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Tuberculosis is an infectious disease caused by bacteria belonging to the 

Mycobacterium tuberculosis complex. According to recent data, tuberculosis remains 

currently as the leading infectious disease in terms of mortality rate among humans all 

around the world (World Health Organization, 2018). Although bovine tuberculosis can 

be caused by different mycobacteria (Domingo et al., 2014), it is well known that 

Mycobacterium bovis (M. bovis) affects the largest number of hosts. Even though 

bovine tuberculosis has been described most frequently in cattle (Aagaard et al., 2010) 

due to its greatest economic relevance, other domestic ruminant  (Crawshaw et al., 

2008; Muñoz-Mendoza et al., 2015) and non-ruminant species (Parra et al., 2003; 

Sarradell et al., 2015; Rocha et al., 2017) as well as feral animals can be affected too 

(Anderson and Trewhella, 1985; Schmitt et al., 1997; Serraino et al., 1999). In addition 

M. bovis is categorized as a zoonotic microorganism since infection cases in humans 

have also been reported (Robinson et al., 1988; Cosivi et al., 1998). Therefore bovine 

tuberculosis is considered as a major objective for Animal and Public Health with heavy 

implications on economy and conservation. 

In vivo diagnosis of the disease relies on the intradermal tuberculin test. This 

diagnostic technique is based on the intradermal injection of tuberculin purified protein 

derivatives and their capacity to elicit a delayed hypersensitivity in infected animals. 

However an accurate diagnosis of bovine tuberculosis may be influenced by the 

antigenic similarity of  M. bovis  with other non-tuberculosis mycobacteria such as Map 

(Seva et al., 2014) or environmental mycobacteria (Humblet et al., 2011; Jenkins et al., 

2018) as well as by the use of paratuberculosis vaccines (Garrido et al., 2013). The 

latter has as the following consequence: vaccination of cattle against paratuberculosis 

is not allowed in countries carrying out bovine tuberculosis eradication programs.   

Nowadays vaccination is the most effective measure to control paratuberculosis. 

Its effectiveness has been demonstrated repeatedly by different studies which 
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confirmed that its use diminishes the amount of bacteria shed in feaces, reducing the 

infectious level of the disease (Juste et al., 2009; Alonso-Hearn et al., 2012; Dhand et 

al., 2016). In addition it has been proven that paratuberculosis vaccination restricts the 

extension of the lesions produced by Map (Juste et al., 1994; Muñoz, 2014) as well as 

the colonization of intestinal tissues (Juste et al., 1994; Arrazuria, Molina, et al., 2016). 

However, despite all the benefits associated to vaccination, its use remains restricted in 

cattle.Therefore the first objective of this thesis was to assess different strategies 

in order to avoid the interference caused by paratuberculosis vaccines on the 

tuberculosis official diagnostic techniques. For that purpose new alternative 

interpretation criteria as well as new more specific antigens were studied. 

In relation to the first objective, since paratuberculosis and bovine tuberculosis 

are caused by pathogens sharing similar antigenic composition, the second goal of 

this thesis was to study the effect that Map vaccination could have on the 

establishment and evolution of bovine tuberculosis. 

Eradication of bovine tuberculosis has been a major objective for Animal and 

Public Health for almost a century. The implementation of eradications programs during 

the XXth century has helped to reduce the prevalence of bovine tuberculosis 

remarkably. However, eradication of the disease has been only achieved by a very low 

number of countries and most of them still have a residual infection rate. The airborne 

pathway is accepted as the most frequent transmission route in cattle (J Francis, 

1947), being the respiratory system the principal target (Liebana et al., 2008; Domingo 

et al., 2014). On the other hand different wildlife species contribute to the maintenance 

and spread of the disease. In addition indirect transmission by ingestion of 

contaminated food and water by cattle has been described as the most important 

transmission pathway between wildlife and livestock. Therefore, in order to explain the 

appearance of reactive animals to the official diagnostic tests but not showing any 
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macroscopic lesions, possible differences in the course of infection depending on 

the transmission route was the third objective of this set of experimental studies. 
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3.1. MYCOBACTERIA  

3.1.1. Taxonomy 

Mycobacteria belong to the Mycobacteriaceae family within the Actinomycetales 

order (Stackebrandt and Ward-rainey, 1997). In 1882 Robert Koch was the first 

scientist to isolate a mycobacteria, the causative agent of tuberculosis (Koch, 1882), 

and named it Bacterium tuberculosis. However after Lehnmann and Neumann updated 

the taxonomic classification a few years later (Lehmann and Neumann, 1896) the 

genus Mycobacterium and the family Mycobacteriaceae were created and the species 

was renamed as Mycobacterium tuberculosis (M. tuberculosis). 

The Mycobacteriaceae family contains only one genus, Mycobacterium. In the 

80s and early 90s more than 70 species belonging to the Mycobacterium genus were 

described (Skerman et al., 1980; Shinnick and Good, 1994). But, thanks mostly to the 

progress in molecular biology, it has been possible to identify other species using 

different techniques so that from the beginning of the 21st century mycobacteria have 

experienced an outstanding expansion that led to a list of more than 170 mycobacteria 

species (Forbes, 2017) . 

Different types of classifications for the microorganisms within the Mycobacterium 

genus have been proposed. Mycobacteria have been classified not only after their 

pathogenicity and genotype. A study conducted in 1959 ranked the Mycobacterium 

members based on their growth and pigmentation in the presence or absence of light 

(Runyon, 1959). However the most widely used classification measures the capability 

of the bacteria within the Mycobacterium genus for being cultured and defines them as 

cultivable or hardly cultivable species. Cultivable species can be divided into two 

different groups: fast- and slow-growing bacteria. Fast-growing bacteria can lead to 

colony formation in less than seven days whereas slow growing species need more 

than a week. 
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Most pathogenic relevant mycobacteria species belong to the slow-growing 

bacteria group and almost all of them are classified into two main groups: 

Mycobacterium tuberculosis complex (MTC) and Mycobacterium avium complex (MAC) 

(Figure 1).  

 

Figure 1. Phylogenetic tree of various mycobacteria species and subspecies. In red 

lettering: species from the Mycobacterium tuberculosis complex. In green lettering: species and 

subspecies from the Mycobacterium avium complex. Source: (Rue-Albrecht et al., 2014). 

The MTC includes the causative agents of tuberculosis in mammals (Figure 1). 

M. tuberculosis and Mycobacterium bovis (M. bovis) are the main species causing 

tuberculosis in humans and animals. Mycobacteria constituting the MTC are 

remarkable genetically homogenous. They share more than 99.9% of their nucleotide 

level and 16S rRNA sequences (Boddinghaus et al., 1990; Sreevatsan et al., 1997), 
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which means that in strict taxonomic terms they should not be considered different 

species, but subs-species within a single species. However given that their host 

preferences, phenotypes and pathogenicity vary greatly, practical reasons especially 

regarding medical practice clarity sustain this exception (Brosch et al., 2002; Rastogi 

and Sola, 2007; Wirth et al., 2008).  

M. tuberculosis is the best-known member of the Mycobacterium genus, affecting 

not only humans but also animals in contact with them. It is estimated that more than 

one third of the world human population is infected with the bacteria and remains in an 

asymptomatic state or latent tuberculosis infection (LTBI) (World Health Organization, 

2017). It is also known that 5-15% of the LTBI people will end up developing the 

disease over the course of their lives (World Health Organization, 2017). 

M. bovis has the widest MTC spectrum of host-tropism. The majority of them 

belong to mammal orders: from domestic and wild ruminants to rodents and 

insectivores, carnivores and even humans (Coleman and Cooke, 2001; Aranaz et al., 

2004; Aagaard et al., 2010; Muñoz-Mendoza et al., 2015; O’Reilly and Daborn, 2018) 

and is responsible for causing significant economic loses to the livestock sector with 

estimates of >50 million cattle infected worldwide (Waters et al., 2012).  

All members from the MAC are non-tuberculous bacteria. Because all of them 

share the same rRNA sequence, other genetic targets such as the Internal Transcribed 

Spacer (ITS) region are used for its classification (Turenne et al., 2010). MAC 

uncovered the existence of a broad variety of environmental and animal-associated 

microorganisms with variable degrees of pathogenicity, host preference (including 

humans) and environmental distribution (Biet et al., 2005; Rindi and Garzelli, 2014). 

Therefore, as the MTC, MAC acquires great relevance in veterinary (Thorel et al., 

2001) and human medicine (Biet et al., 2005; Whiley et al., 2012). Mycobacterium 

avium (M. avium) is the most clinically significant species for humans and animals 
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within the MAC and it is classified into four different subspecies (Figure 1): 

Mycobacterium avium subsp. paratuberculosis (Map), Mycobacterium avium subsp. 

hominissuis, Mycobacterium avium subsp. silvaticum and Mycobacterium avium subsp. 

avium. 

3.1.2. Structural characteristics  

Mycobacteria share common characteristics. They are aerobic (although some 

species manage to grow under reduced oxygen levels), non-spore-forming, non-motile, 

slightly curved or straight bacilli. The most remarkable feature, uniformly present and 

distinctive of the genus, is the lipid-rich cell envelope that confers these bacteria the 

property of resistance to decolorization when stained with carbol-fuchsin and 

decolorized with dilute hydrochloric acid. This cell envelope with high mycolic acid 

content confers the mycobacteria the ability to retain a pink color when stained with 

acid-fast stains such as Ziehl-Neelsen. As a result, the term “acid-fast bacilli” (AFB) is 

often associated with mycobacteria. 

As mentioned above, several mycobacterial microorganisms are included within 

the Mycobacterium genus. However the present dissertation focuses only on the study 

of two of them that are more relevant in veterinary medicine, especially in cattle, M. 

bovis and Map, and on the consequences that vaccination against Map might trigger in 

the diagnosis and course of the disease after a M. bovis infection in the bovine host 

being pathogens so closely related to each other. 

3.2. PARATUBERCULOSIS 

Paratuberculosis is a chronic inflammatory infection of the intestine and it is 

caused by Map. There is a long subclinical period before the clinical manifestation of 

the infection appears upon a breakdown of the immune system. Symptoms include 

wasting, diarrhoea, reduced milk production and finally premature death of infected 

cattle causing great economic losses to the livestock sector. 
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3.2.1. Etiology 

3.2.1.1. History and taxonomy 

In the early 19th century, d’Aroval reported a type of intestinal disease with 

persistent diarrhea in some cattle. However its cause was unknown and it was not well 

described (Chiodini et al., 1984). During decades it remained as just one 

uncharacterized disease of unknown etiology. Throughout that period the tubercle 

bacillus and the avian tubercle bacillus were identified and tuberculosis became a well-

known disease in humans and cattle. Paratuberculosis was first described in 1895 in 

Germany by Johne and Frothingham. During a post-mortem examination of the 

intestinal tract of a cow with suspected intestinal tuberculosis, abundant AFB were 

found. However attempts to make the organism grow failed and its inoculation in 

guinea pigs did not cause tuberculosis. Thus, ruled out the tubercle bacillus as the 

cause of disease, the authors concluded that it should have been caused by the avian 

tubercle bacillus and proposed the name pseudotuberculous enteritis for the disease. A 

few years later, Bernard Bang differentiated this new pathology from the tuberculosis 

(Bang, 1906) and renamed it as paratuberculosis. 

In 1912 Twort finally succeeded in isolating the causative agent and called it 

Mycobacterium enteriditis chronicae pseudotuberculosis bovis johne (Twort and 

Ingram, 1912). After figuring out that more species besides bovine could be affected, 

the agent was renamed as Mycobacterium paratuberculosis (Bergey, 1926) or 

Mycobacterium johnei (Francis, 1943). The actual name of Mycobacterium avium 

subsp. paratuberculosis was assigned in 1990 by Marie Thorel and co-workers (Thorel 

et al., 1990) in a revision of the group taxonomy and after Saxegaard and , (Saxegaard 

and Baess, 1988) had molecularly established that it was a subspecies of M. avium.  
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3.2.1.2. Map general characteristics  

Map is a 1-2 µm long and 0.5 µm wide obligate intracellular bacillus. It is an 

aerobic, Gramm positive and nonmotile microorganism (Harris and Barletta, 2001; 

Manning and Collins, 2001). Like other mycobacterial species Map is an acid-fast 

bacterium and, as it shows a remarkably long average generation time (36 hours) 

(Elguezabal et al., 2011), it belongs to the slow-growing mycobacteria group (Grange 

et al., 1990). The high amount of time required for Map’s colonies formation together 

with its inability to grow in absence of exogenous mycobactin are useful features for its 

characterization (Chiodini et al., 1984). Map cannot produce mycobactin due to the 

mbtA gene deletion of its genome, responsible for encoding the first enzyme of the 

mycobactin biosynthesis pathway (Li et al., 2005), thus it cannot grow on media were 

iron is not easily available like those based on egg. On the other hand Map mycobactin 

independent isolates have been reported in experiments using laboratory adapted 

strains (Morrison, 1965; Merkal and Curran, 1974; Gunnarsson and Fodstad, 1979). 

However it has been suggested that the mycobactin carried-over from previous 

cultures in medium supplemented with mycobactin could be responsible for these 

isolates (Lambrecht and Collins, 1992). Nevertheless lack of mycobactin dependence 

on primary isolates of non-iron-enriched media has been described too. However it 

seems very rare since it has only been described in a goat (Gunnarsson and Fodstad, 

1979) and in a second experiment carried out with ovine samples (Adúriz et al., 1995). 

Another characteristic which makes it easy to distinguish Map from other mycobacterial 

species is its possession of the insertion element IS900 (Collins et al., 1989). IS900 

consists of 1451 base pairs of which 66% are guanine + cytosine. There are 15–20 

copies of the entire insertion element within the complete Map’s genome (Green et al., 

1989). Both discoveries took place in 1989 and provided the first definitive, non-

subjective methods for the identification of Map and also led to the improvement of the 

diagnosis. However similar insertion elements or IS900-like sequences were 



Literature review 

13 

discovered in other mycobacteria (Cousins et al., 1999; Englund et al., 2002). A 

possible misdiagnosis of the disease led to the search of Map more specific sequences 

which could be single or multi copy-targets. Single copy-sequences such as the 

paratuberculosis specific elements: F57 (Poupart et al., 1993), locus 251 (Rajeev et al., 

2005), or hspX (Ellingson et al., 2005) are very interesting for quantification assays. 

Sequences with more than one copy like the ISMav2 (Strommenger et al., 2001), 

ISMap04 or ISMap02 elements increase the chance to detect the pathogen. 

Map cell envelope has structural common features with other mycobacteria. 

Same pathogen associated molecular patterns (PAMPs) of the cell envelope can be 

found in different species. The mannose capped lipoarabinomannan PAMP is 

expressed by M. bovis, M. tuberculosis, Mycobacterium BCG and Mycobacterium 

leprae (M. leprae) too (Prinzis et al., 1993; Murray et al., 2007). Because antigen 

preparations used in the paratuberculosis diagnostic techniques do not necessarily 

react exclusively to Map, causing false-positive and false-negative results, studies have 

been carried out to identify Map-specific PAMPs. Recently a Map-specific cell surface 

lipopeptide (lipopeptide IIβ, 3) exhibiting high antibody binding activity in serum from 

Map infected cattle has been reported (Mitachi et al., 2016). This could lead to an 

improvement of Map diagnostic accuracy. 

3.2.2. Epidemiology 

3.2.2.1. Host range 

Due to Map economic impact on the livestock sector the study of 

paratuberculosis has being mainly focused on domestic ruminants: cattle, sheep and 

goats (Chiodini et al., 1984) but in recent years the variety of hosts has been proven to 

be much broader. Map has been found in wild ruminants as: red deer (Nebbia et al., 

2000), roe deer (Robino et al., 2003), fallow deer (Balseiro et al., 2008), white tailed 

deer (Chiodini and Van, 1983), camels (Kramsky et al., 2000) or alpacas (Miller et al., 



Literature review 

14 

2000). Infection with Map has been also described in many wildlife and domestic 

monogastric species such as: rabbits (Arrazuria, Juste, et al., 2016), horses (Cline et 

al., 1991), donkeys (Dierckins et al., 1990), dogs (Miller et al., 2017), cats (Kukanich et 

al., 2013), badgers (Beard et al., 2001), wild boars (Álvarez et al., 2005), hares 

(Salgado et al., 2011), foxes (Beard et al., 2001), wolves (Beard et al., 2001), coyotes 

(Anderson et al., 2007) as well as in different bird (Beard et al., 2001; Daniels et al., 

2003) and rodent species (Daniels et al., 2003).  

3.2.2.2. Transmission 

Map is primarily transmitted through the faecal-oral route by ingestion of food or 

water contaminated with mycobacteria present in the faeces of infected animals. Most 

of Map infections take place during the first days of life of the neonatal calves and are 

often associated with the fact that the young calves nurse on teats which have been 

contaminated with faeces of shedding animals (National Research Council, 2003; 

Barkema et al., 2009). However Map can be transmitted vertically during pregnancy 

and lactation too, as it has been isolated from the uterus (Pearson and McClelland, 

1955; Whittington and Windsor, 2009), fetal tissues (Lawrence, 1956), colostrum 

(Streeter et al., 1995) and milk from clinical (Stabel et al., 2014) and subclinically 

infected cows (Sweeney et al., 1992; Streeter et al., 1995). Furthermore it has been 

demonstrated that the amount of Map shed into milk and colostrum can be influenced 

by the clinical stages of infection and the different days of milk, being the advanced 

stages of the disease and the early lactation days the highest shedding periods (Stabel 

et al., 2014).  

