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ABSTRACT： 

The orientation of polymers under confinement is a basic, yet not fully understood phenomenon. In this work, 

the texture of poly(ethylene oxide) (PEO) infiltrated in nanoporous anodic alumina oxide (AAO) templates was 

investigated by X-ray pole figures. The influence of geometry and crystallization conditions, such as pore diameter, 

aspect ratio, and cooling rates, was systematically examined. All the samples exhibited a single, volume-dependent 

crystallization temperature (Tc) at temperatures much lower than that exhibited by bulk PEO, indicating “clean” 

microdomains without detectable heterogeneous nucleation. An “orientation diagram” was established to account 

for the experimental observations. Under very high cooling rates (quenching), crystallization of PEO within AAO 

was nucleation-controlled, adopting a random distribution of crystallites. Under low cooling rates, growth kinetics 

played a decisive role on the crystal orientation. A relatively faster cooling rate (10 °C/min) and/or smaller pores 

lead to the <120>* ║ pore axis (𝒏⃗⃗ ) mode (uniaxial orientation). When the cooling rate was lower (1 °C/min), 

and/or the pores were larger, a mixed orientation, with a coexistence of <120>* ║ 𝒏⃗⃗  and <010>* ║ 𝒏⃗⃗ , was 

observed. The results favor the kinetic model where the fastest growth direction tends to align parallel to the pore 

axis. 

1. INTRODUCTION 

The crystallization behavior of polymers under confinement are attracting increasingly attention because it 

provides a model system to understand basic questions about polymer nucleation and growth kinetics, as well as its 

close relevance to modern nanotechnology, such as nanofabrication and functional nanodevices.1 , 2 , 3 , 4 , 5 , 6 , 7 

Nanoporous anodic alumina oxide (AAO) templates have been widely used to construct a uniform confined 

environment since the development of electrochemical method to fabricate well-ordered arrays.8 The nucleation 

and crystallization of polymers within AAO templates has been the subject of several reviews.2,9,10 

Two general observations have been reported for infiltrated polymers within AAO, i.e., altering of the 



nucleation mechanism and anisotropic crystal growth. Much larger supercoolings are observed for polymers 

infiltrated in AAO, indicating a change of nucleation mechanism from heterogeneous to homogenous or surface 

nucleation.11,12 The presence of fractionated crystallization in infiltrated polymers in AAO templates, where 

several crystallization peaks are observed upon cooling from the melt5 has been recently assigned to the percolation 

of surface film residues that have not been completely removed during the cleaning procedure performed after 

infiltration.13 

Crystal orientation within AAO nanopores is another interesting phenomenon that has also attracted much 

attention. Polymer chains within the crystals typically align with their chain axis (i.e., c axis) perpendicular to the 

pore axis (defined as c ⊥ 𝒏⃗⃗ , hereafter).14 This has been explained by a “kinetic effect” by Steinhart et al.,15 i.e., 

those crystal lamellae with growing direction not parallel to the pore axis are blocked by the wall, while the crystal 

lamellae with the <hk0>* direction parallel to the pore axis are free to grow. It has been realized that the orientation 

mode of “c ⊥ 𝒏⃗⃗ ” is a very “weak” restriction for crystal growth, usually resulting in a low degree of anisotropy.13 

A geometrically similar 2D confined system is the well-studied cylinder-forming block copolymers, however, 

the orientation model was quite different with respect to the “c ⊥ 𝒏⃗⃗ ” mode.16 Huang et al. studied the crystal 

orientation of PEO block nanocylinders (with a diameter of 13.7 nm) within a PS matrix in a PEO-b-PS/PS blend.17 

It was shown that the crystallization temperature played a significant role in the crystal orientation. At very low 

crystallization temperature (Tc), PEO crystals were randomly oriented within the confined cylinders. Upon 

increasing the crystallization temperature (-30 °C ≤ Tc ≤ 0 °C), the crystal orientation changed to be inclined with 

respect to the cylinder axis. When the sample was crystallized at Tc ≥ 2°C, a uniaxial orientation with the <120>* 

direction parallel to the pore axis was found. This orientation mode resulted from the alignment of maximum PEO 

crystal growth direction (<120>*) with the channel axis. 

