC based
FOC techniques.

2.4.2 Field oriented control
Proportional integral based FOC control

The FOC strategy consists of tracking the torque indirectly by controlling the
measured stator currents. Figure 2.9 shows the general diagram of the FOC
approach. It is based on the projection of the stator three-phase currents
(tr,iv,iw) into a two coordinate system (iq, ) using the well known Clarke
and Park transformations (appendix A). These projections lead to a control
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Figure 2.9: Conventional FOC control structure including the required optimum
reference currents determination block.

structure similar to that of a DC machine [140]. Because the current space
vector in the dg reference frame is static, the PI controllers operate on DC,
rather than with sinusoidal signals. This isolates the controllers from the time
variant winding currents and voltages. The d- and g-axis currents must track
the desired i} and iy set points in order to achieve the desired torque (the gen-
eration of such set points will be thoroughly detailed in chapter 3). Finally,
the reference voltages v{; - obtained from the controller are synthesized in the
machine stator using a modulation strategy such as Pulse Width Modulation
(PWM) [141] or Space Vector Modulation (SVM) [142].

The addition of the feed-forward terms containing the back-EMF allow to
decouple the direct and quadrature axes, improving the transient performance
of the system. These terms, defined as ffy and ff, (figure 2.9) are [143]:

f.fd = 7weLq(Z‘d7 iq)iq; (215)
ffo=wel[Lalia,ig)ia + ¥pm(iq)]- (2.16)

PI regulators have been traditionally implemented in the Laplace domain
for multiple applications. However, it is highly recommended to work in the
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Figure 2.10: Simplified current control diagram in the z domain including a
pre-filter.

z domain when higher accuracy is required [144]. A simplified diagram of the
current control in the z domain is shown in figure 2.10, where the back-EMF
component has not been considered for simplicity. The diagram includes the
following elements:

e A plant transfer function in the z domain G(z), expressed as:

Glz)=="'(1- =17 {Gl(s)} _

S
_ ,—aT
_21(121)2{ 1/R } 1 1-e
S

(T/R)s+1J ~ Ra_er)y 17

where a = R/L and T is the controller sampling time.

e The delays introduced in the system due to the time required by the DSP
(Digital Signal Processor) for current sampling and control execution are
taken into account including one sample delay (z71).

e The controller PI transfer function is derived from the corresponding ex-
pression in the Laplace domain. Adopting a backward Euler approxima-
tion, the PI transfer function can be expressed as:

z (K, + K,T)z — K,

PI(z) = K, + KT — = o , (2.18)

where K, and K; are the proportional and the integral gains of the PI
regulators.
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e A pre-filter (PF) to cancel additional poles and zeros appearing in the
system.

From figure 2.10, the Open Loop OL(z) and the Closed Loop C'L(z) current
transfer functions can be obtained as:

1)z — —e-aT
OL(2) = (Kp+.£(:Ti Kpéz(lz e (2.19)
CL(z) =
_ (Kp + KiT)(1 —e ") (2 — %)
R{z3 — 22(—1 — e=oT) 4 zle=aT + L(K, + K, T)(1 — e=aT) — B2 (1 — e=aT)]}
(2.20)

The general characteristic equation of the C'L(z) transfer function is defined

as:
5.8

22 —2e T, 4 e 2T where T, o9 = 6—,
. w,

(2.21)
being Ty 29, the settling-time (set to 2 %) and being £ the damping factor. In
this thesis, £ has been set to 1 to avoid any overshoot.

Both the additional sample delay (figure 2.10) and the extra zero of the PI
regulator in (2.18) include an additional pole and zero (¢ and b, respectively)
in (2.21):

z—10

T(z)=K .
(2) (22 — 2e=wnTz 4 e=2wnT) (7 — ¢)

(2.22)

Therefore, the PI regulator adjustment consists of making (2.20) equal to
(2.22). The additional pole and zero are then cancelled throughout the pre-filter
(figure 2.10), whose expression is:

PF(z) = élc’)z (2.23)

In this way, the dynamic of the closed loop system matches perfectly with
the second order equation of (2.21). Solving the system using the pole placement
technique, the following solutions are obtained for ¢, K, K; and b:
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c=1+e T —2¢wnT, (2.24)

Ky = ch%iwa; (2.25)

K=o Rle— 1+_26€*_1:;Tc <) g (2.26)
b= KpprT (2.27)

If the magnetic saturation effect is taken into account, it is possible to im-
prove the regulator’s dynamic response taking into account its influence in the
Ly and L, values for the calculation of the control parameters. However, the
proportional and integral gains of the PI regulator are commonly adjusted us-
ing nominal R and L values. As a result, the response of the controller changes
when the machine parameters highly deviate from the nominal ones, although
this deviations can be assumed in this particular application.

Sliding mode based FOC

The SMC is a nonlinear control strategy commonly characterized for its ac-
curacy and robustness. The operation principle of this technique consists on
designing a particular surface (sliding surface) to where the system states are
addressed. Once there, the SMC selects a control law to keep the states on
the neighbourhood of the sliding surface [145]. Robustness against parameter
variations is one of the major advantages of this strategy, making the overall
performance of the current closed-loop based on SMC very reliable [146]. Thus,
it becomes an interesting candidate for controlling highly non-linear machines,
as is the case of automotive IPMSM and PM-assisted SynRM machines.
Generally, two approaches based on the SMC technique can be followed:

e Standard (or first-order) SMC: This approach is considered as an appro-
priate solution for controlling electric drives connected to switching power
converters [146,147]. Two of the main benefits of the first order SMC
are its high dynamic response during transients and its robustness. Even
though using this approach the switching frequency of the power converter
is variable, techniques to fix this frequency have been proposed in the sci-
entific literature [145,148,149]. The discontinuous high frequency switch-
ing control can produce oscillations and many problems in different areas
like the control of mechanical systems (chattering phenomenon) [139,150].
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Figure 2.11: SMC torque control for synchronous machines.

e High-order SMC. Among them, the second order SMC is the most com-
monly used [151,152]. The application of a second order SMC allows to
retain the robustness characteristics of the first order SMC control algo-
rithm at a fixed switching frequency. Additionally, possible chatter can
be reduced [150,151].

This work focuses on the second order SMC due to its advantages and suit-
ability for the torque control of EV synchronous machines. Similar to the PI
based FOC control, the second order SMC can be effectively used for current
regulation and, thus, indirect torque regulation throughout optimal current set
points (figure 2.11). In this sense and aiming to achieve satisfactory tracking
performance for iy and iy, the following sliding functions are adopted [150]:

Si, =€, + cd/eiddt, (2.28)

Siq = eiq + cq/eith, (229)

where e;, = (i} —iq) and e;, = (i}

—1iq), being cq and ¢, positive constants. The
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integral terms of (2.28) and (2.29) are incorporated to remove steady state errors
that may arise in practice. Satisfactory tracking is achieved when ds;; /dt = 0,
being j = {d, ¢}.

Taking the time derivative of the sliding functions, the following space state
expressions are obtained:

dSid dei . d o .
= d—t”’ + cqei, = %(zd —iq) + cqeiy, (2.30)
dSi deiq d o R

dtq =T, = %(zq —iq) + cqt4,, (2.31)

where d(i}})/dt >~ d(i})/dt ~ 0 considering constant or slowly variant current ref-
erences. Introducing (2.1) and (2.2) into (2.30) and (2.31), the motor dynamics
can be rewritten as:

dsid dzd _Rsid + we\Pq(ida Zq) Vd,ref
= 7 iqg — PR— - — Qg 2.32
dt dt + catiy Ld(ld, Zq) Ld(’Ld, Zq) + iy ( )
dsiq dig —Rgig —weVq(iq,iq) Vg,ref
=-——== g =" — - i (233
dt dt Gty L,(ig,iq) L,(ig,iq) g, )

where vg .y and vg oy are the voltages references to be applied by the SMC.
This voltages can be obtained as [150]:

Vd,ref = Vd,ST T Vd,eq; (234)
vq,ref = Vq,ST + Vq,eq- (235)

The terms vq q and vy ¢4 correspond to the equivalent control signals, which
are obtained forcing ds;, /dt = 0 and ds;,/dt = 0 in (2.32) and (2.33), resulting
in:

—Ryiq +we U, (ig, iq) o

Vd,eq = |:Cd€id - Ld(ld715) 4 Ld(ld, Zq), (236)
_Rsi - weqjd(idﬂ; ) ..

v‘]veq = [quiq - qu(idaiq) : Lq(zd,zq)~ (237)

The components vq,s7 and vg,s7 are computed applying the Super-Twisting
Algorithm (STA) [151]:

vysm = Ly | Wls [ 2sgn(s,) + ;[ san(es, . (2.38)
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Figure 2.12: Diagram of the second order SMC control algorithm for syn-
chronous machines.

where \; and §; are positive gains to be tuned, being sgn(s;;) = s;,/|si,|. The
goal of the first terms of (2.38) is to guarantee that the sliding surfaces s;, = 0
are reached at finite time. In this sense, figure 2.12 shows the complete diagram
of the second order SMC, including the calculations of both equivalent and ST
terms.

Appendix B summarizes the mathematical equations required for properly
tuning the second order SMC algorithm, including the equivalent voltages and
STA parameters.

It is important to note that equivalent voltages are not strictly necessary for
the second order SMC. However, they include a number of benefits [150]:

e They improve the system’s transient response.

e The more accurately they are calculated, the lower is the control effort
left to the STA algorithm.

e Although equivalent voltage components are machine parameter depen-
dant, they do not decrease the control algorithm robustness, as it relies
on the STA.
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e Their incorporation simplifies the calculation of the sliding function con-
stants ¢ and c,, as well as the STA constants Ay, Aq, {24 and Q.

If magnetic saturation phenomena is not negligible, equivalent voltages of
(2.34) and (2.35) can be calculated estimating the inductances L4, L, and the
magnetic fluxes ¥y, ¥, from Look-up Tables (LUT) containing current depen-
dant FEM or experimental data of such parameters, and using the currents iy
and 4, for their estimation.

2.4.3 High speed operation

Future trends in the EV industry include the usage of high speed electric ma-
chines3. In this way, their volume and size can be reduced when increasing their
maximum operation speed while maintaining the power production capabilities,
as less torque is required to deliver the same power [5]. As an illustrative ex-
ample, the 3"¢ generation Toyota Prius (launched in 2010) increased the motor
mechanical speed from its previous version (2"¢ generation, launched in 2006),
from 6000 rpm up to 13900 rpm, keeping the same nominal power of 50 kW [8].
It is even expected in the near future that EV machines will operate at mechan-
ical speeds beyond 15000 rpm [5].

High speed operation of automotive synchronous machines leads to a number
of challenges to be overcome in order to ensure a correct system performance
in the whole speed operation range. As the PM-assisted SynRM used in this
thesis for the experimental validation of the proposed control algorithms can be
considered as a high speed machine (with a maximum operation speed of 12000
rpm), high speed control issues become relevant in this particular case.

On the one hand, as the electrical frequency f. = w, /27 increases propor-
tionally to the electrical speed, this implies that a sufficiently high sampling
frequency is required in order to ensure a correct reconstruction of the mea-
sured signals, such as stator currents or electrical rotor position [155-157]. As
a consequence and depending on how fast the machine operates, an increase in
the power electronics switching frequencies can be required for proper torque
regulation, which, in some cases, is not possible using conventional Silicon (Si)
based IGBT (Insulated Gate Bipolar Transistor) technology [12,13, 158, 159].
The physical limits of Si devices give rise to a new generation of power de-
vices based on Wide Band Gap (WBG) semiconductor materials, where the

3Electric machines are considered as high speed machines (HSEM) if they can operate
beyond 10000 rpm [153,154].
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Silicon Carbide (SiC) and Gallium Nitride (GaN) are currently the most ma-
tured technologies [14,15,158,160]. From the control implementation point of
view, the limited computational capabilities of Digital Signal Processors (DSP)
makes Field Programmable Gate Array (FPGA) technologies suitable for the
implementation of high sampling rate control algorithms [16,161,162].

However, in some cases as in this thesis where only Si technology is available,
it is necessary to rely on advances control approaches to obtain a correct torque
regulation at high speeds [163,164], or consider techniques that compensate the
effect of delays on the controllers. In this sense, this thesis has adopted a phase
advance strategy in order to improve the torque regulation at high speeds [165].
When control approaches that make use of vector transformations are used
(appendix A), it is important to consider the delays introduced in the system
due to the measurements and control execution.

Considering the particular case of a FOC scheme including a symmetric
Pulse Width Modulation (PWM) strategy (figure 2.13(a)), the voltage control
output, calculated in the instant k (V}}) is effectivelly applied in the instant
k+1.5. During this small time interval, the machine has rotated and, as a
consequence, the angle to be applied to the inverse Park transformation should
be advanced [8,165,166]:

0, = 0. + 1.5w.Ts, (2.39)

being T the control execution period. Similarly, when using asymmetric PWM
(figure 2.13(b)), the delay should be compensated in the angle used for the
inverse Park transformation as follows:

0, =0, + 2w, T (2.40)

It is important to remark that this solution extends the controllable speed range,
but has its limitations [165].

On the other hand, when increasing the drive speed, the back-EMF of syn-
chronous machines increases and, due to the limitation of the available DC-link
voltage, field weakening control is mandatory [107,167]. In high speed machines,
the field weakening operation region can be very large. Thus, robust field weak-
ing control becomes relevant [168,169]. During field weakening control, the
stator voltage must be properly controlled in order to avoid uncontrolled regen-
eration. However, parameter uncertainties and non-linealities can make field
weakening control of synchronous machines with high reluctance-ratio challeng-
ing [166].
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Figure 2.13: Symmetric and asymmetric PWM pulse generation and the delays
associated with their usage.
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2.4.4 Fault tolerance and limp-home capability

High reliability is crucial for EV applications [9,17,170]. As discussed in sec-
ction 2.2.4, multiphase machine technologies are an interesting research topic
due to their intrinsic fault tolerance. However, since three-phase synchronous
machines are the most established technologies in EV drive propulsion systems,
a great number of works regarding fault detection and fault-tolerant control of
three-phase systems are available in the scientific literature [18,170].

