
Konputazio Zientziak eta Adimen Artifizialaren Saila

Departamento de Ciencias de la Computación e Inteligencia Artificial

K-means for massive data

by

Marco Vinicio Capó Rangel

Supervised by Aritz Pérez and Jose A. Lozano

Dissertation submitted to the Department of Computer Science and Artificial
Intelligence of the University of the Basque Country (UPV/EHU) as partial

fulfilment of the requirements for the PhD degree in Computer Science

Donostia - San Sebastián, April, 2019

(cc)2019 MARCO VINICIO CAPO RANGEL (cc by 4.0)

Konputazio Zientziak eta Adimen Artifizialaren Saila

Departamento de Ciencias de la Computación e Inteligencia Artificial

K-means for massive data

by

Marco Vinicio Capó Rangel

Supervised by Aritz Pérez and Jose A. Lozano

Dissertation submitted to the Department of Computer Science and Artificial
Intelligence of the University of the Basque Country (UPV/EHU) as partial

fulfilment of the requirements for the PhD degree in Computer Science

Donostia - San Sebastián, April, 2019

This research was carried out at the Basque Center for Applied Mathemat-
ics (BCAM) within the Data Science- Machine Learning group and was sup-
ported by the Spanish Ministry of Economics and Competitiveness MINECO
through the BCAM Severo Ochoa excellence accreditations SVP-2014-068574,
SEV-2013- 0323 and SEV-2017-0718 and the ELKARTEK program. The sup-
port of MINECO and BERC Grants is acknowledged for the three months
visit at the Laboratory of Artificial Intelligence and Decision Support- IN-
ESCTEC, Porto, Portugal.

III

Acknowledgments

First of all, I want to express my deep gratitude to my mentors, Aritz Pérez
and Jose A. Lozano, for all their dedication, keen interest, timely advice,
friendly environment and, especially, for their scholarly instruction in a scien-
tific area that was unknown to me.

I also owe a debt of gratitude to Joao Gama for allowing me to complete
a stay as a visitor in his research group, LIAAD-INESC TEC, at Porto Uni-
versity.

I want to express deepest gratitude to my parents, Ana and Delf́ın, my
sisters, Carmen and Ana Maŕıa, my brother, Johan, and my niece, Mariana,
for all the memories, for being my main source of motivation and for always
supporting me despite the critical situation back at home, Venezuela. Hope-
fully, one day we will be all together again...

I also want to dedicate this work and express my deepest appreciation and
respect to all those Venezuelans that have died in the last few decades fighting
for our freedom, our duty is to make sure that your deaths have not been in
vain...

Finally, I want to thank my colleagues in BCAM, Diana Marcela Pérez,
Mikel Agirre, Miguel Beńıtez, Nicole Cusimano, Mauricio Rincón, Lore Zumeta,
Dae-Jin Lee, Isabella Marinelli, Daniel Garćıa, Havva Yoldas, Sandeep Kumar
and Michael Barton, for all the nice lunches, trips, coffee breaks, advice, you
made me feel at home during my stay in BCAM, I will be forever greatful to
all of you.

Contents

0 Preface . 1
0.1 Abstract . 1
0.2 Overview of the Dissertation . 3

Part I Introduction to the K-means Algorithm on Massive Data

1 A Brief Overview of the K-means Algorithm on Massive
Data . 7
1.1 Cluster Analysis . 7

1.1.1 Partitional Clustering . 8
1.1.1.1 K-means Problem . 9
1.1.1.2 K-means Algorithm . 9
1.1.1.3 On improving the scalability of Lloyd’s

algorithm . 14

2 Objectives, hypothesis and methodology 17
2.1 Objectives . 17
2.2 Hypothesis . 18
2.3 Methodology . 18

2.3.1 Reducing the number of instances 18
2.3.2 Dimensionality Reduction . 23
2.3.3 Re-start strategy for the K-means algorithm 24

Part II Our Contributions

3 An efficient approximation to the K-means clustering for
massive data . 29
3.1 Recursive partition based K-means . 29

3.1.1 Recursive Partitions . 30

VI Contents

3.1.2 Weighted K-means problem . 31
3.1.3 RPKM Algorithm . 33
3.1.4 RPKM implementation based on grid partitions 34

3.2 Theoretical analysis of the RPKM algorithm 35
3.2.1 Evolution of the centroids error . 36
3.2.2 Bounding the iterations of the weighted Lloyd’s

algorithm . 38
3.3 Experimental section . 39

3.3.1 Artificial data sets results . 40
3.3.1.1 Distance computations . 40
3.3.1.2 Quality of the approximation 42
3.3.1.3 Relation distance computations - quality of

the approximation . 44
3.3.2 Real data sets . 45

3.3.2.1 Distance computations . 46
3.3.2.2 Quality of the approximation 48
3.3.2.3 Relation distance computations - quality of

the approximation . 49
3.4 Conclusions . 51

4 An efficient K-means clustering algorithm for tall data 53
4.1 BWKM algorithm . 56

4.1.1 A cheap criterion for detecting well assigned blocks 56
4.1.2 Initial Partition . 58
4.1.3 Construction of the sequence of thinner partitions 61

4.1.3.1 Computational complexity of the BWKM
algorithm . 63

4.1.4 Additional Remarks . 63
4.1.4.1 Parameter selection . 63
4.1.4.2 Stopping Criterion . 64

4.2 Experiments . 65
4.3 Conclusions . 70

5 A cheap feature selection approach for the K-means
algorithm . 73
5.1 K-means relevance for feature selection . 76

5.1.1 Local/Global approximation step 76
5.2 Experiments . 80

5.2.1 Feature Selection . 83
5.2.2 Feature Extraction . 85

5.3 Conclusions . 87

6 An efficient Split-Merge re-start for the K-means algorithm 89
6.1 The Split-Merge K-means algorithm . 90

6.1.1 Cluster Split (SplitStep) . 91

Contents VII

6.1.2 Clusters Merge (MergeStep) . 92
6.1.3 Error descent conditions . 93

6.2 Experiments . 94
6.2.1 Quality of the approximation . 95
6.2.2 Distance Computations . 97
6.2.3 Error Descent . 101

6.3 Conclusions . 102

Part III Final Remarks

7 General Conclusions and Future Work . 105
7.1 Conclusions . 105
7.2 Future Work . 107
7.3 Main Achievements . 108

7.3.1 Publications . 108
7.3.2 Conferences and Workshops . 108
7.3.3 Short Visits . 109

.1 Appendix of Chapter 3 . 111

.2 Appendix of Chapter 4 . 115
.2.1 Proofs . 115
.2.2 About the grid based RPKM . 120

.3 Appendix of Chapter 5 . 124
.3.1 Proofs . 125
.3.2 Feature Selection of KMR . 128
.3.3 Some practical results using Remark 1 129

.4 Appendix of Chapter 6 . 132
.4.1 Proofs . 132
.4.2 Experiments . 134
.4.3 Hartigan-Wong K-means algorithm 138

References . 139

List of Figures

1.1 Initial set of centroids (left), Assignment step (center),
Update step (right). 10

1.2 An example of the K-means algorithm output for two
different initializations. In the top figure, 11 Lloyd’s algorithm
iterations were executed, while, in the bottom figure, 2
iterations were needed. 11

1.3 K-means++ seeding example, for K = 3. 12

2.1 2D example for grid based RPKM. 20
2.2 2D example of a spatial partition based on the cluster

boundaries. 21

3.1 Best clustering obtained at each RPKM iteration. 34
3.2 Illustration of Lemma 2, for two clusterings G and G′ defined

on a partition P. 37
3.3 This figure shows the number of distance computations with

respect to the size of the data set (n), for different numbers of
dimensions (d) and numbers of clusters (K). 40

3.4 This figure shows the ratio between the size of the partition
Pm and the size of the data set n, for m = 1, ..., 6. The size of
the partition Pm corresponds to the number of representatives
used by RPKM at its m-th step. 41

3.5 Quality of the approximation (std.error) with respect to the
RPKM step. 43

3.6 Quality of the approximation vs number of distance
computations. 44

3.7 Number of distance computations with respect to data set
size, n . 47

3.8 Percentage of subsets with respect to RPKM step 48
3.9 Quality of the approximation with respect to RPKM step 49

X List of Figures

3.10 Quality of the approximation vs number of distance
computations . 50

4.1 Information required for computing the misassignment
function of the block B, εC,X(B), for K = 2. 58

4.2 Relative distance computations vs relative error on the CIF
data set. 67

4.3 Relative distance computations vs relative error on the 3RN
data set. 67

4.4 Relative distance computations vs relative error on the HPC
data set. 67

4.5 Relative distance computations vs relative error on the GS
data set. 67

4.6 Relative distance computations vs relative error on the SUSY
data set. 68

4.7 Relative distance computations vs relative error on the WUY
data set. 68

5.1 Illustration on the proposed feature selecion rule, K = 2. 74
5.2 Sketch of the proposal. 75
5.3 Feature Selection output for all data sets -boxplot-. 83
5.4 Feature Extraction output for all data sets -boxplot-. 85

6.1 Final relative error for each method (boxplot). 96
6.2 Final relative distance computations for each method (boxplot). 97
6.3 Relative Lloyd it./re-start for SMKM and multi-start Lloyd’s

algorithm (boxplot). 99
6.4 Number of re-starts for each method (boxplot). 100
6.5 Relative error descent per iteration of SMKM and HKM

(boxplot). 100
6.6 Re-initialization error descent w.r.t. previous local minima

(boxplot). 101

.1 Relative distance computations vs relative error on the CIF
dataset. 121

.2 Proportion representatives/instances with respect to the
number of iterations on the CIF dataset. 121

.3 Relative distance computations vs relative error on the 3RN
dataset. 121

.4 Proportion representatives/instances with respect to the
number of iterations on the 3RN dataset. 121

.5 Relative distance computations vs relative error on the HPC
dataset. 122

.6 Proportion representatives/instances with respect to the
number of iterations on the HPC dataset. 122

List of Figures XI

.7 Relative distance computations vs relative error on the WUY
dataset. 122

.8 Proportion representatives/instances with respect to the
number of iterations on the WUY dataset. 122

.9 Obtained epsilon after applying Remark 1. 130

.10 Error obtained after selecting the last variable for which
Remark 1 achieves the 1 + ε-approximation. 131

.11 Proportion of variables discarded by Remark 1 for reaching
the 1 + ε-approximation. 131

.12 Relative distance computations/error on BC. 136

.13 Relative distance computations/error on DIG. 136

.14 Relative distance computations/error on AC. 136

.15 Relative distance computations/error on HAR. 136

.16 Relative distance computations/error on SVA. 136

.17 Relative distance computations/error on 3RN. 137

.18 Relative distance computations/error on HP. 137

.19 Relative distance computations/error on GS. 137

.20 Relative distance computations/error on BC (Hartigan-Wong
K-means). 137

.21 Relative distance computations/error on DIG (Hartigan-Wong
K-means). 137

List of Tables

3.1 RPKM iteration results. 35

4.1 Information of the data sets. 66
4.2 BWKM distance proportion with respect to the considered

methods for reaching under < 5%;< 1% of their relative error
(In our notation, 5.6(−2) = 5.6× 10−2). 69

5.1 Information of the data sets. 81
5.2 Relative error - average over all data sets-. 82
5.3 (ARI, Relative computational time) - average over all

data sets-. 82
5.4 (Relative error, ARI, Relative computational time) -

average over groups of dimensions-. 84
5.5 (Relative error, ARI, Relative computational time) -

average over groups of classes-. 84
5.6 (Relative error, ARI, Relative computational time) -

average over groups of instances-. 84
5.7 (Relative error, ARI, Relative computational time) -

average over groups of dimensions-. 86
5.8 (Relative error, ARI, Relative computational time) -

average over groups of classes-. 86
5.9 (Relative error, ARI, Relative computational time) -

average over groups of instances-. 86

6.1 Information of the data sets. 95
6.2 Relative error after last re-start (average over all data sets). . . . 96
6.3 Lowest error approximation (percentage). 96
6.4 Final relative distances computed (average over all data sets). . . 98
6.5 Relative error descent per iteration (average over all data sets). 98
6.6 Lowest number of relative distances computed (percentage). . . . 98
6.7 Relative Lloyd it./re-start (average over all datasets). 99

XIV List of Tables

6.8 Re-initialization error descent w.r.t. previous local minima/
Basin of attraction change (percentage). 101

.1 Proportion final number of representatives / instances for the
different datasets and number of clusters. 123

.2 Proportion of cases in which the spatial partition obtained
by BWKM satisifes Theorem 4 verified via the misassigment
function of Theorem 2. 124

.3 Average, over all data sets, for the results presented in Fig..9-.11.132

.4 Average relative error of HKM for the different data sets and
number of clusters. 138

0

Preface

0.1 Abstract

The K-means algorithm is undoubtedly one of the most popular clustering
analysis techniques, due to its easiness in the implementation, straightforward
parallelizability and competitive computational complexity, when compared
to more sophisticated clustering alternatives. However, the progressive growth
of the amount of data that needs to be analyzed, in a wide variety of scientific
fields, represents a significant challenge for the K-means algorithm, since its
time complexity is dominated by the number of distance computations, which
is linear with respect to both the number of instances, n, and dimensionality
of the problem, d. This fact hinders its scalability on such massive data sets.
Another major drawback of the K-means algorithm corresponds to its high
dependence on the initial conditions, which not only may affect the quality of
the obtained solution, but may also have a major impact on its computational
load, as for instance, a poor initialization could lead to an exponential running
time in the worst case scenario.

In this dissertation, we tackle all these difficulties. Initially, we propose
an approximation to the K-means problem, the Recursive Partition-based K-
means algorithm (RPKM). This approach consists of recursively applying a
weighted version of K-means algorithm over a sequence of spatial-based par-
titions of the data set, for which each cell of the partition is represented by
the center of mass of the points that lie on it. From one iteration to the next,
a more refined partition is constructed and the process is repeated using the
optimal set of centroids, obtained at the previous iteration, as initialization.
From a practical standpoint, such a process reduces the computational load
of K-means algorithm as the number of representatives, at each iteration, is
commonly much smaller than the number of instances of the data set. On the
other hand, both phases of the algorithm are embarrasingly parallel. From a
theoretical standpoint, and in spite of the selected partition strategy, one can
guarantee the non-repetition of the clusterings generated at each RPKM iter-
ation, which ultimately implies the reduction of the total amount of K-means

2 0 Preface

algorithm iterations, as well as leading, in most of the cases, to a monotone
decrease of the overall error function. Afterwards, we present a RPKM-type
approach, the Boundary Weighted K-means algorithm (BWKM). For this
technique, the data set partition is based on an adaptative mesh, that adjusts
the size of each grid cell to maximize the chances of each cell having only
instances of the same cluster. The goal is to focus most of the computational
resources on those regions where it is harder to determine the correct cluster
assignment of the original instances (which is the main source of error for
our approximation). For such a construction, it can be proved that if all the
cells of a spatial partition are well assigned (have instances of the same clus-
ter) at the end of a BWKM step, then the obtained clustering is actually a
fixed point of the K-means algorithm over the entire data set. Furthermore,
if, for a certain step of BWKM, this property can be verified at consecutive
weighted Lloyds iterations, then the error of our approximation also decreases
monotonically. From a practical stand point, BWKM was compared to the
state-of-the-art: K-means++, Forgy K-means, Markov Chain Monte Carlo
K-means and Minibatch K-means. The obtained results show that BWKM
commonly converged to solutions, with a relative error of under 1% with
respect to the considered methods, while using a much smaller amount of
distance computations (up to 7 orders of magnitude lower).

Even when the computational cost of BWKM is linear with respect to the
dimensionality, its error quality guarantees are mainly related to the diagonal
length of the grid cells, meaning that, as we increase the dimensionality of
the problem, it will be harder for BWKM to have such a competitive per-
formance. Taking this into consideration, we developed a fully-parellelizable
feature selection technique intended for the K-means algorithm, the Univari-
ate K-means relevance for feature selection algorithm (KMR). This approach
consists of applying any heuristic for the K-means problem over multiple
subsets of dimensions (each of which is bounded by a predefined constant,
m � d) and using the obtained clusterings to upper-bound the increase in
the K-means error when deleting a given feature. We then select the features
with the m largest error increases. Not only can each step of KMR be simply
parallelized, but its computational cost is dominated by that of the selected
heuristic (on m dimensions), which makes it a suitable dimensionality reduc-
tion alternative for BWKM on large data sets. Besides providing a theoretical
bound for the obtained solution, via KMR, with respect the optimal K-means
clustering, we analyze its performance in comparison to well-known feature
selection and feature extraction techniques. Such an analysis shows KMR to
consistently obtain results with lower K-means error than all the considered
feature selection techniques: Laplacian scores, maximum variance and random
selection, while also requiring similar or lower computational times than these
approaches. On the other hand, KMR, when compared to feature extraction
techniques, such as Random Projections, also shows a noticeable improvement
in both error and computational time.

0.2 Overview of the Dissertation 3

As a response to the high dependency of K-means algorithm to its initial-
ization, we finally introduce a cheap and yet effective Split-Merge step that
can be used to re-start the K-means algorithm after reaching a fixed point,
Split-Merge K-means (SMKM). Under some settings, one can show that this
approach reduces the error of the given fixed point without requiring any fur-
ther iteration of the K-means algorithm. Moreover, experimental results show
that this strategy is able to generate approximations with an associated error
that is hard to reach for different multi-start methods, such as multi-start
Forgy K-means, K-means++ and Hartigan K-means. In particular, SMKM
consistently generated the local minima with the lowest K-means error, re-
ducing, on average, over 1 and 2 orders of magnitude of relative error with
respect to K-means++ and Hartigan K-means and Forgy K-means, respec-
tively. We have observed that SMKM improves the previously commented
methods in terms of the number of distances computed and the error of the
obtained solutions.

0.2 Overview of the Dissertation

This document is divided into three separate parts: i) a quick introduction to
the K-means clustering problem on massive data domains and the definition
of the objectives, hypothesis and methodology of the dissertation, ii) a detailed
analysis of the contributions and iii) conclusions and future work.

Part I introduces the main contributions of this PhD work to the machine
learning field and is composed of three chapters: Chapter 1 contains a brief
description of the K-means algorithm and the state-of-the-art in terms of
the quality of the obtained solutions and of the reduction of computational
requirements for the K-means problem. Then, Chapter 2 sums up the main
contributions of this dissertation, their motivations, results and conclusions.
These are as follows:

1. Design of two accurate approximations to the K-means problem for tall
data applications.

2. Development of a dimensionality reduction technique (feature selection)
designed for any heuristic that approximates the solution of the K-means
problem.

3. Design of a cheap and effective re-start strategy for the K-means algo-
rithm.

Part II is composed of the previously mentioned main contributions. This
part is divided into Chapter 3, Chapter 4, Chapter 5, and Chapter 6, and
they correspond to the contributions 1-3, respectively. Finally, in Part III
some general conclusions and remarks on potential future work are drawn.

Part I

Introduction to the K-means Algorithm on
Massive Data

1

A Brief Overview of the K-means Algorithm
on Massive Data

Data generation has seen remarkable growth in the last few years. The emer-
gence of a wide variety of areas, such as e-commerce, sensor networks, ge-
nomics, massive search engines and social media has transformed the way the
storage, retrieval and analysis of such a massive amount of information is ap-
proached [1]. In a survey carried out by IBM, it is estimated that the amount
of data generated surges to 2.5 · 1018 bytes every day, while, by 2020, it is
estimated that 1.7MB of data will be created every second for every person
on earth [2, 3, 4]. In particular, it is reported that Google, Yahoo!, Microsoft,
and other Internet-based companies have data that is measured in exabytes
(1018 bytes) [1], while Facebook reports about 6 billion new photos every
month and 72 hours of video are uploaded to YouTube every minute [5]. Such
an overwhelming flow of information just keeps increasing every day, in fact,
over the last two years alone, 90% of the data in the world was generated
[3]. Data sets, as the ones described above, and the challenges involved when
analyzing them, is often subsumed in the term Massive Data [1, 6].

Given such a tremendous amount of data, the development of efficient and
effective tools has become necessary to analyze and reveal valuable knowledge
that is hidden within the data [7]. In this sense, cluster analysis is a popular
approach in data mining and has been widely used in several areas [7, 8].

1.1 Cluster Analysis

Cluster analysis is a multivariate method which aims to divide objects into a
number of groups, called clusters, in such a way that intra-cluster similarity
is high and the inter-cluster similarity is low. In this sense, clustering can be
regarded as a form of classification that derives the labels of the objects only
from the data set (cluster) and, for this reason, cluster analysis is sometimes
referred to as unsupervised classification [9, 10, 11].

As described in [10], clustering has been mainly used for the following three
purposes: i) to gain insight into data (underlying structure), ii) to identify the

8 1 A Brief Overview of the K-means Algorithm on Massive Data

degree of similarity between objects (natural classification) and iii) to orga-
nize and summarize the data set into cluster prototypes. For this reason, this
technique is a very important task in different areas, such as artificial intelli-
gence, image processing, web mining, bioinformatics and pattern recognition
[12, 9, 10, 13].

There exist different types of clustering algorithms, from which we can
mainly distinguish: hierarchical versus unnested, and exclusive versus over-
lapping versus fuzzy/probabilistic [11].

The most common distinction between different clustering algorithms is
whether they are hierarchical or unnested. Hierarchical clustering algorithms
recursively find nested clusters (clusters are allowed to have subclusters) ei-
ther in agglomerative mode (starting with each data point in its own cluster
and combining the most similar pair of clusters recursively to form a cluster
hierarchy) or in divisive mode (starting with all the data points in one cluster
and recursively dividing each cluster into smaller clusters) [12, 9, 10]. On the
other hand, unnested clustering algorithms divide the data set objects into a
predefined number of clusters with no hierarchical structure [10].

Clustering algorithms can also be classified into exclusive versus overlap-
ping versus fuzzy/probabilistic. While exclusive clusterings assign each object
to a single cluster, overlapping clusterings allow objects to simultaneously
belong to more than one cluster. On the other hand, in fuzzy clustering, ev-
ery object belongs to every cluster with a membership weight that oscillates
between 0 and 1. Similarly, probabilistic clustering techniques compute the
probability with which each point belongs to each cluster. These last two ap-
proaches tend to be used to avoid the arbitrariness of assigning an object to
only one cluster when it could be close to different groups [9, 11].

In particular, this dissertation is devoted to a very popular partitional clus-
tering technique, which is in the intersection between unnested and exclusive
clustering, called the K-means algorithm.

1.1.1 Partitional Clustering

The goal of partitional clustering is to divide a data set into a predefined num-
ber of clusters, in such a way that a given partitioning criterion is optimized.
Even when there exists a wide variety of partitional clustering methods, the
K-means algorithm [10, 14] stands out as one of the most popular, due to its
ease of implementation, simplicity, efficiency and empirical success [15, 10].
This method, which attempts to find a user-specified number of clusters (K)
which are represented by their centroids, has been named one of the top 10
algorithms in data mining by the organizers of the IEEE International Con-
ference on Data Mining (ICDM) in 2008 [16, 17].

Other well-known partitional clustering techniques, such as K-medoids,
PAM and CLARANS [18, 19, 20], are computationally more expensive than
the K-means algorithm, commonly having time complexities supralinear with

1.1 Cluster Analysis 9

respect to the number of instances of the data set and/or the predefined num-
ber of clusters, which makes them inviable for massive data applications. More
importantly, the fact that the K-means algorithm can be easily parallelized
[21], as well as the existance of different speed-ups and cheap approximations,
such as [22, 23, 24, 25, 26, 27, 28, 29, 30], makes the K-means algorithm a
plausible alternative for this kind of applications.

In the following sections, we will describe theK-means problem/algorithm,
analyze its different characteristics and discuss the most relevant variants/
approximations developed to improve its computational performance on large
data sets.

1.1.1.1 K-means Problem

Given an unlabeled set of n data points (instances), X = {x1, . . . ,xn} ⊆
Rd, and a predefined number of clusters, K, the K-means problem is to
determine a set of K centroids C = {c1, . . . , cK} ⊆ Rd, so as to minimize the
following error function:

EX(C) =
∑
x∈D
‖x− cx‖2, where cx = arg min

c∈C
‖x− c‖2 (1.1)

In other words, this is an unsupervised learning problem in which the goal
is to minimize the within-cluster sum of squares, which indirectly increases
the inter-cluster distances. The problem of minimizing the K-means error,
which is reported to be first considered by Steinhaus in 1956 [31], is one of the
earliest and most intensively studied formulations of the clustering problem,
both because of its mathematical elegance and because it bears closely on the
statistical estimation of mixture models of K point sources under spherically
symmetric Gaussian noise [32, 33].

In particular, the K-means problem can be viewed as a combinatorial
optimization problem, since it is equivalent to finding the partition of the
n instances in K groups, whose associated set of centers of mass minimizes
Eq.1.1. The number of possible partitions is a Stirling number of the second

kind, S(n,K) = 1
K!

K∑
j=0

(−1)K−j
(
K
j

)
jn [34]. Since finding the globally optimal

partition is known to be NP-hard forK > 1 [35], even for instances in the plane
[36], and exhaustive search methods are not useful under this setting, iterative
refinement based algorithms are commonly used to approximate the solution
of the K-means problem [37, 38, 39, 40]. These algorithms iteratively relocate
the data points between clusters until a locally optimal partition is attained.
Among these methods, the most popular is the K-means algorithm [10, 14].

1.1.1.2 K-means Algorithm

The K-means algorithm is an iterative refinement method that consists of
two stages: Initialization, in which we set the starting set of K centroids,

10 1 A Brief Overview of the K-means Algorithm on Massive Data

and an iterative stage, called Lloyd’s algorithm [14]. In the first step of
Lloyd’s algorithm (see Algorithm 1), each instance is assigned to its closest
centroid (Assignment step), then the set of centroids is updated as the cen-
ters of mass of the instances assigned to the same centroid in the previous
step (Update step). In Fig.1.1, we show a graphical example of the previ-
ously described procedure (from left to right). The yellow dots represent the
original set of centroids, subsequently, we show the cluster assignment for each
instance (represented in different colors) and the dotted lines represent the
Voronoi frontiers generated by the set of centroids. It must be pointed out
that the figure in the middle of Fig.1.1 is zoomed in, in order to highlight
the obtained Voronoi tesselations. Finally, the red dots are the updated set
of centroids. Commonly, the process described above is repeated until the set
of centroids remains invariant, i.e., when the red and yellow dots completely
overlap, in which case such a set of centroids is a local minima to the K-means
problem [41].

−0.5 0.0 0.5 1.0 1.5 2.0
−1.0

−0.5

0.0

0.5

1.0

1.5

0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

−0.5 0.0 0.5 1.0 1.5 2.0
−1.0

−0.5

0.0

0.5

1.0

1.5

Fig. 1.1: Initial set of centroids (left), Assignment step (center), Update

step (right).

Algorithm 1: Lloyd’s algorithm

Input: Data set X, number of clusters K and set of centroids
C = {c1, . . . , cK}.
Output: Local minima of Eq.1.1, C∗.
while Stopping Criterion do
• Assignment step: Construct, for all k ∈ {1, . . . ,K}, the subsets

Pk = {x ∈ D : k = arg min
i∈{1,...,K}

‖x− ci‖2}

• Update step: Take ck = Pk for all k ∈ {1, . . . ,K}.
end
Return C∗ = {c1, . . . , cK}, P = {P1, . . . , PK}.

The computational time needed for Assignment step is O(n·K ·d), which
is due to the number of distances computed to determine the cluster affiliation
of each instance, while updating the set of centroids requires O(n · d) com-
putations. As we previously mentioned, this process is commonly executed
until the obtained set of centroids does not change in consecutive iterations.

1.1 Cluster Analysis 11

However, a more general stopping criterion implies the computation of the
error function (Eq.1.1): If the error does not change significantly with respect
to the previous iteration, then the algorithm stops. In other words, if C and
C ′ are the set of centroids obtained at consecutive Lloyd’s iterations, then the
algorithm stops when |EX(C)−EX(C ′)| ≤ ε, for a fixed threshold ε� 1 [42].

To verify this conditionO(n·d) additional computations are needed. Hence,
Assignment step is the most computationally demanding stage and, there-
fore, it is common practice to evaluate the number of distance computations
to analyze the computational requirements of Lloyd’s algorithm and similar
heuristics [43, 26].

Among different advantages, such as the easiness of its implementation,
Lloyd’s algorithm reduces monotonically the K-means error, i.e., every step of
the algorithm generates a more competitive solution to the K-means problem
[10]. Furthermore, both steps of Lloyd’s algorithm can be easily parallelized,
which is a major key to meeting the scalability of the algorithm [17]. In the
following sections, we comment on different features and variants to the K-
means algorithm and their relation to massive data applications.

Importance of the initialization of Lloyd’s algorithm

As widely reported in the literature, the performance of Lloyd’s algorithm
highly depends upon the initialization stage in terms of the quality of the
solution obtained and the running time [44, 45, 46]. A poor initialization, for
instance, could lead to an exponential running time in the worst case scenario:
In [47], a simple construction in the plane, that leads to an exponential lower
bound of 2Ω(n) running time, is presented.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

⇒

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

⇒

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 1.2: An example of the K-means algorithm output for two different ini-
tializations. In the top figure, 11 Lloyd’s algorithm iterations were executed,
while, in the bottom figure, 2 iterations were needed.

12 1 A Brief Overview of the K-means Algorithm on Massive Data

In Fig.1.2, we show a simple example of the relevance of selecting a good
initialization. In particular, we observe a 2D mixture of three Gaussians and
the output of Lloyd’s algorithm for two different sets of centroids (yellow
dots). In the first case, we observe that two seeds are placed in the densest
cluster, which hinders the convergence of Lloyd’s algorithm to the expected
solution and tends to increase the number of iterations needed to converge. In
general, the selected seeding/initialization strategy should deal with different
problems, such as outlier detection and cluster oversampling. A lot of research
has been done on this topic: A detailed review of seeding strategies can be
found in [45, 46].

The standard initialization procedure consists of performing several re-
initializations via Forgy’s method [48] and keeping the set of centroids with
the smallest error [45, 46]. Forgy’s technique defines the initial set of centroids
as K instances selected uniformly at random from the dataset. The intuition
behind this approach is that, by choosing the centroids uniformly at random,
it is more likely to choose a point near an optimal cluster center, since such
points tend to be where the highest density regions are located. Besides the
fact that computing the error of each set of centroids is O(n ·K · d) (due to
the assignment step), the main disadvantage of this approach is that there
is no guarantee that two, or more, of the selected seeds will not be near the
center of the same cluster, especially when dealing with unbalanced clusters
[45], see Fig.1.2, for instance.

More recently, different probabilistic seeding techniques have been devel-
oped and, due to their simplicity and strong theoretical guarantees, they have
become quite popular. Among these, the most relevant is the K-means++
algorithm proposed by Arthur and Vassilvitskii in [49]. K-means++ selects
only the first centroid uniformly at random from the dataset. Each subsequent
initial centroid is chosen with a probability proportional to the distance with
respect to the previously selected set of centroids, see Fig.1.3.

−0.5 0.0 0.5 1.0 1.5
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

−0.5 0.0 0.5 1.0 1.5
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

−0.5 0.0 0.5 1.0 1.5
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 1.3: K-means++ seeding example, for K = 3.

The key idea of this cluster initialization technique is to preserve the diver-
sity of seeds while being robust to outliers. The K-means++ algorithm leads

1.1 Cluster Analysis 13

to a O(logK) factor approximation1 of the optimal error after the initial-
ization [49]. The main drawbacks of this approach are its sequential nature,
which hinders its parallelization, as well as the fact that it requires K full
scans of the entire dataset, which leads to a complexity of O(n ·K · d).

In order to alleviate such drawbacks, different variants ofK-means++ have
been proposed in the literature. In particular, in [50], a parallel K-means++
type algorithm is presented. This parallel variant achieves a constant factor
approximation to the optimal solution after a logarithmic number of passes
over the dataset. Furthermore, in [43], an approximation to K-means++ with
a sublinear time complexity with respect to the number of data points, is pro-
posed (AFKMC2). Such an approximation is obtained via a Markov Chain
Monte Carlo sampling approximation of the K-means++ probability func-
tion. The proposed algorithm generates solutions of similar quality to those
of K-means++, at a fraction of its cost [43], which makes it a competitive
alternative for large data sets.

As we previously mentioned, since Lloyd’s algorithm converges to a lo-
cal minimum of the K-means problem, it is common practice to re-initialize
Lloyd’s algorithm multiple times, with one of the previously discussed seeding
procedures, and keep the solution with the lowest error [45, 46]. Unfortunately,
one of the biggest drawbacks of this approach is that no information about
the data structure is transmitted from one re-start to another, which could be
a key element to avoid converging to the same local minima several times, as
well as for reducing the number of iterations executed when running Lloyd’s
algorithm. In the following section, we comment on a fairly popular heuristic
that can be used to re-initialize Lloyd’s algorithm taking into consideration
information of the previously obtained local minimum.

Hartigan-Wong K-means algorithm

In this section, we comment on an alternative to the classic multi-start/ re-
initialization heuristic for theK-means problem, the Hartigan-Wong K-means
algorithm [51, 52]. Given an initialization, this method tries to determine a
move of an instance, from its cluster to another, in a way that Eq.1.1 strictly
decreases [53]. These single-point re-locations are repeated until convergence
is reached.

In particular, for two clusters Pi, Pj and an instance, x ∈ Pi, the change
of the error function, Eq.1.1, obtained after moving x to Pj , is given by

φ(x, Pi, Pj) =
|Pj |
|Pj |+ 1

· ‖x− cj‖2 −
|Pi|
|Pi| − 1

· ‖x− ci‖2 (1.2)

Hence, Hartigan’s approach selects x, Pi, Pj that maximizes Eq.1.2 (Har-
tigan’s heuristic) and iterates until φ(x, Pi, Pj) is lower than zero [52]. It must

1 Algorithm A is a λ factor approximation of the K-means problem, if EX(C′) ≤
λ · min

C⊆Rd,|C|=K
EX(C), for any output C′ of algorithm A.

14 1 A Brief Overview of the K-means Algorithm on Massive Data

be highlighted that, as Hartigan’s fixed points are a subset of Lloyd’s fixed
points, this method has been suggested to replace Lloyd’s algorithm [54].
Moreover, note that Hartigan’s heuristic can also be used to exit the basin of
attraction of a fixed point of Lloyd’s algorithm, as it enforces the decrease of
the error function, Eq.1.1 [53].

1.1.1.3 On improving the scalability of Lloyd’s algorithm

Regardless of the initialization, a lot of research has been done in the recent
years to make the K-means algorithm a more viable alternative for massive
data applications. These articles can mainly be divided into two groups: i)
those focused on reducing the number of instances and, ii) those referring
to the use of dimensionality reduction techniques prior to running Lloyd’s
algorithm.

Reduction of the number of instances

As previously commented, one of the main drawbacks of Lloyd’s algorithm is
that, due to the number of distances that needs to be computed, its complexity
is proportional to the size of the dataset, meaning that it may not scale well
for massive data applications. One way of dealing with this is to apply the
algorithm over a smaller set of points rather than over the entire dataset. Such
smaller sets of points are commonly obtained in two different ways:

• Via data set sampling: In [55, 56, 57, 30], different statistical techniques
are used with the same purpose of reducing the size of the dataset. Among
these algorithms, we have the Mini-batch K-means proposed by Sculley in
[30]. Mini-batch K-means is a very popular scalable variant of Lloyd’s al-
gorithm that proceeds as follows: Given an initial set of centroids obtained
via Forgy’s algorithm, at every iteration, a small fixed amount of samples
is selected uniformly at random and assigned to their corresponding clus-
ter. Afterwards, the cluster centroids are updated as the average of all
samples ever assigned to them. This process continues until convergence.
Empirical results, in a range of large web based applications, corroborate
that a substantial saving of computational time can be obtained at the ex-
pense of some loss of cluster quality [30]. Moreover, very recently, in [58],
an accelerated Mini-batch K-means algorithm, via the distance pruning
approach of [26], was presented.

• Via data set partition: The reduction of the dataset can also be generated
as sets of representatives induced by partitions of the dataset. In partic-
ular, there have been a number of recent papers that describe (1 + ε)-
factor approximation algorithms and/or (K,ε)-coresets2 for the K-means

2 A weighted set of points W is a (K,ε)-coreset if, for all set of centroids C,
|FW (C)− EX(C)| ≤ ε · EX(C), where FW (C) =

∑
y∈W

w(y) · ‖y− cy‖2 and w(y)

is the weight associated to a representative y ∈W .

1.1 Cluster Analysis 15

problem [59, 60, 61]. Unfortunately, the constructions that propose these
variants tend to be exponential in K and/or ε−1, and so, they might not
be viable in practice [49]. In the literature, other coreset constructions via
sampling have been proposed as can be seen in [22, 23, 27, 29]. Moreover,
in [62], a (9 + ε)-approximated algorithm for the K-means problem is de-
veloped. Unfotunately, the cost of this process is still fairly prohibitive,
O(n3 · ε−d).

In addition to the previous methods, the number of distances computed
by Lloyd’s algorithm can be further decreased by implementing pruning dis-
tace techniques, i.e., when it can be verified in advance that no cluster re-
assignment is possible for a certain instance in Assignment step. As pre-
sented in [24, 25, 26, 28], this can be done with the construction of different
pairwise distance bounds between the set of points and centroids and addi-
tional information, such as the displacement of every centroid after a Lloyd’s
iteration. In particular, in [28], reductions of over 80% of the amount of dis-
tance computations are observed.

Dimensionality reduction

Dimensionality reduction consists of a set of algorithms that are used to em-
bed the original features into a lower dimensional space of size m� d, which,
ideally, contains the same information as the original dataset [63]. In particu-
lar, dimensionality reduction can be divided into two groups, feature selection
and feature extraction:

• Feature Selection: In feature selection, actual dimensions of the dataset
are selected to construct the lower dimensional space in which the dataset
is embedded. This approach has been extensively used for the K-means
problem [64, 65]. In particular, we can highlight procedures such as the
Laplacian scores [66]. This method fundamentally uses a nearest neighbor
graph to model the local geometric structure of the data and selects those
features which are the smoothest on the graph [66]. Unfortunately, such
a construction can be computationally costly as it requires, among other
things, the computation of all pairwise distances between instances. Fur-
thermore, no theoretical guarantees, related to the quality of the obtained
clustering, are provided. Another popular unsupervised feature selection
consists of selecting those features with the largest variance [65]. The in-
tuition behind this approach is that low variance features may contain less
clustering information and, therefore, tend to have a lower impact in the
error function, Eq.1.1 [66].