It is widely accepted that resistance against Map infection increases with age 

(Taylor, 1953; Larsen et al., 1975; Windsor and Whittington, 2010). Map bacilli target 

the small intestine where they are taken up by M cells and enterocytes, and 

subsequently engulfed by submucosal macrophages (Sigurethardottir et al., 2004; 



Literature review 

15 

Ponnusamy et al., 2012). Small intestine in neonatal calves is covered by organized 

lymphoid tissue. As animals get older, this lymphoid tissue starts to retract into small 

areas called Peyer's Patches reducing the chance of infection. Therefore, unless 

massive and repeated doses of Map are ingested, this represents a relatively low risk 

for adult cows but could be an important risk to younger replacement stock. 

3.2.2.3. Distribution, prevalence and economic costs 

Paratuberculosis is widely distributed around the world among dairy cattle 

(Nielsen and Toft, 2009; Corbett et al., 2018). However a proper estimation of its 

prevalence is not easy to achievedue to different factors: 1) use of different diagnostic 

techniques makes results difficult to compare, 2) low sensitivity of these techniques for 

detection of subclinical infected animals causes false negative results and 3) early 

culling of animals showing clinical signs hinders a reliable final confirmation. 

Nevertheless a recent study, based on data from 48 countries all around the world, 

estimates that the global paratuberculosis prevalence is high (Whittington et al., 2019). 

Results suggest that 20% of the herds and flocks in about half the countries 

participating in this assay were infected, with prevalence rates around 40% in some 

developed countries (Whittington et al., 2019). Other studies estimate that the herd-

level prevalence of Map infection is likely to be >30% (Donat et al., 2014; Corbett et al., 

2018) or even >50% in most of the countries with a significant dairy industry (Barkema 

et al., 2010).  

Paratuberculosis causes great economic losses to the livestock sector as a result 

of: reduced milk production and slaughter values, increased premature and forced 

culling, reduced fertility and increased mortality rate as well as increased susceptibility 

to other diseases (Bakker et al., 2000; Whittington and Sergeant, 2001). The exact 

economic costs of Map infection are difficult to estimate due to the absence of accurate 

prevalence data (National Research Council, 2003). In fact estimations of the net 
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economic impact of paratuberculosis on the U.S. dairy industry varies from US$ 200 to 

US$ 1500 million annually depending on the study (Ott et al., 1999; Harris and Barletta, 

2001). A more recent publication studied the financial impact of paratuberculosis on 

Scottish dairy farms (Shrestha et al., 2018). The estimated results obtained after 

applying their chosen model match with earlier studies. Each Scottish farm affected by 

the disease suffers an estimate average loss of £31,940 annually which is similar to the 

estimate of £34,679 loss per infected farm per year published in a Dutch study 

(Groenendaal et al., 2003). In addition the same Scottish study estimated the economic 

loss per cow as £185 on an paratuberculosis infected farm which exceeds the £112 

estimated per cow in the United Kingdom (Stott et al., 2005) but lies within the 

estimated range per cow in the United States (£46 to £192) (Ott et al., 1999).  

In addition the economic impact seems to be of increasing concern due to the 

apparent increase of the global prevalence, associated economic losses as well as the 

potential consequences for trade (Rideout et al., 2003). 

3.2.3. Diagnosis 

Treatment against paratuberculosis in cattle is economically impracticable; 

therefore diagnostic techniques should be rapid and accurate enough to identify all 

affected animals regardless of their infectious status. Unfortunately none of the 

currently available techniques meets all the requirements individually. Current 

diagnostic tests, such as faecal culture test, faecal PCR and enzyme-linked 

immunosorbent assay (ELISA) show high sensitivity detecting animals shedding high 

levels of Map, but lower sensitivities detecting animals shedding low levels of Map 

(Whitlock et al., 2000, 2007; Collins et al., 2006).  

Currently, the most commonly in vivo diagnostic techniques detecting the 

adaptive cellular or humoral immune response developed by the host in response to 

Map infection are the interferon-gamma (IFN-γ) release test and the serum antibody 
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indirect ELISA. The IFN-γ release test is the most widely in vitro immunological 

technique used to measure the cell type immune response. The estimated sensitivity 

for subclinical and clinical infected animals detection varies between 13% and 85% 

respectively and the specificity lies around 88% and 94%  (Nielsen and Toft, 2008). 

The humoral immune response is generally measured with the serum ELISA. The 

sensitivity of the technique shows extreme values ranged between 17 and 87% in 

infected and infectious animals respectively (Nielsen and Toft, 2008). The specificity of 

the serum approach of the technique ranges between 40-100% whereas if milk is used 

the achieved values are higher (83%-100%) (Nielsen and Toft, 2008).  

The most widely used in vivo techniques for the detection of the bacteria are 

faecal culture and PCR. Isolation of Map is nowadays the reference technique which 

also allows strain differentiation for epidemiologic purposes. However, there are two 

major disadvantages this technique has to face: 1) confirmation of negative results can 

take up to 20 weeks due to the slow growing nature of the agent and 2) isolated 

colonies require molecular confirmation. On the other hand detection of Map DNA in 

faecal samples by PCR has a much faster turnaround time than culture. Results can be 

obtained within 24 hours and this technique allows the detection of very small amounts 

of the etiological agent showing a sensitivity and specificity similar to the faecal culture 

(Collins et al., 2006). However intermittent Map shedding in faeces during the 

subclinical phase of the infection affects the sensitivity of both diagnostic methods.  

As already discussed in previous sections most of Map PCR detection tests are 

based on the detection and amplification of the IS900 sequence. This DNA insertion 

sequence has multiple copies per bacteria (15-20 copies). However it is not found 

exclusively in Map, it has been found in other environmental mycobacteria as well 

(Cousins et al., 1999; Englund et al., 2002). The main disadvantage of PCR is that 

detection of the microorganism does not necessarily represent infection risk because 

the cells might not be viable. In addition weak positive results in herds heavily infected 
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with Map should be interpreted carefully because they could be obtained due to the 

“pass through” of organisms recently ingested instead of proceeding from infected 

intestinal tissue.  

 Election of a diagnostic method will depend on whether the diagnostic efforts are 

aimed at detecting infection at individual- or at herd–level as well as on the available 

economic budget. In a recent study carried out by Whittington and co-workers 

diagnostic tests used by 22 countries within their control programs have been recorded 

(Whittington et al., 2019) (Table 1). 

Table 1. Types of diagnostic tests used in paratuberculosis control programs between 

2012 and 2018 according to different livestock species. Data are the number of countries 

among the 22 countries with control programs, sorted by frequency of test. Adapted from 

source:(Whittington et al., 2019) 

Test 
Cattle - 

dairy 
Cattle - 

beef 
Sheep Goats Camelids 

Deer - 
farmed 

Other 
Not 

used 

Serum ELISA 17 17 9 10 1 3 - 3 

Faecal PCR - individual 18 17 13 12 6 9 3 4 

Faecal culture – 

individual 
13 13 9 9 6 9 3 5 

Pathology 16 15 13 14 8 11 3 6 

 

However, testing for Map is of very little value if no management changes within 

the herd or poor commitment to act on the test results are carried out.  

3.2.4. Control 

Paratuberculosis is really tough to control and even harder to eradicate because 

of a prolonged incubation period, during which animals can spread the agent without 

exhibiting signs of illness, poor sensitive diagnostic tests and prolonged survival of the 

organism in the environment (Kennedy and Benedictus, 2001).  

Vaccination has proven to diminish the amount of bacteria shed and therefore 

reducing the infectious level of the disease (Juste et al., 2009; Alonso-Hearn et al., 

2012). Even though current vaccines do not prevent new infections completely (Juste 
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et al., 1994; Windsor, 2006), vaccination has proven to diminish the amount of bacteria 

shed and therefore reducing the infectious level of the disease (Juste et al., 2009; 

Alonso-Hearn et al., 2012). Thus vaccination is an excellent strategy when no 

interference with diagnostic in official bovine tuberculosis programs is feared like in 

sheep, goats and camelids. Nevertheless in cattle paratuberculosis vaccination is not 

allowed and therefore control of the disease has to be primarily based on preventing 

new infections through cutting down the transmission rate by timely detection and 

culling of infectious animals. An objective such as eradication of the disease is really 

difficult to achieve and it is often impractical regarding the objectives of commercial 

farms. In contrast, preventing and reducing its spread and therefore reducing Map 

prevalence is a practical and more feasible objective for most types of farm operation 

(Rossiter and Burhans, 1996; Collins et al., 2010). 

For negative herds, the goal is to maintain their Map free status. In order to 

achieve it rigorous biosecurity measures must be carried out and herds must grow from 

within avoiding introduction from animals from other herds. 

In infected herds, efforts to decrease the within-herd paratuberculosis prevalence 

require different fundamental approaches: prevent exposure of susceptible animals to 

the infectious agent (taking special care of the neonatal calves), identify and eliminate 

Map-infected animals from the herd, impede the entry of infected animals into the herd 

and improve resistance to Map. To achieve the overall aim, control of paratuberculosis 

is currently based on good management practices, identification and elimination of 

affected animals and vaccination. However over the last years and increasingly interest 

over the genetic susceptibility or resistance against Map infection in cattle has 

appeared. The use of genetic tests as a tool to select animals more resistant to Map 

infection may become very useful to control the disease in a near future (Juste et al., 

2018) 

 

 



Literature review 

20 

3.2.4.1. Good management practices 

It is widely accepted and simulation studies have pointed out too (Groenendaal et 

al., 2002; Kudahl et al., 2007) that hygienic measures related to calf management are 

very important for achieving control of the disease since most new infections occur 

during the neonatal period.  

Good management practices include: 1) avoiding contact of faeces with the 

animals (especially with the calves), food and water (Goodger et al., 1996); 2) 

separating the calving area from the rest of the farm facilities (Kalis et al., 2001); 3) 

detaching the newborns from their dams as soon as possible and restricting contact 

between them as well as with other adult animals by keeping them in separate facilities 

and pastures for at least the first 6 months of life (Goodger et al., 1996); or, according 

to more recent studies, for the first 12 months of life (Windsor and Whittington, 2010); 

4) isolating animals presenting clinical signs (Muskens et al., 2003) and finally, 5) 

introducing only infection-free new animals and, if possible, coming from 

paratuberculosis-free farms. 

Implementation of good management practices represents a critical point for 

achieving control of the disease. However if no other additional measure is taken, such 

as test and cull of affected animals, long periods of time should be required before any 

positive result can be observed. This fact is responsible for many farmers to lose 

interest in the control of the disease and so they quit the programs. Two of the major 

challenges in controlling the disease farmers must be aware of before introducing the 

chosen control measures are that: 1) control is a slow process; they have to stay 

motivated for years and not give up because diagnosis is hindered by low-sensitivity 

tests, and 2) effective control implies strong commitment and constant application of 

the chosen measures. 
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3.2.4.2. Test and cull strategy 

Test and cull is one of the most frequently used tools for achieving control of 

paratuberculosis. This type of measure is applied in control programs in order to 

remove infected animals from the herd, especially those excreting high loads of 

bacteria since they are supposed to be the most likely source of transmission 

(Dorshorst et al., 2006). This identification and elimination measure aims to eradicate 

the disease from the entire herd (Kalis et al., 2001). The most widely diagnostic test 

used has been the faecal culture. However, due to its long incubation period and high 

economic cost, serological- (Kalis et al., 2002) and molecular techniques (Sevilla et al., 

2014) have been introduced to identify infected animals.  

Control of the disease following a test and cull strategy is slow and often quite 

disappointing since positive animals continue to appear over the years even after 

periods of negative results and absence of clinical cases (Bastida and Juste, 2011). 

Nevertheless extensive test and cull strategies used alone have resulted to be 

ineffective and costly for producers (Groenendaal and Wolf, 2008). In addition 

eradication of the disease has been pointed out as very unlikely to be gained by just 

following this strategy (Smith et al., 2015). In order to achieve optimal results rapid and 

high sensitive and specific diagnostic techniques (Whitlock et al., 2000; Sevilla et al., 

2014) as well as a combination of hygienic measures are required.  

3.2.4.3. Vaccination 

Vaccination has been used since 1926 to achieve control of the disease (Vallee 

and Rinjard, 1926). The types of vaccines used have included live attenuated strains of 

Map and whole-cell inactivated preparations. The first were replaced by the latter due 

to biosecurity reasons (possible reactivation of the antigen) and a poor stability over 

time (Aduriz et al., 2000). However whole-cell inactivated vaccines are not allowed in 
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cattle in many countries because of the interference produced by the vaccine with the 

official diagnostic techniques used for detecting M. bovis. 

On the other hand vaccination in small ruminants not subjected to tuberculosis 

eradication programs has been carried out for years (Sigurdarson and Gunnarsson, 

1983). It is estimated that millions of vaccine doses are currently used annually. 

However not many studies have been carried out except for some performed in Spain, 

Cyprus, United Kingdom, New Zealand, Norway and Australia (Juste and Perez, 2011). 

In sheep, clinical expression of the disease and level of shedding by infected animals 

have been greatly reduced after vaccination in countries like Australia (Windsor, 2012, 

2015), Iceland (Fridriksdottir et al., 2000) or Spain (Aduriz et al., 1991; Juste and 

Perez, 2011). In addition, in Iceland vaccination of sheep in infected area is compulsory 

since 1966 which has contributed to reduce significantly the economic impact of the 

disease (Sigurdarson and Gunnarsson, 1983). In goats, although vaccination has been 

carried out for years in different countries (Sigurdarson and Gunnarsson, 1983; 

Saxegaard and Fodstad, 1985; Corpa et al., 1994; Juste and Perez, 2011), relevant 

publications are even scarcer. However in recent years there has been an increase in 

the use of the vaccine against Map in Spain as a control measure in goats (Lozano de 

Arcenegui et al., 2012). 

Nowadays there are three vaccines approved for sale: Silirum® (CZ Veterinaria, 

Porriño, Spain), Mycopar® (Boehringer Ingelheim Vetmedica) and Gudair® (CZ 

Veterinaria, Porriño, Spain). However their use is not approved worldwide. Bovines are 

the target animals for Silirum® and Mycopar® whereas Gudair® use is approved for 

sheep and goats. All three belong to the whole-cell inactivated type vaccines which 

have proven to enhance both cellular and humoral immune response in cattle (Stabel 

et al., 2011; Muñoz, 2014), goats (Hines et al., 2014) and sheep (Begg and Griffin, 

2005). 
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Although it is well-known that vaccines do not fully prevent new infections in 

experimental (Juste et al., 1994; Muñoz et al., 2005; Muñoz, 2014) and field assays  

(Körmendy, 1994; Windsor, 2006), vaccination has proven to be a very useful tool for 

achieving control of the disease. Several studies have concluded that vaccines reduce 

the infectious level of the disease by diminishing the shedding load (Körmendy, 1994; 

Harris and Barletta, 2001; Reddacliff et al., 2006; Juste et al., 2009; Alonso-Hearn et 

al., 2012; Tewari et al., 2014; Dhand et al., 2016) and it may also reduce the 

cumulative incidence of clinical cases over time. In addition vaccination limits the extent 

of the typical diffuse paratuberculosis lesions (Juste et al., 1994; Sweeney et al., 2009; 

Muñoz, 2014) as well as the colonization of intestinal tissues by Map (Juste et al., 

1994; Uzonna et al., 2003; Sweeney et al., 2009; Alonso-Hearn et al., 2012; Muñoz, 

2014; Arrazuria, Molina, et al., 2016) . 

The main drawbacks of vaccination against Map are: 1) prevention of new 

infections is not fully accomplished, 2) risk of nodule formation at the injection point, 3) 

accidental self-inoculation of the vaccine by operators can cause painful lesions and 4) 

there is some interference with the immune diagnostic techniques used for tuberculosis 

and paratuberculosis. Map vaccination leads to a strong cellular and humoral immune 

response impossible to be differentiated from the one triggered after a Map infection 

using the current immune diagnostic techniques (Tewari et al., 2014). On the other 

hand vaccination against Map is not allowed in cattle because of the interference it may 

cause with the bovine tuberculosis diagnostic tests, identifying healthy animals as 

reactors (Garrido et al., 2013).  

Almost all Map vaccines are suspended in a mineral oil adjuvant (Bastida and 

Juste, 2011) to cause a higher and more persistent immune response. Oil acts as an 

irritant and, because it is non-absorbable, increases the antigen persistence eliciting a 

longer immune response (Hope, 1995). However the subcutaneous nodule formation 
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seems to be related with these oil-based adjuvants (Halgaard, 1984; Köhler et al., 

2001).  

The economic impact of paratuberculosis, the limited effectiveness of all the 

vaccines used so far, both live and inactivated, the adverse effects produced by them 

as well as the interference in the diagnosis of paratuberculosis and tuberculosis, are 

aspects that have favored scientific research to find new vaccine products. One 

alternative could be the subunit vaccines which are still under study and evaluation. 

This type of vaccine aims to avoid interference in tuberculosis and paratuberculosis 

diagnostic tests with animals vaccinated against Map since they use Map specific 

proteins (Rosseels and Huygen, 2008). Different proteins have been identified as 

possible candidates for its use as subunit vaccines: Hsp70 (Koets et al., 1999), 

lipoproteins (J. F. J. Huntley et al., 2005), proteins of the 85 antigen complex (Shin et 

al., 2005), proteins of the PPE family (Nagata et al., 2005), the superoxide dismutase 

enzyme (Shin et al., 2005) and the alkyl hydroperoxide reductase (Olsen et al., 2000) 

However these types of vaccines have shown a much lower degree of protection 

(Koets et al., 2006; Kathaperumal et al., 2009). 