Table 1 summarizes the orientation of polymer crystals confined in AAO nanopores. Except for several 



particular reports,12,15,18,19 the majority of the systems exhibit uniaxial orientation or a mixed structure with two 

types of uniaxial orientations. It is noticed that the structure of many systems could be explained by the alignment 

of the fastest growth direction with the pore axis, such as in PEO20,21,22 and in PE.23,24 Two modes of crystal 

orientation were identified in PEO infiltrated within AAO, namely, perpendicular orientation with the normal 

direction of (120) plane (i.e., <120>* direction) aligning parallel to the pore axis and tilt orientation with the <120>* 

tilted 45° away from the pore axis.20,21 Two types of orientation were also observed in poly(caprolactone) (PCL),13 

isotactic polypropylene (iPP),13 PVDF,25,26 and syndiotactic polypropylene (sPP).27 There is still a lack of a 

reasonable explanation of the coexistence of different orientation modes. 

Thermodynamics or surface effects play a role in the crystal orientation as well. When the size of the AAO 

pores is smaller than the contour length of the low molecular weight poly(ethylene oxide) (PEO), the polymer 

crystallized into its thermodynamic stable structure by maintaining the extended chain crystal with polymer chains 

align parallel to the AAO axis.22 The “parallel orientation” observed in infiltrated syndiotactic polystyrene (sPS) 

within AAO templates was explained by a surface nucleation effect.18 

Apart from the lack of a general model for the orientation of polymers confined in AAO templates, it should 

be noted that the characterization of the texture is frequently inadequate in the literature. The most commonly 

applied two-dimensional X-ray diffraction method, only provides limited information of the reciprocal space. 

Further, the influence of the pore diameter, aspect ratio, as well as crystallization conditions have not been 

quantitatively investigated yet. In this work, X-ray pole figure measurements are employed to characterize 

infiltrated PEO in AAO templates to get a full picture of the crystal orientation. It was shown that PEO 

predominately adopted a uniaxial orientation in AAO with the <120>* direction parallel to the pore axis (𝒏⃗⃗ ). 

Smaller diameter and higher aspect ratio resulted in higher degrees of orientation. Cooling rate played the most 

significant role in the crystal orientation. A “tilted orientation” of PEO was confirmed, which is in line with the 



report of Liu and Chen.20,21 However, a new explanation was proposed to justify the multiple uniaxial orientational 

phenomena by investigating the influence of geometry and crystallization conditions. 

Table 1. Summary of the Orientation of Infiltrated Polymer Crystallites within AAO Nanopores. 

Polymer Infiltration method 
Surface 

layera 

Crystallization 

condition 
Orientationb ΦAAO (nm) Ref. 

PEO 

melt, nanorod N  
<120>*║ 𝒏⃗⃗  30, 60 & 100 

22 
c ║𝒏⃗⃗  10 

solution, nanotube N 
-40 °C,  -20 °C, 

0 °C, and 20 °C 
<120>* ║ 𝒏⃗⃗  or tilted 45° 23 & 89 20 

melt, nanorod N 
-40 °C,  -20 °C, 

0 °C, and 20 °C 
<120>* ║ 𝒏⃗⃗  or tilted 45° 23 & 89 21 

melt N  c ⊥ 𝒏⃗⃗  20 12 

melt, nanotube N  <120>* ╫ 𝒏⃗⃗  400 19 

PE 

melt, nanorod N 1 °C /min mainly 𝒃⃗⃗  ║ 𝒏⃗⃗  60 23 

melt, nanorod N 0.5 °C/min b ║ 𝒏⃗⃗  15 to 220 24 

melt, nanorod Y 120 °C mainly 𝒃⃗⃗  ║ 𝒏⃗⃗  200 28 

PVDF 

melt, nanotube N  b ║ 𝒏⃗⃗  400 & 1000 14 

melt, nanorod & 

nanotube 

N 1 °C /min  <hk0>* ║ 𝒏⃗⃗  
35 & 400 15 

Y 1 °C /min <020>* ║ 𝒏⃗⃗   

melt, nanotube N 

1 °C /min,  

136 °C, 140 °C or 

152 °C 
<020>* or <110>* ║ 𝒏⃗⃗  400 25 

melt, nanotube N 1 °C/min 
<020>* ║ 𝒏⃗⃗  (majority) 