Fault detection and fault tolerance are important issues not only for the
reliability of the drive system, but also for the proper operation of the vehicle
under faulty conditions. These features make the development of Prognostic
and Health Management Systems (PHMS) an attractive option to increase the
safety and availability of EV end-users [17,19,171]. These methods rely on a
Failure Mode and Effect Analysis (FMEA) where, once failures are classified
by their risk priority, the degradation mechanisms that cause them are identi-
fied [20,172-174]. From the FMEA analysis, a selection of the most critical
degradation mechanisms and their corresponding measurable signals is con-
ducted. Finally, the selected degradation mechanisms are taken into account
in the development of PHMS strategies to predict system failures [175]. In gen-
eral, most of the studies are focused on power semiconductor devices [176-179]
and stator windings [180-184].

Conventional automotive synchronous machine control strategies require at
least one DC voltage sensor, two or three current sensors and a resolver (or en-
coder) to ensure a correct control performance. By carrying out an FMEA, it is
deduced that a resolver sensor failure would involve catastrophic consequences,
as it provides the rotor position, mandatory for field orientation and also for
closed-loop control. Taking into account the road vehicles functional safety
standards (ISO26262), where fault tolerance against speed and position mea-
surement failures must be ensured, many researches concerning position/speed
estimation techniques (also known as sensorless control) are currently being
carried out [21,170,185]. Although nowadays the elimination of such sensor
is not straightforward, many studies are focused on the development of sen-
sorless strategies which allow drivers to reach their destination safely despite
the occurrence of a sensor fault. This concept is called limp-home opera-
tion [22,23,186,187].
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2.5 Conclusions

In this chapter, the fundamentals of an EV propulsion system have been re-
viewed. A detailed description of the powertrain domain and its main functional
blocks has been provided, with an special emphasis in the electric drive and the
control algorithms to be implemented in the eDrive control ECU.

Taking into account the particular requirements and working conditions of
EVs, nowadays PMSMs are considered as the most suitable technologies for
their application in the automotive sector. However, the increasing effort in the
development of rare-earth free machines makes the PM-assisted SynRM technol-
ogy to be considered as an interesting alternative for automotive applications.
The work of this thesis will be focused on automotive IPMSM due to their high
reluctant torque. Additionally, such contributions will be extended to rare-earth
free PM-assisted SynRM drives, as they share the same control approaches.

Concerning control aspects, PI based FOC is one of the most matured con-
trol approaches for synchronous machines. However, taking into account the
magnetic saturation effect of automotive drives, the usage of non linear con-
trol strategies such as the SMC based FOC are considered as appropriate.
Although the SMC itself is robust enough against parameter deviations, the
current references obtained throughout analytic calculations are highly depen-
dent on machine electrical parameters. The high non-linearities together with
electrical parameter variations due to machine ageing, manufacture tolerances
and temperature dependency lead to possible controllability problems in the
field weakening region. Due to the aforementioned reasons, it is confirmed the
importance of relying on a robust field weakening control to ensure correct EV
performance in the whole operation range.

One of the most important requirements in EV applications is the fault tol-
erance capability, where not only the reliability of the drive but also its proper
operation under faulty conditions must be guaranteed. Recent studies focus
their efforts in the detection and prediction of faults throughout estimation
techniques. In this specific context, special interest is given to the development
of robust techniques against resolver sensor failures (sensorless operation), be-
cause their incorrect performance involve catastrophic consequences. The near-
future trend considers sensorless techniques for limp-home operation, i.e., to
allow drivers reach their destination safely in a pseudo-optimal mode.

Taking into account the conclusions derived from review of the state of the
art, the work carried out in this thesis presents two contributions. On the one
hand, a reliable field weakening control strategy suitable for EV applications,
which improves the overall control algorithm robustness under parameter devi-
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ations and uncertainties is presented in chapter 3. On the other, a novel hybrid
sensorless strategy, which guarantees sufficient limp-home operation is presented
in chapter 4.
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Look-up table based flux
weakening strategy
including novel voltage
constraint tracking feedback

3.1 Introduction

In industrial applications, reliable regulation algorithms are required in order
to control the torque production of an electric machine in the whole drive
torque and speed operation range. According to the state of the art (chap-
ter 2), the most common synchronous machine torque control approaches con-
sist on regulating the machine stator currents in the synchronous dq reference
frame [10,11,77,107,117,188-194]. Among them, the PI based Field Oriented
Control (FOC) is the preferred option in the industry [107]. This strategy must
be complemented with an optimal current set-point generation algorithm to
drive an EV propulsion system through the maximum efficiency points, includ-
ing Field Weakening (FW) and deep FW operation when required.

In this context, a great amount of works dealing with FW control can be
found in the scientific literature [10,77,107,167,188,191,195-199]. Some authors
propose the usage of flowchart [77,191] or PI based strategies [197-199]. In
general, these FW algorithms only consider the ig current modification [77,
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190-192], which could be only valid for machines without deep FW operation
requirements. For example, reference [200] proposes an optimized FW strategy,
where either i; or the phase angle of the reference current are the voltage loop
control actions. The corresponding transfer function is defined, allowing the
precise design and adjustment of the voltage control loop. The regulator is
designed considering constant electrical parameters and DC-link voltage.

In order to provide deep FW operation, other approaches can be used. For
example, an unified direct-flux vector control implemented in the stator flux
reference frame is proposed in [168]. This method relies in the d-axis compo-
nent of the stator voltage to control the stator flux, while torque is controlled
throughout the g-axis component of the stator current. This strategy requires
a stator flux estimator and an additional PI, which makes its implementation
somehow complex. Similarly, analytic methods compute online the optimum
current trajectories for the whole operation range of the machine [107], at the
cost of increasing the computational burden [201-203]. These strategies can
be combined with online parameter estimation algorithms [204,205], providing
additional robustness under parameter uncertainties. Nevertheless, the time re-
quired for estimation convergence prevents the usage of these approaches in EV
applications with high dynamic response requirements.

In commercial EV drives it is of common practice to precalculate these set-
points and store them in Look-up Tables (LUTSs) [10,11,167,188,206,207]. In
this sense, figure 3.1 shows the general diagram of a torque control algorithm for
synchronous machines including the current regulators and the optimal current
set-point generation. Ideally, this last should be based on the knowledge of
the reference electromagnetic torque (77,), DC-link voltage (Vpc), machine
mechanical speed (Wpecn) and rotor temperature (Tepp, rotor). Thus, machine
electrical parameter identification is required in order to precisely precalculate
these LUTs. FEM analysis [112,208] or experimental procedures [112,209] are
commonly employed to obtain the electric machine d- and g-axis fluxes®.

LUT based methods are preferred in the industry due to their low computa-
tional burden and simplicity. However, LUT approaches tune the control algo-
rithm for an specific set of electrical parameters and may eventually loss control
under parameter variations due to an incorrect FW regulation, i.e., exceeding
the stator voltage limit and leading to an uncontrolled energy regeneration [169].
The high non-linearities caused by the magnetic saturation effect [112], together
with electrical parameter variations due to machine ageing, manufacture toler-

1Permanent magnet flux and d- and g-axis inductances can be calculated from these fluxes
following an appropriate procedure [112].
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Figure 3.1: General diagram of a 4D-LUT based indirect torque control ap-
proach for synchronous machines.

ances and temperature dependency [210] confirm the importance of relying on
a robust control strategy that ensures the correct operation of the EV drive
during its whole life-cycle [211,212].

In this chapter, a reliable FW control algorithm for EVs and/or HEVs
mounting synchronous machines is proposed and fully validated. An IPMSM
model is used for simulation validation, while the experimental validation is car-
ried out with a 51 kW full scale automotive PM-assisted SynRM machine. An
improvement of the LUT based control scheme, consisting of a robust hybrid
2D-LUT /voltage feedback based current set-point generator is proposed. The
main advantage of the proposed algorithm is based on the fact that optimized
LUT values are used unless parameter deviations jeopardize the stator voltage
limit. The current set-point LUT data is calculated in order to minimize the
copper losses at low speeds and magnetic losses at high speeds.

The chapter is organized as follows. Section 3.2 explains the operation re-
gions of a synchronous machine, leading to the analytical solution for each of
these regions. Sections 3.3 and 3.4 describe the LUT based algorithm precalcula-
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tion and its dimensioning. Section 3.5 presents the proposed Voltage Constraint
Tracking (VCT) flux weakening strategies. Sections 3.6 and 3.7 include simu-
lation and experimental results that validate the proposed approach. Finally,
conclusions are given in section 3.8.

3.2 Operation regions of synchronous machines

3.2.1 Voltage and current constraints

Synchronous machines exhibit torque and speed constraints due to inverter cur-
rent rating and available DC-link voltage. These limitations must be taken into
consideration [167] and can be expressed in terms of current and voltage as
follows:

I < TInae, (3.1)
V S Vmaxa
being I, and V4, the maximum allowable stator current and voltage, respec-
tively, and being I and V the instantaneous stator current and voltage vector
modulus. From (3.1) and (3.2) and using the Clarke and Park transformations,

the current and voltage limit curves in the dg reference frame (appendix A) can
be rewritten as:

V2482 < Lgs, (3.3)

02+ 12 < Vi (3.4)

The voltage limit curve can be derived from the machine voltage equations
in the dq coordinates. From (2.5) and (2.7), the dgq voltage equations in steady-
state (diq,q/dt = 0) can be expressed as:

Vg = Rs’id — weLq(id, ’iq)iq, (35)
Vg = Rsiq + WeLd(idv iq)id + we\prm(iq). (36)

In some cases, the stator resistance Rs can have a significant impact in
the voltage limit and must be considered. However, the effect of Rs; has been
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neglected in this particular application because its influence is low. Without
considering the effect of R, (3.5) and (3.6) can be rewritten as:

Vg = —weLq(iqu)iq, (37)

Vg = weLd(id, iq)id + we\I/pm. 38)

Replacing (3.7) and (3.8) in (3.4), the voltage limit inequation (3.9) is ob-
tained.

\/ [weLg(iayiq)ig)” + [weLalia, iq)ia + weWpm]® < Vinaz, (3.9)

which can be rewritten as a speed dependant elliptical constraint:

L:(ig,iq) [z - %r + L2 (ig,iq)iz < (V’W>2 (3.10)
d\ld,tq d Ld(id,iq) q\td>tq)tq > We . .

The current limit curve (3.3) produces a circumference of radius I, in the
stator currents dq plane (figure 3.2). Similarly, (3.10) produces ellipses whose
radius is reduced while the electrical machine speed increases (figure 3.2). Syn-
chronous machines must be controlled such as the dq plane stator current vector
lies simultaneously within the current constraint circumference and voltage con-
straint ellipse [167].

Taking these constraints into account, various optimal current trajectories
can be obtained as a function of the mechanical speed and the reference torque.
Figures 3.3 and 3.4 show optimal trajectory examples of the stator currents in
the dg reference frame for Ly = L, (i.e. SM-PMSM) and for the general case,
where Ly # L, (i.e. IPMSM or PM-assisted SynRM), respectively.

According to the previously defined current (3.3) and voltage (3.10) con-
straints, four operation regions can be distinguished for a synchronous machine
(figure 3.5): Maximum Torque Per Ampere (MTPA) region, Field Weakening
(FW) region (without and with torque production reduction) and Maximum
Torque Per Voltage (MTPV) region. In the following, the analytical solutions
of these optimal current trajectories are presented.

3.2.2 Maximum Torque Per Ampere region

An MTPA curve exists in the stator currents dq reference frame which ensures
a maximum torque per applied current modulus (figure 3.5, region I). Minimum
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Figure 3.2: Current constraint circumferences and speed dependant voltage limit
ellipses in the synchronous dg reference frame.

ohmic losses (predominant at low operation speed) are obtained if this curve is
tracked.

In the particular case of SM-PMSM machines, where Ly = Ly, the MTPA
trajectory (figure 3.3) is directly obtained from the torque equation (2.14). As
iq has no torque production capability, the i¢g and i, current pair that must be
applied can be expressed as:

j Tem (3.11)
lg = 54—, .
3Py,

ig=0. (3.12)

For the general case where Ly # Lg, the MTPA curve corresponds to the
following i4 and i, current pair:

U, + \/\Ilgm +8I2(Ly — L,)?
4(Lq - Lq) ’

iq = 4 /12 — i2, (3.14)
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Figure 3.3: Optimum trajectory example of the stator currents in the dq plane
for a SM-PMSM (L4 = Ly).
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Figure 3.4: Optimum trajectory example of the stator currents in the dq plane
for an IPMSM (Lq # Lg).
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Figure 3.5: Optimum operation regions: MTPA (I), field weakening (II), field
weakening with torque reduction (IIT) and MTPV (IV).

where I = /i3 + 42 is the current modulus. The solution of (3.13)-(3.14) relies
on the resolution of a quartic polynomial, which is not straightforward.

It is possible to analytically calculate the MTPA solution for i} and 7 from
the desired torque set-point. The MTPA solution is formulated in [107] as a
constrained minimization problem, where the function to be minimized is:

ig+i, (3.15)
subject to the constraint
3 . o
§P (Wpmiq + (La — Lq)iaiq] = Tem.- (3.16)

This problem can be solved using the Lagrangian approach, being the La-
grangian expression defined as [107]:

L(iq,iq, \) = ig +i2 + MG P Wpmiq + (La = Lq)iaiq) = Tem}, (3.17)

where A is the Lagrangian multiplier. The conditions for minimizations are
expressed as:

L
6—, =0 — 2ig+ §P/\(Ld — Ly)ig =0, (3.18)
6Zd 2
L
27 =0 — 2i,+ gP)\ [Upm + (La — Ly)ia] = 0, (3.19)
q
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oL 3
E 0 — §P [(Ypmiq + (La — Lq)iaiq) — Tem = 0. (3.20)
Solving these equations for i4, the following polynomic is obtained [107]:
ig + A1i3 + Byis + Chig + Dy = 0, (3.21)
where
3v
A= 2o 3.22
! (Ld - Lq) ( )
302
B = —" 2
1 (Ld _ Lq)Q ) (3 3)
\113
c, = —r" 3.24
! (Ld - Lq)g 7 ( )
and T2
16(T7;
Dy = ——0Ten) (3.25)

9P2(Ly — Ly)?’
Quartic polynomials are the highest order ones with an analytical solution.
Ferrari’s method can be used to solve (3.21). Selecting the right solution from

the four possible ones, i3/7P4 can be solved as [107]:
A
MTPA 1 Uit M1
S —— 3.26
Zd 4 2 2 I ( )
where
342 2 1 3
M1 = ZAI - M — 231 - H(4A1B1 — 801 - Al)’ (327)
1

A2
= ‘/Tl — B+, (3.28)
gy | of B of
S Y e s Y A= 2
\/ 2+\/ +27+ YRRIETE (3.29)

1
ay = 7(314101 — 12D, — B?), (3.30)

and

1
B = 27( 2B} +9A,B1Cy + 72B1 Dy — 27C%? — 27A3Dy). (3.31)

Once iq is determined for the MTPA solution, i)/"" 4 is calculated from (2.14).
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3.2.3 Field Weakening region

In order to extend the speed operation region of a synchronous machine, the
traditional control strategy consists of injecting negative i4 current, resulting in
the so called FW control [213]. In this way, the current vector is maintained
inside the voltage constraint ellipse.