DNA vaccines, consisting of the inoculation of mammalian expression vectors 

containing Map genes have been used in different species including mice, humans and 

sheep (Velaz-faircloth et al., 1999; J. F. Huntley et al., 2005; Sechi et al., 2006; Park et 

al., 2008; Roupie et al., 2008). After its inoculation, an increase in both cellular and 

humoral responses has been observed (Bull et al., 2007), however no real protection 

studies have been carried out and therefore more experimental studies are needed in 

order to become a practical alternative to the classic vaccines. 

Despite all the drawbacks noted above, according to Bastida and Juste 

conclusions vaccination is one of the best paratuberculosis control strategies currently 

available (Bastida and Juste, 2011).  
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3.2.4.4. Control programs 

Paratuberculosis is categorized as a notifiable disease by the OIE, therefore all 

countries members of the organization (almost all countries worldwide) have the 

obligation of reporting their incidence data. However, unlike for other notifiable 

diseases, such as tuberculosis (OIE, 2018a), there are no guidance measures 

designed by the OIE to address paratuberculosis (OIE, 2018b). This lack of guidance 

seems to entitle each country to decide individually which measures to apply regarding 

the control of the disease.  

Although an increasing number of control programs have being initiated since the 

1990’s, success has been limited (Kennedy and Benedictus, 2001; Barkema et al., 

2018). Implementation remains mostly voluntary and because infected animals can 

take several years to present clinical signs, most farmers take action only when the 

disease becomes obvious and economically relevant for the cow productivity and could 

imply a significant impact on their farms economic viability. In addition programs vary 

from small, independent plans targeting limited production systems within a defined 

region to national programs taking into account all cattle bred in a whole country 

(Nielsen, 2009). Therefore control measures are not homogeneously applied at an 

international or national level, and hence results do not reflect the actual magnitude of 

the disease.  

As already mentioned above, control programs for paratuberculosis have been 

implemented in the last decades, particularly in developed countries. However, reviews 

of their activities and results are scarce and focus mostly on cattle (Nielsen, 2009; 

Bakker, 2010; Whitlock, 2010; Geraghty et al., 2014) . Nevertheless there is a more 

recent study which has focused on gathering information from 48 different countries 

(Figure 2) in order to assess the existence and nature of Map control programs during 

a six-year period (2012-2018) (Whittington et al., 2019). Although the disease was 

notifiable in most countries, not only for cattle but also for the seven groups of 

ruminants assessed in the survey (Table 2), formal control programs were present in 
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only 22 countries (Figure 3). In most countries Map control programs continue to be 

voluntary (60%) and they are generally supported by incentives for joining or financial 

compensations (Whittington et al., 2019).  

Table 2. Notifiability of paratuberculosis in each type of ruminant in 48 countries. Source: 
(Whittington et al., 2019). 

Species/type 
Number of countries % countries in which species 

is applicable and 
paratuberculosis is notifiable Notifiable Not notifiable Not applicable 

Dairy cattle 35 13  72.9 

Beef cattle 33 12 3 73.3 

Sheep 28 16 4 63.6 

Goats 28 16 4 63.6 

Camelis 12 16 20 42.9 

Deer – farmed 15 15 18 50.0 

Other 10 11 27 47.6 

 

 

 

Figure 2. The 48 countries represented in the study. Source: (Whittington et al., 2019). 
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Figure 3. The 22 countries represented in the study that had a control program for 

paratuberculosis between 2012 and 2018. Source (Whittington et al., 2019). 

Map control programs can have different aims. According to Whittington and co-

workers, prevalence reduction was the major objective in most of the 22 countries with 

control programs (n=17  77.3%), followed by reduction of the incidence of clinical 

cases (n=10  45.5%) and improvement of the consumer safety by reducing Map 

contamination in human food (n=7 31.8%). Only two countries, Norway and Sweden, 

aimed to eradicate the disease. To achieve their main goals 19 of the 22 countries with 

control programs culled the clinical cases and 16 used the test and cull strategy in 

subclinical cases. Hygienic measures for rearing the neonates and juveniles were 

implemented in their control programs by 17 countries and biosecurity practices at farm 

level were also used by 17 countries to prevent introduction of the infection 

(Whittington et al., 2019). Vaccination as a tool to control the disease has been used by 

7 countries during this six-year survey (2012-2018) (Whittington et al., 2019). In 

addition vaccination of sheep in Iceland is mandatory since 1966 (Sigurdarson and 

Gunnarsson, 1983), where it is believed that without it paratuberulosis would be more 

widespread. 

Control programs from 16 (73%) of the 22 countries taken part in the survey of 

Whittington and co-workers were reported to be successful (Whittington et al., 2019). 

However, recommendations for future control programs included the primary goal of 
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establishing an international code for paratuberculosis, which would lead to universal 

acknowledgment of the principles and methods of control in relation to endemic and 

transboundary disease. An holistic approach across all ruminant livestock industries 

and long-term commitment will be also required for achieving control over 

paratuberculosis (Whittington et al., 2019).  

 

3.3. TUBERCULOSIS 

3.3.1. Journey from the past to the present 

Although the etiological agent of the human tuberculosis was not successfully 

isolated until 1882 by Robert Koch (Koch, 1882), mycobacteria are supposed to have 

been around for millions of years (Hayman, 1984; Bates and Stead, 1993). This 

extremely vast period of time has allowed them to adapt themselves to almost any 

environment on Earth (ground, water, faeces, air…) and survive in all of them for long 

periods. Their worldwide distribution as well as their omnipresence during the history of 

humankind is sustained by paleomicrobiology (Donoghue et al., 2004; Drancourt and 

Raoult, 2005). The first weak evidence of tuberculosis in humans appears on the 

clinical descriptions of lesions compatible with bone tuberculosis found in a 500,000-

year-old Homo erectus skull in Turkey (Kappelman et al., 2008). Nevertheless, to this 

day, the oldest irrefutable proof of M. tuberculosis in humans goes back to the Neolithic 

period, 9,000 years ago. The remains belong to an infant and a woman from one of the 

first villages with evidence of agriculture and animal domestication located in the 

Eastern Mediterranean. In this case, human tuberculosis was confirmed by 

morphological and molecular methods (Hershkovitz et al., 2008).  However, the oldest 

evidence to date of MTC has been found in an animal, a 17,000-year-old bison in 

Wyoming (USA) (Rothschild et al., 2001).                            ‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ 

As man began to settle down, agriculture evolved (about 7,000 BC) and 

domestication of cattle followed. These conditions would have been favorable for direct 
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transmission between humans and animals but very unlikely between families isolated 

from each other. Indeed tuberculosis must have been of little importance until then, 

since it received almost no attention in written records or artifacts. The establishment of 

larger and crowded cities led to an increased contact between inhabitants favoring the 

transmission of the disease.  

The existence of tuberculosis has been documented by different civilizations 

throughout the human history. In Egypt tuberculosis can be traced back over 5,000 

years. Vertebral lesions characteristic of Pott’s disease (spinal tuberculosis) were found 

in Egyptian mummies and were clearly depicted in paintings and statues (Cave, 1939; 

Zimmerman, 1979). More recently, the cause of the disease could be confirmed thanks 

to the amplification of M. tuberculosis DNA extracted from the Egyptian human remains 

(Nerlich et al., 1997; Crubézy et al., 1998).  

The first bibliographical reference of a clinical tuberculosis sign was included in 

the Code of Hammurabi from the Babylonian Empyre (about 2,000 BC). Other written 

documents connected to tuberculosis are related to the Hebraism. The ancient Hebrew 

word schachepheth was used in the Old Testament in order to describe tuberculosis 

(Daniel and Daniel, 1999).  

At the other edge of the world, Peruvian mummies provided archeological 

evidence of early tuberculosis, including Pott’s deformities, suggesting that the disease 

was already present in South America before the first European explorers arrived. And, 

as in Egypt, M.tuberculosis DNA was recovered from the remains (Salo et al., 1994; 

Arriaza et al., 1995).  

The symptoms of the disease as well as the characteristic tubercular lung 

lesions were not accurately defined until the Ancient Greek period (800 - 500BC) by 

Hippocrates. Tuberculosis was called then Phitsis and it was described as a fatal 

disease especially for young adults (Coar, 1982).  
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During the 18th and 19th centuries tuberculosis in Europe was also known as the 

“white plague”. Favored by overcrowded cities, M. tuberculosis is believed to have 

been responsible for causing 25% of all adults’ deaths during this period. Until the 19th 

century tuberculosis was considered to be congenital, inherited or spontaneous. The 

transmission of the disease to a healthy person due to a patient’s cough was 

unbelievable until 1865 when Jean Antoine Villemin, a French surgeon, proved that the 

disease could be transmissible between humans and animals. The rabbits used for his 

experiments developed extensive tuberculosis after being inoculated with purulent 

liquid from a tuberculous lesion from an individual who died of tuberculosis (Villemin, 

1868). In 1882, Robert Koch published “Die Ätiologie der Tuberkulöse”. There he 

described the bacillus of tuberculosis and the infectious nature of the disease, but 

always denied the zoonotic capability of the bacillus (Koch, 1882). Subsequently, the 

acid-alcohol resistance characteristic of the bacterium was described (Ziehl, 1882; 

Neelsen, 1883) followed by the Pirquet and Mantoux tuberculin skin test discoveries 

(Huebner et al., 1993; Lee and Holzman, 2002). In addition, Albert Calmette and 

Camille Guérin (BCG) vaccine was developed (Calmette et al., 1926) and Selman 

Waksman streptomycin and other anti-tuberculous drugs were described (Schatz et al., 

1942). 

From the moment Lehmann and Neumann introduced the genus 

Mycobacterium into the scientific literature in 1896 a very interesting and decisive fact 

took place. The study of the different mycobacteria species was shaped by the fact that 

only a small number from the nearly 170 currently recognized species are source of 

human disease, being M. tuberculosis on top of all of them. As a result, studies of 

microbial physiology, structure, genetics and diagnostic tools have been mainly 

focused on M. tuberculosis and secondarily on M. leprae (van Ingen, 2017). In addition 

the medical community was reluctant to accept tuberculosis as a zoonosis. That would 

have meant that Koch was mistaken denying the zoonotic nature of the disease.  
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It is true that M. bovis is not the most relevant pathogen responsible for human 

tuberculosis but the non-recognition of the disease as a zoonosis led to insufficient 

measures at the farm level and in the slaughterhouses. M. bovis affected carcasses 

were confiscated but there was no restrictive policy for the animal products such as 

milk or cheese or for the farm of origin (Agenjo Cecilia, 1942). Furthermore, although 

the World Organization for Animal Health (OIE) was created in 1924 and information 

about bovine tuberculosis (including both bovine and avian tuberculosis) had been 

published in 1927 in the Bulletin of the Office International des Epizooties, it was not 

until 1964 that the bovine tuberculosis was included among the OIE-listed diseases. 

Moreover in spite of the general acceptance of M. bovis as different from M. 

tuberculosis, it was not until 1970 that was officially recognized as a new species and 

M. bovis was proposed as the name for the bovine tubercle bacillus (Karlson and 

Lessel, 1970). 

3.3.2. Etiology: Mycobacterium bovis 

As already mentioned M. bovis belongs to the MTC which includes the 

causative agents of tuberculosis in mammals. Species within the MTC are the 

following: M. tuberculosis, M. bovis, Mycobacterium bovis BCG, Mycobacterium microti 

(M. microti), Mycobacterium pinnipedii, Mycobacterium canettii, Mycobacterium 

africanum (M. africanum) and Mycobacterium caprae (M. caprae). However in this 

dissertation only M. bovis and its relationship with Map are going to be assessed.  

Over the years, different hypotheses about the taxonomic development of the 

mycobacteria species have been formulated. M. bovis has a much broader host range 

than M. tuberculosis and initially it was suggested that M. tuberculosis evolved from M. 

bovis by specific adaptation of an animal pathogen to the human host (Stead et al., 

1995). It was thought that being M. tuberculosis almost an exclusive human pathogen it 

should have evolved from M. bovis, able of inducing tuberculosis in a much wider 
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range of hosts. However this hypothesis was turned down after the sequencing of the 

entire M. tuberculosis genome (Cole et al., 1998) and the discovery of 20 variable 

genomic regions in MTC members (Brosch et al., 1999; Gordon et al., 1999). In 2002 

Brosh et al. analyzed the distribution of these 20 variable regions in 100 strains from 

the MTC and confirmed that the M. bovis genome has suffered several deletions in 

relation to the M. tuberculosis (Brosch et al., 2002). These results match other 

publications where the outcomes indicate that the M. bovis genome is smaller than that 

of the M. tuberculosis (Gordon et al., 2001; Garnier et al., 2003).   

In a study conducted in 2001, DNA extraction and identification were carried out 

on the oldest animal remains with compatible tuberculosis lesions (Rothschild et al., 

2001). Remains belonged to a 17.000 year old bison and the obtained results 

demonstrated that the DNA belonged to the MTC but at the same time eliminated the 

possibility of matching with modern M. bovis. Indeed the outcomes showed higher 

spoligotype similarity patterns with M. africanum followed by M. tuberculosis 

(Rothschild et al., 2001). Nowadays, the hypothesis of the pathogen transmission to 

animals from a previously adapted human strain is the most supported, considering M. 

africanum as the origin of the current animal lineages instead of M. tuberculosis (Smith 

et al., 2009).                                                        ‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ 

3.3.3. Epidemiology M. bovis 

3.3.3.1. Host range 

Bovine tuberculosis can be triggered by different mycobacteria (Domingo et al., 

2014). However the pathogen affecting the highest number of hosts is M. bovis. 

Disease caused by this microorganism has been described most frequently in cattle 

(Aagaard et al., 2010) due to its greatest economic relevance throughout the world. 

Nevertheless it is also well known that M. bovis affects other domestic members from 

the Bovidae family like goats (Crawshaw et al., 2008) and sheep (Muñoz-Mendoza et 
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al., 2015). In addition it has been demonstrated that other non-ruminant domestic 

species such as cats (Aranaz et al., 1996), dogs (Rocha et al., 2017), pigs (Parra et al., 

2003) and horses (Sarradell et al., 2015) might be susceptible to M. bovis and to 

clinical disease development. A large list of wildlife hosts for M. bovis does exist too. 

Infection has been confirmed in different feral animals: deers (Schmitt et al., 1997), 

badgers (Anderson and Trewhella, 1985), wild boars (Serraino et al., 1999), hares 

(Coleman and Cooke, 2001), possums (Buddle et al., 1994)… M. bovis infection cases 

in humans have also been reported (Robinson et al., 1988; Cosivi et al., 1998). Person-

to-person transmission of M. bovis has been proven too and not only among immune-

deficient patients (Evans et al., 2007), but also among immune-competent persons 

(Sunder et al., 2009). However intra-specific transmission in humans is considered 

rather unlikely (Berg and Smith, 2014). 

3.3.3.2. Transmission 

Different transmission routes for M. bovis have been described. However there 

is a general acceptance that the airborne route is the most effective transmission 

pathway because of the low number of organisms required as an infective dose (J 

Francis, 1947). When sneezing, an infected host generates aerosols containing M. 

bovis which can be inhaled by uninfected animals resulting in infection. M. bovis 

transmission via inhalation is effective in herding animals like cattle (Pollock and Neill, 

2002) or wild ruminants such as cervid species kept confined (De Lisle et al., 2001). 

Inhalation of the pathogen can end up in infection too in free-ranging feral species 

maintaining social or familial interactions in underground dens, such as badgers 

(Delahay et al., 2002) or brushtail possums (Jackson et al., 1995).  

Although respiratory transmission is the most important route of infection of 

groups of animals in close contact, oral transmission through ingestion of M. bovis is 

also considered of great importance. Transmission can occur by direct or indirect 
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ingestion of the pathogen. In calves direct consumption of contaminated food takes 

place. Intraspecific transmission of M. bovis occurs when contaminated milk from 

infected dams is ingested by their offspring (S. D. Neill et al., 1994). Because M. bovis 

is shed through faeces, urine or nasal secretions and due to its high resistance in the 

environment, the alimentary route by indirect consumption of contaminated water or 

pastures is of great importance too (Domingo et al., 2014). In humans the most 

common route of infection of M. bovis is through the oral route by consumption of 

contaminated milk or other dairy products (Acha and Szyfres, 1987). Thus, milk 

pasteurization plays a crucial role in preventing human infection (Collins, 2006). 

Another less common form of infection is through transcutaneous transmission. This 

has been proven in humans in contact with infected carcasses where infection was 

spread through cuts or abrasions (Vayr et al., 2018). In animals, transcutaneous 

transmission is primarily caused by bites from infected animals. This has been reported 

in domestic cats (Ragg and Moller, 2000), ferrets (Ragg and Moller, 2000), and 

badgers (Gavier-Widen et al., 2001). 

Most likely routes for M. bovis transmission have been already determined. 

