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Abstract

Wind energy is becoming the real green energy alternative to the con-

ventional fossil fuel sources, as the increment of the new wind farm

projects worldwide demonstrates. The offshore wind presents many

advantages compared to its onshore counterpart, but the current bottom-

fixed technology is limited by the water depth since the supporting

structures can only be installed in shallow water coastal areas. There-

fore, a solution to overcome this limitation has been developed by

mounting the wind turbines on floating structures, i.e. the Floating

Offshore Wind Turbines.

Early studies of Floating Offshore Wind Turbines have shown that con-

trol plays an important role for the dynamic behaviour of the system

due to the possible platform negative damping effect. Therefore, sev-

eral control techniques have been proposed in the last years in order

to avoid such a negative effect and improve the performance of the

Floating Offshore Wind turbines.

In this thesis, an advanced control technique has been designed and

tuned to improve the overall performance of Floating Offshore Wind

Turbines in terms of power regulation and global mechanical loadings,

as well as to reduce the impact of the waves in the floating platform

motion. Two platform concepts have been studied with more detail,

(1) the ITI Energy’s barge concept with 5-MW wind turbine and (2)

the 10-MW wind turbine on a TripleSpar concept. The first model has

been chosen because its basic and economic design, the fabrication and

installation advantages, and the challenges posed to the turbine control

system by less stable and more compact platforms. Furthermore, the



relationship between the fundamental platform dimensions and the op-
erating performance, specially in terms of challenges posed to the tur-
bine control system, is investigated with more compact barge models.
Besides, the second model has been chosen to prove the scalability of
the designed advanced control technique in a higher power rated wind
turbine mounted on a hydrodynamically more stable platform. Further-
more, an optimisation methodology to automatically tune the advanced
controller has been developed based on the Damage Equivalent Loads
results, improving the manually tuned controller outcomes.

Two alternative linearisation strategies for Floating Offshore Wind Tur-
bines are proposed. The first one uses the generator torque trimming
while the second applies the chirp signal methodology. The generator
torque trimmed linear models show acceptable results, while the chirp
signal methodology delivers the highest fidelity results respect to the
identification of the system modes.

For the hydrodynamic analysis of floating platforms, the open source
code NEMOH has been proposed to obtain the hydrodynamic matrices
required for the simulation code FAST. The obtained results have been
compared with those obtained with WAMIT code, validating the ap-
proach from the method development point of view.

The obtained results suggest a significant effectiveness of the designed
advanced control technique for reducing the mechanical loads suffered
in tower and blades while improving the wind turbine performance,
contributing to achieve a cost effective solution for the Floating Off-
shore Wind Turbine technology.
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CHAPTER

1
Introduction

This chapter aims to provide the context of the Ph.D. research done on the ad-
vanced control of floating offshore wind turbines. An introduction to offshore wind
energy is presented first, continuing with the motivation which has encouraged the
development of this research, as well as its objectives and scope. An outline of the
thesis is given at the end of this chapter.
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1. INTRODUCTION

1.1 Offshore Wind Energy
Greenhouse gas emissions and the exhaustion of fossil resources have increased

the urgency of concerns about global warming as well as the necessity for devel-

oping renewable energy production alternatives worldwide. Since the early 70’s,

and thanks to supportive governmental policies, some sources of renewable en-

ergy, such as solar, hydro and wind electricity, have been gradually taking on an

important role in the world’s Total Primary Energy Supply (TPES). Concretely,

renewable energies have kept their rank as the third largest contributor to global

electricity production during the recent period. They accounted for 23.8% of world

generation, after coal (27.9%) and gas (27.7%), but ahead of nuclear (18.0%) and

oil (2.0%), according to the International Energy Agency (IEA) [1].

Among renewable energy technologies, the wind energy sector has experienced

a remarkable growth in the last decade. Currently, Asia is the largest wind energy

contributor in the world, followed by the EU, the US, and South America. The

global amount of accumulative wind energy capacity was 539, 123 MW in 2017,

according to the Global Wind Energy Council (GWEC)1. The vast majority of wind

energy is installed onshore; however, the expansion of the wind energy production

to offshore emplacements has contributed to this growth. After the first offshore

wind farm was installed in Denmark in 1991, called Vindeby, an exponential in-

crease has been seen in the cumulative offshore wind energy capacity worldwide

[2], as can be seen in the left side of Figure 1.1. The largest contributor is the

UK, amounting to 36.3% of the total installed offshore wind capacity, followed by

Germany with 28.5%, China with 14.8%, and so on.

Offshore wind energy production, i.e. the generation of electricity by means of

wind turbines installed at sea some miles offshore, has several advantages over con-

ventional onshore wind energy production: (1) the areas with the best wind quality

for wind energy production can be reached, so the offshore wind power generation

is higher per amount of installed capacity; (2) it solves the lack of available terrain

for new onshore wind farm emplacements, reducing the visual and noise pollution

for nearby neighbourhoods; and (3) it has a lesser environmental impact on the

forests as well as on wildlife [3].

1https://gwec.net/global-figures/graphs/
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1.1 Offshore Wind Energy

Figure 1.1: Global offshore wind energy capacity according to GWEC.

The sea remains a vast space where at first sight there seems to be enough space

for offshore wind farms. Nevertheless, the current technological solutions for har-

vesting offshore wind energy, i.e. bottom-fixed wind turbines (gravity base, pilot,

jacket, ...) (see Figure 1.2), are designed for areas of shallow water, with depths

less than 80–100 m [4]. However, it is becoming progressively less economical

and more difficult (or impossible) to install in depths of water of more than 30–

40 metres [5][6]. This limitation reduces significantly the available offshore areas

worldwide for the installation of bottom-fixed wind turbines. Thus, an alternat-

ive solution to overcome this limitation is required, such as mounting the offshore

wind turbines onto a floating structure [7], i.e. the Floating Offshore Wind Turbines

(FOWT) (see Figure 1.2). This provides the chance to produce electricity in areas

of deep water, which is especially desirable for steeply-shelving coastal countries.

The first vision of mounting a large-scale wind turbine on a floating structure

was in 1972, by Professor William E. Heronemos at the University of Massachu-

setts, Amherst (MA, USA). Some publications appeared [8][9] before the idea was
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1. INTRODUCTION

Figure 1.2: Illustrative representation of the main offshore wind turbine concepts.

taken up again in the late 90’s by the commercial wind industry, which started car-
rying out the first research studies and moving the topic to the academic sector.
Research in FOWT systems was not carried out until that decade due to the wind
market’s being focused on developing bottom-fixed wind turbines in shallow water
areas. Although several institutions started researching in FOWT, it was not until
the year 2007 when the first FOWT prototype was launched into the sea in Italy,
named BlueH. This project marked the beginning of a new era for offshore wind
energy, with the materialisation of that academic idea. Since then, more than a
dozen prototypes have been tested worldwide, most of them in the EU, but also
in the US and Japan. Although this technology is in its early development stages,
some commercial projects have been carried out. As of 2018, the world’s first op-
erational floating wind farm started producing electricity in Scotland. Past, present
and near future FOWT projects are analysed in detail in Section 2.2.
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1.2 Motivation

1.2 Motivation
At present, bottom-fixed wind turbines are cheaper to build because they use the

existing onshore technology for their monopiles and jacket structures. The current

FOWT projects, however, require an individualised structure fabrication, mounting,

deployment and installation, including special boats and cranes for the installation

and towing, increasing all of them the final Levelised Cost Of Energy (LCOE) [10].

Once the floating technology reaches a more developed technological stage and the

floating platforms go into series production, mass production can reduce their fab-

rication cost. According to experts, the FOWT technology will take between 10

and 15 years to mature and be able to compete with the other currently available

sources of electricity. It is predicted that the demand for electricity will increase in

this period of time in relation to the population growth [11], increasing electricity

prices and, hence, making the FOWT technology more competitive. The polit-

ical commitments and agreements will also help in this regard, due to the global

concerns about the need for decarbonisation.

The hydrodynamic stiffness of the platforms in FOWT systems presents a rigid-

ity in the tower-base lower than that of the bottom-fixed or onshore wind turbines.

During performance, the stability of the system can be affected by the coupling

between the control of the wind turbine and the dynamics of the platform [12], ex-

citing motions of the platform [13][14] known as platform negative damping effect

[15]. This coupling produces an additional oscillatory movement of the overall

FOWT system, damaging its mechanical components [16], drastically reducing its

working life, and, hence, the profitability of the investment. This drawback can be

overcome by mechanical means with a large and heavy floating platform. In this

regard, a platform with a larger hydrostatic stiffness costs more to build [10], while

a less hydrodynamically stable platform affects the FOWT’s performance [17].

Therefore, the motivation for this thesis is to investigate the relation between

the fundamental FOWT performance features, especially in terms of the challenges

posed to the turbine control system by less hydrodynamically stable, more eco-

nomical and compact platforms. This poses great challenges for the development

of control algorithms able to improve the system performance, minimise the struc-

tural loads produced by wind and waves, and provides stable operation in the harsh
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offshore environments. The improvement of the FOWT system performance will
provide (1) alleviation of the stress suffered by the mechanical components, in-
creasing the operational lifetime of the wind turbine, or the redesign of some com-
ponents so as to make them more cost competitive, and (2) an increase in the quality
and amount of energy produced per operation time. All this will make the FOWT
technology more efficient and competitive, contributing to the reduction of the use
of other fossil fuels and polluting energy sources, which will promote the develop-
ment of a greener world.
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1.3 Objectives, Scope, and Outline
The main objectives of this thesis can be summarised under three headings:

1. The reduction of the platform dynamics produced by low hydrodynamic stiff-

ness while improving the regulation of the generator speed, so as to improve

the tower and blade mechanical loads as well as the generator power quality.

2. The solution to achieve the previous objective must be cost effective and

feasible, not including any additional actuator, and being implementable to

different FOWT models.

3. Investigate the relation between the fundamental FOWT performance fea-

tures, especially in terms of the challenges posed to the turbine control sys-

tem by less hydrodynamically stable, more economical and compact plat-

forms.

The first objective addresses the principal development problem of the FOWTs,

where the platform’s low hydrodynamic stiffness and the wind turbine control reg-

ulation increase the platform dynamics, leading to a deterioration of the mechan-

ical components due to the increased loads and generator power quality due to the

increased generator speed excursions. A reduction in the mechanical loads will

improve the lifetime of the components and the profitability of the investment. The

second objective makes the solution cost effective, not including any complex ac-

tuator, and flexible enough to be implementable in different FOWT models. The

third objective aims to investigate the challenges posed to the control system by a

less hydrodynamically stable, more affordable and compact platform.

Chapter 2 presents the state of the art of the FOWTs worldwide. The main float-

ing technologies for a FOWT system are presented. The most significant FOWT

projects worldwide are listed and analysed. The available simulation tools for the

FOWT system are presented. The FOWT working regions, conventional baseline

control, and limitations are explained. A literature review of the control techniques

designed for FOWT systems previous to the development of this thesis is presented

at the end of the chapter.
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Chapter 3 presents the non-linear FOWT models used for the development of
this thesis. The conventional linearisation process and the limitations found with
the FOWT systems are explained. An alternative method that avoids the presented
linearisation issue is proposed. The process carried out for designing and modelling
more compact platforms is explained. The validation of the family of designed
platforms is presented before continuing with the next chapter.

Chapter 4 presents the baseline controllers implemented for the FOWT mod-
els used in this thesis. The advanced control techniques design process, time- and
frequency-domain performances, and load analysis are then presented. The scalab-
ility of the designed advanced control technique is demonstrated. A discussion of
the results achieved with the proposed advanced control technique is given at the
end of the chapter.

Chapter 5 proposes an optimisation process to improve the designed control
loop and performance. The optimisation method, time- and frequency-domain per-
formances, and load analysis are presented. A discussion of the results achieved in
comparison to those of a manually designed control is provided.