In the region known as FW without torque reduction, this is achieved with-
out losing torque capability (figure 3.5, region II). In the particular case of
SM-PMSM (figure 3.3, region II), only 44 is reduced, while, in the general case
(figure 3.4, region II) 44 is reduced and ¢4 is then recalculated to maintain the
reference torque.

When the current constraint circumference is reached, the torque capability
is limited in FW operation (figure 3.5, region III). In order to achieve maximum
torque in this region, the current set-point vector must be positioned in the
intersection between the voltage and current constraint curves.

For a given torque set-point, maximum available voltage and mechanical
speed, it is possible to analytically determine the current set-points in FW
operation [107], considering the following minimization problem:

Minimize : L3 |ig + L2 + L%2 < Vimas i (3.32)
Ly 79 = We ’
subject to the constraint

3 . .

§P[\Ilpmzq + (Lg — Lg)igiq]) = Tem. (3.33)
The quartic polynomial for the FW solution is given by:
i + Agid + Boi? + Caig + Do = 0, (3.34)
where
2V L
A:W[Q—q], 3.35
> (La—Ly) Ly (8:35)
U2 42 U2 V2
B — pm _|_ pm + pm maa:7 336
L L Tala-Lp 12wy 8
W | Yom Vo &
02 = p P 3 + P - — Ul s (337)
Lqg | (La—Lq)*  La(La—Lg) wgLa(La— Lg)
1 ‘I’4m L2 4T* V2 2\1,2m
D, = 2 p2 73 S p2 ’ (3.38)
(Lqg — Lg) Lz L; 9P we L3
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being V4, the maximum stator voltage magnitude.
The general solution is calculated similarly to the MTPA region:

L | Y (3.39)

where 1y and pg are calculated from (3.27) and (3.28) using the new variables
A27 BQ, 02 and DQ.

3.2.4 Maximum Torque Per Voltage region

In this operation region (also known as deep field weakening region), the torque
production capability is maximized for a constant stator voltage value (figure
3.5, operation region IV). The MTPV region only exists for a particular machine
if the U, /Lq < Ipqq condition is fulfilled.

In a SM-PMSM, the MTPV trajectory implies that i3 must be fixed to
—W,,/Lg, while for the general case (Lg # Lg) the MTPV trajectory is [107]:

-
PV - 24~ B (3.40)

Ly

MPTV __ (Vs/we)? — )‘?1
iy =7, (3.41)
where
—LyWpm + | L303,, + 8(La — Ly)* (Ve /we)?

Aa = . (3.42)

4(Lq - Lq)

3.3 LUT content calculation methods consider-
ing magnetic saturation

3.3.1 Introduction

The LUT content calculation can be straightforward when no magnetic satura-
tion is present in the electric machine [214]. However, the effect of the magnetic
saturation cannot be neglected in EV and HEV applications. In the following,
two methods are presented in order to calculate the optimal current reference
trajectories under magnetic saturation.
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3.3.2 Iterative analytical LUT calculation

The influence of the magnetic saturation can be taken into account solving the
equations of section 3.2 iteratively. Following this approach, machine induc-
tances and permanent magnet flux values are updated for each iteration, and
a convergence in the resulting current vector is obtained for all the operation
points.

A flowchart diagram of the proposed iterative LUT calculation method is
shown in figure 3.6. The operation principle of the implemented offline calcula-
tion algorithm is as follows:

1. The electrical parameters Lg, Ly and ¥, are determined for a given pair
of 43,4y currents (note that currents are set to 0 during the first iteration).

2. Taking into account the electrical parameters and a given reference torque,
the current references for the MTPA region (i3/7P4, TP 4) are obtained

throughout the analytic method described in section 3.2.2.

3. The flowchart checks whether the stator voltage V, exceeds the maxi-
mum voltage available (Vj,q.) or not. If the inverter voltage output is
not saturated (Vs < Viuaz), the flowchart assumes that the drive is work-
ing in the MTPA region. Therefore, the calculated current references
(:TPA z'f]‘/[ TPAY will be applied to the flowchart for the following itera-
tion.

4. If the inverter output voltage is saturated, FW and MTPV current tra-
jectories are calculated simultaneously using the analytic expressions de-
scribed in sections 3.2.3 and 3.2.4, respectively.

5. By comparing the values of i5" and TPV the flowchart decides if the
operation point corresponds to the MTPV region or the FW one, updating
the current references for the next iteration.

Note that the implemented iterative procedure does not consider any current
or power limitations of the propulsion system. Those limits can be included in
the online torque control algorithm after the LUTs, improving the flexibility of
the LUT data. Thanks to this, current and power limits can be easily tuned in
the model, not requiring to recalculate the current trajectories.
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Ld, Lq,l//pm= f(id, iq )
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MTPA
Analytic calculation
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FW MTPV
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N
! (NO)
| ¢{N=num_iterations? |—
} (YES)
END

Figure 3.6: Proposed iterative flowchart for the offline current set-point LUT
calculation under magnetic saturation.

3.3.3 LUT calculation using optimization methods

An alternative to the proposed iterative method consists of using optimization
strategies. MATLAB tool fmincon aims to find the local minimum of a con-
strained non-linear multi-variable function. As an example, the required current
references for the MTPA region using the MATLAB fmincon optimization strat-
egy can be obtained as follows:

e Definition of the optimization function, which is evaluated for different
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MTPA operation points:

[currents, fval] = (3.43)
= fmincon(Cost,[..],[..], [.-], [..]; [--], [ . [..], Constr, options],  (3.44)

where currents is the optimum output value (in this particular case the
output is a matrix [i,47]), fval is the value of the objective function,
Cost is the objective function to minimize (cost function), Constr defines
the constraints and the optimization options are specified in options.

e Definition of the cost function Cost considering the MTPA region. The
cost function aims to minimize the predominant losses in this operation
region, i.e., copper losses (Poy). Then, the cost function can be expressed
as:

3.0 .
Poy = 5Rs(z?,l +i2). (3.45)

e Definition of the minimization constraints. T'wo types of constraints can
be distinguished. On the one hand, ¢(z) represents the constraint where
c(z) < 0 and, on the other, ceq(x) represents the constraint ceq(z) = 0.
The following constraints must be considered for this particular case:

ceq(1) = Tem — T2,
where ¢(1), ¢(2), ¢(3) and ¢(4) force the dg currents to be under their cor-
responding maximum limits, ¢(5) ensures that the stator voltage remains
under the maximum DC bus voltage and ceq(1) tries to minimize the error
between the estimated torque and the reference one.

In this work, the iterative method has been mainly used for LUT construc-
tion, although for some particular cases optimization methods have been em-
ployed.
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3.4 LUT dimensioning optimization

The number of LUT dimensions has a direct impact in the amount of memory
required by the microcontroller to store them. Thus, it is important to optimize
the number of dimensions needed for a proper torque control of the machine. As
explained in the introduction of this chapter, ideally 4D-LUTSs could be required
in order to precisely determine the current set-point of an EV drive in a given
operation point. These dimensions are the reference torque (7;,,), DC-link volt
age (Vpc), mechanical speed (wyecn) and rotor temperature (Temp rotor). In
practice, the dimensions required by the current set-point generation LUTs can
depend on the specific electric machine and application (for example, whether
DC-link voltage varies or not), and also on the required torque production pre-
cision (rotor temperature dependency).

Rotor temperature can be obtained using telemetry systems or infrared sen-
sors [215,216], which avoids the usage of cables and brushes but requires ad-
ditional hardware, or can be estimated from back-EMF observers [215, 216].
However, at low and zero speeds, such estimators tend to fail due to the lack of
back-EMF'. Thus, it is difficult to achieve a good rotor temperature estimation
in the whole motor operation range. Due to the complexity and/or additional
cost of the aforementioned solutions, rotor temperature consideration is not
of common practice in industrial applications [216]. Generally, the deviations
produced by temperature effects are accepted and no compensation action is
performed.

As DC-link voltage varies in battery powered EV drives, this dimension must
be considered in EV applications. However, the LUT dimension related to DC-
link voltage variations can be eliminated using the speed normalization concept
presented in [192].

From (3.10) and neglecting the effect of the stator resistance, the maximum
stator voltage is obtained as:

Vmaw = we\/(Ldid + \ijm>2 + (qu’q)Q. (352)

In a two-level three-phase Voltage Source Inverter (VSI) fed machine, the
maximum achievable phase voltage for the linear modulation region when Space
Vector modulation or PWM with third harmonic injection is adopted is:

Vbe
N

A normalized voltage (V3&™), which can be the minimum or the nominal

Vinaz = (3.53)

81



Chapter 3

Torque [Nm]

Mechanical Speed [rpm]

Figure 3.7: Speed normalization strategy.

DC-link voltage value, can be selected to define the p normalization coeffi-
cient [192]:

Vi
o0 (3.54)
DC
Substituting (3.54) into (3.53), the following expression is obtained:
V Vno'rm .
Vinaz = be = dile] = pVan (355)

- \/3 \/3 maxr

while substituting (3.55) into (3.52), the following speed normalization equation
is obtained:

: /’LV’ITLG.ZL’ : — /J/w:OTTI’L. (3.56)
\/(Ldzd + \I/pm)Q + (quq)Q
From (3.56), when the DC-link voltage increases, w?°™™ becomes smaller
than the real electrical speed w.. This is equivalent to a displacement of the
speed vs torque curve towards the right side (figure 3.7), expanding the voltage
limit. The opposite occurs when the DC-link voltage decreases. Thus, the
normalized speed can be calculated and used as an input for a 2D-LUT (with
Wnorm and T2 as inputs) calculated for the normalization DC-link voltage
(VB&™) operation conditions.

We =
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Figure 3.8: General diagram of the proposed current regulators with hybrid
2D-LUT/VCT based feedback control strategy.

Equation (3.56) can be also expressed in terms of mechanical speed (w.,),
obtaining the speed normalization equation used in the application:

Wm = UWnorm- (357)

Advantages of this approach become clear, because the amount of memory
needed for the implementation of the algorithm in a microprocessor is highly
reduced, keeping the same precision as when a 3D-LUT is used.

3.5 Proposed 2D-LUT/VCT hybrid FW strate-
gies
3.5.1 Introduction

From sections 3.2.2, 3.2.3 and 3.2.4, it becomes clear that the calculations to
obtain i3 and iy for a given operation point depend on the machine electri-
cal parameters. From (3.10), it can be derived that variations in the d- and
g-axis inductances modify the voltage limit ellipse (figure 3.4), leading to pos-
sible controllability problems in FW and MTPV operation [169]. The high
non-linearities caused by the magnetic saturation [112] together with electri-
cal parameter variations due to machine ageing, manufacture tolerances and
temperature dependencies are responsible for such parameter deviations.

In this thesis, a 2D-LUT based FW control strategy including a novel Volt-
age Constraint Tracking (VCT) feedback is proposed (figure 3.8). The LUTs
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Figure 3.9: LUT based current reference determination using the speed normal-
ization concept and proposed flowchart and integration based VCT feedback
strategies.

dimension optimization is achieved thanks to the speed normalization concept
described in the previous section. The normalized speed wyorm is controlled
using a VCT regulator (figure 3.9), which aims to maintain the stator voltage
vector close to the voltage limit margin in the FW and MTPYV regions, accord-
ing to the error produced between the current control reference voltage V.* and
the voltage limit V4,

Vbe
Av =V = KyViae = 1/ (052 4+ (v2)?2 = K, —=, 3.58
( d) ( q) \/3 ( )
where K, provides a security margin (K, < 1) in order to ensure that the voltage

limit is never reached. In this sense, two solutions for the VCT regulation have
been proposed, as shown in figure 3.10:

e Flowchart based normalized speed control.
e Integration based normalized speed control.

The main advantages of these methods are that no machine parameters are
needed in their calculations and that they provide additional robustness to the
LUT method under parameter variations. In the following, both VCT alterna-
tives are described in detail, and the selection of the most appropriate strategy
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that will be implemented in the experimental platform is carried out consid-
ering their features and performance in a Matlab/Simulink based simulation
platform.

3.5.2 Flowchart based VCT regulator

The proposed flowchart based VCT strategy follows the diagram shown in fig-
ure 3.10. This strategy is based on the solution proposed in [191]. At the
beginning, the algorithm checks whether V is higher or lower than the voltage
limit, i.e., it checks the sign of Av. If Av > 0, the variable status is set to 0 to
indicate that VCT strategy should be activated.

If status = 1, the voltage limit is not reached so no VCT strategy is ac-
tivated; thus, the output speed remains invariable. When entering in FW
(status = 0), the flowchart is divided into two branches, by checking again
the sign of Av. If Av > 0, branch “A” will be selected. Otherwise, branch “B”
will be activated.

In branch “A”, the normalized speed needs to be increased in order to force
the system into a deeper FW operation and keep the stator voltage inside the
voltage limit (figure 3.11):

WVCT(IC) = (JJVCT(k — ].) + 04|A'U|, (359)

where « is a positive parameter.
On the other hand, when branch “B” is activated, the normalized speed
should be reduced in order to follow the voltage constraint:

wVCT(k) = wVCT(k: - 1) - ﬂ‘AUL (360)

being § a positive parameter.