Other feature selection approaches consist of selecting features via
random sampling, such as [67, 68] (uniformly), or [64], where a more
elaborated Singular Value Decomposition (SVD)-based selection proce-
dure is proposed. For this procedure, it can be proved that selecting

16 1 A Brief Overview of the K-means Algorithm on Massive Data

m = Θ(
K·log K

ε

ε2) dimensions and running any λ-approximate K-means
algorithm (λ ≥ 1) leads to a (1 + (1 + ε) ·λ)-approximation of the optimal
K-means error, with high probability [64]. Unfortunately, this technique
may not be very practical, as it has a O(min{n · d2, n2 · d}) time cost.

• Feature Extraction: In feature extraction, the lower dimensional space is
composed of new artificial features that are generated, for instance, via
linear combinations of the original features. As can be seen in the litera-
ture, both SVD and PCA have been succesfully used to pre-procces the
data prior to executing the K-means algorithm [64, 69, 24, 70]. In partic-
ular, among other results, it can be proved that, projecting the dataset
into m =

⌈
K
ε

⌉
dimensions via SVD, allows us to preserve the clustering

error within a factor of 1 + ε [69]. However, it must be pointed out that
the time complexity of both procedures can be unpractical for massive
data applications: O(min{n · d2, n2 · d}) for SVD and O(n · d2 + d3) for
PCA [71]. A fairly cheaper approach consists of applying Random Pro-
jections to the original dataset. This technique is just O(m · d · n) [72].
However, in this case, m = O(Kε2) [69] dimensions are required to keep the
(1 + ε)-approximation factor.

Different variants of these methods exist, a detailed review and analysis
of them can be found in [73, 69].

2

Objectives, hypothesis and methodology

2.1 Objectives

In this dissertation, we explore different alternatives for improving the scala-
bility of the K-means algorithm on massive data applications. As we previ-
ously mentioned, the scalability of the K-means algorithm in such a scenario
might be affected by, i) the large number of instances, ii) the dimensionality
of the problem and, iii) the initialization phase of the K-means algorithm. In
this document, we intend to provide computationally efficient and yet effec-
tive improvements in all these areas. In particular, we deal with the following
targets:

• Development of accurate approximations to the K-means algorithm for tall
data1 applications, see Section 2.3.1, which briefly summarizes Chapter 3
and Chapter 4.

• Design of a dimensionality reduction technique for the K-means algorithm,
see Section 2.3.2, which sums up in Chapter 5.

• Development of an efficient re-start strategy for the K-means algorithm,
see Section 2.3.3 and Chapter 6.

The proposed methodology consists of analyzing both theoretically, by
deducing multiple guarantees in terms of the quality of the obtained solutions
and reduction of the computational requirements for the different proposals,
and in practice, where we compare our work to the most popular approaches
used to approximate the K-means problem. These results will be presented
to the scientific community through publication in peer-reviewed journals, to
validate the relevance and acceptance in the field.

1 Data sets with an enormous number of instances and low number of dimensions.

18 2 Objectives, hypothesis and methodology

2.2 Hypothesis

This thesis builds upon the idea that cluster analysis and, in particular, par-
titional clustering represents one of the most commonly used data analysis
techniques in multiple scientific areas. These methods allow us to gain insight
into data by discovering its underlying structure, as well as analyzing the de-
gree of similarity between objects and organizing/summarizing the data set
into cluster prototypes. Among them, the K-means algorithm emerges as one
of the most popular.

On the other hand, the tremendous increase in the size of the data sets
that are analyzed must be noted, as well as the fact that such an increase
rate is expected to keep growing in the upcoming years. For this reason, the
development of efficient and accurate approximations to the K-means problem
on massive data is a topic of current relevance.

2.3 Methodology

2.3.1 Reducing the number of instances

The goal in this phase of the dissertation consists of developing competitive
approximations to the K-means algorithm with an improved trade-off between
the number of distances computed versus the quality of the obtained solution
for the K-means problem. In this sense, in Chapter 3, we propose a general
heuristic called the Recursive Partition Based K-means algorithm (RPKM).
This approach consists of approximating the optimal solution to the K-means
problem by applying Lloyd’s algorithm over a reduced and weighted repre-
sentation of the original data set, X. However, unlike the common coreset
approach [22, 23, 27, 59, 60, 29, 61], RPKM does generate such an approxi-
mation over a sequence of spatial-based partitions of the data set, rather than
over a predefined weighted set of points, which allows it to be more accurate
as the number of iterations increases.

Definition 1 (Dataset partition induced by a spatial partition) Given
a data set X and a spatial partition B of its smallest bounding box, the
partition of the dataset X induced by B is defined as P = B(X), where
B(X) = {B(X)}B∈B and B(X) = { x ∈ X : x lies on B ∈ B}2.

Applying the weighted version of K-means algorithm over the data set par-
tition P, consists of executing Lloyd’s algorithm over the set of centers of mass
(representatives) of P, P for all P ∈ P, considering their corresponding car-
dinality (weight), |P |, when updating the set of centroids. This means that
we seek to minimize the weighted error function EP(C) =

∑
P∈P
|P | ·‖P −cP ‖2,

2 From now on, we will refer to each B ∈ B as a block of the spatial partition B.

2.3 Methodology 19

where cP = arg min
c∈C

‖P − c‖. Afterwards, the same process is repeated over

a thinner partition P ′ of the dataset3, using as initialization the set of cen-
troids obtained for P. In algorithm 2, we show a pseudocode of the described
process.

Algorithm 2: RPKM algorithm pseudo-code

Input: Data set X and number of clusters K.
Output: Set of centroids C.

Step 1: Construct an initial partition of X, P, and define an initial set
of K centroids, C.
Step 2: C = WeightedLloyd(P, C,K).
while not Stopping Criterion do

Step 3: Construct a data set partition P ′, thinner than P. Set
P = P ′.
Step 4: C = WeightedLloyd(P, C,K).

end
return C

In general, the RPKM algorithm can be divided into three tasks: The con-
struction of an initial partition of the dataset and set of centroids (Step 1), the
update of the corresponding set of centroids via weighted Lloyd’s algorithm
(Step 2 and Step 4) and the construction of the sequence of thinner parti-
tions (Step 3). The computational cost of Step 2 and Step 4 is O(|P|·K ·d),
while the cost of Step 2 and Step 4 depends on the partition strategy used.
In any case, independently of the partition strategy, the RPKM algorithm
offers some interesting theoretical properties such as the no clustering rep-
etition. That is, none of the obtained groupings of the n instances into K
groups can be repeated at the current RPKM iteration or for any thinner
partition than the current one (see Lemma 3). This is a useful property since
it can be guaranteed that the algorithm discards many possible clusterings
at each RPKM iteration using a much reduced set of points than the entire
dataset. Furthermore, this fact enforces the decrease of the maximum number
of Lloyd’s iterations that we can have for a given partition (see Theorem 1).
All these properties make such a heuristic a viable approach for the K-means
problem on large data sets.

In the experimental section, we considered a data set partition based on
grids, in a similar manner to [59], to which we referred to as the grid based
RPKM. In particular, the initial spatial partition is defined by the grid ob-
tained after dividing each side of the smallest bounding box of X by half, i.e.,
a grid with 2d equally sized blocks. In the same fashion, at the i-th grid based
RPKM iteration, the corresponding spatial partition is updated by dividing
each of its blocks into 2d new blocks, i.e., P can have up to 2i·d representa-

3 A partition of the dataset P ′ is thinner than P, if each subset of P can be written
as the union of subsets of P ′.

20 2 Objectives, hypothesis and methodology

tives, see Fig.2.1. It can be shown that this approach produces a (K,ε)-coreset,
with ε descending exponentially with respect to the number of iterations (see
Theorem 9).

−5 0 5

−5

0

5

i=1

−5 0 5

−5

0

5

i=2

−5 0 5

−5

0

5

i=3

−5 0 5

−5

0

5

i=4

−5 0 5

−5

0

5

i=5

−5 0 5

−5

0

5

i=6

Fig. 2.1: 2D example for grid based RPKM.

In order to have a better idea of the trade-off quality of the approxima-
tions versus computational resources required, we compared the performance
of the grid based RPKM to K-means++ algorithm (K-means++ seeding
and Lloyd’s algorithm), as well as to the Minibatch K-means algorithm (with
different batch values), which are probably the most known heuristics for the
K-means problem in terms of error guarantees and reduction of computational
resources, respectively. The experiments show that the grid based RPKM al-
gorithm tends to reduce several order of distance computations with respect to
both alternatives (under some settings such a reduction could be of up to 4 and
6 orders of magnitude with respect to Minibatch K-means and K-means++,
respectively), while consistently generating competitive approximations that
are under 1% of relative error when compared to the best solution found by
K-means++.

Even when the experimental results obtained via the grid based RPKM
are fairly competitive with respect to well-known techniques, different difficul-
ties may arise for such a partition strategy. In particular, it is clear that the
grid based RPKM does not scale well on the dimensionality of the problem:
Observe that, for a relatively low number of iterations, i ' log2(n)/d, and/or
dimensionality d ' log2(n), applying this RPKM version can be similar to ap-
plying Lloyd’s algorithm over the entire dataset, i.e., no reduction of distance

2.3 Methodology 21

computations might be observed, as |P| ' n. In fact, for the experimental
section in Chapter 3, d, i ≤ 10. On the other hand, the sequence of partitions
of the grid based RPKM is induced by an equally sized spatial partition of the
smallest bounding box containing X, meaning that a large amount of com-
putational resources might be spent on regions whose misclassification does
not add a significant error to our approximation. Moreover, the construction
of every partition of the sequence has a O(n · d) cost, which is particularly
expensive for massive data applications.

Taking these observations into consideration, in Chapter 4, we propose
a RPKM-type approach called the Boundary Weighted K-means algorithm
(BWKM). The idea behind this approach is to prioritize the use of resources
on the cluster boundaries of our weighted approximation, which are consti-
tuted by those blocks that may not be well assigned, i.e., cells of the spatial
partition that contain instances with different cluster affiliations (see Fig.2.2).

−5 0 5

−5

0

5

i=1

−5 0 5

−5

0

5

i=2

−5 0 5

−5

0

5

i=3

−5 0 5

−5

0

5

i=4

−5 0 5

−5

0

5

i=5

−5 0 5

−5

0

5

i=6

Fig. 2.2: 2D example of a spatial partition based on the cluster boundaries.

Definition 2 (Well assigned blocks) Let C be a set of centroids and X be
a given dataset. We say that a block B is well assigned, with respect to C and
X, if every point x ∈ B(X) is assigned to the same centroid c ∈ C.

It can be shown that our weighted error approximates the K-means error
function more accurately, as we increase the number of well assigned blocks
(see Theorem 3). Ultimately, if all the blocks of a spatial partition are well
assigned at the end of a BWKM step, then the obtained clustering is actually
a fixed point of the K-means algorithm (see Theorem 4). Note that the fixed

22 2 Objectives, hypothesis and methodology

point is generated using only a small number of representatives in comparison
to the actual size of the data set. More importantly, if, for a certain step of
BWKM, this property can be verified at consecutive weighted Lloyd’s itera-
tions, then the error of our approximation also decreases monotonically (see
Theorem 10). In order to develop a partition strategy based on maximizing
the possible number of well assigned blocks, we define the following measure
for detecting them

Definition 3 Given a set of K centroids, C, a set of points X ⊆ Rd and
P = B(X) 6= ∅ the subset of points contained in a block B, we define the
misassignment function for B, given C and X, as:

εC,X(B) = max{0, 2 · lB − δP (C)}, (2.1)

where δP (C) = min
c∈C\cP

‖P −c‖−‖P −cP ‖ and lB is the length of the diagonal

of B. In the case P = B(X) = ∅, we set εC,X(B) = 0.

It can be proved that, if a certain non-empty block B satisfies εC,X(B) = 0,
then all the instances in B share the same cluster affiliation. Moreover, their
affiliation corresponds to the one of its centers of mass, i.e., B is well assigned
with respect to C (see Theorem 2). Hence, the partition strategy is to divide
a subset of blocks for which εC,X(B) > 0, where C is the set of centroids
obtained after executing the weighted version of Lloyd’s algorithm (Step 2,
Step 4 of algorithm 2). Once a subset of blocks are selected, they are only
divided on the dimension associated to its longest side, which minimizes the
diagonal of the newly created blocks. Consequently, the error bound of the
BWKM approximation is reduced (see Theorem 3) and the well assignment
condition of the generated blocks (Definition 2.3.1) is more likely to be satisfied
in the next iterations of the algorithm. In other words, such a contruction
tends to maximize the number of well assigned blocks and implies a linear
growth in the number of representatives, with respect to the dimensionality
of the problem.

One of the major advantages of the proposed criterion to detect well as-
signed blocks is its low computational cost: it only uses information generated
by the weighted K-means algorithm -the distances between the center of mass
of each block and the set of centroids- and a feature of the corresponding
spatial partition -the diagonal length of each block-. Therefore, computing
εC,X(B), for all B ∈ B, can be done in just O(|P| ·K) time. In particular, as
can be seen in Appendix .2.2, it is common to observe that, when the dimen-
sionality of the problem is not large, after a few BWKM iterations, most of
the blocks obtained generated are well assigned.

In Chapter 4, we also propose a simple heuristic for constructing the initial
partition of the data set with a predefined number of blocks, which are mostly
placed on the cluster boundaries. In particular, starting with the smallest
bounding box of the data set, X, the proposed procedure iteratively divides

2.3 Methodology 23

subsets of blocks of the spatial partition with high probabilities of not be-
ing well assigned. To evaluate the well assignment criterion, multiple sets of
centroids are selected via a weighted K-means++ run over the current set of
representatives. The goal in this step is to bound the size of the initial partition
of the data set and to determine a competitive initialization for BWKM.

In addition to all the theoretical guarantees that motivate and justify
our algorithm, we empirically compare the performance of BWKM to K-
means++, Minibatch K-means (with different batch values) and we addi-
tionally consider the also popular Forgy K-means and a scalable variant of
K-means++, the Markov Chain Monte Carlo K-means++ (AFKMC2). The
obtained results show that BWKM massively reduces the number of distances
computed by the previously mentioned methods, while in 18 out of 35 con-
figurations of the experimental setting, BWKM actually generated the most
competitive solutions among all of them. Additionally, in 206 out of 210 cases,
BWKM has converged to solutions with a relative error of under 1% with re-
spect to the best considered method, while using a much smaller amount of
distance computations (up to 7 orders of magnitude lower). Furthermore, in
Appendix .2.2, we observe that the grid based RPKM failed to converge,
within a time limit of 24 hours, for most of the data sets considered, with
d > 10. This fact shows the improvement on the scalability of BWKM, in
comparison to the grid based RPKM.

2.3.2 Dimensionality Reduction

Even when the results presented in Chapter 4 are very competitive and show
the advantages of using BWKM for data sets with a large number of instances,
the quality guarantees of BWKM are still dependant on the diagonal length
of the cells in the spatial partition. Since the partition strategy introduced in
BWKM divides the selected blocks along a single dimension, it will take more
BWKM iterations to generate partitions with mostly well assigned blocks, as
the dimensionality of the data set increases (see Appendix .2.2). This prob-
lem not only affects the quality of the approximation, but also increases the
number of distance computations, since the number of representatives is also
higher.

In this regard, there is a wide variety of dimensionality reduction tech-
niques that are known for preserving the quality of the clusterings obtained via
K-means algorithm, such as Laplacian Scores, Random Projections, Principal
Component Analysis and Singular Value Decomposition [64, 73, 69, 24, 66, 70].
These techniques are not necessarily linear with respect to the dimensional-
ity an/or number of instances of the data set and their parallelization is not
straightforward, hence they are not viable for massive data applications.

In Chapter 5, we developed a low computational complexity and fully-
parellelizable feature selection technique intended for the K-means algorithm,
the univariate K-means relevance for feature selection algorithm (KMR). This
approach consists of three steps: First, given the number of features that we

24 2 Objectives, hypothesis and methodology

wish to select, m, the set of dimensions {1, . . . , d} is divided into the smallest
number of chunks possible, {D1, . . . , Dt}, so that each of them has a cardi-
nality lower than a predefined dimensionality limit, m. The partition of the
dataset is then given by {XD1

, . . . , XDt
}, where XDi

stands for extracting the
columns in Di of X. Afterwards, a λ-approximate K-means algorithm, algo-
rithm A4, is applied in parallel over each chunk XDi . The obtained clustering
is used to score the importance of each feature in XDi

by approximating the
error increment that would happen if a given feature is eliminated. Finally,
after submitting the score obtained for each variable, to a central server, the
m variables that seem to affect the clustering quality the most are selected,
and algorithm A is applied over them to obtain our approximation.

Evaluating the proposed variable importance score only has a O(K ·m)
cost, on each machine. Therefore, the computational cost of our proposal is
dominated by the cost of algorithm A, which makes it suitable for large data
sets

Besides the fact that the previosuly described process is fully paralleliz-
able, it can be proved that KMR leads to a O(1 + ε)-approximation of the
optimal solution of the K-means problem, where ε is the maximum normal-
ized error increase after discarding the variables on one of the machines, see
Theorem 6. Additionally, we compare its performance to well-known feature
selection and feature extraction techniques. Such an analysis shows KMR to
consistently obtain results with lower K-means error than all the considered
feature selection techniques: Laplacian scores, maximum variance and ran-
dom selection, while also requiring similar or lower computational times than
these approaches. Even more interesting, KMR, when compared to feature
extraction techniques, such as Random Projections, also shows a noticeable
improvement in both error and computational time.

2.3.3 Re-start strategy for the K-means algorithm

As is well documented in the literature, one factor that must be considered
when reducing the computational requirements of the K-means algorithm is
the quality of its initialization [49, 44, 45, 46, 47]. A poor initialization not only
may affect the quality of the obtained approximation, but may also increase
tremendously the number of iterations required to convergence [74, 47]. In
order to ease the convergence to competitive approximations of the K-means
problem, the common practice is to re-start Lloyd’s algorithm multiple times,
with different seeds, and to keep the solution with the lowest error [45, 46].
Taking this into consideration, in Chapter 6, we propose a simple re-start
process called Split-Merge K-means algorithm, or just SMKM, which is an
alternative to the typical multi-start K-means algorithm. Given a local min-
ima of the K-means problem, SMKM detects those regions that may have

4 The results are presented for any heuristic used to approximate the solution of
the K-means problem. Algorithm A could be for instance, K-means algorithm,
BWKM, RPKM or any coreset-type approach in general.

2.3 Methodology 25

an excessive (over-represented) and insufficient (under-represented) amount
of centroids. SMKM follows a two-step re-initialization process: i) the split
step divides the cluster from where the largest error reduction can be reached
and generates two new centroids. ii) the merge step condenses the pair of clus-
ters (and their corresponding centroids), whose fusion produces the smallest
increment in the error. The split step reduces the K-means error of our ap-
proximation, while the merge step increases it, hence if the difference between
both phases is negative, then the quality of the previous K-means local min-
ima is already improved. In Theorem 8, we additionally provide a condition
that can be easily verified using information of the current local minima to
predict the error descent after such a re-initialization process.

In general, SMKM utilizes the information of previous Lloyd’s algorithm
runs to facilitate the convergence to a more competitive local minima, as can
be seen in the experimental section of Chapter 6. The proposed procedure has
a computational complexity of O(max{n,K2} · d), which is cheaper than a
single Lloyd’s algorithm iteration.

Experimentally, SMKM was compared in both quality of the achieved local
minima and number of distances computed with respect to competitive multi-
start approaches (K-means++ and Forgy K-means, with a fixed number of
restarts, and Hartigan K-means) on a wide variety of real-life data sets. In
terms of the quality of the approximation, SMKM consistently generated
the local minima with the lowest K-means error, reducing, on average, over
1 and 2 orders of magnitude of relative error with respect to K-means++
and Hartigan K-means and Forgy K-means, respectively. The quality of the
solutions obtained by SMKM tends to be much lower than the previously
commented methods and, in terms of computational resources, SMKM also
required a much lower number of distance computations (about an order of
magnitude less) to convergence.

Part II

Our Contributions

3

An efficient approximation to the K-means
clustering for massive data

Due to the progressive growth of the amount of data available in a wide variety
of scientific fields, it has become more difficult to manipulate and analyze such
information. Even though data sets have grown in size, theK-means algorithm
remains as one of the most popular clustering methods [15, 10, 17]. In order
to deal with this problem, in this chapter, we propose a heuristic for the K-
means problem based on a recursive data partitioning process that reduces the
number of distance calculations and data scans, while generating competitive
approximations. The algorithm considers a sequence of thinner partitions of
the data set and applies a weighted version of Lloyd’s agorithm over the
centers of mass of each subset of the partition (set of representatives). Among
other benefits, this approach reduces the number of distance computations
over the whole data set, which is the most computationally demanding stage
of the K-means algorithm.

This chapter is organized as follows: In Section 3.1, we describe the idea
behind our algorithm and introduce notation that we use, in Section 3.2, to
state some theoretical guarantees of our approach. The proofs of such state-
ments can be found in Appendix .1. In Section 3.3, we present a set of exper-
iments in which we analyze the effect of different factors, such as the size of
the data set and the dimension of the instances over the performance of our
algorithm. Additionally, we compare these results with the ones obtained by
the K-means++ and the minibatch K-means methods.

3.1 Recursive partition based K-means

We propose a novel, iterative approximation strategy for the K-means prob-
lem that is based on a sequence of recursive partitions of the data set, being
each partition thinner than the previous one. We call this approach recur-
sive partition based K-means (RPKM). The idea behind the algorithm
is to approximate the K-means problem for the full data set by recursively

30 3 An efficient approximation to the K-means clustering for massive data

applying a weighted version of the K-means algorithm over a growing, yet
small, number of subsets of the data set.

In the first step of the RPKM, the data set is partitioned into a number of
subsets each of which is characterized by a representative (center of mass) and
its corresponding weight (cardinality). Finally, a weighted version of Lloyd’s
algorithm (see Section 3.1.2 for further details) is applied over the set of
representatives. From one iteration to the next, a more refined partition is
constructed and the process is repeated using the optimal set of centroids
obtained at the previous iteration as initialization. This iterative procedure is
repeated until a certain stopping criterion is met.

In the next section, we describe in detail the recursive partition process
and characterize some of its properties. The notation introduced in this section
will be used later for a formal description of the RPKM algorithm.

3.1.1 Recursive Partitions

As previously mentioned, the recursive partition process is the first stage of
the RPKM algorithm. This step consists of generating a thinner partition
than the previous one at each iteration.

From now on we will use the following definition of partition of a data set.

Definition 4 (Partition of a data set X) P = {S1, . . . , St} is a partition

of the data set X if
t⋃
i=1

Si = X and if the subsets of P are (pairwise) disjoint

and nonempty. Moreover, given a subset S ∈ P, we define its weight as its

cardinality, |S|, and its representative as its center of mass, S =

∑
x∈S

x

|S| .

The partition of the data set allows us to describe it with a reduced number
of representatives, which ultimately implies the reduction of the number of
distance computations with respect to the Lloyd’s algorithm for the full data
set. In the RPKM algorithm, we will use the set of representatives and weights,
rather than the partition itself.

Definition 5 (Partition thinner than P) Given two partitions of the data
set X, P and P ′ , we say that P ′ is a partition thinner than P (P � P ′) if,
for all S ∈ P, S =

⋃
R∈P′ [S]

R, where P ′ [S] = {R ∈ P ′ : R ⊆ S}.

In other words, P ′ is a partition thinner than P if every subset of P can
be written as the union of subsets of P ′ .

The partition process generates a sequence of thinner partitions
P1, . . . ,Pm, such that Pi−1 � Pi for all i ∈ {2, . . . ,m}. Evidently, the num-
ber of representatives tends to increase as we generate a thinner partition.
In the extreme case Pm = {{x} : x ∈ X}, however, in practice, in order to
reduce the computational complexity of the RPKM, we control the number
of representatives so that |Pm| � n.

3.1 Recursive partition based K-means 31

Note that the weight and the representative of S ∈ Pi can be easily com-

puted from Pi+1[S] as follows: |S| =
∑

R∈Pi+1[S]

|R|, S =

∑
R∈Pi+1[S]

|R|·R

|S| . As we

noted before, we are interested in the computation of the set of representatives
and weights, thus, we will use Pm to generate the set of representatives and
weights of the entire sequence of thinner partitions backward, from Pm−1 to
P1. Hence, the construction of Pi has a O(|Pi+1|·d) time cost for i < m. More-
over, if the assignment criterion of each instance of X into its corresponding
subset in Pm is of order O(d), as it is in the case of the grid based RPKM
(see Section 3.1.4), then the construction of Pm is O(n · d) and, therefore, the
cost of the entire partition process is O(d · (n+

∑m
i=2 |Pi|)).

3.1.2 Weighted K-means problem

In this section, we introduce a generalization of the K-means problem defined
over a set of weighted points, e.g. the set of representatives and their respective
weights associated to a partition. As a first step, we define a clustering for a
partition.

Definition 6 (Clustering for a partition P) We say that a partition of
the data set X, G, is a clustering of the data set for a partition P, when
|G| = K and G � P.

In other words, a cluster for a partition is a set of K subsets of points of
X, such that all the points of any S ∈ P are assigned to the same cluster.

We call G = {G1, .., GK} a clustering induced by a set of centroids
C = {c1, ..., ck}, when Gk =

⋃
S∈Mk

S for k = 1, ...,K, where Mk = {S ∈

P : k = arg min
j=1,...,K

‖S − cj‖2}. In other words, a clustering induced by a set

of centroids is a partition of the data set in which all the data points that
have the same closest centroid from C are grouped in the same cluster. We
denote that the clustering G is induced by a set of centroid C by G ← C.
Similarly, we call C = {c1, ..., ck} a centroids set induced by a clustering
G = {G1, ..., GK}, when ci = Gi for i = 1, ...,K. In other words, the set of
centroids induced by a clustering G is the set of centers of mass associated
to each cluster in G. We denote that the set of centroids C is induced by a
clustering G by C ← G.

Given a partition of the data set X, P, the weighted K-means problem
seeks to determine a set of K centroids C = {c1, . . . , cK} in Rd, so as to
minimize the centroid error associated to a partition P, which is defined as
follows:

EP(C) =
∑
S∈P
|S| · min

k=1,...,K
‖S − ck‖2 =

K∑
k=1

∑
S∈P:S⊆Gk

|S| · ||S − ck||2 (3.1)

32 3 An efficient approximation to the K-means clustering for massive data

where the clustering G is induced by the set of centroids C. This error measures
the weighted error between the representative of each subset with respect to
its closest centroid.

Algorithm 3: Weighted Lloyd (WL)

Input: Set of representatives {S}S∈P and weights {|S|}S∈P , for
the partition P. Number of clusters K and initial set of
centroids C0.

Output: Set of centroids Cr and corresponding clustering pattern Gr.
Step 0 (Initial Assignment):

G0 ←− C0; r = 0.
while not StoppingCriterion do

r = r + 1.
Step 1 (Update Step): Clustering error

Cr ←− Gr−1 EP(Gr−1) (Eq. 3.3)
Step 2 (Assignment Step): Centroid error

Gr ←− Cr EP(Cr) (Eq. 3.1)
end
Return Cr and Gr.
In order to approximate the solution of the weighted K-means problem,

we use a generalization of Lloyd’s algorithm called the weighted Lloyd’s
algorithm (WL, see Algorithm 3). In the assignment stage of WL (Step 0

and Step 2), the clustering Gr is induced by the set of centroids Cr. Further-
more, in the update step (Step 1), the set of centroids Cr is induced by the
clustering Gr−1. Similarly to Lloyd’s algorithm, an execution of WL with l
iterations produces a sequence of sets of centroids and clusterings that can be
represented as follows:

C0 → G0 →, C1 → G1 → ...→ Cl−1 → Gl−1 → Cl → Gl

where C0 is the set of centroids used for initialization and Cl is the returned
set of centroids.

The assignment step requires O(|P|·K ·d) computations, since we just need
to compute the distance between the set of centroids and the set of represen-
tatives, while for the update step of the set of centroids and the computation
of its error (centroid error) O(|P| · d) computations are needed. Remember
that the most common stopping criterion of the K-means algorithm consists
of verifying that the difference of the set of centroids error, in two consecutive
iterations, is smaller than a certain threshold. Moreover, observe that the set
of weights is only used when updating the set of centroids. Since the number
of representatives usually satisfies |P| � n, when dealing with massive data
problems, we can have a relevant reduction in the complexity with respect to
the K-means algorithm for the full data set.

3.1 Recursive partition based K-means 33

3.1.3 RPKM Algorithm

In this section, we formally present the RPKM algorithm. This algorithm
mainly consists of constructing a sequence of thinner partitions P1, . . . ,Pm
and then applying WL over the set of representatives of each partition in the
sequence. From one iteration to the next, the preceding found solution is used
as initialization. As we will show later, this initialization assignment allows us
to reduce the maximum number of WL iterations at every RPKM run. The
pseudo-code of the RPKM algorithm can be seen in Algorithm 4.

Algorithm 4: RPKM Algorithm

Input: Dataset X, number of clusters K, maximum number of
iterations m.

Output: Set of centroids approximation Ci.
Step 1 Compute the set of weights and representatives of the

sequence of thinner partitions, P1, . . . ,Pm, backwards.
Set i = 1.

while not Stopping Criterion do
Step 2 Update the centroid’s set approximation, Ci = {cij}Kj=1:

Ci= WL({S}S∈Pi
, {|S|}S∈Pi

,K,Ci−1)
i = i+ 1

end
Return Ci

In the first step of the RPKM algorithm, we obtain backwards (see Sec-
tion 3.1.1) the set of representatives and weights associated to the sequence
of thinner partitions P1, . . . ,Pm. Observe that we are assuming, without loss
of generality, that |P1| > K. In Step 2, we update the centroids approxima-
tion by applying WL using the representatives and weights set determined at
the previous step, we take as initialization the approximation for the previ-
ous iteration, Ci−1. In the first RPKM iteration, we set Ci−1 as K random
representatives of {S}S∈Pi

(Forgy’s type initialization). The algorithm iter-
ates until i = m or until a stopping criterion is met. We recommend the
computation of a centroid’s set displacement measure as stopping criterion:
δ(Ci−1, Ci) = max

j=1,...,K
‖cij − ci−1

j ‖2. If this value is smaller than a certain

threshold, the algorithm stops, since the approximation did not improve sig-
nificantly after the last RPKM iteration.

In relation to the complexity of Algorithm 4, we know, from Section 3.1.1,
that Step 1 has an O(d · (n +

∑m
i=2 |Pi|)) time cost. Moreover, at the i-th

RPKM iteration, the time required for WL (Step 2) is O(|Pi| ·K ·d). Finally,
the recommended stopping criterion just performs O(K · d) computations.
Hence, the overall complexity of the RPKM algorithm, in the worst case, is
O(max{d · (n+

∑m
i=2 |Pi|), |Pm|} ·K · d}).

34 3 An efficient approximation to the K-means clustering for massive data

3.1.4 RPKM implementation based on grid partitions

Later on, we will verify that the theoretical advantages of the RPKM algo-
rithm hold independently of the geometry that we use to generate the parti-
tion. Nonetheless, one way to guarantee the generation of a sequence of thinner
partitions of the data set consists of partitioning the space in a recursive man-
ner. To do so, one possibility is to use a generalization of the quadtrees for
higher dimensions [75]. The quadtree data structure has been used in several
areas such as dimension reduction problems, spatial indexing, storing sparse
data, computer graphics: computational fluid dynamics, etc [76].

The d-dimensional generalization of a quadtree is a tree data structure
that generates partitions of the space into d-dimensional hypercubes and,
subsequently, of the data set in subsets in the following way: each internal
node of the tree is exactly divided in 2d children, i.e., each subset of the i-
th partition is divided into, at most, 2d sets of the (i + 1)-th partition (see
Fig.3.1). This property allows us to generate, in a simple manner, a sequence
of thinner partitions at each iteration satisfying |Pi| ≤ min{n, 2i·d}.

In the following example, we consider a set of 10000 points generated from
a mixture of three 2D Gaussians. We compute, as a reference, the solution
for K = 3 using the K-means++ method. After ten runs, we obtained, on
average, an error of 11393.45 with a standard deviation of 4.69. The number
of distance computations was, on average, 642000. In Fig.3.1, we show the
evolution of the RPKM algorithm, for m = 6, the red circles represent the
initial set of centroids, the yellow diamonds the final set of centroids and the
blue points the set of representatives for each iteration.

−5 0 5

−5

0

5

i=1

−5 0 5

−5

0

5

i=2

−5 0 5

−5

0

5

i=3

−5 0 5

−5

0

5

i=4

−5 0 5

−5

0

5

i=5

−5 0 5

−5

0

5

i=6

Fig. 3.1: Best clustering obtained at each RPKM iteration.

3.2 Theoretical analysis of the RPKM algorithm 35

i Dis Com |Pi| E(Ci)
1 24 4 14050.06
2 114 15 14024.38
3 1545 53 12350.41

i Dis Com |Pi| E(Ci)
4 5697 173 11424.24
5 10449 528 11408.40
6 26781 1361 11389.54

Table 3.1: RPKM iteration results.

From Table 3.1, we can observe that, even at the fourth grid based RPKM
iteration, which in this case implies 173 representatives (1.73% of the data
set), we have a fairly good approximation of the average best solution found
by the K-means++ algorithm for the entire 10000 points. On average, the
RPKM algorithm computed 0.887% and 4.17% of the total number of distance
computations of the K-means++ algorithm, at the fourth and final iteration
respectively.

As we consider higher iterations of the RPKM, the associated cost function
converges to the best solution obtained by the the K-means++. The intuition
behind this method is to transform a random initial set of centroids into a
competitive approximation by using small groups of representatives, instead
of the entire data set. Next, we consider higher values of i to refine such an
approximation.

3.2 Theoretical analysis of the RPKM algorithm

In this section, we perform a theoretical analysis of RPKM. In Section 3.2.1,
we analyze the evolution of the clustering error at different steps of RPKM.
Then, in Section 3.2.2, we investigate the repetitions of the clusterings ob-
tained during the execution of RPKM and we bound the maximum number
of WL iterations for different steps of RPKM.

Before starting with the theoretical results, we summarize an execution of
RPKM with m steps given in terms of sequences of centroids and clusterings:

P1 : C1
0 → G1

0 → C1
1 → G1

1 → ...→ G1
l1−1 → C1

l1 → G1
l1

P2 : C2
0 → G2

0 → C2
1 → G2

1 → ...→ G2
l2−1 → C2

l2 → G2
l2

...

Pi : Ci0 → Gi0 → Ci1 → Gi1 → ...→ Gili−1 → Cili → Gili
...

Pm : Cm0 → Gm0 → Cm1 → Gm1 → ...→ Gmlm−1 → Cmlm → Gmlm (3.2)

where li corresponds to the number of iterations of WL at step i of RPKM,
the set of centroids Cir+1 is induced by the clustering Gir, and Gir is induced by
Cir for r = 1, ..., li − 1 and i = 1, ..,m. Each line corresponds to an execution
of WL for a given partition Pi for i = 1, ...,m. It should be noted that, in
step i of RPKM, the set of centroids Ci0 corresponds to the set of centroids

36 3 An efficient approximation to the K-means clustering for massive data

obtained at the end of its previous step, that is Ci0 = Ci−1
li−1 for i = 1, ...,m.

However, the clustering induced by Ci0 = Ci−1
li−1 for partition Pi does not have

to correspond to the clustering induced for the previous partition Pi−1. This
fact is one of the main difficulties in guaranteeing a monotone decrement of
the error function (see Eq.1.1) during an execution of RPKM.

In order to analyze the behavior of RPKM, we define the clustering
error associated to a partition P as follows:

EP(G) =

K∑
k=1

∑
S∈P:S⊆Gk

|S| · ||S − ck||2 (3.3)

where the set of centroids C is induced by the clustering G. This function mea-
sures the weighted error between each representative of a partition P and the
center of mass of its corresponding cluster. Note that the only difference be-
tween the centroid error and clustering error is that, the centroid error is given
in terms of a set of centroids and its induced clustering, while the clustering
error is given by a clustering and its induced set of centroids. The importance
of the clustering error is that it represents an intermediate value between the
centroid errors obtained at two consecutive iterations of the algorithm, that
is

EPi
(Cir) ≥ EPi

(Gir) ≥ EPi
(Cir+1) (3.4)

for r = 0, ..., li−1 (see Eq.3.2). In the following subsections we will analyze the
relation between the centroid error for different partitions of the data based
on the inequality provided in Eq.3.4.

3.2.1 Evolution of the centroids error

In this section we analyze the evolution of the centroid error for RPKM. The
obtained results will be the basis for bounding the number of iterations of WL
at each step of the RPKM. The next result will be used in order to analyze
the relation between the clustering error given two partitions of the data set
(one thinner than the other).

Lemma 1 Given a set of points X in Rd and a partition of it, P. Then the
function f(c) = |X| · ‖X − c‖2 −∑R∈P |R| · ‖R− c‖2 is constant.

This result implies that the difference of the set of representatives with
respect to a centroid, for two partitions of the data set (one thinner than the
other), is constant. The fact that such a difference is constant allows us to
state, in the following lemma, the invariance of the clustering error for two
different partitions of the data set. Observe that Lemma 1 allows us to change
the clustering, for both partitions, without changing the difference of the error
associated to them.

3.2 Theoretical analysis of the RPKM algorithm 37

−5 0 5

−5

0

5

Partition P . Cluster G

−5 0 5

−5

0

5

Partition P . Cluster G
′

−5 0 5

−5

0

5

Partition P
′

. Cluster G

−5 0 5

−5

0

5

Partition P
′

. Cluster G
′

Fig. 3.2: Illustration of Lemma 2, for two clusterings G and G′ defined on a
partition P.