However the minimum infective dose necessary to trigger the disease in experimental 

assays as well as the dose for wild animals and cattle naturally infected is difficult to 

quantify. An experiment carried out in 2004 concluded that ingestion of as few as 

5x103 colony forming units (CFUs) of M. bovis resulted in infected calves and lesion 

development (Palmer et al., 2004), whereas 1.3x106 and 1x107 CFUs of M. bovis 

administered orally was needed to establish infections in cattle and sheep in others 

studies (Sigurdsson, 1945; J Francis, 1947). In Eurasian badger the minimum infective 

dose was estimated as <10 CFUs through the endobronchial route for latent infection 

and 1x103-4 CFUs for generalized infection (Corner et al., 2007, 2012).  

 



Literature review 

35 

3.3.3.3. Bovine tuberculosis in humans: a One Health issue 

M. bovis is a recognized Public Health hazard in developing and industrial 

nations (Grange and Yates, 1994). The advent of milk pasteurization and eradication 

programs in developed countries reduced greatly the prevalence of tuberculosis due to 

M. bovis. Still few new infections occur when individuals get in contact with infected 

cattle (Pfeiffer and Corner, 2014), captive wildlife (Stetter et al., 1995), or contaminated 

animal carcasses (Pfeiffer and Corner, 2014). Meanwhile the risk for zoonotic 

tuberculosis increases in rural areas of developing countries where M. bovis 

pasteurization is not an established control measure and people live in conditions that 

favour direct contact with infected animals. 

Since it is categorized as a zoonotic organism, cooperation between Animal and 

Human Health is required in order to achieve control over the disease. This movement 

is known as One Health (OH). The World Health Organization (WHO) and OIE support 

the one world OH concept, which constitutes a collaborative and holistic approach 

between both organisms on a global scale.  

Different authors concluded that disease control programs for M. bovis in 

humans should be considered a priority and called for evaluation of the level of the 

zoonotic problem, especially in rural areas and in workplaces like slaughterhouses 

(Cosivi et al., 1998; Müller et al., 2013). Obstacles against the acceptance of the 

benefits from an OH approach are mostly economic together with a lack of accurate 

and representative data especially from developing regions. Historically, M. bovis 

cases in humans have been often reported as a relative proportion of the total number 

of tuberculosis cases in persons, diminishing its impact on society. Lack of accurate 

and representative M. bovis data in developing regions, incorrect extrapolation of data 

from high-income countries and low M. bovis tuberculosis burden countries have led to 
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the misconception that globally only a small number of humans suffer from tuberculosis 

caused by M. bovis (Olea-Popelka et al., 2017). 

However, according to recent data published by the WHO, it has been 

estimated that 142,000 new human cases of zoonotic tuberculosis occurred worldwide 

in 2017 and 12,500 persons died due to the disease (Table 3) (World Health 

Organization, 2018). This burden of disease cannot be reduced without improving 

standards of food safety and controlling M. bovis in animals and humans.  

Table 3. Estimated incidence and mortality due to M. bovis in 2017. Best estimates 
(absolute numbers) are followed by the lower and upper bounds of the 95% uncertainty interval. 
Source: (World Health Organization, 2018). 

 Incident cases Deaths 

Region 

 
Best estimate 

Uncertainty 

interval 
Best estimate 

Uncertainty 

interval 

Africa 70,000 18,800 - 154,000 9,270 2,450 - 20,500 

The Americas 821 222-  1,800 45 12 - 98 

Eastern 

Mediterranean 
7,660 1,980 - 17,100 733 194 - 1620 

Europe 1,150 308 – 2,550 87 24 - 191 

South-East Asia 44,900 11,500 - 100,000 2,090 568 - 4,590 

Western Pacific 18,000 4,740 - 40,000 309 84 - 678 

GLOBAL 142,000 70,600 - 239,000 12,500 4,910 - 23,700 

 

3.3.3.4. Bovine tuberculosis in cattle, prevalence.  

Despite the efforts to eradicate M. bovis, the presence of bovine tuberculosis in 

cattle still has a worldwide distribution and remains as a major livestock problem.  

In Europe, according to the Zoonoses Directive 2003/99/EC, monitoring data 

about the bovine tuberculosis herd prevalence have to be gathered by the member 

states and reported to the European Food and Safety Authority (EFSA) annually. In 

order for a member state to be declared officially tuberculosis free (OTF) the following 

requirements described in the Council Directive 64/432/EEC have to be met: 1) the 

percentage of infected bovine tuberculosis cattle herds should not be higher than 0.1% 
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for 6 years in a row and 2) at least 99.9% of the OTB bovine herds must maintain that 

status for at least 6 years in a row.  

According to the latest annual report from the EFSA the current situation in 

Europe on bovine tuberculosis infection, detection and control is heterogeneous (EFSA 

and ECDC, 2018). In 2017 the following 22 countries and regions were categorized as 

OTF: Austria, Belgium, the Czech Republic, Denmark, Estonia, Finland, France, 

Germany, Hungary, seven regions and 14 provinces in Italy, Latvia, Lithuania, 

Luxembourg, Malta, the Netherlands, all administrative regions within the superior 

administrative unit of the Algarve in Portugal, Poland, Slovakia, Slovenia, the Canary 

Islands and Pontevedra in Spain, Sweden, Scotland and the Isle of Man in the United 

Kingdom (EFSA and ECDC, 2018). On the other hand 10 member states (Bulgaria, 

Croatia, Cyprus, Greece, Ireland, Italy, Portugal, Romania, Spain and the United 

Kingdom) had not yet achieved the country-level OTF status in 2017 (EFSA and 

ECDC, 2018). 

According to the EFSA, bovine tuberculosis was reported by 16 member states 

in 2017. In spite of the heterogeneous distribution the overall proportion of positive 

cattle herds remained very low: only 0.9% herds in all OTF and non-OTF regions from 

the European Union were positive for bovine tuberculosis (EFSA and ECDC, 2018). 

The prevalence varies from the absence of infected animals in most OTF regions to 

13.5% within the United Kingdom in the non-OTF region England-Wales. The total 

number of positive cattle herds reported in non-OTF regions increased by 8% 

compared to 2016, and the prevalence of bovine tuberculosis-positive cattle herds also 

increased from 1.6% in 2016 to 1.8% in 2017 (Figure 4) (EFSA and ECDC, 2018).  

As for the OTF regions, during 2017 detection of bovine tuberculosis-infected 

herds remained a rare event, as in the previous years, but compared to 2016, two more 
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member states, Malta and Portugal detected bovine tuberculosis infection in their OTF 

regions (Figure 4). 

 

Figure 4. Proportion of cattle herds positive for bovine tuberculosis according to regional 

boundaries of official status. Source: (EFSA and ECDC, 2018). 

According to the European Union policy on the eradication of bovine 

tuberculosis, eradication of the disease must be the final target and the member states 

are primarily responsible for achieving this purpose (Reviriego Gordejo and 

Vermeersch, 2006) . 

In Spain, the fight against bovine tuberculosis was initiated at the beginning 

of the 50's. However it was not until 1987, after becoming part of the European Union, 

that Spain presented an Accelerated Eradication Program according to the following 

Directives 77/391/CEE y 78/52/CEE and 87/58/CEE. This program, based on a test 

and cull strategy, yielded highly satisfactory results during its early years. The annual 

National Bovine Tuberculosis Eradication Programs were established in 2006. One of 

the objectives of these programs was to gradually increase the diagnostic sensitivity 
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not only at herd but also at individual level. Other additional measures such as 

management of possible wild reservoirs and the establishment of monitoring systems 

in slaughterhouses were introduced gradually. As a result of these new measures 

prevalence at herd level got reduced, but over the last decade it has remained at 

around 1.5-2% (MAGRAMA, 2019). 

Nevertheless, as already mentioned, in Spain there are great tuberculosis 

prevalence differences among geographical areas. The highest prevalence rates can 

be found in the southeast of the country (Andalusia= 12.34%, Castilla la Mancha= 

10.35%) (MAGRAMA, 2019). Meanwhile the Canary Islands (MAGRAMA, 2019) and 

Pontevedra (according to the Executive Directive (UE) 2019/64 of the Commission of  

January 14th 2019) achieved the OTF status. In the Balearic Islands the prevalence 

dropped till 0.00% in 2016. In the peninsula the lowest herd prevalence is found in the 

northern regions. Data obtained during the latest eradication campaign showed that in 

Galicia, Asturias and the Basque Country only 0.08%, 0.02% and 0.09% of the herds 

were positive for tuberculosis respectively (MAGRAMA, 2019).  

Over the last 15 years the trend of the herd level prevalence has showed a 

moderate but continuous decrease in Spain until 2013, after which an increase was 

detected, especially in 2015 and 2016 (MAGRAMA, 2019). 

3.3.4. Pathogenesis 

3.3.4.1. Entry and survival of M.bovis in the host 

In accordance with an EFSA evaluation, nowadays M. bovis risk of transmission 

through milk or dairy products is considered insignificant due to pasteurization at least 

in developed countries. The same for tuberculosis transmitted by meat to humans 

(EFSA BIOHAZ Panel (EFSA Panel on Biologicial Hazards), 2013). 

The location of the lesions largely depends on the route of infection. Inhalation 

is the most commonly accepted pathway of infection. After an airborne transmission, 
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lesions are more likely to appear in the nasopharynx and lower respiratory tract, 

including the lungs and associated lymph nodes (S. D. Neill et al., 1994; Neill et al., 

2001). Adult cattle typically show lesions associated to the respiratory tract. In contrast, 

if the pathogen enters the organism via ingestion of contaminated pasture, water or 

feed, development of a gastrointestinal form of the disease is more likely. In calves 

bovine tuberculosis is usually transmitted by ingestion; and lesions tend to affect the 

mesenteric lymph nodes (Menzies and Neill, 2000) and the intestinal wall.  

Once M. bovis goes through mucous membranes or into alveolar spaces, 

recognition of the bacterial cell wall components and activation of inflammatory 

pathways in phagocytes begins. Afterwards the pathogen is phagocytized by 

macrophages and neutrophils are attracted to the site of the initial infection. These cells 

interact with other cells responsible for the innate and adaptive immune responses 

(Arentz, 2008). Unlike in humans (O’Garra et al., 2013), in cattle it is unknown if latent 

infections or even the elimination of mycobacteria after a primary infection occur. It has 

been hypothesized that some animals reactors to the skin test may be latently infected 

even if no tuberculous lesion is found or no M. bovis positive culture result is obtained 

(Pollock and Neill, 2002) but no definitive conclusion on latency has been established.  

3.3.4.2. Macroscopic pathology of bovine tuberculosis 

The primary lesion is often found within the dorsal area of one of the lung lobes. 

After the initial infection has been established, phagocytic cells transport the viable 

mycobacteria to the draining lymph node through lymphatic capillary vessels. A new 

infection point is then developed in the lymph nodes. The presence of both: primary 

pulmonary lesion and lymph node lesion, is known as the primary or Ghon complex, 

which was already described many years ago (Ghon, 1912). This primary complex can 

be subclassified as complete or incomplete depending on whether both lesions are 
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present or the lesion at the infection establishment point is missing (Domingo et al., 

2014). 

The bovine tuberculosis typical macroscopic lesion is described as a tubercle: a 

delimited yellowish granulomatous inflammatory nodule of variable size more or less 

encapsulated by connective tissue which often contains a central core of necrotic 

tissue with different degrees of mineralization (Aranday-Cortes et al., 2013; Domingo et 

al., 2014). 

The primary lesion generally progresses towards an encapsulated and 

mineralized lesion. The existence of a potent cell-mediated immune (CMI) response 

may prevent the growth of lesions and extension to other organs. However, if the 

infected animal is immunocompromised, or the immune response is unable to stop the 

spread of the infection, the primary infection may generalize during the initial stages, in 

a process known as ‘early generalization’. Generalization via haematogenous or 

lymphatic dissemination can also occur after reinfection or in a post-primary phase, 

therefore called ‘late generalization’ (Domingo et al., 2014). 

The primary lesion can progress and generalize, inducing a ‘miliary’ form with 

abundant nodules of small size throughout the lung and pleura (early generalization). 

The lesion can grow, showing different forms depending on the development and 

involvement of adjacent tissues, including: (1) an ‘acinar’ form showing numerous small 

yellowish nodules affecting primary pulmonary lobules; (2) a ‘cavernous’ form when the 

bronchial lumen is dilated due to the accumulation of caseum coming from the lesion or 

when the caseum breaks out into a bronchus; and (3) an ‘ulcerative’ form in the trachea 

and bronchi when bacilli infect small erosions within the airway epithelium (Salguero, 

2018). 

Tubercle appearance is not only limited to the respiratory tract and adjacent 

lymph nodes they can also be found in the head and neck area (Aranday-Cortes et al., 
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2013; Salguero et al., 2017; Ameni et al., 2018) as well as in extra-thoracic or 

gastrointestinal lymph nodes and other abdominal organs. 

3.3.4.3. Microscopic pathology of bovine tuberculosis 

The granuloma is the microscopic lesion observed in tuberculosis affected 

individuals. It is a characteristic morphological lesion present in chronic inflammatory 

reactions with abundant epithelial-like macrophages (Palmer et al., 2015). Granulomas 

have been described as a physical barrier to impede the mycobacterial growth and 

spread (Aranday-Cortes et al., 2013). Apart from the macrophages different kind of 

cells can be observed within the granuloma: lymphocytes, plasma cells, neutrophils 

and Langhan’s multinucleated giant cells which can be found surrounding the caseous 

necrotic core. 

After a mycobacterial infection, cytokines and chemokines are in charge for 

recruiting monocytes, lymphocytes, neutrophils and tissue-resident macrophages 

(Mattila et al., 2013) in an attempt to control the infection, forming cellular aggregates 

(Aranday-Cortes et al., 2013). 

Microscopic features of tuberculous granulomas in lymph nodes have been 

described exhaustively and are used to classify these injuries according to 

morphological criteria such as the presence or absence of necrosis, mineralisation, and 

fibrous capsules (Wangoo et al., 2005). This classification system can likely be applied 

to lung granulomas (Domingo et al., 2014). Four types of granulomas are described. 

Early lesions, categorized as stage I (‘initial’): small granulomas are formed by an 

accumulation of neutrophils, epithelioid macrophages, a small number of lymphocytes 

and a few Langhan’s multinucleated giant cells. Necrosis is absent in stage I 

granulomas (Wangoo et al., 2005). The lesion will progress to stage II (‘solid’). 

Granulomas at this stage are primarily composed of epithelioid macrophages and are 

confined partly or completely by a thin capsule. Hemorrhages can be found, with 
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infiltration of lymphocytes, neutrophils and often Langhan’s multinucleated giant cells. 

Sometimes minimal necrotic areas can be present, generally composed of necrotic 

inflammatory cells (Wangoo et al., 2005). The lesion will start to form a central area of 

caseous necrosis and progress to stage III (‘necrotic’). Stage III granulomas are fully 

encapsulated, with a central caseous necrotic area and occasionally minimal 

mineralization. Epithelioid macrophages, Langhan’s multinucleated giant cells and a 

peripheral zone of macrophages with clusters of lymphocytes and scattered neutrophils 

surround the necrotic area (Wangoo et al., 2005). In stage IV (‘necrotic and 

mineralized’) large, irregular, multicentric granulomas are completely surrounded by a 

relatively thick capsule of fibrous tissue. Areas of caseous necrosis with extensive 

islands of mineralization are seen. Epithelioid macrophages and multinucleated giant 

cells surround the necrosis with dense clusters of lymphocytes near the peripheral 

fibrotic capsule (Wangoo et al., 2005). Stage IV granulomas can be multicentric, with 

several granulomas coalescing to form one very large granuloma, displaying multiple 

necrotic cores. Large stage IV granulomas are often surrounded by a small amount of 

‘satellite’ stage I and stage II granulomas (Aranday-Cortes et al., 2013).  

3.3.4.4. Immune response 

Immunity against mycobacteria is a multifactorial process which depends on the 

balance between an inflammatory (Th1) and an anti-inflammatory (Th2) response. The 

first one allows the host to develop a granuloma, which contains the microorganism 

and hinders its spread. And the later, the anti-inflammatory response, restricts the 

extent of the granuloma and allows the contact between the effectors T-cells and the 

infected cells resulting in the killing of the infecting pathogen (Villareal-Ramos et al., 

2003). 

The pathological tissue alteration after a MTBC infection is the result of the 

host’s immune response against a tuberculous infection (Ulrichs and Kaufmann, 2006) 
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in an attempt to isolate the pathogen and impede the development of the disease. The 

interactions between the mycobacteria and the different cellular targets present in the 

host's respiratory mucosa determine the outcome of pulmonary tuberculosis. Both the 

innate and the adaptive immune response play a crucial role. Experimental infection 

assays with M. bovis in cattle has provided insight into important aspects of the 

consequent immune response development. Being M. bovis an intracellular pathogen, 

the most effective type of immune response to fight the microorganism is the CMI 

response, which shows its greatest intensity in the early stages of the disease (Figure 

5) (Pollock and Neill, 2002; Schiller et al., 2010). In fact protection against M. bovis is 

directly related to the Th1 type CMI response (Villareal-Ramos et al., 2003) and the 

response intensity is measured by the quantity of interferon-gamma (IFN-γ) produced 

by the lymphocytes.  

 

Figure 5. Evolution of the immune response through time. Source: (adapted from 

(Vordermeier et al., 2004) 

Antibodies are also produced after an M. bovis infection. However the humoral 

response begins to acquire greater intensity and relevance in advanced stages of 

infection, when the CMI response is decreasing (Figure 5). The relative importance of 

the humoral response in terms of protection against infection is explained by the fact 
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that M. bovis is an intracellular pathogen and therefore it is considered to be safe from 

the action of antibodies since the serum components are thought not to get access to 

the pathogen. Until recently B lymphocytes have largely been considered to be 

supportive, rather than required in the protective response (Maglione and Cahn, 2009). 