Both a and § parameters should be manually adjusted for each particular
application. The decision of whether the VCT strategy needs to continue ac-
tivated or not is processed in branch “B”. If the calculated normalized speed
wyor (k) is smaller than the reference normalized speed wyorm (), the flowchart
assumes that VCT operation should be stopped. Therefore, status signal is set
to 1 and the flowchart re-starts its algorithm, analysing the polarity of Awv.

In summary, the proposed algorithm decides whether to modify or keep the
commanded normalized speed. When the FW is activated, branch “A” and
“B” modify the commanded normalized speed, in order to maintain the voltage
vector close to the DC-link voltage limit.
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Figure 3.10: Flowchart based VCT for normalized speed command determina-

tion.
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Figure 3.11: Operation mode of the flowchart based VCT.

This strategy needs to set @ and 5. Normally @ must be high enough to
ensure a quick return of the voltage vector inside the voltage limit curve, and
must be adjusted in a way to guarantee a correct reference speed determination
during VCT regulation.

3.5.3 Integration based VCT regulator

In figure 3.12, a diagram of the proposed integration based VCT feedback is
shown. This strategy also aims to correct the commanded normalized speed,
ensuring that the inverter output voltage remains under the voltage limit in
both FW and MTPYV regions.

The integration based voltage closed loop algorithm in the k instant is defined
by:

wyer(k) = Wnorm (k) + dw(k), (3.61)

being
dw(k) = ow(k — 1) + aAwv, (3.62)
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Figure 3.12: Diagram of the hybrid LUT/VCT current set-point generator with
the integration based VCT feedback control.

where « is a positive constant and dw(k) is a correction term, saturated as
follows:

o if Sw(k) <0,
dwik) = {&u(k) if dw(k) > 0. (3.63)

When the inverter output voltage exceeds the maximum voltage limit includ-
ing the security margin (Av > 0), the term dw(k) becomes positive, increasing
the value of wycr(k) until the voltage error Av becomes zero. Therefore, the
dq current set-points are simultaneously modified (the reference current vector
is maintained within the voltage ellipse constraint) in order to keep the stator
voltage controlled. In contrast, when the inverter output voltage is not satu-
rated (Av < 0), the correction term dw(k) is negative. Taking into account
the saturation effect defined in (3.63), the corrector term does not affect the
normalized speed, and wycr (k) = whorm (k).

The main advantage of both proposed methods relies on the fact that they
only modify the theoretically or experimentally predefined optimum set-points
when it is required, maintaining the LUT values when deviations are sufficiently
small to ensure machine controllability.

In terms of parameters adjustment, the integration based approach only re-
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Table 3.1: Most significant nominal parameters of the simulated IPMSM ma-
chine.

Parameter Symbol | Value | Units
Maximum power Py 100 kW
Maximum speed Wimaz 3500 rpm
Stator Resistance R, 0.04 Q

d-axis nominal inductance Ly 1 mH
g-axis nominal inductance L, 1.7 mH
Permanent Magnet Flux linkage Upar 0.178 Wb

quires to tune an additional control parameter («). In contrast, two parameters
are required (a and /) for the flowchart based VCT regulator. The added com-
putational burden of this strategy is lower than the flowchart based regulator.

3.6 Simulation results

In order to compare and validate throughout simulation the proposed control
strategies, a 100 kW automotive IPMSM including magnetic saturation has been
simulated in the Matlab/Simulink environment. The torque control algorithm,
including the VCT regulator and the LUTSs, is executed every 90 us. The
Variable DQ (VDQ) approach [116] has been followed for IPMSM modelling,
and LUTs have been calculated based on the IPMSM magnetic model (section
3.3.2). Table 3.1 shows the most significant nominal parameters of the simulated
IPMSM. This machine presents typical saturation profiles of a medium-power
IPMSM automotive propulsion electric machine (figure 3.13). Regarding the
current control algorithm, a conventional PI based FOC has been integrated in
order to carry out the following simulations.

In order to validate the controllability of the IPMSM in FW using the
proposed VCT strategies, the following parameter deviations have been set:
0V = +10% and 6Lq = +10%.

Figure 3.14 shows the simulation results of the proposed control approaches.
When VCT control is not active in the loop, the voltage limit is exceeded and
the system becomes unstable due to the electrical parameter variations (fig-
ure 3.14(a)). However, an effective VCT control is achieved when using both
proposed strategies (figure 3.14(a)). The current vector trajectory in the dq
plane and its correspondence to the operation modes is shown in figure 3.15. A

89



Chapter 3

10.2x10~4
10
-4
10,5 X107
0.8
10
= 9.6
3 0
9.5
9.4
9
0 9.2
-300 .
-400 600 iq (A)

-500

ia (A)
(a) d-axis inductance of the IPMSM.

1.9%x1073

1.85

1.8

1.75

1.7

(b) g-axis inductance of the IPMSM.

Figure 3.13: Simulated IPMSM d- and g-axis inductances considering magnetic
saturation.
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Figure 3.14: Proposed VCT based IPMSM control strategies (simulation re-

sults).
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Figure 3.15: Simulated IPMSM dq plane current vector trajectory (using the
integration based VCT algorithm) and its correspondence to each operation
mode.

proper FW control is achieved through the whole drive operation range despite
the introduced parameter variation (figure 3.14(b)).

In order to adjust the VCT regulation parameters («, 5 for the flowchart
based and « for the integration based VCT), simulations have been carried out
considering +10% errors in the electrical parameters. The parameters adjust-
ment has been carried out following a trial and error method.

In the case of the flowchart based VCT strategy (figure 3.16), both a and
[ must be adjusted to correctly control the system in FW operation with the
VCT. As it can be seen from figure 3.16(a), o parameters must be adjusted high
enough to guarantee that the system remains under the maximum voltage limit.
Similarly, from figure 3.16(b) it is deduced that 8 adjustment must ensure a
correct speed return when the VCT algorithm is not required. In this particular
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Figure 3.16: Simulation results carried out for the control parameter adjustment
(a, B) of the flowchart based VCT strategy.

application, a and (8 values have been set as « = § = 0.2. However, they are
not strictly required to be the same.

When using the integration based VCT strategy (figure 3.17), the system
losses control if no VCT regulation is achieved (o = 0), driving V" into satura-
tion. Taking into account the EV drive dynamics and according to simulation,
a value of a between 0.01 and 0.1 has been considered.

Finally, in order to analyse and compare the system’s performance using
the proposed strategies, performance indices have been adopted [217], being the
system optimum when the index reaches a minimum value. The performance
index used is the Integral of the Square of the Error (ISE), defined as:
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Figure 3.17: Simulation results carried out for the control parameters adjust-
ment (a) of the integration based VCT strategy.

ISE = / ' e2(t)dt. (3.64)
0

where e(t) is the instantaneous difference between the commanded and the ac-
tual stator voltage.

Figure 3.18 shows the results obtained using both flowchart and integrator
based VCT control techniques, assuming various parameter deviation levels. In
the three conditions tested, the integrator based VCT technique minimizes the
ISE index.

Taking into account the results provided by the ISE performance index anal-
ysis and considering the simplicity and the low computational cost requirement
of the application, the integration based VCT strategy has been considered for
its usage in the experimental platform.
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Figure 3.18: Comparison of the VCT based alternatives using the ISE perfor-
mance index.

3.7 Experimental results

The proposed 2D-LUT/VCT feedback based current set-point generation strat-
egy has been validated in a 51 kW automotive PM-Assisted SynRM, whose most
significant parameters are listed in table 3.2. The d- and g-axis inductances and
magnetic fluxes obtained throughout Finite Element Model (FEM) analysis are
shown in figures 3.19 and 3.20. The details of the test bench used to carry out
the experimental results are included in appendix C. Taking into account the
nature of this machine, the effects of magnetic saturation and cross coupling
in the machine’s electrical behaviour have an important impact and cannot be
neglected.

The switching frequency of the converter has been set to 10 kHz. A dead-
time compensation algorithm [218] has been carried out in order to minimize its
effect. The optimal current set-point LUTs have been precalculated using the
FEM data of the machine and the calculation approach described in section 3.3.
As for the torque controller, the conventional FOC control strategy has been
replaced by a SMC control (section 2) because of the high non-linearities of the

95



Chapter 3

13x10~*

(a) Inductance Ly

2.4x1073
2.2
-3
2.5><10
2
2
1.8
==}
=15
5 1.6
1 1.4
05 ) : 1.2
300 .
200 0 1
-100
; 0 -300 .
iq [A] ia [A]

(b) Inductance Lq

Figure 3.19: PM-Assisted SynRM d- and ¢-axis inductances according to the
provided FEM analysis.
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Table 3.2: Nominal parameters of the PM-Assisted SynRM.

Item Symbol | Value | Units

Nominal power Py 51 kW

Maximum speed Winas 12000 rpm
Machine Pole Pairs P 3 -

Stator Resistance Ry 1.74 mS?2

d-axis nominal inductance Ly 0.7 mH

g-axis nominal inductance L, 1.7 mH

Permanent Magnet Flux linkage Yom 0.38 Wb
Stator nominal current Lhom 255 A
DC-link nominal voltage Vbc nom 320 A%

Table 3.3: SMC parameter settings.

Target control dynamics
Item Symbol | Value
Damping coefficient 13 1
Settling time T 10 ms
¢4,q selection and STA parameters
Item Symbol | Value
Sliding function parameters Cd,q 580
STA parameter €2 Qi.q 1.682¢°
STA parameter A Ad,q 2.8532¢3
VCT parameters
Item Symbol | Value
DC-link voltage security margin ky 0.9
VCT positive constant « 0.01

electrical parameters, and also because of the SMC robustness against parameter
variations, which can be significant in automotive drives. The control dynamic
requirements and the SMC parameters used for this application are listed in
Table 3.3.

Figures 3.21 and 3.22 show the results of the proposed SMC control strategy
when conventional LUT based and hybrid 2D-LUT/VCT approaches are used
for current set-point determination, at machine maximum torque (130 Nm). The
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Figure 3.20: PM-Assisted SynRM d- and ¢-axis fluxes according to the provided
FEM analysis.

SMC current regulation is satisfactory, producing a low torque ripple (figure
3.22)2. If the VCT feedback is not included (figure 3.21), the stator voltage
surpasses the voltage limit for a given mechanical speed, and the system is
driven into an uncontrolled regeneration. This means that the maximum speed
of the vehicle would be significantly reduced in a real EV application. In this
particular case, the maximum machine speed of 12000 rpm corresponds to a
maximum vehicle speed of 120 km/h. Taking into account that the control
gets lost at around 4000 rpm, the vehicle maximum speed would be limited to
40 km/h, which would be unacceptable for the end-user. This issue is due to
the fact that there are significant differences between the FEM data and the
experimental machine, mainly due to the following reasons:

2As in real EV applications, electromagnetic torque has been indirectly measured from the
stator currents.
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Figure 3.21: SMC torque control, stator voltage Vs control and mechanical speed
results without the VCT control strategy.
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e No rotor temperature measurement is available. FEM analysis has been
carried out for a particular set of stator winding and magnets tempera-
tures. Therefore, the LUTs do not take into consideration the parameter
variations produced by the temperature.

e Small deviations between the specified and the real airgap (due to manu-
facturing and mounting tolerances) highly affect the electrical parameters
of the machine. This aspect is aggravated in PM-assisted SynRM ma-
chines, due to the sensitivity of ferrite magnets to this particular param-
eter.

e A 2.5D FEM model has been considered and, as a consequence, no infor-
mation about the stray inductances of the winding heads can be obtained
from the simulations. These stray inductances increase the resulting phase
inductances, obtaining higher terminal voltages than expected.

However, system robustness is guaranteed when the hybrid LUT control
strategy is included (figures 3.22(a), 3.22(b) and 3.22(c)). A robust torque
and FW control performance is achieved in the whole operating range (figure
3.23) using the second order SMC control strategy combined with the proposed
optimal current set-point generation. Current references are properly modified
by the VCT algorithm (figure 3.23(b)), while torque production capability is
reduced once the current limit is reached (figures 3.23(a) and 3.23(b)), and also
during MTPV, in order to ensure the required voltage regulation. As it can
be seen in figure 3.23(c), smooth transitions between the different operation
regions is achieved. The corresponding current vector trajectory throughout
the different operation regions in the dg plane is shown in figure 3.24.

The difference between the torque set-point and the actual torque (measured
using a torquimeter) reveals the aforementioned mismatch between the real
electrical parameters and the ones predicted by FEM analysis, as deviations of
around 15 Nm have been confirmed at constant torque region and for maximum
torque set-point.

Figure 3.25 shows the torque regulation for transients (in this case, torque
changes from motoring to regenerative braking). Being an EV propulsion sys-
tem, torque reference transients are ramped in order to improve the comfort of
the passengers. Both the SMC regulators and the hybrid set-point generator
prove to be robust in the occurrence of such torque transients. The SMC control
equivalent voltages v4.q and vg eq are required to obtain a satisfactory transient
response.
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Figure 3.22: SMC torque control, stator voltage Vs control and mechanical speed
results with the VCT control strategy.
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Figure 3.27: PM-assisted SynRM efficiency map in the whole operation range.

In order to evaluate the drive performance under real driving conditions,
a standard Worldwide harmonized Light vehicles Test Procedure (WLTP) has
been carried out. Driving cycles aim to analyze a vehicle’s performance in terms
of consumption, pollution and efficiency, among other factors. The WLTP is an
specific driving cycle supposed to represent light duty vehicle operation and its
accuracy ensures more realistic results than conventional driving cycles [219].
The last speed profile and torque response in both urban and extra urban cycles
are shown in figure 3.26, including the torque response of the SynRM machine,
which satisfactorily follows the reference requested by the driving cycle. Figure
3.26(c) shows how the VCT feedback acts modifying the d-axis current set-point
when required. These results corroborate that the proposed strategy is ready
to be implemented in real EVs and/or HEVs.

