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Summary  15 

Attention supports the allocation of resources to relevant locations and objects in a 16 

scene. Under most conditions, several stimuli compete for neural representation. 17 

Attention biases neural representation toward the response associated with the 18 

attended object [1, 2]. Therefore, an attended stimulus enjoys a neural response that 19 

resembles the response to that stimulus in isolation. Factors that determine and 20 

generate attentional bias have been researched, ranging from endogenously controlled 21 

processes to exogenous capture of attention [1–4]. Recent studies investigate the 22 

temporal structure governing attention. When participants monitor a single location, 23 

visual-target detection depends on the phase of an ~8 Hz brain rhythm [5, 6]. When 24 

two locations are monitored, performance fluctuates at 4 Hz for each location [7, 8]. 25 

The hypothesis is that 4 Hz sampling for two locations may reflect a common sampler 26 

that operates at 8 Hz globally which is divided between relevant locations [5–7, 9]. 27 

The present study targets two properties of this phenomenon, called rhythmic- 28 

attentional sampling: First, sampling is typically described for selection over different 29 

locations. We examined whether rhythmic sampling is limited to selection over space 30 

or whether it extends to feature-based attention. Second, we examined whether 31 

sampling at 4 Hz results from the division of an 8 Hz rhythm over two objects. We 32 

found that two overlapping objects defined by features are sampled at ~4 Hz per 33 

object. In addition, performance on a single object fluctuated at 8 Hz. Rhythmic 34 

sampling of features did not result from temporal structure in eye movements.   35 
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Results  36 

When two locations compete for resources, ongoing performance fluctuates at 4 Hz 37 

per location, in alternation. Several studies have replicated and expanded the basic 38 

findings of rhythmic sampling [10–15]. In addition, a physiological signature – the 39 

visual-gamma-band-response – tracks rhythmic sampling when attention is distributed 40 

across visual hemifields [16]. Recent work in awake behaving animals suggests that 41 

interactions between adjacent receptive fields generate rhythmic multi-unit activity 42 

(MUA) which is consistent with rhythmic sampling [17]. The multi-unit finding 43 

provides a putative generative mechanism for rhythmic sampling. Other studies have 44 

reported the engagement of frontoparietal attentional-control regions in the generation 45 

of rhythmic sampling [18, 19]. 46 

To date, all descriptions of rhythmic sampling in vision examined sampling of 47 

different locations. Features, which are non-spatial properties of objects, can also cue 48 

attentional selection; such selection processes are called feature-based attention. Here, 49 

we investigate whether rhythmic sampling extends beyond the case of spatial 50 

selection. Understanding the scope of rhythmic sampling bears consequences on the 51 

type of mechanisms that may account for it. If rhythmic sampling is a phenomenon 52 

limited to spatial attention, its mechanisms may rely on the spatial architecture of the 53 

visual system. If rhythmic sampling extends beyond spatial attention, this may point 54 

to a more general account for this phenomenon both within and beyond the visual 55 

system.  56 

Rhythmic sampling beyond spatial attention 57 

We examined performance in a task that required ongoing distributed attention over 58 

two objects superimposed in space (Figure 1A). Stimuli were two clouds of moving 59 
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dots [20] that appeared at the same location but were easily distinguishable. Each 60 

cloud was defined by a different dot motion direction and color. The onsets of the 61 

respective clouds were asynchronous (onset asynchrony, ∆ = 0.2-0.73 s). Stimulus 62 

presentation lasted up to 2.25 s. Participants were instructed to report a brief color 63 

change (30 ms) that occurred within one of the two superimposed clouds. The brief 64 

change affected 50% of the cloud-dots, and had one of eight target intensities. The 65 

color change could appear in one of 26 time bins following the second cloud onset 66 

(ranging from ∆+0.25 to ∆+0.75 s; exhaustively spaced with respect to the second 67 

cloud onset). The asynchronous onsets, and specifically the onset of the second cloud, 68 

contributed to the individuation of the two clouds, but also served as a reset. The 69 

assumption is that the onset of a new cloud captures attention [21]. Thus, including 70 

this reset in the design generates a reproducible attentional dynamic over multiple 71 

trials. The combination of exhaustive target spacing and the reset event allows the 72 

measurement of temporal structure in ongoing behavioral performance [7]. Finally, 73 

although rhythmic sampling was previously assessed by measuring accuracy at a pre- 74 

defined target intensity, we included several target intensities within the main 75 

experiment, and selected the intensity closest to threshold performance during offline 76 

analysis (Figure 2A, Figure S4A). 77 

We found that feature selection proceeded rhythmically. Performance on the two 78 

clouds fluctuated at ~4 Hz per cloud. As can be seen in Figure 3A, the spectra for both 79 

first and second cloud performance revealed significant peaks at 4 Hz (p = 0.019 and 80 

p = 0.0003 for first and second cloud respectively, multiple comparisons corrected). 81 

