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Resumen

La expansién acelerada del universo es uno de los pilares de la cosmologia actual. Para
estudiarlo, en esta tesis se usan observaciones geométricas del universo para poner a prueba
la viabilidad de modelos cosmolégicos que describen dicha expansion y restringir su espacio
de pardmetros. Estas observaciones no se centran en las estructuras que observamos
hoy en dia, sino en el universo a gran escala para trazar su geometria de fondo, o de
manera equivalente de acuerdo con la Relatividad General, su contenido energético y/o
material. La informacidén que aportan se contrastan con nuevos modelos que se proponen
como alternativa a ACDM, el modelo cosmolégico estandar de consenso. Su nombre
deriba de los dos principales componentes que tendria el universo: A como la constante
cosmoldgica que impulsa la expansién acelerada del universo, y CDM para la materia
oscura fria que permite explicar la formacién de estructuras correctamente. Aunque este
modelo describe con gran éxito el universo observado, deja abiertas algunas preguntas
tedricas como por ejemplo una explicacion completa para la existencia de la constante
cosmoldgica, o qué compone exactamente la materia oscura. Ante las incoégnitas abiertas,
los nuevos modelos alternativos tratan de describir el universo de una forma distinta,
usando mas grados de libertad para intentar captar cualquier sutileza en la expansién
cosmolégica que podria derivar en una explicacién teérica mas completa, o por lo menos
una mejor comprensién fenomenolégica. Generalmente estos modelos alternativos se
enfocan en la aceleracion tardia del universo, y se suelen denominar como energia oscura.
Pero en el caso de la materia oscura suele implicar variaciones de su proporcién respecto
a las demas componentes del universo. La teoria estadistica con la que se ponen a prueba
los diferentes modelos respecto a las observaciones cosmoldgicas es en el marco de la
inferencia Bayesiana, donde todos los modelos cosmolégicos considerados se comparan
entre ellos utilizando observaciones del fondo cosmolégicos recientes.

Estas observaciones cosmolégicas han evolucionado desde las primeras que hizo Hubble
a principios del siglo XX mostrando indicios de un universo en expansién, y desde entonces
han ido incrementando su precisién a lo largo del siglo pasado. Tal ha sido el avance
que hoy en dia las observaciones del fondo cosmolégico predicen con mucha precisién
el contenido energético y material del universo. Ademads, las observaciones del fondo
cosmolégico concuerdan en gran medida con observaciones astrofisicas donde se refleja
la existencia de la materia oscura, y también concuerdan con estudios detallados de las
trazas de las perturbaciones cosmolégicas que recientemente han permitido las nuevas



tecnologias.

En cosmologia, la mayoria de las observaciones disponibles de naturaleza geométrica,
por asi decirlo, sirven como indicadores de distancia para objetos lejanos, lo que permitiria
cuantificar el ritmo de expansién del universo en la época en que la sefal luminosa
correspondiente fue emitida. Ya sean objetos astrondémicos de luminosidad conocida
como es el caso de las supernovas tipo la (SNe la), o la escala de oscilaciones acdsticas
bariénicas (BAO) en la distribucién de galaxias, todos los indicadores de distancia se
clasifican en dos categorias: luminarias estdndar o reglas estandar respectivamente.

Aunque estas observaciones hayan ido madurando y refindndose con el tiempo desde
su concepcién, la creciente precisién de las medidas y la extensiéon de los catalogos en
las observaciones estan llevando la cosmologia a una era de alta precisién, siendo uno
de los hitos la observacién en 1998 de la expansién acelerada del universo usando SNe
la. La reciente medicién de las anisotropias del fondo césmico de microondas (CMB)
hecho por la colaboracién Planck también ha sido extraordinaria, donde las mediciones
alcanzaron una precision sin precedentes. Esta cosmologia de alta precisién también abre
posibilidades de nuevos tipos de observaciones en el futuro cercano, como es el caso
estudiado en el Capitulo 6.

En la Parte |, repasamos la base tedrica utilizada a lo largo de esta tesis, explicando
todo lo necesario para someter a examen diferentes modelos cosmolégicos en el marco
estadistico de la inferencia Bayesiana utilizando observaciones cosmoldgicas.

En el Capitulo 1, comenzamos introduciendo conceptos basicos de la Relatividad General
aplicados a la cosmologia. Exponemos el principio cosmoldgico, donde se supone que el
universo es isétropo y homogéneo partiendo del principio Copernicano de que nuestra
posicién en el universo no es privilegiada, ademas de estar contrastado por numerosas
observaciones cosmoldgicas. Gracias al principio cosmolégico, la métrica que describe el
universo a gran escala se puede simplificar significativamente, y la necesidad de describir
la expansién cosmoldgica junto con los anteriores argumentos conducen a la métrica de
Friedmann-Lemaitre-Robertson-Walker.

Aplicando esta métrica a las ecuaciones de campo de Einstein, se consiguen las
ecuaciones de Friedmann, que describen la evolucién del universo, donde solo faltaria
especificar su contenido energético y/o material. Analizando los diferentes constituyentes
posibles, como la radiacién, la materia, u otros fluidos, mostramos la posible evolucién que
el universo puede presentar para cada caso. Estas diferencias en la evolucién del universo
se ven reflejadas en la funcién de Hubble que se define en las ecuaciones de Friedmann.
Terminamos el capitulo describiendo el modelo cosmolégico estandar de concordancia,
llamado ACDM, mostrando su funcién de Hubble donde persisten las grandes incognitas
de la cosmologfa, la materia oscura fria (CDM) y la constante cosmoldgica A.

En el Capitulo 2 describimos de forma general como se miden las distancias en un
universo en base a las referencias fisicas que estén disponibles para inferirlas. Definimos
primero la distancia comévil basicamente como una integral del inverso de la funcién de
Hubble, que es a su vez la construccién basica de donde se generan las demaés distancias
usadas en las observaciones, como la distancia luminosa y angular. La distancia comovil



luminosa esta definida por la disminucién del flujo energético percibida por un observador
comparado a la emisién energética total de una fuente. Por otro lado, la distancia comdvil
angular estad dada por el aparente dngulo que muestra en el cielo un objeto de cierto
tamafio. Para ambos casos hacen falta objetos con ciertas caracteristicas: para el primer
caso son objetos de luminosidad conocida llamados luminarias estandar, y para el segundo
caso objetos de tamano conocido llamados reglas estandar.

Las luminarias estandar son objetos astronémicos cuya luminosidad es afin a la con-
struccién de modelos solventes. Todos los objetos astronémicos lejanos del mismo tipo
que cumplen esta propiedad permiten deducir la distancia comévil luminosa a la que se
encuentran, como es el caso de las cefeidas 0 mas recientemente, las supernovas tipo la,
y son parte esencial de la conocida escalera césmica para las distancias.

Las reglas estandar son objetos o formaciones cuyo tamafio es conocido, por lo que
permite calcular la distancia comévil angular a la que se encuentran midiendo el dngulo
que presentan en el cielo. La tnica formacién dentro de esta categoria lo suficientemente
grande como para ser (til en cosmologia es la escala a la que se congelaron las oscilaciones
acusticas de bariones durante la recombinaciéon. Estas oscilaciones presentes en el plasma
primigenio donde bariones y fotones estaban acoplados se originaron a partir de las
fluctuaciones cuanticas iniciales. Pero cuando la temperatura del universo disminuyé lo
suficiente como para que se formasen los dtomos de hidrégeno, los fotones y los bariones
dejaron de interaccionar entre si fijando en ese momento la escala de las oscilaciones, y a
partir de ahi cada componente evoluciond por su cuenta.

Es por ello que hoy en dia tenemos dos formas de medir esa escala, dependiendo de si
observamos los bariones o los fotones. En el primer caso, se puede extraer la escala de las
oscilaciones acusticas de bariones (BAO) mirando las correlaciones en la distribucién de
las galaxias. Para el segundo, se miden las anisotropias en el fondo césmico de microondas
(CMB) para extraer la escala equivalente para los fotones.

En el Capitulo 3, la dltima parte de la introduccién, explicamos la teoria estadistica
de la inferencia Bayesiana utilizada en esta tesis para poner a prueba diferentes modelos
respecto a las observaciones cosmolégicas. El objetivo es deducir los valores de los
parametros del modelo a probar, o al menos reducir su espacio de pardmetros, teniendo
en cuenta las observaciones proporcionadas.

La inferencia estadistica plantea en términos generales menos dificultades cuando se
puede repetir el experimento las veces necesarias hasta obtener suficientes observaciones.
Eso permite la aproximacién que se denomina como frecuentista, pero no es posible
aplicarla a la cosmologia dado que solo tenemos una realizacién del experimento, nuestro
universo. Por lo tanto, tenemos que usar la aproximacidon Bayesiana, que consiste en tomar
las limitadas observaciones como (nicas y fijas, e intentar inferir de ellas la estadistica de
los parametros de los modelos.

Esto se consigue definiendo la funcién de verosimilitud, que nos da una medida de
cuan bien se adaptan los modelos a las observaciones. Esta funcién se construye teniendo
en cuenta cada observacion disponible, pero deja como variables libres de la funcién
los pardmetros de los modelos. Mediante una aproximaciéon de Monte Carlo aplicada



a cadenas de Markov, se consigue una de las herramientas mas comunes del anélisis
Bayesiano, la cadena de Markov Monte Carlo (MCMC). Una vez validada a través de un
andlisis de su convergencia y aplicandola a la funcién de verosimilitud, se puede conseguir
la distribucién de probabilidad de los pardmetros implicados en el modelo deseado. Con
toda la informacién estadistica disponible, mostramos varias formas en las que diferentes
modelos se pueden comparar entre si para saber cual se adapta mejor a las observaciones,
o para ver si algiin modelo es mas probable que otro.

Usando los recursos expuestos en la Parte |, en la Parte Il de la tesis se utilizan conjuntos
de datos de observaciones cosmoldgicas recientes para probar la viabilidad de ciertos
modelos. En el Capitulo 4, mostramos un posible modelo que no solo podria explicar
la expansion acelerada del universo como energia oscura, sino que también explicaria la
componente de materia oscura observada. Este modelo se basa en un solo fluido exético
en el marco de la relatividad general, con las propiedades necesarias para comportarse de
la misma forma que los mencionados componentes oscuros, y entra dentro de los llamados
modelos de materia-energia oscura unificados (o UDM por sus siglas en inglés). Suelen
tener un régimen parecido a la materia oscura en el pasado, y se comportan como el
modelo ACDM en el presente, pero por algunos argumentos tedricos la transicion entre un
régimen y otro tiene que ser veloz. Este es el caso del modelo UDM fenomenolégico que
presentamos en este capitulo, donde lo comparamos a otros posibles modelos después de
un analisis Bayesiano usando datos cosmoldgicos geométricos. Los resultados muestran
que las observaciones cosmoldgicas usadas en el analisis apoyan las limitaciones impuestas
por la teoria a la velocidad de transicién. El trabajo de donde estd basado este capitulo
fue publicado en la siguiente revista:

= Cosmological constraints on fast transition unified dark energy and dark
matter models
R. Lazkoz, I. Leanizbarrutia, V. Salzano, Physical Review D93, (2016) no.4, 043537;
arXiv:1602.01331.

En el Capitulo 5, constrefiimos otro modelo de materia-energia oscura unificada donde
el fluido exdtico puede estar representado por un campo escalar. Al igual que en el
caso anterior, este modelo UDM esté construido para tener una transicién rapida entre
los dos regimenes en consonancia con la teoria, y se limita su espacio de parametros
usando el mismo procedimiento y datos cosmoldgicos parecidos al Capitulo 4. Tras
el andlisis Bayesiano y compararlos a otros modelos, los resultados muestran que las
observaciones cosmoldgicas siguen validando las limitaciones tedricas en cuanto a la
velocidad de transicién entre los diferentes regimenes. Este trabajo junto al resultado
donde se muestra un limite inferior para dicha velocidad de transicién fueron publicados
en:

= Cosmological constraints on a unified dark matter-energy scalar field model
with fast transition
I. Leanizbarrutia, A. Rozas-Fernandez, |. Tereno, Physical Review D96 (2017) no.2,
023503; arXiv:1706.01706.
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Hasta ahora en la Parte |I, hemos usado datos observacionales reales para constreiiir el
espacio de parametros de diferentes modelos cosmoldgicos que podrian explicar el sector
oscuro del universo. Todos esos datos se basan en medir distancias cosmolégicas de
diferentes maneras, para asi mapear la geometria del universo y estudiar su expansién.
Pero estas cantidades implican integraciones de la funcién de Hubble, reduciendo la
cantidad de detalles que se pueden extraer de las observaciones. De todas formas, no
todas las mediciones del fondo cosmolégico son asi, dado que hay futuras observaciones
donde se podria medir directamente la funcién de Hubble. En el Capitulo 6 de la Parte IlI,
simulamos una de estas posibles observaciones que consiste en medir la deriva césmica
del redshift de objetos lejanos, también llamado el test de Sandage-Loeb, y analizamos
sus capacidades de constreiir diferentes modelos.

La deriva césmica del redshift se debe a que en una expansién acelerada del universo,
el redshift de objetos lejanos ird aumentando poco a poco segln la expansiéon vaya
acelerandose. Paradéjicamente, cuando fue propuesto por primera vez por Sandage
e incluso al refinarlo mas tarde por Loeb, esta observacién se planteé para medir la
desaceleracién del universo, décadas antes del descubrimiento de la expansidn acelerada
del universo. Dado que el cambio en el redshift es muy leve, casi imperceptible, la
observacién de este fendmeno incluso hoy en dia es practicamente imposible. Pero futuros
espectrometros mucho mas precisos posibilitarian, junto a un periodo de observacién
prolongado del orden de décadas, la deteccion de esta sefial en un futuro cercano. Para
estudiar la viabilidad de estas futuras observaciones, simulamos unos catalogos del test
de Sandage-Loeb y las usamos para constrefiir los pardmetros de varios modelos de entre
los mas comunes en la literatura. Para contextualizar mejor el trabajo, comparamos
los catalogos del test Sandage-Loeb con otras de futuras observaciones mas clasicas de
supernovas y BAO. Todos los catalogos estan creados de la misma forma, basados en un
modelo fenomenolégico del universo, para asi no favorecer ningiin modelo cosmolégico
en particular. Este Capitulo 6, donde los resultados para las observaciones del test
Sandage-Loeb son prometedores, estd basado en el siguiente articulo publicado:

» Forecast and analysis of the cosmological redshift drift
R. Lazkoz, |. Leanizbarrutia, V. Salzano, European Physical Journal C78 (2018)
no.1, 11; arXiv:1712.07555.

Otros trabajos publicados durante Ia tesis:

= Crossing SNe la and BAO observational constraints with local ones in hybrid
metric-Palatini gravity
I. Leanizbarrutia, F. S.N. Lobo, D. Siez-Gémez, Physical Review D95 (2017) no.8,
084046 arXiv:1701.08980.

= Cosmological constrains on fast transition Unified Dark Matter models
R. Lazkoz, I. Leanizbarrutia, V. Salzano, Journal of Physics: Conference Series 600
(2015) 012028 .
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Prologue

This Ph.D. thesis is centered around cosmological background observations which, accord-
ing to General Relativity (GR), lead to the measurement of both the energetic content of
the universe and its geometry. New models are proposed as alternative to ACDM in order
to explain the late time acceleration of the universe by dark energy (DE), but also the
presence of dark matter (DM). All considered models are tested against each other in
the Bayesian inference framework using recent available cosmological observations. The
bulk of the thesis is based on works done with my supervisors Ruth Lazkoz and Vincenzo
Salzano, having some ancillary projects done with my collaborators Ismael Tereno and
Alberto Rozas-Fernadez.

Most of the background observations available in cosmology serve as a distance
indicators for distant objects, which allows the measurement of the expansion history
of the universe by integrating the inverse of the Hubble function from each observation.
Whether astronomical objects of known luminosity as type la Supernovae (SNe la), or
the scale of baryionic acoustic oscillations (BAO) inferred from the galaxy clustering
distribution, all distance indicators are classified in two categories, standard candles or
standard rulers.

Even though these observations are a mature and refined technique in cosmology, the
increasing precision of measurements and extension of catalogs are nowadays moving
cosmology into a high-precision era, being one of the milestone the recent cosmic microwave
background (CMB) anisotropy measurement done by the Planck collaboration. This
high-precision cosmology also opens the possibility of new type of observations in the
near future.

In Part |, we show all the theoretical background used along this thesis, explaining
everything necessary to test different cosmological models in the Bayesian inference
framework using cosmological observations. We start introducing basic concepts of
General Relativity applied to cosmology, as the different evolution that the universe can
have depending on its dominant constituent. After describing the concordance model
of ACDM, we describe how distances are measured in an universe with few physical
references. Besides, we relate these distances with the cosmological observations from
where they are inferred, and give full details of how measurements are used for that
purpose. In the las part of the introduction, we explain the statistical Bayesian inference
used in this thesis to test several different models with various cosmological observations,



giving details of the used mathematical tools as the Markov chain Monte Carlo (MCMC).

In Part I, recent available data sets of cosmological observations explained in Part | are
used in order to test several cosmological models. In Chap. 4, we show a possible model
to explain both dark matter (DM) and dark energy (DE) with a single exotic fluid within
the context of General Relativity. Among the range of these models commonly called as
unified dark matter-energy (UDM), the phenomenological fluid presented in this Chap. 4
has a fast transition from the dark matter-like regime to a dark energy-like scenario similar
to the ACDM case. The requirement for this fast transition is theoretically motivated,
and the results after constrained with cosmological background data are in line with those
theoretical limitations. The work shown here is based on the published article:

= Cosmological constraints on fast transition unified dark energy and dark
matter models
R. Lazkoz, I. Leanizbarrutia, V. Salzano, Physical Review D93, (2016) no.4, 043537
arXiv:1602.01331.

In Chap. 5, we constrain another unified dark matter-energy model that supports a scalar
field representation for the exotic UDM fluid. Using a similar approach as in the previous
Chap. 4, this UDM model is built to have a fast transition between different regimes
according to the theory, which is then constrained using a similar set of cosmological
background observables. The theoretical limitations imposed to the transition velocity
of the UDM between different regimes are again backed up by background observations.
This work, as well as the results showing a lower bound for the transition velocity, have
been published in:

= Cosmological constraints on a unified dark matter-energy scalar field model
with fast transition
I. Leanizbarrutia, A. Rozas-Fernandez, |. Tereno, Physical Review D96 (2017) no.2,
023503 arXiv:1706.01706.

Hitherto, real data was used to test cosmological models during Part Il. In Chap. 6
of Part Ill, we create mock data sets to study in detail the constraining ability of future
observations based on the cosmic redshift drift, also called Sandage-Loeb test. The basic
concept for these observations is that, during a certain time period in an expanding
universe, the cosmic redshift of distant objects could suffer a slight change if the expansion
is accelerated. Though a very subtle effect almost impossible to appreciate, it could be
measured with long period spectroscopic measurements of very distant objects, usually
quasars. We create a mock data set simulating Sandage-Loeb observations in a fully
model independent way, and constrain parameters of the most common models in the
literature in order to see the constrain ability of these future observations. To give more
insight, we compare the Sandage-Loeb data set with other background future observations
for SNe la and BAO. This Chap. 6 is based on the published paper:

= Forecast and analysis of the cosmological redshift drift
R. Lazkoz, |. Leanizbarrutia, V. Salzano, European Physical Journal C78 (2018)
no.1, 11 arXiv:1712.07555.
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Introduction






Historical and technical introduction
to cosmology

It is difficult to precisely state when modern cosmology started, but it is clear that the
beginning was around the early 20th century. If a decade has to be chosen, a possible
candidate could be the 20s, thanks to Edwin Hubble's work. Indeed, his studies paved
the road to the definitive acceptance of the real scale of our Universe and, eventually, to
the realm of modern cosmology. Moreover, his discoveries led to set up on more solid
observational grounds the theoretical knowledge about gravity which, at the time, was
experiencing a novel approach from Albert Einstein.

Albert Einstein formulated the definitive form of his theory, the General Relativity,
in 1915 [86]. In his approach, the gravitational interaction is explained through the
deformation or curvature of a four-dimensional space-time, where test particles in free
fall follow geodesics, which are the generalization of Euclidean straight lines to curved
space. Einstein also tried to include the known Mach'’s principle, which was kind of a
“milestone” or an inspirational idea for General Relativity. Nevertheless the theory is not
actually a Machian one, as Willem de Sitter showed in 1917 with a test particle following
geodesics in an empty Universe, thus defining an inertial frame without matter [77]. This
problem kept the scientific community busy for several years, and trying to solve it Einstein
proposed the cosmological principle, stating that the overall density of the Universe is
homogeneous. As a consequence, and in order to have a static Universe, in 1917 Einstein
introduced also the cosmological constant into his theory [87].

Few years later, in 1922, Alexander Friedmann found a solution of Einstein's field
equations for the case of a closed Universe, namely, when the spatial part of the metric
has a positive curvature and can be understood as a 3-dimensional sphere. This solution
shows an initial expanding phase, but it eventually collapses to a singularity. Two years
later, in 1924, Friedmann generalized his solution to include the case of an open Universe,
that is, a solution whose spatial part of the metric is hyperbolic, and which has unbound
expanding solutions [100]. In these works, his key contribution was that isotropic models
must have constant curvature in every point.

Meanwhile, the observation of the night sky had improved a lot with the inclusion of
reflective telescopes and photographic plates. The works in the period-luminosity relation



for Cepheids [144] and the calibration of the magnitude system in the north hemisphere by
Henrietta Leavitt, as well as spectroscopic observations leading to the concept of redshift
done by Vesto M. Slipher [213], established a firm foundation for the development of
observational cosmology in the early 20th century. Therefore, with the new techniques
and telescopes, astronomical observations were greatly improved.

The quality and capacity of these new observational tools steered the detailed study
and need to catalog the so-called nebulae, faint blurred luminous objects which, from a
spectroscopical point of view, seemed collections of stars, but whose resolution was barely
enough to start distinguishing individual stars. Moreover, their distances were difficult to
measure. The uncertainty whether these nebulae were inside or outside the Milky Way
led to the great Shapley-Curtis debate in 1920.

Nevertheless, the mystery lasted until 1923, when Hubble observed the first Cepheid
variable in M31 Andromeda nebula. Once its distance was calibrated, it revealed that
the Andromeda nebula was far beyond our galaxy's rim and, thus, external to our Milky
Way Galaxy. With later works in 1926 [127], Hubble generalized its conclusions, stating
that the observed extragalactic nebulae were, in fact, other galaxies. Besides, he adopted
Einstein's static Universe and got some roughly numbers regarding the number of galaxies
and the radius of the closed geometry, which were the first attempts to constrain a
cosmological model.

Friedmann’s work remained mainly unnoticed until 1927, when Georges Lemaitre
independently found the same solutions just before noticing the previous works [146]. Both
Lemaitre and Howard P. Robertson realized that the expansive nature of the Friedmann's
solution leads to a velocity-distance relation. Being aware of this connection, in 1929
Hubble assembled 24 distance measurements to different galaxies [125], whose velocity
had been measured spectroscopically mainly by Slipher. Based on these observations,
Hubble derived his famous relation between the distance d to a galaxy and its receding
velocity v mediated by a constant, v = Hyd, where Hy is the now famous Hubble
constant. Those measurements gave a value around Hy ~ 500 km s~ Mpc™!, very far
from the actual and more precise estimations we have nowadays, but understandable
considering the precision of the measurements and the fact that all data to perform the
regression fit were within 2 Mpc.

Few years later, Hubble realized that it was possible to test the hypotheses of isotropy
and homogeneity of the Universe using the resources he had available at that moment.
Counting the amount of faint galaxies detected for each brightness threshold increase, he
realized that their number seemed to grow as expected for galaxies uniformly distributed
in space [126]. However, the dynamics of these recently discovered galaxies were not
fully understood. In order to explain it, the first “dark” ingredient for the Universe was
introduced in 1933 by Fritz Zwicky after applying the virial theorem to the Coma cluster
[255]: by measuring the velocity dispersion of galaxies within the cluster, it was possible
to have an idea of its gravitational potential and, by using the virial theorem, of its total
mass. Zwicky showed that the ratio of mass to optical luminosity was far bigger than
expected [256]. This idea of dark matter (DM) was backed up by the first measurement
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of the rotation curves of galaxies, which did not follow the expected Newtonian behaviour,
done in 1939 by Horace W. Babcock [21].

During those years and driven by the recent evidence of an expanding Friedmann-like
Universe found by Hubble, in 1937 the seed for the Big Bang idea was sown, though the
name was given years later, as Lemaitre's neutron “primaeval atom” concept [147]. This
concept led to the theory of the nucleosynthesis as a brief non-equilibrium process by
Ralph Alpher, Hans Bethe & George Gamow in 1948 [13]. According to this idea, starting
with a hot and dense epoch, the elements were synthesized in a continuous build-up
process, as primordial neutrons decayed into protons and aggregated themselves in heavier
elements, until the expansion of the Universe froze this process. Alpher and Robert
Herman improved the calculations [12], and discovered that at such high temperatures,
the Universe was rather radiation than matter-dominated, and that the remnant of that
epoch should have endured until today as a colder thermal background radiation of around
5 K.

As the knowledge in atomic and particle physics increased, the nucleosynthesis theory
evolved from the initial decaying-neutron idea to a more complex and complete theory. The
initial state was considered a thermodynamic equilibrium stage arisen from interactions
between all constituents, mainly protons, neutrons, electrons and positrons, but considering
also radiation. The work of Alpher, James Follin & Herman in 1953 gave a promising
answer for primordial nucleosynthesis [14], taking into account detailed evolution of
neutron capture and [-decay processes that allow a nucleus to increase its nucleon
number and change its atomic number, respectively. Understanding the high temperatures
involved at primordial nucleosynthesis, their work also included thermonuclear reactions
for light nuclei. They showed that the reaction rates were high enough in order to keep
the thermodynamic equilibrium during nucleosynthesis, and gave its detailed evolution
explaining observations quite well. However, the idea was kept aside by the discovery of
element synthesis in stars.

The discovery of the stellar nucleosynthesis was led by Fred Hoyle in 1953 [118], and
improved later in 1957 by Margaret Burbidge, Geoffrey Burbidge, William Fowler & Hoyle
[51]. The purpose of these works was to find an alternative explanation of primordial
nucleosynthesis for the steady-state cosmological model invented few years before, in
1948, by Hermann Bondi & Thomas Gold [45], and Hoyle [117]. This theory, alternative
to the Big Bang model, stated that the matter density of the expanding Universe was
constant due to uniform matter creation. Despite the model was eventually proved wrong,
and apart of the “Big Bang" derogatory term given by Hoyle to Friedmann models, the
steady-state cosmology included also some features which had similarities with the future
theory of inflation; in particular, the idea of a spatially flat geometry and of an exponential
evolution of the scale factor driven by a “creation field".

Nevertheless, helium abundance was difficult to explain through stellar nucleosynthesis
only, and even more after the observations performed between 1961 and 1964. This
led Hoyle and Roger Tayler to revisit the primordial nucleosynthesis idea in 1964 and to
conclude that the helium was synthesized in great abundance when the Universe was



extreme hot and dense [119], as in the Big Bang scenario, though no mention of the
cooler remnant radiation was done.

Meanwhile, Arno Penzias and Robert Wilson were testing their new radiometer for
radio astronomy and satellite communication experiments. During set up procedures,
they unexpectedly discovered a smooth and always there cosmic microwave background
(CMB), in 1964 [177]. Though at the beginning they did not know what it was exactly,
at the same time also Robert Dicke's group was working on this possible signature from a
theoretical perspective. Then, when both groups realized each other’s discovery and work
[79], by sharing the knowledge, they together measured the low temperature of the relic
black body radiation from the past Big Bang event [192]. The discovery of the CMB
radiation shed light onto the early Universe concept, and the Friedmann-Lemaitre model
of the Big Bang was strengthened.