Finally, the efficiency map of the evaluated PM-assisted SynRM controlled
with the proposed approach is shown in figure 3.27. The machine efficiency
peak is above 95 % in a vast region around 4000 rpm, and above 90 % between
1000 rpm to 8000 rpm.
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3.8 Conclusions

In this chapter, a FW control strategy that combines second order SMC cur-
rent regulators with an optimal hybrid 2D-LUT/VCT based current set-point
generation algorithm has been proposed, ensuring a satisfactory torque regu-
lation in the whole machine operation range under parameter variations. Two
VCT regulators have been developed and validated in simulation: the flowchart
based and integration based VCT regulators. As it has been demonstrated by
simulation, both solutions ensure controllability in the whole operation range,
being activated only when the voltage constraint limit is reached. Additionally,
a smooth tracking of the voltage limit is guaranteed. The main advantage of
the aforementioned strategies is that no machine parameters are needed in their
calculations. However, analysing the required control parameters (the flowchart
strategy requires to adjust 2 parameters, against 1 parameter required by the
integration based method) and considering computational burden, only the in-
tegration based VCT has been experimentally tested.

Experimental tests have been carried out in a state of the art test bench
which emulates the EV and/or HEV real application, validating the proposed
VCT approach, both under speed and torque variations and also under emulated
real driving cycles conditions. Finally, it is important to point out that the
proposed strategy can be easily extended to other synchronous machine types,
such as pure SynRMs and PMSMs.

106



Chapter 4

Hybrid sensorless control
solution for limp-home
operation of automotive
synchronous machines

4.1 Introduction

As stated in the state of the art (chapter 2), the safety and reliability re-
quirements in EV applications have encouraged the research of fault tolerant
strategies. Besides, the requirements of the international standard for func-
tional safety ISO 26262 have also motivated the development of fail secure
drives. In this sense, the Failure Mode and Effect Analysis (FMEA) is an
established quality method in the automotive industry, which is proposed by
the ISO 26262 [220-222]. One of the most critical failures detected by FMEAs
in the context of an EV drive system is the resolver (or encoder)® sensor fault
during driving, as it is essential for rotor flux angle determination.

Resolver fault tolerant strategies are conceived to operate in a derated mode,
i.e., enabling the passengers to reach their destination despite the occurrence of
a fault. This degraded operation mode is also known as limp-home sensorless

n the following, this work will focus on resolver faults, although the proposal has the
same validity for electric machines mounting encoders.
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Figure 4.1: General diagram of an EV sensorless control strategy, including fault
detection and control reconfiguration.

control. During this situation, a sensorless torque control is activated in order to
maintain the system under control. As a first step, the identification of a position
sensor fault is required. Automotive resolver-to-digital converters, such as the
Analog Devices AD2S1210 or Tamagawa AU6803, to name a few, provide fault
detection functions that detect abnormal resolver operation. Once the resolver
fault is detected, an angle estimation technique based on the knowledge of the
electric magnitudes of the machine (voltages and currents) must be conducted,
making the development of a limp-home sensorless control possible (figure 4.1).

In this context, a great amount of observer based sensorless approaches have
been reported in the scientific literature. The Extended Kalman Filter (EKF)
is one of the most established technique for rotor angle estimation [223-225],
being it suitable for non linear and noisy systems [223,226]. However, the com-
plex tuning of the covariance matrices of the EKF equations [70, 223,227, 228],
together with the high computational burden required during the state space
estimation process [227,229] are the major drawbacks of this method. Other
sensorless techniques use deterministic strategies, such as Extended Luenberger
Observer (ELO) based strategies [230,231]. Sliding Mode Observers (SMO)
are also another common alternative for rotor position estimation [232,233].
The main advantage of SMO techniques is their robustness and low sensitivity
to machine parameter variations. However, their limited sampling rate pro-
duces chattering problems, requiring additional robust strategies to overcome
rotor position estimation errors [234,235]. Other popular methods are based on
Model Reference Adaptive Systems (MRAS), where estimation is carried out
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by comparing a reference and an adjustable model [23,231]. Besides, advanced
strategies based on artificial intelligence, such as neural networks or fuzzy logic
have been also recently studied [236-238].

The selection of the most suitable sensorless technique would depend on
the requirements of the particular application. In an EV scenario, the limited
microcontroller CPU computational capability?, together with the increasing
need of executing a great number of additional functions and the high sampling
frequency required by the torque control algorithm?®, makes desirable to rely on
simple sensorless algorithms with a low computational cost [22]. In this context,
Phase Locked Loop (PLL) based estimators can be considered appropriate for
automotive applications due to their ease of implementation [235,239,240].

In the EV context, it is required to operate in a wide speed range, including
low speeds and standstill. At low speeds, the back-EMF magnitude is not high
enough, making estimation inaccurate [241-243]. In industrial applications,
this problem is generally solved using an open-loop strategy at start-up (I/f
or V/f) [244,245]. However, it becomes clear that these alternatives cannot be
considered for an EV propulsion system. For this reason, these techniques must
be complemented with other approaches at low speeds, such as magnetic saliency
based angle detection methods [241,242,246-248]. These techniques, also known
as injection methods, introduce probe signals into the machine terminals, and
they can be divided into two main categories:

e Strategies based on the modification of the PWM pattern, including a
voltage test pulse, or applying specific switching states during the mea-
surement period [79-81,249-252].

e Tecnhiques based on the High Frequency Injection (HFI) of voltage vectors
in the static af frame, or in the rotating dq synchronous reference frame,
in order to obtain information about the rotor position [79-81,253-256].

A certain level of saliency between the d- and g-axes is required in the ma-
chine for their correct operation. In general, these techniques are not able to
distinguish between the north and south poles of the magnet; thus, they must
be complemented with other algorithms at their starting.

2Some of the most established automotive compliant microcontrollers are the Freescale
MPC5643L (120 MHz), MPC5675K (180 MHz), MPC5744P (200 MHz) and the Texas In-
struments TMS570 (180 MHz).

3Common electric machine control sampling frequencies are between 10 kHz and 20 kHz
when using conventional Si devices.
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The successful application of HFI based techniques has been reported for
SynRMs [226,257] and for IPMSMs [246,258,259], being also possible to extend
their usage to SM-PMSMs by exploiting the saliency resulting from the magnetic
saturation produced by the magnets flux in the d-axis [246,247]. As a drawback,
these techniques introduce additional power losses due to the injection of HF
components, and their use should be limited as much as possible.

A number of sensorless algorithms that combine back-EMF estimators with
injection based strategies have been proposed in the scientific literature [234,
259]. The usage of two sensorless algorithms operating at different speed ranges
requires a transition method to guarantee a correct and smooth sensorless opera-
tion. Several changeover techniques rely on weighting coefficients to perform the
transition [80,247,259-262]. Other methods propose the application of weighted
averages of the estimated quantities during a given speed interval [228].

Taking all the latter into account, a novel hybrid sensorless control algo-
rithm that provides limp-home operation for automotive synchronous machines
is proposed in this thesis. This strategy combines a HFI technique with a PLL
based back-EMF estimator. In order to minimize additional power losses, the
HFTI is disabled when the machine is driven at medium/high speeds. This con-
tribution provides smooth transitions, determining the angle polarity to the HFI
algorithm when a PLL-to-HFT transition is carried out. Additionally, speed re-
versal capability is provided to the PLL based estimator. Finally, the proposed
strategy is successfully combined with the proposed hybrid 2-D LUT/VCT field
weakening approach (chapter 3), and is validated throughout simulation and
experimental tests in an automotive platform.

This chapter is organized as follows. The proposed hybrid sensorless struc-
ture is described in Section 4.2. Sections 4.3 and 4.4 include simulation and
experimental results that validate the proposal. Finally, conclusions are given
in section 4.5.

4.2 Proposed hybrid sensorless strategy

In this section, the main blocks that constitute the proposed sensorless approach,
i.e., the PLL based back-EMF estimator, the HFI technique and the overall
control structure and smooth transition strategy are described.
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Figure 4.2: PLL based rotor position estimation diagram.

4.2.1 Phase Locked Loop based back-EMF estimator

Traditionally, PLLs have been used for the synchronization of power converters
with the grid [263—-265]. However, it is also possible to effectively use PLL struc-
tures for rotor position and speed estimation of synchronous machines, making
it possible the implementation of PLL based sensorless control algorithms [235].

The PLL structure used in this work is shown in figure 4.2. Its operation
principle consists of two main tasks: (i) the back-EMF estimation in the a8
reference frame and (ii) the PLL based estimated angle deviation corrector.

Neglecting the magnetic saturation effect, the stator voltage equations in
the af reference frame can be expressed as:

a — Re-oz 5 4.1

v slo + o (4.1)
d¥

vs = Ryig + d—t", (4.2)

where v, and vg are the stator voltages, i, and ig are the stator currents, R is
the stator resistance and ¥, and Vg are the stator magnetic fluxes, which can
be mathematically represented as:
Vo = Lgia + Vpncos(be), (4.3)
Vg = Lyig + Ypmsin(be), (4.4)

being L, the stator inductance and 6, the rotor electrical angle. For simplicity,
the stator inductance has been considered constant in this work?.

4Particularly, in this work the simplification Ls = (Ld 4+ Lq)/2 has been considered for
salient synchronous machines.
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Substituting (4.3) and (4.4) into (4.1) and (4.2), the stator voltage equations
can be rewritten as follows:

di

Vo = Ryl + Lsd—: — weUpmsin(be), (4.5)
. di
vg = Ryig + LSE + we¥pmcos(Be), (4.6)

where the back-EMF voltage components in the af reference frame are:

eq = —wWeVpmsin(fe), (4.7)
eg = weVpmcos(Be). (4.8)

Substituting (4.7) and (4.8) into (4.5) and (4.6), the estimated back-EMF
components can be represented as a function of the stator voltages and currents
in the af reference frame:

di
Aa: a_Rs.a_Ls a7 49
€a =10 i g7 (4.9)
di
é\lg =g — Riig —Lsg. (4.10)

On the other hand, the sinusoidal stator currents in the af reference frame
can be represented as:

iq = Tcos(wet + &), (4.11)
ig = Isin(wet + ¢), (4.12)

where I is the rotating current vector amplitude and ¢ is the phase lag. Calculat-
ing the time derivatives of the currents, the following expressions are obtained:

dig ‘ ‘

é = —Jwesin(wet + ¢) = —weig, (4.13)
di
(;tﬁ = Jwecos(wet + @) = Wel. (4.14)

Introducing (4.13) and (4.14) in (4.9) and (4.10), the outputs of the back-
EMF estimator block shown in figure 4.2 are obtained:
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o = Vo — Ryia + Lsbeig, (4.15)
/6\5 =vg — Rs’ig - LSLAdeia. (4.16)

Note that the estimated speed @, is required, as a feedback, in order to
perform the back-EMF estimation (figure 4.2).

Considering that the PLL estimator block (figure 4.2) estimates the rotor
position @\e close to the real one, the following expression can be assumed:

0. =0, +A,, (4.17)

where A, is the error between the estimated and the real rotor electrical angle.

Operating the back-EMF components of (4.7) and (4.8), calculated in the
structure of figure 4.2, and applying common trigonometric relations, the fol-
lowing result is obtained:

—€qc08(0e) — €gsin(fe) = We Upmsin(Ae). (4.18)
Assuming the estimation error A, very small, (4.18) can be linearised as:
WeVpmsin(Ae) =~ We Wy Ae. (4.19)

Thus, following the structure of figure 4.2, the PLL based strategy regulates
A, to zero, making 6, converge to 6,.

It is important to remark that conventional PLL structures have a well
known issue, as they fail when the rotation direction changes due to the following
reasons [240]:

e The PI regulator K, and K; gains calculated for positive speed operation
are not valid for negative speeds. Thus, these gains must be adapted
accordingly.

e An offset of 180° is obtained in the estimated angle when the machine
speed is negative.

These limitations are overcome in this work during transitions, reconfiguring
the PLL structure, as it will be explained in section 4.2.3.
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4.2.2 High Frequency Injection technique

The HFTI strategy used in this work introduces a HF voltage test signal into
the stator terminals in order to obtain the information required for the de-
termination of the electrical angle at low speeds and standstill. In this sense,
the general sensorless torque control diagram, including the HFI technique, is
shown in figure 4.3. The introduced HF voltage test signal produces additional
HF components in the stator currents. An adequate measured current post
processing procedure allows to determine the rotor position. It is important to
point out that, in an EV, the usage of this technique does not interfere in its
mechanical operation, as the machine is not be able to follow the HF torque
produced by the injected test signal.

In this context, the HF perturbation is added to the af reference voltages
produced by the current regulation loop, and can be expressed as follows [246]
(figure 4.3, HFT vector block):

v = [UQ} -V [_Sm(”"t)} , (4.20)

OF cos(w;t)

were V; is the amplitude of the introduced HF voltage and w; is the high fre-
quency rotation speed.

Due to the saliency of the machine and thanks to the HFI, the measured cur-
rents contain information of the rotor position at the generated high frequency
current components:

i = {zaﬂ] _ {Iocos(wit) + I1c08(20. — w;t) (4.21)

7;5’1‘ I()Sin(wit) + Ilsin(293 — wit) ’

where Iy and I; correspond to amplitudes of the positive and negative rotating
sequence components of the HF stator currents, respectively.

As it can be seen from (4.21), only the negative sequence component contains
rotor position information. Thus, the measured currents need to be correctly
processed in order to extract this angle. In this sense, the following four post-
processing steps must be carried out (figure 4.4):

1. Asafirst step, a Band Pass Filter (BPF) must be added in order to remove
the fundamental component.

2. After that, a coordinate rotation transforms the HF current into a rotating
frame synchronous to the injected HF voltage vector.
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Figure 4.4: HFT sensorless strategy current processing.

3. A High Pass Filter (HPF) is included in order to remove the components
produced by the previous rotation transformation.

4. A back rotation to the synchronous frame with the negative sequence
obtains the following current components containing the position infor-
mation:

ia| cos(20.)
L’B} = Tur [sz’n(%e)} ’ (4.22)
From (4.22), the obtained angle 26, needs to be restored to 6., ensuring
that the determined angle considers the correct PM polarity. Otherwise, the
estimated angle could be 7 rad off from the actual rotor angle, leading to a
possible catastrophic event. This is mandatory, because this technique cannot
distinguish between the north and south poles of the rotor magnetic field.