An analysis of the phase relation between the 4 Hz performance fluctuations of each 82 

cloud revealed that the phases were not significantly different from a uniform 83 

distribution (Figure 3B; Rayleigh test for non-uniformity, p = 0.81). Analyzing 84 
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performance for a target-intensity which results in an average performance of 50% 85 

ensures that performance over time can be maximally modulated and thus could 86 

reveal temporal structure in ongoing performance. Nonetheless, an additional analysis 87 

that pooled data with accuracy levels ranging from 25% to 75% demonstrates the 88 

same result robustly (p < 0.001). Finally, analyzing different accuracy levels 89 

separately within this range also reveals the same pattern of results. 90 

Our findings demonstrate that rhythmic sampling occurs not only for the case of 91 

spatial selection, but also governs selection among superimposed items defined by 92 

features. An analysis of the phase relations of performance on the first and second 93 

cloud revealed that different participants had different phase relations, indicating that 94 

as opposed to rhythmic sampling over locations, the relation of performance on one 95 

object was not consistently in opposition to the performance on the other object.  96 

Controlling for eye movements 97 

Recently, several groups have investigated the link between saccade generation and 98 

fluctuations in performance and brain activity [14, 22–26]. For example, Bellet et al. 99 

[23] reveals rhythmicity in performance as a function of saccade onset when attention 100 

is distributed over two locations. In the present study, attention is not distributed over 101 

multiple locations; therefore, the reported spatial patterns of microsaccades during 102 

spatial selection and their underlying processes do not apply to our experimental 103 

design.  104 

However, moving stimuli often generate microsaccades (MSs) in a consistent 105 

direction relative to movement [27], a pattern which may itself be related to 106 

performance fluctuations. An examination of the eye position in our data reveals that 107 

such directional selectivity of MSs is also present in response to our stimuli (Figure 108 
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S3). Importantly, however, MS execution during stimulus presentation in the present 109 

study is sparse. We repeated the analysis of accuracy performance using MS-free 110 

trials only. This analysis revealed the same pattern of results as the inclusion of all 111 

trials (see Figure S2A-C and STAR methods). Thus, fluctuations in performance 112 

cannot readily be the consequence of either MS-rate fluctuations or temporal structure 113 

present in MS direction [25].  114 

Evidence for common sampling at 8 Hz 115 

Previously, 4 Hz rhythmic sampling was assumed to reflect a common sampler 116 

operating at 8 Hz [7, 28]. Such a sampler may be intrinsic to the selection process or 117 

could be a global, non-selective, drive that governs local interactions within the 118 

sensory substrate [29–31]. Regardless of the specific implementation, the common 119 

sampler account assumes that rhythmic sampling at 4 Hz for two objects is the result 120 

of dividing 8 samples over two relevant items. Studies documenting 8 Hz “perceptual 121 

cycles” measure perception as a function of oscillatory brain activity [9, 32–35] and 122 

utilize vastly different experimental setups and attentional control as compared to 123 

those measuring rhythmic sampling. This results in task demands and analytic 124 

approaches that have so far only suggestively linked the 8 Hz of “perceptual cycles” 125 

with the 4 Hz of “attentional sampling”. We sought to examine this putative link using 126 

identical stimuli and experimental demands.  127 

In a second experiment, participants were presented with a single moving dot-cloud, 128 

rather than two separate clouds. We used the same color-change target presented at 26 129 

time bins relative to the stimulus onset (Figure 1B).  130 

If rhythmic sampling at 4 Hz indeed results from the division of a common 8 Hz 131 

sampler, an 8 Hz fluctuation should be measured in the single-cloud experiment. 132 
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Conversely, if rhythmic sampling is a separate phenomenon from the 8 Hz modulation 133 

previously described as a function of EEG phase [5, 6], then behavioral performance 134 

on a single cloud may not fluctuate at all. Such a finding would indicate that rhythmic 135 

sampling may be a mechanism dedicated to resolving interactions among competing 136 

stimuli when several items are task relevant. 137 

We found that performance on a single cloud proceeded rhythmically at double the 138 

frequency of the two-cloud sampling – 8 Hz (Figure 3C; p = 0.04 for the accuracy 139 

analysis, multiple comparisons corrected). There was no significant peak at any other 140 

frequency in the spectrum. This finding is consistent with previously documented 141 

fluctuations in performance as a function of rhythmic brain activity at a similar 142 

rhythm [5, 6, 9]. An additional analysis that pooled data with accuracy levels ranging 143 

from 25% to 75% demonstrated the same result robustly (p<0.001). Together, the two 144 

experiments demonstrate with near identical stimuli and task demands that selection 145 

of one cloud proceeds at 8 Hz and that when two clouds are presented in 146 

superposition, the rhythmic sampling results in a 4 Hz performance pattern in each 147 

cloud.  148 

The single-cloud experiment also included a large proportion of trials with no MSs. 149 

An analysis including MS-free trials only revealed the exact same pattern of results as 150 

the inclusion of all trials (Figure S2D, E). Thus, the 8 Hz fluctuations in performance 151 

cannot be the consequence of either MS-rate fluctuations or temporal structure present 152 

in MS direction [25].  153 

The present experimental design allowed for measurement of both accuracy and 154 

threshold fluctuation in performance (see STAR methods). Before discussing the 155 

implications of our main results we briefly note the merits and pitfalls of this new 156 
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experimental procedure. At a technical level, including several target-intensities in the 157 

main experiment is in place of an independent estimation of perceptual thresholds (as 158 

previously required). The multitude of target intensities generates data for offline 159 

calculation of perceptual thresholds. Additionally, the inclusion of several target- 160 

intensities allows for the investigation of performance fluctuations for different 161 

accuracy levels, and importantly, fluctuations in threshold-intensity performance – a 162 

more continuous measure of perceptual sensitivity as a function of time. Threshold 163 

fluctuations show similar spectral patterns as the accuracy measures (Figure 4). 164 