or <110>* ║ 𝒏⃗⃗  
400 26 

solution, nanorod,  Y 60 °C b ║ 𝒏⃗⃗  150-200 29 

P(VDF-TrFE) 

melt, nanorod & 

nanotube 
N 2 °C/min <200>* or <110>* ║ 𝒏⃗⃗  400 30 

solution, nanorod Y 135 °C a ║ 𝒏⃗⃗  40, 60 & 80 31 

melt, nanorod Y 125 °C c ⊥ 𝒏⃗⃗  15 & 40 
32 

melt, nanotube Y 125 °C random 200 

sPP melt, nanorod N slow cooling 
<020>* ║ 𝒏⃗⃗  110, 300 

27 
<200>* or <020>* ║ 𝒏⃗⃗  30 

iPP 
melt, nanorod N  

a* or b* ║ 𝒏⃗⃗  (mixed) 15, 40 
33 

random (200 nm) 200 

melt, nanorod N 1 °C/min a* or b* ║ 𝒏⃗⃗  (mixed) 20 to 400 13 

PCL 

melt, nanorod N 1 °C/min 
ΦAAO > 40 nm, c⊥ 𝒏⃗⃗ ; 

ΦAAO ≤ 40 nm, c ⊥ 𝒏⃗⃗  or b* || 𝒏⃗⃗  
20 to 400 13 

melt, nanorod N 
3 °C/min  

or 50 °C/min 
 <110>* or <100>* ║ 𝒏⃗⃗  

25, 35, 65 & 

200 
34 

sPS 

melt, nanorod Y 255 °C c ⊥ 𝒏⃗⃗  32, 80 & 200 18 

melt, nanorod N 
260 °C c ⊥ 𝒏⃗⃗  (β-form) 

80 & 200 35 
240 °C random (α-form) 

iPS 
melt, nanorod Y 170 °C 

 <100>* ║ 𝒏⃗⃗   300 
36 

<110>* / <100>* ║ 𝒏⃗⃗  65 

melt, nanorod, Y 170 °C mainly c ⊥ 𝒏⃗⃗  65 37 

PLLA melt, nanorod N  <110>*/<200>* ║ 𝒏⃗⃗  
40, 75, 200, 

& 385 
38 

PBA 
melt, nanotube N 20 °C/min 

mainly b ║ 𝒏⃗⃗  (β-phase) 30 & 70 
39 

nearly random (β-phase) 100 

melt, nanotube N 33 °C or 35 °C mainly b ║ 𝒏⃗⃗  (α-phase) 100 & 200 40 

P3HT solution, nanotube N 
as-prepared b ║ 𝒏⃗⃗  

240 41 
annealed at b ║ 𝒏⃗⃗  (majority) or a ║ 𝒏⃗⃗  



200 °C 

10 °C/min b ║ 𝒏⃗⃗  (majority) or a ║ 𝒏⃗⃗  

as-prepared b ║ 𝒏⃗⃗  

60 
annealed at 

200 °C 
b ║ 𝒏⃗⃗  

10 °C/min b ║ 𝒏⃗⃗  (majority) or a ║ 𝒏⃗⃗  

solution, nanotube N  b ║ 𝒏⃗⃗  65 42 

PTT melt, nanorod Y 3 °C/min a ║ 𝒏⃗⃗  20-400 43 

PFO melt, nanorod 

Y 0.5 °C/min c ║ 𝒏⃗⃗  

25, 35 & 60 44 N 50 °C/min 
<530>* ║ 𝒏⃗⃗  (majority) 

or <200>* ║ 𝒏⃗⃗  

N low cooling rates <008>* ║ 𝒏⃗⃗  

nylon-12 melt, nanorod N 160 °C b ⊥ 𝒏⃗⃗  c 65 & 300 45 

a The letter “N” is an abbreviation for “No” and “Y” is an abbreviation for “Yes”. 

b <hkl>* indicates the direction in reciprocal space, which is normal to the (hkl) plane in real space. The 𝒏⃗⃗  represents the pore axis, 

which is normal to the surface plane of the AAO template. 

c The chain axis is defined as b-axis in nylon-12. 