In order to properly adjust the HFI based sensorless controller, three impor-
tant requirements must be considered:

1. The frequency of the injected rotating voltage perturbation component
must be determined. Commonly, this frequency is set around 10 times
higher than the electrical machine fundamental frequency and 10 times
lower than the power converter switching frequency [266]. For example, a
value of f; = w;/2m = 1 kHz is typically used for power converters with a
switching frequency of around 10 kHz [246, 247].

2. The injected voltage amplitude V; is generally selected throughout an em-
pirical process, taking into account that an excessively low voltage am-
plitude will not produce enough HF current to conduct a correct angle
determination, and that current fluctuations and additional power losses
will be greater when increasing the value of V; [266].
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3. A speed threshold wyy, to determine the transition point between the HFI
and the PLL based estimator needs to be empirically adjusted (figure
4.3, speed threshold block). This threshold must be the lowest value
that ensures that there is enough back-EMF for the PLL to correctly
estimate the rotor position. In this way, the injection of HF perturbations
is minimized.

Note that the usage of a BPF and a HPF in the current post-processing
stage produces delays that must be compensated. These delays can introduce
significant offsets in the estimated angle, reducing the drive efficiency and torque
production capability. Additionally, these deviations, if great enough, can com-
plicate the smooth transition between the HFI and the back-EMF estimation
based algorithms.

4.2.3 Smooth transition procedure of the proposed sen-
sorless algorithm

The general diagram of the proposed hybrid sensorless control algorithm, focus-
ing on the transition between the HFI technique and the PLL based back-EMF
estimator, is shown in figure 4.5.

The proposed transition procedure from medium to low speeds (and vice
versa) is illustrated in figure 4.6. The PLL estimates the angular position above
the speed threshold |wl|, while the HFT is deactivated. When the machine
reduces its speed and the operation speed is between |wl| and |w2|, the angle
obtained from the PLL is still used by the controller, while the HFI technique
is activated to start converging. An hysteresis band between |wl| and |w3|
is included to effectively change from the angle provided by the PLL to the
one provided by the HFI, avoiding multiple changes around these speeds. The
opposite procedure is carried out when accelerating. As stated before, these
speed thresholds are selected considering a compromise between the existence
of a sufficient back-EMF for the PLL based estimator and the minimization of
the additional power losses produced by the HFI.

The first issue that must overcome the proposed transition structure is the
speed reversal limitation of the PLL (section 4.2.1). The proposed structure
schedules the PI regulator coefficients as a function of the sign of the estimated
speed. Additionally, an offset of 7 is added to the estimated angle during speed
reversal. The PLL reconfiguration (figure 4.5) is performed without adding any
disturbance to the system, as it is performed at low speeds (positive or negative),
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Figure 4.6: Hybrid sensorless control strategy along wide speed range and in-
cluding transitions.

while the HFI technique is active and the angle estimated by the PLL is not
being considered by the controller.

On the other hand and taking into account that HFT is restricted to low
speed operation and standstill, the angle polarity must be checked each time
the HFT algorithm is reactivated to properly restore 6, from 26, (section 4.2.2).
The proposed position polarity determination strategy is based on the infor-
mation obtained from the PLL based back-EMF estimator (figure 4.5, position
polarity detection block). The algorithm determines the polarity from the angle
estimated by the PLL (figure 4.7):

0 if @\e = § + HystBand,
f o

Of fset = { P (4.23)
T

if 6, = 37” + HystBand,

where HystBand is an hysteresis band included due to the following reasons:

(a) This band is included in order to avoid errors in the polarity determination
due to possible angle offsets between both estimators.

(b) The polarity detection block must be robust enough against angle estima-
tion errors produced due to errors due to noisy measured currents.
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Figure 4.7: Angle polarity determination strategy for transitions from PLL
based estimation to HFI.

In this way, a robust position polarity detection and, consequently, a reli-
able change between PLL and HFI modes is ensured. The polarity estimation
performed by means of the PLL information is robust, because there is enough
back-EMF for the PLL during the speed range in which the polarity determi-
nation is carried out.

Additionally, a speed dependant LUT is included in the sensorless structure
(figure 4.5, position offset compensation block) in order to compensate the off-
sets produced due to the usage of filters in the HFI post-processing. The phase
differences introduced by the aforementioned filters are calculated offline and
the corresponding position errors are mapped and compensated for all the HFI
operation points.

Once the estimated QAEST position is obtained (figure 4.5), the rotor speed
is calculated from its sawtooth (figure 4.5). As the use of derivative calcula-
tions under noisy environments are a common source of errors, a robust speed
determination method is introduced (figure 4.8). Firstly, the position sawtooth
gradient is obtained setting a delay d between samples. After that, a sawtooth
error compensation block is included in order to avoid errors produced by 27-to-
0 transitions (or vice versa). Once the speed @, is obtained, a glitch suppressor
strategy cancels evident unreal glitches that can occur due to noises. Finally,
a low pass filter is added to reduce possible remaining noise. The cutting fre-
quency of this filter must be set according the acceleration dynamics of the
drive.
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Figure 4.9: Diagram of the simulation model implemented in Matlab/Simulink
for the validation of the proposed hybrid sensorless control.

4.3 Simulation results

In order to validate the proposed hybrid sensorless strategy throughout simula-
tion, a 64 kW automotive SM-PMSM and its corresponding power electronics
and torque control algorithm (including the hybrid angle and speed estima-
tor) have been implemented in Matlab/Simulink (figure 4.9). A Model in the
Loop (MiL) approach has been followed, taking care of the communications and
programming protocols of the EV industry

Regarding the control algorithm, a conventional PI based FOC strategy has
been used for current regulation. The most significant nominal parameters of
the SM-PMSM are listed in table 4.1. The machine employed in this particu-
lar case is highly linear; thus, the magnetic saturation is negligible. However,
considering the magnetic saturation effect of the PM flux in the d-axis induc-
tance, a saliency level of 10 % has been included in the model (Ly; = 0.9L,).
In this way, the performance of the proposed sensorless algorithm is studied in
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Table 4.1: Most significant nominal parameters of the simulated SM-PMSM.

Parameter Symbol | Value | Units

Nominal power Py 64 kW
Nominal torque TN 145 Nm
Maximum speed Winax 8000 rpm

Stator Resistance R, 0.0191 Q
d-axis nominal inductance Ly 0.263 mH
g-axis nominal inductance L, 0.292 mH
Permanent Magnet Flux linkage Upar 0.0731 Wb

simulation for synchronous machines with low saliency. As the saliency is very
low, the ig current has not been considered for torque production and ig = 0
control has been adopted for the MTPA region (section 3.2.2). Being a machine
without a MTPV region, a conventional flowchart based 74 regulation has been
included for FW control. In this context, the proposed hybrid sensorless algo-
rithm adjustment parameters are provided in table 4.2. These parameters have
been adjusted experimentally. Note that the filters used for the HF current pro-
cessing stage (figure 4.4) have been obtained throughout the MATLAB fdatool
toolbox.

On the one hand, figure 4.10 shows the simulation results obtained using only
the PLL for the estimation of the rotor angle (in this particular case, without
closing the loop with the estimated angle) from medium/high to low speeds
and standstill. As it has been advanced in the state of the art, this method is
only suitable for its implementation at medium/high speeds. Simulation results
show that the error between the position provided by the resolver ¢, versus the
estimated position 6. is very low at medium/high speeds (figures 4.10(a) and
4.10(b)). However, this error significantly increases when lowering the speed, up
to a point where angle tracking is lost by the PLL (at around 100 rpm). Thus,
these results provide valuable information for the selection of the transition
points of the proposed hybrid sensorless controller.

On the other hand, figure 4.11 shows the results obtained for the HFT strat-
egy at very low and zero speeds. As it can be seen, the HFI technique is able
to track the angle up to standstill and with a very low estimation error (figure
4.11(b)), proving that a combination of both techniques is adequate for devel-
oping a wide speed sensorless control. The mechanical speed is also accurately
estimated using the proposed robust estimator (figure 4.11(c)).
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Figure 4.10: PLL position estimation from high speed to standstill in the sim-
ulated SM-PMSM.
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Figure 4.11: HFT technique position estimation at low speeds and standstill in
the simulated SM-PMSM.
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Figure 4.12: Proposed hybrid sensorless control for 100 Nm (simulation results).
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Figure 4.13: Proposed hybrid sensorless control in four quadrant operation (sim-

ulation results).
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Table 4.2: Proposed hybrid sensorless algorithm parameter settings for SM-
PMSM simulation tests.

HFT technique parameters

Item Symbol | Value | Units
Voltage amplitude Vi 30 \%
Frequency fi 1000 Hz
PLL based back-EMF' estimator parameters
Item Symbol | Value | Units
Positive proportional gain K;‘ 1.7426 -
Positive integral gain Kj' 476.51 -
Negative proportional gain K, 10 -
Negative integral gain K 200 -
Transition algorithm parameters
Item Symbol | Value | Units
PLL speed threshold wl 300 rpm
Hysteresis limit speed thrshold w2 225 rpm
HFT technique speed threshold w3 150 rpm
Hysteresis band HystBand 1.5 rad
Speed compensator delay d 50 samples

Figures 4.12 and 4.13 provide the simulation results obtained with the pro-
posed hybrid sensorless control (closing the loop with the estimated angle) for
100 Nm and for four quadrant operation, respectively. The PLL-to-HFI and
HFI-to-PLL transitions are smoothly carried out, following the transition crite-
ria described in figure 4.6. As it can be seen in figure 4.13(d), additional torque
ripple is produced due to the HF signal injected in the interval [—wi,w:], in-
creasing the power losses of the system. Both sensorless strategies (PLL and
HFT techniques) introduce an error of the electrical angle within the range of
+0.25 rad (figures 4.11, 4.12 and 4.13), which can be considered as an acceptable
result for closing the loop with the estimated angle. The simulation results show
that the proposed hybrid sensorless solution provides the required limp-home
capability.
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Table 4.3: Proposed hybrid sensorless algorithm parameter settings for experi-
mental tests in the automotive 51 kW PM-assisted SynRM machine.

HFT technique parameters
Item Symbol | Value | Units
Voltage amplitude Vi 60 A%
Frequency fi 1000 Hz
PLL based back-EMF estimator parameters
Item Symbol | Value | Units
Positive proportional gain K;‘ 5 -
Positive integral gain Ki'" 1500 -
Negative proportional gain K, 5 -
Negative integral gain K 200 -
Transition algorithm parameters
Item Symbol | Value | Units
PLL speed threshold wl 1000 rpm
Hysteresis limit speed thrshold w2 975 rpm
HFT technique speed threshold w3 800 rpm
Hysteresis band HystBand 1.5 rad
Speed compensator delay d 50 samples

4.4 Experimental results

Finally, the proposed hybrid sensorless strategy has been validated in the 51 kW
PM-assisted SynRM used in chapter 3. This machine has high non linearities
and a significant saliency (figure 3.19). The most relevant nominal parameters
of the machine are summarized in table 3.2. The automotive test bench used for
the experimental validation is detailed in appendix C. Regarding the control
algorithm, a second order SMC has been used for current regulation, while
the proposed hybrid LUT/VTC based algorithm has been included for FW
regulation (chapter 3).

The most significant parameters of the proposed hybrid sensorless strategy
are shown in table 4.3. Again, these parameters have been adjusted experi-
mentally. At a first stage and using a trial and error procedure, the minimum
V; and w; HFT algorithm parameters have been determined. In this particular
situation, V; has been set to 60 V (18.75 % of the available DC bus), with a
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rotating frequency f; = w; /27 of 1 kHz and the following speed thresholds: w1,
w2 and w3 of 1000 rpm, 975 rpm and 800 rpm, respectively. This means that
the HFT is active below 8.83 % of the SynRM speed range.

With regard to the tuning of the HFI algorithm filters, the same procedure
followed in simulation (section 4.3) has been carried out. In the speed determi-
nation procedure, the distance between samples has been set to d = 50 and a
4t order IIR Butterworth low pass filter with a cut off frequency of f.=10 Hz
has been included.

Filter design requires special attention when implementing a HFT technique
in a microprocessor, as the accuracy of the angle estimation directly depends on
the correct adjustment of the filters. There are two important aspects to bear
in mind when implementing such filters:

(a) Frequency specifications: Proper sample frequency (f), passing frequency
ass) and stop frequenc stop) are needed to ensure a correct operation
P p ireq y P p
in the frequency bands.

(b) Filter order: High order filters discriminate better the unwanted frequency
components, at the cost of significantly incrementing the computational
burden.

Figure 4.14 shows experimental results of the current processing procedure
(section 4.2.2) required to extract the rotor position information. Additionally,
an analysis of the current processing stage in the frequency domain is provided
in figure 4.15, where®:

1. In figure 4.15(a), the PM-assisted SynRM is rotating at around 9.76 Hz
and the HF signal is injected at 1000 Hz.

2. Once the fundamental frequency is removed using the BPF (figure 4.15(b)),
the HF components lie on 1000 Hz and (1000 — 2 x 9.76) Hz, i.e. 976 Hz.

3. In figure 4.15(c), a rotation of coordinates moves the HF current at 1000
Hz to DC, while the position signal is moved 1000 Hz further away, lying
on (2000 — 2 x 9.76) Hz , i.e. 1982 Hz.

4. The effect of the HPF used to remove the DC component produced by the
previous rotation transformation is shown in figure 4.15(d).

5Slight inaccuracies are consequence of the FFT processing and low sampling frequency.
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Figure 4.14: Measured currents post-processing to obtain the rotor position.
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Figure 4.15: Current signal processing in the frequency domain.
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Figure 4.16: Hybrid sensorless torque control experimental results in four quad-
rant operation.

5. Finally, in figure 4.15(e), a back rotation to the synchronous frame is used
to obtain the current component containing the position information at
2 x9.76 Hz, i.e. 19.53 Hz.

The speed oscillations in the estimated angle are produced by the load ma-
chine speed control when operating at low speeds, and are not related to the
HFT algorithm.