Regarding the dark side of the Universe, during the 1960s—-1970s Vera Rubin and Kent
Ford performed more and better observations of the rotation curves of galaxies, providing
further strong evidence for DM [195]. Some years later, however, the Universe gave
another further surprise in 1998. During that decade, Type la Supernovae (SNe) had
become common standard candles, namely stellar objects whose intrinsic luminosity is
known and can thus be used to measure their distance from us. Using SNe as standard
candles, the groups of Adam G. Riess and Saul Perlmutter discovered that, instead of
the receding expansion that was thought to be occurring, the Universe was in fact going
through an accelerated expansion phase [178, 186].

With time other observations confirmed this initial discovery, and the scientific commu-
nity has been trying to explain this acceleration by different ways since then. The simplest
candidate was and still is a constant, the so-called cosmological constant A which should
be a measure of the energy density of the vacuum, its state of lowest energy [57, 199].
But in other models, and more in general, any “dark” cosmic ingredient or theory that
leads to this accelerated expansion can be a possible candidate for it. They are generally
referred as dark energy (DE).

This first chapter is dedicated to explaining the basic concepts of General Relativity (GR)
and its application to cosmology, reaching at the end the description of the most accredited
cosmological model nowadays. We begin by making an overview of the mathematical
theory of differential geometry that explains gravity as a deformation of the space-time.
This leads to Einstein's General Relativity and the description of an expanding Universe
once we establish some basic cosmological principles. Detailing the energy content of the
Universe we see how differently it evolves, and when several ingredients are considered,
how the behavior of the expansion changes depending on the dominant content. Giving
full details of the Universe's ingredients and trying to explain the cosmic observations, we
show the simplest but most accepted model, the ACDM model.
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1.1 The main pillar: General Relativity

There is no better way to introduce GR and its paramount change in the way of thinking
about gravity than by citing John Archibald Wheeler, who perfectly summarized GR
nature: “Spacetime tells matter how to move; matter tells spacetime how to curve. In
other words, a bit of matter (or mass, or energy) moves in accordance with the dictates
of the curved spacetime where it is located (a ball falling to Earth is responding to the
curved spacetime in its vicinity). At the same time, that bit of mass or energy is itself
contributing to the curvature of the spacetime everywhere (the falling ball is affecting
spacetime and therefore affecting the motion of other bodies elsewhere).” [244].

From a mathematical point of view, this concept is formalized by the Einstein field

equations:

1 8rG
G = Ry — 39w R=—T, . (1.1)

e
On the left hand side, we have the geometrical ingredients of GR. The crucial ingredient
in GR vision is hidden in the so-called Einstein tensor G, and it is the metric of the
space-time, a four dimensional tensor generally identified by the symbol g,,,. In GR, such
tensor contains all the geometrical information of the space-time and as such, in Einstein
vision, most of the information about how gravity works; in particular, it helps to define
and characterize the entire causal structure of the space-time. The Einstein tensor is
defined in terms of geometrical quantities which are directly related to the metric g"”
and its derivatives with respect to the space-time coordinates: the Ricci tensor R, and
the Ricci scalar or the scalar curvature, R = g""R,,,,.

While still hidden and not explicitly shown in such equations, in GR the classical
Newton's gravitational force is explained by the curvature of the space-time characterized
by its metric. Massive objects curve the space-time around them, and in that manifold,
test particles in the absence of any force follow geodesics, which are the generalized notion
of straight lines in flat space-time applied to curved cases.

On the right hand side, we have the other missing ingredient of GR: the energy-matter
content of the Universe, represented by the stress-energy tensor T},,,, which sources the
modification of the space-time geometry mainly as curvature effects. In the case of a
perfect fluid in thermodynamic equilibrium, this tensor can be expressed in a simplified
version as

™, = (p+ %) utu, +pgt, (1.2)

where p and p are the energy density and pressure of the fluid, respectively, and u,, is its
four-velocity.
1.1.1 Cosmological Principle

The problem is that Einstein field equations are a set of nonlinear differential equations
for which it is very hard to find a solution in even the simplest cases. Thus, for logical
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reasons, and also for simplicity and practicality of the mathematical formulation, some
assumptions are taken in cosmology regarding the symmetry of the space-like or spatial
hyper-surfaces.

For instance, one assumes that the manifold can be sliced in space-like hyper-surfaces
where the world lines of all fluid particles (4-dimensional paths) are orthogonal to them.
Then, observers following those particles would measure the same cosmic time t [243].
These basic assumptions for the manifold are known as Weyl's postulates [190], though
the additional condition for the world lines to be time-like geodesics is sometimes included.

For what concerns us, the main assumptions underlying the present cosmological
scenario are: isotropy, uniformity in all orientations; and homogeneity, uniformity in all
positions. Together they define the so-called Cosmological Principle. These starting
hypothesis are well grounded ideas based partly on the Copernican principle, but also on
observations.

Both homogeneity and isotropy are independent cosmological assumptions. There can
be within GR Universes which are homogeneous but anisotropic, or even inhomogeneous
but isotropic (spherically symmetric from an origin). From our particular point of view,
from the Earth, it is easy to check that they might not be reasonable assumptions, as
the Universe is filled of many gravitationally clustered structures, interspaced by almost
totally empty regions of space.

But we are concerned here with the large scale of the Universe, where observations
like CMB back up the isotropic assumption [109]. Homogeneity seems more difficult to
test, requiring observations at large scale (around ~ 200 Mpc or beyond) when the galaxy
distribution seems spatially homogeneous. However, in order to accept homogeneity, a
logical deduction can also be done based on the Copernican principle, which states that
our spot in the Universe is not a preferred nor special one. This last reasonable assumption
can be tested [52, 65, 229, 253], and if considered true, it would mean that the isotropy
we measured must be valid in every other point of the Universe, and thus, the universe
should be homogeneous [109].

1.1.2 The metric of an expanding space-time

As anticipated above, the metric tensor defines the causal structure of the space-time
manifold. The infinitesimal line element ds2, i.e. the norm of the four-vector distance
between two events infinitesimally close in space-time, is invariant and independent of
the chosen coordinate system, dz” and is strictly related to the metric of space-time g,,,,.
In general, the metric g, is a symmetric tensor and, assuming the so-called Einstein
convention that repeated indexes are summed, we use to write the line element as

ds® = g, dr"dz" (1.3)

where 1 and v range along all dimensions of the working space-time, starting with the
time-like coordinate which is associated with the index zero. Thus, in a four dimensional
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space-time, the p and v indices range from 0 to 3, and in principle the metric has four
diagonal and six off-diagonal components.

Therefore, the metric can be understood as the mathematical tool that turns the
distance observed from any coordinate system into an invariant quantity, or more generally,
it turns coordinate distances into physical distances. The form and components of the
metric can be simplified by the several cosmological assumptions which were mentioned
above. Considering all the symmetries implied by isotropy and homogeneity, the simplest
space-time that fulfills them has the Minkowski metric. Using Cartesian coordinates, the
Minkowski metric has the following form,

2 00 0
0 100
ds? = —2dt® + da® + dy? + d2, ., = ; (1.4)
01 0
0 00 1

where ¢ is the speed of light. The signature of the diagonal terms, (—, 4, +, +), shows us
that the metric is Lorentzian, that is, its eigenvalues are all positive except for the temporal
dimension. Although the opposite sign convention exists, both describe properly and
equivalently the physical space-time. Nevertheless, the most common coordinate system
that is used in cosmology is based on spherical coordinates. With the sign convention
shown above, the Minkowski metric becomes

-2 0 0 0
0 1 0 0
ds? = —2dt? + dr? +r2dQ? |, g, = , (1.5)
©w
0 r? 0
0 0 0 r2sin?(9)

where the solid angle is d2? = d#? + sin?(0)d¢?. Thus, the two expressions above,
Egs. (1.4) and Eq. (1.5), are different representations in different coordinates of the same
Minkowski space-time.

If we want to consider the isotropic expansion of the Universe, we can introduce the
scale factor a(t) as a function of cosmic time ¢, though usually the time dependence
is taken implicitly, a(t) = a. This function, as its name states, tells us how a physical
distance between any two points scales through time, or equivalently, gives us the ratio
of the physical distance between two same points observed at different times. Thus,
intuitively, we see that there is a comoving distance between those two points, which is
independent of the scale factor.

To better understand the picture, we can imagine the space as a grid like in Fig. 1.1,
Points on this grid have their coordinates assigned in a particular system which is
independent of its scaling; distances between those points in the grid are comoving
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distances: they keep constant in time during the expansion of the grid as they only depend
on the coordinates, not on the scale factor. On the other hand, due to the scale factor,
the physical distance between two points increases with time even if the corresponding
comoving distance is fixed.

t >
t2 tl to
L)
0,1) (1,1)
(0,1) S (1,1)
-
(0,1) 811 -
) ’ ’
’
. ® * * *
(0,0)1= (1,0) ® \ i~
<> 0,00 (1,0)
d(t2) = a(te) x (0,0) (1,0)
> -
d(t1) = a(t1) x - >
do =apx

Figure 1.1: During the evolution of time (t2 < t1 < to), coordinates in the comoving grid remain
constant (x = 1). The physical distance, though, scales with the evolution of the
scale factor (a(t2) < a(t1) < ao) expanding with time.

As the Universe is expanding, we can normalize the value of the scale factor today,
at time to, to one, i.e. a(tp) = agp = 1, because it can be taken as a dimensionless
quantity (the ratio of physical distance at different times). Therefore, in an expanding
Universe any physical distance d(¢) in the past time ¢ is a(¢) times smaller than today
dp, so d(t) = a(t) dy < agdo = dy as we have a(t) < ag = 1 for any time in the past,
t < tg. Introducing this expansion in the above considered metric, we have, in Cartesian
coordinates

-2 0 0 0
0 a* 0 0
ds? = —c?dt* + a®(dx® + dy* + d2%) , g = ; (1.6)
0 0 a® 0
0 0 0 @

and in the case of spherical coordinates, the representation of this metric would be
ds* = —Pdt* + a® (dr® + r?dQ?) , (1.7)

where the matrix form would be similar to Eq. (1.5) but multiplying the spatial components

10
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by the scale factor squared. Even if the original metric of Egs. (1.4) - (1.5) represented a
flat space-time, with null Riemann curvature tensor (4-curvature), the inclusion of this
scale factor a(t) makes its geometry quite different. Therefore, the final metric has a
non-zero Riemann curvature tensor even though its spatial part remains flat. In fact, all
the above metrics are spatially flat, though they can be easily generalized to a spatially
curved case.

The Friedmann-Lemaitre-Robertson-Walker metric

The metric shown in Eq. (1.7) is a particular case of a more general solution of the
Einstein equations after assuming isotropy and homogeneity of the space-time, namely the
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric. We note here that such FLRW
metric can be derived by translating the general assumptions of isotropy and homogeneity
into geometrical properties, in a quite independent way from the solution of the Einstein
equations. What remains undetermined, however, is the intrinsic dynamics of the Universe
expansion, encoded in the scale factor a, which can be derived only once we provide an
energy-matter tensor and solve the field equations.

The most general FLRW metric, first introduced in 1935 by Robertson [191] and George
Walker [235], is

d2:*2dt2 2
s ¢ R gy

+r2d92) , (1.8)
where k gives the signature of the spatial curvature. In the above case of Eq. (1.7), k was
set equal to zero, and the metric had Euclidean space, so that the initial parallel trajectories
of any free test particles kept going on parallel. In an closed Universe (k = 1; this choice
implies a proper rescaling of ), the initial parallel trajectories of these particles converge.
The most common example of closed space is Earth’s surface, where all meridians meet
at the poles though they are parallel at the equator. In the case of an open Universe
(k = —1), the initially parallel path of these free test particles diverge instead and they
never meet each other.

The spatial part of the metric can be interpreted as a spherical hyper-surface embedded

in a four-dimensional Euclidean space; this hypersphere can be described by introducing a

new angular coordinate x. The expression of the FLRW metric in such hyperspherical
coordinates is:

ds* = —Pdt* + a* (dx* + Sp(x)dQ?) , (1.9)

where the generalized sine S? is defined as

sin (x) for k=1
Se(x) =4 x for k=0 (1.10)
sinh () for k = —1

with the range of 0 < x < 7 for a closed Universe (k =1) and 0 < x < oo for an open

11
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(k= —1) or flat (k = 0) Universe.

Friedmann equations

Computing Einstein's fields equations using a perfect fluid in the comoving rest frame
and assuming the FLRW metric from Eq. (1.8), we obtain the equations which make us
possible describe how the Universe behaves on large scales.

The first equation can be derived by imposing the conservation of the total energy-
momentum, V#T,,, = 0, which leads to the well known continuity equation. In the case
of an expanding Universe using the FLRW metric of Eq. (1.8) or Eq. (1.9), the scale
factor and its time derivative appear in the equation in the following way,

p+3%(p+§2):0. (1.11)

From the time-time component of Einstein's equations in Eq. (1.1), we derive the first
Friedmann equation, which is enough to understand the evolution of the scale factor on
cosmological scales at the so-called background level, and which will be employed in the
following sections to calculate the variously defined cosmological distances. It states that

L\ 2
a 87G kc?

a

The trace of Einstein's equations, Eq. (1.1), provides us the second Friedmann equation
(also known as Raychaudhuri equation)

a 4rG 3p
Z__77 = . 1.1
. 3 (/.H— C2> (1.13)

Conservation of the energy-momentum is implicit in the Einstein field equations, as
the continuity equation of Eq. (1.11) can be obtained by differentiating Eq. (1.12) and
combining the result with Eq. (1.13). Thus, from these three equations only two are
independent, and usually for cosmology the continuity equation, Eq. (1.11), and the first
Friedmann's equation, Eq. (1.12), are employed.

1.2 Connecting theory to observations

The most common and used function to parametrize the expansion of the Universe is
the Hubble function, H = a/a, but we have to specify also the energy content of that
Universe and its evolution. If the entire energy budget of the Universe is constituted by
different species that do not interact with each other, the continuity equation of Eq. (1.11)
is fulfilled separately for each cosmic ingredient. Otherwise, coupled continuity equations
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Chapter 1. Historical and technical introduction to cosmology

must be solved. Nevertheless, we can integrate them to obtain the time evolution of the
energy density for each cosmic species.

All the cosmic constituents that we will include in this work will be considered as perfect
fluids, whose characterization can be done solely by their density and pressure. If there
is an equation of state (EoS) p; = w; p; ¢? relating both quantities, given by the EoS
parameter (function) w;, that species is considered a barotropic fluid. This means that its
density is a function of its pressure only, a good approximation for fluids whose density is
almost constant in space (as it should be on very large cosmological scales) and/or varies
very weakly with temperature. Thus, as homogeneous perfect fluids can be considered
barotropic ones, the conservation equation for each cosmic ingredient, once introduced
the EoS parameter, has the following form

pi+3gpi(1+wi) =0, (1.14)

which can be easily solved in the case of a constant w, to obtain the evolution of the
energy density as
pi o< a3Fw) (1.15)

This function shows us that unless w; < —1, the energy density of the fluid decreases as
the Universe expands with time. In the special case for a fluid with w; = —1, its energy
density remains constant through time. We have to set a reference point in order to fix
the integration constants of these density functions. That reference point is usually taken
today (¢o), so the function that gives the evolution of the density has the following form

pi = piga 20w (1.16)

where p; ¢ is the energy density of the fluid today and the value of the scale factor toady
is implicit (ap = 1).

The above case is obviously valid only for a fluid which has a constant EoS parameter.
This is how the most well understood cosmic ingredients (matter, radiation) behave, but
the elusive dark energy could have an evolving EoS, though a cosmological constant with
w = —1 is nowadays considered as the most probable candidate to it (we will give a short
sketch of present dark energy scenarios and theories in next sections). So, in the case
of a fluid whose EoS evolves through time, the integration of the continuity equation of
Eq. (1.14) yields

pi X exp (-3/“21,'[1+w,»(a')]) . (1.17)

As we have said, the energy content of the Universe shapes its geometry. Therefore,
rewriting the first Friedmann equation, Eq. (1.12), and introducing the Hubble function

837G kc?
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1.2 Connecting theory to observations

we can see that there is a critical density which gives a spatially flat Universe for any
value of the scale factor,
_ 3H?
Pe=8nG -
A Universe with a total energy density content above this value is spatially closed, whereas
one with a lower density is open. This critical density is a proper reference quantity to
define dimensionless density parametersl,

(1.19)

pi(a)  87G
pela) @pi(a) ’

(1.20)

where this relation is valid for every cosmic component. In total analogy, we also define a
dimensionless curvature parameter, as

kc?

) =~ o’

(1.21)

thus, the first Friedmann equation can be recast in an equivalent form as

S 0ua) + o) = 1. (122)

Note that this relation holds at any time.

The first Friedmann equation can be also written in a more observational-friendly shape,
which is completely equivalent to the previous one, but making the time behavior explicit
for all and each component. From the definition Eq. (1.20), we can write

pila) _ HEpio _say H§ 3(14+w,)
Q; = 0P =3(4w) = 0 =301 1.2
(a’) pc(a) H2 p(;’O a H2 a ( 3)

where Q; = p;.0/pc,0 is the density parameter evaluated today. Such parameters are actu-
ally measurable from observations (once a cosmological model is provided). Substituting
this expression in the first Friedmann equation, either Eq. (1.12) or Eq. (1.22), we reach
the most common expression for the Hubble function

Q, Q
2 _ 172 i k
H” = H (Z a3(1+w;) + a2> ’ (1.24)

where Hy is the Hubble constant today (sometimes written as Hy = 100 h). If we evaluate
this Hubble function today, a = 1, we get the following constrain,

1= ZQi + Q. (1.25)

IWe will use the following convention: time dependent densities will generically be expressed as Q;(a);
densities evaluated now will be expressed as 2;, with no additional symbols and/or suffixes.
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Chapter 1. Historical and technical introduction to cosmology

1.2.1 Cosmic Inventory

As illustrative examples, now we consider the main cosmic ingredients included in all the
main and most widely used cosmological models, and we will check how they influence
the expansion of our Universe.

Matter

Matter, both dark or baryonic, is modeled as a pressure-less fluid or dust. As such, its
EoS parameter is w = 0 and its cosmological behavior is given by solving Eq. (1.16), i.e.

Pm(a) = pm,o a”’. (1.26)

In this expression, we can see how the energy density of the fluid is diluted in the expansion
of the Universe.

The case in which matter is the dominant constituent of the Universe is known as
Einstein-de Sitter Universe: taking a flat Universe full of matter, thus having only Q,,, =1,
the Hubble function of Eq. (1.24) simplifies to

.92 87TGpm’01
Q- = ——

1.27
3 a’ (1.27)

which can be integrated in order to solve the time evolution of the scale factor. Considering
the initial conditon of a(ty) = 1, we have

a(t) = (t)m ; (1.28)

or, equivalently

P (t) = pm.o <0)2 , H== (1.29)

Radiation

Radiation includes mainly photons, but relativistic particles as cosmic neutrinos are also
in it. It has w = 1/3, which leads to the following density parameter

pr(a) = Pr,0 a* ; (1.30)

radiation does not only dilute its density as in the matter case due to the cosmic expansion,
but also its associated wavelength is stretched. Therefore, the temperature of the radiation
decreases with time as its wavelength expands with the Universe.
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1.2 Connecting theory to observations

In a flat Universe full of radiation, so with only €, = 1, the Hubble function of
Eq. (1.24) can be written simply as

.o 8mGpyo 1
o =—"—

1.31
3 a?’ (1.31)

which can be integrated in order to solve the time evolution of the scale factor. Considering
the initial conditon of a(tg) = 1, we have

£\ /2
alt) = () , (1.32)
to
or, equivalently
to)’ 1
) =prol— ) H=—. 1.33
pr(t) = pro ( ; ) o ( )
Cosmological constant
In the case of a cosmological constant A, its EoS parameter is w = —1 and according to

the energy density evolution equations seen above (Eq. (1.14) or Eq. (1.15) for example),
its energy density does not evolve with time. In the case of a flat Universe filled only with
it, so with only Q5 = 1, the Hubble function of Eq. (1.24) simplifies to

a

H? = (a>2 = Hj . (1.34)

Taking into account that a(0) = 0 cannot be set as initial condition, the integration leads
to an exponential solution,
a(t) < exp (Hot) . (1.35)

Thus, as the exerted negative pressure proportional to its density is kept constant through
time, a Universe filled with only the cosmological constant has an exponential expansion.

Generic single fluid

In general, for a single cosmological fluid with a constant EoS parameter w, its energy
density is
px(a) = pxoa?Hex), (1.36)

and the Hubble function of Eq. (1.24) has the form of

8rG 1
o2 = TG PX,0

3 g-2+3(1Fwx)’ (1.37)
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with Qx = 1 being the only term considered in this flat Universe. Taking the same initial
condition as before, a(ty) = 1, the integration gives

a(t) = (t>3<12+w) . (1.38)

to

We can see how its value of the EoS parameter w modifies the evolution of the expansion
of the Universe. This formula is valid for all the above cases except for the cosmological
constant.

1.3 Dark energy and Dark matter: a short excursus

Given all these preliminary ingredients, we have now to work out a cosmological model
which is consistent with observations. Nowadays, we do have a consensus model, the
A-Cold Dark Matter (ACDM) model, which is so far the best effective model to explain
the majority of the data we have collected both at cosmological and astrophysical scales.
The latest confirmation of such privileged status has come from the last data release from
the Planck satellite [6]. It has to be pointed out also that the main pillar of the ACDM
model is the assumption that GR was the ultimate theory of gravity. This is by far a
“huge"” inference itself, if we consider that GR has been well-tested only in a really narrow
scale range [245] (from Solar System to Nucleosynthesis) of four order of magnitudes;
but what it is done daily is to supposedly assume that to apply GR on a range of scales
of 60 orders of magnitude is the proper and only way to do cosmology.

Once GR is assumed, at least the 95% [6] of the matter and energy in the Universe is
in some “dark” form: DE should account for ~ 68% of the energy budget in the Universe
and lead its accelerated expansion, discovered in [178, 186]; DM should account for
~ 27% of the matter budget in the Universe and be responsible for the extra gravitational
attraction we can detect in almost all the astrophysical gravitational structures we can
observe nowadays in the cosmological large scale structure. The name of the consensus
ACDM model refers exactly to what are the best candidates, up to now, for DE and DM:
the cosmological constant A as DE; and the Cold Dark Matter.

In the ACDM model, the easiest way to explain DE is through the cosmological constant
A, which should be a measure of the energy density of the vacuum, its state of lowest
energy [56]. The conditional mode “should” is obligatory at this stage because if A was
really the vacuum energy, then it is well known that its value calculated using tools from
particle physics and quantum field theory does not agree with the observed one by 122
orders of magnitude (such discrepancy might be lower, ~ 54, but still present and quite
problematic [164]). Despite this and other theoretical problems (for a more exhaustive
list, see [50]), the cosmological constant is nowadays considered the best candidate for
DE, for its intrinsic simplicity both from a theoretical point of view and from a statistical
one when it comes to apply theoretical models to observational data.
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1.3 Dark energy and Dark matter: a short excursus

By the way, such cast doubts have pushed cosmologists to find out other solutions.
The most conservative alternatives still rely on GR, namely, they save its geometrical
part, but modify the energy-matter contribution, generally adding phenomenologically
one or more scalar fields with some given properties, and whose existence, however,
has to be explained somehow [24, 69, 140, 150]. Generally they can be classified by
their equation of state, which relates their pressure to their density by a parameter, the
equation-of-state parameter w. For example, A has w = —1. Some possible candidates
(in an absolutely non-exhaustive list) are [69, 176]: quintessence, with w = const. # —1,
a scalar field minimally coupled to gravity and whose potential drives the accelerated
expansion; K-essence, where the modified kinetic energy of the field is the source of the
acceleration; phantom fields, with w < —1 and negative kinetic energy, which are really
problematic from the theoretical point of view, leading to singularities and instabilities,
but are apparently favored by the statistical analysis of low redshifts cosmological probes;
quintom models, dynamical scalar fields which can move from quintessence to phantom;
fields which couple DE with baryons and/or DM [17]; Chaplygin gas [130]. Finally, we
cannot avoid to mention also the equally numerous phenomenological parameterizations of
DE, based on the proposal of some dynamical w without any previously-given theoretical
background, but just with the desired property of being able to provide a satisfactory
fit of the cosmological data. The most famous parametrization in this case is for sure
the Chevallier-Polarski-Linder (CPL) model [59, 154], the simplest possible dynamical w,
being it a linear (in the scale factor) interpolation between the unknown values of w at
the present and in the asymptotic past. More examples can be found in [17].

The less conservative side of the scientific community, instead, considers GR “only” as
a special limit of a more general theory of gravity, so that now both geometry and matter
are susceptible to modifications. Such theories are interchangeably called “modified”,
“alternative” or “extended” theories of gravity (ETG) [38, 66]. Possibly, in this case we
have even more models to propose, because of the very large number of degree of freedoms
and ways to extend GR while having one very important constraint: ETGs have to reduce
to GR on scales where we know GR works perfectly, like in the Solar System, with probes
ranging from the historical Einstein’s calculations about Mercury perihelion shift and
deflection of stars light by the Sun, to more recent measurements of the frame-dragging
effect from the Gravity Probe B mission [245]. But we will not deepen this aspect in this
work, sticking to GR solutions to the DE problem.

For DM the situation is equally muddled. Historically speaking, we have been knowing
of a missing matter contribution since the 30's, when a discrepancy between the observed
and the theoretically-derived dynamical mass of galaxy clusters was found by [256]. Later
on, the pioneering works on rotation curves of spiral galaxies showed the same discrepancy
[195, 196]. The conclusion of such studies was that the internal dynamics of such self-
gravitating systems was not possible to be sustained only by the ordinary observable mass,
but it needed the additional contribution of some new and not yet identified kind of
matter which, apparently, was interacting with photons and ordinary baryonic matter only
by gravitational interaction. Since then, we have been accumulating further and further
evidence for the existence of DM both at cosmological and astrophysical scales and in
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parallel a long list of candidates for DM has been compiled [39, 55, 85, 158, 179].

From some point of view, DM poses less problems than DE because no new kind
of interaction, different from any which we already know, is automatically needed: the
minimal and necessary requirement is that DM does not interact electromagnetically with
light and ordinary matter (baryons) but for sure gravitationally, at least. Thus, we don't
necessarily need to break down our knowledge of physics to introduce new exotic types
of interactions, as it happens in the case of DE, and we can try to formulate everything
within the borders of the Standard Model of Physics (SM), or with just some minimal
extension. But this also poses an equally serious challenge to DM supporters: if that was
the case, we should be able indeed, sooner or later, to detect these new particles. Looking
at the present status, it seems that it might be better later than sooner. An absolutely
non-exhaustive list of DM candidates could be (for more details and examples, see [39]):

= Massive Compact Halo Objects (MACHOs) — stellar objects too faint to be observed,
like brown dwarfs, white dwarfs and neutron stars. Today this model is almost quite
completely discarded, because even if MACHOs were effectively able to contribute
to DM, they would not be enough to explain all the amount we detect and its
properties.

= Weakly Interacting Massive Particles (WIMPS) — particles which interact via gravity
and the weak force, or other kinds of force at least as weak as the weak one. Among
them we have: nonbaryonic particles from within the SM like neutrinos which,
by the way, have been proved to be too light to be important at cosmological
scales; particles from supersymmetry (SUSY) and in particular from the minimal
supersymmetric extension of the Standard Model, as neutralinos, gravitinos, axinos.

= Axions — particles which solve the strong-CP problem in SM. In a recent variant
[33], axion DM can behave as a superfluid and supposedly unify the successes of
MOND at galactic scale with those of the ACDM at cosmological scales.

= Sterile neutrinos — beyond SM particles which would interact with ordinary matter
only and exclusively by gravitational interaction, with no other standard interaction
involved.

= Kaluza-Klein DM — this model is somehow related to the notion of extra dimensions
used to explain DE, but within inherently different scenarios. In this context, gravity
and the other SM fields propagate in a higher-dimensional space-time (the bulk),
and some states associated to excitations of such fields in the bulk could be linked
to DM particles [39].

