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Abstract

We consider a natural generalization of Jackson and Wolinsky�s (1996) con-
nections model where the quality or strength of a link depends on the amount
invested in it and is determined by a non-decreasing function of that amount.
The information that the nodes receive through the network is the revenue from
investments in links. We prove that in this most general version of the con-
nections model, the only possibly nonempty e¢ cient networks, in the sense of
maximizing the aggregate pro�t, are still the all-encompassing star and the com-
plete network, with the sole and rare exception of a highly particular case where
there is a draw between the all-encompassing star, the complete network and a
whole range of a particular type of nested split graph structures intermediate
between them.
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1 Introduction

Jackson and Wolinsky (1996) introduce a connections model of network formation
where nodes invest in links with other players in order to receive valuable information.
Each node embodies a piece of information of worth v for any other node if it is received
intact. However, connection through a link is not perfect as it involves a certain friction
or decay, i.e. only a fraction � (0 < � < 1) of the information transmitted through a
link reaches the other node. The formation of each link requires an investment of a
�xed amount c by each of the two nodes involved. A noteworthy result is that in this
setting the only e¢ cient architectures, that is the only ones that can maximize the
aggregate payo¤ or net value of the network, i.e. the sum of the information received
by all players minus the total cost of the network, are the all-encompassing star, the
complete network or the empty network, depending on the con�guration of values of
the two parameters, � and c,. The same occurs in the non-cooperative version of this
model in Bala and Goyal (2000), where links can be formed unilaterally.
The question arises of whether this result is robust to more general settings1. The

proof of this result is straightforward, but it is unclear whether it is dependent on
the simplicity of the link formation technology in the model: Only one type of link of
�xed strength and �xed cost. To answer this question, we address in this paper the
question of e¢ ciency in a natural generalization of Jackson and Wolinsky�s connections
model, by assuming that the quality or strength of a link, i.e. the �delity level of the
transmission through it, is never perfect, but depends on the amount invested in it. A
link-formation technology determines the quality of the resulting link as a function of
investment. Formally, a technology is a non decreasing function whose range is [0; 1),
i.e. an increase in investment in a link cannot decrease its strength, but however much
is invested in a link transmission is never perfect. The revenue from investments in
links is the information that the nodes receive through the network. We prove that even
in this general setting, virtually, whatever the technology, the only possibly e¢ cient
networks are the empty network, the all-encompassing star and the complete network.
Olaizola and Valenciano (2019) prove constructively that, under rather general con-

ditions for models extending the connections model of Jackson and Wolinsky (1996)
and for any link-formation technology, any network with positive net value is dom-
inated by a weighted nested split graph network (NSG-network) of particular type
called dominant nested split graph network (DNSG-network). The generalized con-
nections model considered here meets those conditions, so that result applies to the
current model and provides the basic point of support for the result obtained. As any
network is dominated by a connected DNSG-network, the strategy of the proof con-
sists of showing that any network of this type other than the complete network and the
all-encompassing star, which are both particular cases of connected DNSG-networks,
is strictly dominated by one of them, by a complete network or by an all-encompassing
star. In fact, we prove that this is so with one rare exception, that of a highly partic-

1Section 7 brie�y reviews some extensions and models in the wake of Jackson and Wolinsky (1996).
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ular case of a �supertie�where there is a tie between the all-encompassing star, the
complete network and a whole range of a particular type of nested split graph struc-
tures intermediate between them. Nevertheless, we show that a natural strengthening
of the notion of e¢ ciency, by adding the requirement of minimizing the total cost of
the network, renders this exception impossible.
The rest of the paper is organized as follows. Section 2 introduces basic notation

and terminology. Section 3 introduces the generalized connections model. Section
4 addresses the question of e¢ ciency and characterizes e¢ cient networks. Section 5
re�nes the result by strengthening the notion of e¢ cient network. Section 6 deals with
the issues of existence and uniqueness of e¢ cient and strongly e¢ cient networks, and
the rarity of a supertie. Section 7 brie�y reviews some related literature and Section
8 gives some concluding comments emphasizing the results obtained and pointing out
some lines of further research. Proofs are relegated to an Appendix.

2 Preliminaries

An undirected weighted graph consists of a set of nodes N = f1; 2; :::; ng with n � 3
and a set of links speci�ed by a symmetric adjacency matrix g = (gij)i;j2N , with
gij 2 [0; 1) and gii = 0. An undirected weighted graph g can also be represented by a
map g : N2 ! [0; 1), where N2 denotes the set of all subsets of N with cardinality 2.
In what follows ij stands for fi; jg and gij for g(fi; jg) for any fi; jg 2 N2. When the
codomain of g is f0; 1g instead of [0; 1), i.e. gij only takes the values 0 or 1, we say that
g is non-weighted and it can be speci�ed as a set of links S � N2. In particular, the non-
weighted underlying graph Sg of a weighted graph g is Sg := fij 2 N2 : gij > 0g. When
gij > 0 we say that a link of weight gij connects i and j. Nd(i; g) := fj 2 N : gij > 0g
denotes the set of neighbors of node i, and its cardinality,

��Nd(i; g)
��, is the degree of

node i. Note that i =2 Nd(i; g). N(i; g) denotes the set of nodes connected to i by a
path, i.e. a sequence of distinct nodes s.t. every two consecutive nodes are connected
by a link. The length of a path is the number of links that it contains, i.e. the number
of nodes minus 1. A graph is connected if any two nodes are connected by a path. A
component of a graph is a maximal connected subgraph.
Undirected graphs, weighted or not, underlie a variety of situations where actual

links mean some sort of reciprocal connection or relationship. Such structures are
commonly referred to as networks. Behind a network there is always a graph as a highly
salient feature, so we transfer the notions introduced so far for graphs to networks and
refer the new ones directly to networks.
The empty network is the one for which gij = 0 for all ij 2 N2. A complete network

is one where gij > 0 for all ij 2 N2.2 An all-encompassing star consists of a network
with n� 1 links in which one node (the center) is connected to each of the remaining

2Note that there is only one non-weighted complete network, but there are in�nite complete
weighted networks.

2



nodes by a link. One important class of networks is that of those whose underlying
graph is a �nested split graph�. These networks exhibit a strict hierarchical structure
where nodes can be ranked by their number of neighbors.3

De�nition 1 A nested split graph (NSG) is an undirected (weighted or not) graph g
such that ��Nd(i; g)

�� � ��Nd(j; g)
��) Nd(i; g) � Nd(j; g) [ fjg:

A nested split graph network (NSG-network for brief) is a network whose underlying
graph is nested split. In terms of the adjacency matrix, such graphs have a simple
structure. It is a symmetric matrix such that for a certain numbering of the nodes, each
row consists of a sequence of non-zero entries (apart from those in the main diagonal)
followed by zeros, and the number of nonzero entries in each row is no greater than
that in the preceding row. Such a numbering of the nodes is a ranking numbering. In
what follows, nodes are always assumed to be numbered like this in NSG-networks.
Nodes in an NSG-network are partitioned in NSG-classes, each containing the nodes
with the same number of neighbors. Isolated nodes, i.e. with no neighbors, form the
trivial class, which plays no relevant role.

1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 1 1 1 1 1 1 1 1 1 1
2 1 0 1 1 1 1 1 1 1 1 1 1
3 1 1 0 1 1 1 1 1 1 0 0 0
4 1 1 1 0 1 1 0 0 0 0 0 0
5 1 1 1 1 0 0 0 0 0 0 0 0
6 1 1 1 1 0 0 0 0 0 0 0 0
7 1 1 1 0 0 0 0 0 0 0 0 0
8 1 1 1 0 0 0 0 0 0 0 0 0
9 1 1 1 0 0 0 0 0 0 0 0 0
10 1 1 0 0 0 0 0 0 0 0 0 0
11 1 1 0 0 0 0 0 0 0 0 0 0
12 1 1 0 0 0 0 0 0 0 0 0 0

Figure 1: A connected non-weighted NSG-network

Example 1: Figure 1 shows the adjacency matrix of a 12-node NSG-network with 6
NSG-classes: K1 = f1; 2g with 11 neighbors, K2 = f3g with 8 neighbors, K3 = f4g
with 5 neighbors, K4 = f5; 6g with 4 neighbors, K5 = f7; 8; 9g with 3 neighbors,
K6 = f10; 11; 12g with 2 neighbors.