Regarding the sensorless torque control, figure 4.16 shows the satisfactory
performance of the proposed hybrid algorithm in four quadrant operation. Fig-
ure 4.16(b) clearly shows the additional ripple produced by the HFI when oper-
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Figure 4.17: Hybrid sensorless torque control experimental results at
medium/high speeds and interacting with the proposed VCT based FW control.

ating below 1000 rpm®. From figures 4.16(a) and 4.16(b), it can be deduced that
the proposed transition procedure ensures smooth operation between the PLL
and the HFI technique. Additionally, the estimation algorithm provides the
sufficient field orientation, as the measured torque (using a torquimeter) follows
the reference one with a very low error (figure 4.16(a)). It is important to note
that the torquimeter is not able to measure the high frequency component of
the electromagnetic torque (the HF torque is filtered by the mechanical load).

6 An acoustic noise increase has been appreciated during HFI. However, no measurement
device has been available for its quantification.
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Finally, figure 4.17 shows the hybrid sensorless performance at medium/high
speeds, interacting satisfactorily with the proposed FW algorithm (chapter 3).
The experimental results confirm the validity of the proposal for limp-home
operation.

4.5 Conclusions

From the state of the art, it has been concluded the importance of relying on
fault tolerant strategies in EV applications, such as sensorless control. In this
chapter, a hybrid sensorless strategy that combines a PLL and a HFT technique
has been proposed to provide limp-home capability to EVs under rotor posi-
tion sensor (resolver or encoder) fault. The contribution has been validated
throughout simulation for a SM-PMSM, and has been experimentally tested for
a PM-assisted SynRM, concluding its suitability for both low and high salient
synchronous machines.

This contribution has been experimentally validated up to 60 Nm and 6000
rpm (approximately 50 % of the machine torque/speed range), providing the
sufficient operation range for limp-home. Finally, it has been demonstrated that
the proposed sensorless strategy can be successfully combined with advanced
control strategies such as the second order SMC or the proposed hybrid 2-D
LUT/VCT FW algorithm.
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Conclusions and future
work

5.1 Conclusions and summary of the most rele-
vant contributions

According to the state of the art, the IPMSM is one of the most established
electric machine technology in modern EV propulsion systems due to its high
reluctant torque, high power density, good efficiency around base speed and
extended field weakening range. Despite the maturity of this technology and
for several reasons, rare-earth free machines such as PM-assisted SynRMs are
currently being investigated as an alternative. The behaviour of both auto-
motive IPMSMs and PM-assisted SynRMs can be described using the same
mathematical equations, making it possible to use the same approaches for
their electromagnetic torque regulation.

Due to an automotive synchronous machine design and functional require-
ments (i.e., operation beyond the base speed), FW control is mandatory. In
this context, a great number of FW control solutions can be found in the litera-
ture. As the MTPA and MTPV regions require complex calculations, specially
considering that these machines are highly non-linear, the optimum current set
points are generally determined following the well established Look up Table
(LUT) based approach. The optimal d- and g-axis current references are pre-
calculated and stored in LUTs. However, these set points depend entirely on the
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knowledge of the machine electric parameters, jeopardizing the system control-
lability in field weakening operation if significant parameter deviations occur.
Therefore, it is of relevant importance to rely on robust control strategies that
ensure machine controllability in the whole EV operation range under parameter
uncertainties.

As a first contribution, this thesis presents two novel hybrid LUT/VCT based
FW control strategies that significantly improve the robustness of current torque
control strategies in field weakening. The proposed strategies consider the op-
timization of the LUT dimensions, minimizing the amount of memory required
for their implementation in an automotive microcontroller. In this sense, it is
demonstrated that 2-D LUTs (which only consider the mechanical speed and
the torque set-point) can be effectively used for proper torque regulation, as the
dimension that corresponds to the DC link voltage can be eliminated using the
speed normalization concept. On the other hand, two alternative VCT feedback
loops (flowchart based and integration based VCT approaches) are introduced
in the dimension related with the mechanical speed of the machine, ensuring
proper field weakening operation under significant parameter deviations. Both
strategies guarantee that the system remains under the maximum voltage con-
straint in both field weakening and deep field weakening operation regions, and
are only active when a predefined voltage constraint limit is reached.

Simulation results that validate both strategies have been carried out using
a detailed TIPMSM model in Matlab/Simulink, and deviations of +10 % have
been imposed to the electrical parameters. If no additional robust strategy
is included to the LUT based set-point generation algorithm, controllability is
only guaranteed up to 51 % of the EV speed operation range for this particular
machine. This limitation is unacceptable from the end-user point of view. The
usage of the proposed VCT feedbacks overcomes this issue and, once applied,
the machine can work in the whole operation range following a pseudo-optimal
operation.

The main advantage of these VCT feedbacks relies on the fact that no ma-
chine parameter knowledge is required in their implementation. Regarding prac-
tical implementation aspects, the flowchart based method requires to set two
control parameters, while only one parameter is required for the integration
based method. Besides, the computational burden is lower in the integration
based strategy than in the flowchart one. It is also demonstrated by simulation
that a slightly better voltage constraint regulation is achieved using the inte-
grator based alternative. Due to these reasons, the integration based VCT has
been considered for the experimental validation. Regarding current regulators,
the commonly used PI based FOC strategy has been replaced by a second order
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SMC due to its suitability for controlling machines suffering high non-linearities.

The experimental validation has been conducted in a 51 kW PM-assisted
SynRM. LUT content has been precalculated using the data provided by the
manufacturers and obtained from 2.5D FEM analysis. Significant deviations
between FEM data and the real machine have been found, specially due to
possible manufacturing tolerances. It has been demonstrated that, when the
VCT feedback has not been included, uncontrolled regeneration was produced
at 30 % of the vehicle maximum speed due to incorrect FW control. In this
particular case, the vehicle maximum speed would be limited to 40 km /h, which
would be also unacceptable for the end-user. However, system robustness is
guaranteed in the whole speed operation range when the proposed additional
control loop is included. The proposed strategy has also been evaluated under
real driving conditions throughout the standard Worldwide harmonized Light
vehicles test Procedure (WLTP). The results confirm that the proposed strategy
is ready to be implemented in real EVs.

The proposed FW control strategy can be also considered useful for large
scale machine production, as it simplifies the pre-commissioning of each machine
unit. Additionally, the VCT regulator only operates when required (in a pseudo-
optimal operation point), and maintains the predefined set points (theoretically
in an optimal operation point) when proper FW control is achieved with LUT
data.

On the other hand, it has been found that reliability is being considered
as a crucial requirement for future EV propulsion systems. The content of the
ISO 26262 automotive safety standard has motivated the development of fail
secure drive systems. Omne of the most critical failures in an EV concerns to
the resolver sensor, whose fault would involve catastrophic consequences for the
system. Therefore, special effort is being given nowadays to the development
of resolver fault tolerant strategies, conceived to operate in a degraded mode,
also known as limp-home operation. During such operation, a sensorless control
strategy must be used in order to guarantee the continuous operation of the
machine.

EV sensorless operation requires a back-EMF estimator for the estimation
of the rotor position at medium to high speeds and a saliency based technique
at low speeds and standstill. In this context, this thesis proposes a hybrid sen-
sorless strategy based on a PLL estimator and a HFI based saliency detection
technique. The combination of two techniques requires a correct procedure in
order to ensure a smooth transition between them. A great number of hybrid
sensorless strategies have been proposed in the scientific literature, being the use
of weighting coefficients one of the most common changeover methods. Taking
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into account the additional power losses and mechanical stress introduced by
the HFT in the system, it is highly recommended to restrict its use, avoiding
unnecessary injection during medium/high speed operation. The used HFT re-
quires an on the fly angular position polarity determination when the system
returns from PLL to HFI sensorless operation. In this sense, the reviewed sci-
entific bibliography did not provide detailed information concerning this issue.
In this context, the second contribution of this thesis has been focused on the
development of a hybrid sensorless algorithm, incorporating a robust transition
strategy including the magnets polarity determination. Additionally, a solution
to overcome the PLL speed reversal limitations has also been provided.

The proposed limp-home sensorless strategy has been preliminarily validated
in Matlab/Simulink for a synchronous machine with low saliency. On the other
hand, this algorithm has been experimentally validated in a 51 kW automotive
PM-assisted SynRM platform with significant saliency. Experimental results
show that approximately 50 % of the torque production capability and speed
range of the machine has been successfully maintained using the proposal, al-
lowing the sufficient limp-home capability for the EV in derated mode. Addi-
tionally, it has been demonstrated that the proposed sensorless strategy can be
successfully combined with advanced control strategies such as the second order
SMC, or the previously proposed hybrid 2-D LUT/VCT strategy.

5.2 Publications derived from this thesis

In the following, the journal and conference publications derived from this thesis
are presented. Table 5.1 shows the correspondence between the publications and
the content of the chapters of this thesis.

5.2.1 Publications in scientific journals

The following publications, which are fully related with the content of this thesis,
have been published in scientific journals:

J1) E. Trancho, E. Ibarra, A. Arias, I. Kortabarria, J. Jurgens, L. Marengo,
A. Fricasse, J. Gragger. “PM-Assisted Synchronous Reluctance Machine
Flux Weakening Control for EV and HEV Applications”, IEEE Transac-
tions on Industrial Electronics, vol. 65, no 4, pp. 2986-2995, April 2018.

Ranking (2016): Q1 (Automation and Control Systems, 1/59).
Journal Citations Reports (JCR) Impact Factor (2016): 7.168.
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Table 5.1: Publications derived from this thesis and their correspondence with
document chapters.

Chapter | Title Publication

2

Electric vehicle drive systems: Electric machines | J2, J4, C7
and control

Look-up table based flux weakening strategy in- | J1, C2, C4,
cluding novel voltage constraint tracking feed- | C6
back

Hybrid sensorless control solutions for limp- | J3, C1, C3,
home operation of automotive synchronous ma- | C5
chines

J2)

In this paper, a novel robust torque control strategy against parameter
variations and uncertainties for PM-assisted SynRM drives applied to EVs
and HEVs is presented. The proposed strategy focuses on field weaken-
ing and deep field weakening operation, and it guarantees electric vehicle
drive controllability in the whole speed/torque operation range and during
the whole propulsion system lifetime. The proposal is experimentally val-
idated in a full scale automotive test bench including a 51 kW prototype
for being further implemented in real hybrid and electric vehicles.

E. Trancho, E. Ibarra, A. Arias, N. Sabihi, . Lépez. “Ibilgailu elektrikoen
propultsio-sistemak: motore electrikoak eta horien kontrola”, EKAIA, spe-
cial issue on power electronics and power systems, pp 61-82, 2017.

This article provides an updated state of the art regarding the electric
machine technology used in current EV and HEV applications. In this
context, the most common torque control strategies are explained and
compared. On the other hand, position and speed sensorless control strate-
gies are discussed and, finally, challenges and future trends of EV/HEV
electric drive technology are provided.

On the other hand, the following publications are partially related with the
thesis and have been submitted to be considered for publication in two relevant
scientific journals:

J3)

E. Trancho, E. Ibarra, I. Kortabarria, P. Prieto, I. Martinez de Alegria,
J. Andreu, 1. Lépez. “Efficiency Loss Fvaluation of High Frequency Injec-
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J4)

tion based Sensorless Control in Light-duty EVs under Standardized Urban
Driving Cycles”, Applied Energy (Elsevier). Under review.

Ranking (2016): Q1 (Energy and Fuels, 6/92).
Journal Citations Reports (JCR) Impact Factor (2016): 7.182

In this paper, a hybrid position estimation strategy suitable for a variety of
synchronous machines is presented and experimental validated in a 51 kW
PM-assisted SynRM. The sensorless algorithm operation requirements are
determined from the experimental results. The impact of the additional
motor and inverter power losses produced by the HFI technique along
real automotive driving cycles are quantified using state of the art digital
simulation, demonstrating the feasibility of sensorless operation in EV
applications from an efficiency point of view.

A. Arias, E. Ibarra, E. Trancho, R. Grind, 1. Kortabarria, J. Caum.
“Novel Control Solution for High Speed PMSM Applied to EV and HEV”
Journal of the Franklin Institute - Engineering and Applied Mathematics
(Elsevier). Under review.

Ranking (2016): Q1 (Automation and Control Systems, 14/60)
Journal Citations Reports (JCR) Impact Factor (2016): 3.139

The trend for next generation automotive electric machines consists on in-
creasing the mechanical speed and, hence, the electrical frequency of the
synthesized stator voltages and currents. This can lead to relevant con-
trol challenges when using conventional control structures with sampling
period constraints. In this paper, the FOC stability under high speed op-
eration is studied using theoretical and simulation approaches. A control
structure that overcomes these stability problems and extends the speed
operation range of a PMSM without significant magnetic saturation is
presented.

5.2.2 Conference publications

The following conference publications are fully related with the content of this
thesis:

1)

E. Trancho, E. Ibarra, A. Arias, I. Kortabarria, P. Prieto, “A practi-
cal approach to HFI based Sensorless Control of PM-assisted Synchronous
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02)

03)

C4)

Reluctance Machines applied to EVs and HEVs”, in Proc. of the IEEE In-
dustrial Electronics Society Conference (IECON), pp. 1735-1740. Beijing
(China), 2017.

This paper presents practical implementation details of the HFI sensorless
technique, giving special attention to signal processing, offset compensa-
tion due to filtering delays and robust speed estimation. The approach is
validated in an automotive PM-assisted SynRM of 51 kW.

E. Trancho, E. Ibarra, A. Arias, C. Salazar, I. Lépez, A. Diaz de Gerenu,
A. Pena, “IPMSM Torque Control Strategies based on LUTs and VCT
feedback for Robust Control under Machine Parameter Variations”, in
Proc. of the IEEE Industrial Electronics Society Conference (IECON),
pp. 2833-2838. Florence (Italy), 2016.

In this paper, two novel hybrid IPMSM control strategies, which combine
LUTs and VCT feedbacks, are proposed in order to overcome controllabil-
ity issues during field weakening operation and under machine parameter
deviations. Simulation results that demonstrate the validity of the pro-
posed approaches are presented, and both strategies are compared in terms
of complexity and performance.

E. Trancho, E. Ibarra, A. Arias, C. Salazar, I. Lépez, A. Diaz de Gerefiu,
A. Pena, “A Novel PMSM Hybrid Sensorless Control Strategy for EV
Applications Based on PLL and HFI”, in Proc. of the IEEE Industrial
Electronics Society Conference (IECON), pp. 2833-2838. Florence (Italy),
2016.