On top of that, we have also to recognize a more general classification of DM candidates,
primarily related to the velocity of the DM particles and, thus, to their free streaming
length or, equivalently, to the characteristic length of possible self-gravitating structures
which could form from clustering processes. We have:

= hot dark matter (HDM), made of particles with ultra-relativistic velocities and
thus near-zero mass; they should be able to create large structures but not small
clustered ones, which should come from fragmentation in a top-bottom scenario.
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As such, they are not in agreement with observations;

= cold dark matter (CDM) includes sub-relativistic particles with larger masses than
HDM ones: they are able to create smaller scale structures which could evolve in
larger ones by merging processes. This scenario seems to be in better agreement
with observations and, for that reason, CDM is considered the preferred candidate
for DM in the consensus ACDM model;

= warm dark matter, with intermediate properties between hot dark matter and CDM;
fuzzy dark matter.

The ACDM model explains all the main observational data at cosmological level
with great precision and details. At background level its simplicity outperforms other
models explaining the observed geometry of the Universe. Besides, its perturbation theory
explains the anisotropies seen on the CMB and most observations regarding the matter
power spectrum of galaxies. The combined constraints of the model's parameters are
nowadays very strong thanks to the extreme precision achieved by the space telescopes
measuring the CMB power spectrum, and supported by big supernovae and galaxy catalogs.
Nowadays, we have confirmation from: luminosity distances from Type la Supernovae
(SNe) [40, 178, 186, 220]; the acoustic peaks in the Cosmic Microwave Background
(CMB) [5, 236]; and their counterpart imprinted in clustered matter, i.e. Baryon Acoustic
Oscillations (BAO) [8, 9, 44, 91, 97]; or through the matter power spectrum obtained
from weak lensing [26, 241].

With the most common cosmic ingredients explained above, the Hubble function of
Eq. (1.24) has the following form for the ACDM case

Q’I’TL Qr Qk
Hicpn = Hi E*(a) = Hj <a3 tat Qa + a?> ;

(1.39)
where matter accounts for both dark and baryonic matter. It is very common to assume
a spatially-flat Universe, as the curvature is strongly constrained to zero by CMB data.
Both dark and baryon matter are to be constrained by the corresponding parameters,
Q= Qpayr + Qp, and the density of dark energy in ACDM is completely described
by Qy =1 —-Q,,, — Q. — Q. The density of the photons is computed through the
photon-baryon ratio and the CMB temperature (we will make it explicit in next sections).
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In this chapter, we will first introduce the definition of cosmological distances [115], which
are of capital importance in modern cosmology, and then we will describe the observational
probes which can be used nowadays to measure them, and which can be then used to
quantify the dynamics of the expansion of our Universe and to provide constraints on any
cosmological model proposal. We will describe the two main types of observations which
are fit to that purpose, namely the standard candles, objects for which we know their
intrinsic luminosity, and the standard rulers, objects for which we know their physical size.
Any of them allows us to measure cosmological distances, and thus, to map the geometry
of the universe.

2.1 Distances in Cosmology

The key requirement for a proper quantification of the expansion of the Universe at the
background level is a procedure to measure cosmological distances. Obviously, we are
unable to calculate the real physical distance between us and any other object in the
space which is located at scales useful for our goals. Thus, we can only rely on indirect
cosmological distances; as expected, their own definition is not an easy issue.

The most basic and simple definition of distance is obviously related to the path
that light has been able to travel during a certain time period. In a FLRW metric, see
Eq. (1.9), a line-of-sight or radial (df2 = 0) light-ray is defined by ds? = 0, which yields
cdt = —a(t) dx for an incoming photon. The total distance travelled by a photon emitted
at time t. and collected at time t, is thus given by

fodt!

e

This distance is called comoving distance in complete similarity with the definition of
comoving coordinates: it is not changing in time due to expansion, having been it factored
out of the definition. A particular case is played by the total distance that light has
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traveled since the beginning, i.e. t. = 0, which is also known as particle horizon,

_ [
Hp:c/O R (2.2)

This distance is important because no information could have propagated beyond it; thus,
regions separated by more than this distance would be causally disconnected from each
other.

Redshift

Hitherto, we have seen that the evolution of the Universe can be traced by several possible
“evolutionary” variables, as for example the cosmic time ¢ or the scale factor a. However,
when dealing with observational data, it is more useful and straightforward to introduce
another variable that tracks the passing of cosmic time, namely, the cosmological redshift,
because it is a quantity which can be easily measured.

The redshift is defined as the fractional shift in wavelength of a photon emitted by a
distant source in the past with wavelength A., and detected later by an observer when
that very photon has wavelength \,,

p=2"c (2:3)

The two wavelengths are not the same, because during the evolution of the Universe, the
expansion of the space-time stretches every wavelength, shifting their value towards the
red end of the spectrum and thus decreasing the energy of photons.

While Eq. (2.3) is the operative way to define the redshift, we also need to relate it to
other cosmic time variables. Let us consider the comoving distance defined as in Eq. (2.1):
then, a light-ray which is emitted at time t. and observed today at ¢, will travel the same
comoving distance as another light-ray emitted from the same location but at a slightly
later time t, + 0t., and will be observed at ¢, + dt,, so that

to dt to+6t0 dt
c/ — = c/ — . (2.4)
¢, al(t) to+6te a(t)

Le

Thus, by the definition of the comoving distance, both integrals must be equal; rearranging
properly their integration limits we get

/.te+6te dt N /t[, dt /ta dt N /t0+6t0 dt (2 5)
c — +c — =c — +4c —_—, .
te a(t) to+Ote (t) te+ot, (t) to a(t)
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and simplifying it, we are left with the condition

te+Ote to+dt,
c/ At c/ At . (2.6)
¢ a(t) ¢ a(t)

e o

If the time intervals are small enough compared to the observation and emission cosmic
times (Jte, 0t, < te,t,), the above equality can be well approximated by

cite  cdt,

alte) ~ alty) @7)

The small spatial intervals in the numerators correspond exactly to the emitted and
observed wavelengths of the light-rays (¢t = \) considered, and their ratio at each pair
of emission and observation events is the same as the ratio of the scale factors at those

same times,
a(t,) ¢ty Ao
= =—. 2.8
a(te) cdte  Ae (2.8)
The above ratios, alongside Eq. (2.3), lead to the well known relation between the emitted
and observed radiation wavelengths and the scale factor:

=R =), )

which, as we remind here, holds only for the FLRW metric case we have been considering
so far.

Comoving Distance

We have defined the comoving distance and redshift in Eq. (2.1) and in Eq. (2.9),
respectively, where the emission and observation times have not been fully specified.
Leaving the emission time free to depend on the source, we can set the observation time
t, at Earth as the age of the Universe today, t, = ty. Thus, the basic building block for
the rest of cosmological distances is achieved by simply changing the integration limits of

the above Eq. (2.1),
to dt/ ap=1 d /
DcEXZC/ : :c/ L (2.10)
¢ a(t) o  d?H(a)

where the integration over time ¢ has been changed to integration over scale factor a,
using the definition of the Hubble function given in Sec. 1.2. A further change of variables
from scale factor to redshift, takes us to the following form

D¢ (z2) = Dy / d=' (2.11)

o E(2) 7
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where Dy = ¢/Hy is the so-called Hubble distance and E(z) = H(z)/Hy is the
dimensionless Hubble function. Up to this point, all the distance definitions rest on the
assumption of a radial light-ray, which are different from the comoving transverse distance.

The comoving distance between two points in the sky separated by some angle §6
but located at the same radial distance from the observer (dx = 0 and constant x) is
Sk(x) 06, according to the notation of the metric in Eq. (1.9) (having set the observation
time today, ag = 1). Taking into account the spatial curvature, the transverse comoving
distance Dy, can then be written in terms of the previous radial line-of-sight comoving
distance D¢ as

D . D¢ (2)
Dit sinn (v, 252 for O > 0
Dy (z) = Do(z) for Q. =0 (2.12)

Dy Dc(z))
\/msm( [ Dy for Q. <0
where the dependence on the spatial curvature is given by the corresponding parameter
Q. introduced in Sec. 1.2.

The comoving distance is basically impossible to be directly measured. Thus, we need
to rely on alternative but strictly related other types of distances, whose definition will be
based on some specific indicators.

Angular diameter distance

Since the beginning of astronomy, a classical way to measure distances in the sky was
through parallax distance. These measurements are inferred by the relative motion that
the observed object shows in the sky with respect to the distant fixed background and
due to Earth orbiting around the Sun. This apparent shift of position can be measured
through the parallax angle, a small variation in the angular position of the observed object
on the sky plane. By simple trigonometry, this angle can be then converted in a length
once/if the distance that the observer has displaced perpendicular to the direction of
observation is known [75, 242]. When the object under observation shows a parallax angle
of one arc-second due to Earth’'s mean orbit of one astronomical unit (1AU) around the
Sun, by definition the object is said to be at a distance of one parsec from Earth (3.26
light-years).

An equivalent definition can be found for the cosmological angular diameter distance
D4, where the size of the observed object is used as a ruler instead of the distance
between the Earth and the Sun. Thus, measuring the angular size a observed in the sky
corresponding to a certain object of known physical transverse size [, the angular diameter
distance D 4 can be also trigonometrically obtained. In principle, as long as the observed
angle « is small, the angular diameter distance can be obtained through the relation

Dy = (2.13)

L
-
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This transverse distance | can be measured in the comoving frame in terms of the line
element ds? of Eq. (1.9), centering its origin around the observer. Taking into account
that this distance [ is the physical length of the observed object, in terms of the definition
of transverse comoving distance above in Eq. (2.12), the physical transverse size of the
object is

l=ds=aDydb. (2.14)

The previous observed angle « and this angle df of the metric are the same, df = «, as
both are computed using the same radial propagating light-rays. The physical transverse
size | of the observed object, instead, keeps constant during the expansion of the Universe.
If we substitute this last definition of the physical size | in terms of the comoving
coordinates in the previous definition of the angular diameter distance of Eq. (2.13), the
angle gets simplified away and the relation between the angular diameter distance D 4
and the transverse comoving distance Dj; can be obtained:

Dy

Di=aDy = M
A a Jpg 1+ 2

(2.15)
Here we can clearly see how objects in the far past (a — 0 or z — o) appear closer, with
a smaller angular diameter distance, and thus bigger.

Luminosity distance

The other commonly used cosmological distance is the luminosity distance Dy. Knowing
the intrinsic luminosity L of a source, that is, the total energy emitted per unit time,
the luminosity distance can be inferred by measuring its observed flux F, the energy
density per unit time per unit area. The luminosity distance is defined so that it fulfills the
well-known inverse-square law distance relation between the luminosity L and the flux F,

I 1/2

This means that integrating the flux F' over a closed spherical shell, or simply multiplying
the flux by its area in the case of isotropic emission, the intrinsic luminosity L is recovered.
If we now center the origin of the metric of Eq. (1.9) in the luminous source, and locate
our detectors at the surface of the same sphere, we can easily see that the radius of the
spherical shell is given by agSk(x) or, equivalently, considering ag = 1, by the transverse
comoving distance D, being the area 4 D2, and thus

L

= —. 2.17
47rD]2VI ( )

Therefore, the luminosity distance would be equivalent to the transverse comoving distance,
but only in an static Universe. In the case of an expanding Universe, we have to take into
account both the photon energy loss and the increase of the spherical physical surface.
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The photon energy is diluted inversely proportional to the scale factor a, so the photons
detected now have < 1 + z less energy than when they were emitted. Similarly, as the
spherical surface is larger now than in the past, the number of photons crossing the
surface now is o 1 + z smaller. Accounting for both effects, we have that the measured
flux now is in fact

a’L

= ——, (2.18)
47TD]2\4

where L is still the intrinsic luminosity of the source. Substituting this expression of
Eq. (2.18) for the flux in the definition of the luminous distance Dy, of Eq.(2.16), we
have the relation

Dy,
Dy = % = (1+2)Dy . (2.19)

2.2 Standard Candles

In a Universe with scarcity of references to measure distances, one can compute the
luminosity distance only if the intrinsic brightness of an object is known. The astronomical
objects which have a known brightness, or for which at least we have been able to develop
a system to infer it, are called standard candles. In fact, the precise known brightness must
almost always be calibrated first, as the intrinsic luminosity of the object and its distance
from us are correlated: a certain astronomical body which is fainter than expected could
be or fainter or farther, with the same consequences.

For this reason, the astronomical community has put a lot of effort to build up a sort
of cosmic distance ladder in terms of cosmological distances, where the calibration of the
farther objects is performed by using closer ones in a range of distances (i.e. redshifts)
where both distance indicators are overlapping. The most common example is the SNe la
calibration using Cepheids, where the closest supernovae are calibrated with overlapping
Cepheids in order to extend beyond the useful range provided by the SNe la. However,
one can follow down to the very first rungs of the cosmic distance ladder, where the
closest Cepheids are calibrated mainly using parallax distance measurements [94, 231].

Extending this procedure to larger scales, we can calibrate cosmological distances.
Anyway, in the observations of standard candles, different electromagnetic wavelengths
must be considered, as well as other details as dust absorption. Thus, the above derivation
for the luminosity distance and the following standard candle definition have more subtleties
than sketched here.

Magnitudes

The observable from which the luminosity distance information is extracted is built around
the magnitudes, negative logarithmic scales for the observed brightness (i.e. radiant flux)
of the astronomical objects. The apparent magnitude m is by definition the flux of any
celestial body F' compared logarithmically to a defined zero point offset flux Fy, the one
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defined to give zero magnitude produced by a charted source:

F
m = —2.5log;, <F> . (2.20)
0

There are several objects used as zero point offset sources. That point varies depending
on the technology and filters used in the observation, but historically the most common
is the Vega star. Nevertheless, the apparent magnitude can always be expressed as a
function of the flux F' of the observed object,

m = —2.5log,o F' + constant , (2.21)

where the constant accounts for the zero point offset source (used in the observation). An
analogous relation is defined for the absolute magnitude M, but related to the intrinsic
luminosity L of the observed object instead of its flux,

M = —2.5log,y L + constant . (2.22)

In this case, the constant is defined so that the absolute magnitude is equal to the
apparent magnitude of the same source as if it were located at a distance of 10 pc. Taking
into account the flux's inverse square relation with the distance, the difference between
both magnitudes is
Dy
m—M =5lo — |, 2.23
€10 (IOpc) ( )
where Dy, is the luminosity distance defined in the previous Sec. 2.1. This quantity is
called the distance modulus i, and usually is used with the luminosity distance given in
megaparsecs (Mpc), which simply transforms the relation to,

w=m—M =5log,;, Dr,(Mpc) + 25 . (2.24)

This distance modulus p is the main quantity that catalogs relying on standard candles
generally report.

2.2.1 Cepheids

These variable bright stars were the very first standard candles, used to measure distance
within our galaxy or local group, and the first step in the cosmic ladder beyond parallax
measurements. Cepheids are variable stars with radial pulsations whose high luminosity
makes them perfect tools for distance estimation of mainly the local group galaxies,
although the introduction of new technologies during late 80s made it possible to infer
distances for galaxies further away [98, 99]. Though there are many variables stars identified
nowadays [221], classical Cepheids are easily distinguishable due to their characteristic
pulsations varying their brightness and color [228]. Their basic physics is quite well
understood; for further insights, see the reviews [161, 203, 222] and references therein.
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The first period-luminosity relation traces back to 1912 [144], but it has been repeatedly
improved since; first with the connection of the color (or temperature) to both the period
and the luminosity of the pulsation [202]; but then including also metallicity [198]. Keeping
it simple, though, the linearized form of the relation is given by Stefan’s law

L =4nR*TY , (2.25)

where the intrinsic luminosity L of the variable star is given by the effective temperature
T, at its surface of area 47w R?, depending on the radius R. Expressing Stefan's law in
absolute magnitude, we have

M = —5log R — 10log T, + C, (2.26)

where the C' term includes all the constants involved. Through the mechanical analysis of
a spherical fluid object, a relation between the fundamental pulsation period P and the
mean density p can be reached, it being P oc p~ /2 [83]. This relation can be used in
order to constrain the system by its period P instead of the radius R, as its density p is
related to both the radius and temperature. When this temperature T, is also expressed in
terms of the color (B-V for example), a relation for the observable period-luminosity-color
(PLC) is achieved [161]:

M =alogP + flog(B—V)o+7. (2.27)

The physics behind this phenomenological relation is quite well understood nowadays.
Cepheid pulsations occur because, at a certain temperature range, the star has a layered
structure where heat gets trapped inside, forced by a specific opaque layer. When
heat increases, the temperature rises and the layered structure changes, releasing the
accumulated energy until the temperature lowers enough to begin the process again.
But this periodic mechanism only happens when the Cepheid star meets certain specific
conditions [72]. For instance, in the case of colder stars, convection dilutes layers and the
pulsation is prevented, whereas for hotter stars the layer which creates the mechanism is
too hot in order to accumulate enough heat.

The observation of this phenomenon has various systematics like the mass loss or the
helium abundance, or the dependence on metallicity of the PLC relation mentioned above.
But the most important and studied systematics is the reddening and extinction due to
the interstellar dust, which is somehow alleviated with observations in the near infrared
and multiple bands observations.

Once the Cepheid brightness is modeled, a distance calibration is needed in order to
adjust its absolute magnitude and extract the distance modulus. Classical procedures
to calibrate their PLC relation are parallax distance measurements to galactic Cepheids
[94] or the use of the Large Magellanic Cloud as independent distance indicator for the
zero-point [160]. Nevertheless there are several other host galaxies that can be used as
distance indicators to calibrate extra-galactic Cepheids [188]. With this calibration done,
the next rung in the cosmic distance ladder can be taken.

28



Chapter 2. Cosmological Observables

2.2.2 Supernovae la

Type la supernovae are the most abundant and used standard candles nowadays, the
probes which led to the discovery of the accelerated expansion of the Universe [178, 186].
Supernovae are gigantic explosions that happen in the last evolutionary stages of massive
stars, which are visible as a “new” star for several weeks or months before fading away.

Most supernovae occur because the core of the progenitor star suffers a sudden
gravitational collapse, led by several different mechanism. Usually the core stops its
collapse quite abruptly when enough neutron degeneracy pressure is achieved, but the
sudden release of energy alongside the shock wave created by the rebound ejects the
outer layers of the star in the dramatic explosion known as supernova. Though these
core-collapse supernovae can be used in cosmology [145], there are better candidates for
our goals.

These are Type la supernovae, which occur in a totally different way. They are always
binary star systems in which at least one of the star is a white dwarf, though several
other details are still unknown [162]. When this star accumulates enough material from
its binary companion (through accretion or via a merger), its core temperature raises
enough to trigger runaway nuclear fusion and so the destruction of the star with the
subsequent supernova explosion. This sudden runaway nuclear fusion always occurs at
a precise temperature, just before reaching the Chandrasekhar mass limit of around 1.4
solar masses. Thus, as the energy released in the process is always fairly similar due to
the uniform mass of the white dwarfs that explode via accretion, this type of supernovae
produces a consistent peak luminosity and it can be calibrated as standard candle. Besides,
these Type la supernova are easily distinguishable by their spectra, which show silicon
absorption lines but no hydrogen lines in general, being thus different from the rest of
supernovae.

SNe la calibration

When first SNe la were being calibrated as standard candles, an unaccounted scatter for
the Type la supernovae absolute magnitudes of around 0.2 magnitude was found [116],
which was difficult to explain theoretically. However, an empiric correlation was found
between the peak luminosity of SNe la and the shape of their light curves, that is, how
the observed luminosity flux evolves through time [180]. By measuring the magnitude
decay in the B-band after 15 days from its maximum, Amq5(B), a linear relation gives
the maximum magnitude of each supernovae,

Mmam =a-+ bAm15(B) y (228)

where a and b are parameters to fit commonly shared by all the SNe la. In this way, it is
possible to know the luminosity peak of each SNe la through its light curve and, thus,
to extract the true luminosity distance from the observed apparent magnitude, once a
proper distance calibration is performed.
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However, this relation has evolved and been improved, taking also into account the
color of the supernovae. Therefore, nowadays the formula for distance modulus estimation
is based on the empirical observation that the SNe la are homogeneous standard candles
whose variability can be addressed with two parameters: the first one describing the
time stretching of the light curve, and the second one the supernova color at maximum
brightness.

Even though light curve fitting or calibration has improved, it always requires some
overlapping independent distance observations [128], which makes it possible to build up
the cosmic ladder for SNe la, where Cepheids and other distance measurements are used
in order to fit the light curves of near SNe la and, then, extend the calibration to further
SNe la. For this purpose, the light curve must be measured in a very detailed way taking
into account all possible systematic effects. For instance, extinction from dust, both
coming from the host and our Milky Way galaxy, is usually avoided using several filters
with different wavelength pass bands, as the dust absorbs light differently depending its
wavelength. Thus, several filters or pass band systems exist for cosmological observations,
though the common and relevant ones for SNe la observations are in the optical and
near-infrared wavelengths. Another important contribution to take into account is the
K-correction [120], which compensates the shift suffered by the supernova spectrum due
to the redshift. This correction is particularly important when the observations are done
using filters [47], as each filter pass band would measure a slight intensity shift with
respect the true one emitted by the SNe la. Thus, to properly determine a precise distance,
it requires a well-observed SNe la light curve in multiple pass bands, to constrain not only
the intrinsic luminosity but also the extinction by dust along the line of sight [185].

SNe la catalogs

As stated above, supernova catalogs usually give the measurement of the distance modulus
to fit cosmological data, which is the case for the main SNe la catalog used in this thesis,
Union2 [15] and Union2.1 [220]. They give the redshift, distance modulus and the full
covariance matrix with the error for each SNe la on all the corresponding quantities
(magnitude, stretch and color). Union2 has 557 SNe la in its catalog and Union2.1
extends to 580 SNe la, the latter having a redshift range of 0.015 < z < 1.414.

Both catalogs use the SALT2 model [112] to fit light curves, which is based on a
pseudo-principal component analysis [15]. Once fitted with near well-known SNe la, the
parameters m'z%?, B-band flux at maximum light; z;, stretch factor of the light curve;
and C, SNe la color, are given for each observed SNe la by the fitted SALT2 model. With
these parameters, the distance modulus can be formed for each SNe la

up=mpg**+a-r,—-—p-C—- Mg, (2.29)

where Mg is the absolute B-band magnitude for a SNe la with z; = C = 0; together with
« and B, all three of them are nuisance parameters that are generally fitted simultaneously
with the rest of the cosmological parameters. The Union2 and Union2.1 compilations,
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though, were released in a version where the distance modulus was given with the
parameters « and (3 fitted after raw-data processing. Therefore, this thesis uses the
version where observational data come as the distance modulus with their redshift and
their full covariance matrix, although the values for those parameters 1 and C were also
available alongside the full observational data.
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Figure 2.1: Distance moduli . and their error bars versus redshift from the Union2.1 catalog
[220]. The distance modulus from three different flat models are also displayed, from
top down: dotted green for de Sitter Universe (0, = 0, Qp = 1), dashed blue for
ACDM (0.3, 0.7), and solid red for Einstein-de Sitter Universe (1, 0).

In Fig. 2.1 observational data coming from the Union2.1 catalog [220] are displayed,
showing the redshift dependence of the distance modulus p. The same quantity derived
from three different cosmological models is also shown: the agreement with a ACDM
Universe is clear. A Universe fully filled only with matter and no dark energy at all, as in
the Einstein-de Sitter case (Q,, =1, Q4 = 0), predicts a smaller distance modulus than
measured, meaning that the SNe la should be closer than what is actually derived from
observations. On the other hand, a Universe empty of matter but full of dark energy only,
as in the de Sitter case (2, =0, Qx = 1), predicts a bigger distance modulus, and thus
the SNe la should be much further away than expected.

2.3 Standard Rulers

If instead of the intrinsic luminosity, it is the physical size what is known about an object,
then one can measure the distance to that object by observing its apparent size, namely,

31



2.3 Standard Rulers

using the angular diameter distance. These astronomical objects or structures are called
standard rulers.

The most common standard ruler for cosmology is the physical scale set by recombination
physics, which left imprints both in the photon background and in the baryon spatial
distribution, creating big structures or patterns whose physical size can be theoretically
predicted with a quite large precision. The most notorious examples of such imprints are
the shift parameters of the cosmic microwave background (CMB) and baryon acoustic
oscillations (BAO) observed in the matter distribution at cosmological scales. Today, the
smooth and linear fluctuations of the CMB radiation contrast the clustered and non-linear
one at small scales observed for matter inhomogeneities. This discrepancy is due to
their different evolution, where the matter perturbations has been growing due to the
gravitational attraction, while radiation pressure has prevented photon fluctuations to
suffer the same fate. However, both phenomena have the same physical origin.

Perturbations at recombination

First, it could be helpful to provide a first qualitative description of the process which
seeded both CMB and BAO.

To understand it, we have to move backwards in time and follow the evolution of
matter perturbations that have led to the present large scale structure of our Universe.
We would see how these inhomogeneities became smoother and smoother in the past
moving from non-linear matter inhomogeneities to the linear regime. At some time, matter
perturbations (from BAO) would match photon fluctuations (from CMB). This moment
is called recombination, a misleading term if we follow the evolution of the Universe from
the beginning to now because, actually, it is the first time when in the Universe baryons
and electrons can combine to form neutral hydrogen. Beyond recombination, photons and
baryons are tightly coupled in a photon-baryon plasma, where both cosmic ingredients
are mixed and share the same fluctuations. Photons interact strongly with free electrons
through Thompson scattering; electrons interact with baryons through electromagnetic
interaction; neutrinos are already decoupled, because the weak interaction decouples
earlier than the electromagnetic one; and, finally, dark matter interacts only gravitationally
with all the other components.

The key point is to understand where these fluctuations come from. In the inflationary
scenario [28], we have quantum fluctuations of the inflaton, the scalar field which should
drive the exponential expansion of the Universe at that epoch, corresponding to energy
fluctuations, namely mass density fluctuations which, consequently, influence the space-
time by curvature fluctuations. As inflation goes on, such fluctuations are stretched to
cosmological scales and are led out of the Hubble horizon, i.e., out of the causal connection
with each other (they are said to be “frozen”). As soon as inflation ends, fluctuations
start to re-enter the horizon, getting in causal contact and evolving: perturbations in the
curvature induce perturbations in the density of the plasma, corresponding to gravitational
potential wells and hills with respect to the homogeneous background level. Whenever a
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density perturbation appears, gravity tries to make this fluctuation grow by compressing
the plasma; but the compression itself raises radiation pressure which eventually stops the
compression and starts to dilute matter; dilution implies cooling, thus a lower radiation
pressure, until gravity overcomes it again, and a new phase of compression begins. This
back and forth play between gravity and pressure creates compressions and rarefactions in
the plasma that propagate through it as sound waves with a specific sound speed.

These density perturbations can be translated into temperature fluctuations, with
compression corresponding to higher temperatures and dilution to colder ones; it is thus
easier and natural to quantify and describe the physics of the plasma at this epoch by a
temperature fluctuation field © = AT /T which is, actually, what we effectively measure
nowadays. If we want to approach this qualitative discussion now from a mathematical
point of view, we can start by considering a simplified and idealized case of a perfect
photon-baryon fluid where both gravity and the role of baryons are neglected. Combining
the continuity and Euler equations of this fluid shows that the temperature fluctuations
follow the basic oscillator equation in Fourier space [122],

O(k) +c2k*O(k) =0, (2.30)

where the sound speed c, can be taken at a first approximation ¢, = /p/p = 1/4/3,
assuming radiation domination. Therefore, one can easily see how the solution to such
equation would be simply ©(t) = ©(0) cos(k rs), i.e. the temperature field follows the
acoustic oscillations of the photon-baryon plasma, as its compressions and rarefactions
heat and cool the fluid. We can also better understand what happens at recombination:
as soon as the first atoms are formed, photons and baryons are decoupled, and oscillations
are turned off. But the temperature at which they were is now imprinted in both photons
and baryons. In particular, photons are now free to move in the Universe, and we collect
them now as redshifted to the microwave band: the detected anisotropies of CMB are,
thus, images of inhomogeneities at the time previous to recombination.