In Chapter 6, the main conclusions and contributions collected during the devel-
opment of this thesis and, also, some directions and recommendations for further
research are suggested.

8



CHAPTER

2
Background for Floating

Offshore Wind Technology

This chapter presents the state of the art of the FOWTs. It focuses on the cur-
rent status of the FOWT technology, including the previously published scientific
researches. This chapter provides a technological review to get a common point
of view for the reader and the author. Furthermore, the basic wind turbine control
concepts and performance for the understanding of this thesis are explained.
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2. BACKGROUND FOR FLOATING OFFSHORE WIND TECHNOLOGY

2.1 Floating Technologies
The floating technologies applied to the FOWTs comes from the oil & gas industry,
which began using them for the design of floating stations since the 1930s, when
the extraction of oil and gas was carried out in brackish coastal areas before going
deeper into the open sea.

The floating technologies for FOWTs can be summarised in three main groups,
globally recognised [18]: Semi-submersibles (semi-sub), Tension Leg Platform
(TLP) and Spar-buoy (spar), as shown in Figure 2.1. These three main groups
have been set up according to the nature of the means of mechanical stabilisation,
i.e. ballast [19], hydrodynamic design [20] and taut cables [21], respectively.

Figure 2.1: The main Floating Offshore Wind Turbine platform concepts.

The main features of these technologies are briefly explained below:

Semi-sub: With a large range of different dispositions of the floating columns and
positions of the placement of the wind turbines, this technology achieves the
hydrodynamic restoring via the water-plane area moment. It often requires a
large structure to maintain the hydrodynamic stability, but it has a really low
draft, providing the lowest minimum water depth requirement and great in-
dependence of the characteristics of the sea bed. Some loose mooring lines,
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2.1 Floating Technologies

usually three or four, keeps the system on a given spot with some drift dis-

placement freedom.

TLP: The platform is forced to be submerged through tension mooring ties fixed

to the seabed. It has very high axial stiffness (low vertical elasticity) aim-

ing to eliminate vertical motion, creating a buoyancy force to achieve the

hydrodynamic restoring. Usually, a small floating structure is required, but

challenges with the installation process and operational risks are frequent.

Normally three to five tension lines hold the wind turbine base submerged.

Spar: The large-diameter and single vertical elongated cylinder shape (between

70 and 120 m depth approx.) submerged into the water maintains the hydro-

dynamic restoring, thanks to the very low centre of mass, for ballast against

overturning. Thus, the centre of gravity must be lower than the centre of

buoyancy to ensure the hydrodynamic stability. Some loose mooring lines,

usually three, keep the system on a given spot with some drift displacement

freedom. This type of platform is designed for very deep sea water areas.

According to the installation site and the involved company, the FOWT concept

is stabilised by one of the mentioned floating technology, each one holding its pros

and cons [22], as shown in Table 2.1. The spar platform has a very high hydro-

dynamic stiffness due to the large under-water structure. This hydrodynamic sta-

bility provides a good behaviour in terms of wave-induced motions. However, the

huge structural dimensions and weight make its construction and installation quite

difficult, which involves increased costs. The semi-sub platform has the lowest

hydrodynamic stiffness due to its low draft and weight. Therefore, this floating

technology present the highest sensitivity to wave-induced motions. However, it

has the best advantages due to its construction and installation process, being the

most economical solution since the ‘concepts with the lowest steel mass have the

best performance with respect to LCOE’ [23]. Nevertheless, this is highly depend-

ent on the shape of the platform and the complexity of the building. The TLP

provides good hydrodynamic stiffness and low critical wave-induced motions due

to its low vertical elasticity. However, difficulties have been reported in keeping

system stable during transport and installation. Also, the cost of the anchoring of
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2. BACKGROUND FOR FLOATING OFFSHORE WIND TECHNOLOGY

this floating technology is higher than the other solutions due to the technical com-

plexity and the seabed dependence. Furthermore, the high-frequency dynamics of

the platform during the normal performance can negatively affect some compon-

ents of the wind turbine.

Semi-sub TLP Spar
Pitch Stability Buoyancy Mooring Ballast
Natural Periods − + 0
Coupled Motions − + 0
Wave Sensitivity − 0 +

Turbine Weight + 0 −
Moorings − + −
Anchors + − +

Construction &
+ − −

Intallation
Maintenance − + 0

+ = relative advantage

0 = neutral

− = relative disadvantage

Table 2.1: Qualitative assessment of floating platform technologies.

Nevertheless, it is quite usual to find floating structures with a combination of

these floating technologies, e.g. the TripleSpar platform [24] combines the semi-

sub and spar floating technologies. This platform model takes the ballast stabilised

principle from the spar platforms, but it is distributed over three columns to reduce

the draft of the overall platform, as the semi-sub platforms do.

The barge-type (barge) platform is considered a submodel of the semi-sub

group as it has the same means of mechanical stabilisation. However, the hydro-

dynamics of this platform model differs considerably from the other semi-sub plat-

form models because of its simple and compact structural design, making it more

sensitive to wave-induced motions. This platform has a purely rectangular shape

with the lowest draft, where some models can include an inner pool in the middle

12



2.1 Floating Technologies

of the structure to increase the motion damping, such as the IDEOL’s Floatgen1

demonstrator [25]. This simple design facilitates the building process, installation,
and decommissioning, which reduces the final LCOE. Apart from these improve-
ments, the same pros and cons as those of semi-subs are hold.

There are other conceptual FOWT designs, which include more than one wind
turbine in the same large semi-sub platform, i.e. multi-turbine floating platforms
[26][27]. In some cases, this multi-turbine floating system can also be combined
with other energy production technologies, e.g. wave [28][29] or tidal [30].

1https://www.ideol-offshore.com/en/floatgen-demonstrator
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2.2 Projects Worldwide
A review of the past, present and near future of the worldwide FOWT and Horizontal-

Axis Wind Turbine (HAWT) projects is presented here. Turbine models and pro-

jects larger than 15 kW are presented, those intended to be large scale wind tur-

bines.

YEAR LOCATION NAME TURBINE PLATFORM ACTUAL STATUS

2007 Apulia (Italy) Blue H 80 kW TLP Decommissioned
2009 Karmøy (Norway) Hywind 1 2.3 MW Spar Decommissioned

2011
Aguçadoura (Portugal) WindFloat 2 MW Semi-sub Decommissioned
Hordaland (Norway) SWAY 15 kW Spar Decommissioned

2013
Maine (US) VolturnUS 20 kW Semi-sub Decommissioned

Nagasaki (Japan) Kabashima 2 MW Spar Decommissioned
Fukushima (Japan) Mitsui 2 MW Semi-sub Operating

2016 Fukushima (Japan) Shimpuu 7 MW Semi-sub Decommissioned

2017
Fukushima (Japan) Hamakaze 5 MW Spar Operating

Peterhead (Scotland) Hywind 2 5 x 6 MW Spar Operating

2018
Saint-Nazaire (France) Floatgen 2 MW Semi-sub Operating

Fukuoka (Japan) NEDO 3 MW Semi-sub Installation
Aberdeenshire (Scotland) Kincardine 2 MW Semi-sub Operating

Table 2.2: Floating Offshore Wind Turbine projects worldwide.

The first scaling testing Technology Readiness Level (TRL) FOWT prototype

launched in the world was in 2007, named Blue H. It was installed 21.3 km off the

coast of Apulia (Italy) and in waters with a depth of 113 m. Designed by the Dutch

Blue H Technologies company, the 80 kW rated power, 2-blade and downwind

configuration wind turbine was mounted on a TLP type platform. After a year of

testing it was decommissioned in 2008.

The Hywind 1 was the first large scale pre-commercial TRL FOWT. It was

launched in 2009 off the south-west coast of Karmøy (Norway). Designed by

Statoil (the actual Equinor), the 2.3 MW rated power and 3-blade upwind config-

uration wind turbine (provided by Siemens) was mounted on a spar type platform.

Towed 10 km offshore into waters with a depth of 220 m, it was the first FOWT

grid connected FOWT project. It was decommissioned in 2011 after a trial period.

14
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The WindFloat was the first FOWT large scale pre-commercial TRL mounted

in a tricolumn semi-sub type platform. It was launched in 2011 5 km off the coast

of Aguçadoura (Portugal). The 3-blade upwind and 2 MW rated power wind tur-

bine (provided by Vestas) was connected to the Portuguese electrical grid. It was

decommissioned after a trial period.

In the same year, the SWAY scaling testing TRL FOWT was installed off the

coast of Hordaland (Norway). The 3-blade downwind configuration and 15 kW

rated power wind turbine was mounted on a spar floating technology platform. This

FOWT included a novel system of tension rods on the upwind side reinforcing the

tower and significantly reducing the steel weight of the tower as well as building

cost. It was decommissioned after a trial period.

In 2013, the VolturnUS American first scaling testing TRL FOWT was launched

off the coast of Maine (USA). The 3-blade and 20 kW rated power wind turbine

was mounted on a semi-sub floating technology platform. It was decommissioned

after a trial period.

In the same year, Kabashima, Japan’s first pre-commercial FOWT, was launched

off the coast of Nagasaki (Japan). The 3-blade downwind configuration and 2 MW

rated power wind turbine was mounted on the first concrete spar floating platform.

It was decommissioned after a trial period.

One month later, the Mitsui pre-commercial FOWT was installed off the coast

of Fukushima (Japan). The 3-blade downwind and 2 MW rated power wind turbine

was mounted on a four column compact semi-sub floating platform. At the same

time, the Kizuna substation was installed in the same location on an advanced spar

floating technology platform to transport the generated power to shore. Both float-

ing systems completed the first phase of the Fukushima Floating Offshore Wind

Farm Demonstration project.

In 2016, the second phase of the Fukushima project was carried out, where two

FOWT pre-commercial models were installed: the Shimpuu with a 3-blade upwind

configuration and 7 MW wind turbine mounted on a V-shape semi-sub platform,

and the Hamakaze with a 3-blade downwind configuration and 5 MW wind turbine

mounted on an advance spar platform. The installation phase was not finished

until the beginning of 2017. The Shimpuu wind turbine was decommissioned in

October 2018, earlier than planned, due to multiple malfunctions. There is very

15



2. BACKGROUND FOR FLOATING OFFSHORE WIND TECHNOLOGY

little information available about the current status of the Fukushima project. The

Hamakaze wind turbine is still operating.

In 2017 the Hywind 2 first floating wind farm project (also known as Hywind

Scotland Pilot Park) started operating off the Peterhead (Scotland) coast. This farm

is composed of five 6 MW, 3-blade upwind configuration wind turbines, all of them

mounted on spar floating platforms. The wind farm is connected to the Scottish

electric grid and currently is producing more power than was expected during the

design stage.

In 2018 the Floatgen and NEDO projects were being carried out in France and

Japan, respectively. Both are mounted on the IDEOL’s designed barge platform,

which includes a damping pool in the centre of the floating concrete square struc-

ture. The first one is located in the SEM-REV testing site 22 km off the Le Croisic

(France) coast in waters 30 m deep. The 3-blade upwind configuration and 2 MW

wind turbine is currently being tested under real operating conditions before being

decommissioned in the next year. The second one is located 15 km off the Shir-

ashima coast (Japan) in waters of 50 m depth. The 2-blade upwind and 3 MW wind

turbine is currently in the construction/installation phase.

Later, this same year, the Kincardine project, located 15 km off the Aberdeen-

shire coast in waters with a depth of 60 m, started delivering electric power to the

Scottish grid in 2018. In the first phase of the project, the installation of a 3-blade

upwind configuration and 2 MW wind turbine mounted on a semi-sub platform

inspired by the Portuguese WindFloat project was carried out. The second phase

of the project, scheduled for 2020, contemplates the installation of five 9.6 MW

FOWT farm in the same location.