Lemma 2 Let P and P ′ be two partitions of the data set X, with P � P ′ ,
and let G and G′ be two clusterings of P. Then, the difference between both
clustering errors is constant with respect to the partitions P and P ′:

EP(G)− EP(G′) = EP′ (G)− EP′ (G
′
)

In other words, the difference between two clustering errors is independent
of the partition. For example, in Fig.3.2, clustering G restricts the subsets with
center of mass to the left (right) of the middle point of the bounding box to
belong to the same cluster. The pink diamonds represent the centers of mass
of each group of G, evidently such centers of mass are invariant with respect
to the partition that we use to represent G. Furthermore, Lemma 2 states
that the difference of the clustering error difference between the upper figures
is equivalent to the difference of the error associated to the lower figures in
Fig.3.2.

In general, we can not guarantee a monotone descent of the error func-
tion given in Eq.1.1, which corresponds to the centroid error for the thinnest
partition, i.e., D = {{x} : x ∈ X}. However, in the next result, under mild
conditions related to the difference of the centroid error, we prove a monotone
descent of the clustering error for two partitions, one thinner than the other.
In consequence, if the conditions stated for the difference of the clustering er-
ror hold for all the steps of RPKM, a monotone descent of the error function
in Eq.1.1 is guaranteed.

38 3 An efficient approximation to the K-means clustering for massive data

Corollary 1 Let Ci and Ci−1 represent the set of centroids obtained at the
i-th and (i − 1)-th RPKM step, respectively. Then EX(Ci) ≤ EX(Ci−1), if
and only if EX(Gi−1

li−1−1) − EX(Ci−1) ≤ ξi + (EX(Gili−1) − EX(Ci)), where

ξi = EPi
(Gi−1
li−1−1)− EPi(Gili−1)

That is, if after the assignment step for both sets of centroids, Ci and
Ci−1, with respect to the full data set, the condition in Theorem 1 is satisfied
at every RPKM iteration, then we can guarantee the monotone descent of
the error over the entire data set. In particular, if there are no reassignments
for any of the two cases, with respect to their associated cluster membership,
we can guarantee the monotone descent of the overall error. Clearly, as the
difference of the local error of the initial and final cluster at the i-th RPKM
step is larger, then it is more likely to satisfy such a condition.

Even when the monotone descent over the entire data set of the RPKM
approximation, at every step, is not proved in general, we will see in the
experiments summarized in Section 3.3 that, for real and artificial data sets,
this property has been observed.

3.2.2 Bounding the iterations of the weighted Lloyd’s algorithm

In this section, using the properties of the clustering error (Lemma 2), we can
analyze the construction of the set of clusterings at different RPKM steps,
for example we can verify the implications of repeating a clustering from a
previous RPKM step.

In Lemma 3, we state that the unique clustering that can be repeated
in a step of RPKM, is the previous clustering of the sequence of clusterings
generated by the RPKM. If the repeated clustering is obtained at the first
iteration of WL, then the previous clustering corresponds to the one obtained
at the last iteration of WL (at the previous step of RPKM). On the other
hand, if the repeated clustering is not obtained at the first iteration of WL,
then the previous clustering corresponds to the one obtained at the previous
iteration of WL (in the same RPKM step).

Lemma 3 At the i-th step of the RPKM, if Gir = Gjs , with j < i, for some
r ∈ {1, . . . , li− 1} and s ∈ {1, . . . , lj − 1}, then lj+1 = . . . = li = 1. Moreover,
in that case, s = lj − 1.

In the following theorem, we use Lemma 3 to bound the number of WL
iterations at each RPKM step. Lemma 3 indicates that the only cluster that
can be repeated, from a previous RPKM step, is the last one generated by
the corresponding WL execution. Therefore, we can eliminate, from the to-
tal number of possible clusterings, the ones that were generated at previous
RPKM iterations (except the last one). In particular, if we have more than
one Lloyd iteration at a certain RPKM step, then we automatically discard
every single cluster that was generated at a previous RPKM step.

3.3 Experimental section 39

Theorem 1 An upper bound to the number of Lloyd iterations at the i-th

RPKM step is given by li ≤
{|Pi|
K

}
−

i−1∑
j=1

(lj − 1), where
{|Pi|
K

}
is a Stirling

number of the second kind.

Following the same reasoning as in Theorem 1, observe that, if, at the
(i − 1)-th RPKM step, WL converges to the associated global optima, then

li ≤
{|Pi|
K

}
−
{|Pi−1|

K

}
+ 1. Moreover, observe that all the clusters with an

error greater than EPi(Gi−1
li−1−1) will not be generated in the current or at

any further RPKM iteration, however the amount of clusterings satisfying
this condition can not be counted at the moment, one hypothesis is that the
number of such clusterings is of order O(

{|Pi|
K

}
).

For this reason, selecting the local initialization of WL in this manner may
help reducing the number of Lloyd’s iterations, while discarding, at each step,
all the generated clusters (except one) and probably others of similar form.
Not only that, but the discarding of such clusters occurs while analyzing a
small number of representatives with regard to the full data set, which implies,
as we will see in the experimental section, a drastic reduction in the number
of distance computations.

3.3 Experimental section

In this section, we perform a set of experiments so as to analyze the rela-
tion between the number of distance computations and the quality of the
approximation for the grid based RPKM algorithm proposed in Section 3.1.
In addition, we analyze the effect on the algorithm performance of varying
the different parameters of the clustering problem: size of the data set, n,
dimension of the instances, d, and number of clusters, K. For the purposes
of the experimental analysis, we compare the performance of the grid based
RPKM algorithm against the K-means++ (KM++) and the minibatch
K-means (MB) on artificial and real data sets.

The grid based RPKM was implemented in Python, while we used the
KM++ and MB implementations that are available in the open source ma-
chine learning library scikit-learn of Python. As stopping criterion for the
RPKM, we just set a maximum number of iterations, m, since we want to
analyze the behavior of the error function, at each step, as the number of
representatives approaches the number of instances. For the analyzed data
sets, we observe that, with m ≤ 6, this occurs. Evidently, as we increase
the dimension, this property will be seen inmediately, since the number of
representatives increases exponentially with respect to this parameter.

In this section, we refer to the result obtained after them-th step of the grid
based RPKM by RPKM m, and to the solution obtained using MB with
a batch size b ∈ {100, 500, 1000} by MB b. In equivalent experimentations
similar batch sizes were used [30].

40 3 An efficient approximation to the K-means clustering for massive data

3.3.1 Artificial data sets results

The artificial data sets are generated as a d-dimensional mixture of K Gaus-
sians. In particular, we set K ∈ {3, 9}, d ∈ {2, 4, 8} and n ∈ {1000, 10000,
100000, 1000000}. For each setting, we generate 50 replicates of the data set.
Additionally, we consider a component overlapping lower than 5%.

3.3.1.1 Distance computations

In this section, we compare the behavior of RPKM, KM++ and MB in
terms of the computed distances. As we commented in Section 1.1.1.2 and
Section 3.1.2, the most time consuming phase of the Lloyd’s algorithm, and
its weighted version, refers to the computation of distances. Especially at the
initial steps, RPKM considers a number of representatives which is a small
fraction of the size of the data set. Thus, we would expect a greater reduction
in the number of distance computations, with respect to the other methods,
as we consider larger data sets.

In Fig.3.3, we present the relation between the number of distance com-
putations and the data set size for the different settings.

k: 3 k: 9

1e+03

1e+05

1e+07

1e+03

1e+05

1e+07

1e+03

1e+05

1e+07

1e+03

1e+05

1e+07

d
:

2

d
:

4

d
:

6

d
:

8

1
e
+
0
2

1
e
+
0
3

1
e
+
0
4

1
e
+
0
5

1
e
+
0
6

1
e
+
0
2

1
e
+
0
3

1
e
+
0
4

1
e
+
0
5

1
e
+
0
6

n

n
u
m
.

d
i
s
t
.

KM++ MB 100 MB 500 MB 1000 RPKM 1

RPKM 2 RPKM 3 RPKM 4 RPKM 5 RPKM 6

Fig. 3.3: This figure shows the number of distance computations with respect
to the size of the data set (n), for different numbers of dimensions (d) and
numbers of clusters (K).

3.3 Experimental section 41

At first glance, we observe that RPKM, in general, executes a much smaller
number of distance computations than both KM++ and MB. Such a rela-
tion seems to change for the latter steps of RPKM when we consider larger
dimensions. However, in that case, KM++ still requires a similar order of
computations in comparison to the latter steps of the RPKM. Analogously,
MB, for the different batches, is not able to match the number of distance
computations of RPKM at its first steps, for any of the analyzed settings.
In addition, we observe that, for some RPKM steps, the number of distance
computations does not increase as we consider a higher number of instances,
as happens with the other algorithms.

In particular, we notice that the number of distance computations, at the
first steps of the RPKM, i.e., RPKM 1 and RPKM 2, does not necessarily
increase with respect to the data set size. This is plausible since, in this case,
the number of representatives is of the same order, independent of the number
of instances (see Fig.3.4). Evidently, as we consider thinner partitions (m ≥ 3),
the number of representatives will increase and so will the number of distance
computations.

k: 3 k: 9

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

d
:

2

d
:

4

d
:

6

d
:

8

1 2 3 4 5 6 1 2 3 4 5 6

m

|
P
|
/
n

n 100 1000 10000 100000 1000000

Fig. 3.4: This figure shows the ratio between the size of the partition Pm
and the size of the data set n, for m = 1, ..., 6. The size of the partition Pm
corresponds to the number of representatives used by RPKM at its m-th step.

42 3 An efficient approximation to the K-means clustering for massive data

Since, at the earlier stages of the RPKM, the number of representatives
does not necessarily increase with respect to the data set size, then the ratio
between the number of distance computations of RPKM and KM++ (or
MB) decreases with respect to the size of the data set. In particular, for the
larger number of instances, the number of distances computed by RPKM with
respect to KM++ is 3 orders of magnitude lower for K = 3 and d = 8 and 6
orders of magnitude lower for K = 3 and d = 2. In comparison with MB, the
number of distances computed by RPKM is 2 orders of magnitude lower for
K = 3 and d = 8 and 5 orders of magnitude lower for K = 3 and d = 2. As
we can see, the dimensionality of the problem, d, has a great impact on the
number of distances computed by RPKM as m increases. The reason is that
the number of representatives used by RPKM can increase exponentially with
respect to both m and d. In addition, we can see that the number of distance
computations, for all the algorithms, as expected, increases linearly with the
number of clusters K.

3.3.1.2 Quality of the approximation

In the previous section, we observed that RPKM entails a drastic reduction
in the amount of distance computations with respect to the other approaches
(especially when we consider large data set sizes). However, in this section, we
would like to analyze the quality of the approximations obtained by means of
RPKM.

In Fig.3.5, we show the evolution of the standarized error (std.error) for
the full data set for the set of centroids obtained at the end of the m-th
step of the RPKM. The std.error is defined as ρ(m) =

E∗m−Em

E∗m
, where Em is

the error for RPKM at the m-th step, and E∗m is the error obtained by K-
means algorithm over the full data set X, taking as initialization the centroids
obtained by RPKM at the m-th step. Observe that ρ(m) ≤ 0 and it measures
the percentage of error with respect to the K-means over the entire data set.

3.3 Experimental section 43

k: 3 k: 9

−0.4

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

−0.20

−0.15

−0.10

−0.05

0.00

−0.09

−0.06

−0.03

0.00

d
:

2

d
:

4

d
:

6

d
:

8

1 2 3 4 5 6 1 2 3 4 5 6

m

s
t
d
.

e
r
r
o
r

n 100 1000 10000 100000 1000000

Fig. 3.5: Quality of the approximation (std.error) with respect to the RPKM
step.

In most of the cases, we observe a monotone descent of the centroid error
with respect to the full data set until convergence to the error associated to a
solution of the K-means algorithm. This is remarkable since the approxima-
tion is constructed over a reduced number of representatives with respect to
the total number of instances (see Fig.3.4). In particular, at the third RPKM
step, the error with respect to the K-means solution is under 10%. Evidently,
as we increase the dimension, this percentage decreases until it achieves an er-
ror percentage smaller than 10% and 5% for the first and second RPKM step,
respectively. Moreover, for d = 2 and K = 9, we observe no result for RPKM
1, this is due to the fact that, in this case, the number of representatives is
smaller than the number of clusters, i.e., |P1| < K.

44 3 An efficient approximation to the K-means clustering for massive data

3.3.1.3 Relation distance computations - quality of the
approximation

In this section, we fuse the results obtained at the previous sections and
analyze, for the different algorithms, the trade-off between the number of
distances computed and the quality of the obtained solutions.

In Fig.3.6, we show the relation between the number of distance compu-
tations and the error of the obtained solutions for RPKM, KM++ and MB.

d: 2 d: 4 d: 6 d: 8

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05
n
:

1
0
0

n
:

1
0
0
0

n
:

1
0
0
0
0

n
:

1
0
0
0
0
0

n
:

1
0
0
0
0
0
0

1
e
+
0
3

1
e
+
0
5

1
e
+
0
7

1
e
+
0
3

1
e
+
0
5

1
e
+
0
7

1
e
+
0
3

1
e
+
0
5

1
e
+
0
7

1
e
+
0
3

1
e
+
0
5

1
e
+
0
7

num. dist.

e
r
r
o
r

KM++ MB 100 MB 500 MB 1000 RPKM 1

RPKM 2 RPKM 3 RPKM 4 RPKM 5 RPKM 6

Fig. 3.6: Quality of the approximation vs number of distance computations.

Besides the dimensionality of the problem, as we increase the number
of instances, the cloud of points associated to KM++ and MB separates
from the ones associated to the RPKM. This means that, as we increase
the number of instances, KM++ and MB require a much larger number of

3.3 Experimental section 45

distance computations in order to achieve a solution of similar quality to those
obtained by the RPKM. In the best case scenario (n = 1000000, d = 2),
RPKM reduces, at least, 6 and 4 orders of magnitude with respect to the
K-means++ and the minibatch K-means. Evidently, for larger dimensions,
the clouds associated to the RPKM, for the latter stages, can overlap those
of KM++ and MB. In this case, even for the largest number of instances,
we did not need to execute all the RPKM steps: at the fifth RPKM step, we
have already generated, approximately, as many representatives as instances.

In particular, consider the extreme cases: d = 2, n = 1000000 (case 1) and
d = 8, n = 100 (case 2). In the first case, after the third RPKM step the
standard error is already under 5% and, after fourth step, the error is prac-
tically null. Such approximations are obtained after computing under 10−3%
(10−2%) and slightly over 10−3% (10−2%) of the distances calculated by
KM++ (MB) for RPKM 3 and RPKM 4, respectively.

In the second case, already after the first RPKM step, the standard error
is under 8% and, after the second step, the error is fairly close to zero. Such
approximations are obtained after computing under 10−1% (1%) and under
1% (10%) of the distances calculated by KM++ (MB) for RPKM 1 and
RPKM 2, respectively.

In the case of lower dimensions and greater number of instances, we re-
quire more RPKM steps to achieve an approximation with a similar standard
error with respect to the case with greater dimensions and lower number of
instances. As previously mentioned, this is due to the exponential growth of
the number of representatives with respect to the dimension of the problem.
Moreover, in the second case, we have a lower number of instances, hence,
we need fewer RPKM steps in order to generate as many representatives as
instances (in this example, this occurs for m = 3). However, having a lower
proportion of representatives with respect to the number of instances also im-
plies a greater reduction in the number of distance computations with respect
to the full data set for the first case, while obtaining a similar standard error
in comparison to the second case.

3.3.2 Real data sets

In addition to the previous experimentation, we evaluate the performance of
the grid based RPKM algorithm, KM++ and MB on a real-world data set:
the gas sensor array under dynamic gas mixtures data set, which contains
the acquired time series from 16 chemical sensors exposed to gas mixtures at
varying concentration levels [77]. The data set consists of 4178504 instances
and 19 attributes and is available in the UC-Irvine Machine Learning Repos-
itory. The same experiment was performed over different data sets from the
UC-Irvine Machine Learning Repository, achieving similar conclusions. For
the sake of brevity, the corresponding graphics are not included in this work.

Using this real-world data set, we generate different subsamplings that
we use to analyze the features of the algorithms. In particular, we take d ∈

46 3 An efficient approximation to the K-means clustering for massive data

{2, 4, 8} random attributes and n ∈ {4000, 12000, 40000, 120000, 400000,
1200000, 4000000} random instances. The number of clusters is K ∈ {3, 9}.
For each setting, we generate 10 replicates of the data set.

3.3.2.1 Distance computations

For the real data set experimentation, we perform the same analysis as that
carried out for the artificial data sets case.

In Fig.3.7, as in Fig.3.3, we present the relation between the number of
distance computations and the data set size, this time for the real data set. In
general, we observe a similar behavior with respect to the artificial data sets
case: RPKM reduces, in many orders of magnitude, the number of distance
computations with respect to KM++ and MB. However, in this case, even
at the last step of RPKM, the number of distances does not always increase
with respect to the number of instances.

In particular, as can be verified in Fig.3.8, the number of representatives
does not necessarily increase as we consider higher data set sizes. This is due
to the fact that the data points, in this case, are grouped into more condensed
clouds than in the case of the artificial Gaussian data set case. Hence, it is
plausible to observe that the number of distance computations, even at the
latter stages of the RPKM, does not necessarily increase with respect to the
data set size. Furthermore, for low dimensions, this fact implies that, even at
the last RPKM step, we have a lower number of distance computations than
any version of MB and KM++.

3.3 Experimental section 47

k: 3 k: 9

1e+03

1e+06

1e+09

1e+03

1e+06

1e+09

1e+03

1e+06

1e+09

1e+03

1e+06

1e+09

d
:

2

d
:

4

d
:

6

d
:

8

1
e
+
0
4

1
e
+
0
5

1
e
+
0
6

1
e
+
0
4

1
e
+
0
5

1
e
+
0
6

n

n
u
m
.

d
i
s
t
.

Kmeans++ Minibatch 100 Minibatch 500 Minibatch 1000 RPkM 1

RPkM 2 RPkM 3 RPkM 4 RPkM 5 RPkM 6

Fig. 3.7: Number of distance computations with respect to data set size, n

In more detail, we notice that for the largest number of instances, the last
step of the RPKM executes less than 1% and 0.1% of the distances computed
by MB and KM++, respectively. For the largest dimension considered (d =
8), the latter steps RPKM execute a similar order of distance computations
with respect to MB. However, intermediate RPKM steps (RPKM 3) still
computes less than 1% and 0.1% of the distances computed with respect to
MB and KM++. It is important to remember that the number of distance
computations for KM++ and MB is independent of the dimensionality of the
problem, which is not usually true for the RPKM algorithm.

48 3 An efficient approximation to the K-means clustering for massive data

k: 3 k: 9

0.00

0.05

0.10

0.15

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.00

0.25

0.50

0.75

d
:

2

d
:

4

d
:

6

d
:

8

1 2 3 4 5 6 1 2 3 4 5 6

m

|
P
|
/
n

n 4000 12000 40000 120000 400000 1200000 4000000

Fig. 3.8: Percentage of subsets with respect to RPKM step

For the analyzed data set, we observe that the number of representatives
does not grow as rapidly as in the artificial sets case. In particular, for the
lowest dimension, the number of representatives barely achieves 20% of the
data set size at the last grid based RPKM step. As we increase the dimen-
sionality, and therefore generate more representatives, this number grows to
over 75% for the shortest data set size case.

3.3.2.2 Quality of the approximation

In Fig.3.9, we observe the evolution of the standarized error, for the full data
set, with respect to the set of centroids obtained at the m-th step of the
RPKM. As commented in the artificial data sets case, in most of the cases,
there is a monotone descent of the centroid error with respect to the full data
set until convergence to the error associated to a solution of the K-means
algorithm over the full data set. Commonly, at the third RPKM step, the
such standarized error is under 10%. This is remarkable since, as can be seen
in Fig.3.7, the number of distances computed by RPKM 3, compared to MB
and KM++, is under 10−3 % and 10−4 %, respectively.

3.3 Experimental section 49

k: 3 k: 9

−0.4

−0.3

−0.2

−0.1

0.0

−0.4

−0.3

−0.2

−0.1

0.0

−0.4

−0.3

−0.2

−0.1

0.0

−0.4

−0.3

−0.2

−0.1

0.0

d
:

2

d
:

4

d
:

6

d
:

8

1 2 3 4 5 6 1 2 3 4 5 6

m

s
t
d
.

e
r
r
o
r

n 4000 12000 40000 120000 400000 1200000 4000000

Fig. 3.9: Quality of the approximation with respect to RPKM step

As we increase the dimension the standarized error, in most of the cases,
is under 10%, even for RPKM 2 on the largest data set size case.

3.3.2.3 Relation distance computations - quality of the
approximation

In order to have a better understanding of the relation distance computa-
tions against overall error, we consider Fig.3.10. As we observed in the ar-
tificial data set case, when we increase the number of instances, the cloud
of points associated to KM++ and MB separates from the ones associated
to the RPKM. As we increase the number of instances, KM++ and MB re-
quire a much larger number of distance computations in order to achieve a
solution of similar quality than those obtained by the RPKM. For the low-
est dimensional case, even for an intermediate RPKM step, it reduces over 4
orders (d = 2, n = 4000000) and 5 orders of magnitude (d = 2, n = 4000000)
with respect to MB and KM++, respectively. Evidently, as we increase the
dimensionality of the problem and, therefore, generate a larger amount of rep-
resentatives and compute more distances, we still observe a reduction of 4 and
5 orders of magnitude, but for the first RPKM step. In addition, we can see
that the minibatch k-means with the smallest batch, MB 100, has, in some
cases, a similar amount of distance computations with respect to the second
step of RPKM.

50 3 An efficient approximation to the K-means clustering for massive data

Such a reduction in the number of distance computations is achieved while
still obtaining competitive approximations. For instance, even in the case of
greater dimension and lower number of instances (d = 8, n = 4000), after the
second RPKM step the standard error is already under 5% and, after the third
step, the error is practically null. These approximations are obtained after
computing under 7 ·10−4% (2 ·10−3%)and 10−3% (5 ·10−3%) of the distances
calculated by KM++ (MB), for RPKM 3 and RPKM 4, respectively.

d: 2 d: 4 d: 6 d: 8

1e+03

1e+05

1e+03

1e+05

1e+03

1e+05

1e+03

1e+05

1e+03

1e+05

1e+03

1e+05

1e+03

1e+05

n
:

4
0
0
0

n
:

1
2
0
0
0

n
:

4
0
0
0
0

n
:

1
2
0
0
0
0

n
:

4
0
0
0
0
0

n
:

1
2
0
0
0
0
0

n
:

4
0
0
0
0
0
0

1
e
+
0
3

1
e
+
0
6

1
e
+
0
9

1
e
+
0
3

1
e
+
0
6

1
e
+
0
9

1
e
+
0
3

1
e
+
0
6

1
e
+
0
9

1
e
+
0
3

1
e
+
0
6

1
e
+
0
9

num. dist.

e
r
r
o
r

KM++ MB 100 MB 500 MB 1000 RPKM 1

RPKM 2 RPKM 3 RPKM 4 RPKM 5 RPKM 6

Fig. 3.10: Quality of the approximation vs number of distance computations

In general, we observe that the grid based RPKM algorithm is able to
generate competitive approximations with a significant reduction in the num-
ber of distance computations. As the data set size increases, we observed a
more drastic reduction in the number of distance computations as can be seen
in Fig.3.6 and Fig.3.10. We observe the same behavior as we increase the di-
mension of the instances, however, the order of reduction with respect to MB
and KM++ decreases, as expected. This is due to the fact that the number
of RPKM representatives, in this case, grows exponentially with respect to
the dimension of the data set.

3.4 Conclusions 51

3.4 Conclusions

In this chapter, we present an alternative to the K-means algorithm applicable
to massive data problems called recursive partition based K-means (RPKM).
This approach recursively partitions the entire data set into a small number of
subsets, each of which is characterized by its representative (center of mass)
and weight (cardinality), after that a weighted version of the Lloyd’s algorithm
is applied over this local representation. The objective is to describe the full
data set by this representation, which ultimately leads to a reduction of dis-
tance computations. Indeed, in the experimental section, we observe that the
RPKM algorithm generates competitive approximations, even at its earlier
iterations, while reducing several orders of magnitude of distance computa-
tions.

In Section 3.2, we have derived some theoretical properties of the RPKM.
Among other results, we can guarantee the non repetition of the clusterings
generated at each RPKM iteration (except the last one), which ultimately
implies the reduction of the total amount of Lloyd iterations, as well as leading,
in most of the cases, to a monotone decrease of the overall error function.

In the experimental section, the grid based RPKM was compared with
two well-known approaches: the K-means++ and minibatch K-means. In
this analysis, we observed a dramatic reduction in the number of distance
computations with respect to both of them, as well as a consistent monotone
decrease of the error function. Since the RPKM algorithm seeks to reduce the
number of representatives used per iteration, we observed a larger reduction in
the number of distance computations as we enlarged the number of instances
of the data set. Furthermore, at the earlier stages of the RPKM, the size of
the data set did not have a relevant impact on the number of iterations or
distance computations for the associated weighted K-means problem. Thus,
the number of computations, especially for massive data applications, can be
greatly reduced.

On the other hand, it is important to remark that the number of subparti-
tions generated at each iteration of the grid based RPKM grows exponentially
with respect to the dimension, d, of the data set. As we can see in Fig.3.1,
some of these subpartitions might have a small probability of changing their
current cluster affiliation (with respect to the assignment given by the previ-
ous RPKM iteration). In this sense, it might be more valuable to partition
the areas that are more likely to have subpartitions associated with different
clusters.

One possible approach consists of characterizing the subsets that lie on a
cluster boundary, i.e., subsets that are close to two or more clusters. In this
approach, the number of representatives does not grow exponentially with
respect to the dimension of the data set. For this reason, as a future step, we
plan to define a low computational cost algorithm to determine the cluster
boundary at each iteration. The subsets in this area will have a greater priority

52 3 An efficient approximation to the K-means clustering for massive data

when selecting the regions that we want to partition in the next RPKM
iteration.

One last, but still important, advantage of the RPKM algorithm is the fact
that its parallelization is direct. The RPKM algorithm mainly depends on two
steps: The data partition process and the application of the weighted version
of Lloyd’s algorithm. In the first step, each point can independently decide
which subset it belongs to, hence the construction of the set of representatives
and weights can be done in a parallel manner. Analogously, for the second
phase, given a set of prototypes, each data point can separately decide which
cluster it belongs to and the update of the centroid can be simply computed
by averaging the points [21]. For this reason, we also plan to implement the
RPKM algorithm on a parallel framework such as Apache Spark.

4

An efficient K-means clustering algorithm for
tall data

In this chapter, we introduce an improvement to the partition strategy fol-
lowed in Chaper 3. The experimental results presented in Chapter 3 refer to
a RPKM variant called grid based RPKM. For such a partition strategy, the
initial spatial partition is defined by the grid obtained after dividing each side
of the smallest bounding box of X by half, i.e., a grid with 2d equally sized
blocks. In the same fashion, at the i-th grid based RPKM iteration, the cor-
responding spatial partition is updated by dividing each of its blocks into 2d

new blocks, i.e., P can have up to 2i·d representatives. It can be shown that
this approach produces a (K,ε)-coreset with ε descending exponentially with
respect to the number of iterations 1.

Taking this into consideration, three main problems arise for the grid based
RPKM:

• Problem 1. It does not scale well on the dimension d: Observe that, for a
relatively low number of iterations, i ' log2(n)/d, and/or dimensionality
d ' log2(n), applying this RPKM version can be similar to applying
Lloyd’s algorithm over the entire data set, i.e., no reduction of distance
computations might be observed, as |P| ' n. In fact, for the experimental
section in Chapter 3, d, i ≤ 10.

• Problem 2. It is independent of the data set X: As we mentioned before,
regardless of the analyzed data set X, the sequence of partitions of the
grid based RPKM is induced by an equally sized spatial partition of the
smallest bounding box containing X. In this sense, the induced partition
does not consider features of the data set, such as its density, to construct
the sequence of partitions: A large amount of computational resources
might be spent on regions whose misclassification does not add a significant
error to our approximation. Moreover, the construction of every partition
of the sequence has a O(n · d) cost, which is particularly expensive for
massive data applications, as n can be huge.

1 See Theorem 9 at Appendix .2.1 in the supplementary material.

54 4 An efficient K-means clustering algorithm for tall data

• Problem 3. It is independent of the problem: The partition strategy of the
grid based RPKM does not explicitly consider the optimization problem
that K-means seeks to minimize. Instead, it offers a simple/inefficient way
of generating a sequence of spatial thinner partitions. The reader should
note that each block of the spatial partition can be seen as a restriction
over the K-means optimization problem, that enforces all the instances
contained in it to belong to the same cluster. Therefore, it is of our interest
to design smarter spatial partitions oriented to focus most of the computa-
tional resources on those regions where the correct cluster affiliation is not
clear. By doing so, not only can a large amount of computational resources
be saved, but also some additional theoretical properties can be deduced.
Among other properties that we discuss in Section 4.1, at first glance it
can be observed that if all the instances in a set of points, P , are correctly
assigned for two sets of centroids, C and C ′, then the difference between
the error of both sets of centroids is equivalent to the difference of their
weighted error, i.e., EP (C)−EP (C ′) = E{P}(C)−E{P}(C ′) 2. Moreover,
if this occurs for each subset of a data set partition, P, and the centroids
are generated after consecutive weighted K-means iterations, then we can
guarantee a monotone decrease of the error for the entire data set 3. Like-
wise, we can actually compute the reduction of the error for the newly
obtained set of centroids, without computing the error function for the
entire data set, as in this case EX(C)−EX(C ′) = EP(C)−EP(C ′). Last
but not least, when every block contains instances belonging to the same
cluster, the solution obtained by our weighted approximation is actually a
local optima of Eq.1.1 4.

In any case, independently of the partition strategy, RPKM algorithm
offers some interesting properties such as the no clustering repetition. This
is, none of the obtained groupings of the n instances into K groups can be
repeated at the current RPKM iteration or for any thinner partition than
the current one. This is a useful property since it can be guaranteed that the
algorithm discards many possible clusterings at each RPKM iteration using
a much reduced set of points than the entire data set. Furthermore, this fact
enforces the decrease of the maximum number of Lloyd iterations that we
can have for a given partition. In practice, it is also common to observe a
monotone decrease of the error for the entire data set Chapter 3.

Bearing all these facts in mind, we propose a RPKM type approach called
the Boundary Weighted K-means algorithm (BWKM). The idea behind it
is to prioritize the use of resources on the cluster boundaries of our weighted
approximation, which are constituted by those blocks that may not be well
assigned.

2 See Lemma 4 in Appendix .2.1 in the supplementary material.
3 See Theorem 10 in Appendix .2.1 in the supplementary material.
4 See Theorem 4 in Appendix .2.1 in the supplementary material.

4 An efficient K-means clustering algorithm for tall data 55

Definition 7 (Well assigned blocks) Let C be a set of centroids and X be
a given data set. We say that a block B is well assigned, with respect to C and
X, if every point x ∈ B(X) is assigned to the same centroid c ∈ C.

The notion of well assigned blocks is of our interest as RPKM associates all the
instances contained in a certain block to the same cluster, which corresponds
to the one that its center of mass belongs to. Hence, our goal is to divide those
blocks that are not well assigned. Moreover, in order to control the growth
of the set of representatives and to avoid unnecessary distance computations,
we have developed a non-expensive partition criterion that allows us to detect
blocks that may not be well assigned. Our main proposal can be divided into
three tasks:

• Task 1: Design of a partition criterion that decides whether or not to
divide a certain block, using only information obtained from the weighted
Lloyd’s algorithm.

• Task 2: Construct an initial partition of the data set with a predefined
number of blocks, which are mostly placed on the cluster boundaries.

• Task 3: Once a certain block is decided to be cut, guarantee a low increase
on the number of representatives without affecting, if possible, the quality
of the approximation. In particular, we propose a criterion that, in the
worst case, has a linear growth in the number of representatives after an
iteration.

Observe that, both Task 2 and Task 3, ease the scalability of the algo-
rithm with respect to the dimensionality of the problem, d (Problem 1). Fur-
thermore, the goal of Task 1 and Task 2 is to generate partitions of the data
set that, ideally, contain well assigned subsets, i.e., all the instances contained
in a certain subset of the partition belong to the same cluster (Problem 2
and Problem 3). As we previously commented, this fact implies additional
theoretical properties in terms of the quality of our approximation.

At this point, it must be remarked that due to the nature of BWKM,
and unlike the typical coreset approach, our proposal does not intend to gen-
erate competitive approximations of the K-means error function, Eq.1.1. In-
stead, BWKM controls the size of the corresponding weighted set of points
by placing large grid cells on those regions where the correct cluster affiliation
is known. This increases the difference between the K-means error and our
weighted approximation in these regions 5 but, at the same time, allows us to
guarantee a monotone descend and convergence to a local minima of Eq.1.1,

The rest of this article is organized as follows: In Section 4.1, we describe
the proposed algorithm, introduce some notation and discuss some theoretical
properties of our proposal. Finally, in Section 4.2, we present a set of exper-
iments in which we analyze the effect of different factors, such as the size of

5 However in Theorem 3 we propose a bound for this error and for the quality of
the weighted approximation.

56 4 An efficient K-means clustering algorithm for tall data

the data set and the dimension of the instances over the performance of our
algorithm. Additionally we compare these results with the ones obtained by
the state-of-the-art.

4.1 BWKM algorithm

In this section, we present the Boundary Weighted K-means algorithm. As
we already commented, BWKM is a scalable improvement of the grid based
RPKM algorithm 6, that generates competitive approximations to the K-
means problem, while reducing the amount of computations that the state-of-
the-art algorithms require for the same task. BWKM reuses all the informa-
tion generated at each weighted Lloyd run to construct a sequence of thinner
partitions that alleviates Problem 1, Problem 2 and Problem 3.

Our new approach makes major changes in all the steps in Algorithm 2
except in Step 2 and Step 4. In these steps, the weighted version of Lloyd’s
algorithm is applied over the set of representatives and weights of the current
data set partition, P. This process has a O(|P| ·K · d) cost, hence it is of our
interest to control the growth of |P|, which is highlighted in both Task 2 and
Task 3.

In the following sections, we will describe in detail each step of BWKM. In
Section 4.1.1, Section 4.1.2 and Section 4.1.3 we elaborate on Task 1, Task
2 and Task 3, respectively.

4.1.1 A cheap criterion for detecting well assigned blocks

BWKM tries to efficiently determine the set of well assigned blocks in order
to update the data set partition. In the following definition, we introduce a
criterion that will help us verify this, mostly using information generated by
our weighted approximation:

Definition 8 Given a set of K centroids, C, a set of points X ⊆ Rd and
P = B(X) 6= ∅ the subset of points contained in a block B, we define the
misassignment function for B, given C and X, as:

εC,X(B) = max{0, 2 · lB − δP (C)}, (4.1)

where δP (C) = min
c∈C\cP

‖P −c‖−‖P −cP ‖ and lB is the length of the diagonal

of B. In the case P = B(X) = ∅, we set εC,X(B) = 0.

The following result is used in the construction of both the initial and the
sequence of thinner partitions:

Theorem 2 Given a set of K centroids, C, a data set, X ⊆ Rd, and a block
B, if εC,X(B) = 0, then cx = cP for all x ∈ P = B(X) 6= ∅.7
6 From now on, we assume each block B ∈ B to be a hyperrectangle.
7 The proof of Theorem 2 is in Appendix .2.1 in the supplementary material.

4.1 BWKM algorithm 57

In other words, if the misassignment function of a block is zero, then the
block is well assigned. Otherwise, the block may not be well assigned. Even
though the condition in Theorem 2 is a sufficient condition, we will use the
following heuristic rule during the development of the algorithm: The larger
the misassignment function of a certain block is, then the more likely it is to
contain instances with different cluster memberships.

In particular, Theorem 2 offers an efficient and effective way of verifying
that all the instances contained in a block B belong to the same cluster, using
only information related to the structure of B and the set of centroids, C.
Observe that we do not need any information associated to the individual
instances in the data set, x ∈ P . The criterion just requires some distance
computations with respect to the representative of P , P , that are already
obtained from the weighted Lloyd’s algorithm.

Definition 9 Let X be a data set, C be a set of K centroids and B be a
spatial partition. We define the boundary of B, given C and X, as

FC,X(B) = {B ∈ B : εC,X(B) > 0} (4.2)

The boundary of a spatial partition is just the subset of blocks with a
positive misassignment function value, that is, the blocks that may not be well
assigned. In order to control the size of the spatial partition and the number
of distance computations, BWKM only splits blocks from the boundary.

In Fig.4.1, we observe the information needed for a certain block of the
spatial partition, the one marked out in black, to verify the criterion presented
in Theorem 2. In this example, we only set two cluster centroids (blue stars)
and the representative of the instances in the block, P , given by the purple
diamond. In order to compute the misassignment function of the block, we
require the length of the three segments: Distance between the representative
with respect to its two closest centroids in C (blue dotted lines) and the
diagonal of the block (purple dotted line). If the misassignment function is
zero, then we know that all the instances contained in the block belong to
the same cluster. Observe that, in this example, there are instances in both
clusters, then the block is included in the boundary.

58 4 An efficient K-means clustering algorithm for tall data

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
−0.5

0.0

0.5

1.0

1.5

Fig. 4.1: Information required for computing the misassignment function of
the block B, εC,X(B), for K = 2.

Theorem 3 Given a data set, X, a set of K centroids C and a spatial par-
tition B of the data set X, the following inequality is satisfied:

|EX(C)− EP(C)| ≤
∑
B∈B

2 · |P | · εC,X(B) · (2 · lB + ‖P − cP ‖) +
|P | − 1

2
· l2B ,

where P = B(X) and P = B(X). Furthermore, for a well assigned partition
P, if we define CPOPT = arg min

C⊂Rd,|C|=K
EP(C) and COPT = arg min

C⊂Rd,|C|=K
EX(C),

then

EX(CPOPT) ≤ EX(COPT) + (n− |P|) · l2,

where l = max
B∈B

lB. 8

According to this result, we must increase the amount of well assigned
blocks and/or reduce the diagonal lengths of the blocks of the spatial partition,
so that our weighted error function approximates better the K-means error
function, Eq.1.1. Observe that by reducing the diagonal of the blocks, not
only is the condition of Theorem 2 more likely to be satisfied, but also we
are directly reducing both additive terms of the bound in Theorem 3. This
last point gives the intuition for our new partition strategy: i) split only those
blocks in the boundary and ii) split them on their largest side.