However, all things considered, we would like to note that accuracy performance 165 

provided a more robust and stable finding of rhythmic sampling in both experiments.  166 

 167 

Discussion 168 

The present study reveals rhythmic sampling beyond spatial attention – selection 169 

processes that are cued by non-spatial features proceed rhythmically. Two dot-motion 170 

clouds were superimposed in space and defined by non-spatial properties: motion 171 

direction, dot color as well as an asynchrony in the onsets of the two clouds. By 172 

design, participants were able to readily identify the two clouds, and performance 173 

fluctuated rhythmically at 4 Hz for targets in each of them. 174 

In addition, we also demonstrate frequency doubling when comparing performance on 175 

two objects to performance on a single object. Ongoing performance on two clouds 176 

proceeded at ~4 Hz per cloud while ongoing performance on one cloud proceeded at 177 

8 Hz. This provides the “missing link” between the phenomenon of “perceptual 178 

cycles” previously documented with non-invasive physiology (EEG) [6] and 179 

rhythmic-attentional sampling [7, 31], documented in behavioral experiments. This is 180 
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suggestive that indeed ~8 Hz fluctuations form the basic period with which we 181 

explore our environment and that this common drive is the determining factor of the 182 

rhythmic sampling measured at ~4 Hz.  183 

Feature-based attention shares several properties with spatial attention. For example, 184 

both forms of selection have a similar effect on the response magnitude and 185 

correlation structure of neuronal populations [36, 37]. There are, however, important 186 

differences between feature-based, and spatial attention. The modulation of neural 187 

responses to a selected feature (e.g., color or motion direction) tends to affect neural 188 

populations that respond beyond the spatial scope of attended stimuli, and could even 189 

extend to the hemisphere processing unattended stimuli [36, 38, 39]. Thus, the 190 

implementation of feature-based attention is not specific to the location of the object 191 

bearing the selected feature – it is global. Here, we document that the implementation 192 

of feature-based attention, like spatial attention, is rhythmic. Contrary to rhythmic 193 

sampling over space, however, the relation of the 4 Hz sampling of the first and 194 

second cloud is not fixed in anti-phase as shown for spatial attention, but rather 195 

variable in the group of individuals tested here. Rephrased, our experimental design 196 

generated inter-individual heterogeneity in the temporal relations of performance on 197 

the two clouds. Future studies will determine whether this heterogeneity is indeed a 198 

defining property of feature attention or whether it results from suboptimal estimation 199 

of phase relations, in spite of the robust finding of a 4 Hz peak in performance 200 

accuracy for both clouds. 201 

How do these findings qualify our understanding of the mechanisms generating and 202 

governing rhythmic sampling? The field is far from agreement on the 203 
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neurophysiology of rhythmic sampling. In what follows we discuss our findings in the 204 

context of different accounts that have recently been proposed.  205 

According to one account, rhythmicity could be a generic, reflexive property of the 206 

neural substrate. Accordingly, the sampling dynamic results from local interactions 207 

between the response-strength of different neuronal populations. Thus, two objects – a 208 

red and a blue cloud – could engage in mutual inhibition that results in the successful 209 

representation of one of the two objects at any given cycle of a global rhythmic drive. 210 

For example, alpha oscillations (~8-12 Hz), which are readily measured over visual 211 

areas using non-invasive physiology, are considered a rhythmic-inhibitory drive, 212 

globally present in the visual cortex [34, 35, 40–42]. It is possible that this type of 213 

global rhythmic temporal structure at ~8 Hz  shapes ongoing perception and, together 214 

with inhibitory interactions of competing objects [1], results in the division of the 215 

rhythmic sampling from 8 Hz to 4 Hz [29, 31]. This logic fits well with findings in 216 

spatial attention, where the phase relation between performance in one location and 217 

performance in another location are in perfect alternation. Here, we did not find anti- 218 

phase relations for the 4 Hz fluctuations in performance on one vs. the other cloud – 219 

but rather the phase relations were uniformly distributed as discussed above.  220 

Another account [18], is that rhythmic sampling is inherent to mechanisms controlling 221 

attention. Several networks and brain structures have been proposed for generating 222 

such control signals onto the sensory substrate [21, 43, 44]. Specifically, Fiebelkorn et 223 

al. [18, 45] have demonstrated that frontoparietal networks account for rhythmic 224 

fluctuations in performance. Attributing sampling to this substrate is, in essence, 225 

attributing this rhythmic mechanism to attentional control regions as opposed to local 226 

interactions within the sensory substrate. 227 
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Finally, a recent study documented that center-surround receptive field interactions 228 

generate rhythmic neuronal activity that matched fluctuations in detection 229 

performance of awake behaving non-human primates [17]. Accounting for rhythmic 230 

sampling with center-surround interactions is suggestive of a reflexive mechanism 231 

that is inherent to the spatial architecture of the visual system – i.e., the classical 232 

receptive fields. It remains to be shown whether such local interactions capture the 233 

entire scope of rhythmic sampling. For example, rhythmic sampling was described 234 

over distant parts of the visual field – and commonly between the two visual hemi- 235 

fields [7, 8, 14, 16].  236 

Our finding that feature-based attention proceeds rhythmically further supports an 237 

implementation of rhythmic sampling that is not limited to spatial-receptive-field 238 

interactions. Rhythmic sampling in feature-based attention, as well as the direct 239 

demonstration of sampling-frequency doubling – when two clouds become one – 240 

suggest that rhythmic sampling is a general rhythmic mechanism that shapes ongoing 241 

performance as well as serves to structure selection processes in light of competition.   242 
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Figure Captions 398 