3 A generalized connections model

In Jackson and Wolinsky�s (1996) connections model all links have the same strength
� (0 < � < 1), and the formation of a link requires an investment of a �xed amount

3See König, Tessone and Zenou (2014) for a study of the topological properties of these networks.
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c > 0 by each of the two nodes involved. Thus the question of an e¢ cient investment
(in the sense of maximizing the aggregate payo¤) by the node-players is equivalent to
the question of an e¢ cient investment by a planner making use of a technology that
requires an investment of at least 2c in a link for the link actually to form. Such a
technology can be formalized as a map � : R+ ! [0; 1) s.t. if c � 0 is the amount
invested in a link, �(c) is the strength of the resulting link and is given by

�(c) :=

�
�, if c � 2c
0, if c < 2c:

(1)

We consider the natural generalization of Jackson andWolinsky�s connections model
that results from replacing the discrete technology in that model (1) by any link-
formation technology that meets the following de�nition:

De�nition 2 A link-formation technology is a non-decreasing map � : R+ ! [0; 1) s.t.
�(0) = 0.

The interpretation is clear: If c is the amount invested in a link to connect two
nodes, �(c) is the level of �delity of the transmission of information through it. More
precisely, �(c) is the fraction of information �owing through the link that remains
intact.4 Flow occurs only through links invested in (�(0) = 0), an increase in the
investment in a link cannot decrease its strength, but perfect �delity in transmission
between di¤erent nodes is never reached (�(c) < 1).
Thus if nodes in a setN = f1; 2; :::; ng can be connected by links according to a link-

formation technology �, a link-investment vector is an n(n�1)=2-vector, c = (cij)ij2N2,
where cij � 0 denotes the investment in link ij 2 N2 through which the �delity level
is �(cij).5 Investing c > 0 in a link determines its strength, �(c), so when �(c) > 0 we
often refer to such a link as a c-link. Thus, investment c yields network gc, namely

gc := (gcij)ij2N2 ; with g
c
ij = �(cij): (2)

For link-investment vector c = (cij)ij2N2 , a node i thus receives the fraction from
another node�s worth v that reaches i through the best possible route in the weighted
network gc, as in Jackson and Wolinsky (1996). Let Pij(gc) denote the set of paths
in gc connecting i and j. For a path p 2 Pij(gc), let �(p) denote the resulting �delity
level determined by the product of the �delity levels through each link in that path, i.e.
if p = ii2i3:::ikj, �(p) = �(cii2)�(ci2i3):::�(cikj). Thus, i values information originating

4Nevertheless, the strength of a link admits other intepretations, such as the �strength of a tie�.
i.e. the intensity of a personal relationship Granovetter (1973). A link can also be a means for the
�ow of other goods, but we give preference here to the interpretation in terms of information.

5A link-investment vector c = (cij)ij2N2
can also, and below often will be seen, as a symmetric

matrix c = (cij)i;j2N , with cij = cji = cij for all i; j 2 N .
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from j that arrives via p by v�(p): If information is routed via the best possible route
from j to i, then i�s valuation of the information originating from j 6= i is

vji (g
c) = max

p2Pij(gc)
v�(p) = v max

p2Pij(gc)
�(p);

and i�s overall revenue from gc is

Vi(g
c) =

X
j2N(i;gc)

vji (g
c):

For all i; j 2 N; i 6= j; let pij denote an optimal path connecting them, i.e. such that
�(pij) = maxp2Pij(gc) �(p); that is

pij 2 arg max
p2Pij(gc)

�(p):

The net value of the network resulting from a link-investment vector c = (cij)ij2N2
is the aggregate payo¤, i.e. the total value of the information received by the nodes
minus the total cost of the network:

v(gc) =
X
i2N

Vi(g
c)�

X
ij2N2

cij = 2v
X
ij2N2

�(pij)�
X
ij2N2

cij: (3)

4 E¢ ciency

Let c and c0 be two link-investment vectors and v(gc) and v(gc
0
) their net values as

de�ned by (3): gc dominates gc
0
(or c dominates c0) if v(gc) � v(gc0), and gc strictly

dominates gc
0
(or c strictly dominates c0) if v(gc) > v(gc

0
). Network gc (or link-

investment vector c) is said to be e¢ cient if it dominates any other.6

E¢ ciency can be seen as a desirable outcome when links are formed in a decen-
tralized context by node-players who invest in links. Alternatively, e¢ ciency can be
seen as the goal of a planner investing in links with the objective of maximizing social
welfare, i.e. the aggregate revenue received by the nodes minus the total cost of the
network. Nevertheless, as we show here, this notion of e¢ ciency is compatible with the
existence of super�uous links, whose elimination does not decrease the net value of the
network, and with the existence of e¢ cient networks that yield the same net value but
at a di¤erent cost. This motivates the strengthening of the notion of e¢ ciency, which
we do in the next section, where the result from this section is re�ned for a stronger
notion of e¢ ciency.
Olaizola and Valenciano (2019) prove constructively that under rather general con-

ditions, within a wide class of extensions of the connections model of Jackson and

6This is what Jackson and Wolinsky (1996) refer to as �strong�e¢ ciency, but we reserve that term
for an actually stronger notion introduced in the next section.
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Wolinsky (1996) and for any link-formation technology, any network with a positive
net value is dominated by a particular type of weighted NSG-network. Such domi-
nant NSG-networks show certain features in addition to those speci�ed in De�nition
1. Like any undirected graph, a weighted NSG-network g is completely speci�ed by
the triangular matrix above the main diagonal of 0-entries of its adjacency matrix,
T (g) = (gij)i<j. Formally, this leads to the following de�nition:

De�nition 3 A dominant nested split graph network (DNSG-network) is a connected
weighted NSG-network g such that, for a ranking numbering of the nodes, in T (g):
(i) each row (of entries to the right of the main diagonal of the adjacency matrix)
consists of a rightward non-decreasing sequence of positive entries followed by zeros;
(ii) all positive entries in the �rst row are greater than or equal to any other entries;
and (iii) from the second row down on, non-zero entries in the same column form a
non-decreasing sequence.

Thus a DNSG-network consists of a central star centered at node 1 formed by the
strongest links (i.e. �rst row and column of the adjacency matrix) plus some additional
links between spoke nodes of that star (i.e. remaining nonzero entries on the northwest
of the adjacency matrix) according to the pattern speci�ed in De�nition 3. As an
example, Figure 2 shows an adjacency matrix that follows this pattern.7

1 2 3 4 5 6 7 8

1 0 :6 :7 :7 :7 :8 :8 :9
2 :6 0 :2 :2 :3 :4 :5 0
3 :7 :2 0 :3 :4 0 0 0
4 :7 :2 :3 0 :5 0 0 0
5 :7 :3 :4 :5 0 0 0 0
6 :8 :4 0 0 0 0 0 0
7 :8 :5 0 0 0 0 0 0
8 :9 0 0 0 0 0 0 0

Figure 2: Adjacency matrix of a dominant NSG-network

In order to make the paper basically self-contained, we brie�y review the family of
connections models considered in Olaizola and Valenciano (2019). As in the current
model, a link-formation technology (as per De�nition 2) rules the formation of costly
weighted links among a set of nodes, each of them endowed with value v. The value
that one node receives from another is what it receives through the strongest path
connecting them, and what it receives through a path is a fraction of v proportional to
the �strength�of their connection through that path. Olaizola and Valenciano (2019)
make the following assumptions about the �strength� of the connection of any two
nodes in a weighted network through a path: (i) the strength of a link is its weight;