It is also clear how the oscillation pattern sets a characteristic fundamental length
related to the extrema of the oscillations; such length is generally called as sound horizon,
rs, and it corresponds to the length travelled by the plasma from the beginning to the
recombination epoch (we will defined it properly in next sections). It corresponds to
photons which are in their maxima or minima at time of recombination; other modes or
overtones are also present in the detected signal.

Actually, Eq. (2.30), while containing all the basic and general elements for our analysis,
misses the most important and crucial ingredient: gravity. In fact, the density perturbations
which are supposed to originate the sound waves in the plasma can originate if there are
local gravitational potentials, so that higher density regions correspond to deeper potential
wells, and lower density to potential hills. The main consequence of introducing gravity in
Eq. (2.30) is to increase the extrema of the oscillation. Mathematically speaking, we first
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need to perturb the FLRW metric, introducing the potentials ¥ and @,

O(r,t)

c2

v(r,t)
c2

ds? = — {1 +2 } Adt* + a*(t) {1 -2 } §i;datdad (2.31)
where ® and ¥ are the Newtonian/gravitational potential (entering the Poisson equations)
and the metric potential. Then one can check that in this case the oscillator equation

would be changed in

. k2 ;

@+c§k2@:—§\1’—q>. (2.32)
We are still in a photon-dominated regime, with ¢2 = 1/3. Solution to the previous

equation is just an offset of the previous one, i.e. we measure an effective temperature
(O+7T)(t) = (©+ ¥)(0)cos(krs).

We need now to introduce baryons and their extra-mass contribution. Their contribution
can be formalized with the baryon-to-photon ratio parameter, R, = (pp + pb)/(p~ + D+ );
finally, the oscillations follow the equation

[(1+ Ry)O] + ész o(k) = —ékz(l +Ry)U — [(1+ Ry)®] . (2.33)

We now have a different sound speed, lowered to cs = 1/4/3(1+ R). Assuming
Ry,/Ry << kcg, we now have the solution

O+ 1+ Rp)¥)(t) = (©+ (1+ Ry)¥) (0)cos(krs). (2.34)

Thus, baryons not only change the overall amplitude of temperature oscillations, but also
have a different effect on extrema: minima are relatively suppressed, and maxima are
enhanced. We avoid here the description of many other effects [49, 81], we just recall
them: the blueshifting and redshifting of photons as long as they climb in and out the
potential wells; both effects are not balanced, because we have to consider the potential
wells are stretched (decays) as long as the Universe expands; the Sachs-Wolfe effect on
large scales [197]; the damping of the oscillations [210], due to viscosity of the plasma
[124]; and others effects which have to be taken into account at the moment of analyzing
the observed signal [149, 217-219].

This signal is observed in the closed sphere of the sky as anisotropies in the temperature
fluctuations of the CMB, and once a multipole expansion is done, it gives its angular
power spectrum. For each multipole ¢, this power spectrum is characterized by Cy, which
is the Fourier transform of the temperature fluctuation variance for that multipole, that
is, the variance of ©,(k) once integrated over all Fourier modes k. The main contribution
to the variance at certain multipole ¢ is given by the Fourier mode k of the corresponding
scale. The temperature power spectrum of the CMB redshifts with the expansion of the
Universe until today's measured black body radiation with temperature Topp = 2.725K
[95]. From this well measured power spectrum, geometric data can be extracted as shift
parameters.
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2.3.1 CMB shift parameters

The redshift to the last-scattering surface, that is, the last surface from which photons
have scattered during recombination, is given by atomic physics rather than cosmology.
Once some quantities regarding the ionization history of the Universe are set (mainly
neutrino and helium fractions), and the CMB temperature today is measured, a fitting
formula can be derived for the last-scattering surface redshift, which only depends on the
two cosmological parameters Q,h? and Q,,h? [123]:

2, = 1048 [1 4 0.00124(2h2) "0 [1 + g1 (Qnh?)*] (2.35)
where
0.0783(h?)~0-238
no= (E2 )2 . (2.36)
1+ 39.5(Qh2)0-
0.560
g2 = (2.37)

1+ 21.1(Qh2) 181"

With the redshift of the photon decoupling epoch at recombination, we can now
evaluate different functions at the time this process occurs. One of the most important
quantity is the sound speed

cs = \/f =1/4/3(1 + Rpa) , (2.38)

where now the effects of baryons are taken into account with the baryon-to-photon
ratio Ry, = Rya = 3py/(4p,) and Ry, = 31500012 (Toarp/2.7K)~* [238], given that
Teup = 2.725K [95]. The distance that light can travel, slowed down through the
plasma, by the time of recombination is the comoving sound horizon

e Y da ¢
s\~x* = D dl Cs =D / — s
(e = P ey =Pn B
i/a* da/
Hy Jo \/3(1+Rba’)a/4E2(a’)

which characterizes the scale of the CMB physics and is well known and measured to be
rs(2x) = 144.43 Mpc (Planck collaboration, [6]) being very likely model independent. It
can be seen in the temperature power spectrum that the modes corresponding to acoustic
peaks, that is, modes that are caught at their maxima or minima at recombination, are
the ones that have an harmonic relationship with this length scale, k,, = nw/rq(z.).

(2.39)

The mode which follows this relation has a spatial inhomogeneity in the CBM tempera-
ture of wavelength )\,,, that appears in the sky with an angular scale of 8 = \,,/Dps(24),
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being Dy (24) the transverse comoving distance!. If we decompose it in harmonic space,
£ =2m/0, the relation gives us the multipoles at which the peaks are, ¢,, = nl,, where

D (24)

() (2.40)

l, =

is the angular scale of the sound horizon at recombination.

At first approximation, the angular scale of the sound horizon at recombination [, gives
us also the position of the first peak of the temperature power spectrum. This leads to
strong constrains for the geometry of the Universe; because if the scale of the sound
horizon is well known, the observed angle in the sky must be given solely by the comoving
distance at known last-scattering redshift z,. Any curvature of the space-time would
change this distance, making the observed angle bigger for closed Universe and smaller
for the open case, and shifting the position of the peak accordingly.

However, the position of the first peak is shifted with respect to [,, because there
is another variable to take into account, the baryon fraction, parameterized by the
dimensionless baryon density €2;,. Baryons shift the frequency of all modes of the acoustic
oscillations compared to the case with only photons, increasing their frequency, and hence
their multipoles, as the baryon density grows. This can be easily seen in the sound speed
cs of the plasma in Eq. (2.38), and in the way it depends on the baryon-to-photon ratio Ry,.
But, as we have said above, baryons have other main effects in the acoustic oscillations,
the extra gravity provided by their mass enhances compression into potential wells, leaving
unmodified the maximum rarefactions. Therefore, baryons increase the amplitude of the
compression peaks (odds ones) compared to the rarefaction peaks (even ones), and as a
result, the ratio between the first and second peak amplitude is given by 2.

And yet, another effect can be appreciated in the CMB temperature power spectrum
from where geometric data can be extracted. Non-relativistic matter, characterized with
the matter density €2,,,, creates a similar effect to the one from baryons. But these effects
appear only during the matter-dominated era, not before, during the radiation-dominated
era. The presence of non-relativistic matter can be inferred because it changes the height
of the lower multipole peaks compared to the higher multipoles, and it also shifts slightly
the position of the peaks.

Thus, if the first three peaks of the CBM temperature power spectrum can be measured
with good precision, the geometry of the Universe, the baryon density, and the total
non-relativistic matter density can be constrained, though they are all correlated. So the
idea behind the definition of the CBM shift parameters is to condense all this information
in a few quantities, with as little correlation between them as possible. With this in mind,
the scaled distance to the photon-decoupling surface can be defined as

R= QmHgDLW , (2.41)
&

Lt would be the angular diameter distance D 4 if A,, was a physical length rather than a comoving one.
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and along with I, and Q,h2, the three of them create a set of parameters that is very
powerful so as to summarize and characterize the power spectrum of the CMB [237]
at the background level, i.e. as long as we are not interested in analyzing cosmological
perturbations. For example, if R is fixed, any variation of [, creates a very different power
spectrum, as [, sets the structure of the acoustic peaks. In the opposite case, even if
lq is fixed different R changes the height of the peaks. Besides, as R and 7(z.) have
different dependencies on €,,,, the measurement of R and [, strongly constraints €2,,.

For these reasons, the parameter set (I,, R, Q,h?) uniquely characterizes the power
spectrum with as little correlation between them as possible [237]. The values for
these quantities are obtained by extracting their probability distribution function through
Markov chain Monte Carlo (MCMC) fitting of the power spectrum (more details regarding
parameter estimation will be given in the next Chap. 3). When Planck 2013 temperature
+ lensing [3] and WMAP7 [139] and WMAP9 [31] polarization data are used, the mean
values and standard deviations for the triplet shift parameters are [238]

(o) =30157 : o, =0.18,
(R) =1.7407 ;  og = 0.0094, (2.42)
(Wh%) =0.02228 :  og,ue = 0.00030

with the corresponding normalized covariance matrix, that is, the correlation matrix, as

1.0000  0.5250 —0.4235
e = 05250 1.0000 —0.6925 | - (2.43)
—0.4235 —0.6925  1.0000

In order to obtain the full covariance matrix Coprp, we need the transformation:
(Comp)ij = (CRA B)oioj, where o; are the 1o errors of the measured best fit val-
ues given in Eq. (2.42).

2.3.2 Baryonic Acoustic Oscillation

Baryonic acoustic oscillations (BAQ) [27] are the baryonic counterpart for the anisotropies
of CMB radiation. The BAO characteristic length (standard ruler) was set at the moment
when acoustic oscillations in the photon-baryon plasma froze, that is, at recombination,
when baryons were not affected by photons any more. The sound horizon was imprinted
in the matter perturbations and is now hidden in the correlation function between galaxies
as a preferable clustering distance, or as a characteristic oscillation in the power spectrum
in Fourier space.

One could think that baryons stopped noticing photons at the photon-decoupling epoch
computed previously, the last-scattering redshift of Eq. (2.35), but they actually have
inertia. So, the sound horizon related to baryons is different from the one for photons;
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the time when baryons do no longer feel the Compton drag of photons is known as the
drag epoch. Similarly, as in the photon-decoupling redshift z, in Eq. (2.35), the redshift
of this drag epoch z4 can be given by a fitting formula [88],

1291(th2)0.251 2\
2= 70 gmo(, hzyoses 1T b)) (2.44)
with
by = 0.313(Q,h%) " [1 4 0.607(2,,h%)" 0] (2.45)
by = 0.238(Q,,h*)%2% . (2.46)

This way, if we evaluate the comoving sound horizon of Eq. (2.39) at the drag epoch
instead, we get a slight different value for the sound horizon for baryons 7(z4) = 147.09
Mpc (Planck collaboration, [6]) which is, as expected, larger than the sound horizon for
photons. Thus, it is such length which is actually frozen in the matter distribution and
appears as a density excess in the baryon distribution at cosmological scales, and it can
be used as a standard ruler.

More exactly, after the drag epoch, we have an interaction between the dark matter
sitting at the center of the original density perturbation, and such baryon excess located
at a distance r4(z4) from it. Dark matter follows the perturbations only through gravity,
influencing slightly the acoustic oscillations and staying mainly apart from them. However,
after recombination the baryon excess at the BAO scale is enough to attract gravitationally
part of the dark matter, clustering both massive ingredients at the same scale as it can be
seen in Fig. 2.3. Therefore, the probability to form a galaxy at this BAO scale is bigger
due to its higher density.

The objective of BAO measurements is to extract this scale, whether as oscillations in
the matter power spectrum or as the preferred scale in its spatial distribution, so that
it can be used as a standard ruler, at different redshifts if possible. But this ruler is
hidden in the sky, because the spherical shells with higher density centered around the
original point-like perturbations (Fig. 2.3) are randomly superimposed. Besides, the low
proportion of baryons compared to dark matter made this density excess at the BAO scale
small compared to the central over density. Nevertheless, through statistical analyses
using the two-point correlation function £(r) it is possible to detect the BAO signal with
big catalogs of galaxies [91].

This two-point correlation function £(r) (Fig. 2.2), also called the two-point autocorre-
lation function, describes the probability distribution of two galaxies depending on their
separation. In our case, it can quantify the excess clustering of galaxies on a given scale,
normalized to a uniform distribution with mean density. Besides, this two-point correlation
function is the Fourier transform of the density fluctuations power spectrum, which can
be taken as the matter power spectrum. Thus, a characteristic scale in the two-point
correlation function appears in the power spectrum as an oscillation of the corresponding
scale, the baryon acoustic oscillations.

38



Chapter 2. Cosmological Observables

0.3

0.1}

0.04

0.02

0.00

N T E N T B
50 100 150

Comoving Separation (h-! Mpc)

Figure 2.2: One of the first detection of the BAO scale as a peak in the redshift-space two-point
correlation function. The signal was evidenced in the clustering of the SDSS LRG
galaxy sample, sensitive to the matter density (Qmh® = 0.12 (top peak, green),
0.13 (middle peak, red) and 0.14 (bottom peak, blue), all with Qph? = 0.024).
The bottom magenta line without peak is the correlation function in the pure CDM
model, with Q, = 0. Figure taken from Eisenstein et al. [91]

However, the computation of the correlation function to get the BAO scale is a
challenging work that requires overcoming several difficulties (for further details, see
reviews [27, 241]). For instance, the galaxies used to compute the correlation function
account only for the small baryonic part of the matter power spectrum, leaving the main
contribution of dark matter without direct measurement. For this reason, the object
chosen as tracer of the underlying matter power spectrum is important, Luminous Red
Galaxies (LRG) being the most common ones mostly for low redshift and Blue galaxies
for higher redshift, though there are more possibilities [27].

The fact that during cosmic evolution matter continues clustering reaching the non-
linear regime at small scales does not help either. These non-linearities slightly modify
the linearly predicted BAO signal [73], though there are reconstruction techniques to
ameliorate the BAO signal reversing those effects at some degree [89].

The peculiar velocity of galaxies also modify their observed redshift through Doppler
shift, introducing redshift-space distortions (RSD) and increasing uncertainties in the
line-of-sight direction. The most common effects are the apparent stretching of galaxies in
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virialised clusters along the line-of-sight due to their random velocity (finger of god), and
the flattening effect of galaxies in coherent gravitational collapse (Kaiser effect) [129].

These non-linearities and redshift space distortions, coupled to the use of baryonic
tracers, make the observed power spectrum biased from the real one [209]. Besides, the
fiducial model chosen to infer the real-space distances and other BAO properties can also
modify the result of the observation, though in general this influences at a lesser level if
models fulfilling CMB requirements are considered [224].

Once all the uncertainties and complications above mentioned have been taken into
account, the information of the BAO scale can be extracted from the galaxy surveys,
usually with the two-point correlation function, but also computing directly the power
spectrum [223]. However, due to the different analysis methods and the finite volume of
the surveys, both approaches cannot be translated into each other using Fourier transforms
directly [62]. Besides, the BAO scale is so large that a great number of galaxies are
required to improve statistics and achieve small errors, which requires surveys volumes of
order 1h=3Gpc3 [241].

This increased difficulty for statistical analysis alongside the previous challenges, requires
a proper estimator for computing the two-point correlation function [141]. Moreover, the
theoretical correlation function must be expanded in spherical harmonics [113] so that
the information of the BAO scale longitudinal to the line of sight and perpendicular to it
can be detached. In this way, the observed redshift depth Az along the line of sight gives
the Hubble function when it is compared to the BAO scale rg,

H(z) = caz ; (2.47)

T's

while the angle A# subtended in the sky by the BAO scale perpendicular to the line of
sight measures its angular diameter distance, and therefore

T's

DA(Z) = m .

(2.48)
Without this multipolar expansion of the two-point correlation function, the spherically
averaged correlation function is achieved instead, which blends together the information
coming from transverse and longitudinal observations. Nevertheless, in these cases it

is still possible to extract BAO information, where the baryon acoustic oscillation scale
parameter A(z) is best used, a quantity which does not depend on H, [91],

A(z) = 100Dy (2)/Qmh?/cz (2.49)
and depends on the volume-averaged distance,

5 CZ

Dy(z) = |(1+2°DalP g5 |

(2.50)
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a distance which is approximately the radius of the spherical volume filled by the BAO
shell. This function of Eq. (2.49) is built as a mixture of the Hubble function H(z) and
the angular diameter distance D 4(z), and so the baryon acoustic scale parameter A(z) is
a dimensionless quantity.

If one wants to use the proper multipolar expansion of the two-point correlation function
in order to extract the information of the BAO scale along and perpendicular to the line
of sight, an anisotropic analysis of the survey must be done so that the two-dimensional
two-point correlation function is computed [62]. This way, the measurement of the Hubble
function H(z) and the angular diameter distance D4(z) is possible. However, these
quantities are quite correlated and are not robust enough with respect to systematics,
therefore the following dimensionless quantities are recommended instead [62],

DA(Z) 1

H(z)rs(za) _ _
— - A% re(za) A1 +2z)° (251)

These new quantities, which are constructed by normalizing the Hubble function H(z) and
the angular diameter distance D 4(z) with the comoving sound horizon r4(z4), effectively
measure the redshift depth and observed angle of the BAO feature, respectively.

Hitherto, we have used the comoving sound horizon r, as a standard ruler because its
size could be given by CMB measurements. If this were unknown, we could still extract
information through the fact that we are observing a spherical structure. In this way,
the Alcock-Paczynski test can be used [10], which gives the product D 4(z)H (z) from
measuring Az/A6, and its distortion parameter has the following form

F(z2)=(1+2)Da(z)H(z)/c. (2.52)
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Figure 2.3: Evolution of radial mass profile of several species as a function of the comoving
radius for an initial point-like over-density perturbations at the origin, from the early
time before decoupling (z = 6824, top left panel) to long after it (z = 10, bottom
right). We see how the baryon (blue) and photon (red) perturbations share the same
profile as they propagate coupled (top right), until recombination when photons
leak away from baryons (middle left). After recombination, the baryon perturbation
does not propagate any more creating an over-density shell (middle right), while
dark matter perturbation (black) has not propagate during all the process. Through
gravitational instability, both dark matter and baryons are attracted to the origin
and shell over-densities (bottom left), until both species have a similar mass profile
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(bottom right). Figure taken from Eisenstein et al. [90]
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Figure 2.4: Graphical explanation of the BAO observations regarding the longitudinal and
transverse modes with respect the line of sight.
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Statistical Inference

In the previous chapters we have introduced some of the main cosmological observables
which are used nowadays to probe and constrain the properties of the cosmological
background. In this chapter we will describe some relevant statistical tools required in
order to set up the reliability of any given theoretical model to describe the available
observations in the most satisfactory way.

Specifically, the main goal of any kind of statistical analysis of a given set of data, d, is
to obtain the “best” values which help a given model to describe the given measurements
and, most important, the corresponding uncertainties on each theoretical parameter set 6.
Therefore, we introduce and aim to reconstruct the joint distribution P(6,d), defined as
the probability distribution function (pdf) of having the parameters 6 given the data d,
when both the data and the parameters are considered as random fields. From such pdf
the main statistical properties (mean, median, standard deviation of the parameters) can
be eventually extracted.

This specific task can be tackled within two approaches sharing subtle differences in
their implementation and philosophy: the frequentist and the Bayesian approach.

The frequentist approach considers the data as a random field generated by an underlying
unknown model characterized by some fixed, well defined and equally unknown parameter
values. It relies on the possibility that the same experiment can be repeated as many
times as required in order to properly recover the pdf of the data given the model. This
pdf is precisely the conditional probability of having the data d given the parameters 6,
namely, P(d|@). Within the frequentist approach, statistical inference is not a hard task,
as long as one can repeat the experiment many times collecting more and more data to
improve the constraints of the parameters.

In cosmology, however, we have just a single realization of one humongous experiment,
our Universe. Thus, strictly speaking, we cannot consider the observational data as a
random field as in the frequentist approach; its direct application to the cosmological
case would end up with a very poor statistical inference for the parameters involved.
Nevertheless, we have another statistical approach to tackle this problem which is better
suited for the purposes and properties of cosmology, the Bayesian inference. For a useful
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and detailed reading about Bayesian inference, see [159, 174].

3.1 Bayesian Inference

In the Bayesian approach, we seek the probability distribution of the parameters, which are
considered as random fields, given the available “fixed” data. Thus, in this case, the main
goal is to derive the so-called posterior probability P(€|d), or equivalently the conditional
probability of the parameters @ given the data d which we can observe and measure.
From this posterior probability of the parameters any kind of statistical information about
them can be eventually derived. Examples of Bayesian inference applied to cosmology
can be found in [61, 148, 207, 225, 226].

This posterior probability P(€|d) can be related to the above mentioned joint distribu-
tion P(6,d), if the probability of having the data d, P(d), is known. A similar expression
is also possible in the frequentist approach, for the conditional probability P(d|8), if the
probability P(0) to have a certain set of parameters 6 is also known. Indeed, all these
probabilities are related to each other by the following expression [174, 225],

P(6|d)P(d) = P(0,d) = P(d|6)P(6) , (3.1)

the well-known Bayes’ theorem.

3.1.1 Bayes’ Theorem

The Bayes' theorem describes the conditional probability of an event based on the
probability of another one, and it is usually used to invert such conditional relation. The
most common expression for the Bayes theorem can be derived from Eq. (3.1) as [46, 71]

P(d|6)P(6)

PO = =T

(32)

It allows us to compute the posterior probability P(8|d), through the conditional probability
of having certain data d given the parameters 8, P(d|@). Given that this latter probability
can be interpreted as how likely it is to have the observed data as a function of the
parameter values, it is commonly known as the likelihood function and indicated as L(d|0).
On the other hand, the probability P(€) to have a certain set of parameters 0 is also
known as the prior distribution I1(8), while the probability of having the data P(d) is
generally called evidence, E(d). Rewriting Eq. (3.2) in terms of the Bayesian inference
quantities [159], we thus have

L(d|6)I1(6)

POld) = =5

(33)
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Prior

The prior distribution II(0) contains all the possible previous knowledge about the parame-
ters which we can infer/collect before performing the measurements. This information can
include any sort of physically well-motivated property of the model proposed; generally,
this is realized by defining a validity range for the parameters of the model, given by
insights into the experimental setup and its performance, or regarding estimations from
previous experiments.

However, it is quite common to choose priors that influence the least possible the
Bayesian inference. For that purpose, flat priors are taken, where the probability for a
given parameter is one within a certain range of values, and zero outside of it. This
uninformative prior can be easily achieved, for example, using Heaviside functions or
simply defining limits on the range of values that each parameter can take, in which case it
is also usually known as top hat prior [207]. Nevertheless, due to the role and definition of
the priors and the consequent possibility to induce a possible bias, the Bayesian approach
is sometimes considered subjective [174]. However, this possible bias can be minimized or
alleviated (even if not eliminated in its entirety) by choosing a range for the parameters
which is large enough to cover all the possible reasonable values that this parameter can
achieve, so that a possible extension of the prior function does not produce statistically
significant changes in the parameters’ pdf.

Evidence

For a proper definition of probability distributions, both sides of Eq. (3.3) must be
normalized to unity. For the right hand side, this is done by the factor in the denominator,
the evidence F(d). From Eq. (3.3) and the definitions of the quantities in it, we can
easily see that if we marginalize the likelihood over the full parameter set 8, the Evidence
can be equivalently seen as the weighted average likelihood of a given model [29], with
the prior function acting as weighting function:

E(d) = / L(d|6)I1(8)d0 . (3.4)

From this definition, it is clear that the Evidence somehow measures the support of the
data to a given model once every possible values for the parameters @ have been considered.
As the Evidence is in principle independent of the parameters 8, when performing a fitting
procedure (as we will show in next sections) it only appears as a normalization factor of
the posterior probability, and thus usually is left aside because its contribution is just in the
form of a scaling factor which does not alter the statistical outputs. But as we will show in
Sec. 3.3, the evidence is very useful for model comparison, though its computation might
be (analytically) difficult or even not manageable in most of the cases, or (numerically)
hardware and time consuming [153, 172].
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3.1.2 Likelihood

The likelihood L(d|6) is the conditional probability of having certain data d given the
parameters of a model @ [174]. If the measurements d; are independent, it can be written

as
L(d|) = HP(d,;w) : (3.5)

In the frequentist approach the likelihood is a function of the data d, which is considered
as a random field. However, in the case of Bayesian inference, once the observations
have been done and the data are known and fixed, the likelihood can be considered as a
function of the unknown parameters 6 for a given fixed value of d. Therefore, usually the
likelihood function is expressed as function of the model parameters only, L(d|0) = L(0),
in Bayesian statistics.

When the measurements are considered to have a normal distribution around their
(unknown) true values (a proper consideration with enough data points due to the central
limit theorem), the likelihood takes the following exponential form [133, 226],

L(d|6) x e 2X"(©®) (3.6)

where the proportionality factor we miss to introduce is exactly the Evidence, whose
value is unimportant in this case. Instead, x%(8) is the chi-squared function, or simply
chi-square, needed to evaluate the goodness of a fit through some tests of some parameters
0 with respect to the data d. If the data set is made of independent data points, then
the x2 reduces to the simple expression of

0 =Y (dgb‘“g)) , (37)

%

where d;(0) are the data values generated by the model given the parameters 8, and d2°®
are the observed data points with the Gaussian dispersion o> given by the observational
error. In general, however, the different data points dfbs are correlated among each other
through a covariance matrix C;; given by the experiment or observations. In this case,
the x2 has the following matrix form,

2(6) = [d* —d(9)]" ¢ [a” — d(9)] (3.8)

where the above uncorrelated case is recovered when the covariance matrix is diagonal,
taking CU = 5U0'22

Once the likelihood function has been constructed, we can now search for the true
parameter values of the model that supposedly have created the data observed. For
that purpose, the maximum likelihood principle affirms [133] that the value 8* can be
taken as a proper estimator for the true values of the parameters @ when the likelihood is
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maximized with respect to the parameters,
L(d|6*) > L(d|§), V6. (3.9)

However, instead of maximizing the likelihood, from Eq. (3.6) the most common approach
is to minimize the x2(0), which is fully equivalent regarding the maximum likelihood
principle.

3.1.3 Marginalization of parameters

There can be situations where some of the parameters are not of direct interest in the
analysis, either because of being nuisance parameters of the observations rather than of
the model, or because the observations cannot properly measure them. In both cases,
the unwanted parameters can be omitted with the proper proceeding in order to ease the
computations or simplify the analysis. Such procedure is calling marginalization.

Marginalization is done when the unwanted parameters are integrated out of the
probability distribution. If we divide the parameters 8 = (84, 0,,) in the desired 84 and
unwanted 6, set of parameters, we can integrate the corresponding pdf on the last ones
in order to get a pdf with no dependence on them [232],

P(8q) = /P(Bd, 6.,)d6,, . (3.10)

The integration is performed over the entire range of the parameters 8,,. In the Bayesian
context, where conditional probabilities are used, the above marginalization is done in a
similar way. In the case of the likelihood, for example, we have

L(d6a) = [ L(d10a0,)11(6.)46.,. (3.11)

where the integration range is the same of the prior I1(8,,), when it is properly defined.

The marginalization can be done both numerically, once the posterior is obtained, or
analytically before any computation to obtain the posterior is done.

Instead of the marginalization, maximization is another option. It consists on fixing the
unwanted parameters at the values which yield maximum likelihood, 87, and restrict the
likelihood function to the parameter-subspace of the desired parameters. This maximization
procedure, though, generally overestimates the likelihood creating tighter contours in
parameter-space than with respect to the case where marginalization is performed on the
likelihood function [84, 226].

