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Abstract

The human brain is functionally organized into large-scale neural networks that are dynamically interconnected. Multiple short-
lived states of resting-state functional connectivity (rsFC) identified transiently synchronized networks and cross-network integra-
tion. However, little is known about the way brain couplings covary as rsFC states wax and wane. In this magnetoencephalography
study, we explore the synchronization structure among the spontaneous interactions of well-known resting-state networks (RSNs).
To do so, we extracted modes of dynamic coupling that reflect rsFC synchrony and analyzed their spatio-temporal features. These
modes identified transient, sporadic rsFC changes characterized by the widespread integration of RSNs across the brain, most
prominently in the β band. This is in line with the metastable rsFC state model of resting-state dynamics, wherein our modes fit
as state transition processes. Furthermore, the default-mode network (DMN) stood out as being structured into competitive cross-
network couplings with widespread DMN-RSN interactions, especially among the β-band modes. These results substantiate the
theory that the DMN is a core network enabling dynamic global brain integration in the β band.
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Highlights:
— We study synchronization among dynamic functional connectivity at rest.
— We identify transient modes of dynamic coupling using an ICA of connectivity.
— Some α-band modes are longer lived and β-band modes are more widespread.
— Modes of the DMN are structured into competitive cross-network couplings.
— Results concur with a metastable dynamics and the core network model of the DMN.

1. Introduction

The large-scale organization of the human brain is based on
the existence of functional networks, which reflect the prefer-
ential integration of distant neural assemblies needed to support
various functions, from sensory perception and motor behav-
iors to complex cognitive processes. At the macroscopic level,
spatial patterns of interaction between segregated brain areas
can be disclosed during the performance of dedicated tasks, but
also in the absence of any explicit task (i.e., the so-called resting
state). These background couplings are thought to represent a
fingerprint of this organization into functional networks and to
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reflect the intrinsic functional architecture of the human brain
(for a review, see, e.g., Deco and Corbetta, 2011).

One method to map functional brain networks from exper-
imental measurements is functional connectivity (FC) analy-
sis, where the coupling among network nodes is estimated via
measures of statistical similarity between their activities (Bas-
tos and Schoffelen, 2015; Friston, 2011; O’Neill et al., 2015a).
This approach generally assumes that networks are temporally
stable. Multiple static interaction patterns—conventionally re-
ferred to as resting-state networks (RSNs)—have been identi-
fied in this way, some overlapping primary systems such as the
sensorimotor, the auditory, and the visual networks and oth-
ers involving higher-level systems such as the attentional, the
executive-control, and the default-mode networks. These obser-
vations have been consistently reproduced across neuroimag-
ing studies and modalities, from functional magnetic resonance
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imaging (fMRI) (Beckmann et al., 2005; Biswal et al., 1995;
Damoiseaux et al., 2006; Fox et al., 2005; Smith et al., 2009)
to magnetoencephalography (MEG) (Brookes et al., 2011,
2012a,b; Hall et al., 2013; Hipp et al., 2012; Liu et al., 2010;
Luckhoo et al., 2012; Wens et al., 2014a,b, 2015) and electroen-
cephalography (EEG) (Knyazev et al., 2016, 2017; Liu et al.,
2017; Siems et al., 2016; Sockeel et al., 2016).

However, this static picture of RSNs—i.e., fixed net-
works without time-dependent coupling modulations within
and across them—hardly mirrors the functional landscape of
the human brain. Rather, it has been hypothesized that RSNs
represent an average of temporally varying interaction patterns,
which would transiently fragment into sub-networks to bind
different systems together, hence bringing about a richer reper-
toire of functional integration (Deco et al., 2011). This hypoth-
esis was supported by dynamic FC studies, which disclosed
a large body of time-dependent interaction patterns fluctuat-
ing over relatively short timescales (from seconds to tens of
seconds), including transient cross-network couplings (Allen
et al., 2014; Brookes et al., 2014; Chang and Glover, 2010;
de Pasquale et al., 2010, 2012; Handwerker et al., 2012; Hutchi-
son et al., 2012; Kiviniemi et al., 2011; O’Neill et al., 2015b,
2017b; Zalesky et al., 2014). Still, many aspects of dynamic
FC remain to be investigated (for reviews, see Hutchison et al.,
2013; O’Neill et al., 2017a).

In this work, we explore the existence and the properties of
spontaneous temporal synchrony among dynamic brain cou-
plings and consider the hypothesis that coupling synchroniza-
tion is a correlate of the generation of sub-networks and cross-
network integration. We started with resting-state FC mea-
sured via MEG power envelope correlation from key nodes of
well-established RSNs, and submitted the time-dependent FC
data to an independent component analysis (ICA) so as to dis-
close “modes of dynamic coupling” that reflect patterns of syn-
chronous fluctuation among brain interactions. This approach
has already been used to disclose task-related transiently syn-
chronized networks (O’Neill et al., 2017b). An extra challenge
here was to identify physiologically relevant modes of dynamic
coupling in the absence of any controlled, goal-directed task.
To do this and test our main hypothesis, we sought to relate
each mode to a combination of template RSNs (henceforth re-
ferred to as “network mixture models”). This would estab-
lish an association between coupling synchrony and the phe-
nomenon of cross-RSN integration. The framework of network
mixture modeling also allows to investigate the key hypothesis
that resting-state activity emerges from a spontaneous switch-
ing among diverse network configurations, which can be inter-
preted effectively as a “dynamical competition” among RSNs
(Deco and Corbetta, 2011). We sought to identify competitive
modes of dynamic coupling by comparing their mixture model
to a similar model explicitly constrained to display no competi-
tion. Establishing their existence would provide empirical sup-
port to the theory of Deco and Corbetta (2011).

2. Material and Methods

2.1. Data acquisition

The dataset used in this work consists of MEG resting-state
recordings of 100 healthy adult volunteers (48 females and 52
males, mean age: 26.5 years, age range: 18–41 years) gath-
ered from nine experiments containing a rest session (5 min-
utes, eyes open) intermingled with task-driven sessions. Re-
sults related to task-positive phenomena have been published
previously (Bourguignon et al., 2011, 2013; Clumeck et al.,
2014; Marty et al., 2015; Mary et al., 2015; Vander Ghinst et al.,
2016). Participants were all right-handed as assessed by the Ed-
inburgh Handedness Inventory (Oldfield, 1971), had no history
of neurologic or psychiatric disease, and signed a written in-
formed consent prior to data acquisition. All nine studies were
approved by the CUB – Hôpital Erasme Ethics Committee.

Neuromagnetic activity at rest was acquired using a
306-channel whole-scalp-covering MEG system (Vectorview,
Elekta Oy, Helsinki, Finland) placed in a lightweight magnet-
ically shielded room (MaxshieldTM, Elekta Oy, Helsinki, Fin-
land). Signals were band-pass filtered at 0.1–330 Hz and sam-
pled at 1 kHz. Subjects were sitting comfortably in the MEG
armchair with the head inside the MEG helmet, and were asked
to relax and fixate the gaze at a point on the wall or on a
screen. Their head position was tracked with four indicator
coils. An electromagnetic digitalization system (Fastrack, Pol-
hemus, Colchester, VT, USA) was used before MEG data ac-
quisition to locate these coils relative to anatomical fiducials, as
well as at least 150 head-surface points. A high-resolution 3D
T1-weighted cerebral magnetic resonance image (MRI) of each
subject was also acquired using a 1.5 T MRI scanner (Intera,
Philips, The Netherlands) after the MEG recordings.

2.2. Data preprocessing

Resting-state MEG data were preprocessed offline for noise
reduction and extraction of band-limited activity. The temporal
extension of signal space separation was first applied using the
Maxfilter software (MaxfilterTM, Elekta Oy, Helsinki, Finland;
version 2.2 with default parameters) in order to suppress ex-
ternal magnetic interferences and correct for head movements
(Taulu et al., 2005). Remaining cardiac, ocular, and system ar-
tifacts were then removed via an ICA (FastICA algorithm with
dimension reduction to 30 and nonlinearity tanh, see Hyvärinen
and Oja, 2000) applied to band-pass filtered (0.5–45 Hz) MEG
signals. Components corresponding to these artifacts were vi-
sually selected (number of identified components per subject:
5.0 ± 1.4, mean ± SD) and projected out of the full-rank data
(Vigario et al., 2000). Of note, this ICA decomposition did not
isolate high-frequency muscle artifacts, but their contribution
below 45 Hz was subdominant. The cleaned MEG data were
finally filtered in four frequency bands (θ: 4–8 Hz, α: 8–12 Hz,
β: 12–21 Hz, β′: 21–30 Hz) and Hilbert transformed to obtain
their analytic signals.

Individual MRIs were also preprocessed in order to build the
MEG forward model needed for source reconstruction. First,
the coordinate system associated with MEG was coregistered
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manually to that of MRI using the digitized fiducials for ini-
tial estimation and the head-surface points for manual refine-
ments. The MRI was then segmented using the FreeSurfer
image analysis suite (Fischl, 2012). Sources in three orthog-
onal directions were also placed at each node of a cortically-
constrained grid (inter-sources distance: 5 mm, total number
of nodes: 13229). The grid was built on the Montreal Neu-
rological Institute (MNI) template MRI and mapped onto each
individual MRI via a non-linear spatial deformation algorithm
implemented in the SPM8 toolbox (Friston et al., 2007). Fi-
nally, the MEG forward model was computed at these sources
using the one-layer boundary element method of the MNE-C
software suite (Gramfort et al., 2014).

2.3. Sliding-window connectivity estimation
We evaluated FC between the main nodes of RSNs and the

rest of the cortex using sources envelope correlation, which was
chosen here for its established ability to uncover all RSNs typ-
ically disclosed with fMRI (de Pasquale et al., 2010; Brookes
et al., 2011; Hipp et al., 2012; Wens et al., 2014b). The FC anal-
ysis used here relied on minimum norm estimation (MNE) for
source reconstruction and the geometric correction scheme for
the suppression of spatial leakage effects, which yield spurious
contributions to both static and dynamic FC (Wens, 2015). The
pipeline has been described in Wens et al. (2015), to which we
refer for further details. The main difference is that FC was
estimated here within short time windows sliding across the
recording (i.e., dynamic FC) rather than within a single win-
dow covering the entire recording (i.e., static FC). Specifically,
the correlation between source envelopes (low-pass filtered at 2
Hz to improve the connectivity-to-noise ratio; see de Pasquale
et al., 2010; Hipp et al., 2012) was estimated within 10 s-long
windows (de Pasquale et al., 2010) sliding with a step of 5 s,
leading to 57 windows per subject. Note that leakage-corrected
dynamic FC was computed using one-dimensional projected
sources (as in O’Neill et al., 2015b, 2017b) rather than the Eu-
clidean norm of three-dimensional sources (as in Betti et al.,
2018).

The seed sources used for the computation of seed-based dy-
namic FC were chosen as key nodes of six well-known RSNs:
the default-mode (DMN), the sensorimotor (SMN), the audi-
tory (AN), the visual (VN), and the left and right fronto-parietal
(l/rFPN) networks (see Table 1). The resulting RSN-specific
sets of seed-based envelope correlation maps fluctuating from
window to window represent the time development of cou-
plings between each RSN node and the rest of the cortex.

2.4. Identification of modes of dynamic coupling
To detect modes of dynamic coupling that reflect syn-

chronous fluctuations in the dynamic FC of each RSN, we
assumed these modes to be mutually temporally independent
(asynchronous) and thus estimated them using group ICA de-
composition, as in O’Neill et al. (2017b). The method is illus-
trated in the top part of Fig. 1. Further background is provided
in the Supplementary Methods S1 to S3.

To design a group-level analysis, we first standardized in-
dividual FC time series to zero mean (to ensure that the sought

seed RSN key nodes MNI coordinates (mm)

DMN

PCC −3,−54, 31
MPFC −2, 51, 2
lTPJ −43,−76, 35
rTPJ 51,−64, 32

SMN lSM −42,−26, 54
rSM 38,−32, 48

AN lA −54,−22, 10
rA 52,−24, 12

VN lV −20,−86, 18
rV 16,−80, 26

lFPN lFEF −26,−12, 53
lIPS −25,−67, 48

rFPN rFEF 30,−13, 53
rIPS 23,−69, 49

Table 1: List of seed locations used in dynamic FC mapping. Coordinates were
taken from de Pasquale et al. (2012) and Hipp et al. (2012). PCC: posterior
cingulate cortex; MPFC: mesio-prefrontal cortex; TPJ: temporo-parietal junc-
tion; SM: sensorimotor; A: auditory; V: visual; FEF: frontal eye field; IPS:
intra-parietal sulcus; l: left; r: right.

dynamical effects are not confounded with inter-individual vari-
ability in static FC) and unit variance (to ensure that each indi-
vidual subject is given a similar weight) and concatenated them
temporally across subjects. We also concatenated spatially the
seed-based maps associated with the nodes of the RSN under
consideration (see Table 1) in order to consider all its interac-
tions at once. The resulting FC dataset was then decomposed
into temporally independent components (ICs), each IC thus
representing one mode of dynamic coupling. Parameters of the
ICA were similar to those used in static FC analyses of MEG
resting-state data (Brookes et al., 2011; Wens et al., 2014b).
The dimensionality was first reduced to 50, which removed ap-
proximately 50% of the total variance in all cases. Of note,
a similar proportion of variance was discarded as well in the
previous MEG envelope ICA that successfully disclosed RSNs
(see Supplementary Results S1). The ICA itself was performed
using the FastICA algorithm with nonlinearity tanh and the
number of ICs to compute was set to 20 (Hyvärinen and Oja,
2000).

