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Abstract—In this paper is proposed a vectorial equation that relates the absolute pole velocities of three moving rigid 
bodies with a planar motion of general type. From this equation, it is possible to obtain a relation between the pole 
velocities of the three mathematical points, related between them by the Aronhold-Kennedy Theorem. The formula 
allows the calculation of one of the pole velocities from the other two, being known the angular velocities and 
accelerations of the moving bodies. It is applicable regardless of whether the instantaneous centers (poles) are located 
on physical points on the linkage or not. Illustrative examples of the application of the formula on representative planar 
linkages are included. In the final section, is discussed a similar concept associating a mathematical point to the 
curvature centers of a point’s path, so called centroma. 

Index Terms—Pole, pole velocity, planar motion, curvature center, centroma. 

Nomenclature 
A	݅—  Geometric point A of moving body i. 

P	݆݅— Instantaneous center (pole) of velocity of moving body i with respect to moving body j. 

u	௜௝—Absolute pole velocity of P	݆݅.
࣓௜—Angular velocity of moving body i.

࣓௜ೝೕ
—Angular velocity of moving body i relative to moving body j.

.Radius of curvature of the fixed centrode of moving body i—࢏௙ߩ

.Radius of curvature of the moving centrode of moving body i—࢏௠ߩ

 .௜—Angular acceleration of moving body iࢻ	
௜ೝೕࢻ

—Angular acceleration of moving body i relative to moving body j.

࢜஼—Velocity of physical point C.

஺ܱ—Centroma of A (mathematical point associated to the centre of curvature of the path of point A).

rூ௃—Position vector relating points I and J.

1 Introduction and approach to the problem 

The instantaneous center (pole) of a rigid body with planar motion has the property of being a 

physical point that instantaneously (or even permanently) has no speed. Consequently, the 

planar motion of a rigid body can be studied as a sequence of differential rotations about an 

axis perpendicular to the plane containing the pole. 

This point has a physical-mathematical duality. The physical point, which belongs to the 

moving body, is the one whose velocity is zero. But the mathematical point has the so called 

pole velocity, in the direction of the centrode tangent. In this paper, the velocities corresponding 

to linkage joints or physical points will be identified by the vector v while those corresponding 

to pole velocities will have the vector u associated. 

The poles can be absolute if they have null velocity with respect to the frame, or relative having 

null velocity in a relative motion between two bodies. Authors like Hunt [1] have already 
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investigated in the relations obtained when referring to the study of the pole in the relative 

motion. The present research is based on [2], where the planar motion bases and the motion of 

a mechanism are explained with the geometry that underlies behind. 

All the examples analysed and the calculations done, have been simulated and verified using 

the GIM research and educational numerical software [3]. This software is being developed by 

the COMPMECH research group of the University of the Basque Country - UPV/EHU 

(www.ehu.es/compmech). Also in [4], a relationship for computing several angular velocities 

of rigid bodies can be found. 

The curvature theory and the envelope theory are presented in detail in [5, 6]. In references [6, 

7] the general form of Euler-Savary equation, together with the Aronhold theorem and 

Hartman´s construction are explained. The inflection circle and the cuspidal circle are explained 

in [8] while in [9] is clearly presented the concept of instantaneous center and the relative 

velocity field. In [10, 11] the kinematic analysis of complex mechanisms is presented.  

In references [12, 13] the concepts of relative angular velocity and acceleration are introduced 

and applied in representative examples. In [14], new formulas for the first and second time 

derivatives of 2x2 transforms based on the Cayley-Klein parameters are derived. Based on 

these, an extension to the computation of velocities and accelerations of the kinematic analysis 

proposed by Denavit [15] is presented.  

Reference [16] investigates the instantaneous spatial higher pair to lower pair substitute-

connection which is kinematically equivalent up to acceleration analysis for two smooth 

surfaces in point contact. In [17] using the contact kinematics equations of the enveloping 

curves, is shown how the theorem on coordinated centers is valid for a position in which the 

instantaneous relative angular velocity is zero [18]. This is possible since the approach does not 

make any reference to the polodes. 

Fig. 1 shows the case of pure rolling motion between two disks being 1 the frame. The null 

velocities of the absolute poles Pଵଶ, Pଵଷ, the velocity of the relative pole Pଶଷ and the absolute 

pole velocities uଵଶ, uଵଶ y uଶଷ are depicted. 
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Figure 1: Rolling motion between two disks. 