We show now one simple but specific example for the analytical marginalization of
the likelihood, which will enter many of the analysis we will use in the next sections,
and which can be employed only when constant additive parameters appear in the data
d [68]. Let us consider N data points d?%* that are modeled by d;(8,C), where C is a

49



3.1 Bayesian Inference

nuisance parameter different from the parameter set of the model 8. As long as the
nuisance parameter C is an additive constant, namely, we can write d;(0,C) = C + d;(8),
the following analytical marginalization can be performed starting from the usual 2
definition,

Y:(0,¢c)=Xx(0,0)" -C'-X(8,C). (3.12)

where X (6,C) = d°** — d(0,C). This expression of the x? depends on the nuisance
parameter C, and so the likelihood does. The marginalization is done through the
integration of the likelihood and taking into account the prior distribution II(C) of the
nuisance parameter,

> 1
Voarg(6) = —21n { / exp (—2X2(0,0)> H(C)dc} . (3.13)
Assuming an uninformative uniform flat prior to simplify the integration and computing
its analytical solution, one obtains the marginalized x? [68, 108]

) d b
Xmarg(e) =a+ln % - E ) (314)

where a = X(0)T - C71-X(0), b=X(0)T -C~!-1,and d =17 -C~! -1 have no
dependence on the nuisance parameter C (equivalent to setting C = 0).

3.1.4 Probability intervals

Once the likelihood is maximized and the most “likely” values of the parameters are
known, the attention shifts to inferring their uncertainties. In this case, an approach
similar to the frequentist one can be applied, with the confidence intervals or regions
defined from the parameter-space around the maximum likelihood point.

Centered around this point, the boundary of the parameter-space region that contains
the 1007% of the likelihood is given by the difference between the smaller value of the
X2, labeled as x2,;,,, and the constant x%(8) = x2,,,, + Axi(’y) value, which is given by
the quantity Ax; () and defines the confidence contours in the parameter-space [207].
This Ax3(v) increment depends on the confidence level v which is required and on the
number of parameters, k. It can be computed by the following integration

AxE ()
v = / P (z)dz (3.15)
0

where P2 (z) is the x? distribution [226]. The most common values for v, corresponding
to different likelihood content, are shown in Tab. 3.1 for the case of 1 and 2 parameters
which can be easily and usually represented graphically.

This procedure, similar to the frequentist approach, is based entirely on the likelihood
function, or equivalently on the x2. But in the Bayesian approach, we usually have access
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Table 3.1: Values for different likelihood content and their respective standard error and x>
increment depending on the number of parameter k.

Likelihood content lo 20 30
1007% 68.3% 95.4% 99.7%
Axi_1(7) 1.00 400 9.00
Axi_o(7) 23 617 11.80

to the probability distribution functions of the parameters in form of the posterior function,
from which the intervals can be computed. The main idea is that the confidence level
includes a parameter-space volume 100v% of the posterior distribution around the best-fit
values of the parameter or maximum likelihood point. Quantiles can be calculated from
the distribution in order to have insights on the wanted percentage confidence levels.
Therefore, once the posterior is marginalized in order to obtain the probability distribution
function of each parameter, we can easily compute their confidence intervals by simply
taking their quantiles corresponding to the desired percentage 1007%. In order to draw
2D contours, the posterior is marginalized except for the desired 2 parameters, thus
obtaining their joint probability distribution function where the contours are given by the
100v% volume filled by it.

3.2 Parameter estimation with MCMC

There are several methods to maximize the likelihood or minimize the x? in order to
perform the Bayesian inference. The first very intuitive approach is the minimization of
the x2 by building a grid in the parameter-space and evaluating the x? in each point of
that grid. In this case, the minimum in the x? can be found out by progressive refining of
the grid, while the confidence intervals can be approximated by calculating (numerically)
how the likelihood varies around the minimum by means of finite difference algorithms
[226]. However, this method is limited by the resolution of the chosen grid, and even if
there are techniques to improve the performance [207], the number of points in the grid
escalates exponentially with the number of parameters.

Nevertheless, there are other approaches called Markov Chain Monte Carlo (MCMC)
where the number of points escalates more or less linearly with respect to the number of
parameters. Besides, once the MCMC is correctly applied to the data set, it will result
in a list of random points directly drawn from the posterior distribution, which can thus
be easily reconstructed. For this reasons MCMCs give very suitable tools to perform
statistics.
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Markov Chain

Every discrete stochastic process describing a sequence of possible states {G(i)} where
its present step 8; summarizes all the relevant information to describe with probability
its future steps can be defined as a Markov chain [174]. In other words, the probability
pey1(09)) of moving to the state 1) on the next step ¢+ 1 depends only on the probability
distribution of all states 8; = {p;(#"))} on the current step ¢, not on the previous ones.
In our case, states {9(“} are points in the parameter-space of the model which is being
tested, and we seek their statistical data given the available observations.

To define a Markov chain, it is enough to specify the transition probabilities 73 (6", §(7))
for the subsequent states and its initial probability distribution over all states, 8y =
{po(6)}, the first step of the chain. From these initial settings for a Markov chain, the
most important feature is usually the transition probability, which can be time independent
T(t‘)(i), H(j)), that is, it is the same at every step t. Markov chains with this property are
labeled as time-homogeneous, and this type of chains are mostly used to create MCMC
algorithms. In general, any transition probability can be expressed as a matrix T;; when
each step t is written as a row vector 8; of the chain, then the next step is computed as

9t+1 = 0tTt . (316)

In the case of time-homogeneous chains, the transition matrix T; is given by the ¢-th
power of the matrix T, so that the above equation simplifies to

0, =6,T". (3.17)

Once defined the transition probability, Markov chains have invariant (or stationary) final
asymptotic distributions 7, which, once reached, do not change any more as the chain
keeps evolving [174]. Therefore, once the chain has reached this invariant distribution r,
it keeps there forever. Generally, all Markov chains have at least one invariant distribution,
and for finite state-space chains this is guaranteed [174].

Nevertheless, we want our target posterior to be a single invariant distribution from
where sampling points can be collected. In order to easily set the invariant condition
for this distribution, time-homogeneous Markov chains which fulfill the more restrictive
condition of detailed balance are taken, also called time-reversible homogeneous Markov
chains [174]. This detailed balance condition means that, within an invariant distribution,
transition probability from state #() to 1) has the same probability that the opposite
transition from #U) to #(). Or stated mathematically,

T(@(i))T(g(i)’ g(j)) - 7T(Q(J‘))T(Q(j)7 g(i)) ) (3.18)

If this type of chains reaches its invariant distribution 7 regardless of the initial starting
one, the chain is also said to be ergodic. Though there are several definitions for ergodicity,
we follow the definition given by [174]: a chain is ergodic if the invariant distribution is
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eventually reached, ‘ )
Jim pe(6) = (6", (3.19)
—00

independently from the starting distribution po(tﬁ)(i)). This single invariant distribution 7
is also called the equilibrium distribution, which can be reached by an ergodic chain in a
finite number of steps.

Although there are chains with a step dependent transition probability which have
also an invariant distribution, to build a MCMC algorithm we are interested in time-
reversible homogeneous Markov chains which are also ergodic. In this way, through the
detailed balance, we can be sure that the posterior distribution we seek is indeed an
invariant distribution of the Markov chain [226]. And through the ergodicity, this posterior
distribution is going to be the equilibrium distribution to which the chain goes each time
we perform the Markov chain, regardless of the initial starting distribution.

However, in the most common cases where the chains are performed computationally,
it is not easy to say when a finite Markov chain is ergodic, that is, whether it has really
reached the equilibrium distribution or not.

Monte Carlo

Monte Carlo methods are a broad class of computational algorithms that rely on repeated
random sampling to obtain numerical results [159]. In principle, Monte Carlo methods can
be used to solve any problem which can have a probabilistic interpretation or approximation.
However, these methods are also used to perform numerical approximate computations of
deterministic problems.

A very common use of the Monte Carlo approach is to compute numerical integration
of high dimensional functions [173]. As the number of dimensions increases, so does
exponentially the computational effort of these integrations, as in the above mentioned grid
case. Besides, the integration limits can be very complicated and difficult to implement
in high dimensional situations. The similarity with our case is that MCMC methods can
be seen as the numerical integration of the posterior distribution function.

3.2.1 General description

After a general summarized explanation of the two main basic ideas on which MCMC
methods are based, we describe now the generic features that most of the MCMC
techniques share. The idea behind any MCMC algorithm is to design a judicious Markov
chain model with a stationary probability distribution corresponding to the joint pdf of
the parameters, the posterior, and to use the MCMC sampler to get enough points to
reveal it through Monte Carlo approximation.
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Proposal density

The first step to build the MCMC sampler is to define the transition probability of the
Markov chain, also called proposal density when the space of states of the MCMC (in
our case, the parameter space of the theoretical model) is continuous. A good choice for
this proposal density is of utmost importance for an efficient MCMC code to run, as it is
a local algorithm, that is, a sampler which has a finite reach and does not (or cannot)
explore the entire parameter space. This means that it can be trapped inside a local
maximum far away from the global maximum likelihood of the posterior, which could be
then out of reach.

A simple candidate for the proposal density Q(6;,0;.1) is a multivariate Gaussian of
zero mean with a step size s; for each parameter 6; which is kept constant at every step
of the chain [226]. If this step size s; is too large, the chain might have difficulties to find
out the maximum likelihood point wandering in the parameter space without finding it or
being able to set down in the maximum likelihood region [159]. On the other hand, if the
step size s; is too small, the chain might need a much longer time to find the maximum
likelihood value, or being unable to sample the tails of the distribution in a satisfactory
way or, in the worse scenario, the sampler might be trapped in a local maximum instead
of the global one.

Therefore, the best value for the step size s; is a trade-off between these two behaviors,
which can also happen simultaneously for different parameters. A simple way to optimize
this step size is by adopting as proposal density a multivariate Gaussian with step sizes
given by the covariance matrix of the parameters which are going to be sampled by
the MCMC [226]. In such a way, the sampler is pushed to explore the parameter space
following paths which are approximately aligned with the degeneracy directions of the
parameters, ensuring a more efficient exploration of the total space. This covariance
matrix can be easily obtained from within the running MCMC [225], updating it after
some number of steps, or by performing preliminary exploratory MCMCs, which roughly
sample the posterior distribution and provide a covariance matrix which works better than
any a priori s; as covariance matrix of the proposal density [148].

Burn-in period

To start the Markov chain, we have to set an initial starting point, which is unlikely to be
close to the maximum likelihood point. Therefore, the first steps of the sampler constitute
the so called burn-in period: initial samples from this stage are discarded, since the chain
is not yet sampling from the equilibrium distribution which is asymptotically found around
the maximum likelihood point. This period can be easily identified by two different but
related ways.

The first and simplest method consists on checking the evolution of the posterior,
which is maximized and stabilized around the maximum likelihood point. Once the chain
is around this point, it starts to sample the target posterior distribution and its values
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fluctuates around its maximum.

The second way to identify the burn-in period is by keeping track of the position of
the chain in the parameter space as a function of the step number. During the burn-in
period, the values of the parameters move quite clearly towards the values that nature
has used to produced the observed data. Only when the chain will be effectively sampling
from the sub-space around the maximum of the likelihood, the values of the parameters
will be fluctuating quite randomly around their true values. If this criteria is chosen, all
the parameters should be checked, as there is a possibility that some parameters reach
their true values before the rest.

Both methods are related, because as long as any single parameter is not around its
most probable value, the posterior will never reach its maximum value. Nevertheless, in
a well-behaved situation, that is, in ergodic Markov chains, all cases converge after the
burn-in period to the same region around the maximum likelihood point regardless of the
initial starting point [226], as shown in Fig. 3.1.

maximum likelihood region.
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steps
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Figure 3.1: Examples of burn-in periods for sev-
eral chains fitting the same cosmological
model with starting points apart from
the maximum likelihood region. Left:

f The evolution of values for the x* (top),

the parameter Q,,, (middle), and the pa-

I rameter Hy (bottom) as a function of

the chain steps. Roughly the initial 100

steps of each chain should be discarded,

as their are not sampling from the maxi-
mum likelihood region. Top: The evolu-
tion of both parameters {),,, and Hy in
the parameter-space. One can clearly see
how the different chains go for the same



3.2 Parameter estimation with MCMC

Convergence

Once the burn-in period is set, the chain will start to sample properly from the posterior
distribution. However, we cannot be fully sure if the distribution obtained from a finite
MCMC chain is the unknown target posterior, or if their properties are equivalent, because
the amount of collected points in the sample necessary to characterize the posterior
distribution is also unknown a priori [207].

The definition of a converged chain is that it has reached the equilibrium distribution
of the Markov chain. Theoretically, for an infinite chain this convergence is defined
asymptotically: it can be proved that the chain reaches the invariant distribution within
infinity steps [174]. Nevertheless, practically this is impossible to achieve, and in order to
save time and computational effort, the convergence is defined as the point/time after
which the sampled distribution describes the properties of the target one with enough
accuracy. Therefore, assessing the convergence of the MCMC chain means to know when
to stop collecting points, as the gathered number of sample points is large enough to
describe properly the posterior distribution [226].

There is not a single definition or prescription to check the convergence. The most
common test is based on the convergence ratio,

<
Il
oqm‘ qm

(3.20)

which compares the variance of the mean of the sample o2 with the one of the underlying
distribution 032 (usually taking 02 = 1 as standard distributions are used). This parameter
is used alone by itself and inside other tests, as in the Gelman-Rubin test [102] for example,
where the convergence of a MCMC run with several parallel chains is tested measuring

the variance within and between chains.

Nonetheless, this approach requires parallel chains to be run, and it might result
hardware consuming. Thus, alternatively, less demanding but equally rigorous convergence
test can be used. In our work we have referred mainly to the method described in [82].
After the burn-in period, and approaching convergence, the MCMC does not depend
anymore on the initial starting points and, when the maximum likelihood value is also
(approximately) found, the sample points are not as highly correlated as they were in the
first steps of the chain. Exploiting this fact, a convergence ratio based on the spectral
analysis of a single MCMC chain can be performed. First, one has to compute the discrete
power spectrum of the finite MCMC chain,

P = lal|?, (3.21)
where its Fourier coefficients are
;] N1 j
ay = —F— Z Ty, €XP [27rzn] , (3.22)
\/N n=0 N
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N being the length and z,, the n-th element of the chain. The discrete spectrum ranges
from j =1 to j = N/2 — 1, the wave number for each case being k; = 27j/N.

Any correlation in the power spectrum could be related to a position dependence along
different elements of the chain. In fact, small scale correlations are unavoidable, due to
the Markovian nature of the MCMC algorithm; in this case, the power spectrum will
look similar to that of a random walk. Thus, a convergence criterion can be build by
demanding a flat uncorrelated (white noise) spectrum for every scale bigger than a given
threshold &* (i.e. for k < k*, or equivalently, a minimum number of steps in the MCMC).

For this purpose, an analytical template for the power spectrum is defined, where the
flat white noise spectrum at large scale (k; < k*) and the correlation at small scale
(kj > k*) are connected at the turn-over scale, k*. The expression for this template is

the following
k*[k;)
Pl — PO ( / J) ,
where the shape of the spectrum is tuned by the already mentioned turn-over scale k*,
but also by the parameter Py which gives the white noise amplitude at £ — 0, and by «.

Once the template is fitted to the power spectrum of the chain, as shown in Fig. 3.2, the
analysis of the resulting values of k* and P, gives the sought convergence information.

(3.23)

The white noise amplitude P, is related to the previously mentioned convergence ratio,
r = Py/N, and it has to be lower than 0.01 in order to fulfill the convergence criteria.
The turn-over scale k* gives the point where the correlated spectrum becomes flat. The
bigger k* is, the more points are drawn from the true underlying posterior distribution
without being affected by the small scale correlation of the chain. This convergence
criteria is achieved with a value of j* 2 20. However, this spectral analysis has to be
done for each free parameter of the model that is being varied in the chain.

1000} _

| u
\ \l \\
100

P(k)
P(k)
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Figure 3.2: Examples of discrete power spectrum (thin blue) and its template fitted (dashed
black) for two parameters of the same cosmological model. The parameter of the
left panel is converged, though it still shows small-scale correlations. This is not
the case for the parameter of the right panel, where small-scale correlations barely
appear and the spectrum is mostly flat white noise.
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3.2.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm [114, 168] is one of the most used algorithms for
MCMC sampling in cosmology [61, 148], and well-known in the Bayesian inference
approach in general. The Markov chain created with this algorithm has as its invariant
distribution the target posterior P(6|d) which is built through Bayes' theorem.

This is done through the transition probability T'(8;, 0;+1), which specifies the probability
that the chain at state 6; moves to the next step 0;,1. This transition is defined by a
proposal density Q(6:,6;1) and an acceptance criteria a(6;,60;11) given by

. P(9t+1|d)Q(0t+179t)}
(6,0 =min< 1, , 3.24
(0 0rs1) { P(0:]d)Q(8:,6:+1) (3:24)
so that the transition probability is
T(0:,0:11) = (04,0:11) Q01,0 41) . (3.25)

(0, 0:11) determines if the next point 6;,1 in the chain is a proper candidate compared
to the current state 8, and gives the acceptance/rejection probability. The proposal
density Q(6¢,60;11) used in this algorithm is usually a multivariate Gaussian centered
on the current state 8y, but it can be simply any fixed density from which we can draw
samples.

The Metropolis-Hastings algorithm works as follows. At step ¢+ 1 a tentative new state
@' is generated from the proposal density Q(6;,0’). To decide whether to accept the new
state or not, a random number u, from the range [0, 1] is generated and compared with
the acceptance criteria a(6;,60’): if u < « the new state is automatically accepted and
will become the new starting point of the next step in the algorithm, i.e. 0,41 = 6" ;
otherwise, it is rejected, and the new step ¢ 4 1 will start again from the same point of
the step ¢, i.e. 8,11 = 0;. Thus, the new state is accepted only with a probability a.

To compute the acceptance probability we need to compute the probability ratios
P(0:41|d)/P(6:|d) and Q(0:41,6:)/Q(6+,0:1+1). But in the case when the proposal
density is a simple symmetrical density, such as a Gaussian centered on the current point
0., then the latter factor cancels out and the Metropolis-Hastings method simply involves
the ratio of the posterior probability of the target density at the two points. In any case,
with the above definitions for the transition probability, the detailed balance condition is
fulfilled [148, 225],

P(6:|d) T(6:,0111) = P(6:41]d) T(0111,0:) , (3.26)

which means that the posterior P(0|d) is the invariant distribution of the Markov chain
we are sampling it.
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3.3 Model selection

Hitherto, we have seen which methods can be used to fit certain given observational data
by some models defined through a set of theoretical parameters. But this is not the end of
the story. In most of the cases, the most important part is to compare statistical results
about a model with those from another model. So, a maybe even more important task in
a statistical analysis is to find a way to assess which one of the constrained models is most
probably the true one behind the observations, and this usually translates into finding a
way to set which model fits best the data. The critical point is to define objective and
quantitative criteria for such a comparison to be performed. Also in this case, we have
many methods and approaches [82].

The first and rough approach is simply to compare the values of the minimum in the
x? achieved by each model when their parameters are fitted. In general, and broadly
speaking, the lower is the achieved x? the better the model fits the data. But this only
works when models with the same number of degree of freedom are compared, that is,
models which have the same number of free parameters.

Models with different numbers of parameters have different capabilities to adapt to
the same data; in general, those with more free parameters should be able to match
better any peculiarity shown by the data but this is done, of course, adding degrees of
freedom (i.e. more parameters). Thus, when comparing models with a different number
of parameters, the gain in the fit of the model with more parameters should be enough to
justify the extra parameters, otherwise it is said that they are overfitted. To account for
the extra parameters in a fast and easy way, the reduced x? is used,
X’ X’

DoF  Nygpa —k—1" (3.27)

2 _
Xred =

where the degree of freedom DoF depends on the number of points included in the data
Ngata and the dimension of the parameter space or the number of parameters k. In this
way, the flexibility of any model due to its bigger number of free parameter is taken into
account. Any model correctly fitted should achieve a x2_; around unity, but still we might
have problems. If a model fitting certain data gets a x2 , far bigger than unity, it could
also mean that possibly the observational errors from the data might be underestimated.
On the contrary, if the Xzed is noticeably smaller than one, it means that the errors are
overestimated and the model fits the data too easily.

However, there are other forms and tools better suited to model selection, which can
also show in a easier way whether a model is overfitted or not. For instance, various
prescriptions to compute the approximate evidence, namely the Information Criteria, are
possible [233]. These criteria tend to take into account the number of parameters that
the considered model has, as well as the number of data points, so that an appropriate
information criterion can be built.
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3.3 Model selection

For example, we have the Akaike information criterion (AlC) which is defined as
AIC = —2In Ly + 2k, (3.28)

where the first term with the maximum likelihood L,,q. is equivalent to the minimum x?2
and k is the number of free parameter of the model [7]. This criterion, though, makes
the assumption that the number of data points is very big, towards infinity. So in the
cases where data points are not enough, the AIC could prefer overfitted models (although
there is a correction term accounting this).

Another information criterion, closely related to the Akaike one, is the Bayesian
information criterion (BIC) [206],

BIC = —-21n Lyao +kIn Nygra 5 (329)

where apart of the maximum likelihood L, .. and the dimension of the parameter space k,
it also takes into account the number of data points Nyq:q. As this information criterion
takes into consideration both the number of parameters and data points, it severely
penalizes models with unnecessary parameters. Nevertheless, the assumption of large
sample size or number of points is still necessary.

The last criterion we are showing, though there are lots of more, is the deviance
information criterion (DIC), introduced in [215]. The definition, in its simplest incarnation,
is

DIC =2(x*) = Xoin » (3.30)

where it relates the mean x? with its minimum. This criterion is very useful when the
posterior of the model is sampled through MCMC techniques because all the statistical
data required by its computation is given by the distribution obtained.

3.3.1 Bayesian Evidence

All these information criteria can only be used to make comparisons between models, but
they do not give an absolute quantification of the model’s quality or of the goodness of
fit. This goal is better achieved by the evidence, also named as the marginal likelihood or
integrated likelihood [246], as shown previously in Eq. (3.4).

Evidence is mainly used for model comparison, which is done by computing the ratio of
the Evidences of two different models,

By = (3.31)

This ratio is called the Bayes factor [227]. When taking the logarithm of this ratio, we
can properly compare the statistical weight of the model M, over M, according to the
so-called Jeffreys' scale [110].
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It has to be stressed that, from its definition, the Evidence clearly does not depend
on the model parameters or, better and equivalently, these are automatically taken into
account by the marginalization procedure on the likelihood, so that more parameters
automatically correspond to a smaller Evidence value. But it is also clear how it could
depend on the prior function, so, when models with different priors are compared, there
might be an intrinsic bias. That is the reason why large-range uninformative priors are
the best choice (when possible).

Moreover, the same Jeffreys’ scale suffers some arbitrariness in the statement of the
“strength of evidence"”, so that, in general, one could simply prefer to rely on the absolute
value of the Bayes factor instead of trying to argue a “degree of strength” in favor or not
of one model or another.

Table 3.2: Values for various evidence difference and their convention according the Jeffreys’
scale.

In B;; Odds  Strength of evidence

<10 £3:1 Inconclusive
1.0 ~3:1 Weak evidence
2.5 ~12:1 Moderate evidence

50 ~150:1 Strong evidence

For the computation of the Evidence we have used the nested sampling algorithm [172],
which transforms the problem of computing the evidence of Eq. (3.4) to a one dimensional
integral that can be evaluated through Monte Carlo technique. For a thorough insight,
see [211].

The method starts from the same definition of Evidence we have given in the previous
section, Eq. (3.4). We define X as the fraction of the total prior volume such that
dX = TI(8)de is the prior volume corresponding to the likelihood range [L, L + dL]
and X (L) is defined as the prior volume fraction which corresponds to a likelihood value
bigger than L. With these definitions now Eq. (3.4) can be rewritten simply as

1
E:/O L(X)dX , (3.32)

where L(X) is the inverse of X(L). Thus, the multi-dimensional original integral in the
definition of the Evidence is now a one-dimensional integral which ranges from zero prior
volume for the case of maximum likelihood, X (L = L;,4,) = 0, to the full prior range
where the likelihood is minimal, X (L = 0) = 1.

Knowing some m points of prior volume X; and their corresponding likelihood values
L; = L(X;), the integration in Eq. (3.32) can be numerically approximated by the
well-known trapezoid method, summing columns of width w; = %(Xi_l — X41) and
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height L, = L(X;), so that
1 m
E = / L(X)dX ~> w; L; . (3.33)
0 i=1

The nested algorithm for this numerical integration starts selecting N random points
of equal prior volume X; and sorting them from minimum likelihood (the full prior range,
X =1) to maximum likelihood (zero prior volume, X = 0),

1>X1>Xo>-->Xn>0. (3.34)

The iteration works by taking the biggest X; value (corresponding to the available lowest
likelihood, i.e. the lowest index i once sorted) and increasing the evidence by w; L; before
this X; point is discarded. Then, in order to substitute the discarded point, the iteration
starts again selecting a new random point from the full range [0, X;], i.e. the new point
must have a corresponding likelihood greater than the previously discarded value L;. The
new set of IV values is sorted again, and the process is performed N, times in total. In
such a way, in terms of the parameter space, the most external layer of equal likelihood is
numerically integrated at each step, peeling off nested layers of Evidence, while advancing
to the center of maximum likelihood.

The number of random X; points at each step, IV, is generally smaller than the number
of total iterations, Ny, so that most of the initial NV points will be probably discarded
once their contribution to the integration are taken into account. The process keeps going
up the likelihood surface until almost the entire prior volume is evaluated up to a desired
precision. For an optional refinement, a final summation of X;(Ly 4+ ---+ Ly)/N to the
evidence can be done in order to take into account the remaining N points which are
left apart at the final step. Therefore, if this last step is taken, the total m terms in the
summation of Eq. 3.33 will be m = N + N;.

The exact values for the variable X = (X7, X5, ...) may be unknown, but statistically
can be deduced that the enclosed prior volume decreases logarithmically on average with
each step of the nested sampling method [211]. Therefore, the proper sampling for X
should be linear in In X instead of linear in X, and a simple way to implement this is by
taking X; = e ¥/,

The implementation of the nested algorithm is easy when the results of an MCMC run
are available, because one has already the likelihood values evaluated in many points in the
parameter space compatible with the prior range. Thus, all the initial N random points
are directly sampled from the likelihood list given by the MCMC run and they are assigned
their corresponding X; label when their sorting of Eq. 3.34 is done. The condition for
the subsequent points, which are randomly drawn at each step from the interior of the
remaining prior volume (X;41 < X;), is easily set by requiring to have a higher likelihood
than the discarded point (L; 1 > L;). Their X; label is again statistically assigned when
the points are sorted at each step. Due to this statistical uncertainty, the nested algorithm
should be performed several times in order to get an average value of the Evidence.
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Cosmological constraints on unified
dark matter-energy models

As we have summarized in Sec. 1.3, while the effects of the two elusive dark components,
i.e. dark matter and dark energy, are clear and widely accepted, no strong clue about their
nature has been obtained so far, and we have seen that a huge variety of explanations
for both of them can be provided. Normally considered as separated components of the
universe, their effects could perhaps be explained by one sole component. In the literature
we find the two most popular ways to achieve this unification.

The first one makes the phenomenological assumption of an explicit parametrization
of the equation of state in terms of the scale factor so that the pressure/density ratio
(w = p/p) has a nearly null value at the early stages of the evolution, whereas it becomes
negative enough (w < 1/3) at late epochs. These models have different names as Unified
Dark Fluid approach or quartessence, but they are more usually called Unified Dark Matter
(UDM) models, which is a colloquial simplification of 'unified dark matter-energy’, the
original meaning of the acronym UDM first proposed in [163] 1. For early proposals of
this sort one can also check references [42, 130], whereas [36] reviews the topic.

The second broad idea relies on putting forward some specific coupling/interaction, i.e.
writing the respective energy conservation equations of dark matter and dark energy so
that they have extra terms which cancel each other out in the conservation equation of
the sum of the two fluids.

For UDM models it is far from trivial how the two components are to be separated so
as to analyze physical quantities such as the speed of sound, required for a full fledged
analysis of cosmological constraints (i.e. a study including perturbations). In general, this
is an involved problem, and, in some sense, it still remains open. Despite this difficulty, we
find these models offer an interesting arena to test whether non-conventional evolutions
are admissible or even preferable.