We next proceeded with a detailed characterization of the
modes of dynamic coupling. Each mode was associated with
one IC time series and multiple IC spatial maps (one per seed
belonging to the RSN under consideration). The maps were
obtained by temporal correlation between FC and IC time se-
ries (see the raw IC maps in Fig. 1). We then applied various
statistical analyses to

(i) identify for each mode the spatial location and the tempo-
ral characteristics of the couplings involved,

(ii) decompose its IC maps into combinations of template
RSNs using a network mixture model, and

(iii) determine whether the mode is indicative of a “competi-
tive” behavior between RSNs.
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Figure 1: Schematic illustration of the analysis pipeline. (Example for the dynamic integration of the DMN) Top: Identifying modes of dynamic coupling. The
standardized seed-based FC time series are concatenated temporally across subjects (S 1, S 2, . . . , S 100) and spatially across seeds (indicated by colored discs in the
left insert) and then submitted to a temporal ICA. This outputs several IC time series, whose power spectrum, higher-order temporal statistics, and large-deviation
events are then analyzed, as well as associated IC maps (one per seed), which are masked statistically. Bottom: Network mixture modeling. Nine template RSN
maps are used as regressors for a spatial GLM applied to each raw (unmasked) IC map. This results into a set of GLM weights defining a mixture model for each
mode of dynamic coupling. Statistical inferences are then derived to establish model significance, univariate maps correlations, and dynamical competition. The
significance of detection rates across modes of dynamic coupling is further quantified using occurrence statistics.
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2.5. Spatial mapping and temporal properties

To locate the couplings involved in each mode, we masked
all IC maps statistically using a parametric correlation test
based on the null hypothesis that Fisher-transformed correla-
tion values follow a normal distribution with mean zero and SD
1/
√
ν − 3. Here, the number of temporal degrees of freedom ν

was estimated as the total number of time windows across sub-
jects divided by two to take into account windows overlap. The
significance level was set to p < 0.05 with the family-wise er-
ror rate (FWER) controlled via Bonferroni correction for the S
seeds (see Table 1), the twenty ICs, and the effective number
(here, ρ = 46) of independent cortical sources estimated as the
rank of the MEG forward model (see Wens et al., 2015). Both
positive and negative correlations were considered (two-tailed
test), leading to significance thresholds of ±0.081 (when S = 4)
and ±0.078 (when S = 2) used to mask the IC maps (see the
masked IC maps in Fig. 1). The volume fraction (across the S
maps) of these statistical masks was used to assess the corti-
cal coverage of those couplings identified for each mode. Note
that our simple approach might a priori overestimate the pa-
rameter ν (because of temporal autocorrelations in FC time se-
ries) and lead to lenient statistical masking. However, this was
not the case, as estimates based on Fourier-phase surrogates,
which preserve temporal autocorrelation, led to lower statisti-
cal thresholds (about ±0.06).

We also examined some temporal characteristics of the IC
time series (see Fig. 1). To detect possible oscillatory dynamics,
their power spectral density was estimated by applying the dis-
crete Fourier transform to the single-subject parts of these time
series and group averaging of the resulting magnitude-squared
Fourier coefficients. We also considered higher-order statistics
of IC time series, i.e., their skewness and kurtosis. Significance
was assessed using a parametric test based on the null, approxi-
mately normal distribution obtained in the case of Gaussian sig-
nals. The null mean and SD were respectively zero and

√
6/ν

for the skewness, and 3 and
√

24/ν for the kurtosis. The sig-
nificance level was set to p < 0.05 with Bonferroni correction
for the twenty ICs. We tested for both positive and negative
skewness (two-tailed test, threshold: ±0.14) and for the excess
kurtosis (i.e., one-tailed test above 3, threshold: 3.26).

It is useful to explain how the skewness and the kurtosis in-
form the interpretation of the modes of dynamic coupling. The
IC skewness elucidates the meaning of maps sign. Indeed, pos-
itivity and negativity have no absolute meaning because of the
sign ambiguity inherent to ICA (Hyvärinen and Oja, 2000) but
they do have a relative meaning among the four maps and the
skewness. Within a given mode, two connections (i.e., two
seed-target pairs) with the same sign in the corresponding IC
maps represent two couplings that fluctuate in synchrony. If
they have opposite sign, the two couplings are anticorrelated,
which hints at a “dynamical competition” in this mode. A pos-
itive (negative) skewness indicates a tendency of the mode to
increase connections with positive (negative) map values and
concomitantly decrease those with opposite sign, whereas a
vanishing skewness indicates the absence of such a preferen-
tial direction in FC changes.

The IC excess kurtosis estimates to what extent these FC
modulations arise in sharp peaks but does not inform on the
temporal unfolding of these peaks per se. To quantify their tran-
sient character, we used the mean lifetime of large-deviation
events in IC time series. The identification of those large devi-
ations driving the IC kurtosis was based on a threshold defined
heuristically as follows. We increased candidate thresholds
from 1 by step of 0.5 (recall here that IC time series are stan-
dardized to zero mean and unit SD), computed for each mode,
RSN, and frequency band the probability of supra-threshold
events within IC time series, and retained the smallest threshold
for which there was a significantly positive (p < 0.05) Pearson
correlation (across the 20 × 9 × 4 ICs) between this tail prob-
ability and the kurtosis. This approach led to a threshold of
2.5. To assess the recurrent character of IC large deviations
and their tendency to happen in isolation (notwithstanding the
temporal independence constraint of ICA that penalizes simul-
taneous events, see also Supplementary Methods S1), we also
estimated the distribution of (co-)occurrences, i.e., the number
of events identified in each time window.

The effects of the frequency band (θ, α, β, β′) and seed RSN
(Table 1) on the distributions across modes of the IC kurtosis,
the IC events lifetime, and the volume fraction of IC masks
were assessed using a non-parametric two-way ANOVA (Fried-
man test) and post-hoc Wilcoxon rank tests.

2.6. Network mixture modeling
To identify modes of dynamic coupling that involve cross-

network integration between RSNs, we sought to establish a
relationship between each raw IC map and a mixture of one or
more static RSN maps.

Template RSN maps were derived from ten
standard RSNs identified via a twenty-component
ICA of fMRI resting-state data available at
https://www.fmrib.ox.ac.uk/datasets/brainmap+rsns (Smith
et al., 2009). These fMRI maps were smoothed with a Gaus-
sian kernel of 8 mm full-width-at-half-maximum using SPM8
(Friston et al., 2007) and resampled to the MEG cortical grid to
obtain same size and comparable spatial smoothness across the
two modalities. Of notice, the cerebellar RSN of Smith et al.
(2009) was discarded since it does not involve cortical areas,
resulting in nine template RSN maps: the visuo-medial (VmN),
visuo-occipital (VoN), and visuo-lateral (VlN) networks, the
DMN, the SMN, the AN, the executive-control network (ECN),
and the r/lFPN (see the template RSN maps in Fig. 1).

We then used general linear modeling (GLM) with these tem-
plate RSN maps as regressors (bottom part of Fig. 1). This
analysis differs from the standard use of GLM in neuroimaging
(typically established voxel by voxel using sampling over sub-
jects or time, see, e.g., Friston et al., 1994) by the fact that sam-
pling is here over the cortical sources. Estimation of the GLM
weights followed a standard procedure without regularization
since the resulting design matrix was full rank (see Supplemen-
tary Methods S4). Statistical inference was based on our as-
sessment of the effective number of spatial degrees of freedom
in MNE source maps, i.e., ρ = 46. This setup takes into ac-
count the autocorrelation structure due to spatial leakage (Wens

5



V. Wens et al. NeuroImage 199 (2019) 313–324

et al., 2015) and thus avoids wrongly inflating significance (see,
e.g., Monti, 2011, for a review of the consequences of sample
autocorrelation for GLMs in the context of fMRI time series).

The network mixture model of a mode of dynamic coupling
was then defined as the set of GLM weights associated with
the S seed nodes and the nine template RSNs (see the GLM
weights in Fig. 1). For each mode and seed, model significance
was established using F tests (Friston et al., 2007) at p < 0.05
with false discovery rate (FDR) correction to control for multi-
ple comparisons (i.e., 20 modes × S seeds). Modes associated
with significant mixture models for at least one seed were inter-
preted as indicative of a cross-network interaction. To obtain a
clearer picture of which RSNs are involved in significant mix-
tures, we also investigated post hoc the univariate (partial) cor-
relations between each raw IC map and each template RSN map
via two-tailed t tests (Friston et al., 2007) at p < 0.05 corrected
for the same amount of multiple comparisons as done for the F
tests. All statistical inferences were based on a fixed-effect de-
sign since the regressors were built upon deterministic template
RSN maps.

Full details on this spatial GLM and the associated statistical
tests are provided in the Supplementary Methods S4.

2.7. Dynamical competition testing
We also used the framework of network mixture modeling

to investigate the idea that different RSNs “compete dynami-
cally” to establish functional connections. Based on our dis-
cussion above about the relative sign of IC maps, we reasoned
that such competitive behavior must involve substantial tempo-
ral anticorrelations among the cross-network couplings identi-
fied in a given mode of dynamic coupling. This situation is
reflected by the presence of both positive and negative weights
in a mixture model. To investigate formally the existence of
dynamical competition in this sense, we thus compared sta-
tistically each network mixture model to a “non-competitive”
model built under the constraint that all GLM weights have the
same sign (i.e., weights are all positive or all negative), which
idealizes the absence of competition. Importantly, imposing the
same sign across the seeds considered (Table 1) was necessary
to include the effect of relative sign across the IC maps and de-
tect at once any instance of competition (i.e., among RSNs for
fixed seed, among seeds for fixed template RSN, or between
different seed-RSN pairs). Further background is provided in
the Supplementary Methods S5 and S6.

We derived the exact solution of these sign-constrained
GLMs using a semi-analytical approach detailed in the Sup-
plementary Methods S7. Our technique combines (i) the ob-
servation that the sign-constrained problem corresponds to an
ordinary, analytically solvable GLM under certain (but a pri-
ori unknown) zero-weight constraints, with (ii) a numerical ap-
proximation of the solution via a projected gradient descent al-
gorithm (whose convergence can be analyzed using fixed-point
methods; see, e.g., Jung, 2017) to determine the zero-weight
constraints.

For each mode and seed, we then assessed statistically
whether the original (unconstrained) GLM provided a signifi-
cantly better model than the sign-constrained GLM. The model

comparison was performed using F tests (at p < 0.05 corrected
for the same amount of multiple comparisons as done for the
model assessment F tests) since the two GLMs are nested (Fris-
ton et al., 2007). Modes associated with significantly better un-
constrained GLM for at least one seed were deemed to exhibit
significant RSN competition. The only exception to this claim
was when the unconstrained GLM did satisfy the sign condition
since the associated F statistic was then ill-defined. In this case,
however, the mode was clearly non-competitive.

The technical details are developed fully in the Supplemen-
tary Methods S4, S7, and S8.

2.8. Occurrence of cross-network integration and competition

We quantified the tendency of modes to be structured into
cross-network interactions, to target specific RSNs, and to ex-
hibit dynamical competition. The occurrence rate for cross-
network coupling was estimated as the proportion of modes
with a significant network mixture model, that for RSN de-
tection, as the proportion of significant mixture models with
a significant correlation t test with the corresponding template
RSN for at least one seed, and that for dynamical competition,
as the proportion of significant mixture models with significant
model comparison F test for at least one seed. Significance
testing for these proportions was based on the binomial distri-
bution associated with the expected false positive rate (i.e., the
FDR-corrected critical p value) of these tests. We report one-
tailed significance at p < 0.05 with Bonferroni correction, but
also consider uncorrected significance in cases of small sample
sizes where the sensitivity of these statistics is limited (see, e.g.,
Krzywinski and Altman, 2014).

We further applied Friedman and Wilcoxon tests to identify
possible effects of frequency band or seed RSN on the propor-
tion of cross-network coupling occurrence.

3. Results

To examine temporal synchrony among the cortical interac-
tions of each RSN (Table 1), we used an ICA that decomposed
the band-limited FC data into twenty modes of dynamic cou-
pling. Each mode was associated with a number of IC maps that
locate synchronously varying couplings with the seed nodes of
the RSN under consideration (Table 1) and one IC time series
encoding their temporal dynamics. Their spatial and temporal
signatures were then analyzed statistically as outlined in Fig. 1.

To ease the understanding and interpretation of the quanti-
tative results, we start by describing qualitatively two example
modes obtained from the α-band FC data of the DMN. We then
consider the distribution of key spatio-temporal characteristics
of the modes across all RSNs and frequency bands. An analysis
of the modes is developed with more detail in the Supplemen-
tary Results S2 for the case of the α- and the β-band DMN.