Being ࣓௜ the angular velocity of the moving body i, ߩ௙ and ߩ௠the radius of curvature of the 

fixed and moving centrodes respectively and using the Euler-Savary formula, uଵଶand uଵଷ are, 

uଵଶ ൌ
߱ଶ

ଵ

ఘ೑మ
െ ଵ

ఘ೘మ

; uଵଷ ൌ
߱ଷ

ଵ

ఘ೑య
െ ଵ

ఘ೘య

 
 

ሺ1ሻ 

The approach of the present work is to obtain a formula for calculating, in a general case, the 

absolute pole velocity of the relative pole (uଶଷ in Fig. 1) as a function of the pole velocities of 

the absolute poles (uଵଶ and	uଵଷ in Fig. 1), the angular velocities (࣓ଶ,࣓ଷሻ and accelerations 

(હଶ, હଷሻ of the two moving rigid bodies. 

Focusing on the kinematics of linkages, sometimes the relative pole between two bodies lies 

permanently on a physical point. This is the case of the revolute pairs. As it has been said before, 

this relative pole has the same absolute velocity belonging to each of the mechanism’s links. 

This concept is shown in Fig. 2, using the RRRP linkage. The relative pole Pଶଷ lies always over 

the physical point B. Thus the velocity uଶଷ ൌ v஻	, simplifying the problem and making direct 

the solution. But in a general situation, there is no physical point associated to the relative pole. 

Then, the convenience of  developing an expression to calculate in an easy way the pole velocity 

of a relative pole arises.  
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Figure 2: RRRP linkage. 

The paper is organized as follows. In section 2, the absolute motion of two bodies is studied 

and an equation relating the three absolute pole velocities is proposed. In section 3, the formula 

is generalized by studying the relative motion of three bodies. In section 4, the proposed formula 

is validated in two representative examples of planar linkages. Finally in section 5, the vectorial 

formula is projected in its two components verifiying its coherence with the Hartman’s 

Theorem and proposing the concept of centroma. 

2 Studying the absolute motion of two bodies 

Aronhold-Keneddy’s theorem states that the three poles related to the motion between three 

rigid bodies lie permanently on the same line. Focusing on the case of two rigid bodies in motion 
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with respect to a fixed one (frame), Fig. 3 shows the velocity fields of both moving rigid bodies 

along the line that joins the three poles. 

 

Figure 3:Velocity fields of two moving bodies 

From Fig. 3, the velocity of the relative pole	 ଶܲଷ, ࢜஺ଶ ൌ ࢜஺ଷ, can be expressed as follows. 

Since	the	study	is	in	planar	kinematics	and	thus	the	angular	velocities	are	normal	to	the	

moving	plane,	equation	ሺ4ሻ	can	be	expressed	as,	

r௉మభ௉మయ ൌ ௉యభ	௉మభܚ ൉
߱ଷ

߱ଷ െ ߱ଶ
ൌ ௉మభܚ ௉యభ ൉

߱ଷ

߱ଷ௥మ
 ሺ5ሻ 

Equation	ሺ5ሻ	is	a	relation	between	the	distances	of	the	poles.	Deriving	ሺ5ሻ	with	respect	to	

the	time,	

݀ሺr௉మభ௉మయሻ
ݐ݀

ൌ
݀ሺܚ௉మభ	௉యభሻ

ݐ݀
߱ଷ

߱ଷ െ ߱ଶ
൅ ௉మభܚ ௉యభ

݀
ݐ݀
൬

߱ଷ

߱ଷ െ ߱ଶ
൰ 

ሺ6ሻ 

 

P₂₁  P₃₁  P₂₃ ≡A2 ≡A3

࣓2,α2

vA2 ≡ vA3

࣓ 3,α3
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ϕ2 ϕ3

y2
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z2
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y

࢘
2ܲ1 3ܲ1 ࢘

3ܲ1 2ܲ3
 

࢘
2ܲ1 2ܲ3

࢜஺ଶ ൌ ࣓ଶ ൈ	r௉మభ௉మయ; ଶ߮݊ܽݐ ൌ
஺ଶݒ

r௉మభ௉మయ
ൌ ߱ଶ ሺ2ሻ

࢜஺ଷ ൌ ࣓ଷ ൈ	r௉యభ௉మయ ; ଷ߮݊ܽݐ ൌ
஺ଷݒ
௉యభ௉మయݎ

ൌ ߱ଷ ሺ3ሻ 

࢜஺ଶ ൌ ࢜஺ଷ 	→ 		࣓ଶ ൈ	r௉మభ௉మయ ൌ ࣓ଷ ൈ r௉యభ௉మయ → ࣓ଶ ൈ r௉మభ௉మయ

ൌ ࣓ଷ ൈ	൫r௉మభ௉మయ – ௉మభܚ ௉యభ൯ 

ሺ4ሻ 
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Figure 4:Position vector diagram of two moving solids 