4.1.2 Initial Partition

In this section, we elaborate on the construction of the initial data set partition
used by the BWKM algorithm (see Step 1 of Algorithm 8, where the main

8 The proof of Theorem 3 is in Appendix .2.1 in the supplementary material.

4.1 BWKM algorithm 59

pseudo-code of BWKM is). Starting with the smallest bounding box of the
data set, the proposed procedure iteratively divides subsets of blocks of the
spatial partition with high probabilities of not being well assigned. In order
to determine these blocks, in this section we develop a probabilistic heuristic
based on the misassignment function, Eq.4.1.

As our new cutting criterion is mostly based on the evaluation of the mis-
assignment function associated to a certain block, we firstly need to construct
a starting spatial partition of size m′ ≥ K, from where we can select the set
of K centroids with respect to which the misassignment function is computed
(Step 1).

From then on, multiple sets of centroids C are selected via a weighted
K-means++ run over the set of representatives of the data set partition, for
different subsamplings. This will allow us to estimate a probability distribu-
tion that quantifies the chances of each block of not being well assigned (Step
2). Then, according to this distribution, we randomly select the most promis-
ing blocks to be cut (Step 3), and divide them until reaching a predefined
number of blocks m (Step 4). In Algorithm 5, we show the pseudo-code of
the algorithm proposed for generating the initial spatial partition.

Algorithm 5: Construction of the initial partition

Input: Dataset X, number of clusters K, integer m′ > K, size of the
initial spatial partition m > m′.
Output: Initial spatial partition B and its induced data set partition,
P = B(D).

Step 1: Obtain a starting spatial partition of size m′, B (Algorithm 6).
while |B| < m do

Step 2: Compute the cutting probability, Pr(B) for B ∈ B
(Algorithm 7).
Step 3: Sample min{|B|,m− |B|} blocks from B, with replacement,
according to Pr(·) to determine a subset of blocks A ⊆ B.
Step 4: Split each B ∈ A and update B.

end
Step 5: Construct P = B(X).
return B and P.

In Step 1, a partition of the smallest bounding box containing the data
set X, BD, of size m′ > K is obtained by splitting recursively the blocks
according to the pseudo-code shown in Algorithm 6. Once we have the spatial
partition of size m′, we iteratively produce thinner partitions of the space as
long as the number of blocks is lower than m. At each iteration, the process
is divided into three steps: In Step 2, we estimate the cutting probability
Pr(B) for each block B in the current space partition B using Algorithm 7.
Then, in Step 3, we randomly sample (with replacement) min{|B|,m− |B|}
blocks from B according to Pr(·) to construct the subset of blocks A ⊆ B,

60 4 An efficient K-means clustering algorithm for tall data

i.e., |A| ≤ min{|B|,m − |B|}. Afterwards, each of the selected blocks in A is
replaced by two smaller blocks obtained by splitting B in the middle point
of its longest side. Finally, the obtained spatial partition B and the induced
data set partition B(X) (of size lower or equal to m) are returned.

Algorithm 6: Step 1 of Algorithm 5

Input: Dataset X, partition size m′ > K, sample size s < n.
Output: A spatial partition of size m′, B.

- Set B = {BX}.
while |B| < m′ do

- Take a random sampling of size s, S ⊂ X .
- Obtain a subset of blocks, A ⊆ B, by sampling, with replacement,
min{|B|,m′ − |B|} blocks according to a probability proportional
to lB · |B(S)|, for each B ∈ B.

- Split the selected blocks A and update B.
end
return B.

Algorithm 6 generates the starting spatial partition of size m′ of the data
set X. This procedure recursively obtains thinner partitions by splitting a
subset of up to min{|B|,m′ − |B|} blocks selected by a random sampling
with replacement according to a probability proportional to the product of
the diagonal of the block B, lB , by its weight, |B(S)|. At this step, as we
can not estimate how likely it is for a given block to be well assigned with
respect to a set of K representatives, the goal is to control both weight and
size of the generated spatial partition, i.e., to reduce the possible number of
cluster misassignments, as this cutting procedure prioritizes those blocks that
might be large and dense. Ultimately, as we reduce this factor, we improve
the accuracy of our weighted approximation- see Theorem 3.

This process is repeated until a spatial partition with the desired number
of blocks, m′ ≥ K, is obtained. Such a partition is later used to determine the
sets of centroids which we use to verify how likely it is for a certain block to
be well assigned.

In Algorithm 7, we show the pseudo-code used in Step 2 of Algorithm
5 for computing the cutting probabilities associated to each block B ∈ B,
Pr(B). Such a probability function depends on the misassignment function
associated to each block with respect to multiple K-means++ based set of
centroids. To generate these sets of centroids, r subsamples of size s, with
replacement, are extracted from the data set, X. In particular, the cutting
probabilities are expressed as follows:

Pr(B) =

∑r
i=1 εCi,Si(B)∑

B′∈B
∑r
i=1 εCi,Si(B′)

(4.3)

4.1 BWKM algorithm 61

for each B ∈ B, where Si is the subset of points sampled and Ci is the set
of K centroids obtained via K-means++ for i = 1, ..., r. As we commented
before, the larger the misassignment function is, then the more likely it is for
the corresponding block to contain instances that belong to different clusters.
It should be highlighted that a block B with Pr(B) = 0 is well assigned for
all Si and Ci, with i = 1, .., r.

Algorithm 7: Step 2 of Algorithm 5

Input: A spatial partition B of size higher than K, data set X, number
of clusters K, sample size s, number of repetitions r.
Output: Cutting probability Pr(B) for each B ∈ B.

for i = 1, . . . , r do
-Take subsample Si ⊆ X of size s and construct P = B(Si).
-Obtain a set of centroids Ci by applying K-means++ over the
representatives of P.

- Compute εSi,Ci(B) for all B ∈ B (Eq. 4.1).

end
Step 4: Compute Pr(B) for every B ∈ B, using εSi,Ci(B) for i = 1, .., r
(Eq. 4.3).

return Pr(·).

Even when cheaper seeding procedures, such as a Forgy type initialization,
could be used, K-means ++ avoids cluster oversampling, and so one would
expect the corresponding boundaries not to divide subsets of points that are
supposed to have the same cluster affiliation. Additionally, as previously com-
mented, this initialization also tends to lead to competitive solutions. Later
on, in Section 4.1.4.1, we will comment on the selection of the different pa-
rameters, used in the initialization (m, m′, r and s).

4.1.3 Construction of the sequence of thinner partitions

In this section, we provide the pseudo-code of the BWKM algorithm and
introduce a detailed description of the construction of the sequence of thinner
partitions, which is the basis of BWKM. In general, once the initial partition
is constructed via algorithm 5, BWKM progresses iteratively by alternating
i) a run of weighted Lloyd’s algorithm over the current partition and ii) the
creation of a thinner partition using the information provided by the weighted
Lloyd’s algorithm. The pseudo-code of the BWKM algorithm can be seen in
Algorithm 8.

In Step 1, the initial spatial partition B and the induced data set par-
tition, P = B(X), are generated via Algorithm 5. Then, the initial set of
centroids is obtained through a weighted version of K-means++ over the set
of representatives of P.

62 4 An efficient K-means clustering algorithm for tall data

Given the current set of centroids C and the partition of the data set
P, the set of centroids is updated in Step 2 and Step 4 by applying the
weighted Lloyd’s algorithm. It must be commented that the only difference
between these two tasks is the fact that Step 2 is initialized with a set of
centroids obtained via weighted K-means++ run, while Step 4 utilizes the
set of centroids generated by the weighted Lloyd’s algorithm over the previ-
ous data set partition. In addition, in order to compute the misassignment
function εC,X(B) for all B ∈ B in Step 3 (see Eq.4.1), we store the following
information provided by the last iteration of the weighted Lloyd’s algorithm:
for each P ∈ P, the two closest centroids to the representative P in C are
saved (see Figure 4.1).

In Step 3, a spatial partition thinner than B and its induced data set
partition are generated. For this purpose, the misassignment function, εC,X(B)
for all B ∈ B is computed and the boundary FC,X(B) is determined using the
information stored at the last iteration of Step 2. Next, as the misassignment
criterion in Theorem 2 is just a sufficient condition, instead of dividing all the
blocks that do not satisfy it, we prioritize those blocks that are less likely to
be well assigned: A set A of blocks is selected by sampling with replacement
|FC,X(B)| blocks from B with a (cutting) probability proportional to εC,X(B).
Note that the size of A is at most |FC,X(B)|. Afterwards, in order to reduce
as much as possible the length of the diagonal of the newly generated blocks
and control the size of the thinner partition, each block in A is divided in
the middle point of its largest side. Each block is split once into two equally
shaped hyper-rectangles and it is replaced in B to produce the new thinner
spatial partition. Finally, given the new spatial partition B, its induced data
set partition is obtained P = B(X).

Algorithm 8: BWKM Algorithm

Input: Dataset X, number of clusters K and initialization parameters
m′, m, s, r.
Output: Set of centroids C.

Step 1: Initialize B and P via Algorithm 5, with input m′, m, s, r,
and obtain C by applying a weighted K-means++ run over the set of
representatives of P.
Step 2: C = WeightedLloyd(P, C,K).
while not Stopping Criterion do

Step 3: Update data set partition P:
- Compute εC,X(B) for all B ∈ B.
- Select A ⊆ FC,X(B) ⊆ B by sampling, with replacement,
|FC,X(B)| blocks according to εC,X(B), for all B ∈ B.

- Cut each block in A and update B and P.
Step 4: C = WeightedLloyd(P, C,K).

end
return C

4.1 BWKM algorithm 63

It should be noted that the cutting criterion, Eq.4.1, is more accurate, i.e.,
it detects more well assigned blocks, as long as we evaluate it over the smallest
bounding box of each block of the spatial partition, since we minimize the
maximum distance (diagonal) between any two points in the block. Therefore,
when updating the data partition in Step 3, we also recompute the diagonal
of the smallest bounding box of each subset.

Step 2 and Step 3 are then repeated until a certain stopping criterion is
satisfied (for details on different stopping criteria, see Section 4.1.4.2).

4.1.3.1 Computational complexity of the BWKM algorithm

In this section, we provide the computational complexity of each step of
BWKM, in the worst case.

The construction of the initial spatial partition, the corresponding induced
data set partition and the set of centroids of BWKM (Step 1) has the follow-
ing computational cost: O(max{r · s ·m2, r ·K · d ·m2, O(n ·max{m, d})}).
Each of the previous terms corresponds to the complexity of Step 1, Step 2

and Step 5 in Algorithm 5, respectively, which are the most computationally
demanding procedures of the initialization. Even when these costs are deduced
from the worst possible scenario, which is overwhelmingly improbable, in Sec-
tion 4.1.4.1, we will comment on the selection of the initialization parameters
in such a way that the cost of this step is not more expensive than that of the
K-means algorithm.

As we previously mentioned Step 2 of Algorithm 8 (the weighted Lloyd’s
algorithm) has a computational complexity of O(|P| ·K ·d). In addition, Step
3 executes O(|P| · K) computations to verify the cutting criterion, since all
the distance computations are obtained from the previous weighted Lloyd
iteration. Moreover, assigning each instance to its corresponding block and
updating the bounding box for each subset of the partition is O(n · d). In
summary, since |P| ≤ n, then BWKM algorithm has an overall cost of O(n ·
K · d) in the worst case.

4.1.4 Additional Remarks

In this section, we discuss additional features of the BWKM algorithm, such
as the selection of the initialization parameters for BWKM, we also comment
on different possible stopping criteria, with their corresponding computational
costs and theoretical guarantees.

4.1.4.1 Parameter selection

The construction of the initial space partition and the corresponding induced
data set partition of BWKM (see Algorithm 5 and Step 1 of Algorithm 8)
depends on the parameters m, m′, r, s, K and X, while the core of BWKM
(Step 2 and Step 3) only depends on K and X. In this section, we propose

64 4 An efficient K-means clustering algorithm for tall data

how to select the parameters m, m′, r and s, keeping in mind the following
objectives: i) to guarantee BWKM having a computational complexity equal
to or lower than O(n ·K · d), which corresponds to the cost of Lloyd’s algo-
rithm, and ii) to obtain an initial spatial partition with a large amount of well
assigned blocks.

In order to ensure that the computational complexity of BWKM’s initial-
ization is, even in the worst case, O(n ·K · d), we must take m, m′, r and s
such that r · s ·m2 , r ·m2 · K · d and n ·m are O(n · K · d). On the other
hand, as we want such an initial partition to minimize the number of blocks
that may not be well assigned, we must consider the following facts: i) the
larger the diagonal for a certain block B ∈ B is, then the more likely it is
for B not to be well assigned, ii) as the number of clusters K increases, then
any block B ∈ B has more chances of containing instances with different clus-
ter affiliations, and iii) as s increases, the cutting probabilities become better
indicators for detecting those blocks that are not well assigned.

Taking into consideration these observations, and assuming that r is a
predefined small integer, satisfying r � n/s, we propose the use of m =
O(
√
K · d) and s = O(

√
n). Not only does such a choice satisfy the complexity

constraints that we just mentioned (See Theorem 11 in Appendix .2.1), but
also, in this case, the size of the initial partition increases with respect to
both dimensionality of the problem and number of clusters: Since at each
iteration, we divide a block only on one of its sides, then, as we increase the
dimensionality, we need more cuts (number of blocks) to have a sufficient
reduction of its diagonal (observation i)). Analogously, the number of blocks
and the size of the sampling increases with respect to the number of clusters
and the actual size of the data set, respectively (observation ii) and iii)). In
particular, in the experimental section, Section 4.2, we used m = 10 ·

√
K · d,

s =
√
n and r = 5.

4.1.4.2 Stopping Criterion

As we discussed earlier, one of the advantages of constructing spatial parti-
tions with only well assigned blocks is that our algorithm, under this setting,
converges to a local minima of the K-means problem over the entire data set
and, therefore, there is no need to execute any further run of the BWKM al-
gorithm as the set of centroids will remain the same for any thinner partition:

Theorem 4 If C is a fixed point of the weighted K-means algorithm for a
spatial partition B, for which all of its blocks are well assigned, then C is a
fixed point of the K-means algorithm on X. 9

To verify this criterion, we can make use of the concept of boundary of
a spatial partition (Definition 9). In particular, observe that if FC,X(B) = ∅,
then one can guarantee that all the blocks of B are well assigned with respect to

9 The proof of Theorem 4 is in Appendix .2.1 in the supplementary material.

4.2 Experiments 65

both C and X. To check this, we just need to scan the misassignment function
value for each block, i.e., it is just O(|P|). In addition to this criterion, in this
section we will propose three other stopping criteria:

• A practical computational criterion: We could set, in advance, the amount
of computational resources that we are willing to use and stop when we
exceed them. In particular, as the computation of distances is the most
expensive step of the algorithm, we could set a maximum number of dis-
tances as a stopping criterion.

• A Lloyd’s algorithm type criterion: As we mentioned in Section 1.1.1.2,
the common practice is to run Lloyd’s algorithm until the reduction of the
error, after a certain iteration, is small. As in our weighted approximation
we do not have access to the error EX(C), a similar approach is to stop
the algorithm when the obtained set of centroids, in consecutive iterations,
is smaller than a fixed threshold, εw. We can actually set this threshold
in a way that the stopping criterion of Lloyd’s algorithm is satisfied. For

instance, for εw =
√
l2 + ε2

n2 − l, if ‖C − C ′‖∞ ≤ εw, then |EX(C) −
EX(C ′)| ≤ ε, holds 10. However, this would imply additional O(K · d)
computations at each iteration.

• A criterion based on the accuracy of the weighted error: We could also
consider the bound obtained at Theorem 3 and stop when it is lower than
a predefined threshold. This will let us know how accurate our current
weighted error is with respect to the error over the entire data set. All the
information in this bound is obtained from the weighted Lloyd iteration
and the information of the block and its computation is just O(|P|).

4.2 Experiments

In this section, we perform a set of experiments so as to analyze the relation
between the number of distances computed and the quality of the approx-
imation for the BWKM algorithm proposed in Section 4.1. In particular,
we compare the performance of BWKM with respect to different methods
known for the quality of their approximations11: Lloyd’s algorithm initialized
via i) Forgy (FKM) and ii) K-means++ (KM++) 12. We also consider the
Minibatch K-means, with batches b = {100, 500, 1000} 13 (MB b), which
is particularly known for its efficiency due to the small amount of resources
needed to generate its approximation, as well as the Markov chain Monte
Carlo sampling based approximation of the K-means++ (AFKMC2) with
a further MB 100 run as recommended by its authors [43].

10 See Theorem 12 in Appendix .2.1 in the supplementary material
11 Additionally, in Appendix .2.2, we comment on the grid based RPKM.
12 The output of such an initialization is presented as KM++ init.
13 Similar values were used in the original paper [30].

66 4 An efficient K-means clustering algorithm for tall data

To have a better understanding of BWKM, we analyze its performance
on a wide variety of well known real data sets (see Table 4.1) with different
scenarios of the clustering problem. For each data set, we have considered a
different number of clusters, K = {3, 5, 10, 25, 50}. Given the random nature
of the algorithms, each experiment has been repeated 40 times for each data
set and each K value.

Dataset n d
Corel Image Features (CIF) 68, 037 17

3D Road Network (3RN) 434, 874 3
Household Power Consumption (HPC) 2, 049, 280 7

Gas Sensor (GS) 4, 208, 259 19
SUSY 5, 000, 000 19

Web Users Yahoo! (WUY) 45, 811, 883 5

Table 4.1: Information of the data sets.

As stopping criterion, we have fixed the maximum number of BWKM iter-
ations to 100. However it might converge before if the corresponding boundary
is empty, in which case, we can guarantee that the obtained set of centroids is
a fixed point of the weighted Lloyd’s algorithm for any thinner partition of the
data set, therefore, it is also a fixed point of Lloyd’s algorithm on the entire
data set X (see Theorem 4). Moreover, in order to compare the performance
of the algorithms for different settings of the clustering problem, we decided
to use the average of the relative error with respect to the best solution found

at each repetition of the experiment, i.e., ÊM =
EM− min

M′∈M
EM′

min
M′∈M

EM′
, where M is

the set of algorithms being compared and EM stands for the K-means error
obtained by method M ∈M. Analogously, in terms of the amount of compu-
tational resources required, we show the proportion of distances computed by
each method with respect to the method that computed the largest number
of distances, i.e., D̂CM = DCM

max
M′∈M

DCM′
, where DCM is the number of distances

computed by M ∈M.
In Fig. 4.2-4.7, we show the trade-off between the average relative number

of distances computed vs the average relative error for all the algorithms.
Observe that a single symbol is used for each algorithm, except for BWKM,
in which we compute the trade-off at each iteration so as to observe the
evolution of the quality of its approximation as the number of computed
distances increases.

4.2 Experiments 67

K: 3 K: 5 K: 10 K: 25 K: 50

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1e−06

1e−05

1e−04

1e−03

1e−02

5e−02
1e−01

5e−01
1e+00

Relative Distance Computations

R
e
l
a
t
i
v
e

E
r
r
o
r

BWKM FKM KM++ AFKMC2 KM++_init MB 100 MB 1000 MB 500

Fig. 4.2: Relative distance computations vs relative error on the CIF data set.

K: 3 K: 5 K: 10 K: 25 K: 50

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1e−06

1e−05

1e−04

1e−03

1e−02

5e−02
1e−01

5e−01
1e+00

Relative Distance Computations

R
e
l
a
t
i
v
e

E
r
r
o
r

BWKM FKM KM++ AFKMC2 KM++_init MB 100 MB 1000 MB 500

Fig. 4.3: Relative distance computations vs relative error on the 3RN data set.

K: 3 K: 5 K: 10 K: 25 K: 50

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1e−04

1e−03

1e−02

5e−02

1e−01

5e−01

1e+00

Relative Distance Computations

R
e
l
a
t
i
v
e

E
r
r
o
r

BWKM FKM KM++ AFKMC2 KM++_init MB 100 MB 1000 MB 500

Fig. 4.4: Relative distance computations vs relative error on the HPC data
set.

K: 3 K: 5 K: 10 K: 25 K: 50

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1e−06

1e−05

1e−04

1e−03

1e−02

5e−02
1e−01

5e−01
1e+00

Relative Distance Computations

R
e
l
a
t
i
v
e

E
r
r
o
r

BWKM FKM KM++ AFKMC2 KM++_init MB 100 MB 1000 MB 500

Fig. 4.5: Relative distance computations vs relative error on the GS data set.

68 4 An efficient K-means clustering algorithm for tall data

K: 3 K: 5 K: 10 K: 25 K: 50

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

0.01

0.05

0.10

0.50

1.00

Relative Distance Computations

R
e
l
a
t
i
v
e

E
r
r
o
r

BWKM FKM KM++ AFKMC2 KM++_init MB 100 MB 1000 MB 500

Fig. 4.6: Relative distance computations vs relative error on the SUSY data
set.

K: 3 K: 5 K: 10 K: 25 K: 50

1
e
−
0
8

1
e
−
0
7

1
e
−
0
6

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
8

1
e
−
0
7

1
e
−
0
6

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
8

1
e
−
0
7

1
e
−
0
6

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
8

1
e
−
0
7

1
e
−
0
6

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
8

1
e
−
0
7

1
e
−
0
6

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

0.01

0.05

0.10

0.50

1.00

Relative Distance Computations

R
e
l
a
t
i
v
e

E
r
r
o
r

BWKM FKM KM++ AFKMC2 KM++_init MB 100 MB 1000 MB 500

Fig. 4.7: Relative distance computations vs relative error on the WUY data
set.

At first glance, we observe that, in 18 out of 35 different configurations of
data sets and K values, BWKM obtained the best (average) solution among
the considered methods. Furthermore, in Table .1 we observe that BWKM
quite frequently (in 206 out of 210 cases) converged to sets of centroids that
reached on average, at least, 1% of error with respect to all the considered
methods and clustering configurations. If we increase such a threshold to 5%,
BWKM reaches it in every case. It must be highlighted that such clusterings
were generated while computing a massively reduced number of distances: Up
to 5 and 7 orders of magnitude of distances less than the Minibatch based
methods (MB 100, MB 500, MB 1000 and AFKMC2) and the Lloyd’s based
methods (FKM and KM++), respectively. In particular and as expected, the
best performance of BWKM seems to occur on large data sets with small
dimensions (WUY). On one hand, the decrease in the amount of distances
computed is mainly due to the reduction in the number of representatives
that BWKM uses in comparison to the actual size of the data set. On the
other hand, given a set of points as the dimension decreases, the number
of blocks required to obtain a partition completely well assigned tends to
decrease (WUY and 3RN).

4.2 Experiments 69

Method K CIF 3RN HPC GS SUSY WUY

FKM

3 5.6(−2); 9.5(−2) 1.2(−4); 2.8(−4) 1.3(−5); 1.8(−5) 8.6(−6); 1.7(−5) 1.1(−5); 1.1(−5) 7.1(−7); 1.0(−6)
5 6.7(−3); 6.5(−2) 1.0(−4); 3.8(−4) 1.6(−4); 2.9(−3) 7.8(−5); 1.0(−3) 7.0(−6); 7.0(−6) 9.3(−7); 9.3(−7)
10 4.3(−2); 6.8(−1) 1.5(−4); 8.8(−4) 3.0(−5); 6.4(−5) 1.3(−4); 4.1(−4) 1.1(−5); 1.2(−3) 8.2(−7); 3.0(−6)
25 3.3(−2); 1.9(−1) 2.3(−4); 1.3(−3) 4.5(−4); 6.5(−4) 2.0(−4); 4.1(−4) 1.1(−3); 3.9(−3) 1.7(−6); 7.2(−6)
50 1.5(−1); 9.4(−1) 7.7(−4); 4.0(−3) 1.2(−4); 4.3(−4) 2.6(−3); ∗ 1.1(−3); 1.0(−1) 3.4(−5); 2.0(−4)

KM++

3 5.3(−2); 8.9(−2) 1.1(−4); 2.8(−4) 1.5(−5); 1.2(−4) 7.7(−6); 1.6(−5) 1.3(−5); 1.3(−5) 1.6(−6); 1.1(−5)
5 6.3(−3); 6.5(−2) 1.8(−4); 9.4(−4) 9.7(−5); 1.5(−3) 5.3(−5); 5.6(−4) 7.4(−6); 5.7(−4) 1.3(−6); 1.3(−6)
10 2.6(−2); 2.9(−1) 5.7(−4); 1.2(−2) 6.0(−4); 3.1(−3) 1.1(−4); 4.2(−4) 2.3(−5); 1.8(−3) 1.6(−6); 7.2(−5)
25 4.5(−2); 2.5(−1) 4.0(−4); 2.2(−3) 4.6(−3); ∗ 3.4(−4); 7.6(−4) 1.1(−3); 1.2(−2) 1.0(−5); 1.8(−4)
50 1.6(−1); 1.1(0) 1.6(−3); 1.3(−2) 5.2(−2); ∗ 5.6(−3); ∗ 1.3(−3); 1.1(−1) 1.2(−4); 2.1(−3)

AFKMC2

3 6.1(−2); 1.5(0) 3.0(−3); 7.2(−3) 7.9(−3); 7.9(−3) 4.9(−4); 8.0(−4) 6.7(−4); 6.7(−4) 2.2(−4); 2.2(−4)
5 5.7(−2); 8.0(−2) 3.2(−3); 8.1(−3) 1.0(−2); 5.7(−2) 1.9(−3); 9.5(−3) 8.3(−4); 8.3(−4) 6.2(−5); 6.2(−5)
10 5.5(−1); 4.0(0) 4.8(−3); 2.3(−2) 3.7(−2); 1.4(−1) 5.8(−3); 1.4(−2) 1.0(−3); 1.7(−1) 1.1(−4); 1.9(−4)
25 1.1(0); 6.4(0) 8.3(−3); 2.6(−2) 4.6(−1); 6.6(−1) 2.0(−2); 4.2(−2) 2.0(−1); 5.6(−1) 2.0(−4); 6.2(−4)
50 3.6(0); 2.3(1) 3.0(−2); 1.2(−1) 1.6(−1); 7.9(−1) 1.8(−1); 1.1(0) 1.8(−1); 6.6(−1) 3.5(−3); 9.8(−3)

KM++ init

3 1.9(−2); 1.9(−2) 6.9(−4); 6.9(−4) 2.7(−4); 2.7(−4) 2.1(−4); 2.1(−4) 1.7(−4); 1.7(−4) 9.4(−6); 9.4(−6)
5 1.9(−2); 1.9(−2) 7.7(−4); 7.7(−4) 3.3(−4); 3.3(−4) 2.6(−4); 2.6(−4) 2.2(−4); 2.2(−4) 1.2(−5); 1.2(−5)
10 2.6(−2); 2.6(−2) 1.2(−3); 1.2(−3) 4.4(−4); 4.4(−4) 3.4(−4); 3.4(−4) 3.0(−4); 3.0(−4) 1.5(−5); 1.5(−5)
25 4.1(−2); 4.1(−2) 1.6(−3); 1.6(−3) 6.0(−4); 6.0(−4) 5.4(−4); 5.4(−4) 4.7(−4); 4.7(−4) 2.2(−4); 2.2(−4)
50 3.4(−2); 3.4(−2) 1.5(−3); 1.5(−3) 7.4(−4); 7.4(−4) 9.2(−4); 1.1(−3) 6.5(−4); 6.5(−4) 2.5(−5); 2.5(−5)

MB 100

3 5.0(−1); 3.4(0) 2.4(−3); 5.8(−3) 1.0(−3); 1.0(−3) 4.4(−4); 7.2(−4) 3.7(−4); 3.7(−4) 2.3(−5); 2.3(−5)
5 5.7(−2); 5.7(−2) 2.0(−3); 5.1(−3) 2.3(−3); 2.3(−3) 1.6(−3); 6.5(−3) 6.6(−4); 6.6(−4) 1.4(−5); 1.4(−5)
10 1.3(−1); 7.2(−1) 3.2(−3); 1.5(−2) 9.1(−3); 1.3(−2) 5.1(−3); 1.2(−2) 7.9(−4); 9.6(−2) 3.0(−5); 3.9(−5)
25 3.7(−1); 5.1(−1) 3.0(−3); 9.2(−3) 4.2(−3); 4.2(−3) 1.6(−2); 2.3(−2) 2.0(−1); 5.3(−1) 4.9(−5); 4.9(−5)
50 2.4(−1); 2.2(0) 1.2(−2); 2.5(−2) 2.3(−3); 2.3(−3) 7.1(−2); 2.0(−1) 1.8(−1); 6.4(−1) 1.1(−4); 1.7(−4)

MB 500

3 5.0(−1); 1.2(0) 1.3(−3); 2.2(−3) 6.9(−4); 6.9(−4) 2.1(−4); 2.6(−4) 1.8(−4); 1.8(−4) 2.6(−5); 2.6(−5)
5 1.5(−2); 5.0(−2) 7.3(−4); 1.6(−3) 7.4(−4); 1.0(−3) 9.7(−4); 7.5(−3) 2.7(−4); 6.2− 4) 1.3(−5); 1.3(−5)
10 9.0(−2); 6.6(−1) 1.9(−3); 4.8(−3) 1.6(−3); 2.4(−3) 1.5(−3); 4.5(−3) 6.4(−4); 6.6(−2) 1.5(−5); 1.5(−5)
25 1.6(−2); 3.2(−1) 2.6(−3); 8.4(−3) 4.7(−3); 1.6(−2) 7.2(−3); 1.1(−2) 1.1(−1); 3.0(−1) 3.0(−5); 4.0(−5)
50 1.4(−1); 1.2(0) 6.0(−3); 2.4(−2) 2.3(−3); 6.6(−3) 3.1(−2); 9.7(−2) 2.1(−1); 6.0(−1) 6.0(−5); 9.3(−5)

MB 1000

3 5.2(−1); 1.3(0) 6.9(−4); 1.6(−3) 4.4(−4); 4.4(−4) 1.8(−4); 2.9(−4) 1.2(−4); 1.2(−4) 1.2(−5); 1.2(−5)
5 1.0(−2); 3.1(−2) 7.1(−4); 1.1(−3) 5.9(−4); 8.5(−4) 5.5(−4); 4.0(−3) 2.1(−4); 2.1(−4) 8.7(−6); 8.7(−6)
10 3.4(−2); 2.5(−1) 1.3(−3); 3.3(−3) 1.0(−3); 1.6(−3) 1.1(−3); 2.1(−3) 2.8(−4); 2.0(−2) 1.5(−5); 1.9(−5)
25 7.9(−2); 2.2(−1) 1.2(−3); 3.8(−3) 7.6(−3); 2.5(−2) 6.7(−3); 8.2(−3) 8.5(−2); 2.3(−1) 2.3(−5); 3.0(−5)
50 8.9(−2); 7.6(−1) 4.7(−3); 1.9(−2) 3.0(−3); 8.4(−3) 2.4(−2); 7.7(−2) 1.6(−1); 4.6(−1) 7.1(−5); 1.7(−4)

Table 4.2: BWKM distance proportion with respect to the considered meth-
ods for reaching under < 5%;< 1% of their relative error (In our notation,
5.6(−2) = 5.6× 10−2).

Regardless of this, even when considering the most unfavorable setting for
BWKM (smallest data set size with large dimension, i.e., CIF), for small K
values, our proposal still managed to converge to competitive solutions (under
1% of error when compared to the competition) at a fast rate (reducing on
average up to 2 orders of distance computations). Note that for smallK values,
since the number of centroids is small, one may not need to reduce the diagonal
of the blocks so abruptly to verify the well assignment criterion. On the other
hand, for the largest numbers of clusters, BWKM still generated solutions of
the same quality but struggled to reduce the number of computations: BWKM
computed the same order of distances as the Minibatch based methods to
generate approximations with a similar error.

In the case of small data sets with low dimensionality (3RN), BWKM
performs much better in comparison to the previous case: In 4 out of 5 values of
K, BWKM actually generates the most competitive solutions. In particular, in
order to achieve a relative error of under 1% of error, BWKM reduces between

70 4 An efficient K-means clustering algorithm for tall data

1 to 3 orders of magnitude of distances with respect to the Minibatch based
methods, and 2 to 4 orders of magnitude against the Lloyd’s based methods.
Furthermore, for the medium size data sets with low dimensionality (HPC),
BWKM has a similar performance, leading on average to the most qualitative
solution in 3 out of 5 values of K, while reducing between 1 to 4 orders of
magnitude of distances with respect to the Minibatch based methods, and
2 to 5 orders of magnitude against the Lloyd’s based methods to generate
solutions under 5% of their error.

If we consider the case of the medium to large data sets with larger di-
mensionality (GS and SUSY), in order to reach a 5% relative error, BWKM
decreases between 1 to 4 orders of magnitude with respect to the Minibatch
based methods and 3 to 6 orders in comparison to the Lloyd’s based methods.
Moreover, BWKM obtains the solutions with the lowest errors in 5 out of 10
configurations.

For the largest data set (WUY), BWKM got its best performance. Again,
it usually generated the most competitive solutions (in 4 out of 5 cases),
however, in this case, as expected BWKM computes an amount of distance
from 4 to 6 and 3 to 7 orders of magnitude lower than the Minibatch and the
Lloyd’s based algorithms to reach a relative error of under 1% with respect
to them, respectively.

Finally, we would like to highlight that BWKM, already at its first iter-
ations, reaches a relative error much lower than KM++ init in all the con-
figurations requiring to compute an amount of distances from 2 to 6 order
of magnitude lower. This fact strongly motivates the use of BWKM as a
competitive initialization strategy for Lloyd’s algorithm.

Undoubtedly BWKM achieves its best results in terms of the trade-off
between number of distance computations and the quality of the solution ob-
tained, when dealing with large data sets with small dimensions (tall data),
therefore its use is mostly recommended for this setting. In any case and in
spite of considered configuration, BWKM shows a quite competitive perfor-
mance when compared to the state-of-the-art, leading to reductions of several
orders of distance computations while converging to sets of centroids with
a similar and/or lower error than the one achieved by the considered algo-
rithms. Furthermore, it must be highlighted that the modifications made in
the cutting criterion allowed our algorithm to scale to dimensions that were
intractable for the previous grid based RPKM in Chapter 3.

4.3 Conclusions

In this chapter, we have presented an alternative to the K-means algorithm,
oriented to massive data problems, called the Boundary Weighted K-means
algorithm (BWKM). This approach recursively applies a weighted version of
the K-means algorithm over a sequence of spatial based partitions of the data
set that ideally contains a large amount of well assigned blocks, i.e., cells of the

4.3 Conclusions 71

spatial partition that only contain instances with the same cluster affiliation.
It can be shown that our weighted error approximates the K-means error
function, as we increase the number of well assigned blocks, see Theorem 3.
Ultimately, if all the blocks of a spatial partition are well assigned at the end
of a BWKM step, then the obtained clustering is actually a fixed point of the
K-means algorithm, which is generated after using only a small number of
representatives in comparison to the actual size of the data set (Theorem 4).
Furthermore, if, for a certain step of BWKM, this property can be verified at
consecutive weighted Lloyd’s iterations, then the error of our approximation
also decreases monotonically (Theorem 10).

In order to achieve this, in Section 4.1.1, we designed a criterion to deter-
mine those blocks that may not be well assigned. One of the major advantages
of the criterion is its low computational cost: It only uses information gen-
erated by the weighted K-means algorithm -distances between the center of
mass of each block and the set of centroids- and a feature of the corresponding
spatial partition -diagonal length of each block-. This allows us to guarantee
that, even in the worst possible case, BWKM does not have a computational
cost higher than that of the K-means algorithm. In particular, the criterion
is presented in Theorem 2 and states that, if the diagonal of a certain block
is smaller than half the difference of the two the smallest distances between
its center of mass and the set of centroids, then the block is well assigned.

In addition to all the theoretical guarantees that motivated and justify
our algorithm (see Section 4.1 and Appendix .2.1), in practice, we have also
observed its competitiveness with respect to the state-of-the-art (Section 4.2).
BWKM has been compared to Lloyd’s algorithm initialized with Forgy’s ap-
proach and K-means++, the AFKMC2 algorithm and the Minibatch K-
means.

The results, on different well known real data sets, show that BWKM in
several cases (18 out of 35 configurations) has generated the most competitive
solutions. Furthermore, in 206 out of 210 cases, BWKM has converged to
solutions with a relative error of under 1% with respect to the considered
methods, while using a much smaller amount of distance computations (up to
7 orders of magnitude lower).

As for the next steps, we plan to exploit different benefits of BWKM. First
of all, observe that the proposed algorithm is embarrassingly parallel up to the
K-means++ seeding of the initial partition (over a very tiny amount of rep-
resentatives when compared to the data set size), hence we could implement
this approach in a more appropriate platform for this kind of problems, as is
the case of Apache Spark. Moreover, we must point out that BWKM is also
compatible with the distance pruning techniques presented in [24, 25, 26, 28],
therefore, we could also implement these techniques within the weighted Lloyd
framework of BWKM and reduce, even more, the number of distance compu-
tations.

5

A cheap feature selection approach for the
K-means algorithm

The increase in the number of features that can be perceived in a wide variety
of areas, such as genome sequencing, computer vision and sensor networks,
represents a challenge for the K-means algorithm due to the curse of dimen-
sionality. On the other hand, even when the results presented in Chapter 4
are very competitive and show the advantages of using BWKM for data sets
with a large number of in- stances, the quality guarantees of BWKM are
still dependant on the diagonal length of the cells in the spatial partition.
Since the partition strategy introduced in BWKM divides the selected blocks
along a single dimension, it will take more BWKM iterations to generate
partitions with mostly well assigned blocks, as the dimensionality of the data
set increases. This problem not only affects the quality of the approximation,
but also increases the number of distance computations, since the number of
representatives is also higher, see Section .2.2. In this regard, different dimen-
sionality reduction approaches for the K-means algorithm have been recently
designed, leading to algorithms that have proved to generate competitive clus-
terings, see Section 1.1.1.3. Unfortunately, most of these techniques tend to
have very high computational costs and may not be easy to parallelize [64, 69].
In this chapter, we address the problem of dimensionality reduction for the
K-means problem via a feature selection-type approach. Our goal is to cre-
ate a low cost, fully-parallel algorithm that is able to keep the quality of the
clustering structure for large dimensional datasets. We additionally provide
theoretical guarantees for the K-means error obtained by our proposal.