Currently this concept is changing and the importance of B cells and antibodies in the 

development of a protective immune response against tuberculosis has become more 

appealing. Although CMI remains the predominant correlate of protection, evidence 

suggests that antibodies may contribute, at least in part, to immunity. Studies have 

shown that monoclonal antibodies against surface antigens of M. tuberculosis give rise 

to protective immunity in mice and prolong their survival after infection with lethal doses 

of M. tuberculosis or M. bovis (Chambers et al., 2004). In addition, recent evidence 

suggests that B cells may be more important than first thought. A large number of 

studies have assessed the humoral response after an infection by measuring 

antibodies for diagnostic purposes, particularly in humans, to differentiate latent from 

active tuberculosis (Chan et al., 2014). However due to its greater relevance, all 

vaccine models tested as an alternative for controlling the disease in cattle are mainly 

designed to stimulate the CMI response.  

3.3.4.4.1. Innate Immune Response 

The host innate immune response provides the initial resistance to infections 

produced by intracellular pathogens before the adaptive Th1 CMI response fully 

develops.  

The following major cellular components are included in the innate immune 

response: macrophages, dendritic cells (DCs) and natural killer (NK) cells. When 

mycobacteria trigger an infection, the innate immune system is able to recognize the 

bacilli thanks to the pathogen-recognition receptors (PRRs). These PRRs are 

responsible for recognizing conserved structures in the pathogens known as pathogen-
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associated molecular patterns (PAMPs). This identification allows the activation of 

intracellular signaling and the production of pro-inflammatory molecules such as IFN-γ 

or interleukins (IL) 1β, IL-12 or IL-18. There are different types of PRRs for M. bovis 

recognition: Toll-like receptors (TLRs), mannose-binding receptor 3, complement 

receptor, nucleotide-binding oligomerization domain among others. However the TLRs 

are the PRRs most thoroughly studied in the innate immune response against 

tuberculosis. The TLRs allow the macrophage activation as well as the production of 

pro-inflammatory mediators and oxygen and nitrogen–reactive intermediates that 

hinder the growth of the bacteria (Carrisoza-Urbina et al., 2018). 

 Macrophages:  

Macrophages are antigen presenting cells. They are considered as the first 

line of defense against various intracellular pathogens. Infected macrophages 

produce IL-12, a pro-inflammatory cytokine which plays a crucial role in host-

defense against intracellular pathogens (D’Andrea et al., 1992). This is one of 

the first host responses against infection and it induces IFN-γ production by NK 

cells (D’Andrea et al., 1992). 

There are different known factors responsible for the macrophage activation 

such as tumor necrosis factor-alpha (TNF-α) and IFN-γ produced by CD8+ and 

CD4+ lymphocytes as well as NK cells (Nathan et al., 1983). This early 

activation mediated by IFN-γ induces a strong innate effect that converts the 

macrophages into potent killing cells towards intracellular pathogens and 

initiates differentiation of Th1 cells (Manetti et al., 1993). As a result 

macrophages produce high amounts of reactive oxygen intermediates, reactive 

nitrogen intermediates and pro-inflammatory cytokines that induce cytoxicity 

against the invading pathogens and generate innate immune responses. In 

addition activated macrophages increase their antigen presentation capabilities, 
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initiating the adaptive immune response (Martinez et al., 2008). Very 

interestingly, these cells seem to significantly increase their lytic activity 

efficiency after systemic initial contact of an individual with M. bovis antigens 

(Juste et al., 2016) 

 Dendritic cells:  

Dendritic cells are the most potent antigen presenting cells and they are 

able to activate different cells of the immune system such as NK cells, T γδ cells 

and naive T lymphocytes (Pearce and Everts, 2015). Like macrophages, 

dendritic cells use different PRRs for bacterial recognition. After the intake of 

the pathogen, antigens are processed and expressed by the major 

histocompatibility complex (MHC) type II. This way the DCs present the intruder 

microorganism to the T lymphocytes in order for them to recognize and destroy 

it. 

Mycobacteria interactions with DCs increase the expression of surface 

molecules from the latter, such as MHC type II and the co-stimulatory molecules 

CD40 and CD80 (Hope et al., 2004; Pearce and Everts, 2015). This action 

leads to T cell activation in an attempt to eliminate the bacterial invader. In 

addition, the DCs cytokine profile gets altered after a mycobacterial infection 

too. An infection produced by M. tuberculosis or M. bovis BCG has been 

associated with a higher expression of pro-inflammatory molecules such as: IL-

12, TNF-α, IL-1 and IL-6, which are essential in the control of tuberculosis. 

These cytokines play major roles in protective anti-mycobacterial immune 

responses. IL-12 secreted by DCs is able to trigger a reciprocal action. It can 

stimulate IFN-γ and TNF-α secretion by T cells, which, at the same time, may 

serve to boost up the macrophage anti-microbial activity to destroy invading 
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bacilli. Taken this together it suggests that infected DCs have an augmented 

capacity to stimulate mycobacteria reactive T cells. 

On the other hand mycobacterial interaction with DCs may lead to the 

production of IL-10, an anti-inflammatory cytokine. This molecule may inhibit the 

cellular immune response by donwregulating the IL-12 secretion (Giacomini et 

al., 2001; Hickman et al., 2002) since it affects the antigen presentation process 

by inhibiting the migration and maturation of DCs (Hope et al., 2004; Fabrik et 

al., 2013). This kind of response may serve to limit the activation of DCs and 

macrophages and therefore control the potentially harmful immune response 

that occurs in tissues in vivo. 

 Natural Killer cells  

NK cells are large granular lymphocytes with diverse functions that include 

cytotoxicity and cytokine production and interact with antigen presenting cells to 

eliminate damaged and infected cells (Bastos et al., 2008; Boysen and Storset, 

2009). NK cells together with macrophages and DCs are responsible for 

restricting infections in early stages and then influence adaptive immune 

responses against pathogen invasion, so that B and T lymphocytes eliminate 

the stranger microorganisms. Studies have proven that particularly DCs are 

crucial for efficient NK cell responses (Lucas et al., 2007) in order to acquire full 

capacity for cytolysis or cytokine secretion. Mature DCs migrate or are resident 

in secondary lymphoid tissues, a major site of NK-cell activation during innate 

immune responses (Ferlazzo et al., 2004; Lucas et al., 2007).  

As innate effectors NK cells contain preformed granules of lytic proteins 

including perforin and granulysin which are released upon recognition of target 

cells (Davis and Dustin, 2004; Chauveau et al., 2010). These granule 

components can directly kill extracellular bacilli and are able to substantially 
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reduce the viability of intracellular mycobacteria (Stenger et al., 1998). Once 

activated, NK cells contribute to the development of the immune response 

mainly via cytotoxicity and cytokine production  (Cooper et al., 2001; Boysen et 

al., 2006). 

In addition to the interactions between NK cells and antigen presenting cells 

described above, NK cells with memory functions have been described recently 

(Sun et al., 2011; Peng and Tian, 2017). Therefore NK cells may be a bridge 

between the innate and adaptive immune systems with bidirectional interactions 

influencing not only the innate response but also the adaptive immune response 

(Siddiqui et al., 2012). 

Evidences suggest that NK cells play a main role in the immune response 

against mycobacterial infection. Olsen et al. observed that after stimulation with 

mycobacterial antigens, NK cells from cattle were able to significantly increase 

their IFN-γ production. In addition they figured out that the IFN-γ increase was 

dependent upon IL-12 released by antigen presenting cells (Olsen et al., 2005). 

Another experiment carried out in dairy cattle demonstrated that bovine NK cells 

could induce significant reductions of the M. bovis replication in macrophages 

and that this was dependent of two factors: the action of IL-12 and cognate 

signals delivered through cell contact (Denis et al., 2007). In the same study 

significant increases of IL-12 were detected which may boost additional NK cell 

activation and facilitate the amplification of Th1 mediated immune responses. 

This would lead to an increased capacity of bovine NK cells to control M. bovis 

growth. 

3.3.4.4.2. Adaptive Immunity 

Unlike the innate mechanisms, the adaptive immune response requires the 

specific recognition of antigens. Both are very important and interact in different ways. 
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Being the first to react the innate immune system has a great impact on the 

development of adaptive immune mechanisms. In addition, the adaptive immunity is 

able to activate components of the innate immune system after executing several of its 

functions.  

Adaptive immunity can be divided into CMI and humoral responses. The first one 

includes T-lymphocytes activation and effector mechanisms, and the latter involves B-

lymphocytes maturation and antibody production. Both responses are not independent: 

their mechanisms are related to each other. T lymphocytes are required for antibody 

maturation, isotype switching and memory. B lymphocytes also work as antigen 

presenting cells by activating T lymphocytes. 

 As for other intracellular infections, the primary protective immune response 

against MTC infections is cell mediated rather than antibody mediated. M. bovis 

resides inside the macrophage and is relatively resistant to mechanisms that efficiently 

eliminate other phagocytosed bacteria. This is due in part to the ability of the bacilli to 

hinder macrophage activation by IFN-γ and IL-12. In addition, deficiencies in IL-12 or 

IFN-γ, or their receptors, make the individual more susceptible to mycobacterial 

infections (Jouanguy et al., 1999; Alcaïs et al., 2005).  

 Cellular immune response 

The adaptive immunity, fundamentally the CMI response, plays a main role in 

MTC infections. Once the pathogen agent reaches the lymph nodes, the naive T 

lymphocytes are activated by the antigen presenting cells, in most of the cases by DCs, 

that migrate from the alveolar interstitium to the lymph nodes (Demangel et al., 2002; 

Bhatt et al., 2004). Antigen presentation to the CD4+ T lymphocytes is performed by 

the antigen presenting cells using the MHC type II receptors, while the presentation to 

the CD8+ T cells is carried out by the MHC type I. 

Activated CD4+ effectors T lymphocytes migrate from the lymph node through 

the circulatory torrent and are recruited into the primary focus of infection to participate 

in the inflammatory response. According to a study conducted in mice this can take up 
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from 15 to 18 days after infection (Reiley et al., 2008). Both CD4+ and CD8+ T 

lymphocytes populations play an essential role against MTC infections. 

After activation the CD4+ T lymphocytes will be differentiated into different 

subpopulations: Th1 or Th2 cells (pro-inflammatory or anti-inflammatory cells 

respectively). DCs exposed to MTC produce IL-12 which is responsible for the CD4 + T 

cells differentiation into Th1 cells (Flynn and Chan, 2001; Flynn, 2004).  

The main function of Th1 cells is the production of cytokines such as IL-2, which 

participates in the activation and proliferation of T lymphocytes. They also produce IFN-

γ and TNFα that activate macrophages (Foulds et al., 2006). It has been assumed that 

the induction of a Th1-type immune response provides the host the greatest protective 

capacity. That is why the Th1 stimulation is a crucial point for vaccine candidates 

(Kaufmann, 2005).  

The participation of CD8+ T cells in the control of the infection is well known. In 

the lungs of infected mice, CD8+ T cells showed to be able to secrete IFN-γ through 

activation of the T-cell receptor or by interaction with MTC infected DCs (Serbina and 

Flynn, 1999). Once again, the function performed by this IFN-γ is the activation of the 

macrophage and promotion of bacterial destruction. In addition, CD8+ T cells proved to 

be efficient in lysing infected cells and in reducing the number of intracellular bacteria 

(Stenger et al., 1997).  

 Humoral immune response 

The role of antibodies in intracellular bacterial infections has gained renewed 

attention. Their participation in the control of chronic infections produced by M. 

tuberculosis (Williams et al., 2004; Reljic et al., 2006), has been lately revised. 

Because the organism lives within cells, usually macrophages, it is frequently assumed 

that tubercle bacilli are not exposed to antibodies and therefore this type of immune 

response is considered to be non-protective. However, during the initial steps of 

infection, antibodies alone or together with the proper cytokines may provide important 

functions, such as prevention of entry of bacteria at mucosal surfaces. 
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Antibodies can be used in two different ways: in the clinical management and in 

the control of tuberculosis, either as active participants in protection against the 

disease or as convenient serologic diagnostic tools. Serological methods have been 

considered as attractive techniques for the rapid diagnosis of tuberculosis because of 

the simplicity, quick turn back of results and low cost. 

As for their use in protection against tuberculosis, antibodies could enhance 

immunity through many mechanisms including neutralization of toxins, opsonization, 

complement activation, promotion of cytokine release, antibody-dependent cytotoxicity 

and enhanced antigen presentation. In this sense it has been repeatedly observed that 

anti-mycobacterial antibodies play an important role in various stages of the host 

response to tuberculosis infection (Costello et al., 1992; Hoft et al., 2002; Williams et 

al., 2004; Valliere et al., 2005). In particular, De Vallière et al. showed that specific 

antibodies increased the internalization and killing of BCG by neutrophils and 

macrophages. Moreover, antibody-coated BCG bacilli were more effectively processed 

and presented by dendritic cells for stimulation of CD4+ and CD8+ T-cell responses 

(Valliere et al., 2005). 

These findings suggest the need to reconsider the role of antibody responses in 

MTC infections. In particular, the mechanism involved in antibody mediated 

enhancement of innate and cell-mediated immunity should be addressed, in order to 

analyze whether these mechanisms could be used to develop better vaccines against 

tuberculosis or to design alternative immunotherapeutic tools (Hernández-Pando et al., 

2007). 

3.3.5. Diagnosis 

The course of an M. bovis infection is slow and signs may be lacking, even in 

advanced phases when many organs are affected. Furthermore, if present, clinical 

signs may vary largely depending on the lesions location. Lung involvement may be 

manifested by a cough, dyspnoea or signs of low-grade pneumonia. In advanced 
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cases, lymph nodes can become so enlarged that they may hinder the passage of air, 

food or blood by blocking the respiratory pathway, the alimentary track or blood 

vessels. Involvement of the digestive tract is manifested by intermittent diarrhoea or 

constipation in some instances. Extreme emaciation and acute respiratory distress may 

occur during the terminal stages of the disease. However, since the introduction of 

eradication programs this type of scenarios has become very infrequent. 

In order to eradicate the bovine tuberculosis it is of critical importance to be able 

to identify all infected animals regardless of their infective stage as quickly as possible. 

Currently, the official diagnosis of bovine tuberculosis is based primarily on the 

detection of the CMI response triggered by the infection and on the direct detection of 

the etiological agent by using microbiological, histopathological or molecular 

techniques. 

The diagnostic tests used to confirm a positive animal can be divided into two 

groups: ante-mortem tests detecting the host’s immune response or post-mortem tests 

which directly identify the pathogenic agent. 

3.3.5.1. Diagnostic tests based on the immune response 

The intradermal tuberculin test is the standard method for detection of bovine 

tuberculosis in cattle (Office International des Epizooties, 2015). It has been used for 

ante-mortem diagnosis in humans and animals for over 100 years.  This test involves 

the intradermal injection of tuberculin purified protein derivatives (PPDs) and their 

capability to elicit a delayed hypersensitivity in animals currently infected. Two 

approaches for this technique are currently in use in Europe: the SIT measures the 

response against bovine PPD whereas the comparative intradermal test (CIT) 

compares the response against bovine and avian PPDs. According to the OIE the CIT 

is used with the aim of increasing the specificity by differentiating between animals 

infected with M. bovis and those responding to bovine tuberculin as a result of 
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exposure to other mycobacteria (Office International des Epizooties, 2015). The 

procedure is readily available in the legislation related to eradication programs and in 

the case of the EU can be found in Directive 64/432/EEC that is briefly described 

below. 

Before injection the skin should be clipped, cleansed and measured with a 

caliper. According to Council Directive 64/432/ECC, the ideal injection site should be 

situated at the border of the anterior and middle third of the neck since it has been 

demonstrated that maximizes the test sensitivity (Casal et al., 2015). The tuberculin 

can be injected using different syringes. When both avian and bovine PPDs are 

injected in the same animal, the site for injection of the avian PPD should be about 10 

cm apart from the bovine PPD or on different sides of the neck. After 72 hours (±4 

hours), the skin fold thickness at each injection site should be measured a second time 

and checked out for the existence of possible negative side effects (pain, edema, 

lymph node infarction, exudation, blisters…) by the same veterinary. Interpretation 

should be performed according to the Council Directive 64/432/ECC.   

Since the intradermal tuberculin test yields a numeric value, different positivity 

thresholds can be established that will lead to different levels of sensitivity and 

specificity. False negative results may be caused by immunological factors (early 

infection, anergy or concurrent immunosuppression), factors related to the PPDs 

(expired product, product stored under inappropriate conditions, manufacturing errors, 

low potency) or to the methodology (doses, site of injection, inexperience) (de la Rua-

Domenech et al., 2006; Humblet et al., 2011) or by co-infection with Map (Seva et al., 

2014). On the other hand false positive results might be triggered by co-infection or 

pre-exposure to other related non-tuberculous or environmental mycobacteria due to 

their similar antigenic composition (Humblet et al., 2011; Jenkins et al., 2018).  
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The subjective nature of the intradermal tuberculin test has led to a very wide 

range of sensitivity and specificity reported values. Reported estimates of sensitivity for 

the cervical SIT ranged from 80.2% (González-Llamazares et al., 1999) to 100% 

(Lesslie and Herbert, 1975). The sensitivity achieved by the CIT is lower than for the 

SIT and has been ranged from 52% (Quirin et al., 2001) to 100% (Lesslie and Herbert, 

1975). The SIT shows a specificity ranging between 75.5% (Francis et al., 1978) and 

99.0% (Wood et al., 1991) (median value of 96.8%) whereas the CIT specificity lies 

between 78.8% (Francis et al., 1978) and 100% (Lesslie and Herbert, 1975; Norby et 

al., 2004) (median value of 99.5%). 