From Fig. 4, it is possible to express the two vectors that appear in equation (6) as, 

௉మభ௉మయܚ ൌ ை௉మయܚ െ  ை௉మభ ሺ7ሻܚ

௉మభ௉యభܚ ൌ ை௉యభܚ െ  ை௉మభ ሺ8ሻܚ

Then the derivatives of (7) and (8) can be expressed as follows, 

݀ሺܚ௉మభ௉మయሻ
ݐ݀

ൌ
݀ሺܚை௉మయሻ
ݐ݀

െ
݀ሺܚை௉మభ ሻ

ݐ݀
;
݀ሺܚ௉మభ௉మయሻ

ݐ݀
ൌ ࢛ଶଷ െ ࢛ଶଵ 

ሺ9ሻ 

݀ሺܚ௉మభ௉యభሻ

ݐ݀
ൌ
݀ሺܚை௉యభሻ

ݐ݀
െ
݀ሺܚை௉మభ ሻ

ݐ݀
;
݀ሺܚ௉మభ௉యభሻ

ݐ݀
ൌ ࢛ଷଵ െ ࢛ଶଵ 

ሺ10ሻ 

As the position vectors refer to mathematical points, the velocity fields of the rigid bodies are 

not applicable. Also, the rule for derivation in moving bases cannot be used. So, velocities 

obtained are the absolute pole velocities. 

࢛ଶଷ െ ࢛ଶଵ ൌ ሺ࢛ଷଵ	– ࢛ଶଵሻ
߱ଷ

߱ଷ െ ߱ଶ
൅ ௉మభ௉యభܚ

߱ଷߙଶ െ ߱ଶߙଷ
ሺ߱ଷ െ ߱ଶሻଶ

 ሺ11ሻ 

࢛ଶଷ ൌ
࢛ଷଵ߱ଷെ࢛ଶଵ ߱ଶ

߱ଷ െ ߱ଶ
൅ ௉మభ௉యభܚ

߱ଷߙଶ െ ߱ଶߙଷ
ሺ߱ଷ െ ߱ଶሻଶ

 ሺ12ሻ 

Equation (12) is the basis of the whole study that follows. It relates three absolute pole velocities 

and the position vector of the corresponding poles with angular velocities and accelerations of 

the moving bodies. 

P₂₁  P₃₁  

P₂₃ ≡A2 ≡A3

࣓2,α2

࣓ 3,α3

y2

x2z2

O

x

y

࢘
2ܲ1 3ܲ1

࢘
2ܲ1 2ܲ3

 

࢘ 2ܲ1  
࢘ 3ܲ1

࢘ 2ܲ3  
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3 Studying the relative motion of three bodies 

In this section, equation (12) will be generalized for the case of three moving bodies 2, 3 and 4, 

that is ࢛ଷସ ൌ ݂ሺ࢛ଶଷ, ࢛ଶସሻ. 

Applying equation (12) between the three bodies (Fig. 5.), 

࢛ଶସ ൌ 	
࢛ସଵ߱ସ െ ࢛ଶଵ߱ଶ

߱ସ െ ߱ଶ
൅ ௉మభ௉రభܚ

߱ସߙଶ െ ߱ଶߙସ
ሺ߱ସ െ ߱ଶሻଶ

 ሺ13ሻ 

࢛ଶଷ ൌ 	
࢛ଷଵ߱ଷ െ ࢛ଶଵ߱ଶ

߱ଷ െ ߱ଶ
൅ ௉మభ௉యభܚ

߱ଷߙଶ െ ߱ଶߙଷ
ሺ߱ଷ െ ߱ଶሻଶ

 ሺ14ሻ 

࢛ଷସ ൌ 	
࢛ସଵ߱ସ െ ࢛ଷଵ߱ଷ

߱ସ െ ߱ଷ
൅ ௉యభ௉రభܚ

߱ସߙଷ െ ߱ଷߙସ
ሺ߱ସ െ ߱ଷሻଶ

 ሺ15ሻ 

 

 

Figure 5:Position vector relations between the three moving bodies. 
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For the resolution of this system of  three equations in three unknowns, the following parameters 

are defined. By using them, the solving is highly simplified since computer softwares like 