2. EXPERIMENTAL SECTION 

2.1 Materials and Sample Preparation 

Close to monodisperse poly(ethylene oxide) (PEO), with number-average molecular weight of 10,000 g/mol 

and polydispersity of 1.05, was purchased from Polymer Source Inc. The AAO templates with pore diameters of 40, 

100 and 400 nm, and pore lengths of 100, 50, 20 and 5 μm were prepared by a two-step electrochemical 

anodization of aluminum as described in our previous paper.13 

Before infiltration with PEO solution, the AAO templates were washed with acetone and ethanol to remove 

possible impurities. The concentration of the PEO chloroform solution was 10 mg/ml. The solution was drop casted 

on the AAO templates and dried in air. Then the AAO templates were treated at 100 °C under vacuum for 1 hour to 

remove residual solvent. The casting-heating process was repeated several times to ensure that the nanopores were 

fully infiltrated. The residual PEO on the surface of AAO templates was removed using a polish cloth to ensure the 

separate crystallization of PEO within the nanopores. Unless specified, the samples were crystallized at a constant 

cooling rate of 10 °C/min. 

2.2 Characterization 

Thermal analysis was conducted with a differential scanning calorimeter (DSC Q2000, TA). The instrument 



was calibrated with indium before measurements. The samples of ∼5 mg with the aluminum base were weighed, 

and encapsulated in aluminum pans for DSC measurements. All the samples were first heated to 100 ºC and held 

for 3 min to eliminate the thermal history. Then the samples were scanned from 100 to -50 °C at a cooling and 

heating rate of 10 °C/min under high purity nitrogen atmosphere. 

2D Wide angle X-ray diffraction (WAXD) measurements were carried out at room temperature on a Xeuss 2.0 

SAXS/WAXS system (Xenocs SA, France). CuKα X-ray source (GeniX3D Cu ULD), generated at 50 kV and 0.6 

mA, was utilized to produce X-ray radiation with a wavelength of 1.5418 Å. A semiconductor detector (Pilatus 300 

K, DECTRIS, Swiss) with a resolution of 487 × 619 pixels (pixel size = 172 × 172 μm2) was used to collect the 

scattering signals. The scattering geometry is indicated in Figure 1. The ψ angle and φ angle are all set to 0°. The 

X-ray irradiates the sample along the x-axis with an incident angle of 3° with respect to the AAO surface. The 2D 

detector is placed perpendicular to the incident beam. The exposure time for each pattern is 5 min. The 

one-dimensional intensity profiles were integrated from the 2D WAXS patterns, averaged along the azimuthal 

angle. 

The pole figures were measured with D8 DISCOVER X-ray diffractometer (Bruker) in reflection geometry. 

The wavelength of the radiation was 1.5406 Å. A 1D detector, the Bruker LYNXEYE, was employed to collect the 

intensity. Prior to the pole figure measurement, a specular scan was carried out to confirm the 2θ angle of the 

reflections. The diffraction angles were set as 19.1° and 23.3° for the two strongest reflection peaks (120) and 

(112)/(032)/(13̅̅̅̅ 2)/(21̅̅̅̅ 2), respectively.46 These crystal planes have similar d-spacing of about 0.39 nm. Figure 1 

shows a schematic of the measurement geometry. The sample was mounted on top of a sample stage on an Eulerian 

cradle. During measurement, the sample rotated stepwise around the z (𝒏⃗⃗ ) axis (φ angle) and the x axis (ψ angle). 

The range of ψ was set from 0° to 80° with an angular interval of 5° and the exposure time of 10 s. 