In contrast, the coupling/interaction displays a natural separation scheme right from
its inception, and typically models in which the dark energy is a scalar field are used to
model the dark energy component. But the complexity of the equations, along with the

LWe will follow the original proposal, reinstating the naming 'unified dark matter-energy’ as the meaning
of the well-established acronym UDM.
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extra number of degrees of freedom, precludes the power to reconstruct explicitly the
evolution of the background (depending on the scale factor). In fact, this is only possible
if initial conditions are set, or in other words, if a specific path is chosen in the highly
multidimensional phase-space of the model. These are basically the so-called coupled
quintessence scenarios, which, despite their interest, lay beyond the main focus of this
project (see [16] for one of the first representative contributions to the topic). But just
let us mention that recent sound observational support for some such scenarios have been
presented [200, 230].

UDM models, which are our main interest here, have in general been found to be
somewhat inconsistent because they have to become indistinguishable from ACDM in
order to fit the observational data [204]. This is the case for the generalized Chaplygin
gas for example, which even in non linear evolution fails condensation to act as CDM
[43]. But among the different UDM models, a new class has emerged that offers a
way out of that difficulty: models with a fast transition between a matter-driven-like
era and a dark-energy-driven-like era. They are believed to provide an alternative and
defendable explanation of the accelerated expansion of the universe [182], as they can
fit the observational data quite well while they display interesting and different new
features. Besides, fast transitions UDM models with scalar fields are also compatible with
observational data [37].

The theoretical reasoning on which fast transition UDM models rely provides hints
towards well mathematically/analytically-defined expressions for their equation of state
parameter wypys, as discussed in [182], but this parametrization scheme turns out to be
computationally expensive when tested with likelihood techniques. Taking into account
this, and without a fundamental model, it is worth to consider simple phenomenological
models for the fast transition UDM in order to achieve as much theoretical progress as
possible from analytical calculations. A simple model, gentle on computations, must
be one whose most important variables required for the numerical calculations can be
expressed analytically. Thus, instead of implementing the UDM model in the equation
of state wypys, as in [182], we believe a more convenient way to proceed analytically is
to prescribe the evolution of the UDM energy density at the level of the Hubble factor
itself [48]. Here we present (in Sec. 4.1) two parametrizations for these UDM set-ups
with fast transition. Then we describe (in Sec. 4.2) the CMB, Galaxy Clustering and type
la Supernovae data we use to constrain the models. After that we discuss (in Sec. 4.3)
our most relevant results, and in particular, whether the models are statistically favoured
or not as compared to the concordance scenario, ACDM. To close up, we present some
final conclusions (in Sec. 4.4).
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Chapter 4. Cosmological constraints on unified dark matter-energy models

4.1 Phenomenological fast transition unified dark
matter-energy

The background geometry considered for the phenomenological UDM models in this
chapter is a spatially flat Friedman-Lemaitre-Robertson-Walker (FLRW) metric, ds* =
—dt* + a®(t)é;;dx;dxj, where a(t) is the scale factor as a function of the cosmic time ¢,
and §;; is the Kronecker delta. We will consider perfect fluids with densities p; as sources;
and taking 87G = ¢ = 1, the Friedman equation takes the form

ORDH o

where H = a/a is the Hubble function and the dot denotes differentiation with respect
to the cosmic time. If we introduce the corresponding fractional matter-energy densities

_ pi(a)
Q;(a) = 3HZ(a) (4.2)
Eq. (4.1) becomes
E*(a) = H*/Hi = Qi(a), (4.3)

with H representing the Hubble factor at present.

Being more specific about the sources, we need to clarify the role and form of our
proposed UDM fluid: we want a UDM fluid which exhibits a fast transition from the pure
dark matter stage to a scenario that resembles a ACDM set-up. From [48], we borrow
the analytical form

Qg

Qo = (%)3 TN [1 — (aﬂ O(a — ay), (4.4)

with ©(a — a;) playing the role of a transition function, and a; the value of the scale
factor at which the transition happens. We can easily see that for a < a; the fluid behaves
like a pure dark matter fluid, with density Q; (a;/a)®. For a > a;, the fluid will rather
have a density with the expression (Q, — Q) (a;/a)® 4+ Q4, thus resembling a ACDM
scenario, as intended.

Note that, as shown in Ref [239], any description for the fluid content driving the
background evolution of a UDM setting can be mapped into that of a scenario in which
dark matter and dark energy are separate components. This is so because the large-scale
evolution is only sensitive to the total energy-momentum tensor, and not to the features
of its separate components. But this issue should be examined under a different light if
one considered perturbations, because the unified and non-unified scenarios do not have
perfectly matching perturbations, as also discussed in Ref. [76, 240].
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4.2 Observational data

Given the properties of the transition function, one can match the usual dark matter
density Q. with the term Q;a}. Thus, the total matter component will be Q,,, = Qa3 +Q;
when the baryonic matter term is also considered. In principle, the Hubble factor would
suffer from a degeneracy between its terms proportional to €2, and 2 if we were using
only low redshift observational data. Given that, we are going to use high redshift CMB
data as well, for which this degeneracy is broken. Moreover, the use of the CMB data
makes it necessary to add a radiation term, 2, [238], which has no influence on the
late-time expansion, but is fundamental in the early stages of the universe history. Thus,
all in all, Eq. (4.3) can be finally written as

3
E2(a) = Qa3 + Qy [1 - (%) ] Oa—ar) + a3+ Qa™t . (4.5)

For the purpose of the statistical analysis we will perform, it is also useful to take advantage
of the fact that the parameter 25 can be written as a function of the other parameters
by simply evaluating at the present time the Friedmann equation, Eq. (4.5), finally having

1-Q.—Q — O,

W= A e0 —a)

(4.6)

The last ingredient missing to provide a round model for this UDM transition is the
choice of Heaviside-like functions. We will propose two different ones; the first model for
the transition will be:

1 1
O(a—ay) = 5t - arctan (Bm(a — a;)) ; (4.7)
s
whereas the second transition function considered will be:
1
Oa —ay) = 3 [1+ tanh (28(a — at))] - (4.8)

In both cases, the transition happens slowlier than in a pure Heaviside function, with the
parameter S mainly controlling the velocity of the transition; that parameter is in fact
(and in both cases) the value of the first derivative with respect to the scale factor of the
transition functions, evaluated at the transition point ay.

4.2 Observational data

In this section we specify details of the observational data sets we have used for our
analysis, as well as the analytical expression of the x? we are going to minimize in order
to perform our statistical Bayesian analysis. We use CMB shift parameters as explained
in Sec. 2.3.1, Union2.1 SNe catalog as standard candles of Sec. 2.2, and specific BAO
data (Sec. 2.3.2) coming from galaxy clustering (GC). A Gaussian prior for the Hubble
constant is also assumed: Hy = 100 A km s=! Mpc™t = 69.6 + 0.7 km s~! Mpc~* [30];
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thus, its contribution to the total x? is the following:
XH, = (100 — Hy)? /oy, . (4.9)
The total x2 will be, of course, the sum of all the considered terms:

2 2 2 2 2
X" =XcmB tXsv + Xcc T XH, - (4.10)

4.2.1 CMB shift parameter data

As explained in Sec. 2.3.1, CMB data are taken from [238], where distance priors for
lo and R were derived from Planck first release data [3]. The mean values for these
parameters are

((La), (R), (Q%h?)) = (301.57, 1.7407, 0.02228) , (4.11)

and taking their 1o errors from Eq. (2.42), we construct the full covariance matrix Conrp
from the given correlation matrix of Eq. (2.43). In order to write the CMB contribution
to the x2, we first define the difference vector between the model and observations as

Xemp = R —(R) ; (4.12)
Quh2 — (h)

and using the inverse of the covariance matrix Coys 5, the CMB contribution to the x? is

XQCMB = XgJVIBCE'Jl\lBXCMB . (4.13)

4.2.2 Supernovae la data

The SNe la data set we have used is the Union2.1 compilation [220], made of 580
Type la Supernovae distributed in the redshift interval 0.015 < z < 1.414. The data
set provides full statistical plus systematics covariance matrix for the distance modulus
1(z;) Eq. (2.24) of each SN. All the SNe uncertainty as the SNe la absolute magnitude
alongside constants as the value of the Hubble constant Hy, for example, are included
in the nuisance parameter pp, so that the distance modulus p(z;) of Eq. (2.29) can be
rewritten in this case as

p(z) = 5logyodr(2) + ko » (4.14)
where the dimensionless luminosity distance dy, in a spatially flat universe is given by

z dZ/

dr(z) =(1+2) B

(4.15)
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In order to get the x? contribution, first we define the difference vector between the
model and the observed magnitudes

,umodel(zl) - Nobs(zl)
Xsn = : (4.16)

Nmodel(z./\/) - Mobs(z./\f)

However, instead of simply compute the usual x? term as X%N = XgN -C71 Xg, we
follow the marginalization of Sec. 3.1.3 to get rid of the nuisance parameter po. This
way, the SNe la x? contribution becomes
d b
2
—a+log— — — 4.17
Xsn = a+log or 4 (4.17)
where: a = XLy - C1 - Xgn, b=XEy-C71 -1, and d =17 - €71 - 1, with 1 standing
for the identity matrix.

4.2.3 Galaxy Clustering data

The Galaxy Clustering (GC) data we use are the measurements of H(z)rs(zq)/c and
D (%)/rs(zq) from the two dimensional two-point correlation function measured by [63]
and [64], respectively at z = 0.35 using the SDSS DR7 Luminous Red Galaxies sample
[132], and at z = 0.57 using the CMASS galaxy sample from BOSS [92]. Here, H(z)
is the Hubble function defined in Eqgs. (4.3) - (4.5); and D4(z) is the angular diameter
distance of Eq. (2.15) in the case of spatially flat universe:

o ?odZ
S 1+z ), H()

Da(z) : (4.18)

The comoving sound horizon r4(z4) is evaluated at the drag epoch [88], whose redshift
zq is given in Eq. (2.44). The mean values and the 1o errors for these quantities are

<H(0350>7“(Zd)> — 0.0434+0.0018
DA035)\ _
< e > — 6.60+0.26, (4.19)

with normalized correlation coefficient r¢ 35 = 0.0604; and

<H(057C)7‘(2i)> — 0.0454 £ 0.0031
<DA(O'57>> — 8954027 (4.20)
rs(2q)
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with normalized correlation coefficient rg 57 = 0.4874. The GC contribution is calculated
independently for each redshift, X%C = X2G01 + XQGCQ- In each case, taking into account
the correlation 7; between the two observables, the usual term of x2,; = X&c;-C ' Xaoi
can be directly expanded as

1 X12,.. X2Z.. Xlagei X2¢ci

T3 014 03 O1i 02i

(4.21)

where X1gc; and X2qc; are the difference between observation and models for each
quantity

Xlge, = G <H(Zi)crs(zd)>, (4.22)
X2¢ci ra(2a) < ro(2a) > . (4.23)

4.3 Statistical analysis on fast transition unified dark
matter-energy

The statistical analysis will be performed by minimizing the x? function using the Markov
Chain Monte Carlo (MCMC) Method [61, 148, 226] described in Sec. 3.2. The statistical
convergence of each MCMC round has been tested using the spectral method given by
[82] and described in Sec. 3.2.1. In order to state the effective statistical weight and
validity of our UDM models, we have also analyzed the ACDM model using the expression
in Eq. (1.39)

Eiopyu(2) = Qe+ W)a™2 +Qa* +Qp, (4.24)

and the quiessence model [137, 187]
Eé(z) = Qe+ W)a 3+ Qat + Qpa 30+, (4.25)

In both cases, the usual matter density €2,,, has been split into the dark matter €. and the
baryonic §2;, densities terms, in order to have the same parameters as the UDM models.

The priors on the parameters that we have chosen are as general as possible: a positive
dark matter density between 0 < ), < 1; a positive baryonic matter density smaller than
the dark matter density 0 < @, < €).; a positive Hubble function E(a) > 0 for all a
values; and 0 < a; < 1 because we want the transition to actually have happened.

Fig. 4.1 shows confidence regions for the ACDM and quiessence models, while a
summary of the results of our statistical analysis can be found in Tab. 4.1 where the
reduced best-fit X2 is also shown. However, more robust conclusions for the model
selection can be drawn only from the Bayes factors after having computed the statistical
evidence. For the computation of the evidence we have used the nested sampling algorithm
[172] explained in Sec. 3.3.1. The Bayes factor [227] is obtained comparing the UDM
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4.3 Statistical analysis on fast transition unified dark matter-energy

Table 4.1: Summary of constraints. Median values for the free parameters and the corresponding
value for the parameters Qp and qo, using CMB, GC and SNe data. The value for
the minimum x2.4 and the Bayesian ratios with respect to ACDM are also shown.

Model arctan tanh ACDM quiessence

h 069508000055 0.608TIRUNT  0.6906°5%9%  0.696*012
Qe 0.2445%G 0012 0-243670501, 0.2459013 0.24310-012

L 0.0462670:00058  0.0459770:00037  0.0469210:00095  0.046170-90%2
parameter 4 a, = 0.17070017 @, = 0.180970 0752 — w = —1.02975:0%2
B 552755 7715 _

24 0.70917056i3  0.7103%050  0.708¥05h 0.712+5918

% —0.56907+9:99099  _0.5718179:999%%  _0.562+9917 —0.597+5-585
X 0.9501 0.9498 0.9488 0.9503
InBia +0.791 +0.902 0 —0.242

and quiessence models with the ACDM, assumed as reference model, and the results are
shown in the last column of Tab. 4.1.

Fig. 4.2 show the constraints on the free parameters for the models Eq. (4.7) and
Eq. (4.8) respectively, and the Tab. 4.1 summarise the results. The late time dark energy
density 2 is also computed in this case, evaluating the Eq. (4.6) and inferring its statistics
from the MCMC output on the main fitted parameters. We also study the deceleration
function, which is used as a further marker to characterize the behaviour of our models
and, eventually, to better distinguish them from ACDM:

_ dlog E(a)

=-1
¢ dloga

(4.26)

The deceleration function evaluated today ¢ = g(a = 1) is also shown on the Tab. 4.1,
while its global evolution is represented in Fig. 4.3.
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Figure 4.1: Contour plot for the ACDM (left) and quiessence (right) models, dark grey areas
are 1o region and light grey areas are 20 region.
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Figure 4.2: Confidence regions for the arctan (top) and tanh (bottom) models; dark grey areas
are 1o region and light grey areas are 20 region.

4.4 Take-home lesson about unified dark
matter-energy models

Results from the Bayesian Evidence show that the proposed UDM models cannot be
discarded in favour of the ACDM model, as it can be seen in the Tab. 4.1. All models
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Figure 4.3: Evolution of the deceleration parameter for the arctan (left, red) and tanh (right,
red) models, compared with the deceleration of the ACDM (blue) and quiessence
(green). Top figures show the entire evolution, bottom figures are zoomed in the
transition.

get a very similar evidence compared each other. Even if the difference, according to the
so-called “Jeffreys' scale” [110], still falls in the “inconclusive evidence" range for all of
them when compared to ACDM, we have to highlight the higher values obtained by our
UDM models.

When comparing the same parameters in different models, we can see that in all four
models the best fits have similar values. Nevertheless, comparing the errors of the the
UDM models to the ones of ACDM and quiessence models, the former ones are slightly
smaller than last ones.

These differences in the errors can be well appreciated in the plot of the deceleration
Fig. 4.3, where the differences are highlighted by the dependence of the deceleration
on all free parameters of the models. We can see that, in general, the biggest error
corresponds to the quiessence model, and to the lowest the UDM models. However,
during the transition, due to the rapid change of the transition function, the error of
the deceleration in the UDM models greatly increases. We can also appreciate that the
slight difference between the deceleration function of the UDM models and the ACDM
model progressively increases until the transition, but then both UDM and ACDM models
decelerate in almost the same manner. Besides, the deceleration function of all the models,
including quiessence, has a quite similar behaviour (and value range) during the whole
evolution of the universe.
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This transition is characterized by the transition functions of Eq. (4.7) and (4.8), which
is shaped by the parameters a; and 8. For both UDM models the transition occurs in
the past, and is centered around a; = 0.17 — 0.18. The transitions occur very fast, in a
narrow fraction of the entire cosmic time.

The mayor differences between the UDM models and ACDM occur before the transition.
In this way, they could be considered as early time deviations from ACDM, where there
would be no need for dark energy in the past. Furthermore, the dark sector of the universe
could be explained by a single UDM fluid instead of the two components necessary with
ACDM.

75






Cosmological constraints on a unified
dark matter-energy scalar field model

In this chapter we will consider a well studied variation of ACDM: the Unified Dark Fluid
approach, also known as quartessence, sometimes as Unified Dark Energy, but more
usually known as Unified Dark Matter!. A plethora of UDM models have been proposed,
see [36] for a review, after the pioneering introduction of the Chaplygin gas [32, 42, 130].
The unification of dark matter and dark energy is an interesting approach that assumes
the existence of a single fluid capable of accounting for both the accelerated expansion at
late times and the large-scale structure formation at early times, due to the evolution of
its equation-of-state (EoS) and speed of sound. In principle this is more efficient than
postulating two different fluids and equally valid, since the nature of the fluids is still
elusive. It also has the advantage of evading, by definition, the coincidence problem [216].

A serious issue in most UDM models is the presence of an effective speed of sound
that can be very different from zero during the cosmological evolution. This prevents
the dark fluid to cluster below a thresholding scale (the Jeans scale) [101, 121, 183].
In addition, the evolution of the gravitational potential may also give rise to a strong
signature in the Integrated Sachs Wolfe (ISW) effect [34]. It is therefore crucial to make
sure that the single dark fluid is able to cluster and create the observed cosmic structures
as well as reproducing the well-known pattern of CMB temperature anisotropies [58].
However, for the majority of UDM models in the literature, these requirements, together
with the necessity of having a background evolution that complies with observations,
leads to severe fine-tuning of the parameters, to the point that the models become almost
indistinguishable from ACDM, and are thus less interesting [107, 181, 204, 205].

The problem of the lack of clustering, or production of oscillations, can be avoided
with a technique introduced in [35]. In particular, the dark fluid is a scalar field, ¢, with
a non-canonical kinetic term, i.e., a term f(?) instead of the standard (/2. In this
way it was possible to build a UDM model with a small effective sound speed that allows
structure formation and has a weak ISW effect, being compliant with weak lensing data
[53, 54]. This model has, however, the same background evolution as ACDM. A more
recent alternative are the so-called UDM models with fast transition where, during a short

L Again, we will follow the original proposal of 'unified dark matter-energy’.
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period, the effective speed of sound can be large, but is otherwise zero. This produces
a fast transition between a CDM-like era, with an Einstein-de Sitter evolution, and an
accelerated DE-like era, and allows for strucure formation. In addition, these models are
not forced by construction to have the same background evolution as ACDM and are free
from the problem of fine-tuning the parameters that plagues many UDM models.

The dynamics of UDM models with fast transition can be prescribed in three different
ways: starting from either the EoS w, the pressure p or the energy density p. The first
UDM model with fast transition was introduced in [182] and prescribed the evolution
of p. The pressure and energy density were related by a barotropic EoS, p = p(p)
and the perturbations were adiabatic. A second UDM model with fast transition was
presented in [37] and was built from a k-essence [19, 60] scalar field Lagrangian (see also
[74, 131, 193, 194]). This model also prescribed p but, differently from the first one,
since it is based on a scalar field the perturbations are naturally non-adiabatic [41, 80],
allowing for a small Jeans length even when the speed of sound is non negligible. The
model also contains a future attractor that acts as an effective cosmological constant?,
Poo, i.€., an asymptotic limit w = —1 is built in. A third UDM model with fast transition
was proposed in [48]. This is a phenomenological model, with the dynamics prescribed
through the fluid density p, and it has adiabatic perturbations.

Models with a fast transition might also be a step towards a unified description of
dark matter, dark energy and inflation [152] but, regardless of that possibility, they
are considered among the most promising UDM models [17]. Even though they are
built with the goal of enabling structure formation, it is also important to test them at
the background level since they may have a background evolution quite distinct from
ACDM. In particular, such tests will constrain the rapidity of the transition and may
already give an indication whether the allowed rapidity range favors structure formation.
The phenomenological UDM model, and variations of it, were recently constrained at
background level in [143]. In the present work, we apply Supernova, BAO and CMB data
to test the scalar field UDM model of [37], constraining its parameters and making a
statistical model comparison with both ACDM and the phenomenological UDM model of
[48] tested in [143].

In the rest of the chapter, we present in Sec. 5.1 the UDM model that will be tested in
Sec. 5.3 using the data and methods described in Sec. 5.2. We conclude with a summary
and some remarks in Sec. 5.4.

2A scalar field with a potential that admits a minimum Vp = V(¢o) # 0 is equivalent to a cosmological
constant pp = Vp and a scalar field in a potential V =V — V.
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5.1 Computation of the Hubble function

We consider the scalar field UDM model proposed in [37], where the evolution of the
pressure has the following form:

p(a) = —pos {; + tanh {g (® - af)] } . (5.1)

This model allows for a fast transition in the pressure evolution, since for large values of 8
the tanh function tends to a step function. The transition occurs at a scale factor a;, with
rapidity parameterized by (8, while p, parameterizes the pressure amplitude. The fluid
goes from an Einstein-de Sitter DM era (p = 0 at early times), through p(at) = —poo/2
at transition, to a DE era at late times (with p reaching —p., the sooner for faster
transitions).

Considering a Friedmann-Lemaitre-Robertson-Walker (FLRW) background metric (and
a frame with proper time coicinding with the cosmic time), the density can be derived
from the pressure using the energy conservation equation

p=-=3H(p+p)=-3Hp(l+w), (5.2)

where w = p/p is the EoS and the dot means differentiation with respect to time. The
density is obtained from the pressure by integrating Eq. (5.2):

pla) = poo {; + %a_?’ln (cosh {g (a® — af)} ) } + poa™?. (5.3)

The integration introduces another constant. It is usual to choose it as the amplitude of
a “"CDM sector of the UDM": pg, defined at ay = 1. Note that the density does not have
a fast transition, since the In(cosh) function is not a step function. The density decreases
smoothly from its maximum amplitude at a = 0, through p(a;) = (poa{3 + poo) at
transition, to po, when a — oo. Note also that for fast transitions (large §) and after the
transition, tanh ~ 1 and In[cosh(x)]/x ~ 1, and thus p ~ —ps and w ~ —puo /(P +p0)-
This means that fastest models become degenerate and are more similar to ACDM than
the slower ones (with the exception of the singular case 5 = 0).

The UDM model contains thus four parameters: pg, pso, 5 and a;. With this choice
of parameters, the density is written as the sum of three parts: the CDM-like term
pe(a) = poa™3, a constant term p(a) = pso/2 and the Incosh term, with the latter
two defining a "dark energy sector". To compare UDM models with ACDM, it is useful
to define today’s densities for these two sectors. Introducing the critical density today,
per = 3HZ, we define the two dimensionless density parameters:

Po

Q.= — 4
= 352 (5-4)
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and
Poo

QpE

All the background probes we will use in the likelihood analysis depend on the Hubble
function
EQ(CL) = H2/Hg = QTCL_4 + Qba_3 + Qupmla), (5.6)

where ;, and €, are the baryonic matter and radiation [238] densities and

1 3
Qupmla) = Qa3+ Qpp< =+ —a 3In{ cosh é (a3 — af’) . (5.7)
2 28 3
The four parameters Qpg, Q. B and a; are not all independent. Indeed, applying
Friedmann's equation, >~ Q; = 1, we can write
1-Q, —Q— Q.
;4 % In {cosh [g (1- a?)] }

Qpp = (5.8)

The definition of two sectors allows the introduction of an EoS of the dark energy
sector, @
pla
=7 59
U)DE(GJ) p(a) — pOCI,_3 ) ( )
in addition to the EoS w(a) = p(a)/p(a).

We finally note that an explicit analytical Lagrangian can be written for this model,
since the general Lagrangian for a UDM scalar field ¢, within the framework of k-essence
is

1
167G
where X is the kinetic term and the pressure can be identified with the term p = L., (¢, X).

L=Lg+L,= R+ Ly(p, X), (5.10)

5.2 Observational data

We test the model with a Markov Chain Monte Carlo (MCMC) exploration of the parameter
space [61, 148] as described in Sec. 3.2, combining various probes of the expansion history
of the Universe: luminosity distances to type la supernovae (Sec. 2.2.2), baryon acoustic
oscillation scale parameter and also Alcock-Paczynski distortion parameter (Sec. 2.3.2),
and CMB distance priors (Sec. 2.3.1). These various data sets are uncorrelated and thus
the total x? used in the analysis is simply the sum

X* = XemB + XBao + Xan - (5.11)
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Besides these observations, we also include some broad and flat conditions as priors: dark
matter density must be positive 0 < €2, < 1; baryonic matter density must be positive
and smaller than the dark matter density 0 < Q, < §.; the Hubble function must be
positive for all values of the scale factor a, E(a) >0 ; and 0 < a; < 1 because we want
the transition to actually have happened. Finally, the Hubble constant Hj is analitically
marginalized in the SN likelihood and is left as a free parameter, with a broad flat prior,
in the BAO and CMB likelihoods.

5.2.1 CMB shift parameter data

In order to reduce the volume of the parameter space in the MCMC analysis, it is useful to
include the so-called CMB distance priors [238] in our analysis. As explained in Sec. 2.3.1,
these are priors on the CMB shift parameters, geometrical quantities that effectively
summarize the CMB data, since they capture the degeneracies between the parameters
that determine the CMB power spectrum [237]. These CMB distance priors are the same
explained in the previous Chap. 4, using the same X2CMB construction as in Eq. 4.13.

5.2.2 Supernovae la data

As in the previous analysis [143] of Chap. 4, we use the same Union2.1 compilation
[220], which provides not only the distance modulus p(z;) for each SN, but also the full
statistical plus systematics covariance matrix of all 580 Type la Supernovae of the catalog.
The additive nuisance parameter o of Eq. 4.14, involving the values of all constants
from the distance modulus, is again marginalized according Sec. 3.1.3, yielding the same
expression for the x%, as Eq. 4.17.

5.2.3 Baryonic Acoustic Oscillation data

Unlike the previous analysis [143] of Chap. 4, we will now use the baryon acoustic oscillation
scale parameter A(z) of Eq. (2.49) and the Alcock-Paczynski distortion parameter F(z)
of Eq. (2.52) provided by the WiggleZ Dark Energy Survey [44], as the BAO observables.
They probe the volume-averaged distance Dy (z) of Eq. (2.50) and the angular-diameter
distance D 4(z) of Eq. (2.15), which can be expressed in the following way for the spatially
flat case,

c 2 odY
(142) Jo H(Z)
WiggleZ measured these observables in three overlapping redshift bins, with effective
redshifts (21, 22, z3) = (0.44, 0.60, 0.73). The data values are

Da(z) = (5.12)

Xops = (A1, Az, A3, Fi, Fy, F3) (5.13)
—  (0.474,0.442,0.424,0.482, 0.650, 0.865) (5.14)
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with correlated errors described by the covariance matrix

1.156 0.211 0.0 0.400 0.234 0.0
0.211 0.400 0.189 0.118 0.276 0.336
3 0.0 0.189 0441 0.0 0.167 0.399
Cpao =1077° x . (5.15)
0.400 0.118 0.0 2401 1.350 0.0
0.234 0.276 0.167 1.350 2.809 1.934

0.0 0336 0.399 0.0 1934 5.329

The BAO contribution to the total x?2 is

X540 = XBao - Cpao - XBao (5.16)

where Xga0 = (Xobs — Ximod) is the difference vector in this case.

5.3 Statistical analysis on unified dark matter-energy
scalar field model

We ran a set of Markov chains on the five-dimensional parameter space (h, 2., Q, at, 8),
using the following three-step procedure. We start by running a short preliminary chain
of around 20 000 iteration in order to find the region of maximum probability density.
Then we make a second run for around 50 000 iterations to find a tentative covariance
matrix. Finally, we start the final chain, using the previously found covariance matrix as a
proposal step. The final chain has around 200 000 points and we assess its convergence
using the ratio of variances proposed in [82] and explained in Sec. 3.2.1.