Mathematica cannot obtain directly the solution sought, 

݇௜௝௞ ൌ
߱௜

௝߱ െ ߱௞
 ሺ16ሻ 

࢚௜௝ ൌ ࢛௜௝ െ ௉೔భ௉ೕభܚ
௝߱ߙ௜ െ ߱௜ߙ௝
ሺ߱௝ െ ߱௜ሻଶ

 ሺ17ሻ 

࢚ଶସ ൌ 	݇ସସଶ࢛ସଵ െ ݇ଶସଶ࢛ଶଵ ሺ18ሻ 

࢚ଶଷ ൌ 	݇ଷଷଶ࢛ଷଵ െ ݇ଶଷଶ࢛ଶଵ ሺ19ሻ 

࢚ଷସ 	ൌ 	 ݇ସସଷ࢛ସଵ െ ݇ଷସଷ࢛ଷଵ ሺ20ሻ 

൥
࢚ଶସ
࢚ଶଷ
࢚ଷସ

൩ ൌ ൥
െ݇ଶସଶ 0 ݇ସସଶ
െ݇ଶଷଶ ݇ଷଷଶ 0
0 െ݇ଷସଷ ݇ସସଷ

൩ . ൥
࢛ଶଵ
࢛ଷଵ
࢛ସଵ

൩ 
ሺ21ሻ 

 

 

࢛ଶଵ ൌ
࢚ଶସ ฬ

݇ଷଷଶ 0
െ݇ଷସଷ ݇ସସଷ

ฬ െ ࢚ଶଷ ฬ
0 ݇ସସଶ

െ݇ଷସଷ ݇ସସଷ
ฬ ൅ ࢚ଷସ ฬ

0 ݇ସସଶ
݇ଷଷଶ 0 ฬ

อ
െ݇ଶସଶ 0 ݇ସସଶ
െ݇ଶଷଶ ݇ଷଷଶ 0
0 െ݇ଷସଷ ݇ସସଷ

อ

 

 

ሺ22ሻ 

Having in mind the concepts of relative angular velocity and acceleration, 

ଷೝమࢻ ൌ ଷࢻ	 െ ଶࢻ െ ࣓ସ ൈ ࣓ଷ 

In the planar motion, the Resal complementary angular acceleration െ࣓ସ ൈ ࣓ଷ 

turns out to be zero [12,13]. Thus, the equations are,  

ሺ23ሻ 

߱ଷೝమ
ൌ ߱ଷ െ ߱ଶ    ;   ߙଷೝమ ൌ ଷߙ െ  ଶ ሺ24ሻߙ

߱ସೝమ ൌ ߱ସ െ ߱ଶ ; ସೝమߙ ൌ ସߙ െ  ଶ ሺ25ሻߙ

From Fig. 5, 

௉యభ௉రభܚ ൌ ௉మభ௉రభܚ െ  ௉మభ௉యభ ሺ26ሻܚ

௉మయ௉మరܚ ൌ ௉మభ௉మరܚ െ  ௉మభ௉మయ ሺ27ሻܚ

Developing the expression (22) by means of the Cramer’s method and incorporating (24), (25), 

(26) and (27), the formula of ࢛ଷସturns out to be of the following form, 

࢛ଷସ ൌ
࢛ଶସ߱ସೝమ

െ	࢛ଶଷ߱ଷೝమ

	ሺ߱ସೝమ
െ ߱ଷೝమ

ሻ
൅	

௉మభ௉రభܚ
	ሺ߱ସೝమ

െ ߱ଷೝమ
ሻଶ
ቈߙଷೝమ߱ସ െ ସೝమ߱ଷߙ ൅

ସೝమ߱ଶሾ߱ସೝమߙ
െ ߱ଷೝమ

ሿ	

߱ସೝమ

቉ 						

െ 	
௉మభ௉యభܚ

	ሺ߱ସೝమ
െ ߱ଷೝమ

ሻଶ
ቈെߙସೝమ߱ଷ ൅ ଷೝమ߱ସߙ ൅

ଷೝమ߱ଶሾ߱ଷೝమߙ
െ ߱ସೝమ

ሿ	

߱ଷೝమ

቉ 

 

 

ሺ28ሻ 
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Considering Fig. 2 and taking into account the geometrical relation shown in Fig. 6, 

 

Figure 6: Geometrical relations 

߱ଶ ൌ ݊ܽݐ ߮ଶ ൌ
஻మݒ

r௉మభ௉యభ
 ሺ29ሻ 

߱ଷ ൌ ݊ܽݐ ߮ଷ ൌ
஺యݒ

r௉యభ௉మయ
 ሺ30ሻ 

Substituting these relations together with (2), (3) and (5) and grouping terms, the final compact 

formula (31) is obtained: 

࢛ଷସ ൌ
࢛ଶସ߱ସೝమെ	࢛ଶଷ߱ଷೝమ

	ሺ߱ସೝమ െ ߱ଷೝమ
ሻ

൅ ௉మయ௉మరܚ
ଷೝమ߱ସೝమߙ െ ସೝమ߱ଷೝమߙ

ሺ߱ସೝమ െ ߱ଷೝమ
ሻଶ

 
ሺ31ሻ 

This generalization leads to the same expression as (12). There are no additional terms like 

those derived from Resal and Coriolis accelerations, since the formula is still in the velocity 

level. 