A first step in this direction is the design of a measure that allows us to
score the importance of a given variable with respect to the corresponding K-
means problem. In particular, given an approximation to the K-means prob-
lem (with the corresponding clustering and prototypes), the propose measure
consists of evaluating the effect of eliminating a variable (fixing the associated
entry of the cluster prototypes to a given value) on the obtained clustering
and the K-means error increase that such an action carries on.

In Fig 5.1, we can observe an intuition of the proposed idea on a 2D mixture
of Gaussians and 2 clusters. In the first figure, we show, in different colors, a

74 5 A cheap feature selection approach for the K-means algorithm

clustering, Pi, and its associated centers of mass (black dots), Ci. Moreover, in
the last two figures, we observe the variation on the clusterings that takes place
when the centers of mass, in Ci, are fixed to a given value in either dimension.
In this case, it is clear that dimension 2 (y-axis) provides less information of
the obtained clustering structure, since, when fixed, the clustering remains
invariant with respect to the original one. Therefore, dimension 1 (x-axis) is
a better candidate to be selected. Rather than analyzing the clustering re-
assignments, in the practice, we evaluate the error increase with respect to
the original clustering and select those variables with the largest scores.

0 5 10

−2

0

2

4

Original clustering, Pi

0 5 10

−2

0

2

4

Clustering after fixing dimension 1 (x-axis)

0 5 10

−2

0

2

4

Clustering after fixing dimension 2 (y-axis)

Fig. 5.1: Illustration on the proposed feature selecion rule, K = 2.

As we will explain more detailedly afterwards, such a feature selection
rule will be used in parallel on different groups of dimensions. In particular,
in Fig.5.2, we provide a sketch of the proposed algorithm for the K-means
problem.

As shown in Fig.5.2, our approach mainly consists of three steps. First,
given the number of features that we wish to select, m, the set of di-
mensions {1, . . . , d} is divided into the smallest number of chunks possible,
{D1, . . . , Dt}, so that all parties have similar cardinalities and are upper-
bounded by m. Observe that, for the first requirement, the lowest number
of parties needed is given by t =

⌈
d
m

⌉
. Moreover, for the latter require-

ment, it is always possible to find a partition of the dimension set, for which

5 A cheap feature selection approach for the K-means algorithm 75

max
i∈{1,...,t}

|Di| − min
i∈{1,...,t}

|Di| ≤ 1 1. The partition of the data set is then given

by {XD1 , . . . , XDt}, where XDi stands for extracting the columns in Di of X.
We refer to this process as Split step.

Afterwards, we make use of the variable importance score that we previ-
ously described. In particular, a λ-approximateK-means algorithm (algorithm
A) is applied, in parallel, over each chunk XDi

and, as commented before, the
obtained clustering is used to score the importance of each feature in XDi ,
by approximating the error increment that would happen if a given feature is
eliminated (Local approximation step). After submitting the score of each
variable to a central server, the m variables that seem to affect the clustering
quality the most, are selected, and algorithm A is applied over them to obtain
our clustering approximation (Global approximation step). As we will dis-
cuss in Section 5.1.1, this process leads to different theoretical guarantees in
terms of the quality of the obtained solution.

. . .

[]
XD1

XD2
XDtX =

II. Local approx. step
(Score variables in

parallel)

I. Split step

(Divide data set)

Central Server

III. Global approx. step

(Clustering on selected features)

Fig. 5.2: Sketch of the proposal.

This proposal is partially motivated to the existance of different competi-
tive approximations to the K-means algorithm, such as [78, 79, 59, 62], that do
not scale well on the dimensionality of the problem. This approach would then
allow the use of these techniques to approximate the solution of the clustering
problem on subsets with a tractable number of dimensions. It must be pointed
out that there exists other approaches, such as [80], in which the dimensions
are also partitioned across multiple machines. However, in [80], the clustering
information obtained, after executing K-means algorithm on each partition,
is used to construct a coreset of Kt instances, rather than to perform a dimen-
sionality reduction. On the other hand, we must remark that other feature

1 For instance, if we set f = m · t − d, then we can take f −
⌊
f
t

⌋
· t parties, with

m−
⌊
f
t

⌋
− 1 dimensions, and, the remaining t− f +

⌊
f
t

⌋
· t parties, with m−

⌊
f
t

⌋
dimensions.

76 5 A cheap feature selection approach for the K-means algorithm

selection/extraction- distributed techniques, such as [81, 70], splits the dataset
X along its instances (rows) rather than along its dimensions (columns).

The rest of this article is organized as follows: In Section 5.1, we describe
in detail the proposed algorithm and discuss some of its properties. In Section
5.2, we analyze the performance of the proposed algorithm with respect to
different feature selection/extraction techniques, in terms of the clustering
quality and the computational time. Finally, in Section 5.3, we define the
next steps and possible improvements to our current work.

5.1 K-means relevance for feature selection

In this section, we formally describe our proposal, the K-means relevance
for feature selection algorithm, or just KMR. As we previously commented,
KMR is an alternative to the classical K-means algorithm, that uses the
clustering information obtained on different subsets of dimensions, to discard
those features that affect the least the clustering structure of the original
dataset, when not considered. Each step of KMR is constructed in such a way
that the heuristic used to obtain the clustering, algorithm A, is always applied
on subsets of dimensions upper-bounded by m. As we commented before, this
last characteristic might be of special interest for different heuristics for the
K-means problem, that are quite competitive on low dimensionalities, but
that do not scale well on this factor, see [78, 79, 59, 62].

As we already commented, the initial phase of KMR cosists of partition-
ing the data set along its dimensions into the lowest number of regularly-
sized groups that are upper-bounded by m (Split step). Such a partition is
then used to perform the feature selection (Local approximation step) and
the respective clustering approximation over the selected variables (Global
approximation step). As these last two phases share important similarities,
in the following section we comment on both of them.

5.1.1 Local/Global approximation step

As we described earlier, given a partition of the dimensionality set by Split

step, in Local approximation step, we evaluate the effect of each variable
on the clustering structure in a given set of dimensions, Di. In particular,
we propose a simple criterion, that leads to different theoretical guarantees
in terms of the K-means error. Such a criterion consists of primarily running
algorithm A on XDi

, to unveil the clustering structure for a predefined subset
of dimensions Di. Afterwards, the obtained solution, Ci, and its corresponding
clustering, Pi, is used to determine a subset of dimensions in Di, for which
the clustering structure does not have a major variation (measured via the
K-means error), if discarded.

Unfortunately, as we may wish to select a set of dimensions from a given
subset D ⊆ {1, . . . , d}, evaluating the clustering obtained for all the possible

5.1 K-means relevance for feature selection 77

combinations of fixed dimensions could be an expensive task. To tackle this
difficulty, in Theorem 5, we present a simple way of computing the importance
of a variable on, D, inspired on the previous idea, but that does not require
the computation of the clustering re-assignements that occur when fixing a
dimension. This measurement, additionally, provide us with a bound to the
K-means error increment that the new modified clustering carries on.

Theorem 5 Given a dimensions subset D ⊆ {1, . . . , d}, a set of centroids
C = {c1, . . . , cK} in R|D| and its associated clustering P = {P1, . . . , PK},
then for any subset S = {s1, . . . , sm} ⊆ D and vector v = (v1, . . . , vm), the
set of centroids C ′ = {c′1, . . . , c′K}, defined as

c′l,j =

{
cl,j , if j ∈ S
vj , otherwise

(5.1)

satisfies EXD (C ′) ≤ EXD (C) +
∑

j∈D\S
tj, where

tj =

K∑
l=1

|Pl| · (cl,j − vj)2 (5.2)

Theorem 5 offers a simple way of quantifying the importance of a certain
dimension, in terms of its impact on the quality of the obtained clustering.
Such a measurement consists on fixing the corresponding entry, on each center
of mass, to a given value, vj

2, and estimating the increase of the error that it
implies. Observe that computing the scores of all the variables j ∈ D, tj , can
be done in just O(K · |D|) time. A particular benefit of this approach, relies on
the fact that the effect of each variable is additive (Eq.5.2), meaning that the
corresponding error increase of each dimension is independent of the subset of
fixed dimensions, D\S. In Remark 1, we comment on a straightforward feature
selection process, based on Theorem 5, that leads to a 1 + ε- approximation
of EXD (C).

Remark 1 Using Theorem 5, we can minimize the size of the set of features
selected, S ⊆ D, needed to keep a 1+ε- approximation of C. This can be easily

done by computing the set {tj}|D|j=1 and sorting it increasingly, {tj:|D|}|D|j=1.

We then determine the largest index k ∈ {1, . . . , |D|} for which,
k∑
l=1

tl:|D| ≤

ε · EXD (Ci) holds, i.e., EXD (C ′) ≤ (1 + ε) · EXD (C). Therefore, the features
selected, S ⊆ D, correspond to those dimensions associated to the last |D| − k
entries in {tj:|D|}|D|j=1. 3.

2 From now on, we will consider vj to be the center of mass of the jth variable of
X, as it minimizes tj and so, the bound presented in Theorem 5.

3 In Section .3.3, we briefly present some additional practical results showing the
accuracy of the proposed feature selection procedure.

78 5 A cheap feature selection approach for the K-means algorithm

The construction proposed in Remark 1 is fairly simple and can be done in
O(|D| ·max{n ·K, log |D|}) time (incluiding the computation of the K-means
error). Furthermore, if we use Remark 1 to select a set of variables Si ⊆ Di,

for all i ∈ {1, . . . , t}, then applying algorithm A on S =
t⋃
i=1

Si leads to a

O(1 + ε)- approximation of the K-means problem in X, see Theorem 6.

Theorem 6 Given a data set X, a constant ε > 0 and a partition of the
dimensions {1, . . . , d} into t disjoint groups {D1, . . . , Dt}, if the set of features
selected Si ⊆ Di is obtained via Remark 1, for all i ∈ {1, . . . , t}, then the

output of a λ-approximate K-means algorithm (algorithm A) on S =
t⋃
i=1

Si,

C∗, satisfies

EX(C∗) ≤ ϕ · (1 + ε) · EX(Copt) (5.3)

where Copt = arg min
C⊆Rd,|C|=K

EX(C), ϕ = λ2 · E
XS,opt

K=1
t∑

i=1
E

XSi (Ci)

and, EXS ,opt
K=1 , is the

optimal value of the 1-means error on XS.

The result presented in Theorem 6 shows that, by performing such a fea-
ture selection procedure, that locally controls the increase of the K-means
error in different groups of dimensions, allows us to preserve the same order
of accuracy when compared over the entire set of dimensions. In particular,
one must observe that the approach presented in Remark 1, in fact, intends
to minimize the quality ratio, ϕ ≥ 1, as it tends to select those features that
maximizes EXSi (Ci) for all i ∈ {1, . . . , t}. In addition, and as commented
in Section 5.1, we would like to highlight that, for K = O(1), there exist
different polynomial-time approximation schemes for the K-means algorithm
[27, 60]. This fact indicates that the approximation ratio, λ, can be taken to
be 1 + ε, for any constant ε > 0 [80]. In other words, we can additionally
reduce the number of instances being used in both phases of the algorithm,
i.e., Local approximation step and Global approximation step, and the
obtained set of centroids, C∗, would still be a O((1 + ε)3)- approximation.

Besides the fact that Remark 1 offers a simple and yet effective way of
selecting the features in a parallel manner, while controlling the quality of
the approximation, for this approach there is no guarantee that the set of
features selected, S, satisfies the equality |S| = m. To tackle this difficulty, we
will consider different values εi > 0, for each party Di in i ∈ {1, . . . , t}, such
that the total number of selected features is |S| = m. In this regard, we can
take into consideration the following corollary.

Corollary 2 Given a set of positive constants {ε1, . . . , εt}, then if the set of
features selected Si ⊆ Di is obtained via Remark 1, with ε = εi, for all i ∈
{1, . . . , t}, then the output of a λ-approximate K-means algorithm (algorithm

A) on S =
t⋃
i=1

Si, C
∗, satisfies

5.1 K-means relevance for feature selection 79

EX(C∗) ≤ ϕ · (1 + max
i∈{1,...,t}

εi) · EX(Copt) (5.4)

Corollary 2 provides us a heuristic to decide how many features should be
selected from each of chunk of dimensions Di: Apply the approach discussed in

Remark 1 with a set of epsilons {ε1, . . . , εt}, for which |S| =
t∑
i=1

|Si| = m and

max
i∈{1,...,t}

εi is minimized. In particular, using Remark 1, we observe that, in

order to select di variables from Di, we just need to set εi =
|Di|−di∑
l=1

til:|Di|

E
XDi (Ci)

.

Hence, we can approach the feature selection by solving the following problem:

Problem 1 Determine a set of non-negative integers {d1, . . . , dt}, such that
t∑
i=1

di = m and max
i∈{1,...,t}

|Di|−di∑
l=1

til:|Di|

E
XDi (Ci)

is minimized.

If we define the lists Ei = {
|Di|−di∑
l=1

til:|Di|

E
XDi (Ci)

}|Di|−1
di=0 , for all i ∈ {1, . . . , t},

we can solve Problem 1 by selecting the m largest entries in {E1, . . . , Et}.
However, as the lists Ei, for all i ∈ {1, . . . , t}, are previously sorted in Remark
1, Problem 1 can be easily solved by recursively comparing if max

i∈{1,...,t}
Edii

decreases, where di is the number of variables selected from the Di, when we
decide selecting one more variable from any subset of variables, which is taken
from the one corresponding to the largest error. This process has a O(t) time
complexity per iteration 4.

Finally, after selecting m features via the previous approach, the last step
of KMR is to apply algorithm A on X restricted to the features selected
(Global approximation step). In Algorithm 9, we put together all the steps
that were just discussed, which constitutes the KMR algorithm.

4 See Section .3.2, for more details

80 5 A cheap feature selection approach for the K-means algorithm

Algorithm 9: K-means relevance for feature selection

Input: Dataset X, number of clusters K and m < d.
Output: Approximation of Eq.1.1, C∗.
• Split step:

- Set t =
⌈
d
m

⌉
, f = m · t− d and divide {1, . . . , d} into t disjoint parties,

{D1, . . . , Dt}, where |Di| = m−
⌊
f
t

⌋
− 1, for i ≤ f −

⌊
f
t

⌋
· t, and

|Di| = m−
⌊
f
t

⌋
, otherwise.

• Local approximation step:

for i = 1, . . . , t do
- Apply algorithm A on X (restricted to Di)→ Obtains set of
centroids Ci = {c1, . . . , cK} and clusterings Pi = {P1, . . . PK}.

- Compute tij =
K∑
l=1

|Pl| · (cl,j − vj)2 for all j ∈ Di.

- Sort {ti1, . . . , ti|Di|} increasingly → {ti1:|Di|, . . . , t
i
|Di|:|Di|}.

- Set Ei = {
1∑
l=1

til:|Di|

EX
Di

(Ci)
, . . . ,

|Di|∑
l=1

til:|Di|

EX
Di

(Ci)
}.

end
• Feature selection step:

- Select m largest variables from {E1, . . . , Et} → Set of features D.

• Global approximation step:

-Apply algorithm A on X, restricted to the dimensions D → Obtains
clustering P = {P1, . . . PK}.

Return C∗ = {P1, . . . , PK}.

The complexity of algorithm 9 depends of the cost of algorithm A 5. In
particular, if we set algorithm A to be the standard K-means algorithm [14],
K-means++ algorithm [49] or even the Boundary Weighted K-means al-
gorithm [79], the cost of algorithm A is bounded by O(n · K · m). Hence,
the computational cost of Local approximation step, on each machine, is
O(m · max{n · K, logm}). Afterwards, selecting the m features can be done
in O(t) and applying Global approximation step is O(n ·K ·m). A further
interesting remark is that KMR, in the extreme case K = n, is equivalent to
selecting the m features with the largest variances, which is another commonly
used feature selection strategy [65, 66].

5.2 Experiments

In this section, we perform a series of experiments so as to analyze the trade-
off between the computational time and the quality of the approximation

5 Due to its quality guarantees and competitive performance, from now on we take
algorithm A as the K-means algorithm initialized via K-means++.

5.2 Experiments 81

obtained by the K-means algorithm, after applying it on a wide variety of
pre-processed data sets via different dimensionality reduction techniques.

Given a predefined number of features to be extracted/selected, we com-
pare the performance of the K-means relevance for feature selection (KMR)
with respect to the K-means algorithm6 applied on m features selected via
i) Laplacian Scores (LS), ii) Maximum variance (MaxVar) and iii) Uni-
formly at random (Rand), or extracted via i) Random Projections (RP),
ii) Principal Component Analysis (PCA) and iii) Singular Value Decomposi-
tion (SVD). We analyze the performance of these methods on a wide variety
of well-known real data sets (see Table 5.1) with different scenarios of the
clustering problem. The number of features to be selected/extracted is fixed
as m ∈ {10, 25, 50, 75, 100}7. Furthermore, due to the random nature of the
experimental setting, each experiment has been repeated 20 times.

Table 5.1: Information of the data sets.

Data Set n K d

KC1 Binary 145 2 91
Amazon Mechanical 180 10 500

Micro Mass 571 20 1300
Breast Cancer 604 2 10936
Arcene NIPS 700 2 10000
Gene RNA-Seq 801 5 20531
Ova Uterus 1545 2 10936

Madelon NIPS 2000 2 500

Data Set n K d

mfeat Fourier 2000 10 76
Scene 2407 3 299

GINA Agnostic 3468 2 970
Bio Response 3751 2 1776
Spambase 4601 2 57

Waveform Generator 5000 3 40
Satellite Image 6430 6 36
USPS LeCun 7291 10 256

For each experimental setting, we evaluate the relative K-means error
obtained for each method M , ÊM = EM−EKM++

EKM++
, where EM and EKM++

stand for theK-means error of methodM ∈ {KMR, LS, MaxVar, Rand, PCA,
RP, SVD} andKM++, over all the dimensions of the data set, respectively. To
analyze how well each method preserves the clustering quality when compared
to KM++, we additionally present the Adjusted Rand Index (ARI) [82, 83] of
each method M with respect to the clustering obtained by KM++. In terms
of the computational resources, we show the proportion of the computational
time of each method M , tM , with respect to that of KM++, t̂M = tM

tKM++
.

To start the analysis, in Tab.5.2-5.3, we show the average for these factors,
over all the data sets and considered methods.

6 In order to guarantee the obtained clustering to be competitive, we use K-means
algorithm initialized via K-means++ (KM++).

7 So that the performed dimensionality reduction is not neglegible, for those data
sets with d ≤ 100, we set m ≤ 3

4
· d, e.g., for mfeat Fourier (d = 76), we analyze

reductions to m ∈ {10, 25, 50} features.

82 5 A cheap feature selection approach for the K-means algorithm

Table 5.2: Relative error - average over all data sets-.

Method m=10 m=25 m=50 m=75 m=100

KMR 4.1× 10−2 1.2× 10−2 6.4× 10−3 4.0× 10−3 2.3× 10−3

LS 2.7× 10−1 9.8× 10−2 7.6× 10−2 4.8× 10−2 5.0× 10−2

MaxVar 8.6× 10−2 2.5× 10−2 1.3× 10−2 1.0× 10−2 9.0× 10−3

Rand 2.9× 10−1 2.0× 10−1 1.6× 10−1 1.2× 10−1 1.2× 10−1

PCA 1.6× 10−3 1.7× 10−3 8.4× 10−6 5.3× 10−5 7.7× 10−5

RP 9.3× 10−2 3.5× 10−2 1.2× 10−2 1.3× 10−2 7.8× 10−3

SVD 4.0× 10−4 5.9× 10−4 7.2× 10−5 8.4× 10−5 7.9× 10−5

Table 5.3: (ARI, Relative computational time) - average over all data
sets-.

Method m=10 m=25 m=50 m=75 m=100

KMR (0.69, 0.28) (0.75, 0.34) (0.77, 0.27) (0.80, 0.25) (0.83, 0.20)
LS (0.42, 5.78) (0.60, 5.82) (0.56, 1.56) (0.63, 1.60) (0.60, 1.51)

MaxVar (0.63, 0.27) (0.72, 0.32) (0.70, 0.25) (0.71, 0.23) (0.68, 0.19)
Rand (0.23, 0.29) (0.37, 0.33) (0.27, 0.27) (0.45, 0.25) (0.46, 0.20)
PCA (0.93, 0.42) (0.95, 0.54) (0.94, 0.52) (0.95, 0.53) (0.95, 0.55)
RP (0.49, 0.31) (0.63, 0.35) (0.66, 0.29) (0.68, 0.28) (0.74, 0.23)
SVD (0.92, 0.40) (0.94, 0.50) (0.94, 0.50) (0.95, 0.54) (0.96, 0.60)

At first glance, we observe that, among the feature selection techniques,
KMR obtains on average both the lowest relative error and largest ARI with
respect to the clusterings achieved by KM++. In particular, for the different
numbers of features to be selected, m, KMR consistently obtains average error
with a relative error under 0.05 with respect to KM++. This is, the cluster-
ing obtained after executing K-means++, on the features selected by KMR,
usually had an error increment of under 5% of the lowest error achieved by
KM++ over the original data set. On the other hand, MaxVar also generated
competitive approximations, however, for the largest numbers of features se-
lected m = {50, 75, 100}, it has 1 order of magnitude of additional error when
compared to KMR, as well as a significantly smaller ARI (for m = 100, under
0.15 smaller than KMR). On the other hand, both, LS and Rand, obtained
the largest relative errors (for all settings, at least, one order of magnitued
larger than KMR) and the smallest ARI (under 0.15 with respect to KMR, in
every case). For the feature extraction techniques, we observe that SVD and
PCA obtained fairly competitive approximations, preserving almost identi-
cally the clustering structure achieved by KM++, while RP generates least
accurate approximations, which are commonly improved by KMR. For all
the methods, it is clear that as we increase the number features to be ex-
tracted/selected, the quality of the approximations improves drastically (at
least one order of magnitude of relative error for each method). On the other

5.2 Experiments 83

hand, in Tab.5.3, we observe that all the feature selection approaches, except
for LS, have similar computational times, which are, on average, under 35% of
the time required by KM++. For the feature extraction methods, we observe
that PCA and SVD required, on average, up to 3 times the computational
time needed by KMR when extracting the largest number of variables.

5.2.1 Feature Selection

In Fig.5.3, we can observe the results obtained in all 16 data sets for feature
selection. As we just commented, among these methods, KMR obtained the
most accurate approximations, reducing in average, at least one order of rela-
tive error, for m ∈ {50, 75, 100} and regularly reaching an ARI w.r.t. KM++
clustering over 0.05 higher than that achieved by the other approaches. On
the downside, LS and Rand consistently obtained by far the least competitive
clusterings.

m: 10 m: 25 m: 50 m: 75 m: 100

K
M
R

L
S

M
a
x
V
a
r

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

R
a
n
d

1e−04

1e−03

1e−02

1e−01

1e+00

1e−04

1e−03

1e−02

1e−01

1e+00

1e−04

1e−03

1e−02

1e−01

1e+00

1e−04

1e−03

1e−02

1e−01

1e+00

1e−04

1e−03

1e−02

1e−01

1e+00

Method

E
r
r
o
r

m: 10 m: 25 m: 50 m: 75 m: 100

K
M
R

L
S

M
a
x
V
a
r

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

R
a
n
d

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Method

A
R
I

m: 10 m: 25 m: 50 m: 75 m: 100

K
M
R

L
S

M
a
x
V
a
r

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

R
a
n
d

0.01

0.10

1.00

0.01

0.10

1.00

0.01

0.10

1.00

0.01

0.10

1.00

10.00

0.01

0.10

1.00

10.00

Method

C
o
m
p
.

T
i
m
e

Fig. 5.3: Feature Selection output for all data sets -boxplot-.

In spite of the competitive performance in terms of the quality of the ap-
proximation, KMR required the same order of computational time as MaxVar
and Rand. Such a behavior is expected, as all these three methods have a time
complexity dominated by the K-means run, over the selected variables, which

84 5 A cheap feature selection approach for the K-means algorithm

is linear w.r.t. n, K and m. To observe this in more detail and, as the data
sets presented in Tab.5.1 have a quite different characteristics, we have di-
vided each factor (dimensionality, number of instances and classes) into three
regularly-sized groups and computed the relative error, relative computational
time and ARI, for all the feature selection methods, see Tab.5.4-5.6.

Table 5.4: (Relative error, ARI, Relative computational time) - aver-
age over groups of dimensions-.

Method d ≤ 100 100 < d < 1000 d ≥ 1000

KMR (1.1× 10−2, 0.88, 0.80) (2.1× 10−2, 0.70, 0.28) (1.0× 10−2, 0.81, 0.04)
LS (2.6× 10−1, 0.59, 12.47) (6.2× 10−2, 0.48, 2.09) (1.1× 10−1, 0.60, 0.91)

MaxVar (6.4× 10−2, 0.81, 0.77) (3.3× 10−2, 0.60, 0.24) (1.9× 10−2, 0.71, 0.05)
Rand (2.3× 10−1, 0.57, 0.78) (7.6× 10−2, 0.34, 0.30) (2.6× 10−1, 0.31, 0.04)

Table 5.5: (Relative error, ARI, Relative computational time) - aver-
age over groups of classes-.

Method K ≤ 3 3 < K < 10 K ≥ 10

KMR (5.1× 10−3, 0.75, 0.18) (1.6× 10−2, 0.91, 0.40) (3.0× 10−2, 0.70, 0.41)
LS (1.3× 10−1, 0.52, 2.82) (8.3× 10−2, 0.63, 7.16) (1.1× 10−1, 0.60, 2.04)

MaxVar (1.1× 10−2, 0.65, 0.18) (6.5× 10−2, 0.84, 0.38) (5.4× 10−2, 0.66, 0.37)
Rand (1.4× 10−1, 0.28, 0.17) (1.4× 10−1, 0.56, 0.45) (3.5× 10−1, 0.44, 0.39)

Table 5.6: (Relative error, ARI, Relative computational time) - aver-
age over groups of instances-.

Method n ≤ 750 750 < n < 2500 n ≥ 2500

KMR (1.1× 10−2, 0.81, 0.28) (5.0× 10−3, 0.89, 0.24) (3.0× 10−2, 0.62, 0.31)
LS (1.7× 10−1, 0.42, 0.66) (8.6× 10−2, 0.70, 1.75) (1.0× 10−1, 0.60, 8.79)

MaxVar (1.8× 10−2, 0.79, 0.26) (5.1× 10−3, 0.85, 0.23) (7.7× 10−2, 0.40, 0.30)
Rand (3.0× 10−1, 0.31, 0.32) (1.4× 10−1, 0.37, 0.23) (1.0× 10−1, 0.42, 0.28)

According to Tab.5.4-5.6, it is clear that regardless of the clustering sce-
nario, KMR, on average, provides both the lowest relative error and largest
ARI w.r.t. KM++. However, in spite of the groups selected for each factor
(dimensionality, number of instaces and classes), we do not observe a major
variation in terms of the quality of the obtained clusterings. As shown, in both
Tab.5.2-5.3 and Fig.5.3, the number of features selected indeed has a larger
effect in the comparison of the clusterings obtained by the different methods

5.2 Experiments 85

considered w.r.t. KM++. As previosuly discussed, in terms of the computa-
tional time, for the different configurations considered, KMR, MaxVar and
Rand have comparable time requirements, however LS also has a poor perfor-
mance in this regard, specially as increasing the number of instances, e.g., for
the group ”n ≥ 2500”, LS had a computational time 28.35 times larger than
that of KMR, on average.

5.2.2 Feature Extraction

In this section we perform the same analysis as in Section 5.2.1, but comparing
KMR to the different feature extraction techniques considered: In Fig.5.4, we
observe the results obtained for all the data sets w.r.t. the number of features
extracted. Moreover, in Tab.5.7-5.9, we present the relative error, relative
computational time and ARI and for the different groups of dimensionality,
number of instances and classes.

m: 10 m: 25 m: 50 m: 75 m: 100

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

1e−05

1e−03

1e−01

1e−05

1e−03

1e−01

1e−05

1e−03

1e−01

1e−05

1e−03

1e−01

1e−05

1e−03

1e−01

Method

E
r
r
o
r

m: 10 m: 25 m: 50 m: 75 m: 100

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Method

A
R
I

m: 10 m: 25 m: 50 m: 75 m: 100

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

0.01

0.10

1.00

0.01

0.10

1.00

0.01

0.10

1.00

0.01

0.10

1.00

0.01

0.10

1.00

Method

C
o
m
p
.

T
i
m
e

Fig. 5.4: Feature Extraction output for all data sets -boxplot-.

86 5 A cheap feature selection approach for the K-means algorithm

Table 5.7: (Relative error, ARI, Relative computational time) - aver-
age over groups of dimensions-.

Method d ≤ 100 100 < d < 1000 d ≥ 1000

KMR (1.1× 10−2, 0.88, 0.80) (2.1× 10−2, 0.70, 0.28) (1.0× 10−2, 0.81, 0.04)
PCA (4.0× 10−3, 0.94, 0.90) (1.0× 10−3, 0.96, 0.52) (2.2× 10−5, 0.93, 0.34)
RP (5.1× 10−2, 0.73, 0.79) (3.0× 10−2, 0.50, 0.31) (3.7× 10−2, 0.69, 0.08)
SVD (1.4× 10−3, 0.93, 0.91) (1.2× 10−3, 0.96, 0.48) (3.0× 10−5, 0.93, 0.37)

Table 5.8: (Relative error, ARI, Relative computational time) - aver-
age over groups of classes-.

Method K ≤ 3 3 < K < 10 K ≥ 10

KMR (5.1× 10−3, 0.75, 0.18) (1.6× 10−2, 0.91, 0.40) (3.0× 10−2, 0.70, 0.41)
PCA (1.3× 10−4, 0.97, 0.46) (1.6× 10−3, 0.97, 0.72) (1.4× 10−5, 0.85, 0.47)
RP (1.9× 10−2, 0.59, 0.20) (4.5× 10−2, 0.80, 0.49) (8.1× 10−2, 0.58, 0.41)
SVD (1.0× 10−5, 0.97, 0.47) (1.8× 10−3, 0.96, 0.64) (2.0× 10−5, 0.85, 0.48)

Table 5.9: (Relative error, ARI, Relative computational time) - aver-
age over groups of instances-.

Method n ≤ 750 750 < n < 2500 n ≥ 2500

KMR (1.1× 10−2, 0.81, 0.28) (5.0× 10−3, 0.89, 0.24) (3.0× 10−2, 0.62, 0.31)
PCA (2.0× 10−3, 0.88, 0.62) (1.6× 10−5, 0.97, 0.43) (9.3× 10−5, 0.98, 0.48)
RP (3.4× 10−2, 0.68, 0.33) (5.6× 10−2, 0.65, 0.25) (4.2× 10−2, 0.55, 0.33)
SVD (2.7× 10−4, 0.87, 0.56) (2.2× 10−5, 0.97, 0.46) (1.7× 10−4, 0.98, 0.49)

In this case, the analysis of the results, especially in terms of the compu-
tational time, is more interesting than in Section 5.2.1, as the time demands
are not neccesarily dominated by the corresponding K-means run for each
method. We can see in Tab.5.7-5.9 that there is no clear improvement/ di-
minishment, in terms of clustering quality (relative error and ARI), as we
increase either of the three factors. As we show in Tab.5.2-5.3 and Fig.5.4,
the quality of the obtained clustering seems to be largely dominated by the
number of features extracted, regardless of the method, as in Section 5.2.1.
In any case, despite of the considered setting, we must remark that KMR
outperforms the clustering quality of RP, in both ARI and error.

In terms of the computational time required w.r.t. KM++, we observe a
large effect of the orginal dimensionality of the data set, d. Unfortunately, as
the dimensionality reduction step via SVD and PCA is supralinear w.r.t. d,
this phase is far more time consuming than running the K-means algorithm

5.3 Conclusions 87

on the extracted/selected variables. For this reason, we observe that in the
group ”d ≤ 100”, PCA and SVD just need, on average, 1.17 and 1.16 times
the amount computational time of KMR, while, for ”d ≥ 1000”, the time
demands increase to 8.50 and 9.25 times, respectively. In other words, methods
like KMR and RP can be more suitable for pre-processing massive data sets.

On the other hand, KMR also outperforms time-wise RP. However, in this
case the time reduction is not significant. This is due to the fact that the com-
putational time of RP also grow linearly with respect to the different factors
and that, its feature extraction step, is independent of the number of classes.
Hence, as we consider larger values of clusters, we expect a more competi-
tive perfomance, in terms of computational resources for RP, specially when
d ≤ K, which is a very unlikely case as most of the applications considered
for this analysis tend to have massive dimensionalities.

Regardless of the characteristics of the clustering problem, we observe that
KMR shows a very competitive performance, in both quality of the obtained
solution and computational time, when compared to different feature selec-
tion techniques, with particular emphasis on LS. Furthermore, our extensive
experimental analysis also shows that, even when KMR is a feature selection
technique, it is able to outperform, in both accuracy and computational time,
well-known feature extraction technique used for for the K-means problem,
such as RP, which makes it a very suitable pre-processing alternative to other
approaches that may not scale well on massive data sets, such as SVD and
PCA.

5.3 Conclusions

In this chapter, we propose a fully-parellelizable cheap feature selection tech-
nique intended for the K-means algorithm called the K-means relevance for
feature selection algorithm, or just KMR. It consists of solving the K-means
problem, on small subsets of dimensions of the original dataset, across mul-
tiple machines and using the obtained clustering information to upper-bound
the increase in the K-means error when a certain feature is not selected.
The cost of the proposed method is O(m ·max{n ·K, logm}), where m is the
number of features selected, per machine. Besides providing a bound to the K-
means error obtained by these technique, in the practice we compare KMR
to different well-known feature selection and feature extraction techniques,
commonly used for the K-means problem, on a wide variety of real-life data
sets. The obtained results testify that KMR regularly obtains solutions with
lower K-means than all the considered feature selection techniques: Laplacian
scores, maximum variance and random selection, while also requiring similar
or lower computational times than these approaches. Even more interesting,
KMR when compared to feature extraction techniques, such as Random Pro-
jections, also shows a noticeable improvement in both error and computational
time.

88 5 A cheap feature selection approach for the K-means algorithm

As a future step, since our technique consists of solving multiple small-
dimensional K-means problems, we would like to analyze the effect of using
different coreset techniques, such as [22, 23, 78, 27, 59, 60], to further reduce
the computational requirements of our approach. Moreover, we also plan to
design a feature extraction technique of the same nature of KMR, that allows
us not to fully lose the information of given feature when not selected.

6

An efficient Split-Merge re-start for the
K-means algorithm

As it is well documented in the literature, one factor that must be considered
when reducing the computational requirements of the K-means algorithm, is
the quality of its initialization [49, 44, 45, 46, 47]. A poor initialization not only
may affect the quality of the obtained approximation, but may also increase
tremendously the number of iterations required to convergence [74, 47]. In
order to ease the convergence to competitive approximations of the K-means
problem, the common practice is to re-start multiple times Lloyd’s algorithm,
with different seeds, and to keep the solution with the lowest error [45, 46].
Taking this into consideration, in this chapter, we address the problem of K-
means algorithm convergence to uncompetitive approximations. In particular,
we propose a low-cost re-start strategy that, by using the clustering informa-
tion of any fixed point of Lloyd’s algorithm, constructs a set of centroids with
a similar or lower error than that of the given fixed point and that is also
likely to lie on a different basin of attraction.

As we already mentioned, the standard approach is to apply Lloyd’s algo-
rithm several times, with a predetermined seeding strategy, and to pick the set
of centroids with the lowest K-means error [45, 46]. Unfortunately, one of the
biggest drawbacks of this approach is that no information is transmitted from
one re-start to another, which could be a key element to avoid converging to
the same local minima several times, as well as for reducing the number of
iterations executed when running Lloyd’s algorithm.

In this sense, we propose a re-start to the K-means algorithm, based on
a Split-Merge approach, that only uses information associated to the current
K-means local minima. Such a technique generates a new initialization to the
K-means algorithm by placing an additional centroid on a certain cluster Ps,
from which a large amount of error can be reduced (SplitStep). Afterwards,
two other clusters Pi and Pj are merged. These clusters are ideally close to
each other, and so their union does not add a significant error to our approx-
imation (MergeStep). Under certain conditions (see for instance Theorem 8),
this process itself already generates a set of centroids C ′ with an associated
error lower than that of the previous fixed point. Although such a descent may

90 6 An efficient Split-Merge re-start for the K-means algorithm

not always occur, this process still generates a re-initialization that is likely to
be located at a different basin of attraction and with a K-means error close
to that of the current local minima, which may allow the subsequent Lloyd’s
algorithm run to reduce the error.

In terms of the split step, our proposal has some similarities to that of the
X-means algorithm [84]. However, this method, as well as others of similar na-
ture, such as ISODATA [85], deals with different problems, e.g., determining
an adequate number of clusters. Contrary to these techniques, our approach
uses different seeding techniques (based on the K-means++ algorithm) which
commonly lead to more competitive results [49]. Moreover, we also provide
different error descent conditions for our Split-Merge process, while the afore-
mentioned algorithms do not provide any kind of theoretical guarantees.

The rest of this article is organized as follows: We first describe in detail the
proposed algorithm and discuss some of its properties. Afterwards, we analyze
its performance w.r.t. the state-of-the-art (Multi-start Forgy K-means, K-
means++, Hartigan) and define the next steps and possible improvements to
our current work.

6.1 The Split-Merge K-means algorithm

In this section, we formally introduce the Split-Merge K-means algorithm,
or just SMK-means (Algorithm 10). The SMK-means can be seen as a
multi-start approach that re-initializes the K-means algorithm by applying a
Split-Merge step over the clustering obtained in the previous iteration, P.

Algorithm 10: SMK-means Algorithm

Input: Data set X, number of clusters K and an initial set of centroids
C ′.
Output: Local minima of Eq.1.1, C.
• Step 1 (Alg.1): C ′,P = Lloyd(X,K,C ′)
while not Stopping Criterion do
• Set C = C ′.
• Step 2 (Alg.11): C ′,P ′ = SplitStep(C,P)
• Step 3 (Alg.12): C ′ = MergeStep(C ′,P ′)
• Step 4 (Alg.1): C ′,P = Lloyd(X,K,C ′)

end
Return C

In Step 1 and Step 4, Lloyd’s algorithm is applied and the obtained set of
centroids (and their corresponding clusters) are used in Step 2 and Step 3 to
generate the new re-initialization: Step 2 divides the cluster from where the
largest error reduction is achieved, while Step 3 merges the pair of clusters
whose fusion produces the smallest increase in the error. The goal is that this

6.1 The Split-Merge K-means algorithm 91

re-initialization mechanism facilitates the convergence of Lloyd’s algorithm to
a competitive local minima by detecting those regions that might be under
and/or over-represented1.