Apart from these pre-commercial or scale prototypes of FOWTs, several con-

ceptual projects have been designed during these development years. The most

significant ones are shown in Figure 2.2, according to the floating technology and

the TRL. Sometimes, it is difficult to obtain detailed information about some pro-

jects and their development status due to the secrecy involved in these research

projects.

Although all the pre-commercial or commercial level FOWT projects are moun-

ted on semi-sub or spar type platforms, Figure 2.2 shows other scale testing level

projects mounted on semi-sub platforms. This means that the involved companies
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mostly bet on the semi-sub floating technology rather than the spar one. Further-
more, this figure shows that the TLP floating technology is falling behind in the
TRL race. There are neither pre-commercial nor commercial level projects being
developed yet with the TLP floating technology.
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Figure 2.2: Worldwide Floating Offshore Wind Turbine projects according to the
floating technology and Technology Readiness Level.

Several projects are currently under development. Some of them are: the pre-
viously mentioned Kincardine second phase project; the DounreayTri Hexicon
multiturbine with two 5 MW wind turbines scheduled for 2020; the NewEngland
Aqua Ventus first phase project with two 6 MW semi-sub platforms inspired by
the VolturnUS prototype, to be installed in the UMaine Deepwater Offshore Wind
Test Site; the WindFloat Atlantic project formed by three 8.4 MW wind turbines
mounted on semi-sub platforms inspired by the WindFloat prototype, to be in-
stalled where the previous WindFloat pilot FOWT was decommissioned; the Groix
& Belle-Ile floating wind pilot farm project to install four 6-MW wind turbines off
France’s Atlantic coast, and Golfe du Lion, Eolmed, and Provence Grand Large
wind pilot farms projected off France’s Mediterranean coast; among others.
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2. BACKGROUND FOR FLOATING OFFSHORE WIND TECHNOLOGY

2.3 Simulation Tools
Software for the simulation of wind turbines is based on a set of mathematical for-
mulas to reproduce, on a computer, the performance of the system. It provides
engineers with a preview of the behaviour of the designed part without running the
risk of damaging a real wind turbine. For the research presented in this thesis, a
simulation tool is required to test the designed control algorithms in a virtual wind
turbine model. The main drawback is that the FOWTs are very complex systems,
which not only include aerodynamics, structural dynamics, and servo-elastic beha-
viours, but also include the hydrodynamics and mooring dynamics of the floating
platform. Therefore, several comprehensive testing, code-to-code comparison and
validation campaigns are usually carried out. The aim of these campaigns is to
check the accuracy of the simulation results with those obtained with a scaled or
full FOWT prototypes. Some of these code comparison projects are known as OC3
(2005–2009) [31], OC4 (2010–2013) [32] and OC5 (2014–2018) [33]. Since the
FOWT industry is quite new, more measurement data is needed to improve the
code validation and simulations. Nevertheless, an actual simulations provides a
very good approach to the real dynamics of the FOWT systems. The most com-
mon aero-hydro-servo-elastic simulation programs for FOWTs [34] [35], capable
of performing integrated dynamic calculations, are listed in Table 2.3 below:

SOFTWARE DEVELOPER LICENSE

Bladed DNV-GL proprietary
FAST NREL open-source
HAWC2 DTU Risoe proprietary
SIMPACK SIMPACK AG proprietary
3DFloat UMB proprietary
SIMO/RIFLEX MARINTEK proprietary
ADAMS MSC proprietary

Table 2.3: Floating Offshore Wind Turbine simulation programs.

Bladed, FAST, 3DFloat and HAWC2 are specific programs for the wind tur-
bine sector, while SIMPACK, SIMO/RIFLEX and ADAMS can work for automot-
ive, aeronautical, and robotic applications, among others. For the development of
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2.3 Simulation Tools

this thesis, it was decided to use Fatigue, Aerodynamics, Structures, and Turbu-

lence (FAST) from National Renewable Energy Laboratory (NREL) due to: (1)

its great flexibility in modifying the parameters and characteristics of the FOWT

model, as well as the provided simulation options and the ability to obtain linear-

ised models; (2) the open-source nature of the software, which allows manipulating

the internal formulas if necessary, the free code downloading and diffusing in the

scientific community; (3) the available online FOWT models, preprocessor and

postprocessor data analysis tools, and technical forum support; (4) the wide use

of the software in the scientific community as evidenced by the large amount of

results published in research articles found in the literature; (5) the possibility of

linking the software with a Matlab/Simulink interface, enabling users to implement

advanced controls with convenient block diagrams in a simple and rapid form; and

(6) the positive evaluation of the FAST code by Germanischer Lloyd WindEnergy

GmbH certifier [36].

FAST is a Computer-aided Aeroelastic Engineering (CAE) tool for HAWT

simulation. This comprehensive aerolastic program is capable of predicting the

extreme and fatigue loads of onshore, offshore bottom-fixed and FOWT systems.

It joins the aerodynamic models (aero), hydrodynamic models (hydro), control and

electrical system (servo) dynamics models, and structural (elastic) models to en-

able time-domain aero-hydro-servo-elastic simulations. It is coupled with different

sub-modules for generating the wind fields (TurbSim/InfloWind) as well as com-

puting the aerodynamics (AeroDyn) and hydrodynamics (HydroDyn), as one can

see in [37] and [38].

FAST models combine the modal and multibody dynamics formulations [39].

It is formed by flexible and rigid bodies, where apart from the flexible ones, such

as the tower, blades, and drivetrain, the rest are modelled as rigid. FAST has the

ability to model 24 Degree Of Freedom (DOF) for a three-blade FOWT topology:

three platform translational DOF (surge, sway, and heave) and three rotational (roll,

pitch, and yaw)(6 DOF)(see Figure 2.3); the first and second modes of the tower

fore–aft and side-to-side (4 DOF); nacelle yaw (1 DOF); variable generator and

drivetrain rotational-flexibility (2 DOF); rotor- and tail-furl (2 DOF); and, the first

and second flapwise modes as well as the first edgewise mode for each blade (9

DOF). Blade teetering DOF can also be enabled for a two-blade wind turbine.
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2. BACKGROUND FOR FLOATING OFFSHORE WIND TECHNOLOGY

Figure 2.3: Degrees of freedom of the motion of the barge [40].

Note that the 7th version of FAST, from now on FAST7, is going to be used
in this work only for the linearisation process of the FOWTs. For time-domain
simulations, the 8th version of FAST, from now on FAST8, will be used. The use
of FAST7 is because during the development of this thesis FAST8 does not yet
have the ability to linearise FOWT models.
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2.4 Control

2.4 Control
The wind turbine control system is based on sensors, actuators and the software that
links these elements [41]. The software processes the input signals from the sensors
and generates output signals for the actuators. The purpose of the control is, then, to
manage the right performance of the wind turbine by means of a supervisory system
during all working states and conditions. The wind turbine is constantly monitored
by a software program to decide which action is going to be taken next. The main
objective of the control system is the trade-off between the power tracking and the
fatigue load reduction while ensuring the overall integrity of the wind turbine. That
is:

• Extract the maximum energy from the wind.

• Guarantee the overall integrity and correct performance of the wind turbine.

• Minimise the fatigue loads and stresses of the mechanical components.

There are four different control levels, according to the purposes of the con-
trol: the safety control level is the top level of the controller and is responsible
of ensuring the overall integrity of the wind turbine, activating an emergency stop
if necessary; the supervisory control level is the next level and is responsible for
deciding on the operating region (see Subsection 2.4.1) of the wind turbine depend-
ing on the environmental conditions, including shut-down and power-up, enabling
different components, verifying the status of the sensors, etc.; once the working
region is determined, the working control level takes care of the generator torque
and blade-pitch angle so as to extract the maximum power from the wind in each
region (see Subsection 2.4.2); the last level, the subsystem control level, operates
inside each actuator and follows the commands given by the working control level
to the actuator.

This study is focused on the working control level. Nevertheless, the super-
visory control level is going to be explained for the correct understanding of the
working control level. The highest and lowest control levels, i.e. the safety and
subsystem control levels, are not going to be analysed since that is not necessary
for the achievement of the objectives of this study.
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2.4.1 Operating regions

Among the huge range of different wind turbine classifications [42], the variable-

speed HAWT is the most common configuration in large-scale FOWTs, including

both direct-drive and gear-drive ones. In both cases, the working regions are classi-

fied according to the wind speed: stand-by, start-up, power production, shut-down

and emergency stop. Figure 2.4 shows the working regions of these wind turbines.

Figure 2.4: Operating regions of large scale wind turbines.

When the wind speed is below the minimum (cut-in) needed to produce electric

energy, the wind turbine is kept in the stand-by state. In this state, the blades are

in flag position and the high speed shaft is braked. The wind speed is constantly

measured in case it increases sufficiently to start producing electric energy. In

this case, the nacelle starts rotating its orientation to get positioned upwind before

removing the high speed shaft brake.

After positioning the nacelle upwind, the start-up transition (Region I) sets the

blade-pitch angle from the flag position (aligned to the wind direction), where the

minimum thrust from the wind is produced, to an angle where the maximum thrust

is produced (perpendicular to the wind direction). There is no opposing electrical

torque applied to the generator, therefore it is not producing electric power but fa-

cilitating the starting of the rotation of the rotor. This state consists in achieving the
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2.4 Control

minimum rotational speed before starting to apply electrical torque to the generator
and, hence, produce electric power.

Once the wind turbine is in the power production state, it will be working in
one of the two middle regions (Regions II or III) according to the wind speed. If
the wind speed spins the generator below its rated rotational velocity (below rated),
then it will be working in Region II. This is also called the rotor torque region
because the generator torque is being actively controlled while the blade pitch-
angle is fixed at the minimum angle (usually zero degrees, perpendicular to the
wind direction) to generate the highest thrust. If the wind speed is high enough that
the generator speed reaches or surpasses the rated or nominal rotational velocity
(above rated), then it will be working in Region III. In this region, also called
the generator speed or blade-pitch control region, the blade-pitch angle is actively
controlled to regulate the generator speed, trying to keep it constant at the rated
value. The generator torque in this region can be kept constant at the rated value or
can be inversely proportional to the generator speed to aid in the regulation of the
electric power output.

If the wind exceeds the maximum tolerable speed (cut-out), then the shut-down
process is activated in Region IV. The blades of the wind turbine increase their
angle to the flag position, reducing the thrust to the minimum, to progressively
decrease the generator speed. When the rotational speed is sufficiently low, then
the brake is activated to block the low speed shaft and in consequence immobilise
the turbine.

The emergency stop is only activated when a fault is detected during normal
operation or in a sudden emergency action. This stop is very fast and aggress-
ive, not being as suitable as the normal shut-down, since the wind turbine suffers
considerable mechanical loads.
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2.4.2 Conventional control
The conventional wind turbine control technique for Region II and Region III is
based on Single-Input Single-Output (SISO) feedback loops. The Figure 2.5 rep-
resents the control scheme when the wind turbine is operating below rated wind
speed (Region II). The generator torque (Mg) is set according to the generator speed
(Ωg) feedback.

Figure 2.5: Below rated wind speed (Region II) wind turbine control loop.

In such a Region II, Mg changes proportionally to the square of Ωg, following
the optimal curve to extract the maximum power from the wind [43]. One can see
that

Mg = KΩ2
g

K =
1

2

πρR5Cpmax

λopt
3G3

(2.1)

where ρ is the air density, R is the radius of the rotor, Cpmax is the maximum
power coefficient, λopt is the optimum Tip Speed Ratio (TSR), and G is the gear-
box relation. The Cpmax indicates the maximum power that can be extracted from
the wind, which is limited by Betz’s law [41] to 16/27 (59.3%) for an ideal wind
turbine. The λ is the ratio between the tangential speed of the blade tip and the
current wind speed, expressed as follows:

λ =
ΩgR

VwG
(2.2)
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The aerodynamic power extracted by a wind turbine can be expressed as

P =
1

2
πρR2V 3

wCp (2.3)

where Vw is the wind speed.