7In what follows we always assume that nodes in a DNSG-network are numbered according to a
ranking numbering for which the conditions in De�nition 3 hold.
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(ii) the strength of the connection of i with j is the same as that of j with i; (iii) the
strength of the connection through a path is non decreasing w.r.t. the increase of the
strength of its links; (iv) the strength of the connection through a path is not stronger
than the connection of any two nodes in it through the subpath. Then the net value
that a weighted network generates is the sum of the value received by all the nodes
minus the total cost of the network.8

It is straightforward to check that the model described in Section 3 satis�es all these
conditions, under which the dominance of weighted DNSG-networks is established in
Olaizola and Valenciano (2019). We omit the very easy detailed checking here to avoid
a trivial digression. On the other hand, the constructive proof of the result in Olaizola
and Valenciano (2019) consists of an algorithm that generates a DNSG-network that
dominates the initial network by rearranging the links of any network whose net value
is positive, perhaps disposing of some of them. The procedure consists basically of
forming a star with the strongest links and adding the weakest of the remaining avail-
able links at each stage only if adding it improves the connection of the two worst
connected nodes in the network. It is proved that the resulting DNSG-network dom-
inates the initial network. Nevertheless, that network may include super�uous links
between spoke nodes of the initial star that can be eliminated without decreasing the
net value of the network. In this case a simple procedure enables to re�ne the result
and produce a DNSG-network that dominates the initial network and contains no su-
per�uous links connecting spoke nodes of the initial star. That is, the elimination of
any link would cause a decrease in the net value of the network.9

Therefore the result applies and we have the following:

Proposition 1 If the net value is given by (3), for any link-formation technology � and
any investment c, network gc, given by (2), is dominated either by the empty network
or by a connected DNSG-network where no link connecting spoke nodes of the central
star can be eliminated without decreasing the net value of the network.

This is the starting point for he proof of the main result in this paper, which
requires several steps. Before proceeding with it, we give the outline of the proof:
Given that any network with a positive net value is dominated by a connected DNSG-
network, De�nition 3 speci�es a particular type of NSG-structure among which an
e¢ cient network is to be found if e¢ cient nonempty networks do actually exist. Thus
the strategy of the proof consists of showing that any DNSG-network other than a
complete network and an all-encompassing star is strictly dominated by one of them.10

8In fact, the result in Olaizola and Valenciano (2019) also covers two other cases: When only
nodes at a given or smaller distance are received, and when only nodes with which the strength of the
connection is above a threshold level are received.

9In the formulation of the result Olaizola and Valenciano (2019) only the structure of DNSG-
network is emphasized, but this re�ning procedure is commented in the concluding remarks of that
paper.
10In fact, as we show later, with the sole, rare exception of a highly particular case where there is
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To that end, Proposition 1 is �rst re�ned by narrowing the class of dominant con-
nected DNSG-networks among which an e¢ cient network is to be found if a nonempty
e¢ cient network actually exist. We show that attention can be constrained to the
subclass of regular DNSG-networks (Propositions 2 and 2�), among which only those
exhibiting two particular architectures can be e¢ cient (Proposition 3 and Corollary
1). Propositions 4 and 5 establish necessary conditions for a complete network and
an all-encompassing star to be e¢ cient (both are particular, extreme cases of the two
especial architectures obtained in Corollary 1). Proposition 6 establishes that unless a
rare condition holds, only an all-encompassing star or a complete network among the
two particular architectures obtained in Corollary 1 can be e¢ cient. Then the result
is �nally established (Theorem 1).
The following result re�nes Proposition 1 and enables us to con�ne our attention

to a simpler class of DNSG-networks.

Proposition 2 Let � be any technology. For any e¢ cient connected DNSG-network
with a positive net value and no super�uous links, there is another connected DNSG-
network, gc, with the same underlying graph, no super�uous links, and the same net
value satisfying the following conditions, where bc is any value in argmaxc>0(2v�(c)�c) :
(i) For all i; j 6= 1 s.t. cij 6= 0 : cij = bc:
(ii) For all j 6= 1 in the NSG-class of node 1 (i.e. with n� 1 neighbors) : c1j = bc:
(iii) For all i; j 6= 1 : c1i � c1j if and only if

��Nd(i; gc)
�� � ��Nd(j; gc)

�� :
Proposition 2 re�nes Proposition 1 by specifying a class of DNSG-networks, among

which an e¢ cient DNSG-network is to be found for any technology for which a non-
empty e¢ cient network actually exists. Given that all links not involving central node
1 and those connecting node 1 with nodes with as many neighbors as node 1 in an
e¢ cient DNSG-network are only used by the two nodes that each of them connects,
they must all maximize 2v�(c)� c. Therefore, all such links can be replaced by bc-links,
with bc 2 argmaxc>0(2v�(c) � c) without altering the net value of the network. Note
that for such links to exist for a technology � it is necessary that 2v�(c)�c > 0 holds for
some c, but this is not su¢ cient, and nor they need to be unique if they do exist. Links
of the central star connecting its center with spoke nodes with di¤erent numbers of
neighbors must receive di¤erent investments, and the greater the number of neighbors
the smaller the investment. By contrast, those connecting its center with spoke nodes
with the same number of neighbors are proved either to necessarily receive the same
investment (when they are not neighbors) or to be replaceable by links of the same
strength without altering the net value.
Therefore any e¢ cient connected DNSG-network with a positive net value has the

same net value as a connected DNSG-network that satis�es the regularity conditions
in Proposition 2, which motivates the following de�nition:

a tie between an optimal all-encompassing star, an optimal complete network and a whole range of
�intermediate�NSG-structures between them.
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De�nition 4 A regular DNSG-network is a connected DNSG-network with no super-
�uous links such that: (i) all links connecting pairs of nodes other than 1 and all
those connecting node 1 with nodes with n � 1 neighbors receive the same investmentbc 2 argmaxc>0(2v�(c) � c); (ii) links of node 1 with nodes that belong to the same
NSG-class (i.e. with the same number of neighbors) receive the same investment, and
the smaller the number of neighbors the greater the investment is.

In terms of investments, the pattern of the link-investment matrix of a regular
DNSG-network is represented in Figure 3 for an NSG-network with an underlying graph
identical to that of Example 1, where there are 6 NSG-classes, bc 2 argmaxc>0(2v�(c)�
c) and bc < c2 < c3 < c4 < c5 < c6.

1 2 3 4 5 6 7 8 9 10 11 12

1 0 bc c2 c3 c4 c4 c5 c5 c5 c6 c6 c6
2 bc 0 bc bc bc bc bc bc bc bc bc bc
3 c2 bc 0 bc bc bc bc bc bc 0 0 0
4 c3 bc bc 0 bc bc 0 0 0 0 0 0
5 c4 bc bc bc 0 0 0 0 0 0 0 0
6 c4 bc bc bc 0 0 0 0 0 0 0 0
7 c5 bc bc 0 0 0 0 0 0 0 0 0
8 c5 bc bc 0 0 0 0 0 0 0 0 0
9 c5 bc bc 0 0 0 0 0 0 0 0 0
10 c6 bc 0 0 0 0 0 0 0 0 0 0
11 c6 bc 0 0 0 0 0 0 0 0 0 0
12 c6 bc 0 0 0 0 0 0 0 0 0 0

Figure 3: Link-investment matrix of a regular DNSG-network

In the seminal papers of Jackson and Wolinsky (1996) and Bala and Goyal (2000),
the complete network and the all-encompassing star emerge as e¢ cient structures.
Note that regular DNSG-networks include complete networks (all entries > 0, except
those in the main diagonal) and all-encompassing stars (non-zero entries in the �rst
row and column and no more non-zero entries) as extreme cases. Note also that in a
regular complete network all pairs of nodes are connected by links of the same strengthbc 2 argmaxc>0(2v�(c)� c), and in a regular all-encompassing star network all links are
of the same strength.
Proposition 2 can thus be reformulated like this:

Proposition 2�(Proposition 2 reformulated) Let � be any technology. If gc is an
e¢ cient connected DNSG-network with a positive net value and no super�uous links,
then there is a regular DNSG-network gc

0
with the same underlying graph and the same

net value.
As a corollary of the following proposition shows, it is possible to further constrain

attention to the only two particular types of regular DNSG-network (other than the
complete network and the all-encompassing star) that can be e¢ cient.
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Proposition 3 Let � be any technology. If gc is an e¢ cient regular DNSG-network
with a positive net value, then gc can have links of at most two di¤erent strengths.