We would like to point out that, in the first iteration of Algorithm 10, the
while loop is always executed. Afterwards, the proposed Stopping Criterion
is to run the algorithm as long as the error obtained in Step 4 decreases
with respect to this value in the previous iteration, i.e., EX(C ′) < EX(C).
In general, note that our Split-Merge procedure modifies, at most, three of
the current clusters, therefore one would also expect a faster convergence of
Lloyd’s algorithm, in Step 4, for our new set of centroids than for Forgy’s or
K-means++ re-start (see the experiments section).

6.1.1 Cluster Split (SplitStep)

The SplitStep (Algorithm 10, Step 2) is the phase of the re-initialization
in which we intend to determine a convenient region to place an additional
centroid. To do so, one can re-use the distances computed in the last iteration
of Step 1 and Step 4 to determine the cluster from where the largest error
reduction is attained by placing an extra centroid. In particular, in order to
quantify such an error decrease, we propose to apply a 2-means algorithm run
on each cluster.

Formally speaking, given a set of centroids, C = {c1, . . . , cK}, and its
corresponding clustering, P = {P1, . . . , PK}, SplitStep (Algorithm 11) ap-
proximates a solution to the 2-means problem over each cluster Pk via a
2-means algorithm run. This process generates pairs of centroids {c1

k, c
2
k} for

k ∈ {1, . . . ,K} and then the new centroid is placed on the cluster Ps satisfying

s = arg max
k∈{1,...,K}

EPk
({ck})− EPk

({c1
k, c

2
k})︸ ︷︷ ︸

gk

(6.1)

Observe that if we denote by P 1
k = {x ∈ Pk : ‖x− c1

k‖2 ≤ ‖x− c2
k‖2} and

P 2
k = Pk rP 1

k , then gk = |P 1
k | · ‖ck − c1

k‖2 + |P 2
k | · ‖ck − c2

k‖2. In other words,
as we want to maximize the error reduction, we are looking for a large cluster
Ps whose 2-means centroids are as far as possible from the center of mass of
the cluster Ps, Ps.

1 Regions of the space that can be represented with a similar quality (error) by a
lower number of centroids.

92 6 An efficient Split-Merge re-start for the K-means algorithm

Algorithm 11: SplitStep

Input: Set of centroids, C = {c1, . . . , cK}, and its corresponding
clustering, P = {P1, . . . , PK}.
Output: Updated clustering P ′ and centers of mass, C ′.
• Step 1: Apply 2-means on Pk for k ∈ {1, . . . ,K}.
• Step 2: Select cluster Ps satisfying

s = arg max
k∈{1,...,K}

EPk
({ck})− EPk

({c1
k, c

2
k})

• Step 3: Update centers of mass and clusterings:

C ′ = {C r {cs}} ∪ {c1
s, c

2
s}, P ′ = {P r {Ps}} ∪ {P 1

s , P
2
s }.

Return C ′, P ′

Even when the split step described in Algorithm 11 has some similarities
with the one proposed in the X-means algorithm [84], we must remark that,
in [84], the local 2-means approximation is initialized via a perturbation of
each center of mass along a random direction, while, in our case, we use 2-
means++. As can be seen in the upcoming sections, the effectiveness of our
re-initialization process highly depends upon the quality of the approximation
obtained for the different 2-means problems. Hence, the use of a seeding tech-
nique with strong quality guarantees, such as K-means++, is of our interest.
Overall, the cost of SplitStep is O(n · d).

6.1.2 Clusters Merge (MergeStep)

In MergeStep (Algorithm 10, Step 3), we intend to determine a region of
the space that is likely to be overrepresented. In particular, our proposed
MergeStep (Algorithm 12) consists of putting together the pair of clusters
that minimizes the error increase after being fused. One way of estimating
such an error increase, without recomputing all the pairwise instance-centroid
distances, consists of merging the clusters Pi and Pj that minimize

fi,j = EPi,j
({ci,j})− (EPi

({ci}) + EPj
({cj})), (6.2)

where Pi,j = Pi ∪ Pj and ci,j = Pi,j =
|Pi|·ci+|Pj |·cj

|Pi|+|Pj | . The next result shows

that we can compute fi,j using only the distances ‖ci − cj‖2:

Theorem 7 Given two clusters Pi and Pj and their corresponding centers of

mass ci and cj, then fi,j =
|Pi|·|Pj |
|Pi|+|Pj | · ‖ci − cj‖2.

Therefore, MergeStep can be done exactly in O(K2 · d) and the final cost
of the re-initialization is O(max{n,K2} · d), which is cheaper than a single
Lloyd’s algorithm run.

6.1 The Split-Merge K-means algorithm 93

Algorithm 12: MergeStep

Input: Set of centers of mass, C = {c1, . . . , cK+1}, and its associated
clustering, P = {P1, . . . , PK+1}.
Output: Re-initialization C ′.
• Step 1: Select clusters Pi and Pj , such that i, j = arg min

l<k, l 6=K
fl,k.

• Step 2: Update centers of mass:

C ′ = {C r {ci, cj}} ∪ {
|Pi| · ci + |Pj | · cj
|Pi|+ |Pj |

}

Return C ′

Observe that the input of MergeStep is a set of K + 1 centroids and
their corresponding clusters as it comes after SplitStep (see Algorithm 10).
Without loss of generality, we assume PK and PK+1 to be the pair of clusters
generated by SplitStep. Note that the conditions l < k and l 6= K ensure
that we are not merging the centroids generated by SplitStep, cK and cK+1.

6.1.3 Error descent conditions

In comparison to more restrictive techniques, such as Hartigan’s heuristic [51]
and the ”first variation” for the spherical K-means [86], where only a single
instance is used to split one cluster and merge to another, our Split-Merge
procedure is not necessarily meant to generate a re-initialization with a lower
error than that of a given local minima. Instead, its goal is to construct a
competitive seed that is likely to be located at a different basin of attraction.
In this section, however, we comment on some conditions for which our Split-
Merge procedure itself improves the quality of the approximation.

First of all, it should be observed that, as there might be instances in
Pi,j which are reassigned to other clusters in the application of Lloyd’s algo-
rithm after MergeStep, the following inequality holds for the obtained set

of centroids C ′ = {C r {cs, ci, cj}} ∪ {cs1 , cs2 , |Pi|·ci+|Pj |·cj

|Pi|+|Pj | }: EX(C ′) ≤
EX({C r {cs}} ∪ {c1

s, c
2
s}) + fi,j ≤ EX(C) + fi,j − gs. In other words, if our

Split-Merge process determines clusters Ps, Pi and Pj for which fi,j − gs < 0,
then already our re-initialization, C ′, has a lower K-means error than the de-
parting fixed point, C. Moreover, in the following result, we provide an error
descent condition after the Split-Merge re-initialization, which can be veri-
fied before Step 4 of Algorithm 10, using only the information of the local
minima.

Theorem 8 Given a Lloyd’s algorithm fixed point, C, if the SMK-means
algorithm splits a cluster Ps, taking the corresponding 2-means initialization

94 6 An efficient Split-Merge re-start for the K-means algorithm

via D2-sampling2 and min
l 6=k 6=s

|Pl|·|Pk|
|Pl|+|Pk| · ‖cl − ck‖2 ≤ EPs ({cs})

|Ps| , then the re-

initialization C ′ satisfies EX(C ′) ≤ EX(C), on average.

Theorem 8 implies that the larger the average error is in the cluster to
be split and the smaller the closest distance between the different pairs of
centroids is, then the more likely it is for our Split-Merge criterion to generate
a set of centroids that, without any Lloyd’s iteration, has a K-means error
smaller than that of the precedent local minima. At the end of the experi-
mental section, we can observe that in practice such a descent is very likely
to occur, especially when the number of clusters is large.

6.2 Experiments

In this chapter, we perform a set of experiments so as to analyze the trade-off
between the number of distances computed3 and the quality of the approxi-
mation obtained by the SMK-means algorithm (SMKM) and different well-
known multi-start approaches. In particular, we compare the performance of
SMKM, initialized via Forgy (SMKMr) and K-means++ (SMKM++),
to multiple re-starts4 of Lloyd’s algorithm initialized via Forgy (FKM) and
K-means++ (KM++), as well as to Lloyd’s algorithm re-initialized via Har-
tigan’s heuristic (HKM++ and HKMr)5.

In order to have a better understanding of SMKM, we analyze its perfor-
mance on a variety of real data sets (see Table 6.1) with different scenarios
of the clustering problem: size of the data set, n, and dimension of the in-
stances, d. For each data set we also considered a different number of clusters,
K = {10, 25, 50, 100, 250}6. Given the random nature of the algorithms, each
experiment has been repeated 20 times.

2 For the sake of simplicity, in Theorem 8, we consider a variation of the 2-means++
initialization that consists of taking the initial centroid as the center of mass of the
cluster, cs, and, as the second centroid, x ∈ Cs with probability Pr(x) ∝ ‖x−cs‖2
(D2-sampling).

3 As previously commented, the computational load of the considered methods
largely relies on the distance computations. Similar analyses can be found in
[43, 26].

4 In this section, we present results for up to 10 re-starts of both KM++ and
FKM, since, for our experimental setting, the number of distance computations
of SMKM normally does not reach those of KM++ and FKM, for such a number
of repetitions, see Fig.6.2 and Table 6.4-6.6.

5 Additional results, with respect to Hartigan’s K-means, can be found in the
supplemental material.

6 Similar values have been used in different works [49, 43, 52].

6.2 Experiments 95

Table 6.1: Information of the data sets.

Data Set n d

Breast Cancer (BC) 569 30
Digits (DIG) 1, 797 64

Anuran Calls (AC) 7, 193 22
Human Activity Recognition (HAR) 7, 351 561
Sensor Vehicle Accoustic (SVA) 78, 823 50

3D Road Network (3RN) 434, 874 3
Household Power (HP) 2, 049, 280 7

Gas Sensor (GS) 4, 208, 259 19

In Fig.6.1-6.6 and Table 6.2-6.8, we compare the different methods in terms
of the quality of their approximation and the number of distance computa-
tions. To make such a comparison, we use the relative error with respect to the
best solution found at each repetition of the experiment, for each data set and

number of clusters, ÊM =
EM− min

M′∈M
EM′

min
M′∈M

EM′
, where M is the set of algorithms

being compared and EM the K-means error obtained by M ∈ M. In terms
of the computational resources, we show the proportion of the distances com-
puted by each method w.r.t. the method that computed the lowest number of
distances, i.e., D̂CM = DCM

min
M′∈M

DCM′
, where DCM is the number of distances

computed by M ∈ M, as well as the relative number of Lloyd’s iterations,

i.e., Ît
i

M =
ItiM

min
M′∈M,∀j

Itj
M′

, where ItiM is the number of Lloyd iterations up to

the ith re-start of M ∈M.

6.2.1 Quality of the approximation

In Fig.6.1 and Table 6.2-6.3, the quality of the clusterings obtained by each
method is analyzed. In general, one can observe that both versions of SMKM
(SMKMr and SMKM++) systematically converge to the approximations
with the lowest K-means error. In particular, for the different 800 settings con-
sidered in our experimental setting, Table 6.3 shows that, among the methods
that are initialized via Forgy (FKM, HKMr and SMKMr) SMKMr obtained
the best clustering in 71.625% of the cases, while SMKM++ achieved the low-
est error in 77.250% of the cases when compared to the methods initialized
via K-means++ (KM++, HKM++ and SMKM++). On the other hand,
the approach that converged to the best solution the least times is Lloyd’s
algorithm re-initialized via Hartigan’s heuristic (HKMr and HKM++).

96 6 An efficient Split-Merge re-start for the K-means algorithm

Table 6.2: Relative error after last re-start (average over all data sets).

Method K=10 K=25 K=50 K=100 K=250

FKM 2.8×10−2 1.7×10−1 3.6×10−1 5.3×10−1 7.7×10−1

KM++ 1.6×10−3 6.1×10−3 1.1×10−2 1.4×10−2 2.4×10−2

HKMr 7.7×10−2 2.8×10−1 4.2×10−1 6.1×10−1 9.0×10−1

HKM++ 1.6×10−2 2.0×10−2 1.8×10−2 1.3×10−2 1.1×10−2

SMKMr 2.5×10−3 3.6×10−3 3.4×10−3 3.7×10−3 6.4×10−3

SMKM++ 2.9×10−3 4.1×10−3 2.7×10−3 3.5×10−3 4.2×10−3

Table 6.3: Lowest error approximation (percentage).

FKM HKMr SMKMr

17.250% 11.125% 71.625%

KM++ HKM++ SMKM++

13.625% 9.125% 77.250%

As we can verify in Table 6.2 and Fig.6.1, not only are the clusterings
obtained by SMKMr and SMKM++ normally the most competitive ones,
but their errors tend to be much lower than those of the other methods. In
particular, regardless of the number of clusters, the relative error of either
version of SMKM is usually of the order 10−3, i.e., SMKMr and SMKM++
obtain approximations with under 1% of added relative error w.r.t. to the
best solution found. On the other hand, for the largest numbers of clusters,
K ∈ {100, 250}, FKM, KM++, HKMr and HKM++ generated on average
clusterings with one or two additional orders of magnitude of relative error
when compared to SMKMr and SMKM++.

K: 100 K: 250

K: 10 K: 25 K: 50

K
M
+
+

F
K
M

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

K
M
+
+

F
K
M

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

K
M
+
+

F
K
M

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

K
M
+
+

F
K
M

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

K
M
+
+

F
K
M

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

1e−04

1e−03

1e−02

1e−01

1e+00

1e−06

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

1e−04

1e−03

1e−02

1e−01

1e+00

1e−06

1e−05

1e−04

1e−03

1e−02

1e−01

1e−04

1e−03

1e−02

1e−01

1e+00

Method

F
i
n
a
l

R
e
l
a
t
i
v
e

E
r
r
o
r

Fig. 6.1: Final relative error for each method (boxplot).

6.2 Experiments 97

In order to better appreciate the potential of the proposed Split-Merge pro-
cess, in terms of the quality of its approximation, we could focus the analysis
on those methods that are initialized via Forgy, FKM, HKMr and SMKMr,
since the error obtained after their first iteration tends to be much higher than
the optimal error. In this case, we can observe that the average final relative
error of both HKMr and FKM is two orders of magnitude higher than that of
SMKMr, for all the number of clusters, except K = 10. In the supplemental
material, we present additional figures that show the performance of the al-
gorithms on the different data sets. In these figures, we can also observe that
both SMKMr and SMKM++ have a much faster rate of convergence than the
competition, e.g., for SVA and K = 250, SMKMr only needed, on average,
16% and 6% of the distances computed by FKM and HKMr, respectively, to
generate solutions with the same error, while SMKM++ only computed 16%
and 2% of the distances of KM++ and HKM++, respectively.

6.2.2 Distance Computations

Besides the remarkable clustering quality achieved by both SMKM++ and
SMKMr, these methods commonly required a much smaller number of dis-
tance computations than KM++, FKM, HKM++ and HKMr to generate
solutions of better or similar quality to them. Furthermore, as we can see in
Fig.6.2 and Table 6.4-6.6, such a statement does not change if we consider in-
stead the total number of distance computations for each method - for which
our proposal reduces, on average, up to 2 orders of magnitude of relative error
w.r.t. the other algorithms-.

K: 100 K: 250

K: 10 K: 25 K: 50

K
M
+
+

F
K
M

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

K
M
+
+

F
K
M

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

K
M
+
+

F
K
M

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

K
M
+
+

F
K
M

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

K
M
+
+

F
K
M

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

1

5

10

25

50

1

5

10

25

50

1

5

10

25

50
75
100

1

5

10

25

50
75

1

5

10

25

50
75

Method

F
i
n
a
l

R
e
l
.

D
i
s
t
a
n
c
e

C
o
m
p
.

Fig. 6.2: Final relative distance computations for each method (boxplot).

98 6 An efficient Split-Merge re-start for the K-means algorithm

Table 6.4: Final relative distances computed (average over all data sets).

Method K=10 K=25 K=50 K=100 K=250

FKM 22.75 19.54 17.39 15.88 16.84
KM++ 16.45 15.79 14.24 13.15 12.67
HKMr 3.99 5.86 9.54 16.04 43.06

HKM++ 2.94 4.43 6.80 11.76 30.26
SMKMr 4.06 4.55 5.45 6.77 10.90

SMKM++ 2.84 2.91 2.85 3.12 3.84

Table 6.5: Relative error descent per iteration (average over all data sets).

Method K=10 K=25 K=50 K=100 K=250

HKMr 2.1×10−4 1.3×10−3 3.4×10−3 3.7×10−3 6.9×10−3

HKM++ 8.4×10−4 4.0×10−4 3.6×10−4 2.3×10−4 2.4×10−4

SMKMr 3.2×10−2 3.7×10−2 3.2×10−2 2.7×10−2 2.9×10−2

SMKM++ 1.8×10−2 1.0×10−2 6.0×10−3 3.5×10−3 1.7×10−3

Table 6.6: Lowest number of relative distances computed (percentage).

FKM HKMr SMKMr

2.250% 35.500% 62.250%

KM++ HKM++ SMKM++

0.125% 34.250% 65.625%

According to Fig.6.2 and Table 6.4, SMKM regularly computes the lowest
number of distances, especially as we consider larger numbers of clusters:
In particular, for K = 250, SMKM++ computed, on average, 3.29 and 7.88
times less number of distances than KM++ and HKM++, respectively. When
compared to the typical multi-start Lloyd’s algorithm (FKM and KM++),
the reduction of distance computations has to do with the fact that SMKM
only modifies, at most, three of the current clusters to generate the following
re-initialization, therefore the ratio of Lloyd iterations to convergence of FKM
and KM++ w.r.t. SMKM tends to increase for a larger number of clusters,
see Table 6.7 and Fig.6.3. In particular, observe that for K = 250, FKM
and KM++ computes, on average, over 5 and 7 times the number of Lloyd
iterations of SMKM per re-start.

6.2 Experiments 99

K: 100 K: 250

K: 10 K: 25 K: 50

K
M
+
+

F
K
M

S
M
K
M
+
+

S
M
K
M
r

K
M
+
+

F
K
M

S
M
K
M
+
+

S
M
K
M
r

K
M
+
+

F
K
M

S
M
K
M
+
+

S
M
K
M
r

K
M
+
+

F
K
M

S
M
K
M
+
+

S
M
K
M
r

K
M
+
+

F
K
M

S
M
K
M
+
+

S
M
K
M
r

3

6

9

2

4

6

0

10

20

30

40

5

10

15

5

10

15

Method

A
v
g
.

R
e
l
.

L
l
o
y
d

I
t
e
r
a
t
i
o
n
s

Fig. 6.3: Relative Lloyd it./re-start for SMKM and multi-start Lloyd’s algo-
rithm (boxplot).

Table 6.7: Relative Lloyd it./re-start (average over all datasets).

Method K=10 K=25 K=50 K=100 K=250

FKM 2.59 2.86 3.53 4.60 8.76
KM++ 1.75 2.23 2.78 3.68 6.59
SMKMr 1.33 1.18 1.22 1.15 1.21

SMKM++ 1.12 1.19 1.12 1.13 1.26

On the other hand, in comparison to the Hartigan-based methods (HKMr
and HKM++), their large number of distance computations is mainly related
to the number of re-starts they execute until convergence, see Fig.6.4. In this
sense, we would like to point out that each run of SMKM commonly implies
a much larger reduction of the error in comparison to HKMr and HKM++,
see Fig.6.5 and Table 6.5.

100 6 An efficient Split-Merge re-start for the K-means algorithm

K: 100 K: 250

K: 10 K: 25 K: 50

K
M
+
+

F
K
M

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

K
M
+
+

F
K
M

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

K
M
+
+

F
K
M

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

K
M
+
+

F
K
M

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

K
M
+
+

F
K
M

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

1

5

10

25

50

100

250

500

1

5

10

25

50

100

5

10

25

50

100

250

500

1000

1

5

10

25

50

100

5

10

25

50

100

250

500

1000

Method

R
e
−
s
t
a
r
t
s

Fig. 6.4: Number of re-starts for each method (boxplot).

In Fig.6.5 and Table 6.5, we can observe that, regardless of the number
of clusters, the relative error reduction reached by SMKM is, at least, one
order of magnitude larger than that of HKM. For this reason, SMKM with
fewer iterations, and therefore fewer distance computations, is able to obtain
solutions of similar quality to those of HKM.

K: 100 K: 250

K: 10 K: 25 K: 50

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

H
K
M
+
+

H
K
M
r

S
M
K
M
+
+

S
M
K
M
r

1e−06

1e−05

1e−04

1e−03

1e−02

1e−01

1e−06

1e−05

1e−04

1e−03

1e−02

1e−01

1e−06

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

1e−06

1e−05

1e−04

1e−03

1e−02

1e−01

1e−06

1e−05

1e−04

1e−03

1e−02

1e−01

Method

R
e
−
s
t
a
r
t

E
r
r
o
r

D
e
s
c
e
n
t

Fig. 6.5: Relative error descent per iteration of SMKM and HKM (boxplot).

6.2 Experiments 101

6.2.3 Error Descent

Not only does the increase in the number of clusters imply a better trade-off
between the quality of the solution vs. the number of distances computed
for SMKM w.r.t. the other methods, but in this case we can also observe
an increase in the number of cases in which our Split-Merge re-initialization
generates an approximation with a lower error than that of the current local
minima, see Fig.6.6 and Table 6.8.In particular, for K = 250, we can ob-
serve that in over 80% of the cases the quality of our re-initialization was, on
average, better than that of the local optima solution that generated it. More-
over, observe that the Split-Merge process allowed the change of the basin of
attraction in almost all the cases, see Table 6.8.

K: 100 K: 250

K: 10 K: 25 K: 50

S
M
K
M
+
+

S
M
K
M
r

S
M
K
M
+
+

S
M
K
M
r

S
M
K
M
+
+

S
M
K
M
r

S
M
K
M
+
+

S
M
K
M
r

S
M
K
M
+
+

S
M
K
M
r

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.6

0.8

0.25

0.50

0.75

1.00

Method

E
r
r
o
r

D
e
s
c
.

S
p
l
i
t
−
M
e
r
g
e

s
t
e
p

Fig. 6.6: Re-initialization error descent w.r.t. previous local minima (boxplot).

Such a behavior is expected as commented in Theorem 8, since, as we
increase the number of clusters, we would expect the centers of mass to be
closer one to another, and therefore the error increase given by MergeStep is
also more likely to be smaller than the error decrease of SplitStep.

In general, we observe that, regardless of the initialization being used,
SMKM is able to converge to highly competitive approximations to the K-
means problem, while substantially reducing the computational load w.r.t. the

Table 6.8: Re-initialization error descent w.r.t. previous local minima/ Basin
of attraction change (percentage).

Method K=10 K=25 K=50 K=100 K=250

SMKMr 38.89% / 99.19% 63.20% / 99.78% 71.32% / 99.81% 86.09% / 99.96% 93.87% / 100.00%
SMKM++ 27.14% / 98.92% 44.90% / 99.08% 59.12% / 99.63% 74.18% / 99.77% 81.64% / 99.96%

102 6 An efficient Split-Merge re-start for the K-means algorithm

common practice of executing FKM and KM++ several times and HKM. Its
performance is a direct consecuence of its re-initialization process, which, by
only making a few modifications over a local minima of the K-means problem,
is able to explore different basins of attractions while controlling the number
of Lloyd’s iterations to convergence. Not only that, but as the number of
clusters increases, such a re-initialization is very likely to improve the quality
of the approximation itself. As can be seen in Appendix .4.2, such a behavior
can be seen consistently in all the data sets considered.

6.3 Conclusions

In this chapter, we propose a re-start process called Split-Merge K-means al-
gorithm, or just SMK-means, which is an alternative to the typical multi-start
K-means algorithm. Given a local minima of the K-means problem, SMK-
means detects those regions that may have an excessive (over-represented) and
insufficient (under-represented) amount of centroids. SMK-Means follows a
two step re-initialization process: i) SplitStep divides the cluster from where
the largest error reduction can be reached and generates two new centroids. ii)
MergeStep condenses the pair of clusters (and their corresponding centroids),
whose fusion produces the smallest increment in the error. SplitStep reduces
the K-means error of our approximation, while MergeStep increases it, hence
if the difference between both phases is negative, then the quality of the pre-
vious K-means local minima is already improved. SMK-means utilizes the
information of previous Lloyd’s algorithm runs to facilitate the convergence
to a more competitive local minima. The proposed procedure has a computa-
tional complexity of O(max{n,K2}·d), which is cheaper than a single Lloyd’s
algorithm iteration.

Experimentally, SMK-means was compared in both quality of the achieved
local minima and number of distances computed w.r.t. competitive multi-
start approaches (K-means++ and Forgy K-means, with a fixed number of
restarts, and Hartigan K-means) on a wide variety of real-life data sets. In
terms of the quality of the approximation, SMK-means consistently generated
the local minima with the lowest K-means error, reducing, on average, over 1
and 2 orders of magnitude of relative error w.r.t. K-means++ and Hartigan
K-means and Forgy K-means, respectively. Not only does the quality of the
solution obtained by SMK-means tend to be much lower than the previously
commented methods, but, in terms of computational resources, SMK-means
also required a much lower number of distance computations (about an order
of magnitude less) to reach the lowest errors that they achieved.

As for the next steps, we will analyze the effect of using the Split-Merge
mechanism on different K-means speed-up strategies, such as those mentioned
in the introduction, which are also susceptible to converging to poor local
minima.

Part III

Final Remarks

7

General Conclusions and Future Work

In this chapter, both general conclusions of this PhD work and potential future
paths to extend the contributions are presented.

7.1 Conclusions

Due to the progressive growth of the amount of data available in a wide
variety of scientific fields, it has become more difficult to use and analyze such
information. In this sense, cluster analysis algorithms are a key element of
exploratory data analysis. Among these algorithms, the K-means algorithm
stands out as the most popular approach, in spite of its high dependency on
the initial conditions, as well as to the fact that it might not scale well on
massive datasets. This PhD is devoted to developing efficient approximations
for the K-means problem for such large data sets. The achieved contributions
are listed as follows:

• Development of an approximation to the K-means algorithm for tall data
applications: the Recursive Partition based K-means algorithm (RPKM).
This technique consists of applying a weighted version of the K-means
algorithm over a sequence of thinner partitions of the data set. Regardless
of the partition strategy considered, we demonstrate different properties
that emphasize the reduction of K-means iterations that occur at each
iteration of this approach.

Later on, we defined a partition strategy focused on placing more compu-
tational resources, in those areas of the space, in which the correct cluster
assignment of the instances is uncertain. This process leads to the Bound-
ary Weighted K-means algorithm (BWKM). Among different theoretical
properties, such as those of any RPKM-type approach, BWKM tends to
maximize the number of cells with instances belonging to the same clus-
ter (well assigned blocks). This property ultimately leads its convergence
to a fixed point of the K-means algorithm over the entire data set, but

106 7 General Conclusions and Future Work

using a number of representatives which is usually much smaller than the
actual number of instances of the data set. In the practice, BWKM was
compared to fairly popular approaches, in terms of both the quality of
the obtained solution for the K-means algorithm (K-means++ algorithm,
Forgy K-means) and speed-ups of the K-means algorithm (Minibatch K-
means algorithm, Markov Chain Monte Carlo K-means). The obtained
results demonstrate that BWKM achieves massive reductions of distances
computed in comparison to the aformentioned methods and, in multiple
ocasions, actually converged to the sets of centroids with the lowest K-
means errors.

• Design of a fully parallelizable feature selection approach for the K-means
problem: the univariate K-means relevance for feature selection algorithm
(KMR). The proposed method consists of applying any heuristic for the
K-means problem on different disjoint subsets of the set of dimensions, of
at most m � d features, and using the obtained clustering to bound the
error increase that occurs when not considering a given feature (when it
is fixed to a given value). Those m features with the largest error increase
bound are selected and used to approximate the optimal K-means clus-
tering. For such a procedure, we provide different error guarantees for the
obtained solution, as well as compare its performance to well-known fea-
ture selection techniques (Laplacian Scores, Maximum Variance, Random)
and feature extraction tecniques (Singular Value Decomposition, Principal
Component Analysis, Random Projections). In particular, it can be seen
that KMR consistently obtains results with lower K-means error than all
the considered feature selection methods, while also requiring similar or
lower computational times than these approaches. In comparison to the
feature extraction methods, KMR commonly required much lower compu-
tational times than all the considered techniques, while also converging to
more competitive solutions than those generated via Random Projections.

• A final contribution is the development of a cheap Split-Merge heuris-
tic that can be used to re-start the K-means algorithm, the Split-Merge
K-means algorithm (SMKM). Given a local minima of the K-means prob-
lem, SMKM seeks to determine those regions of the space that are over-
represented (regions of the space with more centroids than needed) and
under-represented. To do so, in the first step of SMKM, a centroid is added
in the cluster that generates the largest intra-cluster error. Afterwards, the
pair of clusters that generates the lowest error increase, when merged, are
combined into one cluster. We propose different conditions under which
the previously described process reduces the error of the given fixed point
without requiring any additional iteration of the K-means algorithm.

A wide variety of experimental results show that SMKM is able to
generate approximations with an associated error that is hard to reach
for different multi-start methods, such as multi-start Forgy K-means, K-

7.2 Future Work 107

means++ and Hartigan K-means. In particular, SMKM consistently con-
verged to approximations with the lowest K-means error, reducing, on
average, over 1 and 2 orders of magnitude of relative error with respect
to K-means++ and Hartigan K-means and Forgy K-means, respectively.
Moreover, in terms of computational resources, SMKM also required a
much lower number of distance computations (about an order of magni-
tude less) to reach the lowest errors among the aforementioned methods.

7.2 Future Work

As we have commented in the previous sections, most of the strategies that are
proposed in this dissertation have different benefits (mostly computational)
that could be further exploited to improve their performance. The potential
future extensions of this PhD work are briefly summarized in the following
paragraphs.

• One of the main advantages of all the methods proposed in this dissertation
is that their parallelization is straightforward. For this reason, we plan to
implement all these techniques in a parallel framework, such as Apache
Spark [87, 88].

• As all the proposed algorithms make use of Lloyd’s algorithm (with or
without weights), we could further reduce the number of distances com-
puted by considering different competitive distance pruning techniques,
such as [24, 25, 26, 28].

• In spite of the competitiveness of the practical results of BWKM, its qual-
ity guarantees may be affected by the curse of dimensionality. In particular,
as we increase the dimensionality of the problem, BWKM requires more
iterations to construct a spatial partition of the data set with mostly well
assigned blocks. In this sense, we plan to develop an approximation to the
K-means problem that can be competitive on applications with both large
number of instances and dimensions. To reach this goal, we plan to couple
BWKM and KMR.

• In terms of the proposed dimensionality reduction technique, KMR, we
plan to design a feature extraction approach of the same nature, in or-
der to fully consider the information provided from each variable. More
importantly, since KMR consists of solving multiple small-dimensional
K-means problems, we would like to analyze the effect of using different
coreset techniques, such as [22, 23, 78, 79, 27, 59, 60], to further reduce
the computational requirements of our approach.

• In regard to the proposed re-start technique for the K-means algorithm,
we plan to analyze the effect of using the Split-Merge re-start of SMKM
on different K-means speed-up strategies, such as [22, 23, 78, 79, 27, 59,
60, 30], which are also susceptible to converging to poor local minima.

108 7 General Conclusions and Future Work

• In particular, since the re-initialization cost of SMKM is cheaper than a
Lloyd’s algorithm iteration, we could use this approach to re-start BWKM
(whether or not coupled with KMR) to verify if the obtained approxima-
tion can be further improved. As we previously commented, since SMKM
makes slight modifications on a given local minima of the K-means prob-
lem, the number of Lloyd’s iterations needed to converge, after such a
re-start, tends to be small. This is, we can generate even more competitive
approximations, at the expense of a small amount of additional distance
computations.

• There are multiple applications related to images, videos and sensor net-
works that can be interpreted as time series and/or streming signals that
requires the analysis and decision-making in real time [89, 90, 91]. In this
sense, we plan to adapt and develop techniques to perform partitional
clustering on this kind of applications.

• The work developed in this dissertation is devoted to the K-means al-
gorithms, which is one of the most popular algorithms in data mining.
However, we plan to extend our contribution to other methods such as
Support Vector Machines [92] and DBSCAN [93].

7.3 Main Achievements

7.3.1 Publications

• M. Capó, A. Pérez, and J. A. Lozano, ”A recursive K-means initialization
algorithm for massive data,” Proceedings of the Spanish Association for
Artificial Intelligence, pp. 929-938, 2015.

• M. Capó, A. Pérez, and J. A. Lozano, ”An efficient approximation to
the K-means clustering for massive data,” Knowledge-Based Systems, vol.
117, pp. 56-69, 2017.

• M. Capó, A. Pérez, and J. A. Lozano, ”An efficient K-means clustering
algorithm for massive data,” Submitted to Data Mining and Knowledge
Discovery, 2019.

• M. Capó, A. Pérez, and J. A. Lozano, ”An efficient Split-Merge re-start
for the K-means algorithm,” Submitted to IEEE Transactions on Cyber-
netics, 2018.

• M. Capó, A. Pérez, and J. A. Lozano, ”A cheap feature selection approach
for the K-means algorithm,” In preparation, 2019.

7.3.2 Conferences and Workshops

The work presented in this dissertation has been presented in the following
national and international conferences and workshops.

7.3 Main Achievements 109

• XVI Conferencia de la Asociación Española para la Inteligencia Artificial,
12 November 2015, presentation entitled ”A recursive K-means initializa-
tion algorithm for massive data”, Albacete, Spain.

• 9th NIPS Workshop on Optimization for Machine Learning, 10 December
2016, poster entitled ”A distance saving approach to the K-means problem
for massive data”, Barcelona, Spain.

• 12th International Symposium on Intelligent Distributed Computing, 17
October 2018, tutorial entitled ”The K-means algorithm on Big Data do-
mains”, Bilbao, Spain.

7.3.3 Short Visits

• 01 September- 01 December 2018: LIAAD-INESC TEC, Porto University,
Portugal. Supervisor: Prof. Dr. Joao Gama.

Appendices

.1 Appendix of Chapter 3

In this section, we present the proofs to all the theoretical results introduced
in Chapter 3, referred to the RPKM algorithm.

Lemma 1 Given a set of points X in Rd and a partition of it, P. Then the
function f(c) = |X| · ‖X − c‖2 −∑R∈P |R| · ‖R− c‖2 is constant.

Proof. First of all observe that |X| = ∑
R∈P |R| and X =

∑
R∈P |R|·R
|X| . Given

any pair c, c
′ ∈ Rd, we have that

f(c) = |X| · ‖X − c‖2 −
∑
R∈P
|R| · ‖R− c‖2

= |X| · (‖X − c
′‖2 + 2 · (c′ − c)t(X − c

′
) + ‖c′ − c‖2)

−
∑
R∈P
|R| · (‖R− c

′‖2 + 2 · (c′ − c)t(R− c
′
) + ‖c′ − c‖2)

= f(c
′
) + 2 · |X| · (c′ − c)t(X − c

′
)− 2 ·

∑
R∈P
|R| · (c′ − c)t(R− c

′
)

= f(c
′
)

Lemma 2 Let P and P ′ be two partitions of the data set X, with P � P ′ ,
and let G and G′ be two clusterings of P. Then, the difference between both
clustering errors is constant with respect to the partitions P and P ′:

EP(G)− EP(G′) = EP′ (G)− EP′ (G
′
)

Proof. Let the index of S ∈ P on the cluster G = {Gk}Kk=1, i(S,G), be defined
as i(S,G) = {k | S ⊆ Gk}, then

112 7 General Conclusions and Future Work

EP(G)− EP′ (G) =
∑
S∈P
|S| · ‖S −Gi(S,G)‖2 −

∑
S′∈P′

|S′ | · ‖S′ −Gi(S′ ,G)‖2

=
∑
S∈P

(|S| · ‖S −Gi(S,G)‖2 −
∑

R∈P′ [S]

|R| · ‖R−Gi(R,G)‖2)

=
∑
S∈P

(|S| · ‖S −Gi(S,G)‖2 −
∑

R∈P′ [S]

|R| · ‖R−Gi(S,G)‖2)

=
∑
S∈P

(|S| · ‖S −G′
i(S,G′)‖

2 −
∑

R∈P′ [S]

|R| · ‖R−G′
i(S,G′)‖

2)

=
∑
S∈P

(|S| · ‖S −G′
i(S,G′)‖

2 −
∑

R∈P′ [S]

|R| · ‖R−G′
i(R,G′)‖

2)

=
∑
S∈P
|S| · ‖S −G′

i(S,G′)‖
2 −

∑
S′∈P′

|S′ | · ‖S′ −G′
i(S′ ,G′)‖

2

= EP(G′)− EP′ (G
′
)

Before prooving Corollary 1 and Lemma 3, we analyze the error of a clus-
ter with respect to a weighted K-means iteration. We observe that following
inequality is satisfied at the r-th weighted Lloyd’s algorithm iteration:

EP(Cr) ≥ EP(Gr) ≥ EP(Cr+1) (.1)

Furthermore, observe that, if EP(Cr) = EP(Gr), then, after the update
step of the weighted Lloyd’s algorithm, we obtain Cr = Cr+1 and the al-
gorithm stops at the (r + 1)-th iteration. On the other hand, if EP(Cr) >
EP(Gr) = EP(Cr+1), then, in the following weighted Lloyd’s algorithm itera-
tion, we obtain EP(Cr+1) = EP(Gr+1) = EP(Cr+2) and Cr+1 = Cr+2, hence
the algorithm stops, at most, at the (r + 2)-th iteration.

Hence, we have the following chain of inequalities for any weighted Lloyd’s
algorithm run

EP(C0) > EP(G0) > EP(C1) > EP(G1) > EP(C2) >

. . . > EP(Gl−2) ≥ EP(Cl−1) ≥ EP(Gl−1) ≥ EP(Cl),
(.2)

where l is the total number of weighted Lloyd iterations.