Therefore, the ability to extract the maximum available power from the wind

depends exclusively on λ, which is automatically regulated through Mg. This can

be seen in Figure 2.6, where if λ is higher than the optimum value due to the wind

speed is less than expected, then Ωg drops because the aerodynamic torque is less

than the opposing electric torque, Mg. If λ is less than the optimum due to the

wind speed is higher than the expected, then Ωg increases because the aerodynamic

torque is more than Mg. Nevertheless, if λ is in the stall zone, the automatic regu-

lation is lost because a higher wind speed results in a smaller aerodynamic torque.

Something similar happens at very low wind speeds (below cut-in), where Mg is

set to zero to let the rotor spins freely and leaves the stall zone if the wind speed is

sufficient.

Figure 2.6: λ and Cp representation.

Depending on the wind turbine model and rated power, Region I1/2 and Region

II1/2 can be implemented. Both of them consist in a linear transition between the

contiguous regions based on a torque slope to aid the start-up of the wind turbine

in Region I1/2, and to limit the tip speed (and, hence, the noise emissions due to the

turbulence in the blade tip) in Region II1/2.
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When the wind turbine is working in these regions, the blade-pitch angle (θ) is

fixed to the minimum angle (close to 0◦) to create the maximum thrust in the rotor

and, hence, the maximum aerodynamic torque, to capture the maximum power

from the wind.

When the wind turbine is operating above rated wind speed (Region III), the

control scheme is as shown in Figure 2.7. In this region, Cp is below the maximum

because the rated power and the nominal generator speed of the wind turbine have

been reached. Thus, the objective now is to keep the generator speed constant at the

rated value, by regulating the pitch angle of the blades, also known as active blade-

pitch control. The value of the blade-pitch angle, θ, is set through the well known

Proportional, Integral and Derivative (PID) controller according to the generator

speed error (e), where the error is the difference between the reference generator

speed (Ω∗g) and the current measured generator speed. The term Proportional (P)

is the proportional action, providing a control term proportional to the e, while the

term Integral (I) is the integral action, providing a control term proportional to the

integral over the time of such an error signal. The use of the Derivative (D) term

is not recommended [44] for wind turbine control. Therefore, the Proportional and

Integral (PI) controller can be expressed as

θ(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ (2.4)

Ki =
Kp

Ti
(2.5)

where Kp and Ki are the proportional and integral gains, respectively, and Ti rep-

resents the integration time of the controller.

In this region, Mg can be set constant at the rated value or, if it is wanted to

regulate the output power additionally to the blade-pitch PI control, then it is set

inversely proportional to the generator speed, given by

Mg =
Pn
Ωg

(2.6)
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Figure 2.7: Above rated wind speed (Region III) wind turbine control loop.

where Pn is the nominal mechanical power of the wind turbine.

The proportional gain of the PI must not behave linearly, since the aerody-

namic property of the wind turbine blades changes non-linearly within the above

rated wind speed range. This can be seen by analysing the sensitivity of the aerody-

namic power to the rotor-collective blade-pitch angle, as analysed in [15]. There,

a Gain-Scheduling (GS) is proposed using the blade-pitch angle from the previous

controller time step to calculate the Gain-Correction Factor (GK) at the next time

step:

GK(θ) =
1

1 + θ
θK

(2.7)

where θK is the blade-pitch angle at which the pitch sensitivity has doubled from

its value at the rated operating point.

Two possibilities for the implementation of the blade-pitch control are known:

pitch-to-feather and pitch-to-stall [45]. The pitch-to-feather control increases the

wind turbine blade-pitch angle as the wind speed increases to reduce the thrust

and, hence, the generator speed. The pitch-to-stall reduces the blade-pitch angle

increasing the turbulence level downwind of the blade, increasing the aerodynamic

drag coefficient, resulting in a slow down of the generator speed. However, the ana-

lytical design of the pitch-to-stall algorithms is not suitable and the implementation

of the GS also presents some difficulties, since the operating point of the wind tur-

bine can not be known from the current blade-pitch angle. Thus, usually the large

wind turbines, with active blade-pitch control, are pitch-to-feather controlled.
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The switching between the below rated and above rated controllers is done by

measuring the generator speed as well as the blade-pitch angle and saturating the PI

controller, as can be seen in the flowchart in Figure 2.8. When the wind turbine is

operating below rated wind speed, the generator torque is actively regulating while

the error is negative due to the difference between the measured generator speed

and the rated generator speed. Then the ‘Integral Saturation’ block (anti-windup)

prevents the integrator from accumulating a negative value while the error is neg-

ative. During this region the ‘Pitch Limit Saturation’ block limits the proportional

value to zero. When the wind turbine starts operating above rated wind speed, be-

cause the generator speed is greater than the reference one, the generator torque is

fixed to rated or inversely proportional to the generator speed in Region III while

the PI regulates the blade-pitch angle to keep the generator speed close to the ref-

erence. In this case, the blade-pitch angle will be working between 0◦ and 90◦,

being limited by the ‘Pitch Limit Saturation’ block. The ‘Pitch Rate Saturation’

block simulates the dynamics of the maximum derivative of the blade-pitch actu-

ator. Furthermore, the blade-pitch control will never be activated if the generator

torque control is not working in Region III, and vice versa, the generator torque

will not leave Region III if the blade-pitch control is actively regulating. Some
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Figure 2.8: Flow chart for the conventional control of a wind turbine.
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research studies are found in the literature about control switching strategies: (1)
Shahsavari et al. presented an optimal Hybrid Model Predictive Control (HMPC)
for switching between controllers and maximising the electrical power production
in [46]; and (2) Lindeberg et al. presented a more general study of the smooth
transition between controllers using the Model Predictive Control (MPC) in [47].

The blade-pitching can be done collectively or individually. Collective Pitch
Control (CPC) refers to when the pitch-angle of all the blades change in unison,
and Individual Pitch Control (IPC) to when the pitch-angle of each blade changes
independently. The CPC is usually used as a preliminary approach to analyse the
behaviour of the wind turbine, but in a more developed design stage, and with
large wind turbines, the IPC is highly recommended [45]. Several benefits for the
alleviation of the blade loads are attributed to the IPC strategy, such as the reduction
of the effect of wind shear, tower shadow, up-flow and shaft tilt. This can be done
by measuring the blade-root moments of each blade through a strain gauges.
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2.4.3 Limitations of conventional control

The concern in FOWTs is that when the wind turbine is operating in Region III,

and the blade-pitch PI controller is tuned as with onshore or bottom-fixed wind

turbines, a coupling between the platform-pitch motion and the blade-pitch control

can happen, known as platform negative damping [12][17]. This is due to the fact

that the blade-pitch PI controller of the onshore and bottom-fixed wind turbines is

tuned as vigorously as possible to regulate the generator speed close to the rated

value and avoid speed excursions due to wind gusts, not taking into account the

platform dynamics. Thus, when the wind flows, the thrust produced in the rotor

of the FOWT generates a downwind motion of the system due to the platform’s

low hydrodynamic stiffness. During this motion, the relative wind speed observed

by the wind turbine is less than the true wind speed, resulting in a slow down of

the generator speed. This is measured by the control unit, which tries to keep the

generator speed at the rated speed, reducing the blade-pitch angle and consequently

increasing the thrust in the rotor and, hence, increases even more the downwind

motion. Just the opposite happens when the FOWT is upwind. This effect may

lead to large resonant platform-pitch motions, increasing blade, tower, platform

and mooring line loads, as well as deteriorating the turbine performance.

In terms of control theory, this effect can be explained by analysing the root-

locus of the FOWT system. The root-locus is a graphical method for representing

the change of the poles and zeros of a transfer function with the variation of a

system parameter. In this case, the open-loop transfer function includes the blade-

pitch PI controller and the FOWT model from the blade-pitch angle to the generator

speed, as shown in Figure 2.9. The analysis is focused on the platform-pitch mode

Figure 2.9: Scheme of the transfer function for the root-locus analysis.

30



2.4 Control

to examine the behaviour according to the controller proportional gain variation. In
this figure, a NREL 5-MW wind turbine mounted on the ITIEnergy’s barge plat-
form model, linearised at 17 m/s wind speed, is analysed. Note that the linearisation
process of the FOWT is explained in Chapter 3.

Figure 2.10: Platform-pitch mode root-locus map.

Figure 2.10 shows the locations of the poles and zeros of the platform-pitch
mode of the mentioned transfer function, for a PI controller time constant of Ti=
3.5 s and for different proportional gains. The dashed line represents the path of
the poles when the gain is increased from the lowest to the highest value. There,
one can see how the poles go from the left half-plane of the complex plane to the
right half-plane as the gain increases. Since the complex poles represent sinusoidal
signals (A · eγt · sin(ωt+ φ), where A is the amplitude, γ is the propagation decay
constant, t is time, ω is the angular frequency, and φ is the phase angle), γ must
always be negative to damp that oscillation and ensure the stability of such a mode.

A pole located on the imaginary axis represents a critical stability of the platform-
pitch mode, meaning that gains greater than the critical one (Kp > 8.3×10−4) will
make the mode unstable (negatively damped). As shown in Figure 2.11, the blade-
pitch controller-response natural frequency (ωϕn) for that critical gain is 0.083 Hz,
which is very close to the ITIEnergy’s barge platform-pitch natural frequency (ωxn
= 0.086 Hz). This supports the statement made by Larsen and Hanson [16] that for
ensuring the stability of the motion of a FOWT structure, the controller-response
natural frequency must be smaller than the platform-pitch natural frequency.
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Figure 2.11: Controller-response natural frequency.

The platform negative damping effect, nevertheless, does not have the same
damping over the whole wind speed range. As shown in Figure 2.9 the zero of the
platform-pitch mode changes according to the thrust of the wind in the rotor of the
turbine for the same controller gains. As shown in [12], the thrust has its maximum
value near the rated wind speed, and decreases as the wind speed increases. This
effect can be seen in the position of the zeros of the analysed transfer function in
Figure 2.12, where the highest negative damping is achieved with near rated wind
speed (13 m/s) and the zero position is getting closer to the left half-plane in relation
to the increment of the wind speed.

Figure 2.12: Open-loop platform-pitch zero positions according to the wind speed.
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2.4.4 Review of the control literature

One of the first and most complete studies done to tackle the effect of the platform

negative damping in FOWTs was carried out in [12]. Three control alternatives

were proposed to mitigate the barge type platform-pitch motions: feedback the

tower top acceleration, blade-pitch-to-stall regulated control, and detuned blade-

pitch-to-feather gains. The best result was achieved by detuning the blade-pitch-

to-feather PI controller gains. Great reductions in the platform-pitch motion and

in the load on the mechanical components were achieved. However, the rapidity

of the regulation of the generator speed was degraded due to the reduction in the

bandwidth of the controller.

Van der Veen et al. [48] analysed the relative efficacy of the CPC feeding back

the nacelle motion. Yongoon et al. [19] ensured a good FOWT performance im-

provement with a nacelle motion feed-back control, reducing the blade and tower

loads. A similar strategy, but feeding back the nacelle velocity to the generator

torque, was presented by Fischer in [49]. There, few improvements were shown

in the blade and drivetrain loads with the Non-Minimum Phase Zeros (NMPZ)

approach, whereas the tower fore–aft and side-to-side loads were considerably in-

creased. Wakui et al. also feedback the nacelle velocity to the generator torque in

[50]. However, the blade-pitch angle loop regulates the electric power instead of

the generator speed. Few significant improvements were shown in the presented

results, where the main drawback was the increase in the turbine torque activity

due to the control regulation.