Notice that given the precise structure of regular DNSG-networks, the only ones
with all links of the same strength are the complete network (all pairs of nodes con-
nected by bc-links for some bc 2 argmaxc>0(2v�(c)� c)) and the all-encompassing star of
links of the same strength. For those with only two levels of investment in their links,
one level must be bc (connecting some of the spoke nodes). But then there must be
other links of greater strength. This leaves only two types of regular DNSG-networks
which only have two levels of investment in their links c1 = bc and c2 > bc, all of which
are members of the family speci�ed by the following de�nition, which also assigns a
notation to them which is used to conclude the proof of the main theorem.

De�nition 5 If 1 � k � n, gc
�
k and gc

��
k are de�ned in terms of the triangular

matrix (cij)i<j associated with the investments c�k and c
��
k given by

c�kij =

8<:
c2, if i = 1 and j > k,bc, if i; j � k,
0, otherwise,

c��kij =

8<:
c2, if i = 1 and j > k,
0; if i; j > k,bc, otherwise;

where c2 > bc.
If k = 1, gc

�
1 = gc

��
1 is an all-encompassing star, while if k = n, gc

�
n = gc

��
n is a

complete network of bc-links. If 1 < k < n, gc�k is a regular DNSG-network with three
NSG-classes of cardinality #K1 = 1 with n � 1 neighbors, #K2 = k � 1 with k � 1
neighbors and #K3 = n � k with 1 neighbor (Figure 4 (a)), unless k = 2, because
gc

�
2 is a non regular star as it is formed by one bc-link and n� 1 c2-links. By contrast,

gc
��
k is a regular DNSG-network with two NSG-classes of cardinalities #K1 = k with

n� 1 neighbors and #K2 = n� k, with k neighbors (Figure 4 (b)), unless k = n� 1,
because gc

��
n�1 is a non regular complete network as it is formed by bc-links and only one

c2-link.11

Note that for any of these structures to be e¢ cient a necessary condition is 2v�(bc)�bc � 2v�(c2)2; i.e. bc � 2v�(bc)� 2v�(c2)2: (4)

11It is noteworthy that once again the same types of structure emerge in the �nal steps to prove
this result as in the lengthy proof under much more restrictive conditions in the unifying model of
Olaizola and Valenciano (2018) without using Proposition 1, and indeed using it as in Olaizola and
Valenciano (2019).
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c�k 1 2 � � � k k+1 � � � n

1 0 bc � � � bc c2 � � � c2
2 bc 0 � � � bc 0 � � � 0
...

...
...

. . .
...

...
. . .

...
k bc bc � � � 0 0 � � � 0

k+1 c2 0 � � � 0 0 � � � 0
...

...
...

. . .
...

...
. . .

...
n-1 c2 0 � � � 0 0 � � � 0
n c2 0 � � � 0 0 � � � 0

c��k 1 2 � � � k k+1 � � � n

1 0 bc � � � bc c2 � � � c2
2 bc 0 � � � bc bc � � � bc
...

...
...

. . .
...

...
. . .

...
k bc bc � � � 0 bc � � � bc

k+1 c2 bc � � � bc 0 � � � 0
...

...
...

. . .
...

...
. . .

...
n-1 c2 bc � � � bc 0 � � � 0
n c2 bc � � � bc 0 � � � 0

(a) (b)

Figure 4: Two-level investment matrices of DNSG-networks c�k and c
��
k

Thus, Proposition 3 yields the following:

Corollary 1 For any technology, the only possibly e¢ cient regular DNSG-networks
are gc

�
k (k 6= 2) and gc��k (k 6= n� 1) for some k (1 � k � n).

The following propositions establish necessary conditions for the e¢ ciency of a
complete network and an all-encompassing star network.

Proposition 4 For a complete network gc to be e¢ cient the following conditions are
necessary:
(i) For all ij 2 N2, cij 2 argmaxc>0(2v�(c)� c) > 0:
(ii) For all ij 2 N2; and all k 6= i; j : 2v�(cki)�(ckj) � 2v�(cij)� cij:

Proposition 5 For an all-encompassing star network to be e¢ cient the following con-
ditions are necessary:
(i) All links receive the same investment c�n s.t.

c�n 2 argmax
c>0

(2v�(c) + (n� 2)v�(c)2 � c): (5)

(ii) Additionally, if bc 2 argmaxc>0(2v�(c)� c) > 0,
2v�(c�n)

2 � 2v�(bc)� bc; (6)

for all c > 0.

Note that, in general, under the minimal assumptions made on the technology, the
existence of an optimal complete network or an optimal star network is not guaranteed,
as the set argmaxc>0(2v�(c)� c) may be empty. The same may occur for the argmax-
set where c�n is taken according to (5). Moreover, even if it does exist, uniqueness is
not guaranteed as these sets may not be singletons.12 There may be various e¢ cient

12The questions of existence and uniqueness are dealt with in the next section.
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complete networks that combine di¤erent link-investments in argmaxc>0(2v�(c) � c).
The highly special case may even occur in which

2v�(bc)� bc = 2v�(c�n)� c�n = 2v�(c�n)2: (7)

for some bc 2 argmaxc>0(2v�(c) � c) and some c�n s.t. (5). In this case there is a
supertie: The complete network and the all-encompassing star and a whole range of
particular intermediate DNSG-structures (gc

��
k , k = 1; 2; :::; n, in fact) may be e¢ cient

as is presently shown. In fact, it turns out that unless this very special coincidence
occurs the only possible nonempty e¢ cient regular DNSG-networks are the complete
network and the all-encompassing star as the following proposition shows.

Proposition 6 For any technology �, the only possibly e¢ cient regular DNSG-networks
are the complete network and the all-encompassing star network, except if (7) holds for
some bc 2 argmaxc>0(2v�(c)� c) and some c�n s.t. (5). If (7) holds for a technology �,
all gc

��
k (k 6= n� 1) are e¢ cient if their same net value is positive.

The last part of Proposition 6 is clear. If (7) holds for a technology �, the three
equal terms in (7) are the contributions to the net value of gc

��
k (k = 1; 2; :::; n) of

the connection of di¤erent pairs of nodes, namely, 2v�(bc) � bc for those connected bybc-links, 2v�(c�n)� c�n for those connected by c�n-links, and 2v�(c�n)2 for those indirectly
connected through the central star, i.e. k + 1; :::; n (see Figure 5-(b)).
We now proceed to put together the steps set out so far, so as to prove the main

result:

Theorem 1 For any technology �, the only possible e¢ cient networks are the empty
network, a complete network and an all-encompassing star network, unless (7) holds
for any bc 2 argmaxc>0(2v�(c)� c) and any c�n such that (5).
5 Strong e¢ ciency

As we have seen, the argmax-sets from which bc and c� are picked may not be singletons.
This means that e¢ cient networks that yield the same net value may have di¤erent
costs. This di¤erence may be particularly important for a planner. This suggests the
possibility of strengthening the notion of e¢ cient network by adding the condition of
minimizing the cost of the network.

De�nition 6 A network gc (or link-investment vector c) is strongly e¢ cient if it is
e¢ cient and minimizes the cost of the network for its net value.

Theorem 1 can then be adapted as follows:
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Theorem 2 For any technology �, the only possible strongly e¢ cient networks are the
empty network, the complete network of minimum cost, i.e. with

bc = min argmax
c>0

(2v�(c)� c); (8)

and an all-encompassing star network of minimum cost, i.e. with

c�n = min argmax
c>0

(2v�(c) + (n� 2)v�(c)2 � c): (9)

6 Existence, uniqueness and rarity of the supertie

In this section we examine the issues of the existence and uniqueness of e¢ cient and
strongly e¢ cient networks, along with the rarity of the occurrence of the supertie.