Figure 1: Stimuli and task procedure. Dot-motion clouds were used for both 399 
experiments. The detection target was a decrement in saturation that affected 50% of 400 
the elements of a given cloud stimulus. Participants were instructed to press a button 401 
if they detected a target. (A) The two-cloud experiment consisted of two 402 
superimposed dot-motion clouds that were defined by motion direction and color. The 403 
first cloud preceded the second cloud with a variable interval Δ (0.2-0.73 s). Target 404 
occurrence was exhaustive, i.e. at all possible onset points, relative to the second- 405 
cloud onset and could occur within either cloud. The magnified timeline and vertical 406 
bars signify possible target times over the course of an experiment. A given trial never 407 
had more than one target. (B) The single-cloud experiment consisted of one dot- 408 
motion cloud. Targets were presented exhaustively relative to cloud onset. See also 409 
Figure S1 410 

Figure 2: Time course of detection accuracy (A, C) and intensity thresholds (B, D) 411 
for the two-cloud and single cloud experiments (A, B and C, D, respectively). Note 412 
that time average data only loosely represents the results reported here, since the main 413 
findings are generated from single-subject spectral analysis which is then entered into 414 
the statistical model or averaged for display purposes. Shaded regions denote ±SEM. 415 
See also Figure S2 and Figure S4. 416 

Figure 3: Spectral analysis results of accuracy time courses from the two-cloud and 417 
single-cloud experiments. (A, C) Amplitude spectra for the two-cloud and one-cloud 418 
experiments. Blue and red lines represent first and second cloud stimuli. (B) Phase 419 
histograms for the phase relation between the first and second object accuracy 420 
performance at 4 Hz. Significance in all spectra, corrected for multiple comparisons 421 
(p<0.05), is denoted by a horizontal line above the significant frequency peaks. 422 
Shaded regions denote ±SEM. See also Figure S2. 423 

Figure 4: Threshold-intensity spectral analysis results from the (A) two-cloud and (B) 424 
single-cloud experiments. Shaded regions denote ±SEM.  425 
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STAR Methods  426 

Contact for reagent and resource sharing 427 

Further information and requests for resources should be directed to and will be fulfilled by 428 

the Lead Contact, Ayelet N. Landau (ayelet.landau@mail.huji.ac.il). 429 

Experimental model and subject details 430 

Twenty-five individuals (16 females, 3 left handed, average age 25) with normal or corrected- 431 

to normal visual acuity participated in the two-item experiment, and thirty-six individuals (19 432 

females, 7 left handed, average age 24) with normal or corrected-to normal visual acuity 433 

participated in the one-cloud experiment. Participants gave informed consent before the 434 

experimental session and received monetary compensation. The study was approved by the 435 

institutional review board of ethical conduct at the Hebrew University of Jerusalem.  436 

Method details 437 

Apparatus and stimuli 438 

The stimuli and experimental software were generated using python (PsychoPy2 toolbox [46], 439 

python version: 2.7.11). Stimuli were presented on a BenQ XL2420Z LCD screen with 440 

100 Hz refresh rate, 1920 x 1080 resolution, positioned 57 cm from the participant. During 441 

both experiments, participants were instructed to gaze centrally at a grey cross (0.9° visual 442 

angle; RGB value: [0.7;0.7;0.7]) during the entire trial. The stimulus consisted of a dot- 443 

motion cloud with 400 randomly scattered dots moving coherently (100% coherence) across a 444 

3° circular aperture with a grey background. Dots lasted as long as they were visible within 445 

the annular borders of the clouds (i.e., dot life-time infinite), and had a speed of 0.86 deg/s. 446 

Initial cloud luminance values for the blue and red clouds were 20 and 52 cd/m^2 447 

respectively. Colors were set on a HSV space and the detection-target was a brief (30 ms) 448 

decrease in saturation of 200 randomly selected dots, out of the 400 dots making up a cloud. 449 

The decrement in saturation had 8 different levels (i.e., target intensities) tailored for each 450 

participant following a short training. The training included performing on trials with 10 451 

different levels of color-saturation decrements for each cloud (red and blue) separately. The 452 

saturation-decrement levels ranged from 0.5 – 1 (HSV) on a gamma corrected monitor, each 453 

repeating twice. For the main experiment a subset of 8 saturation-decrement values was 454 

selected based on performance in the training block and each intensity level was repeated 5 455 

times per time bin. Saturation-decrement values were selected based on training. Floor and 456 

ceiling values were identified within the 10 levels presented in training, these values formed a 457 

range that was then divided into 8 equally-spaced saturation-decrement levels, referred to as 458 
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target-intensity levels in the manuscript. Ten percent of the trials did not include a target (i.e., 459 

catch trials). False alarms were rare and were below 1% on average (0.75% and 0.5% for the 460 

two- and one-cloud experiment respectively). The two-cloud experiment included a total of 461 