 

Figure 1. Schematic diagram of the experimental setup for pole figure measurement. 

3. RESULTS AND DISCUSSION 

3.1 DSC and WAXD 

 

Figure 2. (a) DSC cooling curves of infiltrated PEO in AAO templates with different pore size. (b) Crystallization 

temperature (Tc, black square), calculated Tc (blue sphere) and melting temperature (Tm, red triangle) of infiltrated 

PEO in AAO as a function of pore volume. (c) 2D WAXD pattern of PEO confined within the AAO template with 

pore depth of 100 μm, and pore diameter of 100 nm. The beam center is represented by a white cross. (d) 

Corresponding 1D intensity profile of the infiltrated PEO, obtained by averaging the intensity along the azimuthal 

angle. 



Figure 2a shows that all the samples crystallized at very large supercoolings, which agrees with previous 

reports.12,22 Only one peak is observed for all the samples, indicating that the number of nanopores without any 

active nucleating heterogeneity for PEO is much larger than the number of such heterogeneities in bulk PEO3. 

Therefore, the overwhelming majority of the nanopores did not contain heterogeneous nucleation sites and no 

surface film that could percolate pores was formed in any of the infiltrated AAO templates.13 The 

crystallization/melting temperatures, as a function of pore volume, are plotted in Figure 2b. A very clear trend can 

be observed, that is, the crystallization temperature of the samples decreases with pore volume. The estimated Tc 

according to the empirical formula obtained by Müller et al. for homogenously nucleated PEO phases within block 

copolymers and for PEO droplets, 𝑇c(°C) = −41.8 + 2.89 log (𝑉d (nm3)), was also plotted in Figure 2b.3 The Tc 

values differ only about 2 ~ 4 ºC. Therefore, as previously reported for PEO, homogeneous nucleation probably 

occurs inside the volume of infiltrated material without any influence of the alumina surface.47,48 The Tm values are 

nearly constant, indicating the crystals have similar thermodynamic stability, which agrees with previous reports.13, 

22 

A typical 2D WAXD pattern of infiltrated PEO is shown in Figure 2c and the corresponding intensity profile is 

plotted in Figure 2d. The (120) reflection locates on the meridian and the (112)/(032)/(13̅̅̅̅ 2)/(21̅̅̅̅ 2) reflection locates 

mainly on the off-meridian area. The basic features of the 2D pattern agree well with the previous reports.12,20,22 

Although the pattern only covers a slice of the reciprocal space depending on the scattering vector, such pattern has 

been interpreted as an evidence for the <120>* direction of the PEO crystals aligning parallel to the pore axis 

(<120>* ║ 𝒏⃗⃗ ). 20,21,22 

3.2 Pole Figures of Infiltrated PEO 

The pole figures corresponding to (120) and (112)/(032)/(13̅̅̅̅ 2)/(21̅̅̅̅ 2) reflections of the infiltrated PEO crystals 

in AAO templates with different diameters are shown in Figure 3. The depth of the templates (100 μm) and the 



thermal history of the samples (10°C/min cooling) are the same. The intensity of the (120) pole figures show 

maximum values at ψ = 0°, which means that the (120) crystal plane normal is preferentially aligned parallel to the 

pore axis. The pole figures of (112)/(032)/(13̅̅̅̅ 2)/(21̅̅̅̅ 2) reflections resemble rings with maxima located at ψ ≈ 30°. 

As shown in Table 2, the crystal planes with similar d-spacings, occasionally, have similar inclination angle with 

respect to the (120) plane within the range of 34-35°. Therefore，the pole figures agree with the texture that the (120) 

plane normal or the <120>* in reciprocal space align with the pore axis. The (120) crystal plane is the fastest 

growth plane in PEO.49,50,51,52 Therefore, the commonly reported result that the maximum growth direction aligns 

along the pore axis is confirmed, which agrees with the texture of PEO crystals in strongly segregated block 

copolymers crystallized at low supercoolings.17 

Table 2: The Angle between Different Crystal Planes in PEO. 