3.1. Example modes of dynamic coupling

Figure 2 (left) summarizes the characteristics of the mode α2
(i.e., the 2nd IC obtained in the α band) for the DMN. The pos-
itive part of its raw IC maps (Fig. 2, left, top) was strongest
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over the occipital, the occipito-temporal, and the posterior pari-
etal cortices bilaterally and also peaked over the pre-frontal
area. Their negative part covered the central sulci bilaterally.
These FC topographies could also be explained in terms of
cross DMN-RSN integration using network mixture modeling.
The GLM weights (Fig. 2, left, bottom left) disclosed a positive
contribution of visual networks (VNs)—most prominently the
VlN—and of the DMN (cross DMN-VN and intra-DMN cou-
plings) mainly, and a negative contribution of the SMN (cross
DMN-SMN coupling). This corresponds to a situation where
cross DMN-SMN integration competes with intra-DMN and
DMN-VN integration. The sign of the IC maps and their GLM
weights could be interpreted by considering the skewness of
the IC time series, which was positive (see the arrow on the
maps scale in Fig. 2, left). This means that the mode α2 is
associated with increases of cross DMN-VN and intra-DMN
couplings and concomitant decreases of cross DMN-SMN cou-
plings, rather than the opposite. Further analysis of the IC time
series showed that these FC modulations were non-periodic and
occurred as recurrent, sporadic transient events (Fig. 2, left, bot-
tom right).

As a second example, we consider the DMN mode α20
(Fig. 2, right). Spatially, the SMN emerged clearly from the
four IC maps but with opposite signs in the left and the right
hemispheres. Temporally, this mode also exhibited aperiodic-
ity, transience, and recurrence, but now IC skewness was close
to zero (indicated by a double-headed arrow on the maps scale
in Fig. 2, right). The mode α20 thus corresponds to an non-
periodic, competitive mode of cross DMN-SMN integration
wherein transient events of increased coupling with the right-
hemispheric part of the SMN and decreased coupling with the
left-hemispheric part alternate with events of decreased cou-
pling with the right-hemispheric SMN and increased coupling
with the left-hemispheric part. However, network mixture mod-
eling failed to detect this cross DMN-SMN integration. In fact,
this example illustrates the two caveats of this approach. First,
the GLM weights corresponding to the SMN were close to zero
because the IC maps asymmetry destroyed any correlation with
the full SMN map. Generally, the sensitivity to template RSN
maps identification is lessened in cases where the target RSN is
split into sub-networks. Second, the GLM weights associated
with the FPNs emerged with opposite signs because the SMN
peaks leaked towards the frontal and the posterior parietal cor-
tices, leading to a spurious interpretation of the mode in terms
of alternating cross DMN-r/lFPN integration. This is due to
the intrinsic blurriness of MEG-based FC mapping that persists
after leakage correction (see, e.g., Wens et al., 2015) and limits
the specificity of RSN identification.

3.2. Temporal dynamics of the modes
The aperiodicity and the transient character of IC time series

observed in the two preceding examples (Fig. 2) generalized to
all the modes. The IC skewness was significant for about half
of the modes and the IC kurtosis, for all of them. The latter
result confirms that each mode exhibited large deviations. Fur-
ther, comparing the distributions of IC kurtosis across modes
obtained with different RSNs and frequency bands (Fig. 3, top

left), we identified an effect of the band (p = 2.2×10−19, Fried-
man test) but not of the RSN (p = 0.09). The band effect was
due to a larger median across the α-band modes, indicating that
some of these modes exhibited higher IC kurtosis than in the
other bands, irrespectively of the seed RSN.

The transience of the large-deviation events (implied by high
IC kurtosis) was confirmed by considering their lifetime distri-
bution (Fig. 3, bottom left), whose median was only slightly
above the windows step size. We observed a band effect
(p = 2.3 × 10−7) without RSN effect (p = 0.49) reflecting a
tendency for longer-lived events in the α band and for shorter-
lived events in the β band. The latter was explained by the fact
that no β-band mode exhibited lifetimes above 6.4 s, whereas
longer lifetimes emerged in the other bands (maximum lifetime
across θ-band modes: 7.3 s, α: 7.5 s, β′: 6.9 s). The former was
explained by a higher number of α-band modes with lifetimes
above those of the β band (proportion across θ-band modes:
5%, α: 8%, β′: 1%). This is illustrated explicitly in the Supple-
mentary Results S3.

Table 2 shows that large-deviation events occur fairly often,
since 35% of the time windows contained at least one event. Si-
multaneous occurrences are scarce, as 77% of large deviations
were isolated and 20% consisted of two simultaneous events.
The co-occurrence of more than two events turned out to be
rare (about 3% of the time windows).

n 0 1 2 3 4 5 6 ≥ 7
Pn (%) 65 27 7 1 0.2 0.01 0.003 0

Table 2: Probability distribution Pn that n large-deviation events occur simul-
taneously. The probability was estimated by pooling (co-)occurrence counts
across all frequency bands (θ, α, β, β′) and all RSNs (see Table 1). The count-
ing process is illustrated in the Supplementary Results S3.

Finally, we note that the combination of higher kurtosis and
longer lifetimes for α-band modes also implicates a tendency
for larger deviations (see Supplementary Results S3).

3.3. Spatial organization of the modes
We now consider the spatial structure of the modes of dy-

namic coupling (notwithstanding the specificity/sensitivity is-
sues identified above). All IC maps involved significant contri-
butions to the FC data. Further, they all exhibited positive and
negative significant values, which indicates that coupling syn-
chronization is typically accompanied with coupling anticorre-
lation. We assessed the spatial extent of the significant FC pat-
terns associated to each mode by measuring the fraction of vol-
ume filled by the IC statistical masks (Fig. 3, top right). Com-
paring their distributions showed that the DMN modes tended
to be more focused spatially (RSN effect, p = 2.1 × 10−8) and
that the β-band modes tended to be more extended (band effect,
p = 3.2 × 10−10).

We also determined whether these FC patterns could be un-
derstood in terms of cross-network integration using network
mixture modeling. The detection rate of significant mixtures
was higher than expected by chance in all cases (p < 10−3, bi-
nomial tests) except for the VN and the rFPN in the θ band
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Figure 2: Example modes of dynamic coupling. Qualitative characteristics are shown for two ICs of the DMN-based FC data in the α band, here without statistical
assessment. Spatial aspects encompass the four raw IC maps (top) and the associated network mixture model weights (bottom left). Seeds are color coded (red:
MPFC, blue: PCC, violet: lTPJ, green: rTPJ). Temporal properties include the skewness (sign of non-zero skewness indicated by a single arrow on maps scale,
approximately zero skewness indicated by a double-headed arrow), the kurtosis and the corresponding large-deviation events (emphasized in red on the IC time
course), and the power spectrum (bottom right) of the IC time series. Scales and units are set consistently across the two modes but are otherwise arbitrary.

(p > 0.04). This means that most FC datasets revealed some
cross-RSN interactions. This occurrence rate appeared sub-
stantial for the DMN, where a large majority of modes could
be classified in terms of cross-network coupling patterns, but
smaller for the other RSNs (Fig. 3, bottom right). This was
confirmed statistically by a RSN effect on these proportions
(p = 2.9 × 10−18, Friedman test). We also disclosed a band
effect (p = 5.7 × 10−4) due to higher occurrence rates in the
α and the β bands compared to the θ and the β′ bands. Note
in Fig. 3 (bottom right) that the comparison for the β and the
β′ bands was only barely non-significant (p = 0.06, Wilcoxon
test).

We further sought to identify which RSNs were predomi-
nantly involved among the cross-network couplings obtained
in mixture models (Fig. 4, top). For the DMN modes, we de-
tected a wide range of cross DMN-RSN interactions more often
than expected by chance, particularly in the β band where RSN
occurrence was significant for all the template RSNs. Inter-
estingly, cross-network integration appeared more restricted in
the α band where only the DMN-VmN, DMN-VlN, and DMN-
SMN couplings were detected with significant rate. Patterns
of RSN occurrence were comparably scarcer with the other
seed RSNs (in line with Fig. 3, bottom right). It is notewor-
thy that the VoN occurred significantly often only among the
DMN modes in the β band, and not at all in the other cases (bar
a non-significant occurrence for the β′-band DMN).

3.4. Competition among cross-network couplings

The detection rates for dynamical competition among the sig-
nificant mixture models are shown in Fig. 4 (bottom). A sig-
nificant majority of DMN modes exhibited competitive cross-
network couplings, with the highest occurrence rates among the
α- and the β-band modes. Competition also emerged with the
other seed RSNs, although significance was more variant. This
could merely reflect the scarcer occurrence of significant mix-
ture models in these cases (Fig. 3, bottom right), which lim-
its statistical power. No competition was detected for the VN
modes in the θ band and for the lFPN modes in the θ and the
β bands, and the detection rate for the α-band lFPN was below
the uncorrected significance level.

Interestingly, this widespread detection of dynamical compe-
tition contrasts with a similar analysis performed at the level of
static FC, where no significant RSN map appeared to display
RSN competition (see Supplementary Results S1).

4. Discussion

4.1. Summary of findings

This paper investigates spontaneous synchronization patterns
of dynamic FC with RSN nodes, or in short, modes of dynamic
coupling. These modes corresponded to recurrent and sporadic
transient events of FC changes involving varied and widespread
coupling patterns. The α band disclosed longer lived FC events
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Figure 3: Effects of seed RSN and frequency band on characteristics of the modes of dynamic coupling. The distributions across modes of the IC kurtosis (top
left), the IC large-deviation events lifetime (bottom left), the volume fraction of IC statistical masks (top right), and the proportion of significant network mixture
models (bottom right) are compared across frequency bands (θ, α, β, β′) and seed RSNs (see Table 1). The bar plots show the median values computed over RSNs
(right side) or bands (bottom side). Significant effects identified via post-hoc Wilcoxon rank tests are indicated on these bar plots by red stars.
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Figure 4: Occurrence of RSNs and dynamical competition among network mixture models. Top: The proportion of significant models disclosing RSN contribution
is shown for each RSN template, frequency band (θ, α, β, β′), and seed RSN (see Table 1). White entries indicate the absence of occurrence. *: p < 0.05 Bonferroni
corrected within each column (i.e., for nine comparisons), **: p < 0.05 corrected for all factors. Bottom: The proportion of significant models disclosing dynamical
competition is also shown for each band and seed RSN. *: p < 0.05 uncorrected, **: p < 0.05 Bonferroni corrected. Significance of occurrence rates is based on
binomial tests.
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with larger deviations. The β-band modes involved spatially
more extended coupling patterns. Cross-network integration
was predominant among the DMN modes but scarcer among
the others, and it was more common in the α and the β bands.
The dynamic integration of the DMN with other RSNs involved
mostly the SMN and the Vl/mN in the α band, most RSNs in the
θ and the β′ bands, and all of them in the β band. Importantly,
and in contradistinction with static FC, dynamical competition
among these cross DMN-RSN couplings was ubiquitous.

4.2. Resting-state dynamics and coupling synchrony

While the nature and function of spontaneous brain inter-
actions remain difficult to investigate experimentally, the pic-
ture emerging from empirical FC studies is one of a dynamic
integration involving transient RSN fragmentation into sub-
networks, cross-network binding, and alternation of core hubs
(for reviews, see, e.g., Hutchison et al., 2013; de Pasquale
et al., 2018). This entails a resting-state dynamics that has been
mainly conceptualized as a jump process between discrete, tem-
porally non-overlapping FC states that recur at random times.
Two notions of FC states have been devised: transiently syn-
chronized networks at the supra-second timescale (Allen et al.,
2014; O’Neill et al., 2015b) and sub-second states detectable
using hidden Markov models (Baker et al., 2014; Vidaurre et al.,
2018). The latter have been suggested to underlie the former
(Baker et al., 2014), however they are inaccessible to sliding-
window FC and will thus not be discussed in detail hereafter.
The supra-second jump dynamics is also compatible with the
observation (within periods of concomitant strong intra-RSN
coupling and high RSN centrality) of a few core networks play-
ing in alternation, and swiftly shifting, the role of global brain
integrator (de Pasquale et al., 2012, 2016).

The concept of coupling synchrony differs from these aspects
and thus reveals novel properties of dynamic functional integra-
tion, but it is also compatible with the existing picture. We make
four general inferences about resting-state dynamics:

(i) Spontaneous brain activity is characterized by coordi-
nated coupling fluctuations around its RSN backbone.

(ii) These synchronized couplings reflect transition events be-
tween transiently synchronized networks.

(iii) Coupling synchronization is transient and covers large
cortical areas, especially in the β band.

(iv) Events of coupling synchronization outside the β band can
be longer lived, especially in the α band.

Inference (i) is based on the result that all modes of dynamic
coupling disclosed significant IC maps, i.e., they explained a
significant fraction of FC variance. This reveals that not only is
resting-state activity structured into RSNs, but its functional in-
teractions themselves are spontaneously organized into modes,
which may thus be viewed by analogy as “networks of cou-
plings” (O’Neill et al., 2015a). State analysis (Allen et al.,
2014; O’Neill et al., 2015b) could not lead directly to this obser-
vation since it is geared towards the detection of stable patterns
rather than their transition per se (because of the strict temporal
exclusion constraint).