2288 trials ran over two sessions and the single-cloud experiment included a total of 1144 462 

trials ran within a single session. 463 

For both experiments, the fixation cross was present on the screen throughout the trial. Each 464 

trial started with a variable fixation period of 0.5-0.8 s followed by a stimulus onset. During 465 

both experiments eye movements were monitored using a high-speed infrared eye tracking 466 

camera (Eyelink 1000, SR Research). Blinks or saccades exceeding 2° visual angle radius 467 

away from fixation were marked as fixation violations, resulting in exclusion of the trial. 468 

Excluded trials were repeated to ensure the acquisition of full data sets for all participants at 469 

the end of each experimental block.  470 

Design and procedure 471 

Two-cloud experiment 472 

The two-cloud experiment began with a familiarization stage that lasted approximately 15 473 

minutes. During the familiarization stage, participants performed target detection on single- 474 

cloud stimuli. The single-cloud stimuli were used in training in order to promote the 475 

individuation of the different clouds as well as in order to familiarize the participants with the 476 

experimental setup and task. In the main experiment, following the fixation period, a blue 477 

cloud was presented centrally for up to 2.25 s after stimulus onset. Following a variable time 478 

between 0.2-0.73 s (denoted Δ), a red cloud was added to the display with an orthogonal 479 

motion direction.  The target could appear after the second cloud onset at one of 26 possible 480 

times ranging Δ+0.25 to Δ +0.75 seconds; i.e., exhaustive relative to the second cloud onset. 481 

Accuracy was calculated based on RT distribution. A response was labeled corrected if 482 

reaction times were delivered within 1.5 s after target onset. In addition, reaction times shorter 483 

than 100 ms or longer than two standard deviations above the mean were discarded as likely 484 

resulting from an erroneous response (means and standard deviations were calculated 485 

separately per target color and per saturation level). For both experiments in the absence of 486 

target-detection or during catch trials, no response was required and the stimulus terminated 487 

after 2.25 s followed by the next trial. 488 

Single-cloud experiment 489 

After the fixation period, a blue dot-motion cloud was shown centrally for up to 2.25 s. The 490 

motion direction was determined randomly in each trial (range: 1-360°). The target (i.e., a 30 491 

ms saturation decrement) occurred at one of 26 possible times from 0.25 to 0.75 s relative to 492 
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stimulus onset. Participants were instructed to press the spacebar as fast as possible, once they 493 

detected the color change. 494 

Quantification and statistical analysis 495 

Analyses were performed with Matlab (The Mathworks Inc., Natick MA) using the FieldTrip 496 

toolbox [47]. We measured the accuracy for each target intensity at each temporal frame. 497 

Detection accuracy at the eight saturation levels for each frame were fitted with a cumulative 498 

normal Gaussian function using the Palamedes toolbox [48]. The function fit was performed 499 

with two free parameters (threshold and slope) and two fixed parameters (guess, set to zero, 500 

considering the exceedingly low chance level and lapse, set to 0.01). This experimental 501 

approach resulted in psychometric curves for each probed time point (Figure 1; the 26 502 

possible time intervals). Figure S1 depicts the logic and the resulting psychometric curves for 503 

an example subject. All subsequent analyses of rhythmic fluctuations in behavior were 504 

performed on detection accuracy values at a fixed threshold intensity and on the 50% 505 

threshold estimates. The corresponding calculations are described below. 506 

Analysis of behavioral fluctuations 507 

Accuracy fluctuations 508 

In the main accuracy analysis, we focused on a single intensity level out of eight. In order to 509 

select the relevant target-intensity, for each participant, we computed the average 510 

performance (hit rate) for each target-intensity level collapsing over all time bins. We then 511 

selected the target-intensity level (i.e., color-saturation decrement level) for which 512 

performance was closest to 50% accuracy for a given participant. We analyzed all the trials 513 

with that single, fixed, target level, and generated an accuracy time course. This analysis is 514 

similar to the analysis approach in previous studies investigating rhythmic sampling [7]. 515 

However, previous studies normally assessed the fixed intensity level in a separate “threshold 516 

block”. A “threshold block” approach does not account for variability stemming from 517 

fluctuations over time, and thus such variability was treated as noise. We incorporated several 518 

intensity levels into the main experiment wherein time bins are exhaustively included by 519 

design. This enabled us to account for this variance and determine the intensity level for an 520 

accuracy analysis offline after, and based on, the collection of ongoing performance over 521 

time. For analysis of accuracy at a fixed target-intensity, individual subjects were included if 522 

the intensity level closest to 50% performance fell within the 25%-75% hit rate. In the two- 523 

cloud experiment the range of actual accuracy performance in this analysis was 28%-70% 524 

with a median of 60% for the blue cloud and 31.15%-72.3% with a mean of 50% for the red 525 