Wang et al. designed an active disturbance rejection control feeding back the

generator speed, but regulating the electric power of the FOWT in [51]. An adaptive

control law was used to weaken the impact of platform-pitching movement and

compensate the perturbations by a real-time estimation with a non-linear observer.

The electric power output was improved with a Proportional and Derivative (PD)

control and the platform-pitch motion was reduced compared to the results obtained

by using a reference baseline control. Wei et al. evaluated three different control

strategies modifying the onshore baseline controllers in [52]. They concluded that

all approaches have some drawbacks due to the lack of communication between
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the different SISO feedbacks. They proposed an improvement of the controllers,

designing a model-based Multiple-Input Multiple-Output (MIMO) control strategy.

Some other approaches can be found in the literature applying the State-Feedback

(SF) control and Linear Quadratic Regulator (LQR) strategies for FOWT systems.

Namik et al. [53] designed a full SF control using a LQR for a barge FOWT sys-

tem. Afterwards, they implemented a periodic IPC and Disturbance-Accomodating

Control (DAC) in [54] for improving the performance of the FOWT reducing the

effects of the incident wind and wave disturbances. In a more recent article [55],

they proposed the IPC State Space (SS) control strategy and DAC, significantly

reducing the barge platform-pitch, -roll and -yaw motions, and tower loads. How-

ever, the cost of these reductions was an extensive use of the blade-pitch actuator,

where the blade-pitch rate was increased by 318% compared to the conventional

CPC baseline controller.

Christiansen et al. [56] designed a SF controller with a observer for the state

estimation combined with a wind speed and a LQR for optimal control. The overall

improvement of the spar type FOWT model performance was achieved at the cost

of increasing the blade-pitch activity. The blade-pitch rate increases by 392% and

the drivetrain torsion loads by 5%, in comparison to the baseline control. Their next

publication [57], based in the same control technique, includes the minimum thrust

and constant generator speed strategy for stabilising the floating system. Deteriora-

tion in the generator speed regulation and power production were registered as well

as an increment in the platform-pitch oscillations of 20%. The last publication [58]

based in the same control technique, but with an extended Kalman filter, shows the

reduction of the wave disturbances on the onshore controller performance.

A more developed SF controller was developed by Zuo et al. in [59]. They

proposed an additional robust adaptive control with an advanced memory-based

compensation module for the IPC. The power fluctuations, fatigue loads and plat-

form vibrations were reduced in comparison to the conventional SF controller. Ba-

gherieh et al. presented a sliding control technique for FOWT control in [60].

In comparison to the presented baseline controller, the generator speed deviation

was improved whereas the platform-pitch motions were increased considerably, in-

creasing the blade-pitch activity. In a more recent article [61], among the different
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control techniques compared, the best one for reducing the platform-pitch oscilla-

tions was the SF Linear Parameter-Varaying (LPV) GS strategy, while the best one

for regulating the electric power was the LQR GS control technique. Lemmer et al.

did a thorough system analysis in [62] considering the MIMO description including

control inputs and disturbances in a reduced FOWT model. They demonstrated that

the LQR can significantly reduce the system response and attenuate the excitation

from wave disturbances.

Two authors were found using a less common control technique for FOWTs,

such as fuzzy logic. Yang et al. [63] used this technique to combine the DAC and

the MPC algorithms. The DAC aimed at eliminating the effect of wind disturbances

and the MPC to remove the effect of wave disturbances. The proposed control

with IPC shows a performance better than that of the conventional CPC. Tahani

et al. also used fuzzy logic in [64] for controlling the foundation directions of the

VoulturnUS FOWT model, preventing additional movements and imbalances of the

wind turbine.

Some other articles treating the MPC can also be found. Schlipf et al. designed

a MPC for a spar type floating FOWT in [65]. Although good improvements were

shown in the shaft and blade loads, the main benefit was the reduction of the power

and rotor speed standard deviation, by up to 90%. However, the cost of these

improvements was a blade-pitch speed increase of about 228%. Raach et al. [66]

continued in this topic, including the IPC technique to reduce the loads on the blade

and minimise the yawing and pitching moments on the rotor hub. The blade loads

were significantly reduced compared with those obtained by using the baseline

controller. Chaaban et al. also presented the MPC but mounted on a barge platform

in [67]. The results show a good overall performance improvement except in the

generator power error, blade-pitch rate, and blade edgewise moment. Lemmer et

al. [68] also present a study with the same control technique implemented for

a double rated power capacity FOWT mounted on the TripleSpar platform. The

results show that the MPC damps the tower-top and platform-pitch motion better

than the presented baseline PI controller and reduces significantly the overshoot of

the rotor speed.

The robust H-infinity (H∞) control method is widely extended in FOWT sys-

tems too. Bakka et al. used the H∞ feedback control technique with pole placement
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constraints in [69] and [70], with a LPV FOWT model. The generator speed and
torque oscillations as well as the platform fore-aft displacement were reduced, but
the blade-pitch activity was considerably increased. They used a similar technique
in [71], but combining the H2 and H∞ control techniques, resulting in a good rotor
speed regulation and a tower-top displacement mitigation but increasing consider-
ably the blade-pitch activity as well. Betti et al. also used the H∞ control tech-
nique for spar and TLP mounted FOWTs in [72] and [21], respectively. Navalkar
et al. presented a combination of feedback and feedforward control using the H∞
criterion in [73]. They implemented the Light Detection and Ranging (LIDAR)
technology for the feedforward control enabling the wind turbine for the meas-
urement of the incoming wind. Hara et al. presented experimental results from a
scaled model FOWT using the H∞ loop-shaping control in [74]. In comparison to
the presented baseline PI control, the rotor speed regulation and platform-pitch os-
cillation were slightly improved whereas the blade-pith activity was considerably
increased.

Lackner presented the Variable Power Pitch Control (VPPC) technique in [75]
and [76]. This control technique consists in changing the generator speed set point
to a larger value when the platform is pitching upwind, and vice versa. The platform
motion is improved. However, the blade-pitch rate is considerably increased, by
around 40%.

Other interesting articles can be found in the FOWT literature, not directly re-
lated with the negative platform damping control issue, but which some readers
may find of interest. Han et al. studied a method to compute the movable range
as well as the position control of FOWT systems in [77]. There are a couple of
articles about a novel control technique for Region II. First, Bagherieh et al. used
the blade-pitch control for this region in [20]. Second, Wang et al. used a variable
torque control using an advanced Radial Basis Function (RBF) neural network in
[78].
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2.5 Summary
Three main types of floating support structures have been presented for FOWT

systems in Section 2.1. Taking into account the TRL analysis of the worldwide

projects of Section 2.2, the following summary can be made: (1) The semi-sub is

the most widely used floating support structure, being a promising solution due to

its advantages regarding to the fabrication, mounting and towing. Unfortunately, it

has the lowest hydrodynamic stiffness, resulting in a high sensitivity to the control

performance and wave induced motions. (2) The spar floating technology is slightly

less used, probably due to the high investment required for building the platform,

and the high complexity of the process of mounting the wind turbine. However,

it has the highest hydrodynamic stiffness and lowest sensitivity to the control per-

formance and wave induced motions, which imposes fewer requirements on the

control. (3) The TLP technology is the least used floating solution, mainly due to

the difficulties presented in its transportation and installation as well as the elevated

anchoring risk and cost. Therefore, the semi-sub floating platform has been chosen

as the most suitable floating technology for the development of this research due

to the challenges posed to the control requirements needed to counteract the low

hydrodynamics stiffness and, at the same time, reduce the high sensitivity to the

control performance and wave induced motions. This would alleviate the draw-

backs of the semi-subs, contributing to the advantages presented by this floating

technology and making it more competitive.

The simulation tool FAST has been found very appropriate for the develop-

ment of this thesis due to the advantages presented in Section 2.3, briefly: (1) its

high flexibility; (2) its open-source code; (3) the available online support; (4) its

wide use in the scientific community; (5) the possibility of linking it with Mat-

lab/Simulink; and (6) its positive code certification. FAST8 has been used for the

development of the time-domain simulations whereas FAST7 has been used only

for the FOWT linearisation process.

In the FOWT control literature review, several key notes have been collected:

(1) blade-pitch control detuning avoids the negative platform damping effect due to

the reduction in the controller bandwidth below the critical platform-pitch natural

frequency. However, this controller bandwidth reduction degrades the regulation of
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the generator speed, directly affecting the produced electric power quality; (2) sev-
eral studies have attempted to optimise the PI controller through different optimal
control approaches or methods, such as LQR or H∞. However, in the majority
of the studies, there is a considerable increase in the blade-pitch activity, and, in
some cases, a little improvement and/or even a deterioration of the mechanical
loads suffered by the wind turbine blades or tower were reported. Good results
have been achieved with the MPC technique in the reduction of the blade loads,
but an increase in the blade-pitch activity has been shown; (3) the selection of the
controller type can be highly dependent on the floating technology, e.g. the H∞
control strategy is only implemented in the spar and TLP platforms, which have a
high hydrodynamic stiffness and low sensitivity to the controller induced platform
motions; and (4) the results of different considerations have been collected with
the nacelle feedback control method, improving the blade and tower loads in some
cases, and showing a performance deterioration in others. Therefore, after ana-
lysing the different control methods and performances, it can be summarised that
complex mathematical control algorithms show a high increase in the blade-pitch
activity, an uncertain efficacy in the reduction of the mechanical loads, and the con-
trollers robustness is not guaranteed [79]. Thus, in this thesis, it has been decided
to resort to the basis of the control design that analyses the Bode diagrams of the
system and manually shapes the transfer functions to ensure the desired system
response. In this way, the obtained performance results can be analysed and evalu-
ated in terms of the efficacy of the proposed control method, determining whether
it is acceptable or not while comparing them to the performance results of the more
mathematically complex FOWT controllers.
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CHAPTER

6
Conclusions and

Recommendations

This chapter summarises the main conclusions and contributions collected dur-
ing the development of this thesis and, also, some recommendations for further
research are suggested.
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6.1 Conclusions
The offshore wind energy presents the potential to become the real alternative of

fossil fuels in the near future and, since the LCOE of the floating wind technology

will be reduced to competitive levels, the wind energy harvesting in deepwater

areas will become feasible. The amount of worldwide lunched FOWT prototypes,

the first floating pilot park and the many currently developing projects show the

interest in the floating wind technology, as presented in Chapter 2. Nevertheless,

greater engineering efforts have to be carried out to achieve the final design in

relation to the FOWT hydrodynamic stability, manufacturing cost reduction and

performance quality improvement.

This thesis contributes to the performance improvement of the FOWTs redu-

cing the tower and blade DELs via a feedback control technique, which is a tech-

nically feasible and economically affordable solution. In Chapter 4 an advanced

control technique has been presented. Remarkable results have been achieved with

the DTU 10-MW TripleSpar FOWT model in the overall above rated wind speed

and sea state conditions, where both the loads of the platform-base and blade-roots

have been successfully reduced below the reference. However, a high influence of

the platform hydrodynamic stability on the APS controller performance has been

registered as shown by the NREL 5-MW ITI Energy’s and more compact barge

platform FOWT models. The NREL 5-MW ITI Energy’s barge FOWT model

shows an effective APS control performance in the overall wind speed range under

still and smooth sea state conditions. However, in rough sea state conditions, the

wave induced platform motions highly influence the APS controller performance

increasing the blade loads. Therefore, an additional feedback control loop has been

designed to counteract the negative effect of the waves, i.e. the WR control loop.