Inference (ii) asserts that the coupling synchrony we uncov-
ered relates specifically to these FC state transitions. This is
inevitable if we take state models literally (since FC changes
can only occur at state jumps), but then they represent a sim-
plification of the underlying neural dynamics. Empirically too,
the spatio-temporal characterization of our modes depicts them
as transition processes between successive transiently synchro-
nized networks. Indeed, all the modes corresponded to transient
events of FC changes that were recurrent, aperiodic, and mostly
isolated, which fits with random state jumps (Allen et al., 2014).
They also involved both increases and decreases as may be ex-
pected for transitions reflecting the difference between two suc-
cessive states. Furthermore, in this context, the modes associ-
ated with preserved FC change sign can be interpreted as encod-
ing non-reversible state transitions (i.e., they are more likely to
occur in one direction than its opposite) and those with alternat-
ing sign, as reversible transitions. Therefore, our results are not
only compatible with the jump process theory of resting-state
dynamics but actually complements it. Still, this claim should
be taken with two provisos. First, our confirmation is not com-
pletely unbiased because our ICA seeked transient, temporally
sparse dynamics (see Calhoun et al., 2013; Daubechies et al.,
2009, for a discussion of this point in the context of fMRI). This
bias alone cannot explain the strongly transient character of our
modes (see below and Supplementary Methods S2) but, criti-
cally, it may render our analysis insensitive to possible modes
of dynamic coupling associated with less prominent temporal
sparsity. Second, further study is required to prove the link be-
tween modes of dynamic coupling and FC state transitions.

The association between modes of dynamic coupling and
transient FC events can also be validated with simulations. In
the Supplementary Results S4, we used synthetic MEG data
generated from a simple two-state system and identified a sin-
gle mode corresponding to their transition. It also fits well
within the framework of Deco et al. (2011) based on large-scale
neurocomputational models of the human connectome. Their
simulations suggested that resting-state activity is generated
by a near-critical, multistable system composed of attractors
corresponding to network configurations tightly constrained by
anatomy but destabilized by local, stochastic or chaotic fluctu-
ations within neural populations (Deco et al., 2009; Deco and
Jirsa, 2012; Hansen et al., 2015). This generates a metastable
dynamics characterized by fast transitions between attractors,
which we suggest are captured empirically by the modes of
dynamic coupling (the stable periods in between transitions
being presumably encoded in FC states, see, e.g., Hutchison
et al., 2013). Besides, our analysis indicates a mixture of re-
versible and non-reversible processes. It would be interesting
to confront this finding with computational models and see if
(non)reversibility is an emergent property of the human con-
nectome.

Inference (iii) refers to the fact that the modes of dynamic
coupling involved FC events that are short lived (less than 10 s)
and cover a substantial fraction of the cortex, and significantly
more so for the β-band modes. This preferential implication of
β activity agrees with its suggested role as a functional back-
ground facilitating long-range neural synchronization (Bressler
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and Richter, 2015; Kopell et al., 2000) and with the “statu-quo
signal” theory of Engel and Fries (2010) according to which
β activity maintains the current behavioral state, e.g., the ex-
ploratory state generated by metastability (Deco et al., 2011).
Accordingly, β-band FC appears to be the best (but not the only)
electrophysiological correlate of this functional exploration. In
fact, Deco and Corbetta (2011) proposed that this exploration
ensures responsiveness to future behavioral changes by retain-
ing active representations of possible stimuli or tasks built upon
past experiences. This led to two hypotheses that have been cor-
roborated specifically in the β band, i.e., resting-state FC pre-
dicts task performance (Mary et al., 2015) and resembles task-
positive FC in naturalistic paradigms (Betti et al., 2018). On
this ground, we propose to interpret the β-band modes of dy-
namic coupling as reflecting the exploration at rest of complex,
ecological activity patterns. Such a process would presumably
require the integration of neural activity within widespread cor-
tical areas. This also fits with the specific role played by the β
band in the theory of de Pasquale et al. (2016) whereby global
brain integration is sustained dynamically by a few core net-
works (the DMN, the SMN, and the bilateral FPN).

The tendency of β-band modes to exhibit shorter lifetimes
and wider coupling patterns does not preclude contributions
from the other bands to the functional exploration generated
by metastability. For instance, there is no reason to expect the
emergence of β rhythms only in the computational models of
Deco et al. (2011), although it would be interesting to see if re-
fined models (Hansen et al., 2015) could account for their spe-
cial role. Further, large-deviation events were highly transient
in all cases, which is indicative of metastability for the other
bands as well. Actually, the fact that lifetimes were close to the
lowest limit accessible to our sliding-window FC data suggests
to extend our findings to finer timescales. In any case, we hy-
pothesize that our functional interpretation above generalizes to
the other bands.

Still, our inference (iv) highlights a peculiarity of the other
bands and most prominently of the α band, namely, they ex-
hibit modes with slightly longer lived FC events (by a couple
of seconds, which is small compared to the timescale of our
FC data but was sufficient to generate significant band effects).
This suggests smoother state transitions that could reflect an in-
creased stability of some FC states. This hypothesis is in line
with, e.g., the proposed function of α rhythms for the top-down
modulation of attention, perception, and consciousness level
(Jensen et al., 2012; Klimesch, 2012) and that of θ rhythms for
memory (Colgin, 2013; Klimesch et al., 2010). Indeed, state
stabilisation occurs when the brain departs from its exploratory
state and is engaged into cognitive processes (Deco and Cor-
betta, 2011). As attentional or perceptual drifts happen, we
may thus expect certain FC states (i.e., the transiently synchro-
nized networks that support such function) to partially stabilize.
Based on this, we surmise that some non-β-band modes (specif-
ically, those exhibiting higher kurtosis or longer lifetimes than
the β-band modes) correspond to spontaneous drifts in men-
tation and the others, to the aforementioned functional explo-
ration of metastable states.

That said, these hypotheses remain to be confirmed in behav-

iorally controlled experiments. Further, it would be interesting
to generalize our analysis using a data-driven frequency band
selection, as done in Vidaurre et al. (2018).

4.3. Functional integration of the default-mode network
So far, our interpretations of spontaneous coupling syn-

chrony were not tied up to RSNs. The DMN stood out when
we analyzed the relationship between coupling synchrony and
cross-network integration. We make two inferences specifically
involving the DMN:

(v) The DMN is a core network specialized in the transient
integration with other RSNs.

(vi) Several RSNs compete to bind with the DMN.

Inference (v) is based on our observation that the large ma-
jority of DMN modes involved cross-network couplings. Some
modes derived from the other RSNs shared this feature but
many others did not. So the DMN appeared as the sole RSN
that is systematically bound to other RSNs, which presumably
endows it with a central role in the functional exploration gen-
erated by metastability.

This property specific to the DMN has, to our knowledge,
never been emphasized. It is closely related to the core network
theory of de Pasquale et al. (2016) that highlights the DMN as
a global brain integrator, at least half of the time and mostly in
the β band. In fact, the alternating dynamics of core networks
was partially reflected in our data. Indeed, the variety of cross
DMN-RSN couplings appeared widespread among the β-band
modes, with significant occurrence of all RSNs (in opposition
to the α-band modes). The highest occurrence rates across β-
band modes spotted the two other core networks identified by
de Pasquale et al. (2016), i.e., the SMN and the r/lFPN (com-
bining both FPNs, the rate for the bilateral FPN even reached
60%), as well as the VmN. The emergence of these two core
networks may be explained by the fact that their high-centrality
periods must overlap (as each spends 40–50% of their time as
hub, de Pasquale et al., 2016), increasing their likelihood to
participate in β-band cross-network integration. On the other
hand, the substantial involvement of DMN-VmN couplings and
the lesser involvement of intra-DMN couplings may seem con-
tradictory, as the VN is not part of the core networks and high
DMN centrality periods overlap with strong intra-DMN FC pe-
riods (de Pasquale et al., 2016). Sill, given the difficulty with
MEG to discriminate the PCC part of the DMN and the VmN,
it may be that the DMN-VmN couplings reflect intra-DMN in-
tegration instead. One additional possible inconsistency is that
neither the SMN nor the FPNs emerged from our data as the
DMN did. Further work is needed to clarify this point.

Inference (vi) rests on our finding that a large majority of
DMN modes involved a dynamical competition among cross
DMN-RSN couplings. In fact, competition was not limited to
the DMN and emerged with other RSNs too (although some-
what less consistently). This property fits well with the func-
tional interpretation of metastability as a spontaneous compe-
tition among RSNs for the allocation of neural resources and
optimum processing of future sensory, motor, or cognitive de-
mands (Deco and Corbetta, 2011). Our data bring two major
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inputs to this hypothesis. First, this competition emerges pre-
dominantly (but not solely) at the level of DMN-RSN integra-
tion. Second, it was observable at the short timescale of dy-
namic FC but not in static FC (see Supplementary Results S1),
which makes sense as cross-network integration is transient by
nature. This last observation contrasts with fMRI studies iden-
tifying negative static FC between the DMN and the bilateral
FPN (Fox et al., 2005), but they are in line with others (see,
e.g., Smith et al., 2009) as well as all MEG-based RSN studies
(see, e.g., de Pasquale et al., 2010, for a discussion). Actually,
detecting this anticorrelation requires a global signal regression
(Fox et al., 2009) that was not used here. So we cannot exclude
the existence of static RSN competition, but it is presumably
subtler.

Functionally speaking, competitive cross DMN-RSN in-
tegration may play a major role in the main functions of
the DMN, i.e., inner-directed cognition (e.g., spontaneous
thoughts, mind wandering, or the mentation of past or hypothet-
ical events, see, e.g., Buckner et al., 2008) and conscious aware-
ness (Baars et al., 2003; Giacino et al., 2014). In this respect,
the α-band DMN modes may be particularly informative, given
their putative relation with spontaneous drifts in mentation. We
speculate that the associated FC changes enable the neural com-
munication between the DMN and other RSNs needed for, e.g.,
motor (DMN-SMN coupling), auditory (DMN-AN), or visual
(DMN-Vm/lN) imagery. It is noteworthy that DMN-SMN and
DMN-Vm/lN interactions stood out as those occurring the most
among the α-band modes, usually in competition (see Supple-
mentary Results S2). This hints at a possible predominance at
rest of a cognitive alternation between motor and visual men-
tations. Also of interest is the complete absence of DMN-VoN
coupling, which is in line with data suggesting that the primary
visual cortex is not necessary for visual imagery (de Gelder
et al., 2015). This appears plausible as no direct retinal stim-
ulation is involved, but this remains a matter of debate (see,
e.g., Pearson et al., 2015).

4.4. Methodological considerations

Our analysis pipeline (Fig. 1) was split into two separate
main steps: (i) an ICA of dynamic FC data to identify spatio-
temporal patterns of synchrony among brain couplings, and (ii)
network mixture modeling for their classification in terms of
cross-network integration and dynamical competition.

A general issue with dynamic FC is that short-time corre-
lations are affected by large random estimation errors, leading
to difficulties in distinguishing genuine dynamics from statisti-
cal variability (Hindriks et al., 2016). One question about our
ICA is thus whether the decomposition into modes was driven
by FC noise rather than coupling synchronization. This was
not the case because the likelihood that the distribution of ex-
cess kurtosis across our modes (which were all significantly
positive) emerges from correlation errors only, was extremely
small (p < 10−7 based on numerical estimates). In fact, ICA
entailed a reduction of FC noise because the modes disclosed
large patterns of coupling synchrony that cannot be explained
by correlation errors (which do not exhibit spatial coordination

beyond the intrinsic blurriness of MEG FC), so that their con-
tribution within each mode averaged out. These two analytical
arguments are developed fully in the Supplementary Methods
S2 and S3. The ability of our ICA to detect coupling synchrony
among noisy dynamic FC data is also illustrated in the simu-
lation reported in the Supplementary Results S4. Finally, note
that the seminal study of O’Neill et al. (2017b) provided a proof
of concept as they used a similar ICA of sliding-window cor-
relations to identify task-related transiently synchronized net-
works, which appeared meaningful in view of the brain pro-
cesses expected in their experimental design.

Another general confound of dynamic FC is that variations in
sliding-window correlations could be driven by transient mod-
ulations of local activity (i.e., power changes) rather than cou-
plings per se. We show in the Supplementary Results S5 that
sliding-window power estimates (with sLORETA for depth bias
correction, see Pascual-Marqui, 2002) only poorly correlated
with the IC time series (absolute Pearson correlations below
0.03 across all modes, RSNs, and frequency bands) and thus
could not explain the spatio-temporal features of the modes.
A similar analysis focusing on high-frequency power also con-
firmed that our results were not driven by muscle artifacts.