cloud. In the one-cloud experiment the range of accuracy was 37%-71% with a mean of 52% 526 
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performance. This criterion ensured that we measured performance with a sufficient dynamic 527 

range, avoiding performance at either ceiling or floor, which results in minimal or no dynamic 528 

range. This criterion resulted in the inclusion of 34 out of 36 and 22 out of 25 subjects for the 529 

one-cloud and two-cloud experiments, respectively. In order to quantify fluctuations in 530 

performance for each subject we de-trended the accuracy time course (2nd order polynomial 531 

removal), windowed the data using a Tukey window [49], with a ratio of 50% taper section to 532 

total segment length. Data were then padded to double its sample count (52 samples) and 533 

subjected to a fast Fourier transform using the Fieldtrip toolbox in Matlab as well as built-in 534 

functions. Figure 3A, C depicts the average of individual subject spectra. 535 

Threshold-estimate fluctuations 536 

In addition to analyzing the accuracy-time course, which summarizes binomial performance, 537 

we sought to track continuous perceptual threshold fluctuations. To this end, we also analyzed 538 

the unfolding of detection threshold-estimates. For each time bin, after fitting accuracy data 539 

from each target-intensity with a psychometric curve (cumulative normal), we identified the 540 

target intensity that corresponded to 50% detection threshold for each time bin separately. We 541 

then constructed a time course from target-intensity (i.e., saturation decrement) values that 542 

corresponded to the threshold estimates (rather than accuracy values). In the one-cloud 543 

experiment, 3 subjects were excluded due to either an excessive guess rate or lapse (greater 544 

than 20% on either side, indicating that the target intensity range was not specified correctly 545 

for their level of performance), and 2 additional subjects were excluded due to poor fitting of 546 

psychometric curves (median pDev across time bins < .1; pDev is a measure of goodness of 547 

fit ranging between [0 1]). All subjects were included in the two-cloud experiment. The 548 

detection of a color saturation decrement could have a very broad range. In order to account 549 

for the fact that target intensity varied and thus global threshold estimates from different 550 

subjects came from different target intensity ranges, we normalized the threshold time-courses 551 

so that all participants’ best performance value is 1, by dividing the time course values by 552 

maximal saturation values of the respective time course. This limited the upper bound of 553 

target intensity but allows different range of fluctuation depth in the data. The time-courses 554 

constructed from normalized threshold estimates were then subjected to a spectral analysis 555 

identical to that presented in the accuracy time course analysis (described above). Figure 4A, 556 

B depicts the results for this analysis approach. 557 

Phase relation analysis 558 

In the two-cloud experiment the phase relation was quantified for the significant peak 559 

frequency at 4 Hz. For this analysis the fast Fourier transform was performed on the time 560 

courses. Phase differences were then calculated based on the complex Fourier outputs for 561 
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4 Hz. Specifically, sampling of the items in alternation predicts phase opposition (180° phase 562 

difference). This analysis was performed for both accuracy performance measures and 563 

threshold performance measures, and depicted for accuracy performance in Figure 3B.  564 

Analysis of eye-movement 565 

We analyzed the eye-movement data of 28 and 19 subjects in the one- and two-cloud 566 

experiments, respectively. In the one-cloud experiment, out of the original 36 subjects, 6 were 567 

missing the raw data files from the eye tracker, 2 had extensive amounts of missing eye data 568 

due to calibration failures midway through the experiment, and 2 were recorded only 569 

monocular data due to calibration difficulties. These last two were included in the following 570 

analyses, but their microsaccade detection process was based on monocular data only. In the 571 

two-cloud experiment, out of the original 25 subjects, 2 were missing the raw data file from 572 

the eye tracker on one session and 4 subjects had missing data due to calibration difficulties 573 

midway through the experiment (1 subject on both sessions and 3 subjects on one). 574 

We identified microsaccades as follows. Gaze position and pupil dilation data were recorded 575 

binocularly at 1000 Hz, and were epoched from cloud onset to target onset in the one-cloud 576 

experiment; and in the two-cloud experiment from the 1st cloud onset to the 2nd cloud onset 577 

(denoted here Phase I), and from the 2nd cloud onset to target onset (denoted Phase II; catch 578 

trials were excluded from all following analyses). Note that these epochs varied in length 579 

between 0.25-0.75s, depending on the time-bin in which the target appeared or the 580 

asynchrony of cloud appearance. 581 

Preprocessing and microsaccade detection 582 

We excluded from further analysis those epochs that included missing or deviant pupil data 583 

(z-score threshold set to -3, the mean and SD estimates used for z-thresholding were 584 

calculated over blocks of 20 experimental trials, excluding missing data points; these artifacts 585 

were padded by 100ms on either side to ensure gaze position data included no overshoot that 586 

might be falsely detected as a microsaccade). This exclusion criterion left all subjects whose 587 

data was originally included in the analysis of eye movements with above 30 and 60 trials per 588 

target onset condition in the one- and two-cloud experiments, respectively. 589 

Gaze position data was subsequently demeaned and filtered using a low-pass Butterworth IIR 590 

filter with a cutoff of 60 Hz, and transformed from pixels degrees of visual angle. Saccades 591 

were detected following standard procedure [50] and using an established algorithm [51], in 592 

which vertical and horizontal gaze velocity is compared against an elliptic velocity threshold. 593 