Besides the UDM scenario, we also ran an MCMC for the ACDM scenario. Fig. 5.1 shows
the posterior probabilities for each parameter of the UDM and ACDM models, along with
1- and 2-0 two-dimensional confidence regions. Tab. 5.1 gives the corresponding median
and marginalized 1-o interval for each chain parameter and some derived parameters.

The constraints on the three standard parameters are similar in the two models. The
probability contours of the Hubble parameter vs densities show the usual anti-correlations
that arise because Hubble function and distance measurements probe physical densities
Q;h2. The main new feature is a slight correlation between the scale factor of transition
a; and ), especially for higher values of a; (and a corresponding anti-correlation with
h). This degeneracy broadens the ). contours, being responsible for the decrease of
precision in the €. estimate quoted in Tab. 5.1. This differs from the behavior found in
the analysis of the phenomenological UDM models [143] of the previous Chap. 4, where
the constraint on 2. was found to be stronger than in the ACDM model, even though
the evidence was not conclusive in favor of that UDM model.
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Figure 5.1: Posterior distribution from the full-range MCMC chains. Diagonal panels: one-

dimensional marginalized posterior distributions for UDM (red, solid lines) and ACDM
(blue, dashed lines) parameters. Off-diagonal panels: 1- and 2-o two-dimensional
marginalized contours for UDM (red) and ACDM (blue) parameters.
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Table 5.1: Median and 1-0 uncertainty for the UDM and ACDM model parameters, from the

full-range MCMC chains.

Parameter UDM ACDM

h 0.685 4 0.012  0.684 +0.011
Q. 025910012 0.253 +0.013
o 0.047675-0911 0.0476 + 0.0011
a 0.227013 -

B 227500% 500000 -

Qpe 0.69370013  0.699 & 0.014
WpE —1.01119:00% —1

w —0.7350 012 —1

For model comparison purposes, we start by noticing in Tab. 5.2 that the UDM best-fit
has a lower x?2 value than found in the ACDM analysis. This may be due to over-fitting,
and indeed the best-fit reduced x? is larger than for the ACDM case. A more robust way
to compare the models is through the ratio of the model evidences, i.e., the Bayes factor
[227]. We compute the evidences with an implementation of the nested sampling algorithm
[172] explained in Sec. 3.3.1. In particular, we use 10® sample points, chosen randomly,
and compute the evidence in up to 10* steps. We repeat the procedure 100 times, varying
the sample points, and quote the average evidence from the 100 realizations. We obtain
a Bayes factor very close to 0, and thus the model comparison is highly inconclusive,

according to Jeffreys' scale [110].

Table 5.2: Values from 5 methods to perform model comparison between UDM, ACDM and the

phenomenological UDM.

UDM  ACDM UDM,,
X2 55259 55277  552.75
X2, 09478 0.9449  0.9481
InBy, —0.0196 0 0.6850
BIC 584485 571.902 584.644
DIC 553250 552.770 552.814
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With a Bayes factor so close to 0, we decided to investigate if the behaviour would
be any different when using approximate evidence measures, namely information criteria.
The Bayesian Information Criterion (BIC) is defined as [206]

BIC = —2InLyay + kIn N, (5.17)

Since the nunber of data points used, IV, was the same for the two models, BIC directly
penalizes the lower minimum Y2 of UDM with the higher number of free parameters k.
For the Deviance Information Criterion (DIC), we followed [215] and computed

DIC = 2 <X2> — Xinin: (5.18)

where the average x2 were computed from the chains and not with the nested sampling
code. The results are consistent with the comparison of evidences in that both information
criteria assign a weak but inconclusive preference to ACDM.

We are also interested in comparing the stronger motivated scalar field UDM model with
the phenomenological one. For that purpose we made a new analysis of the latter, testing
it with the same set of data used in our present analysis. The results from this second
model comparison analysis are also summarized in Tab. 5.2. Model comparison between
the two UDM models is more direct, since both have the same number of parameters and
data points. Therefore, BIC reduces to a measure of the best-fit, which is slightly in favor
of the scalar field model. It is interesting to note that even though the scalar field model
shows a better best-fit x2, it has a worse x? behaviour on average and consequently a
lower DIC value and evidence. Again, the analysis does not favor one model over the
other, with a weak but inconclusive preference for the phenomenological model.

We can also look at the dark energy sector of the UDM model. A DE density may
be defined as in Eq. (5.5) and its value computed from Eq. (5.8) as a function of all
the other parameters. The corresponding EoS is dynamical and can be computed from
Eq. (5.9). The constraints on Qpg and wpg(a = 1), derived from the MCMC chains,
are shown in Tab. 5.1. The evolution of wpg for the best-fit parameter values is shown
in Fig. 5.2, together with its 1-o variation. Notice that even though wpg is phantom
after the fast transition, approaching wpg ~ —1 today from the negative side, the UDM
fluid does not violate the null energy condition because its EoS, also shown in Fig. 5.2,
does not cross the phantom divide.

We have thus a UDM model with fast transition that is viable given background data.
Let us analyze now the behavior of its core parameters: the scale factor at the transition,
at, and the rapidity of transition, 3. Their constraints, also shown in Fig. 5.1 and Tab. 5.1,
are weak. The 1-o interval for the transition redshift ranges from z ~ 2 to z ~ 13, while
[ does not show a correlation with the other parameters. The posterior probability of
[ shows a peaked structure. Looking in more detail into the likelihood values, we see
the likelihood is essentially flat for 8 > 1000. The peaks in the /3 posterior indicate the
chain is not yet converged for this parameter, meaning there was not enough time to
sample the unbound flat distribution and the chain remained occasionally stuck in some

85



5.3 Statistical analysis on unified dark matter-energy scalar field model

0.5

0.0

~0.5¢

w(a) -1.0f
~1.5f

—2.0¢
—25}

Figure 5.2: Evolution of the EoS of the UDM fluid (green) for the best-fit model parameters,
including derived uncertainty, and EoS of the DE section of the fluid (blue).

positions of the flat distribution. We have thus found that § is unbound from above,
which reflects the fact that for 5§ >~ 1000 the Hubble function is essentially identical for
all B values. On the other hand, § is bound from below, we do not impose a 5 > 0 prior
in the analysis.

These considerations led us to probe the low 3 limit with better resolution. For this, we
ran new chains considering only the range 5 < 100. Given the low level of correlation with
other parameters, we keep the density parameters fixed at the best-fit values, varying only
B and a;. The scale factor at the transition must be kept free, since it is coupled with g
in the evolution of pressure and density, Egs. (5.1) and (5.3), even though a degeneracy
with 5 does not show in Fig. 5.1. Notice also that this setup will artificially tighten the a;
constraint due to its correlation with .. We also ran separate chains for each data set
and show the results in Fig. 5.3. We see now a sharp peak in the posterior of 5 at 5 =0
that had not been picked up before. This point is basically a singularity in the space of
UDM parameters. Indeed, in the 5 = 0 limit, Eq. (5.7) no longer presents a transition
and the model reduces to ACDM, which explains its high likelihood. No transition, also
means that the value of a; is meaningless, which explains the horizontal very narrow
contour seen in the contour plot at 8 = 0. As 3 increases, the Hubble function starts to
deviate from ACDM, until 8 ~ 15, and afterwards it approaches it again. This explains
the dip in the [ posterior seen in all data sets. This effect is especially dramatic for the
CMB shift parameters, which are able to reject the range 5 < 40.

Regarding a;, the noisy structure seen in its posterior corresponds to the 8 = 0 solution,
while the rest of the probability volume lies along a well-defined degeneracy in the (3, a:)
plane. Indeed, in this regime of low 3 the data is able to pick up the degeneracy that
arises from the fact that a slower transition needs to occur earlier in order to be able
to reach today’s density ratio. We fit the degeneracy direction with a cubic polynomial
B — Bo = (a;4/0.22)3 to capture the (3, a;) dependence in the Hubble function, Egs. (5.6)
and (5.7). Here 5y = 54.6 is the average chain value of 3 for a; = 0, while a; = 0.22 is
the median a; value quoted in Tab. 5.1. With these assumptions, we find the following
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Figure 5.3: Posterior distribution from the slow transition MCMC chains. Diagonal
panels: one-dimensional marginalized posterior distributions for the
UDM model parameters, for different data sets (SN, BAO, CMB, all
combined). Off-diagonal panel: 1- and 2-o two-dimensional (a, [3)
contours for the same data sets.

1-0 constraint
at

-3
(B—50) (Gag) =248+59. (5.19)

We also need to look with higher resolution to the intermediate regime of 3, to compare
the likelihoods of the slow transition models with the fast transition ones. This is the
regime of § of a few hundreds, where the tanh function is not yet a step function. We
thus ran a new (ay, 8) chain restricted to 8 < 2000. The results of this analysis are shown
in Fig. 5.4. The distribution of a; is now well constrained, showing a tight peak with a
low-likelihood tail for low a; values. The tail corresponds to the slow transition regime
studied in Fig. 5.3. This result then strongly favors intermediate and fast transitions over
slow ones. This is confirmed by the posterior of § that shows a strong increase from slow
to fast transition, peaking around 8 = 600. After the peak, the distribution falls down
slowly with a long tail, which is just an effect of the strong prior 3 < 2000 imposed in
this analysis, since the likelihood is essentially flat. We see then that the g distribution is
far from Gaussian and we can only find a lower limit for this parameter. From the Ax?
values, we find a 1-0 lower bound of 5 > 300.
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Figure 5.4: Posterior distribution from the fast transition MCMC chains. Di-
agonal panels: one-dimensional marginalized posterior distributions
for the UDM model parameters. Off-diagonal panel: 1- and 2-c
two-dimensional (a¢, 8) contours.

5.4 Take-home lesson about unified dark
matter-energy scalar field model

In recent years, UDM models, for which DM and DE are described by a single dark fluid,
have become increasingly popular and drawn a considerable amount of attention. These
models are undoubtedly promising candidates as effective theories. In this chapter, we
have constrained a UDM scalar field model with a fast transition. The scalar field used
has a non-canonical kinetic term in its Lagrangian and accounts for both the accelerated
expansion of the Universe at late times and the clustering properties of the large-scale
structure of the Universe at early times. The fast transition occurs between a Einstein-
de Sitter CDM-like epoch and a late accelerated DE-like epoch and allows to have a
sufficiently small Jeans length, even if the speed of sound is large during the transition,
because this happens so quickly that its effect is negligible.

In this study we investigated the regimes of slow and fast transition and assessed if
they were distinguishable at background level. For this analysis we tested the models
using Supernovae la, Baryon Acoustic Oscillations and CMB distance data. We have
found a lower bound constraint for the rapidity of the transition 8 > 300, independent of
the transition redshift. Slow transition models 3 < 40 were ruled out, while low-likelihood
intermediate rapidity models featured a correlation between the transition redshift and
rapidity.
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The evidence of this model was compared to the evidences of ACDM and a phe-
nomenological fast transition UDM model that was previously shown to be a good-fit to
background data. In both comparisons the model fared well, with no conclusive evidence
against it.

The preference found for the fast transition regime, which is the condition required
for enabling structure formation, together with the fact that the model has a similar
evidence to ACDM and is a k-essence type physically motivated model with a well defined
Lagrangian, makes it an interesting and viable fundamental cosmological model.
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PART Il

Forecasting future observations






Forecast and analysis of the
Sandage-Loeb test

Most, if not all the probes we have described in Sec 2 involve a time (or better redshift)
integral of the Hubble parameter H(z), and are enough to constrain quite satisfactorily the
geometry and energy content of the universe. But on the other hand, one expects that the
accelerated expansion of the universe will make the redshift of a given astrophysical object
exhibit a drift over time, which should in principle be amenable to giving an accurate
description of that very same expansion once an underlying model is chosen. While
looking for a possible temporal variation of the redshift of extra-galactic sources, Sandage
came in 1962 [11] to the conclusion that it should indeed occur. But, alas, the limited
technological resources on deck at that epoch, lead to the inference that a measurement
time interval of the order of 107 years would be required for a signal detection. When
new spectroscopic techniques became available to astrophysicists, Loeb paid a new visit
to the concept [157] in 1998, and concluded that the new technology would allow a
reduction in the observation time interval to a few decades. This cosmological redshift
drift measurement, also called Sandage-Loeb (SL) test, would then provide a direct proof
of the accelerated expansion of the universe. In fact, this temporal variation is directly
related to the expansion rate at the source redshift, being thus a direct measurement of
the Hubble function.

The last results of the Planck survey [6], have made us enter an ultra high precision
cosmology era; and other future surveys are scheduled which should further improve the
accuracy of cosmological measurements, as for example Euclid [142], Wide-Field Infrared
Survey Telescope (W-First) [214] or Square Kilometer Array (SKA) [2].

Thus, in the near future, available resources will allow us to start thinking about
the next level of cosmological observational data, to which the cosmological redshift
drift will contribute, complementing the previously cited surveys. However, even with
future precision radio telescopes, the measurement of the SL effect represents a difficult
enterprise [134], as it demands several years of observation (usually some decades) to
register enough signal-to-noise ratio so as to yield a possible reliable detection of the
cosmological redshift drift signal. Best candidate objects for a feasible detection of this
faint signal are good Hubble flow tracers as far as possible [165]. As put forward by
Loeb [157], an auspicious target would be the Lyman-a forest measurements of distant
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quasars (QSO). With spectroscopic techniques to be operational in the near future, like
CODEX (COsmic Dynamics and EXo-earth experiment) experiment [155], proposed for
the European-Extremely Large Telescope (E-ELT), or radio telescopes as SKA [136], these
observations will grant access to direct measurements of the Hubble parameter up to
redshift ~ 5, a so far not yet observed redshift range. Thus, the SL test will open a new
“cosmological window".

Due to the near future possibilities to measure the cosmological redshift drift, this
type of observations has recently drawn some attention. The reconstruction of the
theoretical SL signal that different cosmological models would produce has been explored
quite extensively [234, 250]. It comes out that the range and variety of the different
cosmological redshift drift signals created by various models is remarkable: from those
created by different proposals for dark energy's equation of state or modified gravity
[70, 170], to the ones created by backreaction in an inhomogeneous universe without
the presence of dark energy [138]; from the peculiar signals for Lemaftre-Tolman-Bondi
models [18, 247], to even a null signal [167] for the Ry, = ct Universe, or other several
exotic scenarios [22, 23, 25, 78, 169, 249]. SL signals have been used as an hypothetical
geometric cosmic discriminant [103, 104, 111] to show the corresponding improvement
in the constraints that can be achieved due to the degeneracy breaking (around 20% of
improvements for dark energy parameters and even 65% for matter density). SL mock
data sets have been applied with similar results as cosmic observational discriminators to
test other various models, like interactive dark energy models [106, 251], modified gravity
[105, 151], and other exotic cosmologies [248, 254]. Their power to differentiate models
has been exploited also in the context of the model-independent approach of cosmography
[166, 252]. Besides, some new approaches [135] can lead to ambitious ideas, such as
real-time cosmology [184].

We stress again the fact that the measurement of the cosmological redshift drift is not
an easy pursuit, and requires quite a lot of planning due to the large observation time
interval of the survey. Thus, foreseeing the contribution and behaviour of this type of
measurements is important, and we precisely carry out here a quite thorough forecast
analysis of cosmological redshift drift constraints on various cosmological models. The
analysis includes a comparison between the proposed SL data with other future planned
surveys, generating mock data based on the given specifications. Furthermore, unlike
previous works, all mock data sets are generated in a fully model independent way, with
no fiducial cosmological model chosen to generate the points. In Sec. 6.1 we introduce
the mathematical formalism of the cosmological redshift drift, and then we give the details
of the mock data sets we use for our predictions. We find it convenient to produce a
SL data set, but also auxiliary SNe and BAO data. In Sec. 6.2, we explain our MCMC
procedure which will eventually constrain the cosmological models we have chosen as
reference. Finally, in Sec. 6.3, we present and discuss the outcomes of that statistical
analysis, and then summarize and outline the main conclusions.

94



Chapter 6. Forecast and analysis of the Sandage-Loeb test

6.1 Cosmological Redshift drift

A preliminary straightforward calculation introduces the main observable quantity we are
going to focus on, i.e. the cosmological redshift drift, (see for example [155] or [70]). In an
homogeneous and isotropic universe with a Friedmann-Lemaitre-Robertson-Walker metric
Eq. (1.8), let us consider a source at rest emitting electromagnetic waves isotropically,
without any (significant) peculiar velocity. Thus, the comoving distance of Eq. (2.11)
between the source and an observer can be considered fixed and constant through time. If
the source emits electromagnetic waves during time (t.,t. + dt.), and they are detected
by the observer in the interval (., t, + 0t,), where ¢. is the emission time and ¢, is the
time they reach the observer, then the following relation is satisfied:

to Jt to+0t, di
— = —_, (6.1)

¢, a(t) totot, alt)
provided the universe through which the waves travel is a spatially flat Friedmann-Lemaitre-
Robertson-Walker space-time. If the time intervals are small (dt., 0t, < te,t,), the above

expression leads to the well known redshift relation between the emitted and the observed

radiation:
Ste 6t Ao _ alto)

ate) alty) . h alt)
where z.(t) is the redshift of the source as measured at a certain observation time t,.
Other waves can be emitted by the source dt. time later, specifically, at time t. + dt.,
and they will be observed at ¢, + dt,. In the case of these waves, it is straightforward to
modify Eq. (6.2) regarding the new time periods and redshift. Thus, the observer can
measure the difference between the redshifts observed at ¢, and ¢, + dt,:

=1+ ze(t), (6.2)

a(t, + 0t,)  al(t,)

Aze = zo(to + 0ty) — 2e(t,) = — . 6.3

ze = Ze(to 4 0to) — ze(to) alte £ ote)  alto) (6.3)

Within the 0t/t < 1 approximation, the first ratio can be expanded to linear order:
a(to +0t,) _ alto) n ato)dt,  alto)a(te)dte . (6.4)

a(te + 0te)  alte) a(te) a(te)?

Inserting Eq. (6.2) into the first order expansion in Eq. (6.4), an approximated expression
for the redshift variation can be obtained:

Az, ~ [“(t)‘“(”] 5t, . (6.5)

Under the assumption that the observation time is today, we normalize by letting the
corresponding scale factor satisfy a(t,) = 1; and then, using both the Friedmann equation
and the known redshift relation Eq. (6.2), we can rewrite the above expression in terms
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of the Hubble parameter H(z) = a(z)/a(z):
Aze = 0ty [Ho(1 + ze) — H(ze)] , (6.6)

with Hy = H(zp) being the Hubble constant today. This redshift variation can be expressed
as a spectroscopic velocity shift Av = ¢Az./(1+ z.), and using the dimensionless Hubble
parameter E(z) = H(z)/Hy, we get the final expression

E(z
Av = cHyét, [1 1 J(rzzj . (6.7)

6.1.1 Sandage-Loeb mock data set

In order to generate our SL observational mock data set in a fully model independent
manner, we try to derive a Hubble function from a phenomenological distance modulus p
(Eq. (2.24)), in a fashion similar to [175]. We propose this observable because it is well
measured by Type la Supernovae (SNe) and can be extended to high redshifts, even if
with lower precision, by Gamma Ray Bursts (GRBs, Mayflower sample) [156]. We model
this phenomenological distance modulus as

/’Lfit(z) =a+5 loglo [Ffzt(z7 ba c, d7 e)] ) (68)

where F;; is an ad hoc proposed function (among many) mimicking the luminosity
distance. This phenomenological function is then fitted using the SNe data set Union 2.1
[220] for the low-redshift regime, and the GRBs sample calibrated by the Padé Method
[156] for the high-redshift one. Once (i is fitted, other observational quantities relevant
to our work can be easily obtained. For instance, the Hubble function can be derived
recalling the relation of Eq. (2.24):

w(z) = 5logyodr(2) + po , (6.9)

where, in the spatially flat universe we are considering, the dimensionless luminosity
distance dy, of Eq. (2.19) is defined as

dp(z) = (1+2) /0 Ed(zzl,) : (6.10)

and g stores all the information related to the constants involved such as the speed
of light ¢, the Hubble constant Hy, and the SNe absolute magnitude. By comparing
both distance moduli, i from Eq. (6.9) and pf;; from Eq. (6.8), one can realize that the
dimensionless luminosity distance dr,(z) is equivalent to the function Fy;. Thus, the
dimensionless Hubble function is

de<bd>> (611)

Eyin(2) = (dz (1+2)
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Chapter 6. Forecast and analysis of the Sandage-Loeb test

Once such phenomenological dimensionless Hubble parameter E;;(z) is obtained, we can
“mimick” all the cosmological probes we need for our analysis, as they are all related to it.
In this way, we can create cosmological-model-independent mock data sets, where the
only intrinsic information we are using for E;; is that it has to be able to fit present data
(in this case, SNe and GRBs). Of course, some arbitrariness lies behind the choice of the
phenomenological function Fl;;; we have tried to use the most general type of functions
possible, and we have selected the best one based on a simple best-fitting (minimum x?2)
criterium. The best performing function we have found is

z(1+ blog[1 + 2]9)
(14 clog[l + z]¢)

Frit(z;b,¢,d,e) = , (6.12)
where the values for the parameters are shown in Tab. 6.1. It can be seen in Fig. 6.1,
in the top left panel, that this function fits the distance modulus points of the Union
2.1 [220] and Mayflower [156] data sets as much satisfactorily as a ACDM with Planck
values, Q,,, = 0.3121 (sixth column of Table 4 in [5]). In the top right panel, we also
compare the expansion rate function H(z) which can be derived from Eq. (6.12) with the
same Planck ACDM and with data from cosmic chronometers [171]. In the bottom left
panel, the comparison between angular diameter distance derived from Eq. (6.12) and
the same Planck ACDM is done, with the data coming as comoving angular diameter
distance from galaxy clustering (BAO-+FS column of Table 7 in [9]) and physical angular
diameter distance coming from quasar cross-correlation (Eq. (21) in [97]). Finally, in the
bottom right panel, we can also appreciate that the difference between our model and
the Planck ACDM is minimal for the case of the distance modulus (~ 0.1%), and small
for both the Hubble function (~ 2.5%) and the angular diameter distance (~ 2%), all
over the redshift range we cover with our mock data in our analysis.

Table 6.1: Parameter values of F.

Estimate Standard Error

a 43.2025 0.146659

b 2.29876 1.60875

c 0.92048 0.969826

d 1.05317 0.62311

e 0.814751 0.922533
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our generated SNe mock data. Top right panel: comparison between the H(z)
function derived from Eq. (6.12) (solid red) with that corresponding to the Planck
ACDM (dashed blue) described in the text. Grey dots and bars are expansion rate
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mock data. Bottom left panel: comparison of the Da(z) function derived from
Eq. (6.12) (solid red) with that corresponding to the Planck ACDM (dashed blue)
case described in the text. Grey dots and bars are angular diameter distances values
and related errors from BOSS and SDSS, and black ones our generated mock data.
Bottom right panel: relative residuals between our model and the Planck ACDM
for the Hubble function (dashed blue), the distance modulus (solid black) and the

angular diameter distance (dotted red).
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Once we have our Ey;; (%), we only need to specify a fiducial value for the Hubble
constant to insert in Eq. (6.7), whose effect is only the rescaling of the velocity shift
value. We fix the value of Hy = 67.51 km/s/Mpc from the TT,TE,EE + lowP + lensing
baseline model of Planck [5]. Then, for what concerns SL data, the points lie in the
redshift range 2 < z < 5, randomly distributed within the following bins: 2 < z < 3 (13
points), 3 < z < 3.5 (7 points), 3.5 < z < 4 (4 points), 4 < z < 4.5 (3 points) and
4.5 < z < 5 (3 points). This way, we try to mimick the reduction of the number of data
points while increasing the redshift as in [189].

According to Monte Carlo simulations carried out to eventually mimick results from
CODEX [1, 155], the standard deviation on the measured spectroscopic velocity shift Av
can be estimated as

2370 30 5 ¥
» =135 N -1 6.13
7a S/N NQSO (1 + ZQ50> om s ( )

where z is 1.7 for z < 4, and 0.9 beyond that redshift, S/N is spectral signal-to-noise
ratio of Ly-a,, Ngso is the number of observed quasars and zggso their redshift. The
error for the mock data is given by assuming a fix number of integration time hours
which yields a value of S/N = 3000 for the signal-to-noise ratio and Ngso = 30 for the
number of quasars observed [165]. We also introduce some noise to disperse the data
points around the fiducial value derived from Ey;;, using a Gaussian distribution centered
on such values, and with a standard deviation corresponding to the expected error on
the SL observation, oa,, obtained by error propagation from the fitted parameters of the
selected function of Eq. (6.12).

Note that the size of the observed cosmological redshift drift is proportional to the
observation period, although the error does not depend on it as long as the dedicated
integration time neither varies, i.e. the same signal-to-noise ratio is considered. Thus,
once a data set for some given observational time At 4 is created, any new mock data set
with different observation period At can be easily calculated by

Atp
Avg = ——Avy . 6.14
v = 3y Ava (6.14)
We use three observation periods of 24, 28 and 32 years, which are the most illustrative
among the data sets tested. The resulting data sets for SL test can be seen on Fig. 6.2.

6.1.2 Auxiliary Mock Datasets

We include additional future mock data sets alongside the cosmological redshift drift data
set so as to constrain models better. Basically, the reason why we introduce in the picture
these other probes is our interest on studying and quantifying the relative performance of
SL with respect to more standard and used probes, and our aim of finding out whether
the cosmological redshift drift data have some degree of complementarity with them, thus
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Figure 6.2: Data sets for SL test based on Fyti+(z;b, c,d, e) of Eq. (6.12) for different observation
periods: blue (circle and dashed line) for 24 years, red (triangle and dotted line) for
28 years and green (square and solid line) for 32 years.

providing eventual tighter constraints. These auxiliary mock data sets are created from
the same model independent function of Eq. (6.8).

W-First SNe

The first mock data set we produce is a SNe catalogue based on the W-First forecast
[214], which includes 2725 SNe randomly picked in redshift bins of §z = 0.1 spread
through a redshift range of 0.1 < z < 1.5 according to the distribution given by [214].

Given that in the SNe case what one measures is the distance modulus p, we can make
direct use of the fitted function of Eq. (6.8) to generate the mock data points. As in the
SL case, we also introduce some Gaussian noise to disperse the data points around the
mean value.

To create the error bars for this catalogue and the dispersion for the Gaussian noise, we
use the information given in [214]. The statistical errors they account for are the following:
the photometric measurement error, o,,cqs = 0.8; the intrinsic luminosity dispersion,
oint = 0.08; and the gravitational lensing magnification, ojc,s = 0.07. Besides, they
assume a systematic error ogys = 0.01(1 + 2)/1.8. Thus the total error per SNe is:

Otot = \/ Jgtat + NSNO—Eys ) (615)

where 0stat = \/02 005 + 02, + 02, and Ngy is the number of SNe in the bin. The
data set generated for the W-First SNe survey is shown on Fig. 6.1.

Euclid BAO

The second data set we consider is BAO. We choose the future Euclid survey [142] as
the experiment to reproduce. The two quantities we consider are the angular diameter
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distance D 4(z) of Eq. (2.15), which can be expressed in the following way for the spatially
flat case,

_ = d
14z )y H(Z)’

normalized by the sound horizon, D 4(z)/rs; and the Hubble parameter times the sound
horizon, H(z)rs, where the value of r; = 144.71 Mpc, consistent with the previous H,
is used according to [5].

Da(z) (6.16)

Both the angular diameter distance and the Hubble parameter are reconstructed using
again the function of Eq. (6.8). We have already discussed that the Hubble parameter
can be inferred as in Eq. (6.11), once a value for Hy is decided. Instead, in order to
derive the angular diameter distance from the same Eq. (6.8), we use its definition and
its relation with the luminosity distance (1 + 2)2D4 = Dy, thus to obtain

D) = ¢ Fri(2;b,c,d,e) .

= TESE (6.17)

The redshift values of the data set are taken from [96], and they specifically are the
central redshfits of 15 bins with §z = 0.1 width, spread from z = 0.5 to z = 2.1. The
error in each redshift value for both D4 and Hj is build from the percentage error given
also in [96]. Finally, we introduce some Gaussian noise using the error from each bin as
dispersion when generating the points D4(z)/rs and H(z)rs. The resulting data sets
can be seen at Fig. 6.1 before normalizing the observables by the comoving sound horizon
Ts.