Yet another difficulty of our ICA of resting-state FC (i.e.,
without task or stimulation onset) is the subjective selection of
relevant ICs, e.g., by visual inspection of their maps. Here, net-
work mixture models allowed us to classify them objectively
as linear superpositions of fMRI RSN templates. The validity
of using static fMRI as reference for MEG dynamic FC is ob-
viously debatable. The benefit is that fMRI provides clear-cut
RSN atlases, which have guided both the design (de Pasquale
et al., 2010, 2012, 2016; Sockeel et al., 2016) and the interpre-
tation (Brookes et al., 2011; Liu et al., 2017) of MEG/EEG FC
analyses. Resting-state fMRI atlases are also used as functional
brain parcellations in MEG studies (see, e.g., Vidaurre et al.,
2018). The standard and reproductible character of fMRI RSNs
is a crucial aspect because the ensuing interpretations are tied
up to the choice of templates. Of note, the RSN atlas of Smith
et al. (2009) miss a couple of known systems, e.g., the ventral
attentional and the language networks. This might a priori in-
cur a lack of classification sensitivity for these two RSNs, but
this is presumably mitigated by the fact that they have been
scarcely disclosed with MEG resting-state FC. A more fun-
damental drawback lies in the different nature of the signals,
the distinct spatial and temporal resolutions, and in the usage
of static RSNs. So our mixture models should not be over-
interpreted as genuine models of dynamic integration. They
merely provide a crude approximation, but one that still allowed
detection of several cross-network coupling patterns. We re-
ported a lessened sensitivity to patterns involving sub-networks
(our prototype was the mode α20, Fig. 2 right) but this issue
appeared relatively limited and only a few modes were totally
misclassified (see Supplementary Results S2). This is because
spatial correlation between a full RSN and a sub-network map
may be sensitive to their partial overlap. We also noted a re-
stricted specificity related to the intrinsic blurriness of MEG
FC rather than to the use of fMRI templates.

Technically, we constructed the mixture models using GLM
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weights, which provide a multivariate measure of maps corre-
lations. However, their values must be interpreted cautiously.
First, effect sizes are strongly inflated if maps autocorrelation
(dominated by MEG spatial leakage) is not controlled. That is
why we considered standardized weights wherein the reduction
in spatial degrees of freedom was built in (see Supplementary
Methods S4). Second, cross-correlations among GLM regres-
sors lead to various suppression effects, which are beneficial
to the GLM as a whole but may render individual weight val-
ues ambiguous (Watson et al., 2013). Specifically, cross-over
suppression entails a magnitude boost of some weights while
dampening or even reversing the sign of others (Watson et al.,
2013). In particular, the sign-reversal possibility challenges the
validity of our novel dynamical competition test. However,
there is no such issue in our case because the RSN templates
were weakly correlated (absolute value of pairwise Pearson cor-
relations: 0.04±0.02) so our GLM design was well conditioned
(see Supplementary Methods S5 and Supplementary Results S6
for full justification). Actually, this provides another argument
for using a fMRI-based RSN atlas in our mixture models. Last,
we emphasize that GLMs do not provide causal information
(Weichwald et al., 2015). So mixture models cannot inform
us on whether superpositions of static RSNs underlie modes
of dynamic coupling, whether these modes generate RSNs, or
whether both have a common factor (e.g., hidden brain states or
metastable attractors).

Despite its limitations, some of which may hopefully be over-
come in future developments, our current approach allowed to
uncover new features of the metastable resting-state dynamics
and the specialized function of the DMN for dynamic cross-
network integration. It could also come in handy to reveal the
impact of behavioral manipulations or brain disorders on the
intrinsic functional organization of the human brain.
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Supplementary Methods

S1. More on the independent component analysis to identify
modes of dynamic couplings

We provide here further background on our use of ICA to
disclose modes of dynamic couplings from sliding-window FC.
From an abstract perspective, the problem of identifying syn-
chronization patterns among dynamic FC data can be viewed
as a “metaconnectivity” analysis, i.e., a connectivity analysis of
connectivity values. Considering the analogy with usual FC,
two natural options emerge: using a seed-based-like approach
(wherein temporal correlations of FC time series would be es-
timated between a chosen “seed” connection and all other con-
nections) or an ICA. Here, we focused on the latter choice for
several reasons.

First, ICA is more sensitive to the detection of coupling syn-
chrony, which may be hard to identify via direct temporal corre-
lations because of its complex, transient nature (this observation
motivated, e.g., the maximum correlation window approach in
de Pasquale et al., 2010). On the other hand, ICA relies on a lin-
ear decomposition into modes of dynamic FC with maximally
independent (hence asynchronous) temporal variations, so that
one mode of dynamic coupling gets by design concentrated into
a single IC. In fact, the typical ICA algorithms being based on
the maximization of non-gaussianity indices closely related to
excess kurtosis (Hyvärinen and Oja, 2000), they promote tem-
porally sparse ICs rather than independence per se (Calhoun
et al., 2013; Daubechies et al., 2009). The ICA is thus biased
towards the detection of modes of dynamic couplings driven by
transient FC synchronization events. One noteworthy conse-
quence of this bias is that modes associated with Gaussian or
thin-tailed temporal processes are missed altogether by ICA.

The spatial leakage effect affecting FC (Brookes et al.,
2012b; Wens, 2015; Wens et al., 2015) also represents a dif-
ficulty for the seed-based-like option, because it is bound to
induce spurious temporal correlations among dynamic FC es-
timates with substantial spatial extent. In the absence of prin-
cipled correction methods for such “connectivity-level spatial
leakage”, ICA represents a better choice since it is less prone to
this issue, as noted in Brookes et al. (2011).

Finally, the seed-based-like approach would require the prior
selection of one or a few connections of interest. Given that
this is the first study investigating patterns of coupling syn-
chrony at rest and in the absence of specific expectations on
which functional connections would be involved, we favored
the data-driven framework provided by ICA.

S2. Distribution of modes kurtosis without coupling synchrony
A serious challenge for dynamic FC analysis is the large sta-

tistical variability in short-time correlation estimates, which can
be misinterpreted as dynamics (Hindriks et al., 2016). For ex-
ample, our FC data contained 20 time samples per window
so the SD due to FC estimation errors was of the order of
1/
√

20 − 3 ≈ 0.24, which is considerable. In this section and
the next, we argue that our ICA was not dominated by FC noise
and justify the validity of our results. A simulation-based proof
of concept is also developed in the Supplementary Results S4.
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Figure S1: Kurtosis for correlation noise ICs. The plot depicts the distribution
of kurtosis across 20 ICs (blue bins: mean, red bars: SD, red dots: samples)
obtained from correlation noise data generated with ω = 5, 10, 15, and 20
temporal degrees of freedom within windows (left). For comparison, the dis-
tributions obtained from the modes of dynamic coupling for the DMN in the α
and the β bands (see also Fig. S9, middle) are shown (right).

Our first evidence is based on the strongly positive excess
kurtosis of the modes of dynamic coupling. We estimate here
numerically the distribution of IC kurtosis obtained from an
ICA of correlation errors and show its incompatibility with our
data (Fig. S1).

The distributions in Fig. S1 (left) were obtained by modeling
correlation noise as a random variable whose Fisher transform
follows a Gaussian with zero mean and SD 1/

√
ω − 3. Here,

ω denotes the number of temporal within-window degrees of
freedom used in correlation estimates. In our case, ω ≤ 20 (2
Hz-envelope signals within 10 s-long windows) so we probed
ω = 5, 10, 15, and 20. We randomly generated FC noise data
with similar numbers of spatial and temporal degrees of free-
dom than in our analysis (i.e., 50 independent FC time series
corresponding to our pre-ICA dimension reduction, each with
ν independent samples corresponding to the effective number
of non-overlapping windows) and applied the same ICA (non-
linearity tanh and 20 ICs to compute). This procedure was re-
peated 100 times.

Figure S1 shows that, for all considered ω, the IC kurtosis
was smaller in FC noise than in the FC data (Fig. S1, right;
p < 10−7 when comparing to the α- and the β-band DMN
modes, Wilcoxon rank tests). We also observe in Fig. S1 (left)
that IC kurtosis was below 3 for ω ≤ 15. This reflects that fact
that correlation noise is characterized by negative excess kur-
tosis (its kurtosis being less than 2.65 for ω ≤ 20), although
ICA entails an overestimation due to its bias towards positive
excess kurtosis. What Fig. S1 illustrates is that this bias is not
sufficient to explain the high IC kurtosis observed in the modes
of dynamic coupling, justifying that they are not driven by FC
noise and that their transient character is genuine.

S3. Error analysis for the modes of dynamic coupling

The preceding argument justifies that our ICA of dynamic
FC was not driven by the substantial FC noise but does not ex-
plain how its contribution was reduced within ICs. The basic
reason is that ICA looks for coordinated signals among the FC
data, whereas correlation errors do not covary beyond what is
entailed by spatial leakage. We develop here the argument an-
alytically and estimate the effect of FC noise on IC time series

and IC maps. We show that ICA approximates well the tempo-
ral and spatial features of the true modes. To our knowledge,
the following development is not available in the literature.

Preliminaries on the ICA model. We start from the assump-
tion that the standardized FC time series Z are genuine lin-
ear combinations of M temporally independent modes, i.e.,
Z(t) =

∑M
m=1 Am S m(t) + ε(t). Here, t indexes the sliding win-

dows, Am and S m(t) denote the spatial pattern and time series
of the mth mode, and ε(t) represents correlation noise. Without
loss of generality, we may choose the Am to be linearly inde-
pendent and the S m(t) to have unit variance. To understand how
noise affects their estimability, it is useful to express correlation
errors as

ε =
∑M

m=1 Am εm + ε⊥ with AT
m ε⊥ = 0 , (1)

so that Z(t) =
∑M

m=1 Am Ŝ m(t) + ε⊥(t) with

Ŝ m(t) = S m(t) + εm(t) . (2)

We thus find that ICA algorithms such as FastICA cannot de-
termine the time series S m(t) but only the noisy version (2).

The associated spatial pattern Am is then estimated from the
data Z by linear regression of Ŝ m(t) (Hyvärinen and Oja, 2000),
i.e., Âm = Cov(Z, Ŝ m)/Var(Ŝ m). Using the independence of the
modes and correlation noise, we find

Âm =
Am + Cov

(
ε, εm

)
Var

(
Ŝ m

) . (3)

The IC time series and IC maps considered in the main text
correspond to the estimates (2) and (3), up to an irrelevant nor-
malization factor.

Covariance structure of correlation noise. For the next point,
we need to evaluate the size of the noise contributions in equa-
tions (2) and (3), i.e., the variance Var(εm) of the projected
noise εm and its covariance Cov(ε, εm) with ε. For notational
convenience, let us represent the Am and ε(t) as D × 1 vectors
(D = S N, i.e., S seeds × N = 13229 sources) and gather the
former into a D × M matrix A. It follows from the decomposi-
tion (1) that εm = [(AT A)−1 AT]m ε, so we have

Var(εm) =
[
(AT A)−1 AT Cov

(
ε, εT) A(AT A)−1]

m,m (4)

and
Cov(ε, εm) = Cov

(
ε, εT) [A(AT A)−1]

m . (5)

We discuss first the D × D covariance Cov(ε, εT) of correla-
tion errors. Because of the geometric structure of spatial leak-
age in MNE (Wens et al., 2015), correlation noise is restricted
to the d-dimensional subspace where the d = S ρ spatial de-
grees of freedom live and contributes homogeneously to each
of them. This is expressed as

Cov
(
ε, εT) = σ2 P , (6)

where P denotes the projection matrix onto this subspace and
σ2, the variance of (standardized) correlation noise. Further-
more, in our context where only leaky reconstructions are ac-
cessible, we may assume that the Am also belong to this sub-
space, i.e., PAm = Am. This means that the projector P
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can effectively be replaced by the identity when plugging (6)
into (4) and (5). Consequently, the variance (4) simplifies to
σ2[(AT A)−1]m,m and the covariance (5), to σ2[A(AT A)−1]m.

Error estimates. Using this to evaluate the estimation errors in
the IC time series (2) and the IC spatial maps (3), we find

Var
(
Ŝ m

)
= Var(S m) + Var(εm) = 1 + σ2 [

(AT A)−1]
m,m (7)

and

Âm = Am +
σ2 ∑

n,m
[
(AT A)−1]

n,m An

1 + σ2 [
(AT A)−1]

m,m

. (8)

The contribution of correlation noise is modulated by the en-
tries of the matrix (AT A)−1. We can estimate them crudely by
noting that, generically, the diagonal entries of AT A scale as d
(because the Am live in a subspace of dimension d) and its off-
diagonal entries, as

√
d due to sign cancellations expected from

dynamical competition. Assuming d � 1, it follows that the
diagonal and off-diagonal entries of (AT A)−1 scale respectively
as 1/d and (1/d)3/2. On this basis, we find at first approximation

Var
(
Ŝ m

)
= 1 + O

(
σ2/d

)
(9)

and
Âm = Am

[
1 + O

(
σ2
√

M − 1/d3/2
)]
. (10)

In the last equation, the extra factor
√

M − 1 comes from the
linear sum over M − 1 terms in equation (8).

Numerically, in our case we had ρ = 46 so d = 184 when
S = 4 and d = 92 when S = 2, which is large enough for
the above estimates to hold. Further, since we applied ICA to
standardized FC data, σ2 actually represents the noise variance
after standardization so it is bounded by one. Also, the linear
independence of the Am imposes M ≤ d. We conclude that, in
the worst case, the contribution of FC noise to the IC temporal
variance and IC maps was of the order of 1/d = 0.5% when
S = 4 and 1% when S = 2. This establishes our claim that IC
time series and IC maps are good approximations.