The elliptic threshold was set to be six times the SD of the velocity time-series, using a 594 

median-based estimate of the SD. This threshold was calculated based on the entire velocity 595 
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time-series (combined across epochs) to protect detection from being biased by the variable 596 

trial length, and resulting in a single threshold criterion per subject. A saccade was identified 597 

when the velocity time-series exceeded the elliptic threshold for 6 consecutive samples, in 598 

both eyes (imposing a 6 ms minimal duration for detected saccades, and restricting the 599 

analysis to binocular saccades). Saccades with a peak velocity higher than 3 SDs from the 600 

mean (in either eye) were excluded from further analyses. We set the minimal interval 601 

between saccades to 50 ms, and kept the saccade larger in amplitude in case two saccades 602 

occurred during an interval of 50 ms or less. Saccade amplitude was calculated as the 603 

Euclidean distance between the most eccentric to the least eccentric position of gaze during 604 

the saccade, averaged between the two eyes. We restrict the following discussion to saccades 605 

smaller than 2 degrees of visual angle in amplitude, henceforth referred to as microsaccades. 606 

As a validity measure of the detected microsaccades, we ensured that they followed the 607 

expected correlation between microssacade velocity and amplitude. The Pearson coefficient r 608 

was >0.83 for all participants. 609 

Microsaccade direction was calculated as the four-quadrant inverse tangent of the vertical and 610 

horizontal microsaccade components (the vertical and horizontal difference in gaze position 611 

between the first and last microsaccade samples, averaged between the two eyes). Our eye- 612 

tracking device is set such that the coordinates to the top-left corner of the screen are set to 613 

(0,0), and therefore growing values on the vertical axis correspond to lower positions on the 614 

display. We thus inverted the sign of the vertical component in the calculation of 615 

microsaccade direction to maintain an upright axis. 616 

Performance in microsaccade-free data 617 

We repeated the analysis of accuracy fluctuations (see above) considering only the subset of 618 

trials that were free of microsaccades. Thus, we analyzed the remaining trials of 16 subjects in 619 

the two-cloud experiment (excluding the three subjects with insufficient dynamic range from 620 

the group of 19) and 26 subjects in the one-cloud experiment (excluding the two subjects with 621 

insufficient dynamic range from the group of 28), using each subject’s selected target- 622 

intensity level for which performance was closest to 50% accuracy. The average (and SD) 623 

proportion of trials that were submitted to this analysis was 0.68 (0.01) and 0.53 (0.2) in the 624 

two- and one- cloud experiments, respectively. Due to the subsampling, in the calculation of 625 

accuracy time courses, 2% and 8% of the timepoints were missing in the two- and one- cloud 626 

experiments. In these cases, we imputed missing points with individual subject means. 627 

Directional selectivity of microsaccades 628 
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We examined the possibility that our stimuli induce directional microsaccades consistent with 629 

the dot-motion direction. Trials from the two-cloud experiment were included in this analysis. 630 

Since trials contain 0.25-0.73 s of a single cloud presentation before the onset of the second 631 

cloud, this allows for a within-subject examination of microsaccade directionality both when 632 

viewing one cloud and when the second cloud is added to the display. On each trial that 633 

included a microsaccade, we subtracted the direction of the first cloud motion from the 634 

direction of the executed microsaccade on that trial. This results in a distribution of 635 

microsaccade directions that share a single angle axis per subject, a distribution that can be 636 

investigated as a function of the microsaccade time during the trial. An experimental trial was 637 

generally divided into two different phases based on the amount of clouds and motion 638 

displayed. Phase 1 is the epoch in which the first cloud is displayed. Phase 2 is the epoch in 639 

which a second cloud is added to the display and thus two clouds are simultaneously on, 640 

moving coherently in two different directions (always separated by 90°). These results are 641 

depicted in Figure S3. 642 

Statistical Analysis  643 

Accuracy fluctuations 644 

Statistical significance of the spectral-amplitude peaks was assessed using a randomization 645 

procedure. The null hypothesis states that there is no temporal structure in performance. We 646 

used the response variation intrinsic to our data to generate performance time courses devoid 647 

of temporal structure. Per subject, we performed one thousand random exchanges within each 648 

time bin across all intensity levels. On each iteration we selected the target-intensity level for 649 

which the proportion of hits was closest to 50%, we generated an accuracy time course of 650 

trials in that intensity level, and finally quantified the fluctuation of this accuracy time course 651 

in the exact same fashion as used for the observed accuracy fluctuations, averaging the 652 

resulting power spectra across subjects. Each iteration resulted in an average spectral 653 

amplitude at each frequency. However, a single randomization distribution was generated 654 

from this procedure by selecting, per iteration, the maximal amplitude value across 655 

frequencies generated from the shuffling procedure. This approach corrects for multiple 656 

comparisons over the different frequencies explored in these analyses [43]. 657 

Threshold-estimate fluctuations 658 

Statistical significance of the spectral-amplitude peaks was assessed using a randomization 659 

procedure. The null hypothesis states that there is no temporal structure in performance, and 660 

therefore the time points are exchangeable. The null distribution of power estimates was 661 

obtained by randomly shuffling the time courses of intensity threshold estimates 1000 times 662 

within subject, thus dissociating performance from time bin, and computing the power spectra 663 
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of these permuted time courses using identical parameters. However, a single randomization 664 

distribution was generated from this procedure by selecting, per iteration, the maximal 665 