6.1 Existence

In order to be as general as possible, the only assumptions made here about the tech-
nology are that links are costly and their conductivity nondecreasing with investment.
As a result, we obtain only necessary conditions for an investment/network to be e¢ -
cient. Nevertheless there may not actually be any e¢ cient networks, as the following
trivial example shows.

Example 2: Consider a variant of the seminal model of Jackson and Wolinsky
(1996), where the available technology is given by :

�(c) :=

�
�, if c > 2c
0, if c � 2c:

where c > 0, 0 < � < 1 and 2v�� 2c > 0. That is, the only di¤erence is that �(2c) = 0
instead of �: In this case a complete network cannot be e¢ cient for an obvious reason:
maxc>0(2v�(c)� c)) does not exist. The same goes for the star.
Obviously, the continuity of � su¢ ces to guarantee the existence of an optimal

star and an optimal complete network, and consequently the existence of an e¢ cient
nonempty network if maxc>0(2v�(c)� c) > 0 or maxc>0(2v�(c)+(n�2)v�(c)2� c) > 0:
As for strong e¢ ciency, continuity of � also ensures the compactness of the argmax-

sets in (8) and (9), and consequently bc and c�n are well-de�ned by (8) and (9).
6.2 Uniqueness

Nevertheless, even assuming continuity, the uniqueness (up to a permutation of the
labels of the nodes) of an e¢ cient network is not guaranteed as both argmax-sets
may contain more than one value. An optimal complete network is unique only if
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argmaxc>0(2v�(c)� c) is a singleton, and this is certain if � is strictly concave as well
as continuous, but concavity does not su¢ ce to guarantee it, as the following example
shows:

Example 3: Consider the following 3-parametric family of technologies, piecewise
linear and concave (no strictly):

�(c) =

8>>>><>>>>:
(bcmin + k
2vbcmin )c; if 0 � c � bcmin;

c+k
2v
; if bcmin � c � c�;

c�+k
2v
; if c � c�;

where parameters bcmin, c� and k are s.t. 0 < bcmin < c� < 2v � k, and k < 2v. Figure 5
shows the graph of a technology in this family.

Figure 5: A technology in the family of Example 3

c�ĉmin c

(c�+k)/2v

(ĉmin+k)/2v

�

�
�
�
�
�
�
    

    
  

It is easy to check that for any technology in this family the following holds

max(2v�(c)� c) = k and argmax
c>0

(2v�(c)� c) = [bcmin; c�]:
Therefore any complete network where any pair of nodes are connected by links of
strength within the interval [bcmin; c�] is optimal. Whether the complete network or
all-encompassing stars are e¢ cient depends on k 7 2v�(c�)2, and a supertie occurs if
k = 2v�(c�)2.

An optimal all-encompassing star is unique (up to the identity of the central node)
only if argmaxc>0(2v�(c) + (n � 2)v�(c)2 � c) is a singleton, and this is certain if �
is continuous and in addition 2v�(c) + (n � 2)v�(c)2 � c is strictly concave, which is
certain if both �(c) and �(c)2 are strictly concave.
The strong e¢ ciency of a complete network or a star network implies its uniqueness.

Thus continuity is su¢ cient to guarantee uniqueness unless, in addition to a supertie,
the cost of the optimal star and complete also coincide, i.e. c�n =

n
2
bc holds.
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6.3 Rarity of a supertie

As for the occurrence of a supertie (7), it should be noticed that it is not just a tie
between the net values optimal complete networks and optimal all-encompassing stars.
The following example illustrates the possibility and rarity of the supertie.

Example 4: Consider the following biparametric family of technologies piecewise
linear and continuous, perhaps the simplest that can be thought of:

�(c) =

8<:
�
c
c; if 0 � c � c;

�; if c � c;
(10)

where parameters v, c and � are s.t. 0 < c < 2v� (otherwise, a link that only connects
two nodes is not worth its cost). The conductivity/strength of a link increases linearly
up to a saturation point at (c; �), i.e. at cost c and saturation level �, beyond which it
remains constant no matter how much is invested in the link. Figure 6 represents �(c),
2v�(c) and c.

Figure 6: �(c), 2v�(c) and c

(a) �(c)
�c c

��

�

1

�
�
�
�
�
�
�
�

(b) 2v�(c) and c
ĉ = c� c

2v�(c)
c

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Note that

bc = argmax
c>0

(2v�(c)� c) = c = argmax
c>0

�
2v�(c) + (n� 2)v�(c)2 � c

	
= c�:

Whether the optimal all-encompassing star g� or any optimal complete network g4 is
e¢ cient depends on their net values. The net value of an optimal complete network
g4 is

v(g4) =
n(n� 1)

2
(2v� � c);

while that of an optimal star is

v(g�) = (n� 1)(2v� � c+ v(n� 2)�2) = (n� 1)(k + v(n� 2)�2):
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From which it follows easily that

v(g4) 7 v(g�), 2v� � c 7 2v�2 , 2v�(1� �) 7 c:

Thus, on the boundary 2v�(1� �) = c separating the regions where only the complete
network or the all-encompassing star is e¢ cient, a supertie occurs, i.e. 2vb� � bc =
2v�� c = 2v�� � c� = 2v�2. Figure 7 shows (for v = 1; n = 10) the regions of values of
the two parameters, c and �, separated by thick lines, where the e¢ cient network for the
corresponding technology is the complete network, the star or the empty network. For
technologies in this family whose saturation (c; �) occurs within region I the e¢ cient
networks are complete; for those whose saturation occurs within region II the e¢ cient
networks are all encompassing stars, while for those whose saturation occurs within
region III the only e¢ cient network is the empty one.13

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8
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δ

δ

1

2

3

Figure 7: Thechnologies for which complete, star and empty networks are
e¢ cient

7 Related literature

Since the seminal papers of Jackson and Wolinsky (1996) and Bala and Goyal (2000),
there has been a growing branch of economic literature that draws up models of network
formation. In this brief review we concentrate preferentially on publications stemming
from or in the wake of these models, where agents derive utility from their direct and
indirect connections by investing in links, and focus on those most closely related to
the model studied in this paper.14

13Note the coincidence of Figure 10 with the regions of values of the parameters where these struc-
tures are e¢ cient in Jackson andWolinsky�s (1996) discrete biparametric model. This is not surprising,
given that in the current family of nondiscrete technologies it holds that bc = c = c�.
14Excellent surveys on social and economic networks are Goyal (2007), Jackson (2008) and Vega-

Redondo (2007). See also Bramoullé, Galeotti and Rogers (2015).
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Bloch and Dutta (2009) introduce endogenous link strength in a connections model,
opening up an interesting line of research. Their paper was in fact the one that most
inspired our work. Bloch and Dutta replace Jackson and Wolinsky�s discrete technol-
ogy by a function that determines the strength of a link as a function of the players�
investments in it. They assume that a unit of resource limits the players�investments
and that technology is an additively separable and convex function. Thus they assume
nondecreasing returns to investment, while we instead assume technology to be a non-
decreasing function and players�e¤orts to be perfect substitutes, hence the completely
di¤erent results. Bloch and Dutta prove that the star is the only stable architecture
and the only e¢ cient one. Deroian (2009) adopts a similar approach, but in directed
communication, i.e. links are directed. As in Bloch and Dutta (2009), in equilibrium
agents concentrate their investment on a single link. He establishes that the complete
wheel is the unique e¢ cient architecture and the unique Nash architecture. Chiu Ki
So (2016), like Bloch and Dutta (2009), assumes that a unit of resource limits the
investment of every player, and that the strength of a link is an additively separable
function of the investments in it of the players that it connects, but unlike Bloch and
Dutta, Chiu Ki So assumes concavity instead of convexity, i.e. that the strength of a
link connecting i and j where i invests xji and j invests x

i
j is �(x

j
i ) + �(x

i
j), with �

increasing and strictly concave; while in our model the strength is �(xji + x
i
j) with �

just nondecreasing. He obtains su¢ cient conditions for the symmetric complete net-
work to dominate all star networks, but no characterization is provided.15 He also
establishes su¢ cient conditions for the symmetric star and the complete network to be
Nash stable.
Other, less closely related models with endogenous link strength are the following.