The implementation of the WR controller improves the blades loads below the ref-

erence Detuned PI results, slightly increasing the loads in the tower. Furthermore,

the challenge of the APS controller to perform in a less hydrodynamically stable

and more compact platform has been investigated. From a certain beam-draught

ratio onwards, a great control potential for the FOWT performance improvement

has seen. However, an additional control loop will be required to counteract the

increment of the platform-roll dynamics.
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Moreover, a non-linear model based optimisation process to further improve
the manually tuned APS and WR control loops designed for the NREL 5-MW
ITI Energy’s barge FOWT model has been presented in Chapter 5. This innovat-
ive control optimisation proposes the automatisation of the feedback control loop
tuning process based on DEL results. The implementation of this optimisation
method achieves significant improvements of the DELs in regards to the manually
tuned controller results while maintaining the time-domain performance. All the
DEL results have been reduced below those of the reference Detuned PI controller
for wind speeds from 17 m/s to above, reaching a maximum reduction of nearly
20% in tower-base-pitch and 12% in blade-root-flapwise. Such a fact points out the
potential effectiveness of the designed advanced control technique for the improve-
ment of the FOWT performance. Then, it validates the contribution of the novel
proposed optimisation methodology for tuning feedback control loops in FOWT
systems.

The issue of the FAST7 software in regard to the linearisation process with
low hydrodynamic stability platforms affected by the negative damping has been
presented in Chapter 3. Two alternatives to the conventional linearisation methods
have been proposed: (1) trimming the generator torque; and (2), the chirp signal
methodology. The first provides acceptable linear models while the second one
delivers the highest fidelity results respect to the identification of the system modes,
contributing with a novel method for linearising FOWT systems. Additionally, this
thesis has explored the potential of an open-source modelling code NEMOH for
getting the hydrodynamic matrices of the designed more compact barge family,
achieving accurate results in comparison to the more conventional codes validating
the approach from the method development point of view.

In summary of the accomplishments, the objectives of the thesis have been
satisfied (1) improving the overall FOWT performance while reducing the tower
and blade mechanical loads (2) by means of control techniques, which are scalable
to different FOWT models, and (3) analysing the designed control performance in
a more compact barge family. It is believed that the study presented in this thesis
would contribute to the common goal of reaching the final FOWT concept solution
and, supplying electric power from the deepwater areas to much of the world.
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6.2 Recommendations
The linearisation process for FOWT systems will be included soon in OpenFAST

code, which will include the waves as a disturbance input. Then, this would be

helpful for analysing the APS control loop performance under the wave disturbance

and for further reducing the system DEL results by means of the control tuning.

An extra study would include the addition of the barge platform dimensions

in the presented optimisation methodology. This could help in the achievement of

an optimised barge model according to the advanced controller and, in the further

improvement of the FOWT performance.

The implementation of the IPC is strongly recommended due to the advantages

cited in Subsection 2.4.2. Concretely, such an implementation will alleviate the

blade loads, providing a retuning of the APS and WR controllers and, hence, the

chance to further improve the tower loads.

An additional platform-roll control loop is required for the NREL 5-MW model

mounted on a more compact beam-draught ratio 8 barge, as shown in Subsection

4.2.2.2. In this way, it is believed that the APS can provide a similar performance to

that of the ITI Energy’s barge platform, taking into account the physical limitations,

such as, the higher static platform-pitch inclination of a more compact barge.

It would be beneficial to expand the considered set of simulation cases for a

more realistic wind and wave conditions, including wind and wave misalignment,

according to one specific location including the on site collected environmental

data. This will allow a thorough load study of the mechanical components determ-

ining where the controller efforts should be focused on. In this case, if the advanced

controller results would be positive, it should be validated in a wave-tank test, first,

and in a sub- and full-scale prototype installed offshore, next.

The optimisation of the APS controller with the DTU 10-MW TripleSpar FOWT

model would be recommendable to quantify the controller potential for the per-

formance improvement.

For future works, the use of the reduced order and high fidelity FOWT models

for the optimisation method presented in this thesis would be recommendable. This

would decrease the computational time and give the chance to include additional
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partial terms in the cost functions. Also, the optimisation process under the collec-
ted environmental real data of the specific location where the FOWT is going to be
installed would help the achievement of the best control parameter values for that
specific location.

Although this thesis is focused on the development of an advanced control
technique for above rated wind speed region, control switching issues have been
registered between the below and above rated controllers when the wind turbine
is operating near rated. Therefore, a general recommendation is done for the de-
velopment of an advanced switching mechanism for the transitions of these two
controllers, which is out of the scope of this thesis, that will improve the perform-
ance of the wind turbine when operating near rated.
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Additional Data

A.1 Steady-State Operating Points
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A. ADDITIONAL DATA

NREL 5-MW ITI Energy DTU 10-MW TripleSpar

Vw (m/s) Ωr (rpm) θ (deg) θyP (deg) Ωr (rpm) θ (deg) θyP (deg)

11.4 - rated 12.1 0.00 2.01 9.6 0.00 2.72
12 12.1 3.83 1.56 9.6 4.61 2.10
13 12.1 6.52 1.39 9.6 7.44 1.78
14 12.1 8.70 1.19 9.6 9.50 1.58
15 12.1 10.40 1.14 9.6 11.24 1.45
16 12.1 12.06 1.00 9.6 12.79 1.33
17 12.1 13.49 0.98 9.6 14.22 1.25
18 12.1 14.92 0.88 9.6 15.56 1.17
19 12.1 16.18 0.85 9.6 16.82 1.11
20 12.1 17.47 0.79 9.6 18.03 1.06
21 12.1 18.67 0.76 9.6 19.19 1.02
22 12.1 19.94 0.71 9.6 20.31 0.98
23 12.1 21.18 0.68 9.6 21.40 0.95
24 12.1 22.35 0.61 9.6 22.45 0.92
25 12.1 23.37 0.58 9.6 23.47 0.89

Table A.1: Defined steady-state operating points for above rated wind speed.
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APPENDIX

B
Simulink Schemes

B.1 Chirp Signal Simulink Scheme
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B. SIMULINK SCHEMES

B.2 Control Simulink Scheme
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APPENDIX

C
Software Input Files

C.1 NEMOH Primary Input File
% Purpose : Cr ea t e t h e main f i l e f o r j o i n up Mesh . m, Nemoh .m and
% postNemoh .m f i l e s t o g e n e r a t e from f r e e f l o a t i n g b o d i e s t h e
% r e s u l t i n g h y d r o s t a t i c f o r c e s and hydrodynamic c o e f f i c i e n t s as
% t h e p l o t s and f i g u r e s r e q u i e r e d .
%
% I n p u t s : you have t o d e c r i b e t h e p l a t f o r m f a c e s and . . .
% W a t e r D e n s i t y : wa ter d e n s i t y [Kg /mˆ 3 ]
% G r a v i t y : g r a v i t y a c c e l e r a t i o n [m/ s ˆ 2 ]
% A : p l a t f o r m t o t a l volume [mˆ 3 ]
% AR : a s p e c t r a t i o s
% nBod ie s : number o f b o d i e s t o be meshed
% n ( nBod ie s ) : number o f f a c e s o f t h e p l a t f o r m
% X ( nBodies , n , 4 , 3 ) : c o o r d i n a t e s o f nodes o f each p a n e l
% tX ( nBod ie s ) : t r a n s l a t i o n s
% CG( nBodies , 3 ) : p o s i t i o n o f g r a v i t y c e n t r e
% n f o b j ( nBod ie s ) : t a r g e t number o f p a n e l s f o r Aquaplus mesh
% B : p l a t f o r m w i d t h
% C : i n n e r i s l a n d w i d t h
% D : p l a t a f o r m sumerged d e p t h
% w : wave p e r i o d s
% d i r : wave d i r e c t i o n s
% d e p t h : sea d e p t h
%
% O u t p u t s : h y d r o s t a t i c s
% KH. d a t : h y d r o s t a t i c s t i f f n e s s m a t r i c e s f i l e
% CM. d a t : hydrodynamic added mass m a t r i c e s f i l e
% CA . d a t : hydrodynamic damping c o e f f i c i e n t s m a t r i c e s f i l e
%
%

c l e a r a l l
c l o s e a l l

s a v e d i r = pwd ; % Save c u r r e n t d i r e c t o r y ( main f o l d e r )
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C. SOFTWARE INPUT FILES

% E n v i r o n m e n t a l c o n d i t i o n s :
W a t e r D e n s i t y = 1025 ; % Water d e n s i t y [Kg /mˆ 3 ]
G r a v i t y = 9 . 8 1 ; % G r a v i t y a c c e l e r a t i o n [m/ s ˆ 2 ]

% P l a t f o r m p h y s i c a l
AR = [10 8 6 4 2 1 ] ; % Beam d r a u g h t r a t i o
B = [ 4 0 . 2 3 35 .71 30 .98 2 5 . 8 6 ] ; % P l a t a f o r m w i d t h
C = 1 0 . 0 ; % I n n e r i s l a n d w i d t h
D = [ 4 . 0 2 2 4 .4639 5 .1639 6 . 4 6 4 7 ] ; % P l a t a f o r m d r a u g h t

A = Bˆ2∗D Cˆ2∗D; % P l a t f o r m w e t t e d volume [mˆ 3 ]

f o r c = 1 : l e n g t h (AR) % Run NEMOH f o r each A s p e c t R a t i o
AR = AR( c ) ; % S e l e c t A s p e c t R a t i o
f p r i n t f ( ’ P l a t f o r m Aspec t R a t i o = %u ’ ,AR) % D i s p l a y c u r r e n t A s p e c t R a t i o

% P l a t f o r m c h a r a c t e r i s t i c s
B = B( c ) ; % C u r r e n t p l a t f o r m w i d t h
D = D( c ) ; % C u r r e n t p l a t f o r m d e p t h

% P l a t f o r m d e s c r i p t i o n
nBodies =1; % Number o f b o d i e s t o mesh
n =10; % Number o f p l a t f o r m f a c e s
X ( 1 , 1 , : , : ) = [B/ 2 0 . 0 0 . 0 ; B/ 2 0 . 0 D; B/ 2 B/ 2 D; B/ 2 B/ 2 0 . 0 ] ; % E x t e r i o r f a c e X
X ( 1 , 2 , : , : ) = [B/ 2 B/ 2 0 . 0 ; B/ 2 B/ 2 D ; B/ 2 B/ 2 D ; B/ 2 B/ 2 0 . 0 ] ; % E x t e r i o r f a c e Y
X ( 1 , 3 , : , : ) = [ B/ 2 0 . 0 0 . 0 ; B/ 2 B/ 2 0 . 0 ; B/ 2 B/ 2 D ; B/ 2 0 . 0 D ] ; % E x t e r i o r f a c e X
X ( 1 , 4 , : , : ) = [B/ 2 0 . 0 D; C/ 2 0 . 0 D; C/ 2 B/ 2 D; B/ 2 B/ 2 D ] ; % Bottom f a c e 1
X ( 1 , 5 , : , : ) = [C/ 2 C/ 2 D ; C/ 2 C/ 2 D ; C/ 2 B/ 2 D; C/ 2 B/ 2 D ] ; % Bottom f a c e 2
X ( 1 , 6 , : , : ) = [ C/ 2 0 . 0 D ; B/ 2 0 . 0 D ; B/ 2 B/ 2 D ; C/ 2 B/ 2 D ] ; % Bottom f a c e 3
X ( 1 , 7 , : , : ) = [C/ 2 0 . 0 0 . 0 ; C/ 2 C/ 2 0 . 0 ; C/ 2 C/ 2 D; C/ 2 0 . 0 D ] ; % E x t e r i o r f a c e X
X ( 1 , 8 , : , : ) = [C/ 2 C/ 2 0 . 0 ; C/ 2 C/ 2 0 . 0 ; C/ 2 C/ 2 D; C/ 2 C/ 2 D ] ; % E x t e r i o r f a c e Y
X ( 1 , 9 , : , : ) = [ C/ 2 0 . 0 0 . 0 ; C/ 2 0 . 0 D ; C/ 2 C/ 2 D ; C/ 2 C/ 2 0 . 0 ] ; % E x t e r i o r f a c e X
X( 1 , 1 0 , : , : ) = [C/ 2 0 . 0 0 . 0 1 ; C/ 2 0 . 0 0 . 0 1 ; C/ 2 C/ 2 0 . 0 1 ; C/ 2 C/ 2 0 . 0 1 ] ; % Face i n Z
tX ( 1 ) = 0 . 0 ; % T r a n s l a t i o n s
CG( 1 , : ) = [ 0 . 0 0 . 0 D / 2 ] ; % F l o a t i n g c e n t e r o f t h e p l a t f o r m
n f o b j ( 1 ) = 3000 ; % Number o f p a n e l s f o r t h e mesh