Consistency with data. We further check the consistency of
these estimates with the observed IC time series and IC maps.
For illustrative purposes, we focus on the modes of the DMN in
the α and the β bands. Figure S2 plots the relative error matrix

[(
ÂT Â

)−1
]
n,m

√
ÂT

n Ân

ÂT
m Âm

. (11)

The diagonal entries [(ÂT Â)−1]m,m approximate the relative er-
ror term [(AT A)−1]m,m in the IC time series (see equation 7).
They were all below 0.6%, which is comparable to our analyti-
cal estimate. Likewise, the off-diagonal entries approximately
measure (the norm of) each of the M−1 contributions to the rel-
ative error in the IC spatial maps (see equation 8). They were
all below 0.2%.

Interestingly, Fig. S2 indicates that errors in the β band
tended to be smaller than in the α band. This relates to the
fact that β-band IC maps tended to be more extended spatially
(see Fig. 3, top right).

Figure S2: Relative error estimates for the modes of dynamic coupling (DMN, α
and β bands). The relative error matrix (11) estimated from the IC maps shown
in Figs. S10 and S11 is depicted for both the α (left) and the β bands (right).
The diagonal elements approximate the relative contribution of FC noise to the
variance of the IC time series and the off-diagonal elements, the relative error
on the IC maps.

Figure S3: Good conditioning of the GLM design. The plot of the matrix XXT

(here normalized by the number N of sources) shows that it was dominated by
its diagonal entries, so its inversion was stable. Correspondingly, the condition
number κ of XXT (i.e., the ratio of its largest and smallest eigenvalues) was of
order one (precisely, κ = 3.15).

S4. Spatial general linear modeling
We describe here in more detail the spatial GLM applied to

the raw IC maps associated to the M = 20 modes of dynamic
coupling and the S seeds (see Table 1 in the main text). The
regressors correspond to the R = 9 template RSN maps. We
represent all maps as 1 × N row vectors, where N = 13229
corresponds to the number of cortical sources.

If Ym,s denotes the Fisher-transformed raw IC map for the
mode m (1 ≤ m ≤ M) and seed s (1 ≤ s ≤ S ) and if X denotes
the R × N design matrix whose R rows represent the template
RSN maps, then we modeled Ym,s as the linear combination

Ymodel
m,s = βm,sX with βm,s = Ym,sXT(XXT)−1

, (12)

i.e., with the 1×R weights βm,s estimated via least-squares min-
imization (Friston et al., 2007). In our specific case, the matrix
XXT was full rank so its inversion was performed without reg-
ularization (Fig. S3).

Fundamental to statistical inference on these GLMs is the
R×R sample covariance matrix of the weights βm,s. Taking into
account the fact that the number of spatial degrees of freedom
is ρ � N (because of the smoothness of these maps, see Wens
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et al., 2015), the sample covariance was taken as

Σm,s = S2
m,s

(
XXT)−1

, (13)

where

S2
m,s =

Ym,s
[
1N×N − XT(XXT)−1X

]
YT

m,s

ρ − R
(14)

is an estimator of the true regression error variance σ2
m,s. The

central formulas (13) and (14) can be derived by revisiting the
classical theory of GLMs (see, e.g., Friston et al., 2007) us-
ing the noise covariance structure (6) with d = ρ. The vari-
ables Ym,s and X are approximately Gaussian, as Ym,s contains
Fisher-transformed correlation values and X contains z scores
(Smith et al., 2009). Therefore, the weights βm,s were consid-
ered Gaussian with true population mean µm,s and, in a fixed-
effect design, with true covariance σ2

m,s
(
XXT)−1.

In this framework, the model significance F tests for each
mode m and seed s were established using the goodness-of-fit
statistic

Fm,s = 1
R βm,s Σ

−1
m,s β

T
m,s , (15)

which follows the FR,ρ−R distribution under the multivariate null
hypothesis µm,s = 0 that all R weights are zero, i.e., no linear
mixture of the template RSNs explains the associated raw IC
map (Friston et al., 2007). The univariate weight significance t
tests for each mode m, seed s, and template r (1 ≤ r ≤ R) were
based on the standarized version

Tm,s,r =

(
βm,s

)
r√(

Σm,s
)
r,r

(16)

of the weights (the subscript indicating that the rth component
is taken). This statistic follows Student’s tρ−R distribution under
the univariate null hypothesis

(
µm,s

)
r = 0 that this weight van-

ishes, i.e., zero partial correlation between the associated raw
IC map and the rth template RSN map (Friston et al., 2007).

Finally, the nested models comparison F tests used to dis-
close RSN competition was based on the statistic

Gm,s = 1
Cm,s

(
βm,s Σ

−1
m,s β

T
m,s − β̃m,s Σ

−1
m,s β̃

T
m,s

)
, (17)

which measures the gain in goodness-of-fit when using the orig-
inal rather than the sign-constrained model. Here, β̃m,s denotes
the weights of the constrained GLM and Cm,s, the number of
those weights that vanish (0 ≤ Cm,s ≤ R). These quantities are
detailed in the dedicated section S7. The statistic (17) follows
the FCm,s,ρ−R distribution under the null hypothesis that the two
models have similar explanatory power (Friston et al., 2007). It
is ill-defined whenever the unconstrained GLM does satisfy the
sign condition, since then βm,s = β̃m,s and Cm,s = 0. Further
justification for this dynamical competition test is provided in
section S6.

S5. Interpretability of weights in well-conditioned general lin-
ear models

Cross-correlations among regressors lead to suppression ef-
fects that may obfuscate the direct meaning of GLM weights

magnitude and sign (Watson et al., 2013), leading to possible is-
sues in interpreting results of network mixture models and their
dynamical competition test. We review here why there are no
such ambiguities in our well-conditioned design (see Fig. S3).

For illustrative purposes, let us consider a toy example where
Ym,s is genuinely a linear superposition of R maps X with true
weights µm,s and an additive noise εm,s, i.e.,

Ym,s = µm,sX + εm,s . (18)

For conciseness, we shall assume that the regressors used in the
GLM estimation (12) are correctly identified, so

βm,s = µm,s + εm,sXT(XXT)−1
. (19)

Therefore, in the case where XXT is invertible (and only in this
case), GLM estimation is unbiased and each weight (βm,s)r co-
incides with the true value (µm,s)r up to a random error of order√

(Σm,s)r,r (i.e., the SD of the projected noise contribution, see
equations 13 and 14). This leads to two interpretation rules for
GLM weights:

(i) Their magnitude must always be considered with regard
to the estimated error, or equivalently to their effect size
as measured by the normalized weights (16).

(ii) Their sign correctly identifies the true weight sign at large
effect sizes but are more prone to be randomly flipped by
projected noise at small effect sizes.

In ill-conditioned cases, the matrix inversion in equation (19)
is unstable in some directions and effectively blows up the pro-
jected noise for the weights comprised in these directions. So
the GLM is contaminated by false negatives (small effect size
and random sign), although this problem can be alleviated by
proper regularization. In any case, it is noteworthy that the rule
(ii) still works to identify the interpretable signs.

Because it is key in our analysis of dynamical competition
(see next section), we further justify the sign rule (ii) with a
zero-order correlation analysis (see Supplementary Results S6).

S6. Rationale for the dynamical competition test
The sign rule (ii) of section S5 is a key element of the ra-

tionale behind the dynamical competition test. Goodness-of-
fit measures such as (15) are dominated by the weights with
large effect size, and are thus mostly sensitive to the inter-
pretable weight signs and relatively impervious to the random
weight signs. Therefore, the sign constraint causes a substan-
tial goodness-of-fit change (17) when it affects some of the in-
terpretable signs, but a small change when only random signs
are involved.

More specifically, consider first a non-competitive situation
where all nonzero true weights have identical sign. All large
effect-size weights share this sign by (ii) and the constraint will
mainly affect the small effect-size weights (to keep the total sum
of squared errors close to the unconstrained minimum). The
constrained and unconstrained GLMs will thus be comparable,
likely resulting in a nonsignificant test. Alternatively, in a com-
petitive situation, the sign of some large effect-size weights will
be forced to change, leading to substantially different GLMs
and a likely significant test.
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S7. Solution of sign-constrained general linear models
The sign-constrained mixture model for the mth mode of dy-

namic coupling was obtained by finding the set of GLM coeffi-
cients β̃m,s (1 ≤ s ≤ S ) that minimizes the total sum of squared
errors (as in the unconstrained case) given that the weights sign
is fixed to εm across all 1 ≤ r ≤ R and 1 ≤ s ≤ S , i.e.,
εm

(
β̃m,s

)
r ≥ 0. This problem was solved for εm = + and εm = −

separately, and the sign yielding the least total sum of squared
errors was then selected.

In each case, we approached the solution using a projected
gradient descent algorithm. Explicitly, successive approxima-
tions β̃(N)

m,s were built iteratively for N = 1, 2, . . . using(
β̃

(N)
m,s

)
r

= εm

∣∣∣∣ (β̃(N−1)
m,s

)
r
− τ

Λ

[(
β̃

(N−1)
m,s X − Ym,s

)
XT

]
r

∣∣∣∣ , (20)

where Λ denotes the maximum eigenvalue of XXT. This cor-
responds to an unconstrained gradient descent with step size τ
together with a projection enforcing the sign constraint on each
iterate. The convergence analysis of this sequence is developed
in section S8. Global convergence (i.e., for arbitrary initial con-
ditions β̃(0)

m,s) is ensured for any 0 < τ < 2. The limit as N → ∞
does not coincide with the exact solution but their difference
scales with the step size τ, so this projected gradient descent
required τ � 1. The algorithm was stopped once the Euclidean
norm

∣∣∣∣∣∣β̃(N)
m,s−β̃

(N−1)
m,s

∣∣∣∣∣∣ of the N th step reached below a pre-defined
constant δ controlling the precision of the convergence. In the
context of statistical inference, a natural scale for δ is the mini-
mum SD of the GLM weights distribution.

In practice, we defined β̃(0)
m,s using

(
β̃

(0)
m,s

)
r

= εm

∣∣∣(βm,s
)
r

∣∣∣ and
we set

τ = 10−2 , δ = 10−3 min
m,s,r

√(
Σm,s

)
r,r . (21)

Given such small step size and precision parameters, the ap-
proximation β̃

(N)
m,s was fairly close to the exact solution β̃m,s.

However, the latter could also be derived analytically by ob-
serving that it must contain a number Cm,s > 0 of zero weights
(unless the unconstrained solution does satisfy the sign condi-
tion). A consequence of the convergence analysis in section S8
is that the vanishing weights can be identified unambiguously
using the numerical criterion that

(
β̃m,s

)
r

= 0 if and only if

∣∣∣∣∣∣∣∣
2Λ

(
β̃

(N)
m,s

)
r[(

β̃
(N)
m,sX − Ym,s

)
XT

]
r

∣∣∣∣∣∣∣∣ < 1 . (22)

On this basis, the exact solution could then be written as

β̃m,s = Ym,sX̃T(X̃X̃T)+
, (23)

where X̃ denotes a modified design matrix whose Cm,s rows
corresponding to the zero weights

(
β̃m,s

)
r = 0 are set to zero

and the superscript + indicates pseudoinversion.

S8. Convergence analysis of the projected gradient descent
For completeness, we justify mathematically the algorithm

(20) and the zero-weight criterion (22) used to solve the sign-
constrained GLM. To simplify notations, we drop the subscripts

m, s and the tilde symbol so we use the 1 × R weight variable β
with components βr. Each step of the iterative scheme (20) can
thus be written as β→ β′ with

β′r = ε
∣∣∣( f (β)

)
r

∣∣∣ , (24a)

f (β) = β − τ
Λ

(βX − Y)XT . (24b)

Here, ε is a fixed sign, the step size τ is a scalar, X is a R × N
matrix, Λ > 0 is the maximum eigenvalue of XXT, and Y is a
1 × N row vector. We demonstrate that

(i) any sequence β → β′ → β′′ → . . . (i.e., for any initial
condition) converges towards a unique weight configura-
tion β∗ when 0 < τ < 2, and

(ii) the limit β∗ obtained at fixed τ > 0 tends to the solution
(23) of the sign-constrained GLM when τ→ 0.