plane 120 112 032 13̅̅̅̅ 2 21̅̅̅̅ 2 100 010 

d-spacing (Å) 4.624 3.856 3.812 3.786 3.775 6.560 13.04 

2θ (°) 19.2 23.0 23.3 23.5 23.6 13.5 6.77 

angle to (120) (°) 0 34.7 35.1 33.9 34.7 45.2 44.8 

angle to (100) (°) 45.2 29.6 73.8 72.5 28.9 0 90 

angle to (010) (°) 44.8 72.8 28.7 29.4 73.2 90 0 

The influence of pore diameter is examined first, for which the templates have the same depth and the same 

thermal history. The general feature of those pole figures are similar. The orientation condition can be seen more 

clearly in the intensity profiles along ψ obtained by averaging circularly along φ angles (see Figure 4). It is shown 

that, as pore diameter decreases, the degree of orientation remains very similar. This is in accordance with our 

previous study,22 where the orientation of the crystal planes basically remains the same as the pore diameter is 

varied above a critical value. Another noteworthy feature is that a shoulder peak at ψ = 45° appeared for the (120) 

reflection for the sample with 400 nm AAO (arrow in the figure). 

The tilted (120) orientation has been observed recently by Liu and Chen,20,21 where they explained it by the 

possible “double constrains” imposed by the AAO wall and by the neighboring crystallites when the nucleation 



density is high. Although apparently possible, however, this model could not fully explain why the tilt angle (45°) 

was independent of crystallization temperatures (i.e., nucleation densities), molecular weights, and pore diameters, 

all of which are expected to influence the “strength” of the constrains caused by the neighboring crystallites. The 

tilt angle seems more like an intrinsic property of the PEO crystal rather than an environmental or kinetic effect. To 

account for the above observations, therefore, we propose an alternative explanation. Table 2 lists the angles 

between different crystal planes in PEO, calculated according to the unit cell parameters proposed by Takahashi and 

coworkers.53 It is interesting to find that the angle between (120) plane and (100) or (010) plane happened to be 

45°. According to crystal growth studies on PEO, it has been reported that the (010) crystal plane is another fast 

growth plane of PEO.50,51,52 If a minor PEO crystal population assembles within the AAO templates with the 

<010>* parallel to the pore axis (<010>* ║ 𝒏⃗⃗ ), the reflection of (120) plane of those crystals will exhibit a 45° tilt 

angle with respect to the pore axis, thereby satisfactorily explaining the observed results. 

 

Figure 3. Pole figures of (a - c) the (120) reflections, and (d - f) the (032) reflections of infiltrated PEO in AAO 

templates with pore depth of 100 μm, and pore diameters of (a, d) 400 nm, (b, e) 100 nm, and (c, f) 40 nm. 



 

Figure 4. Azimuthal profiles of (a) the (120) reflections, and (b) the (032) reflections of infiltrated PEO in AAO 

templates with pore depth of 100 μm, and pore diameters of 400 nm, 100 nm, and 40 nm. 

3.3 Effect of Pore Depth 

There are few studies concerning the effect of pore depth which influences the volume and shape of the pore 

and may influence the crystal orientation as well. In extreme cases when the pore depth is very small, a transition 

from 2D to 3D confinement would occur and the crystallites would be statistically random. Figure 5 shows the pole 

figures of PEO crystal planes confined in AAO with the same diameter (100 nm) and different pore depths (100, 50, 

20, and 5 μm), while the azimuthal profiles are shown in Figure 6. 

Before the pole figure measurements, the samples were first held at 100 °C for 3 min to erase their thermal 

history, and then crystallized at a cooling rate of 10 °C/min. The features of the pole figures are very similar, 

exhibiting predominately the <120>*║ 𝒏⃗⃗  texture. The azimuthal profiles indicate that the degree of orientation 

increases with pore depth and thus confirms our hypothesis, although the smallest depth of the pores (5 μm) is still 



sufficiently large as compared with the diameter (100 nm). 