In this paper, a novel hybrid sensorless control strategy for PMSM drives
applied to EVs is presented. This sensorless strategy covers a wide speed
range and also has speed reversal capability. It combines a HFT technique
for low and zero speed operation, and a PLL for medium and high speed
operation. A solution to achieve a smooth transitions between the PLL
and the HFT strategies is also proposed, allowing to correctly detect the
rotor position polarity when HFT takes part. Simulation results that show
the validity of the proposal are provided.

E. Trancho, E. Ibarra, A. Arias, 1. Kortabarria, “Control éptimo de
par para mdquinas SynRM aplicadas a vehiculo eléctrico”, in Proc. of the

Seminario Anual de Automaética, Electrénica Industrial e Instrumentacion
(SAAEI), pp. 1-6. Valencia (Spain), 2017.
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This paper analyses the design of a reliable torque control algorithm for
a PM-assisted SynRM. On the one hand, An offline optimal current ref-
erence calculation procedure is explained for the whole speed operation
range. On the other, the PI based FOC current regulator adjustment in
the z domain is mathematically deduced. Experimental results are pro-
vided to validate the implemented control structure.

C5) E. Trancho, E. Ibarra, A. Arias, C. Salazar, I. Lépez, A. Diaz de Gerenu,
“Full Speed Range Sensorless Control of Permanent Magnet Synchronous
Machines for EV and HEV Applications: State of the Art”, in Proc. of the

Seminario Anual de Automatica, Electrénica Industrial e Instrumentacién
(SAAEI), pp. 1-6. Elche (Spain), 2016.

This paper reviews the most significant rotor position and speed estima-
tion methods for PMSMs. Additionally, the paper discusses their suit-
ability for EV and HEV applications. An hybrid sensorless algorithm
combining the HFT technique for low speed regions and standstill, and an
EKF based solution for medium and high speed regions is implemented.
Sensorless simulation results are given to show the suitability of the se-
lected technique for EV applications.

C6) E. Ibarra, E. Trancho, M. Dendaluce, A. Diaz de Gerenu, C. Salazar,
A. Pena, “MTPA and Field Weakening Strategies for IPMSMs: State of
the Art and Computational Analysis”, in Proc. of the Seminario Anual de

Automatica, Electrénica Industrial e Instrumentacién (SAAEI), pp. 1-6.
Elche (Spain), 2016.

In this paper, various Maximum Torque Per Ampere (MTPA) and field
weakening control alternatives for PMSMs are reviewed. The compu-
tational resources needed for their real-time execution in an automotive
certified microprocessor are analysed. A Processor in the Loop (PIL) plat-
form based on the dSPACE TargetLink software has been used in order
to carry out the aforementioned analysis, determining the convenience of
a LUT based approach for low computational burden.

On the other hand, the following conference publication is partially related
with the content of this thesis:

C7) N. Zabihi, I. Lépez, E. Trancho, E. Ibarra, A. Penia, “Switched Reluc-
tance Machines for FElectric Vehicles: State of the Art”, in Proc. of the
Seminario Anual de Automatica, Electréonica Industrial e Instrumentacién
(SAAEI), pp. 1-6. Elche (Spain), 2016.
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In this paper, a state of the art of the most relevant SRM topologies is
provided, and their advantages and disadvantages are discussed. Addi-
tionally, the most common torque control strategies for SRM drives are
categorized, which is followed by a summary of researches that focus on
torque ripple and mechanical vibration reduction.

5.3 Industrialization of proposed control solu-
tions

The proposed hybrid LUT/VCT based field weakening algorithm has been suc-
cessfully implemented in an EV mounting an IPMSM. Up to the date of pre-
sentation of this thesis, this vehicle has been certified for on road driving and
has covered more than 8000 km.

5.4 Future work

Considering the work carried out in this thesis, the author proposes the following
research lines for future investigation:

To extend the main thesis contributions to multiphase synchronous
machine technologies

Nowadays, three phase machines are the dominant technologies for automotive
propulsion applications. Nevertheless, future trends are focused on providing
fault tolerant capabilities and the highest possible power densities to EV propul-
sion systems, making multiphase machine technologies of great interest.

This thesis has been focused on the development of robust field weakening
control algorithms and of fault tolerant control against encoder/resolver failures
for three-phase synchronous machines. An interesting research line would be to
particularize the proposed control strategies to the multiphase scenario. In this
context, a number of multiphase topologies could be investigated:

e Dual (or multiple) three-phase configurations.

e Star connected multiphase systems with an odd phase-number, such as
5-phase, 7-phase and 9-phase configurations.

e Multiphase topologies with open windings and odd phase-number, such
as 3-phase, 5-phase, 7-phase or 9-phase configurations.
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If feasible, it would also be of interest to particularize the proposed field
weakening and sensorless techniques for their operation under open circuit faults
in machine windings or power electronics devices of such multiphase systems.

Development of robust torque regulation strategies for next genera-
tion high speed synchronous machines

As it can be derived from the state of the art, future trends in EV applications
include the development of high speed synchronous machines (with mechanical
speeds above 15000 rpm) in order to maximize the power density of the electric
drive. This trend can lead to relevant control challenges when using conventional
control structures with limited switching frequencies.

A future research line would include the research and development of ad-
vanced high speed current regulation strategies for automotive synchronous ma-
chines that take into account the high non-linearities of this particular machines
produced by magnetic saturation.

Investigation on resolver/encoder fault prediction and smooth tran-
sition between healthy and limp-home operation

In this thesis, a novel sensorless control solution for limp-home operation has
been successfully implemented in a real automotive drive. However, for ap-
plications where the reconfiguration between sensored and sensorless operation
should be provided while the vehicle is in motion, it is of great interest to provide
tools that can predict the occurrence of a sensor fault in advance. In this way,
the control algorithm can anticipate to the fault and take the required actions,
ensuring a smooth transition between sensored and sensorless operation, while
maintaining passenger safety and comfort.

Finally, it would also be of interest to incorporate a start-up procedure to
the proposed sensorless strategy, using an approach presented in the scientific
literature, or providing a novel initial angle determination solution.
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Vector transformations

A.1 Clarke transformation

The Clarke vector transformation (figure A.1) can be used to convert a magni-
tude represented in a three-phase reference frame (2yz) into a two-phase system
(af0). In this context, the Clarke matrix is defined as:

Xa 1 —3 7%

2 x
Xg|=Ki|o0 % -2 |yl, (A1)
Xo Ky Ko Ky z

where [UVW] and [X,XpXo] are the electrical magnitude components in the
three-phase and af reference frames, respectively, being the homopolar com-
ponent X, = 0 for a balanced system. On the other hand, K; and K> are
constants that can take two sets of values:

1. The first set of values consists of defining K; = \/% and Ky = 1/v/2.
This approach is known as the power invariant transformation. Under
these considerations, the value of the power is maintained between both
reference systems.

2. Clarke constants can be also defined as Ky = 2/3 and K2 = 1/2 in order
to maintain the amplitude of the vector across the transformation. Using
this approach, the power and torque equations in the o plane must be
multiplied by 3/2.
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Figure A.1: Clarke transformation.
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Figure A.2: Park transformation.

This thesis has considered the amplitude invariant transformation (second
approach) when required in FOC.

A.2 Park transformation

Finally, the Park transformation converts the afo system into an orthogonal
rotating reference frame (dqo), as shown in figure A.2. The Park matrix trans-
formation is defined as:
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X4 cosf sinf 0] [X,
Xq| = |—sinf cosf 0| |Xg|, (A.2)
X, 0 0o 1| | X,

where 0 is the angle of the dqo reference frame with respect to the oo reference

frame. The corresponding anti-transformation matrices can be directly derived
from (A.1) and (A.2).
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Second order SMC
parameter tuning

In this appendix, the selection of the parameter c; and the tuning equations
to adjust the ST parameters \; and €); are detailed. The approach presented
in [150] has been followed for these calculations, although in this thesis the proce-
dure has been particularized for the current control of a non-linear synchronous
machine. For simplicity, only the calculations for vg.q, and vgsr tuning are
presented, while the same procedure should be followed to obtain the g-axis pa-
rameters. In this sense, introducing (2.38) and (2.36) into (2.32), the following
motor dynamic control law is obtained:

dsid
dt

= — {/\d|sid|1/259n(sid) +Qd/sgn(sid)dt] , (B.1)

where the time derivative of (B.1) can be expressed as:

dQSid
dt

1 ds; 5
= — | SAdlsi, |7V P Qg B.2
[lsn 2 1 (B.2)

Considering that the sliding regime has been reached, |s;,| < d4, being d4
close to zero. Assuming the worst case (|s;,| = d4) and introducing (2.28) and its
time first and second derivatives in (B.2), the following expression is obtained:

(€i, + ca [ €i,di)
da

dei
el (ﬁ'f‘cdeid)"r‘ﬂd

dQeid c % _ |:]./\ 5_1/2

dt d dt 5 :|7 (BS)
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and rearranging (B.3), the following differential equation is deduced:

d26id deid
a2

+ are;, —l—ao/eiddt:O. (B4)

Calculating the time derivative of (B.4), the error dynamic expression is
obtained as:

d?’eid d2€7;d deid
- - iy = U, B.
a g tog taci, =0 (B-5)
being
_ 1, 172
as = Ccq + §>‘d5d s (BG)
1. Q
ap = *)\d(sd 1/20d + J, (B?)
2 0dq
Q
ag = =2, (B.8)
d
Taking into account the third-order general characteristic equation, defined
as:
(P + 26wup +wp)(p+ abwn) = p* +bop” +bip+bo =0,  (B.9)
where
by = (24 a)€wy, (B.10)
by = (1 + 2a&%)w?, (B.11)
bo = adw?, (B.12)

being « a constant that must have a high enough value (o > 10) in order to
make less relevant the third pole of the system. Finally, the term ¢4 is directly
calculated from (B.9), while Q; and \; are obtained so that ag = by and as = b,
respectively:

3+ bk + bicqg + by = 0, (B.13)
3

Qq = M, (B.14)
Cd

A = [(2+ a)éwy, — cq]26"°. (B.15)
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Experimental platform for
EV propulsion system
testing

In this appendix, the experimental platform used to carry out the validation
of the proposed control algorithms (figures C.1 and C.2) is described. This
platform is constituted by three main elements, i.e., the test bench cabin, the
power train and the vehicle emulator (figure C.3), and it also includes devices
for control, monitor and data logging purposes.

The test bench cabin includes the 51 kW PM-assisted SynRM machine under
test (figure C.2), mechanically coupled to a counter-load machine. The counter-
load IM has a maximum speed of 8000 rpm and a maximum power of 157 kW,
and is used to emulate the electric vehicle behaviour (figure C.2). The IM is
controlled throughout a regenerative 4-quadrant commercial drive, which allows
both torque or speed control modes. In order to emulate the vehicle motion, the
counter-load machine is controlled in the speed control mode for this particular
application. A 1:1.8 ratio gearbox is included between the IM and the PM-
assisted SynRM, allowing a maximum speed up to 14400 rpm for the machine
under test. Additionally, a programmable DC voltage source of a maximum
output power of 280 kW and a maximum output voltage of 500 V is available to
emulate the battery pack. A cooling system (LAUDA RP1845) is also installed

151



Appendix C

(a) Overview of the test bench. (b) Devices for control, monitoring and data
logging platform.

Figure C.1: Test bench overview, including the monitoring platform.

1111111111111

1

Figure C.2: Tecnalia’s automotive test bench cabin overview, including the
machine under test (left) and the counter-load machine (right).

in order to cool both the motor and inverter under test!. It provides liquid
cooling (water/ethilenglycol) with a maximum coolant flow of 25 1/min. Finally,

1However, in this particular case the motor under test is air cooled; thus, this cooling loop
is only required for the counter-load machine cooling.
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a climate chamber is also installed to emulate real life operation conditions of
the unit under test.

The control algorithms are developed in the Matlab/Simulink environment
and implemented in a dSPACE Rapid Control Prototyping (RCP) digital real-
time device, including a slot-CPU control board (DS1006) and an AC Motor
Control Solutions board. The dSPACE RCP device is connected to an industrial
Semikron IGD-1-424-P1N4-DL-FA power inverter, which has a nominal power
of 140 kW and a maximum switching frequency of 25 kHz. The dSPACE device
and the commercial inverter emulate the control ECU and the power electronics
of an automotive eDrive.

Regarding sensors and monitoring, the driveline includes an HBMT40B
torque and speed sensor mounted in-line between the load machine and the
unit under test. LEM IT 400-S current sensors are also available to measure
the DC input current and the three-phase AC output currents. Using the infor-
mation provided by such sensors, a Yokogawa WT3000 power analyser is used
for the evaluation of the drive efficiency and for harmonic waveform analysis.

The test bench includes a software tool to facilitate control, monitoring and
data logging. The communication between devices is carried out through Ether-
net, CAN and RS232 (figure C.3). The specifically designed software application
has been developed under NI LabView and VeriStand. It allows to send com-
mands to each device, calculating, visualizing and storing automatically all the
measured variables. Additionally, the application allows to test the performance
of the system under a defined driving cycle (customized or standardized). On
the other hand, a National Instruments PC based PXI platform (Test bench
PXT) is used to interact with the test bench digital devices (figure C.3).

This automotive test bench also allows to carry out Human in the Loop tests
(figure C.4). This is achieved using the DYNACAR®) product, a complete road
vehicle real time model based on LabVIEW. A vehicle can be modelled intro-
ducing its design parameters with a dedicated GUI (figures C.4(a) and C.4(b)).
This platform considers both longitudinal and lateral dynamics, providing two
operation modes: autonomous and manual driving. When selecting the au-
tonomous option, DYNACAR®) executes automatic driving cycles, providing
the corresponding speed set-point to the load machine and torque set-point
to the PM-assisted SynRM machine. When manual driving operation is acti-
vated, DYNACAR® makes use of the real steering wheel, pedals (accelerator
and brake) and actual torque to reproduce real driving conditions, as shown in
figure C.4(c).
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(a) DYNACAR® visual. (b) DYNACAR® manual/autonomous driv-
ing controls.

(c) DYNACAR® vehicle simulator.

Figure C.4: DYNACAR® vehicle model.
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