Theorem 3 Given a data set, X, a set of K centroids C and a spatial par-
tition B of the data set X, the following inequality is satisfied:

|EX(C)− EP(C)| ≤
∑
B∈B

2 · |P | · εC,X(B) · (2 · lB + ‖P − cP ‖) +
|P | − 1

2
· l2B ,

.1 Appendix of Chapter 3 113

where P = B(X) and P = B(X). Furthermore, for a well assigned partition
P, if we define CPOPT = arg min

C⊂Rd,|C|=K
EP(C) and COPT = arg min

C⊂Rd,|C|=K
EX(C),

then

EX(CPOPT) ≤ EX(COPT) + (n− |P|) · l2,

where l = max
B∈B

lB. 1

Proof. From Lemma 2 and Eq..2, we have the following inequalities:

EPi(Gi−1
li−1−1) ≥ EPi(Ci−1) ≥ EPi(Gili−1) ≥ EPi(Ci) (.3)

EPi(Gi−1
li−1−1)− EPi(Gili−1) = EPj (Gi−1

li−1−1)− EPj (Gili−1) = ξi ≥ 0 (.4)

Eq..3 holds for i ∈ {1, . . . ,m} and Eq..4 for any j > i. From Eq..4, we
can see that the difference between both clusterings remain constant for any
thinner partition Pj . A consequence of this is that, if we take Pj as a partition
thin enough such that there is only one instance per subset, then adding the
difference clustering error (associated to both centroids) for the partitions Pj
and Pi, we have the following relation over the error for the entire data set
(observe that the following relation holds in general for any partition thinner
than Pi):

EX(Ci) ≤ EX(Ci−1)⇐⇒ EX(Gi−1
li−1−1)− EX(Ci−1) ≤ ξi + (EX(Gili−1)− EX(Ci))

Lemma 3 At the i-th step of the RPKM, if Gir = Gjs , with j < i, for some
r ∈ {1, . . . , li− 1} and s ∈ {1, . . . , lj − 1}, then lj+1 = . . . = li = 1. Moreover,
in that case, s = lj − 1.

Proof. Using the chain of inequalities (.2), we observe that the following in-
equalities hold at the first iteration of the RPKM:

EP1(C1
0 = C0) > EP1(G1

0) > EP1(C1
1) > EP1(G1

1) > EP1(C1
2) >

. . . > EP1
(G1
a1−2) ≥ EP1

(C1
l1−1) ≥ EP1

(G1
l1−1) ≥ EP1

(C1 = C1
l1)

(.5)

Analogously, for the subsequent i-th iteration of the RPKM algorithm, we
obtain the following set of inequalities

EPi(Gi−1
ai−1−1) > EPi(C

i
0 = Ci−1) > EPi(Gi0) > EPi(C

i
1) > EPi(Gi1) >

EPi
(Ci2) > . . . > EPi

(Gili−2) ≥ EPi
(Cili−1) ≥ EPi

(Gili−1)

≥ EPi
(Ci = Cili), i ∈ {2, . . . ,m}

(.6)

1 The proof of Theorem 3 is in Appendix .2.1 in the supplementary material.

114 7 General Conclusions and Future Work

First of all, observe that the error associated to all the clusters generated
at the j-th RPKM iteration keep the same ordering for the error associated
to a thinner partition Pi. In particular, we have EPi

(Gjlj−1) ≤ EPi
(Gjs) for

s < lj − 1. To verify this we make use of Lemma 2, from which we know that

EPi
(Gjlj−1)− EPi

(Gjs) = EPj
(Gjlj−1)− EPj

(Gjs) ≤ 0→ EPi
(Gjlj−1) ≤ EPi

(Gjs)
for s < lj − 1. This means that, the last clustering found at the j-th RPKM
iteration also has the smallest error, with the partition Pi, with respect to the
previous clusters obtained at the j-th RPKM iteration.

From the chain of inequalities (.5) and (.6), we know that

EPh
(Gh−1
lh−1−1) ≥ EPh

(Ghlh−1) ∀h ∈ {j + 1, . . . , i− 1}, (.7)

where, if the equality holds, then ah = 1. From Lemma 2, (.7) implies

EPi(Gjlj−1) ≥ EPi(Gj+1
lj+1−1) ≥ . . . ≥ EPi(Gi−1

li−1−1) (.8)

In other words, the error with respect to the current partition (or any
thinner partition) of the optimal patterns obtained at each RPKM iteration
decreases monotonically.

By reductio ad absurdum, if we assume that Gir = Gjs , for some r ∈
{1, . . . , li−1} and s ∈ {1, . . . , lj−1} and that there exists j < h < i such that

lh > 1, then EPi
(Gjlj−1) > EPi

(Gi−1
li−1−1) ⇒ EPi

(Gjs) > EPi
(Gir) = EPi

(Gjs)

(⇒⇐). Therefore, from now on we assume lj+1 = . . . = li−1 = 1.
Analogously, if we assume that Gir = Gjs , for some r ∈ {1, . . . , li − 1}

and s ∈ {1, . . . , lj − 1} and that li > 1, then EPi
(Gjlj−1) ≥ EPi

(Gi−1
li−1−1) >

EPi(Gir) = EPi(Gjs)⇒ EPi(Gjs) > EPi(Gjs) (⇒⇐).
In the case that lj+1 = . . . = li = 1, the error associated to Gir satisfies

EPi(Gjs) ≥ EPi(Gjlj−1) ≥ EPi(Gi−1
li−1−1) ≥ EPi(Gir), hence the only possible

choice is s = lj .

Theorem 1 An upper bound to the number of Lloyd iterations at the i-th

RPKM step is given by li ≤
{|Pi|
K

}
−

i−1∑
j=1

(lj − 1), where
{|Pi|
K

}
is a Stirling

number of the second kind.

Proof. Lemma 3 implies that, at each RPKM iteration, no previous clus-
tering can be repeated (except the last one from the clustering sequence).
Therefore, we can eliminate, at least, all clusters generated at the previous

RPKM iterations except the last one (
i−1∑
j=1

(lj − 1)). Moreover, the number of

different partitions for |Pi| observations into K groups is a Stirling number of

the second kind,
{|Pi|
K

}
[34], then li ≤

{|Pi|
K

}
−
i−1∑
j=1

(lj − 1).

.2 Appendix of Chapter 4 115

.2 Appendix of Chapter 4

In this section, we comment on the proofs to the theoretical results presented
in Chapter 4 and an extension to the empirical results in Section 4.2.

.2.1 Proofs

In the first result, we present a complimentary property of the grid based
RPKM proposed in Chapter 3. Each iteration of the RPKM can be proved
to be a coreset with an exponential decrease in the error with respect to the
number of iterations. This result could actually bound the BWKM error, if
we fix i as the minimum number of cuts that a block, of a certain partition
generated by BWKM, P, has.

Theorem 9 Given a set of points X in Rd, the i-th iteration of the grid based

RPKM produces a (K, ε)-coreset with ε = 1
2i−1 · (1 + 1

2i+2 · n−1
n) · n·l2OPT , where

OPT = min
C⊆Rd,|C|=K

EX(C) and l the length of the diagonal of the smallest

bounding box containing X.

Proof. Firstly, we denote by x′ to the representative of x ∈ D at the i-th grid
based RPKM iteration, i.e., if x ∈ P then x′ = P , where P is a block of the
corresponding dataset partition P of X. Observe that, at the i-th grid based
RPKM iteration, the length of the diagonal of each cell is 1

2i · l and we set a

positive constant, c, as the positive real number satisfying 1
2i · l =

√
c · OPTn .

By the triangular inequality, we have

|EX(C)− EP(C)| ≤
∑
x∈X
|‖x− cx‖2 − ‖x′ − cx′‖2|

≤
∑
x∈X
|(‖x− cx‖ − ‖x′ − cx′‖)(‖x− cx‖+ ‖x′ − cx′‖)|

Analogously, observe that the following inequalities hold ‖x′−cx′‖+‖x−
x′‖ ≥ ‖x − cx‖ and ‖x − cx‖ + ‖x − x′‖ ≥ ‖x′ − cx′‖. Thus, ‖x − x′‖ ≥
|‖x− cx‖ − ‖x′ − cx′‖|:

|EX(C)− EP(C)| ≤
∑
x∈X
‖x− x′‖ · (2 · ‖x− cx‖+ ‖x− x′‖)

On the other hand, we know that
∑
x∈X
‖x − x′‖2 ≤ n−1

22i+1 · l2 and that, as

both x and x′ must be located in the same cell, ‖x− x′‖ ≤ 1
2i · l. Therefore,

as d(x, C) ≤ l,

116 7 General Conclusions and Future Work

|EX(C)− EP(C)| ≤ (
n− 1

22i+1
+

n

2i−1
) · l2

≤ (
n− 1

22i+1
+

n

2i−1
) · 22i · c · OPT

n

≤ (
1

2i+2
· n− 1

n
+ 1) · 2i+1 · c · EX(C)

In other words, the i-th RPKM iteration is a (K, ε)- coreset with ε =

(1
2i+2 · n−1

n + 1) · 2i+1 · c = 1
2i−1 · (1 + 1

2i+2 · n−1
n) · n·l2OPT .

The two following results show some properties of the error function when
having well assigned blocks.

Lemma 4 If cx = cP and c′x = c′
P

for all x ∈ P , where P ⊆ D and C, C ′

are a pair of sets of centroids, then EP (C)−E{P}(C) = EP (C ′)−E{P}(C ′).

Proof. From Lemma 1 in Chapter 3, we can say that the following function
is constant f(c) = |P | · ‖P − c‖2 −∑x∈P ‖x− c‖2, for c ∈ Rd. In particular,

since f(P) = −∑x∈P ‖x− P‖2, we have that |P | · ‖P − cP ‖2 =
∑

x∈P ‖x−
cP ‖2−

∑
x∈P ‖x−P‖2 and so we can express the weighted error of a dataset

partition, P, as follows

EP(C) =
∑
P∈P

∑
x∈P

(‖x− cP ‖2 − ‖x− P‖2) (.9)

In particular, for P ∈ P, we have

EP (C)− E{P}(C) =
∑
x∈P

(‖x− cx‖2 − ‖x− cP ‖2 + ‖x− P‖2)

=
∑
x∈P
‖x− P‖2

=
∑
x∈P

(‖x− c′x‖2 − ‖x− c′
P
‖2 + ‖x− P‖2)

= EP (C ′)− E{P}(C ′)

In the previous result we observe that, if all the instances are correctly
assigned in each block, then the difference of the weighted and the entire
dataset error, of both sets of centroids, is the same. In other words, if all
the blocks of a given partition are correctly assigned, not only can we then
actually guarantee a monotone descend of the entire error function for our
approximation, a property that can not be guaranteed for the typical coreset
type approximations of K-means, but we know exactly the reduction of such
an error after a weighted Lloyd iteration.

.2 Appendix of Chapter 4 117

Theorem 10 Given two set of centroids C, C ′, where C ′ is obtained after a
weighted Lloyd’s iteration (on a partition P) over C and cx = cP and c′x = c′

P
for all x ∈ P and P ∈ P, then EX(C ′) ≤ EX(C).

Proof. Using Lemma 4 over all the subsets P ∈ P, we know that EX(C ′) −
EX(C) =

∑
P∈P(EP (C ′) − EP (C)) =

∑
P∈P(E{P}(C

′) − E{P}(C)) =
EP(C ′) − EP(C). Moreover, from the chain of inequalities A.1 in Chapter
3, we know that EP(C ′) ≤ EP(C) at any weighted Lloyd iteration over a
given partition P, thus EX(C ′) ≤ EX(C).

In Theorem 2, we prove the cutting criterion that we use in BWKM.
It consists of an inequality that, only by using information referred to the
partition of the dataset and the weighted Lloyd’s algorithm, helps us guarantee
that a block is well assigned.

Theorem 2 Given a set of K centroids, C, a data set, X ⊆ Rd, and a block
B, if εC,X(B) = 0, then cx = cP for all x ∈ P = B(X) 6= ∅.

Proof. From the triangular inequality, we know that ‖x − cP ‖ ≤ ‖x − P‖ +
‖P − cP ‖. Moreover, observe that P is contained in the block B, since B is a
convex polygon. Then ‖x− P‖ ≤ lB .

For this reason, ‖x−cP ‖ ≤ lB−δP (C)+‖P−c‖ ≤ (2·lB−δP (C))+‖x−c‖
holds. As εC,X(B) = max{0, 2 · lB − δP (C)} = 0, then 2 · lB − δP (C) ≤ 0 and,
therefore, ‖x−cP ‖ ≤ ‖x−c‖ for all c ∈ C. In other words, cP = arg min

c∈C
‖x−c‖

for all x ∈ P .

As can be seen in Section 4.1.2, there are different parameters that must
be tuned. In the following result, we set a criterion to choose the initialization
parameters of Algorithm 5 in a way that its complexity, even in the worst case
scenario, is still the same as that of Lloyd’s algorithm.

Theorem 11 Given an integer r, if m = O(
√
K · d) and s = O(

√
n), then

Algorithm 5 is O(n ·K · d).

Proof. It is enough to verify the conditions presented before. Firstly, observe
that r · s · m2 = O(

√
n · K · d) and n · m = O(n ·

√
K · d). Moreover, as

K · d = O(n), then r ·m2 = O(n).

Up to this point, most of the quality results assume the case when all the
blocks are well assigned. However, in order to achieve this, many BWKM
iterations might be required. In the following result, we provide a bound to
the weighted error with respect to the full error. This result shows that our
weighted representation improves as more blocks of our partition satisfy the
criterion in Algorithm 2 and/or the diagonal of the blocks are smaller.

Theorem 3 Given a data set, X, a set of K centroids C and a spatial par-
tition B of the data set X, the following inequality is satisfied:

118 7 General Conclusions and Future Work

|EX(C)− EP(C)| ≤
∑
B∈B

2 · |P | · εC,X(B) · (2 · lB + ‖P − cP ‖) +
|P | − 1

2
· l2B ,

where P = B(X) and P = B(X). Furthermore, for a well assigned partition
P, if we define CPOPT = arg min

C⊂Rd,|C|=K
EP(C) and COPT = arg min

C⊂Rd,|C|=K
EX(C),

then

EX(CPOPT) ≤ EX(COPT) + (n− |P|) · l2,

where l = max
B∈B

lB.

Proof. Using Eq..9 in Theorem 4, we know that |EX(C)−EP(C)| ≤ ∑
P∈P

∑
x∈P
‖x−

cP ‖2 − ‖x− cx‖2 + ‖x− P‖2.
Observe that, for a certain instance x ∈ P , where εC,X(B) = max{0, 2 ·

lB − δP (C)} = 0, ‖x− cP ‖2 − ‖x− cx‖2 = 0, as cx = cP by Theorem 2. On
the other hand, if εC,X(B) > 0, we have the following inequalities:

‖x− cP ‖ − ‖x− cx‖ ≤ 2 · ‖x− P‖ − (‖P − cx‖ − ‖P − cP ‖)
≤ εC,X(B)

‖x− cP ‖+ ‖x− cx‖ ≤ 2 · ‖x− P‖+ ‖P − cx‖+ ‖P − cP ‖
< 2 · lB + (2 · lB + ‖P − cP ‖)
+ ‖P − cP ‖
= 2 · (2 · lB + ‖P − cP ‖)

Using both inequalities, we have ‖x − cP ‖2 − ‖x − cx‖2 ≤ 2 · εC,X(B) ·
(2 · lB + ‖P − cP ‖). On the other hand, observe that

∑
x∈P
‖x − P‖2 = 1

|P | ·∑
x,y∈P

‖x− y‖2 ≤ 1
|P | ·

|P |·(|P |−1)
2 · l2B = |P |−1

2 · l2B .

Furthermore, if the partition is well assigned, then εC,X(B) = 0 for all
B ∈ B and so,

EX(CPOPT) ≤ EP(CPOPT) +
∑
B∈B

|P | − 1

2
· l2B

≤ EX(COPT) + 2 ·
∑
B∈B

|P | − 1

2
· l2B

≤ EX(COPT) + (n− |P|) · l2

.2 Appendix of Chapter 4 119

As we do not have access to the error for the entire dataset, EX(C), since
its computation is expensive, in Algorithm 8 we propose a possible stopping
criterion that bounds the displacement of the set of centroids. In the following
result, we show a possible choice of this bound in a way that, if the proposed
criterion is verified, then the common Lloyd’s algorithm stopping criterion is
also satisfied.

Theorem 12 Given two sets of centroids C = {ck}Kk=1 and C ′ = {c′k}Kk=1,

if ‖C − C ′‖∞ = max
k=1,...,K

‖ck − c′k‖ ≤ εw, where εw =
√
l2 + ε2

n2 − l, then

|EX(C)− EX(C ′)| ≤ ε.

Proof. Initially, we bound the following terms: ‖x− cx‖+ ‖x− c′x‖ and |‖x−
cx‖ − ‖x− c′x‖| for any x ∈ X.

If we set j and t as the indexes satisfying cj = cx and c′t = c′x, then we
have ‖x − cx‖ + ‖x − c′x‖ = ‖x − cj‖ + ‖x − c′t‖ ≤ ‖x − ct‖ + ‖x − c′t‖ ≤
2 · ‖x− c′t‖+ εw = 2 · ‖x− c′x‖+ εw (1). Analogously, applying the triangular
inequality, we have |‖x− cx‖ − ‖x− c′x‖| ≤ εw (2). In the following chain of
inequalities, we will make use of (1) and (2):

|EX(C)− EX(C ′)| ≤ |
∑
x∈X
‖x− cx‖2 − ‖x− c′x‖2|

≤
∑
x∈X
|‖x− cx‖2 − ‖x− c′x‖2|

≤
∑
x∈X

(‖x− cx‖+ ‖x− c′x‖) ·

|‖x− cx‖ − ‖x− c′x‖|
≤
∑
x∈X

εw · (2 · ‖x− c′x‖+ εw)

≤ n · ε2
w + 2 · n ·max

x∈X
‖x− c′x‖ · εw

≤ n · ε2
w + 2 · n · l · εw = ε

In Theorem 4, we show an interesting property of the BWKM algorithm.
We verify that a fixed point of the weighted Lloyd’s algorithm, over a partition
with only well assigned blocks, is also a fixed point of Lloyd’s algorithm over
the entire dataset X.

Theorem 4 If C is a fixed point of the weighted K-means algorithm for a
spatial partition B, for which all of its blocks are well assigned, then C is a
fixed point of the K-means algorithm on X.

Proof. C = {c1, . . . , cK} is a fixed point of the weighted K-means algo-
rithm, on a partition P, if and only if when applying an additional iter-
ation of the weighted K-means algorithm on P, the generated clusterings

120 7 General Conclusions and Future Work

G1(P), . . . ,GK(P), i.e., Gi(P) := {P ∈ P : ci = arg min
c∈C

‖P − c‖}, satisfies

ci =

∑
P∈Gi(P)

|P |·P∑
P∈Gi(P)

|P | for all i = {1, . . . ,K} (1).

Since all the blocks B ∈ B are well assigned, then the clusterings of C in
X, Gi(X) := {x ∈ X : ci = arg min

c∈C
‖x− c‖}, satisfy |Gi(X)| = ∑

P∈Gi(P)

|P | (2)

and
∑

x∈Gi(X)

x =
∑

P∈Gi(P)

∑
x∈P

x (3). From (1), (2) and (3), we have

ci =

∑
P∈Gi(P)

|P | · P∑
P∈Gi(P)

|P | =

∑
P∈Gi(P)

|P | · ∑
x∈P

x
|P |∑

P∈Gi(P)

|P |

=

∑
P∈Gi(P)

∑
x∈P

x∑
P∈Gi(P)

|P | =

∑
x∈Gi(X)

x

|Gi(X)| ∀ i ∈ 1, . . . ,K,

this is, C is a fixed point of K-means algorithm on X.

.2.2 About the grid based RPKM

In the experimental section in Chapter 3, the partition sequence used (grid
based RPKM) consisted on sequentially constructing a new spatial parti-
tion by dividing each block of the previous partition into 2d new blocks,
i.e., P can have up to 2i·d representatives. In this section, we provide some
additional results in which we compare the performance of the grid based
RPKM with respect to the methods and datasets presented in Section 4.2
and K ∈ {3, 5, 10, 25, 50}.

As in Chapter 3, we fix the maximum number of iterations, M , as the
stopping criterion for the grid based RPKM. Initially, we considered M = 10,
however just for the CIF and 3RN datasets -case i)- the grid based RPKM
managed to converge before reaching the limit running time (24 hours). More-
over, for the HPC and WUY datasets -case ii)-, we obtained results for M = 5
and, unfortunately, for the datasets with the largests dimensionality (GS and
SUSY), the grid based RPKM failed to provide any output. The obtained
results are summarized in the following figures:

.2 Appendix of Chapter 4 121

K: 3 K: 5 K: 10 K: 25 K: 50

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1

5e
−0

1
1e

+0
0

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1

5e
−0

1
1e

+0
0

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1

5e
−0

1
1e

+0
0

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1

5e
−0

1
1e

+0
0

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1

5e
−0

1
1e

+0
0

1e−06

1e−05

1e−04

1e−03

1e−02

5e−02
1e−01

5e−01
1e+00

Relative Distance Computations

Re
la

ti
ve

 E
rr

or

BWKM FKM KM++ AFKMC2 KM++_init

MB 100 MB 1000 MB 500 grid based RPKM

Fig. .1: Relative distance computations vs relative error on the CIF dataset.

K: 3 K: 5 K: 10 K: 25 K: 50

0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0

0.001

0.010

0.100

0.250

0.500

0.750
1.000

Iteration

Re
pr

es
en

ta
ti

ve
s

BWKM grid based RPKM

Fig. .2: Proportion representatives/instances with respect to the number of
iterations on the CIF dataset.

K: 3 K: 5 K: 10 K: 25 K: 50

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1

5e
−0

1
1e

+0
0

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1

5e
−0

1
1e

+0
0

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1

5e
−0

1
1e

+0
0

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1

5e
−0

1
1e

+0
0

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1

5e
−0

1
1e

+0
0

1e−06

1e−05

1e−04

1e−03

1e−02
5e−021e−01
5e−011e+00

Relative Distance Computations

Re
la

ti
ve

 E
rr

or

BWKM FKM KM++ AFKMC2 KM++_init

MB 100 MB 1000 MB 500 grid based RPKM

Fig. .3: Relative distance computations vs relative error on the 3RN dataset.

K: 3 K: 5 K: 10 K: 25 K: 50

0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0

0.00001

0.00010

0.00100

0.01000

0.05000

0.10000

0.25000

0.50000

1.00000

Iteration

Re
pr

es
en

ta
ti

ve
s

BWKM grid based RPKM

Fig. .4: Proportion representatives/instances with respect to the number of
iterations on the 3RN dataset.

122 7 General Conclusions and Future Work

K: 3 K: 5 K: 10 K: 25 K: 50

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1

5e
−0

1
1e

+0
0

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1

5e
−0

1
1e

+0
0

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1

5e
−0

1
1e

+0
0

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1

5e
−0

1
1e

+0
0

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1

5e
−0

1
1e

+0
0

1e−06

1e−05

1e−04

1e−03

1e−02

5e−02
1e−01

5e−01
1e+00

Relative Distance Computations

Re
la

ti
ve

 E
rr

or

BWKM FKM KM++ AFKMC2 KM++_init

MB 100 MB 1000 MB 500 grid based RPKM

Fig. .5: Relative distance computations vs relative error on the HPC dataset.

K: 3 K: 5 K: 10 K: 25 K: 50

0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0

0.0001

0.0010

0.0100

0.1000

0.2500

0.5000
0.7500
1.0000

Iteration

Re
pr

es
en

ta
ti

ve
s

BWKM grid based RPKM

Fig. .6: Proportion representatives/instances with respect to the number of
iterations on the HPC dataset.

K: 3 K: 5 K: 10 K: 25 K: 50

1e
−0

8

1e
−0

7

1e
−0

6

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1
5e

−0
1

1e
+0

0

1e
−0

8

1e
−0

7

1e
−0

6

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1
5e

−0
1

1e
+0

0

1e
−0

8

1e
−0

7

1e
−0

6

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1
5e

−0
1

1e
+0

0

1e
−0

8

1e
−0

7

1e
−0

6

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1
5e

−0
1

1e
+0

0

1e
−0

8

1e
−0

7

1e
−0

6

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1
5e

−0
1

1e
+0

0

1e−04

1e−03

1e−02

5e−02
1e−01

5e−01
1e+00

Relative Distance Computations

Re
la

ti
ve

 E
rr

or

BWKM FKM KM++ AFKMC2 KM++_init

MB 100 MB 1000 MB 500 grid based RPKM

Fig. .7: Relative distance computations vs relative error on the WUY dataset.

K: 3 K: 5 K: 10 K: 25 K: 50

0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0

1.0e−06

1.0e−05

1.0e−04

1.0e−03

1.0e−02

2.5e−02

5.0e−02

Iteration

Re
pr

es
en

ta
ti

ve
s

BWKM grid based RPKM

Fig. .8: Proportion representatives/instances with respect to the number of
iterations on the WUY dataset.

.2 Appendix of Chapter 4 123

Dataset K BWKM grid based RPKM

CIF

3 0.498± 0.042 0.999± 0.000
5 0.597± 0.021 0.999± 0.000
10 0.779± 0.013 0.999± 0.000
25 0.917± 0.005 0.999± 0.000
50 0.958± 0.002 0.999± 0.000

3RN

3 0.021± 0.000 0.760± 0.000
5 0.034± 0.001 0.760± 0.000
10 0.060± 0.004 0.900± 0.000
25 0.090± 0.008 0.900± 0.000
50 0.123± 0.009 0.967± 0.000

HPC

3 0.038± 0.014 0.785± 0.000
5 0.095± 0.014 0.785± 0.000
10 0.148± 0.008 0.785± 0.000
25 0.175± 0.009 0.785± 0.000
50 0.253± 0.011 0.785± 0.000

WUY

3 0.003± 0.001 0.001± 0.000
5 0.006± 0.000 0.001± 0.000
10 0.017± 0.004 0.007± 0.000
25 0.033± 0.004 0.007± 0.000
50 0.049± 0.003 0.007± 0.000

Table .1: Proportion final number of representatives / instances for the differ-
ent datasets and number of clusters.

In the datasets of case i), we have better view of the evolution of the num-
ber of representatives of the grid based RPKM with respect to the number of
iterations. In Fig..2, Fig..4 and Table .1, we observe that the number of repre-
sentatives of the grid based RPKM, after 10 iterations, is about the number
of instances in both the CIF and 3RN datasets, while, for the BWKM, we
observe a much slower growth in the number of representatives. In particular,
for the 3RN dataset, the number of representatives, for the different number
of clusters and after 100 iterations, is still under 13% the number of instances,
while generating approximations of similar and/or better quality than those
of the grid based RPKM. Furthermore, we observe that, for all the datasets,
the number of representatives of BWKM reaches a plateau way before the
final number of iterations, meaning that, for a small number of iterations,
most of the blocks generated by BWKM are well assigned.

On the other hand, as the number of representatives for the grid based
RPKM, for the datasets in case ii), is smaller than in the previous case, we
observe in Fig..5 and Fig..7, that the quality of the approximation of the grid
based RPKM is commonly much less competitive than the solutions obtained
via BWKM: the grid based RPKM commonly has over 10% of relative error
with respect to BWKM.

124 7 General Conclusions and Future Work

In Table .2, we present the proportion of cases in which BWKM generates
a well assigned partition verified via the assignment function of Theorem 2.
As we commented in Section 4.1.4.2, this is a sufficient condition to verify
that the solution obtained via BWKM is also a fixed point of Lloyd’s algo-
rithm for the entire dataset. We observe that, specially for a low number of
clusters, BWKM is very likely to converge to a local minima of the K-means
problem. For instance, for WUY dataset and K ∈ {3, 5}, BWKM always gen-
erated well assigned partitions, which is quite remarkable as the number of
representatives in these cases is under 0.6% of the number of instances. As
expected, as the number of cluster increases, it is harder to verify such a con-
dition, however we must remember that this is just a sufficient condition since
we are using Theorem 2, rather than computing all the pairwise distances
instance-centroid.

K CIF 3RN HPC WUY

3 0.92 1.00 0.78 1.00
5 1.00 1.00 0.70 1.00
10 0.44 0.98 0.46 0.84
25 0.40 0.96 0.54 0.08
50 0.48 0.84 0.02 0.00

Table .2: Proportion of cases in which the spatial partition obtained by
BWKM satisifes Theorem 4 verified via the misassigment function of The-
orem 2.

From the results presented in this section, it is clear that BWKM alleviates
the main drawback of the grid based RPKM, as it also controls the growth of
the number of representatives, which, in the worst case scenario, only has a
linearly growth in this case. This is an important factor, as it allows BWKM
to scale better with respect to both the dimensionality and the number of
iterations. Furthermore, BWKM is still a RPKM type approach, meaning
that, besides the theoretical guarantees that we have developed during article
and the results that just commented on, BWKM also has the guarantees of
the grid based RPKM.

.3 Appendix of Chapter 5

In this section, we comment on the proofs to the theoretical results presented
in Chapter 5 and an extension to the empirical results in Section 5.2.

.3 Appendix of Chapter 5 125

.3.1 Proofs

As we commented, in Section 5.1, the proposed feature selection in Algorithm
9-13 is mainly based on the error bound proposed in Theorem 5. The result
presented in Theorem 5 offers a simple way of quantifying the importance of a
certain dimension, j ∈ Di, in terms of its impact on the quality of the obtained
clustering. This measurement consists on fixing the the corresponding entry,
on each center of mass, to a given value, vj , and estimating the increase of
the error that it implies.

Theorem 7 Given two clusters Pi and Pj and their corresponding centers of

mass ci and cj, then fi,j =
|Pi|·|Pj |
|Pi|+|Pj | · ‖ci − cj‖2.

Proof. From now on, we refer by XD to the dataset X on the dimensions in
X and, by XPl

⊂ XD, to the instances Xi belonging to the cluster Pl. We
know that the following inequality holds∑

x∈XPl

‖x− c′l‖2 =
∑

x∈XPl

‖x− cl‖2 + |Pl| · ‖cl − c′l‖2 (.10)

and so, due to possible clustering re-assignments, from Eq..10, we deduce the
following bound

EXD (C ′) ≤ EXD (C) +

K∑
l=1

|Pl| · ‖cl − c′l‖2

= EXD (C) +

K∑
l=1

|Pl| ·
∑

j∈D\S

(cl,j − vj)2

= EXD (C) +
∑

j∈D\S

tj (.11)

In Remark 1 in Section 5.1.1, we described the following simple feature
selection process, based on Theorem 5, that leads to a 1 + ε- approximation
of EXDi (Ci):

Remark 1 Using Theorem 5, we can minimize the size of the set of features
selected, S ⊆ D, needed to keep a 1+ε- approximation of C. This can be easily

done by computing the set {tj}|D|j=1 and sorting it increasingly, {tj:|D|}|D|j=1.

We then determine the largest index k ∈ {1, . . . , |D|} for which,
k∑
l=1

tl:|D| ≤

ε · EXD (Ci) holds, i.e., EXD (C ′) ≤ (1 + ε) · EXD (C). Therefore, the features
selected, S ⊆ D, correspond to those dimensions associated to the last |D| − k
entries in {tj:|D|}|D|j=1. 2.

2 In Section .3.3, we briefly present some additional practical results showing the
accuracy of the proposed feature selection procedure.

126 7 General Conclusions and Future Work

Proof. The construction proposed in this remark can be directly verified from

Theorem 5: Since {tj:|D|}|D|j=1 is sorted incresingly and k is defined as the largest

index for which,
k∑
l=1

tl:|D| ≤ ε·EXS (C) holds, i.e., EXD (C ′) ≤ (1+ε)·EXD (C).

Hence, the set of dimensions associated to the last |D|−k entries in {tj:|D|}|D|j=1

is the minimal cardinality set, generated via Theorem 5, that keeps a 1 + ε-
approximation of EXD (C).

In Theorem 6, we propose a bound to the clustering quality of the ap-
proximation obtained via Remark 1. Such a bound depends on the predefined
ε > 0, the approximation ratio λ of algorithm A (which could be the K-
means algorithm or any coreset-type approach, for instance) and the quality

constant, ϕ = λ2 · E
XS,opt

K=1
t∑

i=1
E

XSi (Ci)

, which measures the ratio between the 1-means

optimal error and sum of the K-means error on the selected variables, for each
party of dimensions.

Theorem 6 Given a data set X, a constant ε > 0 and a partition of the
dimensions {1, . . . , d} into t disjoint groups {D1, . . . , Dt}, if the set of features
selected Si ⊆ Di is obtained via Remark 1, for all i ∈ {1, . . . , t}, then the

output of a λ-approximate K-means algorithm (algorithm A) on S =
t⋃
i=1

Si,

C∗, satisfies

EX(C∗) ≤ ϕ · (1 + ε) · EX(Copt) (5.3)

where Copt = arg min
C⊆Rd,|C|=K

EX(C), ϕ = λ2 · E
XS,opt

K=1
t∑

i=1
E

XSi (Ci)

and, EXS ,opt
K=1 , is the

optimal value of the 1-means error on XS.

Proof. We first apply algorithm A on each Di, which generates a set of cen-
troids, Ci, satisfying

EXDi (C ′i) ≤ (1 + ε) · EXDi (Ci)

≤ λ · (1 + ε) · EXDi (Copt) ∀ i ∈ {1, . . . , t} (.12)

and so, if we add all the elements in Eq..12, we get

t∑
i=1

EXDi (C ′i) ≤ λ · (1 + ε) · EX(Copt). (.13)

Furthermore, observe that

t∑
i=1

EXDi (C ′i) =

t∑
i=1

EXSi (C ′i)︸ ︷︷ ︸
Non-fixed error

+

t∑
i=1

E
XDi\Si

,opt

K=1︸ ︷︷ ︸
Fixed error

(.14)

.3 Appendix of Chapter 5 127

From now on, we focus on bounding the ”Non-fixed error” (T). We first

apply algorithm A on S =
t⋃
i=1

Si and obtain a set of K centroids, C∗:

EXS (C∗) ≤ λ · EXS (C ′i)

= λ · [EXSi (C ′i) + EXS\Si (C ′i)] ∀ i ∈ {1, . . . , t},
and so,

EXS (C∗) ≤ λ

t
· [T +

t∑
i=1

EXS\Si (C ′i)]. (.15)

If we denote L =
t∑
i=1

EXS\Si (C ′i), we would like to determine an upper

bound to c such that L = c · T . This bound is of relevance since, considering
Eq..13 and Eq..15, we know that

EX(C∗) ≤ λ2

t
· (1 + ε) · (1 + c) · EX(Copt)

− λ · (1 + c)− t
t

·
t∑
i=1

E
XDi\Si

,opt

K=1 . (.16)

We focus now on the factor c =

t∑
i=1

E
XS\Si (C′i)

t∑
i=1

E
XSi (C′i)

=
t∑
i=1

∑
j 6=i

E
XSj (C′i)

E
XSi (C′i)

≤

(t−1)·EXD,opt

K=1
t∑

i=1
E

XSi (C′i)

.

First of all, observe that, as EXSi (C ′i) ≤ E
XSi

,opt

K=1 , then

c =
(t− 1) · EXS ,opt

K=1
t∑
i=1

EXSi (C ′i)

≥ (t− 1) · EXS ,opt
K=1

t∑
i=1

E
XSi

,opt

K=1

= t− 1 (.17)

In other words, the second factor in Eq..16, will always be non-negative.
Furthermore,

(
t∑
i=1

EXSi (C ′i)) + (t− 1) · EXS ,opt
K=1

t∑
i=1

EXSi (C ′i)

≤ t · EXS ,opt
K=1

t∑
i=1

EXSi (C ′i)

(.18)

Hence, using Eq..19 and Eq..20, we can bound Eq..16 using information
that we know in advanced, as follows

128 7 General Conclusions and Future Work

EX(C∗) ≤ λ2 · (1 + ε) · EXS ,opt
K=1

t∑
i=1

EXSi (C ′i)

· EX(Copt)

= λ2 · (1 + ε) · EXS ,opt
K=1

t∑
i=1

EXSi (Ci)

· EX(Copt)

The following result is a corollary of Theorem 6 and its used, in Algo-
rithm 13, as as criterion for selecting the variables after Local approximation

step.

Corollary 2 Given a set of positive constants {ε1, . . . , εt}, then if the set of
features selected Si ⊆ Di is obtained via Remark 1, with ε = εi, for all i ∈
{1, . . . , t}, then the output of a λ-approximate K-means algorithm (algorithm

A) on S =
t⋃
i=1

Si, C
∗, satisfies

EX(C∗) ≤ ϕ · (1 + max
i∈{1,...,t}

εi) · EX(Copt) (5.4)

Proof. From Remark 1, we know the following inequality chain holds, for all
i ∈ {1, . . . , t},

EXDi (C ′i) ≤ (1 + εi) · EXDi (Ci) ≤ (1 + max
j∈{1,...,t}

εj) · EXDi (Ci).

Hence, the result can be deduced from Theorem 6.

.3.2 Feature Selection of KMR

As we commented in Section 5.1.1, if we define the lists Ei = {
|Di|−di∑
l=1

til:|Di|

E
XDi (Ci)

}|Di|−1
di=0 ,

for all i ∈ {1, . . . , t}, we can solve Problem 1 by selecting the m largest entries
in {E1, . . . , Et}. However, as the lists Ei, for all i ∈ {1, . . . , t}, are previously
sorted in Remark 1, Problem 1 can be easily solved using the following O(t)
time heuristic:

.3 Appendix of Chapter 5 129

Algorithm 13: Feature Selection

Input: Eji =
|Di|−j∑
l=1

til:|Di|

E
XDi (Ci)

, for all j ∈ {0, . . . , |Di| − 1} and

i ∈ {1, . . . , t}.
Output: Set of m features selected, D ⊆ {1, . . . , d}.

- Take a set of non-negative integers {d1, . . . , dt}, satisfying
t∑
i=1

di = m.

- Set E |Di|
i = 0 and E−1

i →∞, for all i ∈ {1, . . . , t}.
while max

i∈{1,...,t}
Edii > min

i∈{1,...,t}
Edi−1
i do

- Set dj = dj + 1 , where j = arg max
i∈{1,...,t}

Edii .