It is important to remark that this is not an obvious result. Expressing equation (12) with respect 

to a mobile observer, for example body 2, is indeed somewhat trivial. That would be the case 

of a formula that relates relative poles velocities as shown in (32). 

࢛ଷସ② ൌ ଵ݂൫࢛ଷଵ②,࢛ସଵ②൯ ሺ32ሻ 

The case studied in this section is different. In fact, the formula obtained relates absolute pole 

velocities. 

࢛ଷସ ൌ ଶ݂ሺ࢛ଷଶ, ࢛ସଶሻ ሺ33ሻ 

 

4 Illustrative examples 

In this section two illustrative examples of application are presented. 

The first example is the case of a 1-dof guiding mechanism composed of two four-bar linkages 

synchronized by a coupler bar (Fig.7.). The goal is to obtain the absolute pole velocity	࢛ସଵ. 

AP31

࢜A

≡ P23B ≡ P21

u23 ≡
࢜B 3

3
≡

2
A

࢜A
2≡

2

2

φφ 32

௉మభ௉యభܚ ௉యభ௉మయܚ
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In this case, the relative poles permanently lie on the mechanism revolute pairs. Table 1 shows 

the data provided by the GIM software [3] after a kinematic analysis, for the position depicted 

in Fig.7 and an input of ߱ଶ ൌ 2п	rad/s and ߙଶ ൌ 0	rad/sଶ. 

 

 

 

 ݏ݊݋݅ݐܽݎ݈݁݁ܿܿܽ	݀݊ܽ	ݏ݁݅ݐ݅ܿ݋݈݁ݒ	ݎ݈ܽݑ݃݊ܣ	:1	݈ܾ݁ܽܶ

 

Figure7:Application example1 

Equation (12) is first applied to links 2 and 3 to obtain	࢛ଷଵ. Then, it is applied to 3 and 4 to 

achieve	࢛ସଵ. 

࢛ଶଷ ൌ 	
࢛ଷଵ߱ଷ െ ࢛ଶଵ߱ଶ

߱ଷ െ ߱ଶ
൅ ௉మభ௉యభܚ

߱ଷߙଶ െ ߱ଶߙଷ
ሺ߱ଷ െ ߱ଶሻଶ

→ ࢛ଷଵ ሺ34ሻ 

࢛ସଷ ൌ 	
࢛ଷଵ߱ଷ െ ࢛ସଵ߱ସ

߱ଷ െ ߱ସ
൅ ௉రభ௉యభܚ

߱ଷߙସ െ ߱ସߙଷ
ሺ߱ଷ െ ߱ସሻଶ

→ ࢛ସଵ ሺ35ሻ 

Elements 2 3 4 

Angular velocity: ࣓ (rad/s) 2п െ1.07 െ1.24 

Angular acceleration: (૛ܛ/rad) ࢻ 0 െ15.11 െ0.62 
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Being the result of	࢛ଷଵ and ࢛ସଵ(Table 2) coincident with those obtained from the kinematic 

analysis made using GIM software. 

 ݏ݁݅ݐ݅ܿ݋݈݁ݒ	݈݁݋݌	݀݊ܽ	ݏ݈݁݋ܲ	:2	݈ܾ݁ܽܶ

The second example is the case of another 1-dof guiding mechanism composed in this case by 

one four-bar linkage and a slider-crank mechanism linked by a coupler bar (Fig. 8). The goal 

of the problem is to obtain the absolute pole velocity	࢛ସଵ. 

Again, the relative poles permanently lie on the mechanism revolute pairs. The following tables 

show the data provided by the GIM software [3] for the position of Fig.8 and an input of ߱ଶ ൌ

2п	ሾrad/s] and ߙଶ ൌ 0	ሾrad/sଶሿ. 