Over the last years efforts have been made to find out alternative more specific 

antigens. The lack of specificity of the technique has been associated with the fact that 

some components of the bovine PPDs are shared with other environmental 

mycobacteria (Hope et al., 2005a). These specific antigens might be especially useful 

in situations where co-infections with Map exist, in order to overcome any potential  

interference (Aagaard et al., 2010; Flores-Villalva et al., 2012).  

Different studies have been carried out searching for new more specific antigens. 

Identification of specific antigens present only in M. bovis and absent from 

environmental mycobacteria can help to increase the specificity of the different 

diagnostic techniques.  

The most relevant alternative antigens tested in the tuberculin skin test are the 

early secretory antigenic target-6kDa (ESAT-6), the culture filtrate protein 10 (CFP-10) 

and the Rv3615c (Mb3645c) applied alone or combined with each other or with other 

antigens. The specificity obtained in different studies under different epidemiological 

conditions was always higher when the alternative more specific antigens were used in 

comparison with the official tuberculins (Pollock et al., 2003; Aagaard et al., 2010; Xin 

et al., 2013). On the other hand it appears that the sensitivity gets compromised when 
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the specific antigens are used instead of the official tuberculins (Pollock et al., 2003; 

Aagaard et al., 2010). However Jones and co-workers proved that addition of the 

Rv3020c antigen improves the sensitivity without compromising the specificity of the 

technique (Jones et al., 2012). 

The IFN-γ release test, developed in the late 1980s, is recommended by the OIE 

as an ancillary laboratory-based test to the tuberculin intradermal test. Most of the 

bovine tuberculosis control programs are based on the use of the IFN-γ test as a 

parallel test to the intradermal test to maximise the detection of infected animals. The 

assay is accepted for use as ancillary test to the intradermal test in the European Union 

since 2002 [Council Directive 64/432/EEC, amended by (EC) 1226/2002].  

This in vitro assay is a laboratory- based test detecting specific CMI responses by 

circulating lymphocytes. This technique can be divided into two stages. First, 

heparinized whole blood is incubated with antigens (PPDs or specific antigens) for 18–

24 h. Antigenic stimulation induces production and release of IFN-γ by predominantly T 

lymphocytes. Second, plasma supernatants are collected and the IFN-γ present in 

them is quantified by carrying out a sandwich ELISA. Optical density is measured and 

the difference value between tuberculins is determined by subtracting the optical 

density value achieved with the avian PPD stimulation from that of the bovine PPD. In 

general, most laboratories also include a no stimulation negative control (PBS or 

media) and a mitogen or superantigen positive control.  

Sensitivity and specificity values for the IFN-γ release test have been estimated 

by different studies as shown in a meta-analysis conducted by de la Rua-Domenech 

and co-workers (de la Rua-Domenech et al., 2006). IFN-γ test is considered to show a 

similar or slightly lower specificity than the obtained for the SIT, and definitely lower 

than for the CIT skin test version. However, the sensitivity obtained with the IFN-γ 

release test is considered equal or slightly higher than for the skin test. The most likely 
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explanation might be that the IFN-γ release test is able to identify reactor animals at an 

earlier stage of infection than the intradermal tuberculin skin test (Pollock et al., 2005). 

Reported IFN-γ estimates of sensitivity range between 73% (Whipple et al., 1995) 

and 100% (Lilenbaum et al., 1999) with a median value of 87.6%. Specificity for this 

technique ranges from 85% (Buddle et al., 2001) and 99.6% (S D Neill et al., 1994) 

with a median value of 96.6%.  

As for the tuberculin skin test, different alternative antigens have also been 

assayed for the IFN-γ release test. Similar to what happens in the skin test, the use of 

alternative antigens seems to increase the specificity of the IFN-γ assay compared to  

the avian and bovine PPDs (Bezos et al., 2014). In relation to the sensitivity values, in 

a review carried out by Bezos and co-workers, it was pointed out that no antigen 

,singularly tested, gave equivalent sensitivity compared to the PPD-based INF-γ assay 

(Bezos et al., 2014). These results agreed with another study which concluded that the 

combined use of the Rv3615c antigen with ESAT-6 and CFP-10 seems to increase the 

diagnostic sensitivity without decreasing the specificity (Sidders et al., 2008). 

Currently, the most commonly diagnostic tools used for bovine tuberculosis are 

based on the measurement of the delayed hypersensitivity reaction and the IFN-γ 

production. However antibody-based bovine tuberculosis assays show an 

improvement over the methods traditionally used. Many samples can be tested in a 

short time, it is a simple and quick as well as inexpensive test which also allows the 

standardisation of the technique in the different laboratories (Cho et al., 2007). 

However, the development of an accurate antibody-based M. bovis test has been very 

difficult. The titer of antibodies changes significantly during the infection and they are 

mainly produced in advanced stages of the M. bovis infection (Pollock and Neill, 2002). 

Furthermore M. bovis infection in cattle leads to an early and strong CMI response 
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while the antibody response remains discourangingly weak (Pollock et al., 2001; Welsh 

et al., 2005).  

Animals presenting an advanced and generalised infection status not responding 

to the intradermal tuberculin skin due to an impaired CMI response are described as 

anergic. Although ELISA serological tests are able to identify a proportion of these 

anergic non-CMI reactor animals, when applied in the early stages of infection the 

sensitivity levels are especially low (Figure 5). These kind of tests have been 

characterized by a low sensitivity when compared with skin and IFN-γ release tests 

(Plackett et al., 1989; Fifis et al., 1992). Schiller and co-workers pointed out that the 

combination of methods based on the CMI response against M. bovis together with 

serological tests could be of help in the control of the disease by increasing the level of 

detection of the pathogen (Schiller et al., 2010). 

Several more specific antigens have been described as potential diagnostic 

targets (ESAT-6, CFP-10 and MPB70). However the antibody response is mainly 

triggered against the MPB83 antigen in domestic livestock and also in wild animals 

(Mcnair et al., 2001; Amadori et al., 2002; Wiker, 2009). Responses against MPB83 is 

detected earlier in the course of experimental infections, observing an increase in the 

antibody response at 3–4 weeks post infection (O’Loan et al., 1994; W.R. et al., 2006). 

In addition a recent study evaluated a new multiprotein complex (P22) for the detection 

of specific antibodies against the MTC. Not only in cattle but also in sheep did this 

ELISA show high specificity values (≥98%) after using a stringent cut-off. However the 

optimal specificity was obtained when serum belonging to pigs was used 

(specificity=100%). This P22 ELISA could be a cost effective, quick and reliable tool for 

the screening of bovine tuberculosis at herd level. 
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3.3.5.2. Diagnostic tests based on agent detection 

The identification of characteristic histological lesions, together with the 

observation of resistant alcoholic acid bacilli, may lead to a presumptive diagnosis of 

tuberculosis. The presence of mycobacteria in a sample can be uncovered by a Ziehl-

Neelsen stainning However bacterial burden of tuberculous lesion can be so low that 

the presence of bacilli may not be detectable in histological samples from infected 

animals (Office International des Epizooties, 2015). Also other organisms belonging to 

the Mycobacterium genus may also grow in the same locations, be Ziehl-Neelsen 

positive and develop histopathologically similar lesions.  

Microbiological culture is considered the gold standard to confirm whether or 

not an animal is infected with bovine tuberculosis despite some limitations: difficulty in 

obtaining valid samples from live animals, need for samples pre-treatment, slow growth 

and extra time for identification by additional methods (Medeiros et al., 2010). MTC 

microorganisms are slow-growing and therefore their culture has a long duration and, 

due to its complexity, requires specialization of the personnel in charge. The presence 

of mycobacterial growth in a culture confirms the positivity of the sample. However a 

negative result does not rule out infection in the sampled animal. The sensitivity of this 

technique is relatively low. It depends on several factors: quality of the tissue to be 

cultured, stage of the infection (animals in early stages of the disease cannot be 

detected by microbiological culture) or bacterial load. The major limitation for 

systematic cultivation of M. bovis in animals has been pointed out to be the collection 

of poor quality samples during necropsies or at slaughterhouses. 

Once in the laboratory, samples are thinly sliced searching for lesions and 

afterwards they are processed. Tissue samples have to be homogenized and 

decontaminated in order to prevent growth of other bacteria in the culture medium. 
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Different solid media (mainly Coletsos and Löwenstein-Jensen) are used for primary 

isolation. Cultures are incubated at 37ºC for a minimum of 10-12 weeks.  

Nowadays automated liquid culture systems are available such as the 

BACTEC MGIT 960 (Mycobacterial Growth IndicatorTube). The liquid culture shows 

important advantages over the solid one: it reduces the culture outcome time and 

increases the sensitivity of the technique (Robbe-Austerman et al., 2013). Studies have 

compared the sensitivity of different media (Hines et al., 2006). The sensitivity for the 

BACTEC MGIT 960 was estimated at 94.6% and 74.4% for the solid media (Hines et 

al., 2006). An average detection time of 15.8 days was estimated for the BACTEC 

MGIT 960 whereas 43.4 days were estimated as the average detection time needed for 

solid media (Hines et al., 2006). The principal disadvantage for this liquid culture 

system is the higher economic cost.  

In addition, the combined used of liquid and solid culture media has been 

suggested to improve the culture sensitivity (Hines et al., 2006). 

Once growth has been detected in culture media, the presence of the MTC 

members is usually confirmed by the identification of specific DNA fragments through 

PCR (Wilton and Cousins, 1992). Afterwards different molecular techniques are used 

to identify the specific strain. 

PCR-based tests are being increasingly used for the identification of M. bovis in 

suspect tuberculous lesions. The main advantage is that since it is not necessary to 

wait for the bacteria to grow in specific media, the infection confirmation period gets 

shortened and therefore it is possible to reduce the exposition of susceptible individuals 

to the infection sources by culling the shedders earlier (Courcoul et al., 2014). 

 Until recently the sensitivity of PCR tests has been lower than culture for 

detecting M. bovis in tissues. However the design of a tetraplex real-time PCR by 

Sevilla and co-workers for simultaneous detection of Mycobacterium genus, M. avium 
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subspecies and MTC represents a highly specific and sensitive tool for the detection 

and identification of mycobacteria in routine laboratory diagnosis (Sevilla et al., 2015). 

Different sequences were used: 1) the mycobacterial ITS located between 16S and 

23S rRNA genes for the Mycobacterium genus, 2) insertion sequence IS1311 for the 

M. avium subspecies and 3) the devR gene for the MTC (Sevilla et al., 2015). The 

sensitivity and specificity values achieved were 97.5% and 100% respectively using a 

verified culture-based method as the reference method (Sevilla et al., 2015). In addition 

a more recent study describes the development, optimization and validation of a Real-

Time PCR based on the mpb70 gene to detect MTC members in clinical tissue 

samples from cattle. Results obtained from 200 bovine tissue samples showed 

sensitivity and specificity values of 94.59% and 96.03% respectively in relation to 

bacteriological culture (Lorente-Leal et al., 2019). 

Currently, DVR-spoligotyping is the technique of choice for the identification of 

strains of the MTC complex. DVR-spoligotyping is aimed to detect the DR-locus which 

consists of a variable number of direct repeat sequences interspersed with non-

repetitive single sequences, called spacers, and reveals the presence or absence of 

these spacers. The result is a spoligum profile that can be presented as a binary 

numerical code and can also be assigned a name according to international 

nomenclature (https://www.visavet.es/mycodb/index-en.php).  

3.3.6. Bovine tuberculosis programs 

Eradication of bovine tuberculosis has been a major objective for Animal Health 

and Public Authorities for almost a century. As for the European Economic Community 

this disease has always been considered of great concern. Current European policies 

on the eradication of bovine tuberculosis are better understood after considering the 

progressive development of relevant Community legislation. 

https://www.visavet.es/mycodb/index-en.php
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During the last decade of the 19th century and the beginning of the 20th the 

infectious nature of the tubercle bacillus as well as its zoonotic character seemed to be 

not well appreciated. Motivation for control of the disease during this time seemed to be 

predominantly economic (John Francis, 1947). 

Afterwards the main objectives changed and measures were introduced to 

enable international trade of live cattle and their products. Historically the first legal 

measures regarding bovine tuberculosis at community level were established with the 

aim of favouring the intra-community trade among the European Economic Community 

Member States by establishing generalised animal health requirements. In the Council 

Directive 64/432/EEC of 26 June 1964 on animal health problems affecting intra-

community trade of cattle and swine not only specific requirements for the trade of 

cattle in relation with bovine tuberculosis were specified but also the OTF herd status 

was defined. Since 1964 this legislative act has been amended frequently. In 1997 the 

requirements for achieving the OTF status were modified by the Council Directive 

97/12/EC. Most recently in 2002 the diagnosis of bovine tuberculosis was thoroughly 

reviewed and the INF-γ was presented as a supplementary test to enable detection of 

the maximum number of infected and diseased animals in a herd or in a region by the 

Commission Regulation (EC) No. 1226/2002. 

The second important step was Council Directive 77/391/EEC of 17 May 1977, 

which laid down community measures for the eradication of brucellosis, tuberculosis 

and leucosis in cattle. The Member States were, and still are, obliged to design 

eradication programs in order to accelerate, intensify or carry through the eradication of 

bovine tuberculosis. Financial support to these programs from the community budget 

was also foreseen. This legislation, which has been amended frequently, provides the 

legal framework for the bovine tuberculosis eradication programs.  
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Bovine tuberculosis programs have been successful in several Member States or 

regions that have reached the OTF status. Denmark achieved the OTF status in 1980, 

the Netherlands in 1995, Germany and Luxembourg in 1997, Austria and some regions 

of Italy in 1999, France in 2001 and Belgium in 2003. Nowadays 22 countries and 

regions were categorized as OTF (see the “Bovine tuberculosis in cattle, prevalence” 

section) (EFSA and ECDC, 2018).   

The European Union policy on the eradication of bovine tuberculosis is based on 

two fundamental principles: (1) Member States are primarily responsible for the 

eradication of bovine tuberculosis and may receive community financial support for the 

eradication program and (2) eradication of bovine tuberculosis in the European Union 

must be the final target and the Member States must consider eradication as the 

defined aim. 

In Spain, as already mentioned in previous sections, the first actions to fight back 

bovine tuberculosis are dated from the early 1950s. However it was not until 1965 

when a National Plan to Combat Tuberculosis and Bovine Brucellosis was established 

according to the Ministry of Agriculture Order of 24 May. Once Spain entered the 

European Economic Community, an Accelerated Eradication Program was designed in 

accordance with Directives 77/391/EEC and 78/52/EEC and Decision 87/58/EEC. The 

National Programs for the Eradication of Bovine Tuberculosis 2006-2010 represented a 

qualitative change in the approach of the objectives. The principal goal of these 

programs was to gradually increase the diagnostic sensitivity, both at herd and 

individual level in order to eliminate as many infection foci as possible. Additional 

measures such as management of possible wild reservoirs (according to the Plan of 

Action on Tuberculosis in Wild Species PATUBES) or the integration of the surveillance 

system in slaughterhouses have been gradually introduced to help gaining control over 

the disease.  
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It has already been pointed out in this section that the Member States are 

primarily responsible for the eradication of bovine tuberculosis. However, before 

achieving this ultimate objective, in Spain it is necessary to fulfil previous goals: 

reduction of prevalence and incidence rates at herd level and individual incidence has 

to be achieved alongside with an increase in the number of herds categorized as T3 

(OTF herds within the meaning of Directive 64/432 /EEC ) in the different regions. The 

diagnostic tests used for that purpose are the intradermal tuberculin test and the IFN-γ. 

The intradermal tuberculin test is performed on all older than six-week animals and the 

IFN-γ is performed on older than six-month individuals. Depending on the herd 

category the SIT or CIT are used as the routine technique which can be strategically 

complemented by the use of the IFN-γ test in positive herds considered as infected. 

Sacrifice of reactive animals is mandatory. In addition, hygienic measures in farms 

where positive animals have been detected should be applied. The Official Veterinary 

Services are in charge of verifying that good management practices such as the correct 

management of manure and the cleaning and disinfection procedures are carried out 

appropriately. In addition, where appropriate, a minimum period of 60 days of sanitary 

emptying has to be respected for the reuse of pastures. Finally an exhaustive control of 

the movements and of the replacement of these farms, as well as intensification of the 

diagnostic tests should be carried out in order to raise their sanitary qualification as 

soon as possible. 

3.3.7. Vaccination 

Nowadays there is no tuberculosis vaccine approved for its use in cattle or 

wildlife animals with the exception of Great Britain where the BCG vaccine was 

licensed for intramuscular administration to badgers in 2010 (Perrett et al., 2018). The 

major reasons for this banning are that vaccination may interfere in the traditional 

bovine tuberculosis diagnostic tests by sensitizing the vaccinated animals and turning 
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them into false-positive, and that the degree of protection conferred after vaccination is 

not complete. 

BCG is the only vaccine licensed for use against tuberculosis in humans. It is a 

live attenuated vaccine obtained from a M. bovis strain after 230 successive passages 

in the laboratory between 1908 and 1921. It is an inexpensive vaccine which has been 

inoculated to more than 2.5 billion people. Moreover it has a long-established safety 

profile and an outstanding adjuvant activity, eliciting both humoral and CMI responses. 