For the part (i), we show that the function β→ β′ is contract-
ing, i.e., for any pair of weights β1, β2,

||β′1 − β
′
2|| ≤ ` ||β1 − β2|| with ` < 1 . (25)

This claim is an adaptation of Lemma 3 in Jung (2017) to our
sign-projected case. We start from the elementary observation
that (ε|a|− ε|b|)2 = (|a|− |b|)2 ≤ (a−b)2, so using equation (24a)(

β′1 r − β
′
2 r

)2
≤

[(
f (β1)

)
r −

(
f (β2)

)
r
]2
. (26)

Summing over r, taking the square root, and using the definition
(24b) then leads to

||β′1 − β
′
2|| ≤ || f (β1) − f (β2)|| =

∣∣∣∣∣∣(β1 − β2
)(

1 − τ
Λ

XXT)∣∣∣∣∣∣ . (27)

The last term is bounded by ` ||β1 − β2||, where ` is the absolute
value of the largest-magnitude eigenvalue of the R × R matrix
1− τ

Λ
XXT. Its extreme eigenvalues being 1−τ and 1−τ/κ (with

κ ≥ 1 denoting the condition number of XXT, see also Fig. S3),
we find

` = max
{
|1 − τ| , |1 − τ/κ|

}
. (28)

The contraction property (25) is thus verified if ` < 1, which re-
quires 0 < τ < 2. It then follows from the contraction mapping
theorem (see, e.g., Lemma 2 in Jung, 2017) that any sequence
β → β′ → β′′ → . . . converges to the unique fixed point β∗ of
the iterate β→ β′.

To prove the part (ii), we solve explicitly the fixed-point
equations β∗r = ε

∣∣∣( f (β∗)
)
r

∣∣∣. Using the definition (24b), we have

β∗r = ±
(
β∗r −

τ
Λ

[
(β∗X − Y)XT]

r

)
(29)

with the sign chosen to ensure the constraint ε β∗r ≥ 0. Thus[
(β∗X − Y)XT]

r = 0 for the + sign, (30a)

2β∗r = τ
Λ

[
(β∗X − Y)XT]

r for the − sign. (30b)

When τ→ 0, we find that either
[
(β∗X − Y)XT]

r = 0 or β∗r = 0,
which corresponds to the solution (23).

For small but nonzero step size 0 < τ � 1, the fixed point
differs slightly from the exact solution because the would-be
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Figure S4: Illustration of the separation of scales principle. The histogram
depicts the distribution of ratios (31) for the weights obtained from the projected
gradient descent algorithm (20, 21) across all the DMN modes m, seeds s, and
components r in the α and the β bands. A base-10 logarithmic scale is used on
the ratio axis. The values below one are concentrated around τ = 10−2 (green
bin) and those above one spread over a large range (blue bins). The gap between
them is emphasized by a red double-headed arrow.

zero weights are of order τ (equation 30b). These can be iden-
tified unambiguously by considering the expression∣∣∣∣∣∣ 2Λβr[

(βX − Y)XT]
r

∣∣∣∣∣∣ (31)

used in the criterion (22). At the fixed point β = β∗, this ra-
tio is infinite for the components corresponding to the nonzero
weights (equation 30a) and equals to τ for the approximately
zero weights (equation 30b). For a sufficiently accurate approx-
imation such as β = β̃

(N)
m,s, this ratio is proportional to 1/δ � 1

(where δ measures the convergence precision, see equation 21)
in the former case and to the step size τ � 1 in the latter case.
In other words, the distribution of values for the expression (31)
must exhibit a substantial gap around one. In our data, this gap
spanned about four orders of magnitude (see Fig. S4). This sep-
aration of scales justifies the zero-weight criterion (22).

Supplementary Results

S1. Application to static α- and β-band connectivity
To test our network mixture model paradigm and illustrate

the dynamical nature of the RSN competition discussed in the
main text, we examined the static FC maps using an ICA simi-
lar to that used to identify modes of dynamic coupling, and then
applied network mixture modeling to disclose ICs correspond-
ing statistically to RSN templates.

To derive static FC maps in the α and the β bands, we ap-
plied a group ICA to temporally concatenated individual source
Hilbert envelope time series (low-pass filtered to 2 Hz and stan-
dardized to zero mean and unit variance for each subject sepa-
rately) using FastICA with parameters published previously for
MEG-based ICA investigations of RSNs (Brookes et al., 2011;
Wens et al., 2014b), i.e., dimension reduction to the 25 first
principal components, nonlinearity tanh, and number of com-
ponents to compute set to 20. Of note, the dimension reduction
discarded about 50% of envelope data variance, a fact that was

used in the main text to set the dimension reduction parameter
for dynamic FC data. The IC maps were then derived by means
of temporal correlation between the source envelope and each
IC time series and further statistically thresholded as done for
the modes of dynamic coupling.

To classify IC maps automatically, we applied network mix-
ture modeling to this case. Of note, there is only one map
per IC so each mixture model is actually equivalent to a sin-
gle spatial GLM. Although the multivariate setup was designed
specifically to investigate linear superpositions of several RSN
templates in dynamic FC, we naturally expected the resulting
classification to associate IC maps to no more than one RSN.

Figures S5 (α band) and S6 (β band) depict all the resulting
IC maps after statistical masking. It is interesting to note that
the masks covered a large majority of the cortex for most ICs,
indicating that most connections appear significant with static
FC. This is presumably not a mere effect of spatial leakage (see,
e.g., the simulations in Wens et al., 2015) but may rather reflect
the subdominant contribution of the transient cross-network
couplings studied in this paper.

Figures S7 and S8 report on their network mixture model
analysis. Their top row establishes GLM significance, i.e.,
whether the IC map resembles one or a combination of RSNs,
and their second and third rows identify the RSN patterns. By
and large, this analysis confirmed previous findings (Brookes
et al., 2011; Wens et al., 2014b). It is noteworthy that several
successfully classified ICs involved more than one RSN tem-
plate, but this fact merely illustrates the specificity limitation
associated with the spatial blurriness of IC maps. The bottom
row of Figs. S7 and S8 shows that dynamical competition test-
ing failed to detect any significant competitive behavior.

S2. Analysis of DMN modes in the α and the β bands
In the main text, our analysis of key spatio-temporal features

across the modes of dynamic coupling highlighted the DMN in
the α and the β bands. Here, we focus on these special cases
and detail the modes of dynamic coupling.

Temporal characteristics. Some temporal properties of the
DMN modes are illustrated in Fig. S9 (top: α band, bottom:
β band). The plots confirm the aperiodicity of IC times series
(Fig. S9, left), the significance of IC excess kurtosis for all the
modes (Fig. S9, middle), and the transience of the IC large de-
viations (Fig. S9, right). The distributions of kurtosis and life-
time also confirm the observation that the higher median values
in the α band compared to the β band (see Fig. 3, left) was due
to the presence of a few α-band modes with higher values than
the β-band modes.

Spatial localization and cross-network integration. The masked
IC maps locating the couplings significantly involved in the
DMN modes are shown in Figs. S10 (α band) and S11 (β band).

Their description in terms of cross DMN-RSN coupling
based on network mixture models is depicted in Figs. S12 (α
band) and S13 (β band). Their top row establishes model signif-
icance of the spatial GLM for each mode and each seed. There
were 14/20 significant mixture models in the α band and 18/20
in the β band (see also Fig. 3, bottom right). These 32 modes
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Figure S5: Static α-band connectivity maps. The spatial maps of all ICs are shown for the α-band static ICA. All maps were statistically masked at p < 0.05 with
FWER correction. For each map, only the relative sign matters. Those ICs associated with a significant GLM are named according to the univariate maps correlation
t tests (Fig. S7, third row). The others are shaded.
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Figure S6: Static β-band connectivity maps. All is as in Fig. S5.
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Figure S7: Statistical inferences on network mixture models for static α-band connectivity. Statistical results of the spatial GLM analysis are depicted for the twenty
α-band static IC maps. The first row shows the F statistics values to establish significance of each spatial GLM (i.e., for each static IC α1, . . . , α20). The significance
threshold computed at p < 0.05 with FDR correction is emphasized by a red line and significant models, by red stars. The second row details all GLM weights
after noise normalization (i.e., their t values). The statistical threshold (shown on scale) was computed at the same significance level than the F tests on the top. The
third row identifies the significant t tests (red: positive maps partial correlation, blue: negative maps partial correlation). Of notice, results within a non-significant
GLM (first row) were not considered and thus appear shaded. The fourth row shows the F statistics for the nested GLM comparison tests used to disclose RSN
competition, together with the significance thresholds derived at the same level than the F tests on the top (red curve). As above, red stars indicate significance and
the cases associated with non-significant models are shaded.
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Figure S8: Statistical inferences on network mixture models for static β-band connectivity. All is as in Fig. S7.
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Figure S9: Temporal properties of the modes of dynamic couplings for the DMN in the α and the β bands. The power spectra (left), kurtosis (middle) and lifetime
of large-deviation events (right) are shown for both the α-band (top) and the β-band (bottom) IC time series. The twenty power spectra were normalized to a unit
area under the curve (corresponding to the unit variance of IC time series) and superimposed on each other. For the kurtosis, the significance thresholds at p < 0.05
(Bonferroni corrected for twenty comparisons) are emphasized by red lines and significant values, by red stars.
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Figure S10: Spatial signature of the modes of dynamic coupling for the α-band DMN. All IC maps are shown with statistical masking at p < 0.05 with FWER
correction. The right (left) arrows between correlation scales indicate significant skewness towards positive (negative) values and double-headed arrows, non-
significant skewness. Those ICs associated with a significant network mixture model are named according to the univariate maps correlation t tests (Fig. S12, third
row) and the dynamical competition F tests (Fig. S12, fourth row). The others are shaded.
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Figure S11: Spatial signature of the modes of dynamic coupling for the β-band DMN. All is as in Fig. S10.
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could thus be classified in terms of cross DMN-RSN interac-
tions, which were then quantified using the standardized GLM
weights (Figs. S12 and S13, second row). To help identifying
the RSNs predominantly involved, we also show a statistically
thresholded version (Figs. S12 and S13, third row; red: signif-
icantly positive partial correlation, blue: significantly negative
partial correlation). All but one significant mixture model iden-
tified dynamic integration between the DMN and at least one
RSN.

Detailed description of cross-network patterns. We identified
cross DMN-SMN integration (i.e., with the SMN only) in the
mode β12 as well as α9 and β4. The correlation tests for the lat-
ter two also reported contributions from DMN-FPN couplings,
but they appeared to be false positives due to IC maps blur-
riness (see Figs. S10, S11 and the specificity issue mentioned
in the main text). Likewise, the mixture models disclosed cross
DMN-AN (modes α1, α7, α12, and β8), cross DMN-VN (α6 and
α16), cross DMN-FPN (β5), and cross DMN-ECN (β6) interac-
tions. We observed DMN-Vm/lN couplings accompanied with
intra-DMN couplings as well (α11), but here too IC maps blur-
riness prevented clear discrimination of the posterior part of the
DMN and the Vm/lNs.

We also identified cross-network integration involving
clearly distinguishable RSNs. Cross DMN-SMN and DMN-
VN integration emerged for the modes α3, α10, and β1 as well
as α14 and β18 (again with spurious FPN contributions, see
Figs. S10, S11). Such DMN-SMN/VN couplings also appeared
in association with intra-DMN couplings for α2, β16, and β2, the
latter with DMN-ECN integration too. As above, these extra
contributions may be related to a lack of specificity in clearly
disambiguating the anterior/posterior DMN from the ECN/VN
in our IC maps. We also observed cross DMN-AN/VN (mode
β9 as well as β13 and β14 with spurious SMN/FPN contributions,
see Fig. S11), DMN-VN/ECN (α4 and β11 with possibly spu-
rious intra-DMN contribution, see Fig. S11), DMN-FPN/VN
(β3, α13 and β10 with spurious SMN/ECN contributions, see
Figs. S10, 4, and β19 with possible intra-DMN contribution, see
Fig. S11), and DMN-FPN/ECN (β15). The mode β17 mixed
cross DMN-AN, DMN-SMN, DMN-VN, and intra-DMN cou-
plings, the latter two contributions being hard to discriminate
(Fig. S11).

The only mode with significant mixture model without a sig-
nificant contribution from a single RSN was α17. This is be-
cause its IC maps spread across the whole brain (Fig. S10)
so the GLM coefficients were roughly similar and a mixing of
RSNs was genuinely required.

Eight mixture models did not reach significance, but this
does not preclude physiological meaningfulness in view of
the sensitivity issue associated with RSNs splitting into sub-
networks. In fact, the modes α8 and α20 could be understood in
terms of dynamic integration between the DMN and the intra-
hemispheric parts of the SMN, and the modes α5, α15, and α19,
in terms of intra-DMN interactions specifically targeting the
PCC (Fig. S10). Only the modes α18, β7, and β20 remained
difficult to interpret on the basis of classical RSNs (Figs. S10,
S11).

Dynamical competition. Results of the dynamical competition
tests in the α and the β bands are depicted in the fourth row of
Figs. S12 and S13, respectively. We identified 12/14 significant
α-band mixture models and 15/18 significant β-band mixture
models that exhibited significant dynamical competition (see
also Fig. 4, bottom).

S3. More on the large-deviation events

The recurrence of IC large deviations and their tendency
to occur in isolation rather than simultaneously is shown in
Fig. S14 (top left) for the β-band DMN modes. The occurrence
count used to obtain Table 2 is illustrated in Fig. S14 (bottom
left).

The inference made in the main text that higher IC kurtosis
and longer lifetime of IC large deviations for the α-band modes
(Fig. 3, left) implies that the corresponding deviations must be
larger, was confirmed directly by considering the mean abso-
lute value of IC times series during their large-deviation events
(Fig. S14, right). We observed a band effect (Friedman test,
p = 9.1 × 10−14) explained by larger deviations among the α-
band modes, and no RSN effect (p = 0.28), hence establishing
our claim.