 

Figure 5. Pole figures of (a - d) the (120) reflections, and (e - h) the (032) reflections of infiltrated PEO in AAO 

templates with pore diameter of 100 nm, and pore depths of (a, e) 100 μm, (b, f) 50 μm, (c, g) 20 μm, and (d, h) 5 

μm. 

  

Figure 6. Azimuthal profiles of the (120) reflection (a) and the (032) reflection (b) of infiltrated PEO in AAO 

templates with pore diameter of 100 nm, and pore depths of 100 μm, 50 μm, 20 μm, and 5 μm. 



3.4 Effect of Cooling Rate 

It could be clearly seen in Figure S1 (supporting information) that the crystallization temperature decreased with 

the increase of cooling rate, and only one crystallization peak was observed for all the cooling rates. Figure 7 shows the 

pole figures of infiltrated PEO in AAO templates with different cooling rates. Once more, the general feature of the 

orientation mode is the same. However, the degree of orientation significantly decreases when the sample is 

quenched in liquid nitrogen. This is more pronounced in the azimuthal profiles of the pole figures (see Figure 8). 

The cooling rate influences the interplay between nucleation rate and crystal growth rate, therefore, it has a 

strong influence on the developed crystalline texture. Since the PEO nucleates homogeneously within AAO, at 

lower cooling rates or higher isothermal crystallization temperatures, nucleation is the dominating step and crystal 

growth proceeds almost instantaneously. Under this circumstance, the crystallization kinetics would be first order 

with an Avrami index of 1.9,54 With the increase of cooling rate or decrease of crystallization temperature, the 

nucleation rate will increase and the growth rate will decrease relative to one another. Under the extreme condition 

of ultra-high nucleation rate, many nuclei will form simultaneously within in one pore and the crystals grow little 

before they impinge with adjacent crystals. In this case, the nuclei will not “feel” the restricted geometry, hence 

isotropic texture would be observed. This is most obvious in the quenched sample. 

 

Figure 7. Pole figures of (a - c) the (120) reflections, and (d - f) the (032) reflections of infiltrated PEO in AAO 



template with the pore diameter of 100 nm, and pore depth of 100 μm, crystallized at different cooling rate. (a, d) 

crystallized at a cooling rate of 1 °C/min, (b, e) crystallized at a cooling rate of 10 °C/min, and (c, f) quickly 

quenched into liquid nitrogen. 

 

Figure 8. Azimuthal profiles of (a) the (120) reflections, and (b) the (032) reflections of infiltrated PEO in AAO 

template with the pore diameter of 100 nm, and pore depth of 100 μm, crystallized at different cooling rate. 

A closer look at Figure 8a shows that a small peak appears at ψ = 45° in the azimuthal profile of the (120) 

reflection for the PEO infiltrated in the AAO template with a cooling rate of 1 °C/min. The fact that a lower cooling 

rate is beneficial for the <010>* ║ 𝒏⃗⃗  orientation probably indicates the different temperature dependence of the 

growth rates of different planes. It is probable that at a lower cooling rate, the growth rate of (010) plane is 

comparable to that of (120) plane. Thus a mixed structure of <120>* ║ 𝒏⃗⃗  and <010>* ║ 𝒏⃗⃗  can be observed. 

Marentette et al. have shown in bulk PEO spherulites that the dominant crystal growth face transformed from (120) 

plane at lower supercoolings (Tc > 51°C) to (010) plane at higher supercoolings (Tc < 51°C).52 However, no crystal 



growth data is available at extremely high supercoolings (Tc < -10°C). 

Figure 9 shows the azimuthal profiles of the (120) pole figures of other samples. The PEO infiltrated in AAO 

with a diameter of 100 nm and a depth of 50 μm (Figure 9a) exhibits similar features as in Figure 8. However, the ψ 

= 45° peak is not observed at all, even at the lowest cooling rate (1°C/min), for the sample with a smaller depth (20 

nm, Figure 9b). For the sample with 400 nm diameter and 100 μm length, the ψ = 45° is observed for both 1 and 

10°C/min. The infiltrated PEO within AAO with 40 nm diameter and 100 μm length does not show the ψ = 45° 

(Figure 9d). 