6.2 Mock data constrains

Within the Bayesian framework, we wish to find out how SL constrains the probability
distribution function of some cosmological parameters. For that purpose, we need the
posterior distribution, or equivalently the likelihood, which can be straightforwardly
computed with MCMC sampling while minimizing the x? function as shown in Chap. 3.
The knowledge of the posterior probability gives a better and more complete information
about the parameters, including the full correlation among them.

Thus, once we have the mock data sets, we build the x? function for each observable
and, once all contributions are summed up, we minimize the total x2 in order to perform
our statistical analysis. The x2 contribution for the spectroscopic velocity shift is simply

Avfheo_A%mock 2
= (S (6.18)

UAUVi

i

where Avt?e® = Au(z;) follows from Eq. (6.7), while errors o a,, are given by Eq. (6.13).
The errors are arranged into a diagonal covariance matrix. Depending on whether the
SL surveys will use overlapping redshift bins or not, the error could be more realistically
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given by a non-diagonal covariance matrix. As we lack such information, we adopt the
optimistic diagonal covariance matrix assumption, always keeping in mind that it could
lead to a general underestimation of the global errors on the cosmological parameters.
The period of observation At,, which were specified before, changes depending on the
mock SL survey tested.

In the case of the x? contribution of SNe, the y? reads:

(pa(zi) — piock)?
Xén = Z 2 (6.19)
i Hei

where the error is given by Eq. (6.15). We can marginalize x* over the parameter yq,
similarly as in Sec. 3.1.3, by expanding the x? in Eq. (6.19) with respect to pg as

Xan = A—2u0B + 1i3C (6.20)

where

(i) = roct?
A = ZT (6.21)
mock

B fi(zi) — p
B = Z a2, ’

1
C:ZU—Q.

i Hi

2
X
Then, integrating po out of the likelihood £ = e~ ~Z" we can retrieve

3 B? C
X§N:A—?+ln%, (6.22)

where X2, has now no dependence on the o parameter. This marginalization differs
from the one shown in Sec. 3.1.3 and previous chapters because in this case we are using
a diagonal covariance matrix. It is not possible to forecast out-of-diagonal terms, which
can lead to underestimated errors on cosmological parameters.

With BAO we have two correlated measurements to contribute to the total x?; these
are H(z)rs and D 4(z)/rs. In this case, the comoving sound horizon r of Eq. (2.39) has
an equivalent expression, which is evaluated at photon-decoupling epoch redshift given by
the fitting formula [123] of Eq. (2.35). The BAO contribution is calculated independently
for each redshift, x5 40 = >_; XBao, but taking into account the correlation of the
quantities, each term at each redshift has the same form of Eq. (4.21),

2 7 o T ¢ d
XBA()z — 7"2 (UHQi (]D~i 0 H; 0 D; > ( )
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where H; and D; are the differences between the model predicted and the mock generated
measurements:

H; = H(z)rs(ze) — (Hrg)ook, (6.24)
. DA(Zi) - DA mock
o= (), (62%)

The correlation between the two magnitudes H ry and D4 /rs in each redshift is fixed
as r = 0.4 [209]. Since CMB data are not used, SNe data are marginalized over the
parameter Hy, and BAO data do not give information about it (because D4 /r4(z.) and
H rs(z4) do not basically depend on it), the parameters H, and the combination §2,h2
cannot be well constrained. Thus, we also include a Gaussian prior for Hy and Qph2,
with H’'*nek = 67.51 & 0.64 and for Quh%,;,,,... = 0.02226 £ 0.00016 both derived from
Planck [5].

The minimization of the x? function was performed using the MCMC method [61, 148,
226], with a Wolfram Mathematica self-developed code based on the Metropolis-Hastings
algorithm shown in Sec. 3.2. In order to see the contribution of each mock data set to the
total x2, we have also run chains for each data set separately. In this way, we compare
the cosmological redshift drift data with those from the other future surveys, and find out
whether it will be useful and up to what extent. Moreover, for a round analysis regarding
the viability of the Sandage-Loeb test and the performance of the future (mock) surveys,
several dark energy scenarios are put to the test.

6.2.1 ACDM

The first model we test is the extremely well-known ACDM model [57, 199], which has no
degree of freedom in the dark energy equation of state and whose dimensionless Hubble
parameter is given by

EXcpu(a) = Qna™ + Qra™" + Qa, (6.26)

taking Qp = 1 — Q,,, — Q, with [238]

1

Q= Q, [1+2.5 x 10*22Q, (Temp/2.7) ] (6.27)

and using Toyp = 2.7255 K [95]. We enforce 0 < Q,,, <1, and 0 < Qp < Q,, < 1 as
physical priors, and we do the same for all the rest of models analysed in this chapter.
The results of the Bayesian analysis for the ACDM model can be seen on Tab. 6.2 and
Fig. 6.4.
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6.2.2 Quiessence

The second model tested is quiessence [137, 187], with a single degree of freedom in the
dark energy equation of state parameter (i.e. no redshift dependence). Its dimensionless
Hubble parameter is given by

E}(a) = Qna™ + Qa™* + Qpa 0T (6.28)

where all the parameters except w are built like in the ACDM model and have the same
priors. The parameter w has the prior —5 < w < 0. This range was chosen after having
verified that expanding it further has no influence on results. Tab. 6.3 and Fig. 6.5 show
the results for quiessence model.

6.2.3 Slow-Roll Dark Energy

We consider another one-parameter dark energy model, coming from the slow-roll dark
energy scenario described in [212]. Its dimensionless Hubble parameter, taking into
account a radiation component [4, 20] is given by

3 (5w/)
e ) (6.29)

E2 =0, 2+ Qa4+ Q
sr(@) m@ e T A<Q7na3+QTa4+QA

For dw we impose a prior of the same width as that of the parameter w of quiessence,
but as Jw is supposed to have its mean value at jw = 0, we design its prior accordingly.
Thus, we take —2.5 < dw < 2.5. The results for the the slow-roll dark energy model can
be found on Tab. 6.4 and Fig. 6.6.

6.2.4 CPL

We are also interested in testing models of dark energy whose equation of state parameter
w has more than one degree of freedom. As our first two-parameter dark energy model,
we take the CPL model [59, 154], its dimensionless Hubble parameter being

Etpp(a) = Qua™ + Qra™* + Qa3 Twotwe) g=Suwallza) (6.30)

where all the terms except wg and w, are built like in previous models and with the
same priors. The parameter wg has the same prior as w does in quiessence; and we take
—5 < w, < b for the second parameter. We demand in this case w, + wg < 0 in order
to have an equation of state for the DE component which is negative in the asymptotic
past. Tab. 6.5 and Fig. 6.7 give the results of our Bayesian analysis for the CPL model.
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6.2.5 Lazkoz-Sendra pivotal Dark Energy

We consider another model with two parameters for the equation of state for DE [208],
which can be understood easily as a perturbative departure from ACDM up to second
order in redshift. Even though it is a different parametrization as compared to CPL, it
can be also expressed in terms of the parameters wqy and w, with the same interpretation:
wq is the value of equation of state of the dark energy at present, whereas wy + w,
is its value in the asymptotic past. Specifically, the Lazkoz-Sendra pivotal dark energy
parametrization has the following dimensionless Hubble parameter:

Elg(a) = Qa2+ Qa*+QxX(a), (6.31)
X(a) — a—3(1+wo+wa)e%(1—a)[1+w0—5wa+a(wa—wo—1)]

where all the relative densities €2; are built like in the CPL case, having all the parameters
also the same priors as in CPL, including wg and w,. In the case of the Lazkoz-Sendra
(LS) model, the results of the Bayesian analysis are shown in Tab. 6.6 and Fig. 6.8.

6.3 Take-home lesson about forecast with
Sandage-Loeb data

In the summary tables for each model, we present the minimum value of sz the constraints
for all the free parameters and the reduced Xfed. As explained in previous section, the
X2-minimization is done using different combinations of data sets. In the tables we
first show the results from using BAO and SNe separately and those from joining both;
then, we move on to present the results from SL only, and then, finally, those for the
total SNe++BAO+SL combination. When using SL data, each data set with different
observation years is treated separately. In this way, the performance of the cosmological
redshift drift data sets can be clearly analysed. For each model we also show the confidence
contours for the most interesting cosmological parameters. Each MCMC round is tested
for statistical convergence using the method explained in [82] and described in Sec. 3.2.1.

In the ACDM scenario we find that the cosmological redshift drift data provide remark-
ably good constraints on €2,,,: when those data are used alone we get standard deviations
on €, which are 2 — 3 times smaller that those from the SNe+BAO combination. Con-
sidering the broad priors taken for €2, in all cases, and the negligible correlation between
the Hubble constant h and €2, 1, we conclude that the result for the matter density ©,,
is not influenced by any prior and is solely given by the data.

Indeed, the SL data sets always do better in constraining €2,,, than the SNe data, and
depending on the model and on the years of observation, even better than the BAO data
set. Once we combine the SL data set with the other two, the cosmological redshift

L As the major axis of the contours are typically aligned with the axes of each parameters in the parameter
space.
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drift is still helpful, even though the BAO+SNe data set already improves greatly the
constrains in the parameter space. In general, it is clear that the cosmological redshift
drift data helps considerably to constrain the parameter §2,,, in all the models.

Regarding the dark energy parameters, we can observe that for most of the cases, the
24 years of observation for SL is not enough to constrain them properly, as it can be clearly
seen for example from the contours of the parameters wq and w, in Figs. 6.7 - 6.8. With
28 years SL data, the 1o regions improve noticeable, and with 32 years of observation
both 1o and 20 regions are well constrained for all the DE parameters. The best example
is in Fig. 6.8, as stated, but similar behaviour can be appreciated in the rest of the models.
Besides, it is clear that increasing the observation years improves the overall constraining
ability of the cosmological redshift drift data sets. It is worth to note that in all these
cases, the contours of the SL data set are almost perpendicular to the contours of the
SNe and BAO data sets, thus showing a great complementarity between SL and the
rest of the data sets [67], as for example in the §2,,, — w plane for the quiessence model,
Fig. 6.5, or for the dynamical dark energy models, Figs. 6.6 - 6.7 - 6.8. This is very
important, because it means that even the cosmological redshift drift data set with the
lowest observation period, noticeably contributes to improved dark energy insights when
used as cosmological probe together with other kind of observations.

However, if one focuses on the wy and w, parameters, two things can be noted: first,
that the best fit for the SNe+BAO case is completely different from the values derived
from SNe and BAO only analysis (this is more evident for w, than wy); second, the errors
on the wy and w, parameters slightly increase when adding cosmological redshift drift
data to the SNe+BAO data. Both trends might have an explanation. For what concerns
the first one, if we look at the left panel of Fig. 6.3 (this is for the CPL case, but it holds
true for the LS model as well), we can see how unsatisfactorily the SNe and BAO contours
overlap: the borders of the 1o confidence levels show a small overlap in a region which is
far from the best fit expected for each of them when considered separately. This reduces
the constraints on the parameters in a considerable way and shifts the best fit estimations
(not only in w,, but also on §2,,). But note also that this behavior is somehow expected
and might be counter-productive in the future, as explained in [93]. Anyway, we must
also remember we are working with mock data, not real ones, and the potential future
goodness of the joint use of SNe and BAO at the present, and maybe in the near future,
is not put at stake. Moreover, we have to remember that in order to gain more insights
into a dynamical dark energy model, we need to improve the number and the quality
of data at high redshift; that is the reason behind pushing SNe observations to higher
redshifts [201], for example, or employing BAO data at z ~ 2. But the strongest hints
about the dynamical nature of the dark energy might come from data like SL, which are
able to cover a larger and deeper redshift range. And the second issue discussed above
should be exactly connected to this: if we check again the right panel of Fig. 6.3, we can
see how the SL data set alone, which should be more sensitive to a dynamical dark energy,
determines a consistent shift in the parameter wy with respect to the SNe+BAO case
but with smaller uncertainty with respect to both SNe and BAO data separately, which
eventually ends in a slightly large error for this parameter for the total SNe+BAO+SL
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Figure 6.3: Contours in the wo — wq plane for CPL; solid contours are for 1o regions and clear
contours are for 20 regions. Left panel: purple is for the BAO data; green for SNe
and grey for SNe+BAO. Right panel: red is for 32 years SL data,; grey for SNe+BAO;
blue for SNe+BAO+SL.

In the case of models with a single DE parameter, that is, whose equation of state is
fixed during time, high redshift SL data are also helpful. In the extreme case when SL
data are added to the SNe+BAO data set, even the SL data with lowest observational
period help constrain the single parameter of DE. However, it is also remarkable how every
data set, separately, constrains the single DE parameter to a different value. Taking into
account that the redshift range of each data set is quite different, the fact that separately
they measure a different value for the parameter could be an evidence for a time evolution
in the equation of state of DE. This is a clear example of another application for the
SL observation, where its high redshift data could easily test the time evolution of the
equation of state of DE once compared to the results of other data sets coming from
different sources.

A lot of what has been stated above can be easily inferred upon closer examination
of the various contours plots. However, these plots are more useful for analyzing the
correlation between different parameters. As stated previously, in most of the contour
plots, a different correlation angle can be seen for the cosmological redshift drift data
comparing the other data sets. Thus, it clearly emerges that SL data sets will be of
utmost importance in breaking degeneracies among cosmological parameters. Besides,
considering the high redshift data that will be available thanks to cosmological redshift
drift, we conclude that it can be a cosmic observable much worth to consider.
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6.3.1 Detailed Results

Results for the ACDM model

Table 6.2: Parameter results of the ACDM model.

Data Set h Qun Q XZin X2d
BAO 0.68973502  0.335T0508  0.046710:005% 9.47 0.861
SNe 0.67510956  0.30110-508 1387.41 0.510
SNe+BAO 0.68970:992 0.324+9-906  0.047275:09%4  1402.07 0.513
SL(24y) 0.67415-056  (.32815-003 14.51  0.538

SNe+BAO+SL(24y)  0.68979:092 0.32473:99% 0.0467+9:999% 1417.82 0.513

SL(28y) 0.67373-606  0.32879-00 19.73  0.731

SNe+BAO+SL(28y)  0.68975:092 0.32570:992 0.0467+9:990% 1423.49 0.515

SL(32y) 0.67373:956  0.328+0-502 25.75  0.954

SNe+BAO+SL(32y)  0.68979:992 0.32570:992 0.0468+9:9994 1430.03 0.518

0.68

0.67

0.66

0.65
0.28 0.30 0.32 0.34 0.36 0.30 0.32 0.34 0.36 0.30 0.32 0.34 0.36

Q, Q, Q,

Figure 6.4: ACDM model; solid contours limit 1o regions and clear contours 20 regions. Purple
for the BAO, green for SNe and red for SL data set, grey for SNe+BAO and blue
SL+BAO+SNe. First set (left) for 24 years, second (middle) for 28 and third (right)
for 32 years.
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Results for the Quiessence model

Table 6.3: Parameter results of the Quiessence model.

Data Set h Qm 93 w Xin  Xled
BAO 0.677T0 000 0.33670008 0.0485F0:0000 —0.948T003% 510  0.510
SNe 0.67575:005  0.341F5:013 —1.244%9123 138313 0.509
SNe+BAO 0.68610 000 0.32370000  0.0472F0:0008  —0.98710033 1401.74 0.513
SL(24y) 0.67470 005 0.32370 011 —0.88870 4L 1273 0.490

SNe+BAO+SL(24y)  0.68570002 0.32470005 0.047470 0008 —0.982700%) 1417.07 0.513

SL(28y)

0.67415-056 0.321+5-009 —0.84570192 17.32  0.666

SNe+BAO+SL(28y)  0.6847(:002 0.32570:005 0.047570 0008 —0.97970:030 1422.49 0.515

SL(32y)

0.67413-907 0.32013-907 —0.830709%% 2262  0.870

SNe+BAO+SL(32y)  0.68470:002 0.3257000% 0.0476700008  —0.97710:050 142875 0.517
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0.66
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Figure 6.5: Quiessence model; solid contours limit 1o regions and clear contours 20 regions.

Purple for the BAO, green for SNe and red for SL data set, grey for SNe+BAO and
blue SL+BAO+SNe. First set (left) for 24 years, second (middle) for 28 and third
(right) for 32 years.
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Results for the Slow-Roll model

Table 6.4: Parameter results of the Slow-Roll model.

Data Set h Qum Q dw iin X2od
BAO 0.67810:000  0.341F0:00%  0.048570:0000  0.0747093% 520  0.520
SNe 0.67510:096  0.330+0:010 —0.26079128 138310 0.509
SNe+BAO 0.68810 000 0.32470900  0.046810 0008  0.0050050  1402.05 0.513
SL(24y) 0.67415:006  0.32415-007 0.231702% 1312 0.504
SNe+BAO+SL(24y)  0.68770002 0.32570005 0.0471F00008 0.01410-055  1417.62 0.513
SL(28y) 0.67470:9%  0.32310:996 0.2827019%  17.85  0.686
SNe+BAO+SL(28y)  0.68670 002 0.32570003 0.0472700008 0.01710-055  1423.21 0.515
SL(32y) 0.67470:9%  0.32370:992 0.3067047L 2331 0.897
SNe+BAO+SL(32y)  0.68670002 0.32570:003 0.047370000% 0.02110035  1429.59 0.518
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0.68
=

0.67

0.66

1.0

0.5
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Figure 6.6: Slow-Roll model; solid contours limit 1o regions and clear contours 20 regions.
Purple for the BAO, green for SNe and red for SL data set, grey for SNe+BAO and
blue SL+BAO+SNe. First set (left) for 24 years, second (middle) for 28 and third
(right) for 32 years.
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Results for the CPL model

Table 6.5: Parameter results of the CPL model.

Data Set h Q (o wo Wa Xowin  Xred
BAO 0.67775:008 0.39570:03%  0.0486109015  —0.55875:30L  —1.722720% 337 0.374
SNe 0.67570: 008 0.35610 059 —1.16570:1%  —0.555T1252 1383.07 0.509
SNe+BAO 0.67813:996  0.281+3511 0.0484F5:0010  —1.187+3:940 1.022F5182  1386.45 0.508
SL(24y) 0.67470:000  0.32870:0%% —1.02670-1%  —0.0017}%87 12,19 0.488

SNe+BAO+SL(24y)  0.68470:000 0.31475:008 0.047610:000% —1.11710080 0.60210:350  1412.27 0.512

SL(28y) 0.67470:9%  0.32470:919 —0.9377042  —0.02119-8%9 1656  0.662

SNe+BAO+SL(28y)  0.6837999¢ 0.31575:500  0.047670:000% —1.113+39%¢ 0.590%0-293  1417.52 0.513

SL(32y) 0.67470:9%  0.31970:019 —0.89570372 0.24079%%7  21.65  0.866

SNe+BAO+SL(32y)  0.683F9:99 0.31570-996  0.047779:0999 _1.120+3:956 0.628+9-297  1423.36 0.516

070}
069}
068f
067}
0.66 |

—0.5}

0.25 0.30 0.35 0.40 045 0.25 0.30 0.35 0.40 0.45

Figure 6.7: CPL model; solid contours limit 1o regions and clear contours 20 regions. Purple
for the BAO, green for SNe and red for SL data set, grey for SNe+BAO and blue
SL+BAO+SNe. First set (left) for 24 years, second (middle) for 28 and third (right)
for 32 years.
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Results for the Lazkoz-Sendra pivotal Dark Energy model

Table 6.6: Parameter results of the Lazkoz-Sendra pivotal model.

Data Set h Qn % wo W in Xed
BAO 0.6775:09  0.39170:933 00485135005 —0.66110-24% 211472450 3.33 0.370
SNe 0.67570:008  0.36170:023 —1.17075439  —1.063T555; 1383.13 0.509
SNe+BAO 0.68075:99¢  0.29570-009  0.048175:9999  —1.093+9-928 0.93470-112  1388.46 0.508
SL(24y) 0.673T0:008  0.33170:0%% —1.0567%30 —0.61673:1%% 12,53 0.501
SNe+BAO+SL(24y)  0.683+399 0.311F5:996  0.047775:9008 108849937 0.826101%5  1408.54 0.510
SL(28y) 0.6745-997 0.32570-:999 —0.88470310  —0.17319-91T 1677 0.671
SNe+BAO+SL(28y)  0.682F39% 0.312F3:996  0.047775:5009  —1.08970937 0.83910470  1413.75 0.512
SL(32y) 0.67475-0%6  0.32270-999 —0.848703%5  —0.08019-82% 21.93  0.877
SNe+BAO+SL(32y)  0.68270555 0.31270505 0.0479F5:0008  —1.087F5:038 0.83570270  1419.53 0.514

0.70
0.69
<0.68
0.67
0.66

Figure 6.8: Lazkoz-Sendra pivotal model; solid contours limit 1o regions and clear contours
20 regions. Purple for the BAO, green for SNe and red for SL data set, grey for
SNe+BAO and blue SL+BAO+SNe. First set (left) for 24 years, second (middle)

for 28 and third (right) for 32 years.
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General Conclusions

Despite the quite reasonable claim and evidence of having entered an era of “precision
cosmology”, the nature of the dark sector of our Universe is still far from having been
clarified. In this thesis we have tried to take some small further steps in clarifying the
global picture by testing theoretical proposal with observational data, or by exploring the
possibility to use novel observational probes to cast some light on the dark sector.

We have explored the possibility that dark matter and dark energy might be two sides
of the same coin: despite the fact they are apparently so different in their nature, we
could try to simplify the picture by assuming a single new exotic fluid which, given the
right conditions, might behave as both dark matter and as dark energy.

In Chap. 4, we have introduced a phenomenological unified dark matter-energy (UDM)
model which exhibits the possibility of a fast transition from a dark matter behavior to a
late ACDM scenario. In this way, a single fluid could explain both the present dark energy-
dominated accelerated expansion of the Universe and the early dark matter-dominated
era. We have compared this UDM model with other more standard scenarios (where dark
matter and dark energy are two separate fluids) in order to check exactly not only its
consistence with data, but also its degree of reliability and its statistical preference (or
not) with respect to such standard cases. In a few words, we have tried to answer the
following question: even if the unification of dark sector is theoretically possible, is it
really achievable and carved in the data?

As standard scenarios, as well as the consensus ACDM model, we have also considered
the quiessence model. All models have then been fitted to cosmological data coming
mainly from geometrical probes, i.e. Type la Supernovae, Baryon Acoustic Oscillations
and shift parameters from Cosmic Microwave Background. In order to check the statistical
reliability of each model against the others, we have relied on a Bayesian Evidence analysis,
which has shown that the UDM model might have a slightly better statistical preference
than the rest of the models we have addressed. Nevertheless, all models display a very
small evidence difference as compared to ACDM, and thus none of the models can be
discarded.
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The transition is parametrized by the value of the scale factor at which it happens,
ag, along with its rapidity, 8. The value of those parameters is clearly to be constrained
by the cosmological background data. Our estimations indicate it might have happened
in the past around the scale factor a; = 0.17 — 0.18 (redshift z; &~ 4.55 — 4.88), and
it was fast according to the rapidity parameter, with 8 ~ 550 and 8 ~ 770 for each
UDM model. Therefore, the cosmological background data favors fast transitions over
slow ones, a feature which makes the UDM model easily distinguishable from the ACDM,
even though the late evolution of both models are similar. In this way, the UDM model
could be interpreted as an early-time deviation or correction of the ACDM model, thus
modifying the expansion history of the universe before the transition.

In Chap. 5, we have considered another UDM model which is not phenomenological,
but it is supported by a proper scalar field representation. This single scalar field could
behave both as dark matter and dark energy, with a transition between both behaviors
which can occur rapidly. We have compared this UDM model with similar cosmological
background data as in the previous case, and have performed again a Bayesian analysis.
The results have shown that the UDM model of this Chap. 5 obtains a milder result
that the previous phenomenological UDM model of Chap. 4. However, the difference
in Bayesian evidence, compared to the ACDM model, has still been inconclusive, so no
model should be discarded.

A result which is in common with Chap. 4 is that also for the model in Chap. 5 the
cosmological background data have discarded slow transitions and favored fast ones.
A 1-0 lower bound for the rapidity of 5 > 300 has been found, while slow transitions
have strongly been disfavored by the cosmological data; transitions of 8 < 40 have even
completely been discarded by CMB shift parameters. A correlation between the transition
redshift and rapidity has also been found for intermediate rapidity regimes (40 < 5 < 300),
implying that slower transitions should have occurred earlier. However, the cosmological
analysis for this UDM model has not shown any appreciable difference beyond a certain
big value of rapidity (8 = 800). Therefore, in this case the cosmological data have been
unable to distinguish any upper bound for the transition rapidity once the fast-transition
regime was reached.

Therefore, we have shown that cosmological background data allow the existence of
UDM models as long as their transition between a dark matter and a dark energy behavior
is fast. Although these cosmological data seem amenable to the expansion history of
these UDM models (which is different from that of ACDM, or course), further studies
on dynamical probes are required to definitely support or discard them. For instance, an
actual computation of the evolution of perturbations would be interesting. Testing UDM
perturbations with actual data would help us infer whether dynamical data (matter power
spectrum) can be fitted in these scenarios, and we could even check if there are some
distinctive signatures which make them easily distinguishable from the ACDM model. In
any case, the different expansionary features of UDM models would affect significantly
the integrated Sachs-Wolfe effect measured in the CMB, and this would also be worth
testing.
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Chapter 7. General Conclusions

While in Part Il we have mainly focused on using geometric distance measurements to
constrain the parameter space of different models and perform model selection according
to the Bayesian evidence, in Part Ill we have focused on an alternative probe which could
be employed in the near future and might provide a complementary approach to dark
energy studies. We have focused on the cosmic redshift drift originated by the expanding
universe, which allows to carry out the so-called Sandage-Loeb (SL) test. Despite the
fact these are background data, such observations are not distance measurements per se,
but rather dynamical observations, so they constrain the Hubble function directly instead
of its integration, thus greatly improving the performance of this type of observations.
The fact that these Sandage-Loeb surveys are planned to observe high-redshift quasars in
a redshift range with few data collected so far, makes them even more valuable.

In Chap. 6, we have analyzed the constraining power of the future Sandage-Loeb
observations based on the cosmic redshift drift of high-redshift quasars. To analyze
future observations without biasing towards a particular chosen fiducial cosmological
model, we have generated mock data sets by a model-independent procedure, set on the
specifications of near-future surveys. We have included in our analysis also future Euclid
BAO and W-First SNe la sets as auxiliary mock data sets to compare with SL ones.

Then, we have performed a Bayesian analysis to see how the future surveys constrain
several tested models. The results have shown that SL data sets will provide a noticeable
improvement to constrains on dynamical dark energy parameters, compared to historical
SNe la or BAO. In particular, they will help to narrow the uncertainty on the matter
density parameter €,,,.

Moreover, our results have also shown that each data set has different correlation angles
regarding dark energy parameters, it being particulary evident in the Sandage-Loeb case
compared to BAO and SNe la. This means that by combining such data sets, even for
the lowest observation period of SL, a tighter constrain on the dark energy parameters
could be possible. Besides, cosmological measurements up to such a high redshift range
coming from SL could provide important information regarding the possible evolution of
the dark energy equation of state, that is, whether it is time dependent or not.

To sum up, in this thesis we have shown that there is still plenty of room to have
new cosmological models with different evolutions for the dark sector between the
extremely high redshift of the CMB data and low redshift observations as SNe la and
BAO. Measurements of intermediate redshifts coming from Sandage-Loeb observations of
high-redshift quasars could help filling the gap and increasing the knowledge. Overall,
we have shown that cosmological background data, both as distance measurements or
future dynamic observations, reveal more information than expected once high precision
cosmology is attained. One such example is the fact that background data back up the
rapidity constraint of the UDM transitions imposed by the perturbation theory. With
the next generations of cosmological background observations, some light may be shed
to the dark sector of the universe, especially to dark energy, and for all these reasons
cosmological background observations are and will be of utmost importance.
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