% H y d r o s t a t i c c a l c u l a t i o n
[ H y d r o s t a t i c S t i f f n e s s ] = Mesh ( s a v e d i r , Wate rDens i ty , G r a v i t y , nBodies , n , X, tX , CG, n f o b j ) ; % Lunch Mesh .m

cd ( [ pwd , ’\mesh ’ ] ) ; % Change d i r e c t o r y from t h e main f o l d e r t o mesh f o l d e r
c o p y f i l e ( ’ mesh1 . d a t ’ , ’ . . / ’ ) ; % Copy mesh1 . d a t f i l e
cd ( ’ . . / ’ ) ; % Change d i r e c t o r y r e t u r n i n g t o t h e main f o l d e r

% Hydrodynamic da ta
w = [ 0 . 0 5 : 0 . 0 5 : 5 ] ; % Wave f r e q . [ rad / s ]
d i r = 0 ; % Wave d i r e c t i o n [ grad ]
d e p t h = 0 ; % Water d e p t h [m]

% Hydrodynamic c a l c u l a t i o n
[ AddedMass , Rad ia t ionDamping ] = Nemoh (w, dir , d e p t h ) ; % Lunch Nemoh .m f i l e

% Data p r o c e s s
postNemoh ( Wate rDens i ty , G r a v i t y , A, B ) ; % Lunch postNemoh .m f i l e

% Sa v i ng da ta f i l e s i n f o l d e r s
cd ( s a v e d i r ) ; % Re tu rn t o main f o l d e r
AR = i n t 2 s t r (AR ) ; % Change AR from number t o s t r i n g
mal l ado = i n t 2 s t r ( n f o b j ( 1 ) ) ; % Change n f o b j ( 1 ) from number t o s t r i n g
fname = [ ’ A s p e c t R a t i o ’ AR ’ ’ ma l l ado ] ; % Cr ea te t h e name o f t h e f o l d e r
mkdir ( ’ r e s u l t s ’ , fname ) ; % Cr ea te t h e f o l d e r
m o v e f i l e ( ’ mesh /KH. d a t ’ , [ ’ r e s u l t s / ’ fname ] ) ; % Move KH. d a t
m o v e f i l e ( ’ r e s u l t s /CA. d a t ’ , [ ’ r e s u l t s / ’ fname ] ) ; % Move CA . d a t
m o v e f i l e ( ’ r e s u l t s /CM. d a t ’ , [ ’ r e s u l t s / ’ fname ] ) ; % Move CM. d a t

end
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C.2 HydroDyn Input File

C.2 HydroDyn Input File

HydroDyn v2 . 0 3 .∗ I n p u t F i l e
NREL 5 . 0 MW o f f s h o r e b a s e l i n e f l o a t i n g p l a t f o r m HydroDyn input p r o p e r t i e s f o r t h e I T I Barge wi th 4m d r a f t .
F a l s e Echo Echo t h e input f i l e d a t a ( f l a g )

ENVIRONMENTAL CONDITIONS
1025 WtrDens Water d e n s i t y ( kg /mˆ 3 )
150 WtrDpth Water d e p t h ( m e t e r s )
0 MSL2SWL O f f s e t be tween s t i l l w a t e r l e v e l and mean s e a l e v e l ( m e t e r s ) [ p o s i t i v e upward ; unused

WAVES
0 WaveMod I n c i d e n t wave k i n e m a t i c s model {0: none= s t i l l water , 1 : r e g u l a r ( p e r i o d i c ) , 1P # : r e g u l a r
0 WaveStMod Model f o r s t r e t c h i n g i n c i d e n t wave k i n e m a t i c s t o i n s t a n t a n e o u s f r e e s u r f a c e {0: none=no
3630 WaveTMax A n a l y s i s t ime f o r i n c i d e n t wave c a l c u l a t i o n s ( s e c ) [ unused when WaveMod=0; d e t e r m i n e s
0 . 2 5 WaveDT Time s t e p f o r i n c i d e n t wave c a l c u l a t i o n s ( s e c ) [ unused when WaveMod=0; 0.1<=WaveD
0 WaveHs S i g n i f i c a n t wave h e i g h t o f i n c i d e n t waves ( m e t e r s ) [ used on ly when WaveMod=1 , 2 , o r 3 ]
”DEFAULT” WavePkShp Peak shape p a r a m e t e r o f i n c i d e n t wave s p e c t r u m ( ) o r DEFAULT ( s t r i n g ) [ used
0 WvLowCOff Low cut o f f f r e q u e n c y or lower f r e q u e n c y l i m i t o f t h e wave s p e c t r u m beyond which t h e
500 WvHiCOff High cu t o f f f r e q u e n c y or upper f r e q u e n c y l i m i t o f t h e wave s p e c t r u m beyond which t h e
0 WaveDir I n c i d e n t wave p r o p a g a t i o n h e a d i n g d i r e c t i o n ( d e g r e e s ) [ unused
0 WaveDirMod D i r e c t i o n a l s p r e a d i n g f u n c t i o n {0: none , 1 : COS2S} ( ) [ on ly used
1 WaveDirSpread Wave d i r e c t i o n s p r e a d i n g c o e f f i c i e n t ( > 0 ) ( ) [ on ly used
1 WaveNDir Number o f wave d i r e c t i o n s ( ) [ on ly used
90 WaveDirRange Range of wave d i r e c t i o n s ( f u l l r a n g e : WaveDir + / 1/2∗WaveDirRange ) ( d e g r e e s ) [ on ly used
123456789 WaveSeed ( 1 ) F i r s t random seed of i n c i d e n t waves [ 2 1 4 7 4 8 3 6 4 8 t o 2147483647] ( )
1011121314 WaveSeed ( 2 ) Second random seed of i n c i d e n t waves [ 2 1 4 7 4 8 3 6 4 8 t o 2147483647] ( )
TRUE WaveNDAmp Flag f o r n o r m a l l y d i s t r i b u t e d a m p l i t u d e s ( f l a g )
”” WvKinFile Root name of e x t e r n a l l y g e n e r a t e d wave d a t a f i l e ( s ) ( qu o t ed s t r i n g )
1 NWaveElev Number o f p o i n t s where t h e i n c i d e n t wave e l e v a t i o n s can be computed ( ) [ maximum of
0 WaveElevxi L i s t o f xi c o o r d i n a t e s f o r p o i n t s where t h e i n c i d e n t wave e l e v a t i o n s can be o u t p u t
0 WaveElevyi L i s t o f yi c o o r d i n a t e s f o r p o i n t s where t h e i n c i d e n t wave e l e v a t i o n s can be o u t p u t

2ND ORDER WAVES [ unused wi th WaveMod=0 or 6 ]
F a l s e WvDiffQTF F u l l d i f f e r e n c e f r e q u e n c y 2nd o r d e r wave k i n e m a t i c s ( f l a g )
F a l s e WvSumQTF F u l l summation f r e q u e n c y 2nd o r d e r wave k i n e m a t i c s ( f l a g )
0 WvLowCOffD Low f r e q u e n c y c u t o f f used i n t h e d i f f e r e n c e f r e q u e n c i e s ( r a d / s ) [ Only used wi th a
3 . 5 WvHiCOffD High f r e q u e n c y c u t o f f used i n t h e d i f f e r e n c e f r e q u e n c i e s ( r a d / s ) [ Only used wi th
0 . 1 WvLowCOffS Low f r e q u e n c y c u t o f f used i n t h e summation f r e q u e n c i e s ( r a d / s ) [ Only used wi th
3 . 5 WvHiCOffS High f r e q u e n c y c u t o f f used i n t h e summation f r e q u e n c i e s ( r a d / s ) [ Only used wi th

CURRENT [ unused wi th WaveMod=6]
0 CurrMod C u r r e n t p r o f i l e model {0: none=no c u r r e n t , 1 : s t a n d a r d , 2 : u se r d e f i n e d from r o u t i n e
0 CurrSSV0 Sub s u r f a c e c u r r e n t v e l o c i t y a t s t i l l w a t e r l e v e l (m/ s ) [ used on ly when CurrMod =1]
”DEFAULT” CurrSSDir Sub s u r f a c e c u r r e n t h e a d i n g d i r e c t i o n ( d e g r e e s ) o r DEFAULT ( s t r i n g )
20 CurrNSRef Near s u r f a c e c u r r e n t r e f e r e n c e d e p t h ( m e t e r s ) [ used on ly when CurrMod =1]
0 CurrNSV0 Near s u r f a c e c u r r e n t v e l o c i t y a t s t i l l w a t e r l e v e l (m/ s ) [ used on ly when CurrMod =1]
0 CurrNSDir Near s u r f a c e c u r r e n t h e a d i n g d i r e c t i o n ( d e g r e e s ) [ used on ly when CurrMod =1]
0 CurrDIV Depth i n d e p e n d e n t c u r r e n t v e l o c i t y (m/ s ) [ used on ly when CurrMod =1]
0 Cur rDIDi r Depth i n d e p e n d e n t c u r r e n t h e a d i n g d i r e c t i o n ( d e g r e e s ) [ used on ly when CurrMod =1]

FLOATING PLATFORM [ unused wi th WaveMod=6]
1 PotMod P o t e n t i a l f low model {0: none=no p o t e n t i a l f low , 1 : f r e q u e n c y to t ime domain t r a n s f o r m s
” HydroData\Barge ” P o t F i l e Root name of p o t e n t i a l f low model d a t a ; WAMIT o u t p u t f i l e s c o n t a i n i n g
1 WAMITULEN C h a r a c t e r i s t i c body l e n g t h s c a l e used t o r e d i m e n s i o n a l i z e WAMIT o u t p u t ( m e t e r s ) [ on ly
6000 PtfmVol0 D i s p l a c e d volume of w a t e r when t h e p l a t f o r m i s i n i t s u n d i s p l a c e d p o s i t i o n (mˆ 3 )
0 PtfmCOBxt The x t o f f s e t o f t h e c e n t e r o f buoyancy (COB) from t h e p l a t f o r m r e f e r e n c e p o i n t ( m e t e r s )
0 PtfmCOByt The y t o f f s e t o f t h e c e n t e r o f buoyancy (COB) from t h e p l a t f o r m r e f e r e n c e p o i n t ( m e t e r s )
2 RdtnMod R a d i a t i o n memory e f f e c t model {0: no memory e f f e c t c a l c u l a t i o n , 1 : c o n v o l u t i o n , 2 : s t a t e
60 RdtnTMax A n a l y s i s t ime f o r wave r a d i a t i o n k e r n e l c a l c u l a t i o n s ( s e c ) [ on ly used when PotMod =1;
0 .0125 RdtnDT Time s t e p f o r wave r a d i a t i o n k e r n e l c a l c u l a t i o n s ( s e c ) [ on ly used when PotMod =1;