It can be delivered at birth or at any time thereafter, and a single dose can produce 

long-lasting immunity (Martín et al., 2007). Recent long-term follow-up studies 

demonstrated that a single dose in childhood preserves immunization for up to 50–60 

years after vaccination (Aronson et al., 2004). Nevertheless, different studies have 

concluded that protection conferred by BCG decreases over time. Efficacy of BCG in 

adolescent and adult populations is reported to be highly variable among different 

geographical regions (Andersen and Doherty, 2005). 

Nowadays human preferred BCG route of administration is the intradermal route. 

However oral BCG administration was used in multiple controlled studies performed in 

the 1920s and 30s and showed protection against tuberculosis (Kereszturi, 1929; 

Aronson and Dannenberg, 1935). More recent studies demonstrated that oral BCG 

administration induces mucosal immunity compared to intradermal vaccination (Lai et 

al., 2015; Hoft et al., 2018). Enhanced protection after a pulmonary mucosal BCG 

vaccination was described in studies carried out on rhesus macaques compared to the 

standard intradermal use of the BCG (Verreck et al., 2017). Matching the route of 

vaccination and natural infection seems convenient (Manjaly Thomas and McShane, 

2015).  

In cattle, the route of transmission is primarily linked to the airborne pathway, 

although calves are commonly infected through ingestion of infected milk. 

Transmission of wildlife species can occur through different routes involving aerosol 
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inhalation or oral ingestion. Thus, induction of mucosal immunity could be helpful and 

oral vaccination with BCG might be beneficial. Results obtained after BCG being orally 

delivered to protect cattle against bovine tuberculosis have been very promising 

(Nugent et al., 2017; Buddle et al., 2018). In additioin its use in wildlife reservoirs, such 

as free-living badgers (Gormley et al., 2017) or possums (Tompkins et al., 2009) and 

under experimental conditions in wild boars (Garrido et al., 2011) has been very 

encouraging too. Test and cull strategies or treatments are not feasible control options 

for wildlife species. Vaccination seems to be the only reasonable approach and oral 

delivery might be the most cost-effective option. Furthermore in developing countries, 

the test and cull strategy for diminishing the prevalence of bovine tuberculosis in cattle 

rapidly is too expensive and alternative control methods such as vaccination could be a 

very appealing approach. 

The BCG efficacy is very variable. A review of different experimental trials and 

studies conducted by different researchers in different countries between 1959 and 

2002 estimated that the BCG efficacy ranges between 0% and 75% (Hewinson et al., 

2003). To optimise the use of the BCG vaccine it is crucial to determine factors 

influencing its efficacy. Results obtained from different studies suggest that BCG doses 

of 104-106 CFU administered parenterally induced equivalent protection (Buddle et al., 

1995, 2013), while higher doses (108 CFU) were required to induce protection when 

BCG was administered orally (Buddle et al., 2011)..  

Over the past decades, a large number of vaccination and challenge experiments 

have been carried out in cattle using standardized models. This makes possible the 

comparisons between different studies with BCG tested alone or compared to other 

vaccines. Challenge models have focused on using relatively low M. bovis challenge 

doses (103-104 CFU) administered via endobronchial/intratracheal inoculation or by 

aerosol (Buddle et al., 1995; Palmer et al., 2002). These low-dosed challenges turned 

out into the development of tuberculous lesions mimicking those observed in the lower 

respiratory tract of naturally infected animals. Similar BCG strains have been used 
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(initially Pasteur, then BCG Danish 1331) and vaccine protection has been assessed 

by comparing quantitative gross, histopathological, and microbiological findings. In a 

recent study carried out by Ameni and co-workers BCG was administered 

subcutaneously against bovine tuberculosis under field conditiond. The vaccine 

efficacy for protection against disease was low (30%), whereas its effect on reducing 

the extent of gross pathology, microscopic lesion, or isolation of M. bovis was 

significant (Ameni et al., 2018). These results show a lower BCG efficacy than the 

obtained in previous studies under the same circumstances in Mexico (Lopez-Valencia 

et al., 2010) and Ethiopia (Ameni et al., 2010). This difference in full protection could be 

explained by differences in the severity of the infected reactor animals that served as 

sources of infection. 

Outcomes of one study carried out by Buddle and co-workers suggested that 

natural pre-sensitisation to environmental mycobacteria appeared to have an adverse 

effect on subsequent immunity induced by BCG vaccine. Lower degree of protection 

was induced compared to that developed by two other attenuated M. bovis vaccines 

(Buddle et al., 2002). However in another study conducted by Hope et al., it was 

observed that M. avium exposure induced partial protection against M. bovis infection, 

which could possibly mask subsequent immunity induced by BCG (Hope et al., 2005a). 

Regarding the optimal age for vaccination it has been demonstrated that BCG 

inoculation of young calves induced a PPD-B specific IFN-γ secretion of longer 

duration than that observed following BCG vaccination of adult cattle (>1 year old) 

(Hope et al., 2005b). Neonatal vaccination with BCG induces significant protection from 

experimental M. bovis infection (Hope et al., 2005b, 2011) and it has been 

corroborated by field studies too (Ameni et al., 2010). Another advantage of neonatal 

vaccination of calves observed in different studies involves significant reductions of the 

tuberculous lesions as well as pathology scores and bacterial burden which were not 

observed in calves aged 5–6 months (Buddle et al., 2002, 2003).  
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It is well-known that BCG vaccination may interfere with the tuberculin skin test 

interpretation. Using the SIT at the cervical region, 80% of BCG-vaccinated calves 

were categorized as reactors to the tuberculin skin test six months after vaccination. 

However this figure dropped to 10–20% after nine months since vaccination (Whelan et 

al., 2011). In another study the highest maximum skin test reactivity was observed only 

five weeks after vaccination, but disappeared completely 18 months after vaccination 

(Moodie, 1977). 

To avoid this interference DIVA tests will be needed in countries willing to 

implement BCG vaccination into the test and cull based programs. For the 

development of DIVA tests, antigens present in the MTC but not expressed or secreted 

by BCG have been studied so that they can be used instead of bovine PPD in the 

whole blood IFN-γ or skin test. A recent study assessed the incorporation of ESAT-6, 

CFP10, and Rv3615c to a whole blood IFN-γ test and results were similar to that 

obtained using the traditional avian and bovine PPDs. When tested in non-infected 

animals, both the DIVA and tuberculin readouts gave specificities between 97 and 

99%. The relative specificity of the DIVA blood test was also high (95%) in BCG-

vaccinated cattle and was significantly greater than that observed for the tuberculin 

readout (71%) (Vordermeier et al., 2016). Same DIVA antigens have been used for the 

skin test in cattle showing a high sensitivity for M. bovis infected cattle, similar to the 

level reached by the CIT in non-vaccinated cattle while not compromised by 

vaccination with BCG or with vaccines against PTB (Whelan et al., 2010; Jones et al., 

2012). 

The alternative of using heterologous vaccines to overcome this diagnostic 

problem has been never reported. 

During the last 25 years research for the development of new human vaccines 

against tuberculosis has been very intense and efforts to create and evaluate vaccines 

against M. bovis in cattle have benefited from this investigation. Different types of 

vaccines have been recently tested in cattle: live attenuated mycobacteria and subunit 
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vaccines such as DNA, protein, and virus-vectored vaccines, which could be used 

together with the BCG to boost its immunity (Table 4) (Parlane and Buddle, 2015). 

 

Table 4. Types of new vaccines tested in cattle. Source: (Parlane and Buddle, 2015)  

Type of Vaccine  Vaccine 
Protection against 

tuberculosis 
compared to BCG 

Reference 
 

Modified BCG  BCG over-expressing Ag85B + (Rizzi et al., 2012) 

  BCG ∆ zmp1 + (Khatri et al., 2014) 

 
 BCG mutants (BCGDleuCD, 

BCGDfdr8, BCGDmmA4, 
BCGDpks16) 

= (Waters et al., 2016) 

Attenuated M. 

tuberculosis strain 
 M. tuberculosis ∆RD1 ∆panCD - (Waters et al., 2007) 

Attenuated M. bovis 

strain 

 UV-irradiated M. bovis + (Buddle et al., 2002) 

 M. bovis ∆ leuD NT
b
 (Khare et al., 2007) 

  M. bovis ∆ RD1 = (Waters et al., 2009) 

  M. bovis ∆ mce2 + (Blanco et al., 2013) 

DNA vaccine  Mycobacterial DNA = 
(Maue et al., 2004; 

Cai et al., 2005) 

  Heterologous prime boost: 
mycobacterial DNA + BCG 

+ (Maue et al., 2007) 

Adjuvanted protein 

vaccine 
 Simultaneous protein + BCG + 

(Wedlock et al., 

2008) 

Virus-vectored 

vaccine 
 Heterologous prime boost: BCG 

+ Ad85A 
+ 

(Vordermeier et al., 

2009) 

 

NT Not tested against TB challenge or compared with BCG  
b
 Significant protection against TB, but not tested against BCG  

+ Significantly better than BCG  

= Equivalent protection to BCG 

 – No protection against TB 

 

In addition vaccination of wildlife species with a heat-inactivated vaccine has 

been carried out recently in different assays. Results obtained from wild boars suggest 

that oral and parenteral vaccination with the heat-inactivated M. bovis strain triggered 

out an immune response that conferred a similar degree of protection as BCC (Garrido 

et al., 2011). Same effects were observed in a study carried out in red deer. The orally 

vaccinated group with the heat-inactivated M. bovis strain and subsequently infected 

with M. bovis presented a reduced lesion score level. No interference with the in vivo 

bovine tuberculosis diagnosis techniques were reported (Thomas et al., 2017). Results 

regarding protection conferred by this vaccine in cattle have not been published yet. 

However a study carried out by Jones and co-workers stated that oral vaccination of 
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cattle with the M. bovis heat inactivated vaccine did not compromise the bovine 

tuberculosis diagnostic tests when using regular or specific antigens (Jones et al., 

2016). 

Furthermore a new vaccine has been designed and already tested in humans 

showing promising protection results. M72/AS01E is a subunit vaccine composed by an 

immunogenic fusion protein (M72) derived from two M. tuberculosis antigens (MTB32A 

and MTB39A). After administrating two doses of the M72/AS01E vaccine, 54% of the M. 

tuberculosis-latent-infected and HIV-negative adults were protected from turning into 

active pulmonary tuberculosis patients (Van Der Meeren et al., 2018). 
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In all three studies we refer to in this dissertation calves were involved. All the 

experimental procedures involving animal housing and care as well as the clinical 

practices they were submitted to were carried out in agreement with the European, 

Spanish and Regional Law and Ethics Comitee Regulations. The experimental design 

underwent ethical review and approval by NEIKER’s Animal Care and Use Committee 

and by the Agriculture Department of Diputación Foral de Bizkaia.  

Calves taking part in the three studies were selected from the same feedlot that 

had previously bought them from different commercial farms with no known history of 

bovine tuberculosis. Thirty calves (approximately 2 months old) were preselected from 

the feedlot farm for every study. Prior to being included in each study three blood 

samplings were carried out on week 0, 4 and 12. In order to confirm the absence of 

previous contact with M. bovis an IFN-γ release test on whole blood was carried out. 

Samples for the IFN-γ tests were stimulated with avian and bovine PPD and other 

more specifc antigens as ESAT-6/CFP10 and Rv3615c.  

Vaccination against Map with the whole-cell heat-inactivated Silirum® vaccine 

was carried out in the feedlot at week 0 just before blood extraction. Twenty out of the 

30 calves were randomly vaccinated subcutaneously in the dewlap. Finally, after the 

third sampling, 10 vaccinated and 5 non-vaccinated calves showing the lowest optical 

densities as a result for the INF-γ test were selected. The 15 remaining calves were 

kept at the feedlot and no longer followed. During the 16th week post-vaccination 

animals were shipped to the biosafety level 3 facilities in NEIKER where they were 

divided into three experimental groups of five calves each according to their 

vaccination status. 

After a two-week adaptation period, at week 18 post-vaccination, five vaccinated 

and five non-vaccinated calves taking part in the first and second study were 

challenged through the endotracheal route with 106 CFUs of M. bovis suspended in 2 
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ml of phosphate-buffered saline. However for the third study five vaccinated and five 

non-vaccinated calves were challenge orally with the same M. bovis isolate and at the 

same concentration. Heads of the animals were fastened upwards until deglutition was 

observed to avoid accidental spills. The M. bovis field isolate (SB0339 spoligotype 

profile) used was originally obtained from a naturally infected wild boar. After challenge 

the groups were recalled as: 1) Map vaccinated and M. bovis infected, 2) Map 

vaccinated and M. bovis not infected and 3) Map non-vaccinated and M. bovis infected. 

Five more blood samplings were carried out during each experiment at the 

biosafety level 3 facilities at weeks 18, 20, 22, 26 and 30 post-vaccination. 

The tuberculin skin test was carried out one week before the necropsies of the 

animals according to the Spanish and EU regulations. The skin test was performed by 

inoculating 0.1ml (2500 UI) of avian and bovine-PPD in the cervical neck region. In 

addition to the standard PPD antigens, 0.1 ml of a peptide cocktail (100 μg/ml/peptide) 

and a protein cocktail (100 μg/ml/protein) representing ESAT-6/CFP10 and Rv3615c 

were also used in the first study. The skin fold thickness was measured right before 

and 72 hours after the inoculation with a caliper. The skin thickness increase results for 

the standard antigens were interpreted according to the standards of official criteria 

(EU Council Directive 64/432/CEE and Spanish RD 2611/1996) for both SIT and CIT. 

In relation to the specific antigen cocktails, a result was considered positive if the skin 

thickness increase was equal to or bigger than 2 mm 72 hours post-inoculation. 

Before the necropsies all individuals were sedated by an intramuscular injection 

of XILAGESIC® 2% and euthanized by intravenous injection of T-61 (Intervet S.A., 

Salamanca, Spain). A systematic necropsy of every animal was carried out with the 

main objective of assessing the presence and extension of tuberculous lesions. 

Collected samples were distributed within five body areas as follows: head (nasal 

turbinate, palatine tonsils and mandibular, parotid and retropharyngeal lymph nodes), 
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thorax (tracheal, prescapular, tracheobronchial and mediastinal lymph nodes), lung 

(right and left cranial and caudal lobes and medium and accessory lobes), abdomen 

(hepatic, jejunal and ileocecal lymph nodes as well as liver and spleen) and others 

(prefemoral and popliteal lymph nodes).  

All collected tissues were visually inspected for the presence of macroscopic 

lesions and sliced as thin as possible in search of deeper lesions. The severity of the 

gross pathological changes compatible with tuberculosis lesions were scored according 

to a semiquantitative system (Palmer et al., 2007). Briefly, two scoring system were 

established to measure the severity of the lesions in lung and the lymph nodes. Lung 

lobes were subjected to the following scoring system: (0) no visible lesions; (1) no 

external gross lesions, but lesions seen upon slicing; (2) less than 5 gross lesions of 

<10mm in diameter; (3) more than 5 gross lesions of <10mm in diameter; (4) more than 

one distinct gross lesion of >10mm in diameter and (5) coalescing gross lesions. 

Scoring of lymph node gross lesions was based on the following scoring system: (0) no 

visible lesions; (1) small focal lesion (1–2mm in diameter); (2) several small foci and (3) 

extensive lesions. 

For bacteriology analysis samples were maintained refrigerated until 

bacteriological processing (after bacteriological processing the remaining samples 

were stored at -20°C in case further analysis or retesting was needed). The BACTEC 

system and classical solid media were used for mycobacterial culture. According to the 

protocol described previously by Garrido and coworkers (Garrido et al., 2011) samples 

were thoroughly homogenized in sterile distilled water (2 g in 10 ml or equivalently). 

Five ml were decontaminated in hexadecyl-pyridinium chloride at a final concentration 

of 0.75% (w/v) for 12–18 h. Afterwards samples were centrifuged at 2.500 x g for 5 min 

and pellets were cultured in Coletsos  and Löwenstein Jensen tubes (bioMèrieux, 

maisons-Alf ) at 37°C for 4 months. The remaining 5 ml of the homogenized 

suspension were decontaminated and processed following the instructions of the 



Methodology 

76 

manufacturer to inoculate BBL MGIT tubes supplemented with BBL MGIT PANTA and 

BACTEC MGIT growth supplement (Becton Dickinson). BBL tubes were incubated for 

42 days in a BACTEC MGIT 960 System.  

Colonies in solid media were visualized under a stereomicroscope and infection 

level of samples were categorized according to the number of colonies per tube as 

follows: (0) no growth, (1) less than 10 colonies, (2) between 10 and 50 colonies and 

(3) more than 50 colonies (Garrido et al., 2011). 

DNA was extracted from all positive cultures and a MTC specific PCR (Sevilla 

et al., 2015) was carried out to confirm that M. bovis was responsible for the colonies 

growth. Finally, all isolates were spoligotyped in order to confirm that the isolated strain 

was the same than the used for the challenge (Kamerbeek et al., 1997).  

In relation to the statistical work Table 5 shows a summary of the tests carried 

out in the different studies. 

Table 5. Summary of the statistical tests used. 

Objective Test 

Calculate the reduction by vaccination of: 
-Solid culture score 
-Nº of positive tissues by culture 
-Gross lesion score 
-Nº of affected areas by gross pathology 

(1-VI/NVI) * 100 

Differences in the degree of pathology and 
bacterial burden (lesions scores and culture 
scores). 