 

 

 

 ݏ݊݋݅ݐܽݎ݈݁݁ܿܿܽ	݀݊ܽ	ݏ݁݅ݐ݅ܿ݋݈݁ݒ	ݎ݈ܽݑ݃݊ܣ	:3	݈ܾ݁ܽܶ

Velocity 

Poles 

Horizontal 

Component of 

the Velocity 

Poles (m) 

Vertical 

component of 

the Velocity 

Poles (m) 

 

Pole 

velocities 

Horizontal 

Component of 

the Pole 

Velocities (m/s) 

Vertical 

Component of 

the Pole 

Velocities (m/s)

Pଶଵ 0.33 0.34 ࢛ଶଵ 0 0 

Pଶଷ 0.27 0.60 ࢛ଶଷ െ0.52 െ0.23 

Pସଷ 0.05 0.39 ࢛ସଷ െ 0.57 0.03 

Pଷଵ 0. 08 0.91 ࢛ଷଵ െ0.58 െ	8.38 

Pସଵ 0.07 0.85 ࢛ସଵ െ0.24 െ1.08 

Elements 2 3 4 

Angular velocity: ࣓ (rad/s) 2п -2.32 -3.21 

Angular acceleration: (૛ܛ/rad) ࢻ 0 13.24 -25.95 
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Figure 8: Application example 2 

Equation (12) is first applied to links 2 and 3 to obtain	࢛ଷଵ. Then, it is applied to 3 and 4 to 

achieve	࢛ସଵ. 

࢛ଶଷ ൌ 	
࢛ଷଵ߱ଷ െ ࢛ଶଵ߱ଶ

߱ଷ െ ߱ଶ
൅ ௉మభ௉యభܚ

߱ଷߙଶ െ ߱ଶߙଷ
ሺ߱ଷ െ ߱ଶሻଶ

→ ࢛ଷଵ ሺ36ሻ 

࢛ସଷ ൌ 	
࢛ଷଵ߱ଷ െ ࢛ସଵ߱ସ

߱ଷ െ ߱ସ
൅ ௉రభ௉యభܚ

߱ଷߙସ െ ߱ସߙଷ
ሺ߱ଷ െ ߱ସሻଶ

→ ࢛ସଵ ሺ37ሻ 

Being the result of ࢛ଷଵ and ࢛ସଵ the same as the kinetic analysis provided by the GIM program. 

 ݏ݁݅ݐ݅ܿ݋݈݁ݒ	݈݁݋݌	݀݊ܽ	ݏ݈݁݋ܲ		:4	݈ܾ݁ܽܶ

Velocity 

Poles 

Horizontal 

Component of 

the Velocity 

Poles (m) 

Vertical 

component of 

the Velocity 

Poles (m) 

 

Pole 

Velocities

Horizontal 

Component of 

the Pole 

Velocities (m/s) 

Vertical 

Component  of 

the Pole 

Velocities (m/s) 

Pଶଵ 0.20 0.40 ࢛ଶଵ 0 0 

Pଶଷ 0.33 0.54 ࢛ଶଷ -0.91 0.86 

Pସଷ 0.52 0.47 ࢛ସଷ -1.07 0.43 

Pଷଵ 0.71 0.93 ࢛ଷଵ -1.24 5.44 

Pସଵ 0.65 0.80 ࢛ସଵ -3.05 -0.56 
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5 Projecting the formula in its two components 

As said, equation (12) is a vectorial relation. So, it can be projected on specific axes to obtain 

two algebraic equations. 

In Fig.9, is depicted the graphical construction derived from Hartman’s theorem [5]. The 

moving plane 2 corresponds to the one in study of known movement. The moving plane 3 will 

be the so called “normal plane”, which is the one associated to the motion of the tangent line to 

the path of point A. 

 

Figure 9.Graphical construction of Hartman’s Theorem  

5.1 Projection along the tangential direction 

Hartman’s theorem states that the tip of the velocity vector of a moving point, the center of 

curvature of its trajectory, and the component of the pole velocity parallel to the point velocity 

vector, are aligned (Fig.9.). Thus, 

ଶଷݑ
ଶଵ′ݑ

ൌ
r௉యభ௉మయ
r௉మభ௉యభ

 ሺ38ሻ 

u31

u21

u’21

P₂₃ ≡A

u23≡ vA

P₃₁ ≡ OA

P21

Fixed Centrode 1-3 ≡ Evolute 
of the trayectory of A

Trajectory of A

Normal 1-3

t

θ
u’’21

3

n

Ψ

T2

Ψ

Fixed Centrode 1-2
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This is a scalar proportion that can also be verified by the formula proposed in this article. To 

obtain the same relation, formula (12) is projected along the tangent line of the trajectory of A. 

In equation (39) both terms of equation (12) are premultiplied by the unit vector ࢚. 