 
Figure 9. Azimuthal profiles of the (120) reflections of infiltrated PEO in AAO template with the pore diameter of 

100 nm, and pore depths of (a) 50 μm and (b) 20 μm, and in AAO template with the pore depth of 100 μm, and 

pore diameters of (c) 400 nm, and (d) 40 nm, crystallized at different cooling rate. 



 

Figure 10. Diagram of the orientation mode of infiltrated PEO in AAO templates. The pore diameters and pore 

depths of the AAO templates were 400 nm - 100 μm (square), 100 nm - 100 μm (circle), 100 nm - 50 μm (down 

triangle), 100 nm - 20 μm (diamond), 40 nm - 100 μm (up triangle), respectively. 

The above results can be illustrated in an “orientation diagram” as shown in Figure 10. The diagram can be 

divided into three regions. Under super-high cooling rates (such as quenching), the nucleation density is extremely 

high, resulting in a random orientational texture, irrelevant to the size of the domains. When the cooling rates are 

lower, the texture of the samples are determined by kinetic effects, i.e., the fastest growth direction aligns parallel 

with the pore axis. Two textures are found at low cooling rates. In the top-left region with smaller pores and/or 

higher cooling rates, only the <120>* ║ 𝒏⃗⃗  mode is observed. The bottom-right region with larger pores and/or 

lower cooling rates exhibits mixed orientation modes of <120>* ║ 𝒏⃗⃗  and <010>* ║ 𝒏⃗⃗ . 

3.5 Remarks on the Orientation Model 

Our results show that the orientation of infiltrated PEO in AAO templates agrees largely with the report of 

Huang et al.17 in cylinder-forming block copolymers containing PEO, which is different from the model proposed 

by Steinhart et al.15 in PVDF. Which model is more probable? A first look at Table 1 tells us that most of the reports 

fit the uniaxial/mixed orientation model. Probably, the PVDF is the only polymer where all (hk0) planes are able to 

grow under confinement. On the other hand, surface film residues of infiltrated polymers often manifest itself by 

showing multiple crystallization peaks.13 It is not clear how significant the residual polymer films on the surface of 



the AAO templates would influence the orientation of crystals. 

Regardless of incompleteness, it is fairly safe to state “the chain axis is perpendicular to the pore axis”. This 

allows the crystals to “rotate freely” around the chain axis, leading to the texture with all the (hk0) visible on the 

specular scan of XRD. Meanwhile, the crystals could also rotate freely around the pore axis. Except under 

super-high cooling rates, this statement seems always valid for crystallization under confinement governed by 

kinetics. 

Another implication of the present work is that the crystal growth kinetics under very high supercoolings can 

be probed by studying the orientation feature of polymer confined in AAO, which is not possible for bulk samples. 

At least, the fastest growth plane could be readily read out. An important assumption is that the primary nuclei are 

randomly oriented. This is most likely true for homogeneous nucleation, still need to be explored in systems with 

surface nucleation. 

4. CONCLUSIONS 

In this work, a semi-quantitative study of the orientation of PEO confined in AAO templates was carried out 

for the first time by pole figure measurements. The influence of pore diameter, pore length and cooling rate was 

examined. Uniaxial orientation and mixed orientations were observed in PEO, in favor of the kinetic model 

proposing that the fastest growth direction aligns parallel to the pore axis. An “orientation diagram” was established 

to account for the two most important factors governing the crystal orientation texture. By quenching, 

crystallization of PEO within AAO was nucleation-controlled, exhibiting a random distribution of crystallites. 

Under low cooling rates, crystal growth rate played a decisive role on the crystal orientation. Relatively faster 

cooling rates and smaller pores lead to the <120>* ║ 𝒏⃗⃗  orientation. When the cooling rate was even lower, and/or 

the pores were larger, mixed orientations, with a coexistence of <120>* ║ 𝒏⃗⃗  and <010>* ║ 𝒏⃗⃗ , was observed. The 

texture of the polymer within AAO provides hints on the crystal growth kinetics at high supercoolings which are 



inaccessible in bulk studies. 
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