2ND ORDER FLOATING PLATFORM FORCES [ unused wi th WaveMod=0 or 6 ,
0 MnDri f t Mean d r i f t 2nd o r d e r f o r c e s computed {0: None ;
0 NewmanApp Mean and slow d r i f t 2nd o r d e r f o r c e s computed wi th Newman ’ s a p p r o x i m a t i o n {0: None ;
0 DiffQTF F u l l d i f f e r e n c e f r e q u e n c y 2nd o r d e r f o r c e s computed wi th f u l l QTF {0: None ;
0 SumQTF F u l l summation f r e q u e n c y 2nd o r d e r f o r c e s computed wi th f u l l QTF {0: None ;

FLOATING PLATFORM FORCE FLAGS [ unused wi th WaveMod=6]
True PtfmSgF P l a t f o r m h o r i z o n t a l s u r g e t r a n s l a t i o n f o r c e ( f l a g ) o r DEFAULT
True PtfmSwF P l a t f o r m h o r i z o n t a l sway t r a n s l a t i o n f o r c e ( f l a g ) o r DEFAULT
True PtfmHvF P l a t f o r m v e r t i c a l heave t r a n s l a t i o n f o r c e ( f l a g ) o r DEFAULT
True PtfmRF P l a t f o r m r o l l t i l t r o t a t i o n f o r c e ( f l a g ) o r DEFAULT
True PtfmPF P l a t f o r m p i t c h t i l t r o t a t i o n f o r c e ( f l a g ) o r DEFAULT
True PtfmYF P l a t f o r m yaw r o t a t i o n f o r c e ( f l a g ) o r DEFAULT
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C. SOFTWARE INPUT FILES

PLATFORM ADDITIONAL STIFFNESS AND DAMPING
∗ a l l z e r o s

AXIAL COEFFICIENTS
1 NAxCoef Number o f a x i a l c o e f f i c i e n t s ( )
AxCoefID AxCd AxCa AxCp
( ) ( ) ( ) ( )
1 0 . 0 0 0 . 0 0 1 . 0 0

MEMBER JOINTS
2 N J o i n t s Number o f j o i n t s ( ) [ must be e x a c t l y 0 o r a t l e a s t 2 ]
J o i n t I D J o i n t x i J o i n t y i J o i n t z i Jo in tAxID J o i n t O v r l p [ J o i n t O v r l p = 0 : do n o t h i n g a t j o i n t ,
( ) (m) (m) (m) ( ) ( s w i t c h )
1 0 .00000 0 .00000 4 . 0 0 0 0 0 1 0
2 0 .00000 0 .00000 0 .00000 1 0

MEMBER CROSS SECTION PROPERTIES
1 NPropSets Number o f member p r o p e r t y s e t s ( )
P ropSe t ID PropD PropThck
( ) (m) (m)
1 45 .13520 0 .00010

SIMPLE HYDRODYNAMIC COEFFICIENTS ( model 1 )
SimplCd SimplCdMG SimplCa SimplCaMG SimplCp SimplCpMG SimplAxCa SimplAxCaMG SimplAxCp
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0

DEPTH BASED HYDRODYNAMIC COEFFICIENTS ( model 2 )
0 NCoefDpth Number o f depth d e p e n d e n t c o e f f i c i e n t s ( )
Dpth DpthCd DpthCdMG DpthCa DpthCaMG DpthCp DpthCpMG DpthAxCa DpthAxCaMG
(m) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

MEMBER BASED HYDRODYNAMIC COEFFICIENTS ( model 3 )
0 NCoefMembers Number o f member based c o e f f i c i e n t s ( )
MemberID MemberCd1 MemberCd2 MemberCdMG1 MemberCdMG2 MemberCa1 MemberCa2 MemberCaMG1 MemberCaMG2
MemberCp1 MemberCp2 MemberCpMG1 MemberCpMG2 MemberAxCa1 MemberAxCa2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

MEMBERS
1 NMembers Number o f members ( )
MemberID MJointID1 MJointID2 MPropSetID1 MPropSetID2 MDivSize MCoefMod PropPo t [ MCoefMod=1: use
( ) ( ) ( ) ( ) ( ) (m) ( s w i t c h ) ( f l a g )
1 1 2 1 1 0 .5000 1 TRUE

FILLED MEMBERS
0 N F i l l G r o u p s Number o f f i l l e d member g r oup s ( ) [ I f F i l l D e n s = DEFAULT, t h e n F i l l D e n s = WtrDens ;
FillNumM F i l l M L i s t F i l l F S L o c F i l l D e n s
( ) ( ) (m) ( kg /mˆ 3 )

MARINE GROWTH
0 NMGDepths Number o f marine growth d e p t h s s p e c i f i e d ( )
MGDpth MGThck MGDens
(m) (m) ( kg /mˆ 3 )

MEMBER OUTPUT LIST
0 NMOutputs Number o f member o u t p u t s ( ) [ must be < 10]
MemberID NOutLoc NodeLocs [ NOutLoc < 1 0 ; node l o c a t i o n s a r e n o r m a l i z e d d i s t a n c e from t h e s t a r t o f
( ) ( ) ( )

JOINT OUTPUT LIST
0 NJOutputs Number o f j o i n t o u t p u t s [ Must be < 10]
0 J O u t L s t L i s t o f J o i n t I D s which a r e t o be o u t p u t ( ) [ unused i f NJOutputs =0]

OUTPUT
True HDSum Outpu t a summary f i l e [ f l a g ]
F a l s e OutAl l Outpu t a l l use r s p e c i f i e d member and j o i n t l o a d s ( on ly a t each member
2 OutSwtch Outpu t r e q u e s t e d c h a n n e l s t o : [1= Hydrodyn . out , 2= GlueCode . out , 3= bo th f i l e s ]
”ES11 . 4 e2 ” OutFmt Outpu t format f o r n u m e r i c a l r e s u l t s ( q uo t e d s t r i n g ) [ n o t checked f o r
”A11” OutSFmt Outpu t format f o r h e a d e r s t r i n g s ( qu o t ed s t r i n g ) [ n o t checked f o r

OUTPUT CHANNELS
” Wave1Elev ” Wave e l e v a t i o n a t t h e p l a t f o r m r e f e r e n c e p o i n t ( 0 , 0 ) , (m)
END of o u t p u t c h a n n e l s and end of f i l e . ( t h e word ”END” must a p p e a r i n t h e f i r s t 3 columns o f t h i s l i n e )

END of o u t p u t c h a n n e l s and end of f i l e . ( t h e word ”END” must a p p e a r i n t h e f i r s t 3 columns o f t h i s l i n e )
”TTDspSS” Tower t o p / yaw b e a r i n g s i d e to s i d e ( t r a n s l a t i o n a l ) d e f l e c t i o n ( r e l a t i v e
END of input f i l e ( t h e word ”END” must a p p e a r i n t h e f i r s t 3 columns o f t h i s l a s t O u t L i s t l i n e )
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APPENDIX

D
Simulation Results

D.1 Manually Tuned Controller Performance Extreme-
Events

Parameter Controller Type Conditions Value (KNm) Time (sec)

Min Vw = 25m/s Hs = 6m -5,431E+05 3172,2

Max Vw = 21m/s Hs = 6m 4,682E+05 2767,2

Min Vw = 15m/s Hs = 6m -4,338E+05 497,0

Max Vw = 13m/s Hs = 6m 4,772E+05 2767,1

Min Vw = 25m/s Hs = 6m -5,063E+05 3171,9

Max Vw = 13m/s Hs = 6m 4,806E+05 2767,2

Min Vw = 25m/s Hs = 6m -1,440E+05 598,6

Max Vw = 25m/s Hs = 6m 1,699E+05 1880,0

Min Vw = 23m/s Hs = 6m -1,253E+05 3252,2

Max Vw = 23m/s Hs = 6m 1,566E+05 3257,9

Min Vw = 25m/s Hs = 6m -1,670E+05 2304,0

Max Vw = 25m/s Hs = 6m 1,841E+05 1878,5

MyT

(TwrBsMyt)

Detuned PI

Detuned PI & APS

Detuned PI & APS & WR

MxT

(TwrBsMxt)

Detuned PI

Detuned PI & APS

Detuned PI & APS & WR
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D. SIMULATION RESULTS

Parameter Controller Type Conditions Value (KNm) Time (sec)

Min Vw = 25m/s Hs = 6m -1,702E+04 498,8

Max Vw = 25m/s Hs = 6m 2,349E+04 506,6

Min Vw = 25m/s Hs = 6m -2,077E+04 2354,0

Max Vw = 25m/s Hs = 6m 2,438E+04 2351,0

Min Vw = 25m/s Hs = 6m -1,910E+04 498,7

Max Vw = 13m/s Hs = 6m 2,089E+04 326,2

Min Vw = 21m/s Hs = 6m -9,700E+03 1853,3

Max Vw = 23m/s Hs = 6m 1,037E+04 1782,9

Min Vw = 23m/s Hs = 6m -9,511E+03 1877,4

Max Vw = 21m/s Hs = 6m 1,016E+04 3172,6

Min Vw = 25m/s Hs = 6m -9,159E+03 2305,0

Max Vw = 23m/s Hs = 6m 8,747E+03 2674,8

MyB

(RootMyb1)

Detuned PI

Detuned PI & APS

Detuned PI & APS & WR

MxB

(RootMxb1)

Detuned PI

Detuned PI & APS

Detuned PI & APS & WR

D.2 Optimised Controller Performance Extreme-Events

Parameter Controller Type Conditions Value (KNm) Time (sec)

Min Vw = 25m/s Hs = 6m -5,431E+05 3172,2

Max Vw = 21m/s Hs = 6m 4,682E+05 2767,2

Min Vw = 25m/s Hs = 6m -5,063E+05 3171,9

Max Vw = 13m/s Hs = 6m 4,806E+05 2767,2

Min Vw = 19m/s Hs = 6m -4,816E+05 3172,1

Max Vw = 25m/s Hs = 6m 4,793E+05 2767,1

Min Vw = 25m/s Hs = 6m -1,440E+05 598,6

Max Vw = 25m/s Hs = 6m 1,699E+05 1880,0

Min Vw = 25m/s Hs = 6m -1,670E+05 2304,0

Max Vw = 25m/s Hs = 6m 1,841E+05 1878,5

Min Vw = 23m/s Hs = 6m -1,434E+05 2303,9

Max Vw = 25m/s Hs = 6m 1,411E+05 1610,8

Min Vw = 25m/s Hs = 6m -1,702E+04 498,8

Max Vw = 25m/s Hs = 6m 2,349E+04 506,6

Min Vw = 25m/s Hs = 6m -1,910E+04 498,7

Max Vw = 13m/s Hs = 6m 2,089E+04 326,2

Min Vw = 23m/s Hs = 6m -2,003E+04 498,5

Max Vw = 19m/s Hs = 6m 2,099E+04 326,1

Min Vw = 21m/s Hs = 6m -9,700E+03 1853,3

Max Vw = 23m/s Hs = 6m 1,037E+04 1782,9

Min Vw = 25m/s Hs = 6m -9,159E+03 2305,0

Max Vw = 23m/s Hs = 6m 8,747E+03 2674,8

Min Vw = 25m/s Hs = 6m -1,004E+04 1853,2

Max Vw = 25m/s Hs = 6m 9,080E+03 496,0

Detuned PI

Optimised APS & WR

Detuned PI

Optimised APS & WR

MyT

(TwrBsMyt)

MxT

(TwrBsMxt)

Manually APS & WR

Manually APS & WR

MyB

(RootMyb1)

Detuned PI

Optimised APS & WR

Detuned PI

Optimised APS & WR

MxB

(RootMxb1)

Manually APS & WR

Manually APS & WR
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D.3 Time-Domain Simulations NREL 5-MW Beam-Draught Ratio 6 Barge

D.3 Time-Domain Simulations NREL 5-MW Beam-
Draught Ratio 6 Barge
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