Cabrales, Calvo and Zenou (2011), where players choose an aggregate level of socializa-
tion e¤ort which is distributed across all possible bilateral interactions in proportion to
the partner�s socialization e¤ort; Feri and Meléndez-Jiménez�s (2013) dynamic model,
where the choice of whom to link and a coordination game determines the strength
of the links. Harmsen-van Hout, Herings and Dellaert (2013) provide a model where
individuals derive social value from direct connections and informational value from
direct and indirect connections, but the more links an individual sustains the weaker
they are. In Baumann (2015) and Salonen (2015) individuals with a limited budget
derive utility from �self-investment� and from direct connections with a technology,
Cobb-Douglas in Baumann (2015) and strictly concave in Salonen (2015).

8 Concluding comments

It is worth emphasizing the generality and naturalness of the extension of Jackson
and Wolinsky�s (1996) connections model studied, where the two parameters -cost and

15As Chiu Ki So rightly acknowledges in the Introduction: �A complete characterization of e¢ cient
and stable networks for concave technologies seems analytically formidable.�
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decay level- �xed exogenously in Jackson and Wolinsky�s model are replaced by a
function, i.e. a technology that relates the investment in a link and its strength. In
fact, this can be said to be the most general notion of technology if e¤orts are assumed
to be perfect substitutes.
As it turns out, still in broad general terms as far as technology is concerned, in

connections models à la Jackson-Wolinsky complete networks and all-encompassing
star networks continue to be the only possibly nonempty e¢ cient networks unless a
rare coincidence occurs. Even the exception of a supertie in this more general model
is very rare. Moreover, if the notion of e¢ ciency is strengthened by requiring min-
imal cost, only complete networks and all-encompassing star networks can possibly
be nonempty strongly e¢ cient networks. The outcome of a laborious proof con�rms
the great robustness of the result obtained by Jackson and Wolinsky (1996) for the
simplest technology, where only one type of link, with �xed strength and �xed cost, is
feasible. This adds new insight, substantially increasing the scope of the connections
model introducing endogenous link strength.
It is worth noting the crucial role of the result (and its proof) obtained in Olaizola

and Valenciano (2019) in the laborious proof of Theorem 1: The �rst step in its proof
(Proposition 1) is a corollary of that result, and the �nal steps for the proof of the
theorem are based on the algorithm at the basis of the proof in Olaizola and Valenciano
(2019). The proof then takes advantage of the sharp structure of DNSG-networks,
among which one is sure to be e¢ cient if a nonempty e¢ cient network exist (Proposition
1), to corner the actual candidates step by step. Each step narrows the set of candidate
networks. It is also worth remarking that the result on e¢ ciency in the �unifying�
model in Olaizola and Valenciano (2018), whose proof was extremely lengthy, is now a
direct corollary of Theorem 1 in this work.
At least two lines of further research are worth mentioning. The model considered

here assumes that revenue and investments occur simultaneously, so as long as the net
value is positive a network is feasible. In other words, the planner has unlimited credit
and there are no budget constraints. This may seem unrealistic and begs question of
e¢ ciency under a budget constraint. As commented, Olaizola and Valenciano (2019)
provide an algorithm that rearranges the available links (i.e. those forming the network)
in a more e¢ cient way, perhaps disposing of some of them, and yields a connected
DNSG-network whose net value is at least as high as that of the original network.
Therefore, if a network is feasible under a given budget, this rearranging procedure
can be applied without increasing the cost. This means that the result in Olaizola and
Valenciano (2019) applies, i.e. any network feasible for a budget is dominated by a
DNSG-network which is also feasible for the budget. Then the question is whether
this result is again the starting point for a new extension of a similar result to the one
obtained here, or it opens the door to the e¢ ciency of other nested split networks.
Another natural line of further work is to address the question of stability, i.e.

Nash equilibrium or pairwise stability, in a decentralized context where node-players
can invest in links and a technology in the general sense considered here determines
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the strength of each link. That will be the goal of a separate paper

Appendix
Proposition 2
Proof. Let gc be an e¢ cient connected DNSG-network where nodes are numbered so
that De�nition 3 holds, with a positive net value and no super�uous links.
(i): Let i and j be two nodes, i; j 6= 1, directly connected, i.e. cij > 0: Given the

DNSG-structure of gc, the strongest links are those that form the all-encompassing
star centered at node 1 that connects any two nodes other than node 1 by two-link
paths. Therefore, link ij cannot be a necessary part of the optimal path connecting
any other pair of nodes in gc. In other words, link ij can only be part of one optimal
path, the one-link path connecting i and j. Then, given that the link is only useful for
i and j to see each other, for investment c to be e¢ cient cij must maximize 2v�(c)� c,
that is, cij 2 argmaxc>0(2v�(c) � c). Then all such links can be replaced by bc-links,
where bc 2 argmaxc>0(2v�(c)�c), to obtain a DNSG-network with the same underlying
graph, the same net value, which is consequently also e¢ cient and has no super�uous
links.
(ii): Now assume that node j 6= 1 belongs to the NSG-class K1 of node 1, i.e. j has

n� 1 neighbors. All nodes in K1 are directly connected with all other nodes, so links
connecting 1 with other nodes in K1 are not used by any indirect connection. That is,
link 1j is only used by 1 and j to see each other. Therefore, c1j 2 argmaxc>0(2v�(c)�c).
Then all such links can also be replaced by bc-links to obtain a DNSG-network with the
same net value and no super�uous links.
(iii): In view of (i) and (ii), it is possible to replace all links connecting pairs of

nodes other than 1 and those connecting node 1 with nodes with as many neighbors
as node 1 by bc-links for a �xed bc 2 argmaxc>0(2v�(c)� c) to form a network with the
same underlying graph, the same net value and no super�uous links. Let gc (with c
so updated) be such a network and i; j 6= 1: If

��Nd(i; gc)
�� > ��Nd(j; gc)

�� ; the DNSG-
structure of gc implies that �(c1i) � �(c1j):We show that the inequality must be strict.
Assume k 2 Nd(i; gc) n Nd(j; gc), i.e. cik = bc > 0 and cjk = 0: Then 2v�(bc) � bc >
2v�(c1i)�(c1k) (otherwise the bc-link connecting i and k would be super�uous) and if
�(c1i) = �(c1j), then 2v�(bc)�bc > 2v�(c1j)�(c1k) too. That is, by connecting j and k by abc-link the net value of the network would increase. Therefore it must be �(c1i) < �(c1j),
which implies c1i < c1j:
Thus, nodes with fewer neighbors are connected through stronger links with the

center. We show now that nodes with the same number of neighbors are either con-
nected with the center by links of the same strength or by links that can be replaced
by links of the same strength without changing the net value. Let i; j 6= 1 be two
nodes with the same number of neighbors,

��Nd(i; gc)
�� = ��Nd(j; gc)

��, and let c = c1i
and c0 = c1j: Let c0 and c00 be the investments that result from changing one link in c:
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link 1j for c! c0, and link 1i for c! c00, de�ned by

c0kl :=

�
c, if kl = 1j
ckl, otherwise:

c00kl :=

�
c0, if kl = 1i
ckl, otherwise:

It follows that if i and j are not neighbors, the changes in the contribution to the net
value from gc to gc

0
and from gc to gc

00
are of equal absolute value and opposite sign

or zero for any pair of nodes but for i and j, namely

v(gc)� v(gc0) = A+ 2v(�(c)�(c0)� �(c)2) � 0
v(gc)� v(gc00) = �A+ 2v(�(c)�(c0)� �(c0)2) � 0;

because for gc to be e¢ cient both di¤erences must be � 0. Therefore, adding up the
two inequalities we have