- Set dl = dl − 1, where l = arg min
i∈{1,...,t}

Edi−1
i .

end
- For all i ∈ {1, . . . , t}, set Si as the dimensions associated to the last di
entries of Ei.

Return S =
t⋃
i=1

Si.

The heuristic proposed in Algorithm 13 is fairly simple as it just needs
to update the maximum of {Edii }ti=1 and the minimum of {Edi−1

i }ti=1, which

implies, at most, a O(t) time cost. Since the arrays, {Edii }
|Di|
di=0, are all sorted

for i ∈ {1, . . . , t}, then when the condition max
i∈{1,...,t}

Edii ≤ min
i∈{1,...,t}

Edi−1
i , is

satisfied, max
i∈{1,...,t}

Edii is minimized, i.e., Problem 1 is solved.

.3.3 Some practical results using Remark 1

In this section, we provide some additional practical results using the feature
selection strategy proposed in Remark 1. In particular, we consider all 16 data
sets used in Section 5.2 and apply the feature selection approach discussed
in Remark 1 to obtain a 1 + ε-approximation of the solution obtained via
KM++, for ε ∈ {0.01, 0.05, 0.10, 0.50, 1.01}.

As we commented in Section 5.1.1, Remark 1 is primarily based on the
variable importance score proposed in Theorem 5. Such a score is a bound to
the error increase that would take place, if all the centers of mass obtained by
algorithm A are fixed on a predefined subset of dimensions. This bound does
not take into consideration possible clusters re-assignements which notoriously
fastens the selection procedure, as there is no need to compute an additional
cluster re-assignment step, which would beO(n·K ·m), and, more importantly,
the effect of each variable is additive, meaning that the corresponding error
increase of each dimension is independent of the subset of fixed dimensions

130 7 General Conclusions and Future Work

considered, i.e., we do not need to evaluate all the possible combinations of
fixed dimensions separately.

In Fig..9, we show the obtained epsilon (which must be ≤ ε) obtained
by Remark 1. Afterwards, we present the error (difference) between, the ep-
silon predicted by Remark 1, and the epsilon obtained, for the same features
selected by Remark 1, computing all clustering re-assignements, see Fig..10.
Finally, in Fig..11, we observe the number of features discarded (fixed) to
reach the 1 + ε-approximation.

Eps: 0.5 Eps: 1.01

Eps: 0.01 Eps: 0.05 Eps: 0.1

R
e
m
a
r
k
_
1

R
e
m
a
r
k
_
1

R
e
m
a
r
k
_
1

R
e
m
a
r
k
_
1

R
e
m
a
r
k
_
1

0.025

0.050

0.075

0.100

0.025

0.050

0.025

0.050

0.075
0.100

0.250

0.500

0.750
1.000

0.001

0.005

0.010

0.025

0.050

0.075
0.100

0.250

0.500

Method

R
e
m
a
r
k

1

E
p
s
i
l
o
n

Fig. .9: Obtained epsilon after applying Remark 1.

.3 Appendix of Chapter 5 131

Eps: 0.5 Eps: 1.01

Eps: 0.01 Eps: 0.05 Eps: 0.1

R
e
m
a
r
k
_
1

R
e
m
a
r
k
_
1

R
e
m
a
r
k
_
1

R
e
m
a
r
k
_
1

R
e
m
a
r
k
_
1

0.00001

0.00010

0.00100

0.00500
0.01000

0.02500

1e−05

1e−04

1e−03

5e−03

0.001

0.005

0.010

0.025

0.050

0.100

0.250

1e−07
1e−06
1e−05
1e−04
1e−03

0.0001

0.0010

0.0050

0.0100

0.0250

0.0500

0.1000

Method

E
r
r
o
r

Fig. .10: Error obtained after selecting the last variable for which Remark 1
achieves the 1 + ε-approximation.

Eps: 0.5 Eps: 1.01

Eps: 0.01 Eps: 0.05 Eps: 0.1

R
e
m
a
r
k
_
1

R
e
m
a
r
k
_
1

R
e
m
a
r
k
_
1

R
e
m
a
r
k
_
1

R
e
m
a
r
k
_
1

0.10

0.25

0.50

0.75
1.00

0.50

0.75

1.00

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Method

#

d
i
s
c
a
r
d
e
d

v
a
r
i
a
b
l
e
s

(
p
r
o
p
o
r
t
i
o
n
)

Fig. .11: Proportion of variables discarded by Remark 1 for reaching the 1+ε-
approximation.

132 7 General Conclusions and Future Work

Table .3: Average, over all data sets, for the results presented in Fig..9-.11.

ε Remark 1 Epsilon Error Discarded Variables (proportion)

0.01 8.03× 10−3 1.76× 10−4 0.70
0.05 4.09× 10−2 8.85× 10−4 0.79
0.10 8.26× 10−2 3.18× 10−3 0.83
0.50 3.02× 10−1 1.53× 10−2 0.93
1.01 5.13× 10−1 5.33× 10−2 0.96

According to Fig..9, we observe that, as the value of ε decreases, the epsilon
obtained by Remark 1 is closer to it. This observation is partially related to
the fact that, as we increase ε, and, therefore, discard more variables, we
will mostly remain with those variables with the highest error increments,
reason for which adding an extra variable to those features that are already
discarded, may easily exceed the 1 + ε- bound. In this scenario (largest values
of ε), we observe that the error of the approximation provided by Theorem 5
loses more accuracy, as in this case we are fixing more variables and, therfore,
adding more error to the bound. However, we must point out that the error
obtained is still neglegible with respect to the ε chosen: In Fig..10 and Tab..3,
we observe that, in large majority of the cases, such an error is under 5% of
the actual value of ε.

Regardless of the value selected for ε, Remark 1 is always able to discard
a large amount of the variables, while generating a 1 + ε-approximation of
the best solution obtained via KM++. In particular, for ε = 0.01, Remark
1, eliminated, in average, 70% of the variables to reach the expected quality
and, already, for ε = 0.50, over 90% of the variables are fixed and the error
bound is satisfied.

.4 Appendix of Chapter 6

In this section, we comment on the proofs to the theoretical results presented
in Chapter 6 and an extension to the empirical results in Section 6.2.

.4.1 Proofs

In this section, we present the proofs to Theorem 7 and Theorem 8 presented
in Section 6.1.

Theorem 7 Given two clusters Pi and Pj and their corresponding centers of

mass ci and cj, then fi,j =
|Pi|·|Pj |
|Pi|+|Pj | · ‖ci − cj‖2.

Proof. We know that for all c ∈ Rd,

.4 Appendix of Chapter 6 133

∑
x∈Pi

‖x− c‖2 =
∑
x∈Pi

‖x− ci‖2 + |Pi| · ‖c− ci‖2 (.19)

∑
x∈Pj

‖x− c‖2 =
∑
x∈Pj

‖x− cj‖2 + |Pj | · ‖c− cj‖2, (.20)

In particular, for c =
|Pi|·ci+|Pj |·cj

|Pi|+|Pj | , we have ‖c− ci‖2 =
|Pj |2

(|Pi|+|Pj |)2 · ‖ci −
cj‖2 and ‖c− cj‖2 = |Pi|2

(|Pi|+|Pj |)2 · ‖ci − cj‖2, therefore adding both equations

.19 and .20:

∑
x∈Pi,j

‖x− |Pi| · ci + |Pj | · cj
|Pi|+ |Pj |

‖2 =
∑
x∈Pi

‖x− ci‖2

+
∑
x∈Pj

‖x− cj‖2 +
|Pi| · |Pj |
|Pi|+ |Pj |

· ‖ci − cj‖2

Hence, fi,j =
|Pi|·|Pj |
|Pi|+|Pj | · ‖ci − cj‖2.

Theorem 8 Given a Lloyd’s algorithm fixed point, C, if the SMK-means
algorithm splits a cluster Ps, taking the corresponding 2-means initialization

via D2-sampling3 and min
l 6=k 6=s

|Pl|·|Pk|
|Pl|+|Pk| · ‖cl − ck‖2 ≤ EPs ({cs})

|Ps| , then the re-

initialization C ′ satisfies EX(C ′) ≤ EX(C), on average.

Proof. In terms of SplitStep, it is not simple to estimate a priori gs. However,
we can find an upper bound to this term by analyzing the reduction of the
error of Ps after the initialization of the 2-means on Ps.

In the statement, we propose to take the first centroid (c1
s) of the initial-

ization as the center of mass of Ps, cs, and the second (c2
s) selected at random

via D2-sampling.
We now can take the following bound EPs

({cs, c2
s}) ≤ EPs

({cs})− ‖cs −
c2
s‖2 (in the worst case, at least c2

s is the closest instance to itself). Moreover,

3 For the sake of simplicity, in Theorem 8, we consider a variation of the 2-means++
initialization that consists of taking the initial centroid as the center of mass of the
cluster, cs, and, as the second centroid, x ∈ Cs with probability Pr(x) ∝ ‖x−cs‖2
(D2-sampling).

134 7 General Conclusions and Future Work

E(EPs({cs, c2
s})) =

∑
c2
s∈Ps

‖c2
s − cs‖2∑

x∈Ps

‖x− cs‖2
· EPs({cs, c2

s})

≤
∑

c2
s∈Ps

‖c2
s − cs‖2

EPs
({cs})

· (EPs
({cs})− ‖cs − c2

s‖2)

= EPs
({cs})−

1

EPs({cs})
·
∑

c2
s∈Ps

‖c2
s − cs‖4 (.21)

This is gs = 1
EPs ({cs}) ·

∑
c2
s∈Ps

‖c2
s − cs‖4, using the power-mean inequality

4, we have

gs =
1

EPs({cs})
·
∑

c2
s∈Ps

‖c2
s − cs‖4

≥ 1

EPs
({cs})

· 1

|Ps|
· (
∑

c2
s∈Ps

‖c2
s − cs‖2)2 =

EPs
({cs})
|Ps|

Furthermore, for MergeStep, we can establish the following upper bound

min
l 6=k

|P ′l | · |P ′k|
|P ′l |+ |P ′k|

· ‖c′l − c′k‖2 ≤ min
l 6=k 6=s

|Pl| · |Pk|
|Pl|+ |Pk|

· ‖cl − ck‖2

Then,

E(EX(C ′)) ≤ EX(C) + min
l 6=k 6=s

|Pl| · |Pk|
|Pl|+ |Pk|

· ‖cl − ck‖2

− EPs
({cs})
|Ps|

,

and so, if min
l 6=k 6=s

|Pl|·|Pk|
|Pl|+|Pk| ·‖cl−ck‖2 ≤ EPs ({cs})

|Ps| , then E(EX(C ′)) ≤ EX(C).

.4.2 Experiments

In the experimental section, we analyzed the effect of the number of clusters
over the performance of SMKM++, SMKMr, HKM++, HKMr, KM++ and

4 Given any real numbers a1, . . . , an, then
n∑

i=1

a2i ≥ 1
n
· (

n∑
i=1

ai)
2.

.4 Appendix of Chapter 6 135

FKM on a wide variety of data sets. In this section, we show that SMKM
has a competitive performance regardless of the size of the data sets and
their dimensionalities. In Fig..12-.19, each point represents the average relative
number of distances computed and error obtained at each iteration of all the
considered methods.

As we can see .12-.19, SMKMr and SMKM++ has a similar performance
regardless of the data sets considered. Both variants of SMKM systematically
converged at a very fast rate to approximations of similar or better quality
than those generated by HKM++, HKMr, KM++ and FKM. At this point,
we would like to highlight that, as for both SMKM and HKM, the final
number of re-starts may vary at different executions, the curves associated to
the relative average error of both SMKM++, SMKMr, HKM++ and HKMr,
in Fig..12-.19, are not necessarily monotonically descendant, as it is for each
run of the experiment:

As we discussed in the experimental section, in order to better appreciate
the benefits of the proposed Split-Merge process on improving the quality of
the approximation, we could take a look at the performance of those algo-
rithms that are initialized at random- SMKMr (green circles), HKMr (pink
diamonds) and FKM (black squares)-. We highlight this comparison, since
the remaining algorithms are initialized via a K-means++ execution, and
so the obtained error in their first iterations are usually closer to the lowest
error found (there is less room for improvement). In this case, we observe
for instance that SMKMr only computed, on average, 9.1% (BC, K = 10)
and 12.2% (ET, K = 250) of the distances of FKM to match the quality of
its approximation. Analogously, SMKMr computed, on average, 3.0% (AC,
K = 250) and 6.5% (SVA, K = 250) of the distances of HKMr.

In the case of the multi-start Lloyd approaches, FKM and KM++, we ob-
serve, as commented in the experimental section, that their best performance
takes places when the number of clusters is small (K = 10): As we increase
the number of clusters, it is more likely for the SMK-means algorithm and the
Hartigan-based Lloyd’s algorithm to reduce the error of a given local minima.

136 7 General Conclusions and Future Work

K: 10 K: 25 K: 50 K: 100 K: 250

1 2 5 1
0

1
5

2
0

3
0

4
0

5
0 2 5 1
0

1
5

2
0

3
0 2 5 1
0

1
5

2
0 2 5 1
0

1
5

2
0

3
0

4
0 1 2 5 1
0

1
5

2
0

3
0

4
0

5
0

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

5e+00
2e+01

Relative Distance Computations

R
e
l
a
t
i
v
e

E
r
r
o
r

FKM KM++ HKM++ HKMr SMKM++ SMKMr

Fig. .12: Relative distance computations/error on BC.

K: 10 K: 25 K: 50 K: 100 K: 250
2 5 1
0

1
5 2 5 1
0

1
5 2 5 1
0

1
5

2
5 2 5 1
0

1
5

2
5

5
0
1 2 5 1
0
1
5

2
5

5
0
7
5

1
0
0

1e−04

1e−03

1e−02

5e−02
1e−01

Relative Distance Computations

R
e
l
a
t
i
v
e

E
r
r
o
r

FKM KM++ HKM++ HKMr SMKM++ SMKMr

Fig. .13: Relative distance computations/error on DIG.

K: 10 K: 25 K: 50 K: 100 K: 250

2 5 1
0

2
0 2 5 1
0

2
0 2 5 1
0

2
0 2 5 1
0

2
0

3
5

2 5 1
0

2
0

3
5
5
0
7
5

1
0
0

0.001

0.010

0.050
0.100

Relative Distance Computations

R
e
l
a
t
i
v
e

E
r
r
o
r

FKM KM++ HKM++ HKMr SMKM++ SMKMr

Fig. .14: Relative distance computations/error on AC.

K: 10 K: 25 K: 50 K: 100 K: 250

2 5 1
0

1
5

2
0 2 5 1
0

1
5 2 5 1
0

1
5

2
0

3
0

4
0 1 2 5 1
0

1
5

2
0

3
0

4
0

6
0

1 2 5 1
0
1
5
2
0
3
0
4
0
6
0
9
0

1
2
0

1e−04

1e−03

1e−02

5e−02

Relative Distance Computations

R
e
l
a
t
i
v
e

E
r
r
o
r

FKM KM++ HKM++ HKMr SMKM++ SMKMr

Fig. .15: Relative distance computations/error on HAR.

K: 10 K: 25 K: 50 K: 100 K: 250

2 5 1
0

2
0 2 5 1
0 2 5 1
0 2 5 1
0

2
0

1 2 5 1
0

2
0

3
5

5
0

7
5

1
0
0

1e−05

1e−04

1e−03

1e−02

5e−02

Relative Distance Computations

R
e
l
a
t
i
v
e

E
r
r
o
r

FKM KM++ HKM++ HKMr SMKM++ SMKMr

Fig. .16: Relative distance computations/error on SVA.

.4 Appendix of Chapter 6 137

K: 10 K: 25 K: 50 K: 100 K: 250

2 5 1
0

1
5

2
0 2 5 1
0

1
5

2
0 2 5 1
0

1
5 2 5 1
0

1
5 2 5 1
0

1
5

2
0

1e−04

1e−03

1e−02

5e−02
1e−01

Relative Distance Computations

R
e
l
a
t
i
v
e

E
r
r
o
r

FKM KM++ HKM++ HKMr SMKM++ SMKMr

Fig. .17: Relative distance computations/error on 3RN.

K: 10 K: 25 K: 50 K: 100 K: 250
2 5 1
0

1
5

2
0 2 5 1
0

1
5

2
0 2 5 1
0

1
5 2 5 1
0

1
5

2
0 2 5 1
0

1
5

2
0

1e−06

1e−05

1e−04

1e−03

1e−02

5e−02
1e−01

5e−01

Relative Distance Computations

R
e
l
a
t
i
v
e

E
r
r
o
r

FKM KM++ HKM++ HKMr SMKM++ SMKMr

Fig. .18: Relative distance computations/error on HP.

K: 10 K: 25 K: 50 K: 100 K: 250

2 5 1
0

1
5 2 5 1
0

1
5 1 2 5 1
0

1
5 2 5 1
0

1
5 2 5 1
0

1
5

2
5

1e−04

1e−03

1e−02

5e−02
1e−01
2e−01

Relative Distance Computations

R
e
l
a
t
i
v
e

E
r
r
o
r

FKM KM++ HKM++ HKMr SMKM++ SMKMr

Fig. .19: Relative distance computations/error on GS.

K: 10 K: 25 K: 50 K: 100 K: 250

1 2 5 1
0

1
5
2
0

3
0
4
0
5
0 2 5 1
0

1
5
2
0

3
0 2 5 1
0

1
5

2
0 2 5 1
0

1
5
2
0

3
0
4
0 1 2 5 1
0

1
5
2
0

3
0
4
0
5
0

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

5e+00
2e+01

Relative Distance Computations

R
e
l
a
t
i
v
e

E
r
r
o
r

FKM KM++ HKM HKM++ HKMr SMKM++ SMKMr

Fig. .20: Relative distance computations/error on BC (Hartigan-Wong K-
means).

K: 10 K: 25 K: 50 K: 100 K: 250

2 5 1
0

1
5

2
5 2 5 1
0

1
5 2 5 1
0

1
5

2
5 2 5 1
0

1
5

2
5

5
0

1 2 5 1
0

1
5

2
5

5
0

7
5

1
0
0

1e−04

1e−03

1e−02

5e−02
1e−01

Relative Distance Computations

R
e
l
a
t
i
v
e

E
r
r
o
r

FKM KM++ HKM HKM++ HKMr SMKM++ SMKMr

Fig. .21: Relative distance computations/error on DIG (Hartigan-Wong K-
means).

138 7 General Conclusions and Future Work

.4.3 Hartigan-Wong K-means algorithm

Even when the goal of this article is the design of a re-initialization strategy
for Lloyd’s algorithm and its comparison to other multi-start approaches for
the K-means algorithm, in this section we briefly report on the performance
of the Hartigan-Wong K-means algorithm (HKM) for the same settings and
data sets presented in the experimental section.

First of all, we would like to emphasize that HKMr and HKM++ refer
to the multi-start K-means algorithms (initialized via Forgy’s approach and
K-means++, respectively) that are re-initialized through Hartigan’s heuristic.
On the other hand, HKM consists of applying Hartigan’s heuristic recursively,
without running Lloyd’s algorithm, until the heuristic is not able to reduce
the K-means error. Furthermore, we want to highlight that, due to the large
computational time required by HKM, we had to set a time limit of 24 hours
for each repetition of the experiment.

Table .4: Average relative error of HKM for the different data sets and number
of clusters.

Data Set K=10 K=25 K=50 K=100 K=250

BC 0.21 2.28 6.88 11.89 2.50
DIG 0.01 0.02 0.04 0.02 0.02
AC 0.40 0.27 0.32 0.53 0.54
HAR 0.06 0.12 0.16 0.28 0.18
SVA 0.01 0.68 1.46 2.05 2.97
3RN 3.00 7.40 15.21 26.88 61.90
HP 6.10 12.96 19.92 29.58 49.65
ET 3.83 8.10 14.40 26.66 66.17

Unfortunately, for such a time limit, HKM only managed to converge, for
all the repetitions and number of clusters, in two data sets: BC and DIG, see
Fig..20-.21. In both cases, we observe that HKM had a similar behavior to
that of FKM in terms of quality, but computed a larger amount of distances.
However, for K = 250, HKM showed a more competitive performance, leading
to an average relative error of 0.02 in DIG.

As can be seen in Table .4, for the other data sets, HKM failed to generate
competitive approximations, leading to average relative errors of order 102 in
the 3RN, HP and ET.

References

[1] M. Jordan, “Committee on the analysis of massive data, committee on
applied and theoretical statistics, board on mathematical sciences and
their applications, division on engineering and physical sciences, council,
nr, 2013. frontiers in massive data analysis,” Frontiers in Massive Data
Analysis.

[2] R. Jacobson, “2.5 quintillion bytes of data created every
day. How does CPG & Retail manage it?.” https://www.

ibm.com/blogs/insights-on-business/consumer-products/

2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/,
2013.

[3] B. Marr, “How Much Data Do We Create Every
Day? The Mind-Blowing Stats Everyone Should Read.”
https://www.forbes.com/sites/bernardmarr/2018/05/21/

how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/

#60a0f4d60ba9, 2018.
[4] A. Sinha and P. K. Jana, “A novel k-means based clustering algorithm

for big data,” in Advances in Computing, Communications and Informat-
ics (ICACCI), 2016 International Conference on, pp. 1875–1879, IEEE,
2016.

[5] X. Cai, F. Nie, and H. Huang, “Multi-view k-means clustering on big
data.,” in IJCAI, pp. 2598–2604, 2013.

[6] D. Feldman, M. Schmidt, and C. Sohler, “Turning big data into tiny
data: Constant-size coresets for k-means, pca and projective clustering,”
in Proceedings of the twenty-fourth annual ACM-SIAM symposium on
Discrete algorithms, pp. 1434–1453, Society for Industrial and Applied
Mathematics, 2013.

[7] M. Chen, S. A. Ludwig, and K. Li, “Clustering in big data,” in Big Data
Management and Processing, pp. 333–346, Chapman and Hall/CRC,
2017.

[8] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya,
S. Foufou, and A. Bouras, “A survey of clustering algorithms for big

https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#60a0f4d60ba9
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#60a0f4d60ba9
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#60a0f4d60ba9

140 References

data: Taxonomy and empirical analysis,” IEEE transactions on emerg-
ing topics in computing, vol. 2, no. 3, pp. 267–279, 2014.

[9] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM computing surveys, vol. 31, no. 3, pp. 264–323, 1999.

[10] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recog-
nition Letters, vol. 31, no. 8, pp. 651–666, 2010.

[11] P.-N. Tan et al., Introduction to data mining. Pearson Education India,
2007.

[12] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Prentice-
Hall, Inc., 1988.

[13] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 7, pp. 881–892, 2002.

[14] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[15] P. Berkhin et al., “A survey of clustering data mining techniques.,”
Grouping Multidimensional Data, vol. 25, p. 71, 2006.

[16] J.-P. W. Kappmeier, D. R. Schmidt, and M. Schmidt, “Solving k-means
on high-dimensional big data,” in International Symposium on Experi-
mental Algorithms, pp. 259–270, Springer, 2015.

[17] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, S. Y. Philip, et al., “Top 10 algorithms in data
mining,” Knowledge and Information Systems, vol. 14, no. 1, pp. 1–37,
2008.

[18] R. T. Ng and J. Han, “Efficient and effective clustering methods for
spatial data mining,” in Proceedings of VLDB, pp. 144–155, 1994.

[19] R. T. Ng and J. Han, “Clarans: A method for clustering objects for spatial
data mining,” IEEE transactions on knowledge and data engineering,
vol. 14, no. 5, pp. 1003–1016, 2002.

[20] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids
clustering,” Expert systems with applications, vol. 36, no. 2, pp. 3336–
3341, 2009.

[21] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering based on mapre-
duce,” in IEEE International Conference on Cloud Computing, pp. 674–
679, 2009.

[22] O. Bachem, M. Lucic, and A. Krause, “Scalable and distributed clustering
via lightweight coresets,” arXiv preprint arXiv:1702.08248, 2017.

[23] M.-F. F. Balcan, S. Ehrlich, and Y. Liang, “Distributed k-means and
k-median clustering on general topologies,” in Advances in Neural Infor-
mation Processing Systems, pp. 1995–2003, 2013.

[24] C. Ding and X. He, “K-means clustering via principal component anal-
ysis,” in Proceedings of the twenty-first international conference on Ma-
chine learning, p. 29, ACM, 2004.

References 141

[25] J. Drake and G. Hamerly, “Accelerated k-means with adaptive distance
bounds,” in 5th NIPS Workshop on Optimization for Machine Learning,
pp. 42–53, 2012.

[26] C. Elkan, “Using the triangle inequality to accelerate k-means,” in Pro-
ceedings of the 20th International Conference on Machine Learning,
pp. 147–153, 2003.

[27] D. Feldman, M. Monemizadeh, and C. Sohler, “A ptas for k-means clus-
tering based on weak coresets,” in Proceedings of the twenty-third annual
symposium on Computational geometry, pp. 11–18, 2007.

[28] G. Hamerly, “Making k-means even faster,” in Proceedings of the 2010
SIAM International Conference on Data Mining, pp. 130–140, 2010.

[29] M. Lucic, O. Bachem, and A. Krause, “Strong coresets for hard and soft
bregman clustering with applications to exponential family mixtures,” in
Artificial Intelligence and Statistics, pp. 1–9, 2016.

[30] D. Sculley, “Web-scale k-means clustering,” in Proceedings of the 19th
International conference on World Wide Web, pp. 1177–1178, 2010.

[31] H. Steinhaus, “Sur la division des corp materiels en parties,” Bull. Acad.
Polon. Sci, vol. 1, no. 804, p. 801, 1956.

[32] J. Lücke and D. Forster, “k-means is a variational em approximation of
gaussian mixture models,” arXiv preprint arXiv:1704.04812, 2017.

[33] R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy, “The effective-
ness of lloyd-type methods for the k-means problem,” in Foundations of
Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on,
pp. 165–176, IEEE, 2006.

[34] S. Äyrämö and T. Kärkkäinen, “Introduction to partitioning-based clus-
tering methods with a robust example,” Reports of the Department of
Mathematical Information Technology. Series C, Software engineering
and computational intelligence 1/2006, 2006.

[35] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “Np-hardness of
Euclidean sum-of-squares clustering,” Machine Learning, vol. 75, no. 2,
pp. 245–248, 2009.

[36] M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The planar k-means
problem is np-hard,” in International Workshop on Algorithms and Com-
putation, pp. 274–285, 2009.

[37] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the royal statis-
tical society. Series B (methodological), pp. 1–38, 1977.

[38] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer
design,” IEEE Transactions on communications, vol. 28, no. 1, pp. 84–
95, 1980.

[39] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability, vol. 1, pp. 281–297, Oakland,
CA, USA, 1967.

142 References

[40] J. Max, “Quantizing for minimum distortion,” IRE Transactions on In-
formation Theory, vol. 6, no. 1, pp. 7–12, 1960.

[41] L. Bottou and Y. Bengio, “Convergence properties of the k-means algo-
rithms,” in Advances in Neural Information Processing Systems, pp. 585–
592, 1995.

[42] C. D. Manning, P. Raghavan, and H. Schütze, “Evaluation in information
retrieval,” Introduction to Information Retrieval, pp. 151–175, 2008.

[43] O. Bachem, M. Lucic, H. Hassani, and A. Krause, “Fast and provably
good seedings for k-means,” in Advances in Neural Information Process-
ing Systems, pp. 55–63, 2016.

[44] J. M. Peña, J. A. Lozano, and P. Larranaga, “An empirical compari-
son of four initialization methods for the k-means algorithm,” Pattern
Recognition Letters, vol. 20, no. 10, pp. 1027–1040, 1999.

[45] S. J. Redmond and C. Heneghan, “A method for initialising the k-means
clustering algorithm using kd-trees,” Pattern Recognition Letters, vol. 28,
no. 8, pp. 965–973, 2007.

[46] D. Steinley and M. J. Brusco, “Initializing k-means batch clustering:
A critical evaluation of several techniques,” Journal of Classification,
vol. 24, no. 1, pp. 99–121, 2007.

[47] A. Vattani, “K-means requires exponentially many iterations even in the
plane,” Discrete & Computational Geometry, vol. 45, no. 4, pp. 596–616,
2011.

[48] E. W. Forgy, “Cluster analysis of multivariate data: Efficiency vs. inter-
pretability of classifications,” Biometrics, vol. 21, pp. 768–769, 1965.

[49] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proceedings of the 18th annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 1027–1035, 2007.

[50] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii,
“Scalable k-means++,” Proceedings of the VLDB Endowment, vol. 5,
no. 7, pp. 622–633, 2012.

[51] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering
algorithm,” Journal of the Royal Statistical Society. Series C (Applied
Statistics), vol. 28, no. 1, pp. 100–108, 1979.

[52] M. Telgarsky and A. Vattani, “Hartigans method: k-means clustering
without voronoi,” in Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, pp. 820–827, 2010.

[53] F. Nielsen and R. Nock, “Further heuristics for k-means: The merge-
and-split heuristic and the (k, l)-means,” arXiv preprint arXiv:1406.6314,
2014.

[54] N. Slonim, E. Aharoni, and K. Crammer, “Hartigan’s k-means versus
lloyd’s k-means-is it time for a change?,” in IJCAI, pp. 1677–1684, 2013.

[55] L. Bottou and Y. Bengio, “Convergence properties of the k-means algo-
rithms,” in Advances in Neural Information Processing Systems, pp. 585–
592, 1995.

References 143

[56] P. S. Bradley and U. M. Fayyad, “Refining initial points for k-means clus-
tering.,” in Proceedings of the 15th International Conference on Machine
Learning, vol. 98, pp. 91–99, 1998.

[57] I. Davidson and A. Satyanarayana, “Speeding up k-means clustering by
bootstrap averaging,” in IEEE Data Mining Workshop on Clustering
Large Data Sets, 2003.

[58] J. Newling and F. Fleuret, “Nested mini-batch k-means,” in Advances in
Neural Information Processing Systems, pp. 1352–1360, 2016.

[59] S. Har-Peled and S. Mazumdar, “On coresets for k-means and k-median
clustering,” in Proceedings of the 36th ACM Symposium on Theory of
Computing, pp. 291–300, 2004.

[60] A. Kumar, Y. Sabharwal, and S. Sen, “A simple linear time (1 + ε)-
approximation algorithm for k-means clustering in any dimensions,” in
Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science, pp. 454–462, 2004.

[61] J. Matoušek, “On approximate geometric k-clustering,” Discrete & Com-
putational Geometry, vol. 24, no. 1, pp. 61–84, 2000.

[62] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “A local search approximation algorithm for k-means clus-
tering,” in Proceedings of the 18th annual Symposium on Computational
Geometry, pp. 10–18, 2002.

[63] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, “Result analysis of the
nips 2003 feature selection challenge,” in Advances in neural information
processing systems, pp. 545–552, 2005.

[64] C. Boutsidis, P. Drineas, and M. W. Mahoney, “Unsupervised feature
selection for the k-means clustering problem,” in Advances in Neural
Information Processing Systems, pp. 153–161, 2009.

[65] D. Cai, C. Zhang, and X. He, “Unsupervised feature selection for multi-
cluster data,” in Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 333–342, ACM,
2010.

[66] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature selection,” in
Advances in neural information processing systems, pp. 507–514, 2006.

[67] T. HO, “The random subspace method for constructing decision forests,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 8, pp. 832–844, 1998.

[68] G. Louppe and P. Geurts, “Ensembles on random patches,” in Joint
European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 346–361, Springer, 2012.

[69] M. B. Cohen, S. Elder, C. Musco, C. Musco, and M. Persu, “Dimension-
ality reduction for k-means clustering and low rank approximation,” in
Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, pp. 163–172, ACM, 2015.

144 References

[70] Y. Liang, M.-F. Balcan, and V. Kanchanapally, “Distributed pca and
k-means clustering,” in The Big Learning Workshop at NIPS, vol. 2013,
Citeseer, 2013.

[71] M. Holmes, A. Gray, and C. Isbell, “Fast svd for large-scale matrices,” in
Workshop on Efficient Machine Learning at NIPS, vol. 58, pp. 249–252,
2007.

[72] E. Bingham and H. Mannila, “Random projection in dimensionality re-
duction: applications to image and text data,” in Proceedings of the sev-
enth ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 245–250, ACM, 2001.

[73] C. Boutsidis, A. Zouzias, and P. Drineas, “Random projections for k-
means clustering,” in Advances in Neural Information Processing Sys-
tems, pp. 298–306, 2010.

[74] D. Arthur and S. Vassilvitskii, “How slow is the k-means method?,” in
Proceedings of the twenty-second annual symposium on Computational
geometry, pp. 144–153, ACM, 2006.

[75] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval
on composite keys,” Acta informatica, vol. 4, no. 1, pp. 1–9, 1974.

[76] V. Gandhi, J. Kang, and S. Shekhar, “Spatial databases,” tech. rep.,
MINNESOTA UNIV MINNEAPOLIS DEPT OF ELECTRICAL AND
COMPUTER ENGINEERING, 2007.

[77] J. Fonollosa, S. Sheik, R. Huerta, and S. Marco, “Reservoir computing
compensates slow response of chemosensor arrays exposed to fast varying
gas concentrations in continuous monitoring,” Sensors and Actuators B:
Chemical, vol. 215, pp. 618–629, 2015.

[78] M. Capó, A. Pérez, and J. A. Lozano, “An efficient approximation to the
k-means clustering for massive data,” Knowledge-Based Systems, vol. 117,
pp. 56–69, 2017.

[79] M. Capó, A. Pérez, and J. A. Lozano, “An efficient k-means clustering
algorithm for massive data,” arXiv preprint arXiv:1801.02949, 2018.

[80] H. Ding, Y. Liu, L. Huang, and J. Li, “K-means clustering with dis-
tributed dimensions,” in International Conference on Machine Learning,
pp. 1339–1348, 2016.

[81] Z.-J. Bai, R. H. Chan, and F. T. Luk, “Principal component analysis
for distributed data sets with updating,” in International Workshop on
Advanced Parallel Processing Technologies, pp. 471–483, Springer, 2005.

[82] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classifica-
tion, vol. 2, no. 1, pp. 193–218, 1985.

[83] W. M. Rand, “Objective criteria for the evaluation of clustering meth-
ods,” Journal of the American Statistical association, vol. 66, no. 336,
pp. 846–850, 1971.

[84] D. Pelleg, A. W. Moore, et al., “X-means: Extending k-means with effi-
cient estimation of the number of clusters.,” in Icml, vol. 1, pp. 727–734,
2000.

References 145

[85] G. H. Ball and D. J. Hall, “Isodata, a novel method of data analysis and
pattern classification,” tech. rep., Stanford research inst Menlo Park CA,
1965.

[86] I. S. Dhillon, Y. Guan, and J. Kogan, “Iterative clustering of high dimen-
sional text data augmented by local search,” in Data Mining, 2002. ICDM
2003. Proceedings. 2002 IEEE International Conference on, pp. 131–138,
IEEE, 2002.

[87] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen, et al., “Mllib: Machine learning
in apache spark,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 1235–1241, 2016.

[88] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, et al., “Apache
spark: a unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, pp. 56–65, 2016.

[89] J. Fan, R. Samworth, and Y. Wu, “Ultrahigh dimensional feature selec-
tion: beyond the linear model,” Journal of machine learning research,
vol. 10, no. Sep, pp. 2013–2038, 2009.

[90] S. Greenhill and S. Venkatesh, “Distributed query processing for mobile
surveillance,” in Proceedings of the 15th ACM international conference
on Multimedia, pp. 413–422, ACM, 2007.

[91] S. Mitra, M. Agrawal, A. Yadav, N. Carlsson, D. Eager, and A. Mahanti,
“Characterizing web-based video sharing workloads,” ACM Transactions
on the Web (TWEB), vol. 5, no. 2, p. 8, 2011.

[92] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[93] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algo-
rithm for discovering clusters in large spatial databases with noise.,” in
Kdd, vol. 96, pp. 226–231, 1996.

	Preface
	Abstract
	Overview of the Dissertation

	Part I Introduction to the K-means Algorithm on Massive Data
	A Brief Overview of the K-means Algorithm on Massive Data
	Cluster Analysis
	Partitional Clustering
	K-means Problem
	K-means Algorithm
	On improving the scalability of Lloyd's algorithm

	Objectives, hypothesis and methodology
	Objectives
	Hypothesis
	Methodology
	Reducing the number of instances
	Dimensionality Reduction
	Re-start strategy for the K-means algorithm

	Part II Our Contributions
	An efficient approximation to the K-means clustering for massive data
	Recursive partition based K-means
	Recursive Partitions
	Weighted K-means problem
	RPKM Algorithm
	RPKM implementation based on grid partitions

	Theoretical analysis of the RPKM algorithm
	Evolution of the centroids error
	Bounding the iterations of the weighted Lloyd's algorithm

	Experimental section
	Artificial data sets results
	Distance computations
	Quality of the approximation
	Relation distance computations - quality of the approximation

	Real data sets
	Distance computations
	Quality of the approximation
	Relation distance computations - quality of the approximation

	Conclusions

	An efficient K-means clustering algorithm for tall data
	BWKM algorithm
	A cheap criterion for detecting well assigned blocks
	Initial Partition
	Construction of the sequence of thinner partitions
	Computational complexity of the BWKM algorithm

	Additional Remarks
	Parameter selection
	Stopping Criterion

	Experiments
	Conclusions

	A cheap feature selection approach for the K-means algorithm
	K-means relevance for feature selection
	Local/Global approximation step

	Experiments
	Feature Selection
	Feature Extraction

	Conclusions

	An efficient Split-Merge re-start for the K-means algorithm
	The Split-Merge K-means algorithm
	Cluster Split (SplitStep)
	Clusters Merge (MergeStep)
	Error descent conditions

	Experiments
	Quality of the approximation
	Distance Computations
	Error Descent

	Conclusions

	Part III Final Remarks
	General Conclusions and Future Work
	Conclusions
	Future Work
	Main Achievements
	Publications
	Conferences and Workshops
	Short Visits

	Appendix of Chapter 3
	Appendix of Chapter 4
	Proofs
	About the grid based RPKM

	Appendix of Chapter 5
	Proofs
	Feature Selection of KMR
	Some practical results using Remark 1

	Appendix of Chapter 6
	Proofs
	Experiments
	Hartigan-Wong K-means algorithm

	References