࢚ ൉ ࢛ଶଷ ൌ ࢚ ൉
࢛ଷଵ߱ଷ െ ࢛ଶଵ߱ଶ

߱ଷ െ ߱ଶ
൅ ࢚ ൉ ௉మభ௉యభܚ

߱ଷߙଶ െ ߱ଶߙଷ
ሺ߱ଷ െ ߱ଶሻଶ

 ሺ39ሻ 

࢚ ൉ 	࢛ଶଷ ൌ 	࢚ ൉ ࢛ଶଵ
െ߱ଶ

߱ଷ െ ߱ଶ
→

ଶଷݑ
ଶଵ′ݑ

ൌ
߱ଶ

߱ଷ െ ߱ଶ
 ሺ40ሻ 

And using equation (5), 

r௉మభ௉మయ 	ൌ r௉మభ௉యభ ൉
߱ଷ

߱ଷ െ ߱ଶ
; r௉యభ௉మయ ൌ r௉మభ௉మయ െ r௉మభ௉యభ  

ሺ41ሻ 

 

r௉యభ௉మయ ൌ r௉మభ௉యభ ൉ ൬
߱ଷ

߱ଷ െ ߱ଶ
	–
߱ଷ െ ߱ଶ

߱ଷ െ ߱ଶ
൰ 	→ 		

r௉యభ௉మయ
r௉మభ௉యభ

ൌ 	
߱ଶ

߱ଷ െ ߱ଶ
 

 

 

ሺ42ሻ 

 

Combining (40) and (42), it is finally obtained the same proportion as the one described in 

Hartman’s theorem. 

ଶଷݑ
ଶଵ′ݑ

ൌ
r௉యభ௉మయ
r௉మభ௉యభ

  

5.2 Projection along the normal direction.Velocity of the mathematical point associated 

with the centre of curvature 

As it is known, the centre of curvature of the path of a point is a fixed point. Thus, a 

mathematical point OA will be defined in order to study the position variation of the different 

centres of curvature of the path generated by A. In this paper is used the name centroma to refer 

to this concept. Consequently the path described by this mathematical point OA will be the 

evolute curve of the path generated by the motion of A. 

Now the objective is to obtain an expression that provides the velocity module of such 

mathematical point associated to the center of curvature of the path of any mobile point. As 

expressed in Fig. 7, from Hartman’s theorem: 

rைಲ஺
஺ݒ

ൌ
rைಲ௉మభ
ଶଵᇱݑ

 ሺ44ሻ 

Simplifying, 
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rைಲ௉మభ ൌ
1

ଵ

ఋమ௦௘௡ఏ
െ ଵ

୰ುమభಲ

 
 

ሺ45ሻ 

Being		ߜଶ the diameter of the inflection circle, and ߠ angle formed by the position vector of 

point A in the Euler-Savary local reference frame. Additionally, from Fig.9 can also be obtained 

obtain the angular velocity of the rigid body 3. 

߱ଷ	rைಲ௉మభ ൌ  ଶଵᇱ ሺ46ሻݑ

߱ଷ ൌ
ଶଵᇱݑ

rைಲ௉మభ
→ 	߱ଷ ൌ

߱ଶߜଶ ݊݁ݏ ߠ
rைಲ௉మభ

→ ߱ଷ ൌ ߱ଶߜଶ ݊݁ݏ ߠ ቆ
1

ଶߜ sen ߠ
െ

	1
r௉మభ஺

ቇ 
ሺ47ሻ 

߱ଷ ൌ ߱ଶ ቆ1 െ
ଶߜ
r௉మభ஺

݊݁ݏ  ቇߠ
ሺ48ሻ 

Being, 

ɣ ൌ
ଶߜ
r௉మభ஺

݊݁ݏ  ߠ
 

ሺ49ሻ 

߱ଷ ൌ ߱ଶሺ1 െ ɣሻ ሺ50ሻ 

This angular velocity ݓଷ represents the rotation of the normal line to the path. Deriving this 

expression with respect to the time, 

ଷߙ ൌ ଶሺ1ߙ െ ɣሻ െ ߱ଶ
݀ɣ
ݐ݀

 
ሺ51ሻ 

As explained, equation (12) has a vectorial form. In this section, the equation is projected in the 

normal direction n obtaining, 

	࢔ ൉ ࢛ଶଷ ൌ 	࢔ ൉
࢛ଷଵ߱ଷെ࢛ଶଵ ߱ଶ

߱ଷ െ ߱ଶ
൅ ࢔ ൉ ௉మభ௉యభܚ

߱ଷߙଶ െ ߱ଶߙଷ
ሺ߱ଷ െ ߱ଶሻଶ

  