2�(c)�(c0)� �(c)2 � �(c0)2 = �(�(c)� �(c0))2 � 0;

which implies �(c) � �(c0) = 0, i.e. �(c1i) = �(c1j); which, by gc e¢ ciency, implies
c1i = c1j:
Finally, if i and j are neighbors the changes in the contribution to the net value

from gc to gc
0
and from gc to gc

00
are of equal absolute value and opposite signs or zero

for any pair of nodes, i.e.

v(gc)� v(gc0) = �(v(gc)� v(gc00));

which, as both v(gc)�v(gc0) and v(gc)�v(gc00) are � 0, implies v(gc) = v(gc0) = v(gc00).
From which it follows that

c; c0 2 argmax
c>0

(2v�(c)(K + 1)� c);

where K =
P

k<l�n �(c1l), if k � 1 is the number of neighbors of both i and j. In
general, this argmax-set may not be a singleton, but if all links connecting the center
with nodes in the same NSG-class as i and j are replaced by c-links the net value will
remain the same.
Finally, given that the new network has been formed by replacing all existing links

between spoke nodes of the central star in the initial one (none of them super�uous)
by bc-links, and each of the links forming the central star has been either left unchanged
or replaced by a link that does not alter the net value, in the resulting network the
underlying graph is the same and no link is super�uous.
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Proposition 3
Proof. Assume that c is an e¢ cient investment vector such that gc is a regular DNSG-
network, with p � 2 NSG-classes K1; K2; :::; Kp�1; Kp. We show that the central star
of gc can have links of at most two di¤erent strengths: bc and c2. Assume that there
are links of three di¤erent strengths in the central star. Then at least two of them
must have strengths greater than bc. This must be so for classes Kp�1 and Kp, with
investments cp�1 < cp. Let j := maxKp�1 (and consequently j + 1 = minKp), and
compare the net value of gc with the net value of the two networks, gc

0
and gc

00
, that

result from each of the following two modi�cations of c (see Figure 8) denoted by c0

and c00 respectively:16

(a) c! c0 : Invest cp in link 1j instead of cp�1, delete the bc-links connecting j with
nodes in Nd(j; gc)nNd(j+1; gc), and let all other link-investments remain unchanged.
(b) c ! c00 : Invest cp�1 in link 1; j + 1 instead of cp, connect j + 1 with nodes in

Nd(j; gc)nNd(j+1; gc) by bc-links, and let all other link-investments remain unchanged.
c0 (a)

 � c (b)
�! c00

j j+ 1 j j+1 j j+1

1 cp cp 1 cp�1 cp 1 cp�1 cp�1
2 bc bc 2 bc bc 2 bc bc
...

...
...

...
...

...
...

...
...bc bc bc bc bc bc

0 0 bc 0 bc bc
...

...
...

...
...

...
0 0 bc 0 bc bc
0 0 0 0 0 0

...
...

...
...

...
...

...
...

...
j 0 0 j 0 0 (b)

�! j 0 0�

j+ 1 0� 0 (a)
 � j+ 1 0 0 j+ 1 0 0

0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

n 0 0 n 0 0 n 0 0

Figure 8: Columns j and j + 1 in c, c0 and c00

Figure 4 represents columns j and j + 1 of the investment matrix corresponding
to gc (center), gc

0
(left) and gc

00
(right). Note that c! c0 modi�es only the j-column

and row, while c ! c00 modi�es only the (j + 1)-column and row. A comparison
of the impact of either modi�cation on the net value generated by the connection of

16In fact, any choice of nodes in Kp�1 and Kp would do. The only reason for this particular choice
is to preserve the conditions in De�nition 3 for the same numbering of the nodes after either of the
modi�cations considered.
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any pair of nodes entry by entry yields the following.17 The impact in both cases is
either the same (when there is no impact), or the same but with opposite signs (entries
framed), but in only one case for each (entries marked as 0� in Figure 4). The change
in contribution by the indirect connection between j and j+1 di¤ers. In the �rst case
it is 2v(�(cp�1)�(cp)� �(cp)2), while in the second it is 2v(�(cp�1)�(cp)� �(cp�1)2): This
means that for v(gc) to be e¢ cient the following must hold:

v(gc)� v(gc0) = A+ 2v(�(cp�1)�(cp)� �(cp)2) � 0;

v(gc)� v(gc00) = �A+ 2v(�(cp�1)�(cp)� �(cp�1)2) � 0;
and summing up these inequalities we obtain �(�(cp) � �(cp�1))2 � 0, which is a
contradiction as we assume cp�1 < cp and �(cp) > �(cp�1):

Proposition 4
Proof. (i): This follows from the fact that in an e¢ cient complete network any link
is only used by the two nodes that it connects.
(ii): Otherwise, if 2v�(cki)�(ckj) > 2v�(cij)�cij, the net value of the network would

increase if link ij were deleted.

Proposition 5
Proof. (i): An all-encompassing star is an NSG-network with two NSG-classes: a
singleton, the center, and all other nodes with only one neighbor. There are no links
between spoke nodes, so any two spoke nodes in that NSG-class are not neighbors.
Therefore, the last part of the proof of Proposition 2-(iii) adapts to the case of an
e¢ cient all-encompassing star and yields that all spoke nodes are connected with the
center by links that receive the same investment, say, c�n. The net value of an all-
encompassing star of c�n-links, g

c, is:

v(gc) = (n� 1)(2v�(c�) + v(n� 2)�(c�)2 � c�):

Thus for this star to be e¢ cient c�n must maximize 2v�(c) + (n � 2)v�(c)2 � c: Hence
(5).
(ii): Otherwise, if 2v�(c�n)

2 < 2v�(bc)�bc, the net value of the network would increase
if two spoke nodes were connected with a bc-link.
Proposition 6
Proof. By Corollary 1, the only possibly e¢ cient regular DNSG-networks are gc�k
(k 6= 2) or gc��k (k 6= n� 1) for some k = 1; 2; :::; n: We �rst discuss gc�k (Figure 4-(a))
and prove that the only e¢ cient gc

�
k must be complete (gc

�
n) or an all-encompassing star

(gc
�
1). To that end, compare the net value of gc

�
k (2 < k < n ) with the net values of the

17Note that 0-entries not in the main diagonal correspond to pairs of nodes indirectly connected
through the star. In Figure 4, 0-entries in the main diagonal are in bold (0).
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two networks, gc
�
k�1 and gc

�
k+1, that result from each of the following two modi�cations

of c�k (Figure 9):
(a) c�k ! c�k�1 : Invest c2 in link 1k instead of bc, delete the bc-links connecting k with

other nodes in K2, and let all other link-investments be unchanged.
(b) c�k ! c�k+1 : Invest bc in link 1; k + 1 instead of c2, connect k + 1 with all the

other nodes in K2 by bc-links, and let all other link-investments be unchanged.
c�k�1 k k+1

1 c2 c2

...
0
...
0

0
...
0

k 0 0
k+1 0 0
...
...
n

0
...
0

0
...
0

(a)

 �

c�k k k+1

1 bc c2

...
bc
...bc

0
...
0

k 0 0
k+1 0 0
...
...
n

0
...
0

0
...
0

(b)

�!

c�k+1 k k+1

1 bc bc
...

bc
...bc

bc
...bc

k 0 bc
k+1 bc 0
...
...
n

0
...
0

0
...
0

Figure 9: Columns k and k + 1 in c�k, c
�
k�1 and c

�
k+1.