Fourier-amplitude value generated from the time-shuffling procedure, regardless of 666 

frequency. This approach corrects for multiple comparisons over the different frequencies 667 

explored in these analyses [43]. 668 

Phase relation analysis 669 

For the phase analysis non-uniformity was tested using circular statistics on the phase 670 

difference values (Rayleigh test for non-uniformity in circular data, CircStats toolbox [52]). 671 

Performance in microsaccade-free data 672 

Statistical significance of the spectral-amplitude peaks was assessed using a randomization 673 

procedure. The null hypothesis states that there is no temporal structure in performance, and 674 

therefore the time points are exchangeable. The null distribution of power estimates was 675 

obtained by randomly shuffling behavioral responses 1000 times (within subject and within 676 

the saturation level used to compute the accuracy time course), thus dissociating performance 677 

from time bin, computing detection time courses over the permuted data and the power 678 

spectra thereof using identical parameters. 679 

In the one-cloud experiment, the p-value at 8 Hz was obtained by considering the proportion 680 

of 8 Hz power estimates from a null distribution that were more extreme than the observed 681 

power estimate. 682 

In the two-cloud experiment, the p-value at 4 were obtained by considering the proportion of 683 

4 Hz power estimates from a null distribution that were more extreme than the observed 684 

power estimate for each target color.  685 

Directional selectivity of microsaccades 686 

We tested the difference in distributions of microsaccade directions as a function of the 687 

microsaccade time during the trial (Phase 1 or Phase 2, see section in the eye-data analysis 688 

above) using Kuipers test, a circular version of the Kolmogorov-Smirnov test of difference 689 

between the distribution of two samples, implemented in CircStats toolbox [52]). 690 

Data and software availability 691 

Behavioral data and raw eye-movement data will be made available upon request by 692 

contacting the Lead Contact, Ayelet N. Landau (ayelet.landau@gmail.com). Custom-built 693 

MATLAB scripts are available online: 694 

https://osf.io/jspdb/?view_only=15eb58ac0d904442bb4aa6ad574697dd. 695 

mailto:ayelet.landau@gmail.com
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Supplemental Data



Figure S1: Schematic illustration of the experimental approach and individual 
subject data for the single-cloud experiment. (A,C) Original reports of rhythmic 
sampling used a “threshold block” which assessed performance at different levels of 
target intensities (in this example, color-saturation, the x-axis of panel A). Then, derived 
from this block, the threshold level corresponding to 50% performance was identified 
(marked in red, at the 50% level) and used for the rest of the experiment. Panel C marks 
the parameter space that such an experimental block covers with a red line. (B,D) In the 
current design, all target intensities are used within the full experimental design. Thus, 
the full parameter space is included in the experimental design – as marked by the red 
surface in D. (E) illustrates the resultant hypothetical data from the original approach and 
(F) illustrates the hypothetical data from the current design where in  each time point a 
function is fitted and the threshold is estimated. (G, H) demonstrate the individual subject 
data from the single-cloud experiment. (G) Raw data is plotted for all saturation levels 
over all time points. The data is not fitted by a psychometric curve, but the fixed target 
intensity level (i.e., saturation) is identified for which average performance is closest to 
50%. At that fixed intensity, an accuracy time course can be composed from the different 
trials. (H) The same data as in G can be fitted with psychometric curves per time bin. 
Then, the threshold estimates from the function can be tracked as a function of time. (I) 
and (L) provide the two dimensional view of the measure of interest depicted in three 
dimensions in G and H. Color on blue surfaces denotes the accuracy level ranging from 0 
(dark) to 1 (light-blue). 
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Figure S2: Time course of detection accuracy, and spectra for the two-cloud and one-cloud 
experiments, including only trials free of MSs. Note that time average data (A, D) only loosely 
represents the results reported here, since the main findings are generated from single-subject spectral 
analysis which is then entered into the statistical model or averaged for display purposes. Shaded regions 
denote ±SEM. (B) Amplitude spectra for the two-cloud experiment for accuracy measures. Blue and red 
lines represent first and second cloud stimuli. (C) Phase histogram for the phase relation between the first 
and second object performance at 4 Hz for accuracy measures. (E) Amplitude spectra for the single-cloud 
experiment for accuracy measures. Significance in all spectra, assessed for pre-determined frequency 
components (p<0.05), is denoted by a horizontal line above the significant frequency peaks; transparent 
horizontal line denotes a marginal effect (p<0.07). Shaded regions denote ±SEM. 
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Figure S3: Directional selectivity of MSs. (A, B) Phase histograms for the subject mean directionality of 
MSs in the 2-cloud experiment during single-cloud presentation (i.e., during the interval Δ) and two-cloud 
presentation (i.e., after the onset of the second cloud), respectively. Direction 0 corresponds to the direc-
tion of movement of the first cloud dots.
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Figure S4: First and second experiment time courses for accuracy (A,C) and threshold (B,D). Raw 
average data identical to data presented in main Figure 2 except with no detrending applied.