ሺ52ሻ 

Being,  

 

	࢔ ൉ ࢛ଶଷ ൌ 0 

 

ሺ53ሻ 

  

	࢔ ൉ ࢛ଶଵ ൌ  ଶଵᇱᇱݑ

 

ሺ54ሻ 

௉మభ௉యభܚ ൌ െܚைಲ௉మభ 

 

ሺ55ሻ 
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	࢔ ൉ ைಲ௉మభܚ ൌ െrைಲ௉మభ 

Substituting (53), (54), (55) and (56) in (52), 

ሺ56ሻ 

ଷଵ߱ଷݑ ൌ ߱ଶ	ଶଵᇱᇱݑ െ rைಲ௉మభ
߱ଷߙଶ െ ߱ଶߙଷ
߱ଷ െ ߱ଶ

 ሺ57ሻ 

Substituting the previous results of angular velocity and accelerations (50), (51) in (57), 

ைಲ߱ଶሺ1ݑ െ ɣሻ ൌ ଶଵݑ
ᇱᇱ	߱ଶ െ rைಲ௉మభ

߱ଶߙଶሺ1 െ ɣሻ െ ߱ଶߙଶሺ1 െ ɣሻ ൅ ߱ଶ
ଶ ௗɣ

ௗ௧

߱ଶሺ1 െ ɣሻ െ ߱ଶ
 

ሺ58ሻ 

ைಲሺ1ݑ െ ɣሻ ൌ ଶଵݑ ݏ݋ܿ ߠ ൅ rைಲ௉మభ
1
ɣ
݀ɣ
ݐ݀

 
ሺ59ሻ 

So, the velocity of the centroma, has its direction normal to the trajectory of the point, and being 

its module, 

ைಲݑ ൌ ଶଵݑ
ݏ݋ܿ ߠ
ሺ1 െ ɣሻ

൅
rைಲ௉మభ
ɣሺ1 െ ɣሻ

݀ɣ
ݐ݀

 
ሺ60ሻ 

where,	

ɣ ൌ
ଶߜ
r௉మభ஺

݊݁ݏ  ߠ
 

ሺ61ሻ 

	

From equation (60) it can be observed that exists a locus of centromas, whose speed is infinite 

at a certain instant, 

1 െ ɣ ൌ 0 ሺ62ሻ 

 

݊݁ݏଶߜ ߠ ൌ r௉మభ஺ ሺ63ሻ 

 

It can be seen, how this locus corresponds to the inflection circle. 

The inflection circle is the locus of physical points whose normal acceleration is instantaneously 

zero. Thus, they describe a linear path during a differential step of time. In other words, the 

center of curvature of the path described by these points lies at infinity. 

As explained, when substituting the locus (63) in the equation (45) the result turns out to be an 

infinite distance between the pole and the centroma, verifying the feature of the inflection circle. 

rைಲ௉మభ ൌ 	
1

ଵ

ఋమ ௦௘௡ఏ
െ ଵ

ఋమ ௦௘௡ఏ

ൌ
1
0

 
ሺ64ሻ 

Hence according to this result, the centromas at infinity have an infinite speed. 
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6 Conclusions 

In this paper by studying the relative planar motion of three bodies, has been presented a 

formula for the calculation of the absolute pole velocities of the relative poles in the planar 

motion of three rigid bodies. It relates three absolute pole velocities and the position vector of 

the corresponding poles with the angular velocities and accelerations of the moving bodies. The 

formula allows the calculation of one of the absolute pole velocities from the other two, being 

known the angular velocities and accelerations of the moving bodies. It is applicable regardless 

of whether the instantaneous centers (poles) are located on physical points on the linkage or 

not. Previously, in section 2 the formula for the case of the absolute motion of two moving 

bodies has been obtained. It is verified that this is a particularization of the proposed formula. 

The formula is applied to two representative guiding mechanisms: the first one composed of 

two four-bar linkages synchronized by a coupler and the second one composed by one four-bar 

linkage and a slider-crank mechanism linked by a coupler bar All the examples analysed and 

the calculations done, have been simulated and verified using the GIM research and educational 

numerical software. 

Finally, the vectorial formula is projected in its two components verifiying its coherence with 

the Hartman’s Theorem and proposing the concept of centroma. This concept corresponds to a 

a mathematical point associated to the centers of curvature of the path described by a physical 

point of the moving body. Finally, the velocity of the centroma is obtained. 

The future work is focused on the application of the velocity of the centroma to obtain the locus 

of points in a moving solid that traces circumferential paths. 
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