Then we have

v(gc
�
k)� v(gc�k�1) = 2v�(bc)� bc� (2v�(c2)� c2) + (k � 2) (2v�(bc)� bc� 2v�(bc)�(c2))

+(n� k)(2v�(bc)�(c2)� 2v�(c2)2);
v(gc

�
k)� v(gc�k+1) = 2v�(c2)� c2 � (2v�(bc)� bc) + (k � 1) (2v�(bc)�(c2)� (2v�(bc)� bc))

+(n� k � 1)(2v�(c2)2 � 2v�(bc)�(c2));
therefore:

v(gc
�
k)�v(gc�k�1) = �(v(�c�k)�v(�c�k+1))�(2v�(bc)�bc��(bc)�(c2))+(2v�(bc)�(c2)��(c2)2):

If gc
�
k is e¢ cient, 2v�(bc) � bc � �(bc)�(c2) must hold (otherwise the net value of the

network would increase if a node in K1 and a node in K2 were connected by a bc-link ).
Then

2v�(bc)�(c2)� �(c2)2 < 2v�(bc)� bc� �(bc)�(c2) � 0:
In other words,

v(gc
�
k)� v(gc�k�1) + (v(�c�k)� v(�c�k+1) < 0

or, equivalently

v(gc
�
k)� v(gc�k+1) � 0) v(gc

�
k)� v(gc�k�1) < 0:
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which contradicts the e¢ ciency of gc
�
k . This leaves the all-encompassing star gc

�
1 and

the complete network gc
�
n as the only possibly e¢ cient regular DNSG-networks of type

gc
�
k .
We now discuss a network of the second type, gc

��
k with 1 < k < n � 2 (Figure

4-(b)). Compare the net value of gc
��
k with the net value of the two networks, gc

��
k�1

and gc
��
k+1, that result from each of the following two modi�cations of c��k denoted by

c��k�1 and c
��
k+1 respectively (Figure 10):

(a) c��k ! c��k�1 : Invest c2 in link 1k instead of bc, delete the bc-links connecting k
with nodes in K2, and let all other link-investments be unchanged.
(b) c��k ! c��k+1 : Invest bc in link 1; k + 1 instead of c2, connect k + 1 with the other

n�k�1 nodes nodes in K2 by bc-links, and let all other link-investments be unchanged.
c��k�1 k k+1

1 c2 c2

...
bc
...bc

bc
...bc

k 0 0
k+1

...
n

0

...
0

0

...
0

(a)

 �

c��k k k+1

1 bc c2

...
bc
...bc

bc
...bc

k 0 bc
k+1

...

n

bcbc
...bc

0
0
...
0

(b)

�!

c��k+1 k k+1

1 bc bc
...

bc
...bc

bc
...bc

k 0 bc
k+1

...
n

bcbc
...bc

0bc
...bc

Figure 10: Columns k and k + 1 in c��k , c
��
k�1 and c

��
k+1.

Then we have

v(gc
��
k )� v(gc��k�1) = (n� k + 1)(2v�(bc)� bc)� (n� k)2v�(c2)2 � 2v�(c2) + c2;

v(gc
��
k )� v(gc��k+1) = �(n� k)(2v�(bc)� bc) + 2v�(c2)� c2 + (n� k � 1)2v�(c2)2;

therefore:

v(gc
��
k )� v(gc��k�1) = �(v(gc��k )� v(gc��k+1)) + 2v�(bc)� bc� 2v�(c2)2:

If gc
��
k is e¢ cient, 2v�(bc)�bc � �(c2)2 must hold (otherwise the net value of the network

would increase if any two nodes in K2 were connected by a bc-link ). Then necessarily
2v�(bc)� bc� 2v�(c2)2 � 0:

If 2v�(bc)� bc� 2v�(c2)2 < 0; then it follows that
v(gc

��
k )� v(gc��k+1) � 0) v(gc

��
k )� v(gc��k�1) < 0;

which contradicts the e¢ ciency of gc
��
k and leaves the all-encompassing star gc

��
1 and

the complete network gc
��
n as the only possibly e¢ cient regular DNSG-networks of type

gc
�
k .
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Otherwise, if 2v�(bc)� bc� 2v�(c2)2 = 0, then
v(gc

��
k )� v(gc��k�1) = �(v(gc��k )� v(gc��k+1));

which implies that gc
��
k can only be e¢ cient if v(gc

��
k )�v(gc��k�1) = v(gc��k )�v(gc��k+1) = 0:

In other words, in the sequence from gc
��
1 to gc

��
n�1 the increase (decrease) in net value is

the same for any two consecutive structures. From this it also follows that gc
��
k is strictly

dominated either by gc
��
1 or by gc

��
n�1, unless all these di¤erences are 0. But this is only

possible if, in addition to 2v�(bc)�bc�2v�(c2)2 = 0; it holds that 2v�(bc)�bc = 2v�(c2)�c2:
That is

2v�(bc)� bc = 2v�(c2)� c2 = 2v�(c2)2: (11)

In this case v(gc
��
1 ) = v(gc

��
2 ) = ::: = v(gc

��
n ), and they are all strictly dominated either

by the optimal complete or by the optimal all-encompassing star, unless these happen
to be gc

��
1 and gc

��
n ; in which case c2 = c�n and (11) becomes (7). In this very special

case, the complete network, the all-encompassing star and all intermediate gc
��
k with

c2 = c
�
n are e¢ cient if their net value is positive.

Theorem 1
Proof. Let g be an e¢ cient network with a positive value. Let gD be the dominant
NSG-network with no super�uous links that the algorithm at the basis of the result
in Olaizola and Valenciano (2019) produces from g s.t. v(g) � v(gD ). Given that g
is e¢ cient, v(g) = v(gD ) and gD must also be e¢ cient. Moreover, by Proposition 2�,
v(g) = v(gD ) = v(gRD ), where gRD is a regular DNSG-network with the same underlying
graph as gD and necessarily e¢ cient too. Thus by Corollary 1 and Proposition 6, unless
(7) holds, gRD (and gD which has the same underlying graph) must be either complete
or an all-encompassing star. But this is only possible if g itself is complete or an
all-encompassing star, otherwise the algorithm could not yield a DNSG-network with
such an underlying graph and the same net value. This is obvious if gD and gRD are
complete. If gD and gRD are all-encompassing stars, then gD = gRD and they must
consist of n� 1 c�-links for some c� s.t. (5). Thus g must have at least n� 1 c�-links,
which arranged as a star maximize the net value achievable with those links. If g has
more links, as v(g) = v(gD ), some of them must be super�uous and therefore discarded
in the transition from g to gD . But this is not possible. If two spoke nodes of a star of
c�-links are connected by a c-link, for this link to be super�uous it must hold

2v�(c�)2 = 2v�(c)� c � 2v�(bc)� bc;
but e¢ ciency of g implies that in the expression above ���must be �=�. Thus we
have

2v�(c�)2 = 2v�(bc)� bc: (12)

In this case it is immediate to check that a complete network of bc-links yields a greater
net value than a star of c�-links unless 2v�(c�)� c� = 2v�(bc)� bc: But this along with
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(12) means that there is a supertie. Thus g has no super�uous links and must be an
all-encompassing star.

Theorem 2
Proof. In view of Theorem 1 and Propositions 4 and 5, it is clear that the only
complete network that can be strongly e¢ cient is the one with bc-links, with bc given
by (8), and the only all-encompassing star that can be strongly e¢ cient is one with
c�n-links, with c

�
n given by (9).

In the case of a supertie, i.e. if (7) holds for bc given by (8), and c�n given by (9),
then, as shown in Proposition 6, all gc

��
k (1 � k � n) are e¢ cient if their same net

value is positive. Nevertheless, their costs are di¤erent because

cost(c��k+1)� cost(c��k ) = (n� k)bc� c�n;
for 1 � k < n, and those di¤erences are decreasing with k. In particular,

cost(c��n )� cost(c��n�1) = bc� c�n < 0:
If all these di¤erences are negative (or, equivalently, cost(c��2 )� cost(c��1 ) = (n� 1)bc�
c�n < 0), then the cheapest is the complete network c

��
n . Otherwise, these di¤erences

form a decreasing sequence of positive terms followed by negative terms, i.e. for some
1 < k < n;

cost(c��k )� cost(c��k�1) > 0;

cost(c��k+1)� cost(c��k ) < 0:

In this case,

cost(c��1 ) < cost(c
��
2 ) < ::: < cost(c

��
k�1) < cost(c

��
k ) > cost(c

��
k+1) > ::: > cost(c

��
n );

that is, the minimal cost is achieved either by c��1 (an optimal all-encompassing star)
or by c��n (the optimal complete).
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