S4. Simulated bistable system of two connectivity states

In this section, we present a simulation of dynamic FC data
and examine whether our analysis leads to meaningful modes
of dynamic coupling. The aim is twofold:

(i) support our interpretation of the modes in terms of FC
state transitions (see inference ii in the main text), and

(ii) show the ability of our ICA to extract content from noisy
dynamic FC (see also Supplementary Methods S2, S3).

We generated 100 synthetic MEG recordings (one per subject
of our experimental dataset) based on sources exhibiting time-
varying cross-network couplings. Specifically, we considered
a two-state configuration where one state of cross DMN-SMN
coupling alternates with another state of cross DMN-AN cou-
pling. Each state was first built as a configuration of static FC
among six point sources chosen at the key nodes of the DMN
and of the SMN or the AN (see Table 1 in the main text). Their
orientation was fixed along the direction of maximum MEG re-
sponse (as assessed by the individual forward model), and their
time course was obtained from independent realizations of a
band-filtered Gaussian white noise (α band, sampling rate: 200
Hz, duration: 5 min). Envelope correlation among the nodes
was imposed by pointwise multiplication of the source signals
with a common 1-Hz sinusoid. Time-dependent FC was then
obtained by splitting the 5 minutes into windows, to which
state-specific source time courses were assigned in alternation.
Transition times between successive windows were random, but
their total number was fixed so as to reproduce the occurrence
rate of Table 2. The synthetic MEG data were finally obtained
by individual forward projection of the resulting source config-
uration and addition of realistic sensor noise taken from empty-
room MEG data (rescaled to reproduce the signal-to-noise ratio
of our experimental dataset).
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Figure S12: Statistical inferences on network mixture models for the α-band DMN. Statistical results of network mixture modeling on the twenty modes of dynamic
coupling are depicted. The first row shows the F statistics values to establish significance of each spatial GLM (i.e., for each mode α1, . . . , α20, and each seed
MPFC, PCC, lTPJ, rTPJ). The significance threshold computed at p < 0.05 with FDR correction is emphasized by a red line and significant models, by red stars.
The second row details all GLM weights after noise normalization (i.e., their t values). The statistical threshold (emphasized on scale) was computed at the same
significance level than the F tests on the top. The third row emphasizes the significant t tests (red: positive spatial correlation, blue: negative spatial correlation).
Of notice, results within a non-significant GLM (first row) were not considered and thus appear shaded. The fourth row shows the F statistics for the nested GLM
comparison tests used to disclose dynamical competition, together with the significance thresholds derived at the same level than the F tests on the top (red curve).
As above, red stars indicate significance and the cases associated with non-significant models are shaded.
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Figure S13: Statistical inferences on network mixture models for the β-band DMN. All is as in Fig. S12.

Figure S14: Extra characteristics of IC large deviations. The large-deviation events are illustrated in the case of the DMN modes in the β band (top left), as well as
the associated co-occurrence count of those events (bottom left). The distributions across modes of the mean amplitude of IC large deviations (right) are compared
across frequency bands (θ, α, β, β′) and seed RSNs (see Table 1). The bar plots show the median values computed over RSNs (right side) or bands (bottom side).
Significant effects identified via post-hoc Wilcoxon rank tests are indicated on these bar plots by red stars.
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This dataset was then analyzed exactly as described in the
main text. Given our interpretation in terms of state tran-
sitions, we expected that one IC would identify competitive
DMN-SMN and DMN-AN couplings. This prediction was con-
firmed by the results summarized in Fig. S15. To detect rele-
vant modes, we first plotted the mean IC maps value across the
state-specific connections that were simulated (Fig. S15, left).
Only IC5 (i.e., the fifth IC obtained) exhibited substantial corre-
lations, indicating that the expected state transition process was
mostly captured by a single IC. The corresponding raw IC maps
reproduced the pattern of FC change between DMN-SMN and
DMN-AN states (Fig. S15, right). This provides proof of con-
cept for the two claims (i) and (ii).

S5. Absence of dynamic power biases and muscle artifacts

To exclude possible contributions of dynamic power varia-
tions to our modes, we considered the temporal correlation be-
tween the IC time series and the sources power time courses.
Dynamic power was estimated within the same sliding win-
dows than dynamic FC. We used sLORETA noise normaliza-
tion (Pascual-Marqui, 2002) to correct for the depth bias of
MNE. For conciseness, we focus here on power fluctuations at
key source locations: (i) the seeds used to compute seed-based
FC (see Table 1 in the main text) and (ii) the source exhibit-
ing the highest value in each IC map (i.e., maximum absolute
IC-FC correlation).

Figure S16 shows the maximum absolute correlation value
across the modes and seeds, for each RSN and frequency band.
Only small values were disclosed, showing that IC time se-
ries are not driven by power fluctuations. In fact, the correla-
tions appearing in this analysis were well below the significance
threshold derived for the IC maps (about 0.08, see main text).

Similarly, since our data preprocessing did not explicitly con-
trol for muscle artifacts, we estimated the correlation between
the IC time series and the high-frequency power time course of
the MEG recordings, which is a proxy for muscle activity. The
latter was estimated within each sliding window as the mean
(across sensors) variance of the MEG signals filtered between
110 and 140 Hz. The resulting correlation values did not ex-
ceed 0.05, so we conclude that IC time series were not driven
by muscle activity.

S6. Comparison to zero-order correlation analyses

To confirm the absence of interpretation ambiguities and sup-
pression effects in our GLM (see Supplementary Methods S5
for a theoretical argument), we repeated our spatial correlation
analyses using zero-order (i.e., univariate) correlation t tests.
Formally, we applied the spatial GLM with one regressor at a
time, and set significance thresholds at p < 0.05 with FDR cor-
rection. For illustrative purposes, we focus again on the α- and
the β-band modes of the DMN.

Figure S17 (left) shows that the normalized weight values
were globally similar in the univariate and the multivariate
modalities. The statistical results of the zero-order analysis are
detailed in Fig. S18, and comparison with the second and third

rows of Figs. S12 and S13 further confirms the global similar-
ity of significance patterns. The only notable exception con-
cerns the mode α17, whose GLM was significant but without
significant GLM weights (see Supplementary Results S2 and
Fig. S12) while several zero-order weights appeared significant.
This illustrates the difference between plain and partial correla-
tions.

Given the importance of weights sign for the dynamical com-
petition test, we checked explicitly the consistency of weight
signs across the two modalities. The histograms in Fig. S17
(right) show that only weights with small effect size (|t| < 1.25)
disclosed a sign reversal. For comparison, note that significance
thresholds were above 2. About one third of the weights falling
in the central bin (−0.25 ≤ t ≤ 0.25) disclosed sign reversal
due to their very small effect sizes. This proportion decreased
in the next bins and vanished for |t| > 1.25, indicating that this
randomness is gradually replaced by a stable sign estimate at
larger effect sizes. These results corroborate the interpretation
rule (ii) derived theoretically in the Supplementary Methods S5.
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Figure S15: Mode of dynamic coupling for simulated bistable dynamic FC data. The IC maps values (i.e., IC-FC temporal correlations) were averaged over the
connections corresponding to the two simulated FC states (red: DMN-SMN state, blue: DMN-AN state) for the twenty ICs (left). The raw IC maps obtained for
IC5 are also shown (right).

Figure S16: Correlation analysis with dynamic power. The maximum (across modes and seeds) absolute correlation between IC times series and power time course
at the seed locations (left) and at the sources presenting maximum absolute IC-FC correlation (right) are shown for all seed RSNs (Table 1) and frequency bands.

Figure S17: Comparison between GLMs and zero-order correlations. The association between the normalized weights (i.e., their t values) obtained with the
multivariate GLMs and univariate zero-order correlations is illustrated with a scatter plot and a linear fit of estimated intercept 0.00 and slope 1.02 (left). The
proportion of weights with the same sign in both approaches (blue bins) and of those with reversed sign (red bins) are quantified by two superimposed histograms
(right). These plots were generated by pooling the weights across all DMN modes, seeds, and RSN templates in the α and the β bands.
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Figure S18: Statistical inferences on zero-order weights for the DMN modes in the α and the β bands. Statistical results for univariate, zero-order spatial correlations
between each template RSN map and each IC map of the modes of dynamic coupling in the α (top) and the β (bottom) bands. The structure is the same as the
second and third rows of Figs. S12, S13. Each significance threshold emphasized on scale was computed at p < 0.05 with FDR correction.
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beck, C., Parkkonen, L., Hämäläinen, M. S., 2014. MNE software for pro-

cessing MEG and EEG data. Neuroimage 86, 446–460.
Hall, E. L., Woolrich, M. W., Thomaz, C. E., Morris, P. G., Brookes, M. J.,

2013. Using variance information in magnetoencephalography measures of
functional connectivity. Neuroimage 67, 203–212.

Handwerker, D. A., Roopchansingh, V., Gonzalez-Castillo, J., Bandettini, P. A.,
2012. Periodic changes in fMRI connectivity. Neuroimage 63, 1712–1719.

Hansen, E. C. A., Battaglia, D., Spiegler, A., Deco, G., Jirsa, V. K., 2015.
Functional connectivity dynamics: Modeling the switching behavior of the
resting state. Neuroimage 105, 525–535.

Hindriks, R., Adhikari, M. H., Murayama, Y., Ganzetti, M., Mantini, D., Lo-
gothetis, N. K., Deco, G., 2016. Can sliding-window correlations reveal dy-
namic functional connectivity in resting-state fMRI? Neuroimage 127, 242–
256.

Hipp, J. F., Hawellek, D. J., Corbetta, M., Siegel, M., Engel, A. K., 2012.
Large-scale cortical correlation structure of spontaneous oscillatory activity.
Nat Neurosci 15, 884–890.

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun,
V. D., Corbetta, M., Della Penna, S., Duyn, J. H., Glover, G. H., Gonzalez-
Castillo, J., Handwerker, D. A., Keilholz, S., Kiviniemi, V., Leopold, D. A.,
de Pasquale, F., Sporns, O., Walter, M., Chang, C., 2013. Dynamic func-
tional connectivity: promise, issues, and interpretations. Neuroimage 80,
360–378.

Hutchison, R. M., Womelsdorf, T., Gati, J. S., Everling, S., Menon, R. S., 2012.
Resting-state networks show dynamic functional connectivity in awake hu-
mans and anesthetized macaques. Hum Brain Mapp 34, 2154–2177.

Hyvärinen, A., Oja, E., 2000. Independent component analysis: algorithms and
applications. Neural Netw 13, 411–430.

Jensen, O., Bonnefond, M., VanRullen, R., 2012. An oscillatory mechanism for
prioritizing salient unattended stimuli. Trends Cogn Sci 16 (4), 200–206.

Jung, A., 2017. A fixed-point of view on gradient methods for big data. Front
Appl Math Stat 3, 18.

Kiviniemi, V., Vire, T., Remes, J., Elseoud, A. A., Starck, T., Tervonen, O.,
Nikkinen, J., 2011. A sliding time-window ICA reveals spatial variability of
the default mode network in time. Brain Connect 1, 339–347.

Klimesch, W., 2012. Alpha-band oscillations, attention, and controlled access
to stored information. Trends Cogn Sci 16 (12), 606–617.

Klimesch, W., Freunberger, R., Sauseng, P., 2010. Oscillatory mechanisms of
process binding in memory. Neurosci Biobehav Rev 34 (7), 1002–1014.

Knyazev, G. G., Savostyanov, A. N., Bocharov, A. V., Slobodskaya, H. R.,
Bairova, N. B., Tamozhnikov, S. S., Stepanova, V. V., 2017. Effortful control
and resting state networks: a longitudinal EEG study. Neuroscience 346,
365–381.

Knyazev, G. G., Savostyanov, A. N., Bocharov, A. V., Tamozhnikov, S. S.,
Saprigyn, A. E., 2016. Task-positive and task-negative networks and their
relation to depression: EEG beamformer analysis. Behav Brain Res 306,
160–169.

Kopell, N., Ermentrout, G. B., Whittington, M. A., Traub, R. D., 2000. Gamma
rhythms and beta rhythms have different synchronization properties. Proc
Natl Acad Sci U S A 97 (4), 1867–1872.

Krzywinski, M., Altman, N., 2014. Points of significance: Nonparametric tests.
Nat Methods 11 (5), 467–468.

Liu, Q., Farahibozorg, S., Porcaro, C., Wenderoth, N., Mantini, D., 2017. De-
tecting large-scale networks in the human brain using high-density elec-
troencephalography. Hum Brain Mapp 38, 4631–4643.

Liu, Z., Fukunaga, M., de Zwart, J. A., Duyn, J. H., 2010. Large-scale sponta-
neous fluctuations and correlations in brain electrical activity observed with
magnetoencephalography. Neuroimage 51, 102–111.

Luckhoo, H., Hale, J. R., Stokes, M. G., Nobre, A. C., Morris, P. G., Brookes,
M. J., Woolrich, M. W., 2012. Inferring task-related networks using inde-
pendent component analysis in magnetoencephalography. Neuroimage 62,
530–541.
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