Mann-Whitney U-test 

Differences in the number of affected tissues by 
gross pathology and culture. 

Student’s paired two-sample t-test 

Proportions of animals with lesions. Fisher’s exact test 

Association between culture and gross pathology 
results. 

Spearman’s correlation 

Differences in the distribution of lesions and 
positive culture results between groups 

Chi square test 

Correlation between skin test results and lesion 
scores and skin test results and Nº of tissues with 
lesions. 

Spearman 
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Tuberculosis Detection in Paratuberculosis Vaccinated Calves: New 
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ABSTRACT 

Paratuberculosis vaccination in cattle has been restricted due to its possible 

interference with the official diagnostic methods used in tuberculosis eradication 

programs. To overcome this drawback, new possibilities to detect Mycobacterium bovis 

infected cattle in paratuberculosis vaccinated animals were studied under experimental 

conditions. Three groups of 5 calves each were included in the experiment: one 

paratuberculosis vaccinated group, one paratuberculosis vaccinated and M. bovis 

infected group and one M. bovis infected group. The performance of the IFN-gamma 

release assay (IGRA) and the skin test using conventional avian and bovine tuberculins 

(A- and B-PPD) but also other more specific antigens (ESAT-6/CFP10 and Rv3615c) 

was studied under official and new diagnostic criteria. Regarding the IGRA of 

vaccinated groups, when A- and B-PPD were used the sensitivity reached 100% at the 

first post-challenge sampling, dropping down to 40–80% in subsequent samplings. The 
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sensitivity for the specific antigens was 80–100% and the specificity was also 

improved. After adapting the diagnostic criteria for the conventional antigens in the skin 

test, the ability to differentiate between M. bovis infected and non-infected animals 

included in paratuberculosis vaccinated groups was enhanced. Taking for positive a 

relative skin thickness increase of at least 100%, the single intradermal test specificity 

and sensitivity yielded 100%. The comparative intradermal test was equally accurate 

considering a B- PPD relative skin increase of at least 100% and greater than or equal 

to that produced by A- PPD. Using the specific antigens as a proteic cocktail, the 

specificity and sensitivity reached 100% considering the new relative and absolute cut-

offs in all experimental groups (Δ ≥ 30% and Δmm ≥ 2, respectively). Results suggest 

that the interference caused by paratuberculosis vaccination in cattle could be 

completely overcome by applying new approaches to the official tuberculosis 

diagnostic tests. 

INTRODUCTION 

Bovine tuberculosis (bTB) and paratuberculosis (PTB) are widespread infectious 

diseases that affect many domestic (Aagaard et al., 2010; Muñoz-Mendoza et al., 

2015) and wild (Aranaz et al., 2004; Carta et al., 2013) species. The impact of these 

diseases derives from losses to the livestock industry, especially dairy cattle (Harris 

and Barletta, 2001; Waters et al., 2012), from hunting and wildlife conservation as well 

as from their recognized (bTB) or suspected (PTB) zoonotic character. The relevance 

of bTB as a zoonosis has been substantially reduced in the more developed countries, 

but it is still a frequent cause of morbidity and mortality in countries that cannot afford 

strong control measures like milk thermal treatment and compulsory bTB eradication 

schedules (Waters et al., 2012). It has been estimated that about 10% of the total 

human tuberculosis cases around the world are caused by Mycobacterium bovis (M. 

bovis) (Müller et al., 2013; Rodwell et al., 2010). On the other hand Mycobacterium 

avium subsp. paratuberculosis (Map) is considered potentially zoonotic since it was 
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first isolated from human patients in 1984 (Chiodini et al., 1984) and has also been 

firmly associated with some forms of chronic regional intestinal inflammatory disease 

(Elguezabal et al., 2012; Ramón A. Juste et al., 2009; Naser et al., 2004), although an 

etiological role has not been widely accepted by the medical community.  

The live M. bovis Bacillus Calmette-Guerin (BCG) has been used as a vaccine in 

humans (Waters et al., 2012) as well as in cattle (Buddle et al., 1995), showing 

different levels of protection against M. bovis infection. One of the major disadvantages 

of the use of this attenuated vaccine in cattle is the interference with bTB diagnostic 

tools due to cross reactivity of the tuberculins with antigens of the vaccine itself.  

PTB is considered one of the most important diseases in dairy cattle, decreasing 

the milk production by up to 10% (Harris and Barletta, 2001; Hasonova and Pavlik, 

2006). It has been proven that PTB vaccination in sheep and goats with Map whole 

heat-inactivated vaccines efficiently prevents the disease and significantly diminishes 

the bacterial burden reducing the chance for other animals of becoming infected (Juste 

and Perez, 2011). As a consequence PTB vaccination should be taken into account in 

countries where bTB prevalence is really low and the Animal Health System works 

efficiently (Ramon A Juste et al., 2009). In Spain, PTB vaccination is not allowed in 

cattle due to the possible interference in the official immunological bTB diagnostic tests 

(Garrido et al., 2013). bTB herd prevalence in Spain is 1.2% (European Food Safety 

Authority, 2015) but the Basque Country is one of the regions with lowest frequencies 

(0.25%) (Ministerio de agricultura alimentación y medio ambiente, 2014) and it can be 

very closely monitored thanks to its small size and well developed veterinarian 

services. For these reasons a field clinical trial for an inactivated vaccine registration 

was authorized by the competent authorities (local Animal Health and Animal 

Experimentation Authority, the Spanish Drug Registration Authority and the Central 

Animal Health Authority) whose results have been partially published (Alonso-Hearn et 

al., 2012; Garrido et al., 2013; Ramon A Juste et al., 2009). 
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Moreover, simultaneous infection of herds with Map and M. bovis may occur 

(Seva et al., 2014) and it may be responsible for a reduced sensitivity (Se) of the cell-

mediated immune (CMI) response based tests to detect bTB (Álvarez et al., 2009). 

Over the last few years, antigens that are present in M. bovis but absent in both: 

tuberculosis (BCG) and PTB vaccines, such as ESAT-6/CFP-10 or Rv3615c, have 

been assayed as an alternative to avian and bovine purified protein derivatives (A-PPD 

and B-PPD), traditionally used in the current Comparative Intradermal Test (CIT) and 

interferon (IFN)-gamma assays (Flores-Villalva et al., 2012). 

 Another issue that may affect bTB diagnosis is exposure to environmental 

mycobacteria, especially Mycobacterium avium avium (M. a. avium). Previous studies 

have concluded that exposure to M. a. avium may impart a degree of immunity to M. 

bovis infection that can compromise currently used diagnostic tests, making 

improvement of test Se dependent on the use of specific antigens (Hope et al., 2005). 

Regarding vaccine protection, some authors have concluded that sensitization with 

environmental mycobacteria may adversely affect the efficacy of the BCG vaccination 

(Buddle et al., 2002) whereas others suggest that there is no evidence that natural pre-

exposure to M. avium reduces the effectiveness of BCG vaccination (Howard et al., 

2002) and that it rather causes an overall protection that cannot be further increased by 

vaccination. 

The goal of this work was to assess different strategies to avoid PTB vaccination 

interference with CMI response-based bTB detection tests in cattle experimentally 

challenged by the use of both: alternative interpretation criteria for the standard 

comparative intradermal test and new more specific antigens (Hope et al., 2005). 
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MATERIALS AND METHODS 

Calves, inclusion criteria and vaccination 

The experimental scheme is detailed on Fig 1. Thirty Fresian calves from a 

feedlot were preselected to carry out this experiment. These animals were born in 13 

different farms located in Northern Spain. Two months after birth, at week 0 (W0), 

animals were submitted to a IFN-gamma release assay with standard (A-PPD, B-PPD) 

or more specific (ESAT-6/CFP10 and Rv3615c) antigens for the diagnosis of bTB. 

Immediately afterwards, 20 of them were subcutaneously vaccinated against Map with 

1ml of a heat inactivated vaccine (Silirum1 CZV, Porriño, Pontevedra, Spain) in the 

dewlap (Garrido et al., 2013). To confirm absence of contact with M. bovis, the 

samplings were repeated twice (W4, W12). Only 15 animals: 10 vaccinated and 5 non-

vaccinated were kept and transferred to the biosafety level 3 (BSL-3) facilities in 

NEIKER. After arrival, calves were split into three separate groups of five animals each. 

The 15 remaining calves were kept in the feedlot and not further followed. 

M. bovis challenge 

All the experimental procedures were carried out according to the European, 

National and Regional Law and Ethics Committee regulations. The experimental 

design underwent ethical review and approval by NEIKER's Animal Care and Use 

Committee and by the Agriculture Department (PARAPATO-1264-BFA). Once animals 

were transferred to the BSL-3 facilities, they went through a two-week adaptation 

period. At W18 animals were sampled and five vaccinated and five non-vaccinated 

animals were challenged with 106 colony forming units (CFU) of an M. bovis field 

isolate suspended in 2 ml of phosphate-buffered saline (PBS) by the endotracheal 

route. The isolate used for challenge was originally obtained from a naturally infected 

cow and identified as M. bovis spoligotype profile SB0339 according to the M.bovis 

Spoligotype Database website (www.mbovis.org). Prior to challenge, animals 
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underwent intramuscular sedation with Xylazine (10 mg/50 kg). The final experimental 

groups were: PTB vaccinated and M. bovis infected (VAC/INFEC), PTB vaccinated and 

M. bovis non-infected (VAC/NIN), and PTB non vaccinated and M. bovis infected 

(NVAC/INFEC).

 

Fig 1. Experimental scheme. VAC/INFEC: vaccinated infected group. VAC/NIN: vaccinated 

non-infected group. NVAC/INFEC: non-vaccinated infected group BS: Blood Sampling. S: 

Slaughter. P+B: Pathology and Bacteriology. CIT: Comparative Intradermal Test. W: Week. 

Blood sampling 

Blood was collected from the jugular or caudal vein at W0, W4, W12, W18, W20, 

W22, W26 and W30 in tubes with lithium heparin and immediately aliquoted and 

processed in the laboratory. 

DIAGNOSTIC TESTS 

IFN-gamma release assay.  

Stimulation of whole blood with B-PPD, A-PPD and defined antigens, ESAT-

6/CFP-10 and Rv3615, was carried out within 8 hours after sample collection. Five 1.5 

ml aliquots of whole blood from each animal were stimulated with: 100 μl of PBS, 100 

μl of A- and B-PPD (20μg/ml as assay concentration) (CZV, Porriño, Pontevedra, 

Spain) respectively, and with 150 μl (to achieve an assay concentration of 5 μg/ml each 

peptide) of ESAT-6/CFP10 and Rv3615c antigens that were tested as sets of 
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overlapping peptides representing either ESAT-6/CFP-10 in one peptide cocktail or, 

alternatively, a peptide cocktail representing Rv3615c (Vordermeier et al., 1999). After 

incubating the plates for 16-24h at 37°C 5 - 7% CO2 the stimulated samples were 

centrifuged and subsequently the plasma was separated. 

Quantification of IFN-gamma concentration in the plasma's supernatant was 

performed by ELISA using the Bovigam® commercial kit according to the 

manufacturer's instructions (Prionics, Schlieren, Switzerland).  

For result analysis, our first approach was to represent mean optical density (OD) 

values for each antigen to compare the treatment groups. The OD of the non-

stimulated samples was subtracted from the OD of those stimulated with the different 

antigens. Afterwards, OD cutoffs were established for each defined M. bovis antigen, 

and frequencies of positive results were calculated and compared among groups. 

Cut-offs alternative to the currently established ones for the standard antigens 

were studied for this experiment. Also, considering that our group of interest was the 

VAC/NIN, a new cutoff for the specific antigen (ESAT-6/CFP10) different from the 

previously defined cut-off by Vordermeier et al. (Vordermeier et al., 2001), was 

selected. The goal was to find cut-offs that would allow us to improve and maximize 

both: Se and Sp of the diagnostic techniques. This approach will be thoroughly 

explained in the results section. 

Comparative intradermal test (CIT).  

The CIT was carried out at W3, this is, one week before slaughter. The test was 

performed according to the European Communities Commission Regulations 

(regulation1226/2002, amending annexes A and B of the consolidated Council 

Directive 64/432/EEC) and the Royal Decree RD2611/1996 by the Official Veterinary 

Services inoculating 0.1 ml of B-PPD and A-PPD. In addition to the standard PPD 

antigens, 0.1 ml of a peptide cocktail (100 μg/ml/peptide) and a protein cocktail (100 
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μg/ml/protein) representing ESAT-6/CFP10 and Rv3615c were also used. Four sites on 

the necks of the animals were selected and the skin thickness of every injection site 

was measured before and 72 h after the inoculation. The interpretation was carried out 

according to official criteria (EU Council Directive 64/432/CEE and RD 2611/1996).  

Since standard criteria showed lower Se or Sp in vaccinated animals, alternative 

criteria were studied for skin test interpretation in the different tests regarding not only 

the absolute but also the relative skin thickness increase threshold and antigen 

comparison. The obtained outcomes are shown in the result section. 

Post mortem studies 

The animals were slaughtered at W32 in three consecutive days, five calves per 

day. The animals underwent sedation with XILAGESIC® 2% (10 mg/ 50 kg l.w) 

(Laboratorios Calier, S.A., Barcelona, Spain) and then euthanized by an intravenous 

injection of T61 (4-6ml/50kg). Complete necropsies were carried out and samples were 

collected from several organs (lymph nodes, lung, tonsils, liver and kidney) for 

histopathological and microbiological analysis. 

Data analysis.  

Frequency of positive results in each group/technique/antigen and time was used 

as a qualitative variable for diagnostic time dynamics description and group Se and Sp 

estimates comparison. 

RESULTS 

Success of challenge procedure 

Infection was achieved in all challenged animals as all were confirmed infected 

by bacteriological and pathological analysis. VAC/NIN animals did not present lesions 

compatible with bTB, whereas all the animals belonging to the challenged groups did. 
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All isolates displayed the same M. bovis spoligotype as the challenge strain. Post-

mortem findings will be reported elsewhere. 

IFN-gamma 

The mean value for every IFN-gamma result obtained was calculated. If the 

outcome for the B-PPD was ≥ 0.1 and B-PPD>A-PPD or Rv3615c was ≥ 0.1 or ≥ 0.3 

for ESAT-6/CFP10 the results were considered M. bovis positive, respectively. 

Evolution of average IFN-gamma release over time per group and antigen is 

shown on Fig 2. The IFN-gamma levels upon stimulation with standard antigens A-PPD 

and B-PPD (Fig 2A, 2B and 2C) showed slight response increase in both vaccinated 

groups (VAC/NIN and VAC/INFEC) at W12, whereas the NVAC/INFEC group did not 

respond to standard antigens during the pre-infection period. However, upon challenge, 

reactions against A-PPD and B-PPD rose in all three groups of animals. The VAC/NIN 

(Fig 2A) group showed a heterogeneous response with peaks and troughs from W18 to 

W26, always higher to the A-PPD than to the B-PPD and declining sharply in both 

cases after W26. On the contrary, the NVAC/INFEC group (Fig 2C) showed an 

increasing response following B-PPD stimulation throughout the post-infection period. 

The response to the defined antigens showed higher definition than the standard 

ones as seen in Fig 2D, 2E and 2F. During the pre-challenge period none of the 

animals in any of the groups showed any kind of response against ESAT-6/CFP10 or 

Rv3615c. However, infection immediately triggered a response in both infected groups 

(VAC/INFEC and NVAC/INFEC) (Fig 2E and 2F) although the NVAC/INFEC animals 

(Fig 2F) showed slightly higher IFN-gamma levels compared to the VAC/INFEC 

animals (Fig 2E). Surprisingly, the VAC/NIN group (Fig 2D) showed a minimum 

response at W22. ESAT-6/CFP10 showed higher discrimination power since 

differences between infected and non-infected groups were greater. 
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Fig 2. Cellular immune response measured as IFN-gamma release. Avian-PPD (gray 

rhombus), Bovine-PPD (black square) (A, B, C), ESAT-6/CFP10 (black square) and Rv3615c 

(gray rhombus) (D, E, F). Groups: vaccinated non-infected (VAC/NIN) (A and D), vaccinated 

infected (VAC/INFEC) (B and E) and nonvaccinated infected (NVAC/INFEC) (C and F). 

The qualitative results for the IFN-gamma release test are shown on Table 1. The 

B-PPD detected all infected animals in the NVAC/INFEC during the post-infection 

period, showing different degrees of detection in the VAC/INFEC group and slight cross 

reactivity in some of the VAC/NIN animals. Applying the calculated cut-offs for the 

defined M. bovis antigens, in the VAC/NIN group a slight non-specific reaction could be 

observed for both during the postinfection weeks although infection was discarded 

according to histopathological and microbiological results. This behavior tended to 

disappear in the last sampling at W30. These defined specific antigens exhibited a mild 

delay in the detection of infected animals in the VAC/INFEC group. Regarding 

Rv3615c, the reactivity seemed to decrease at W30. Both, Rv3615c and ESAT-

6/CFP10 peptide cocktails were equally efficient at classifying animals from the 

NVAC/INFEC group from W22 on 
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Table 1. Percentage of positive animals for INF-gamma testing. 

STATE ANTIGEN W0 W4 W12 W18 W20 W22 W26 W30 

VAC/INFEC 

Bovine – Avian PPD 0% 0% 0% 0% 0% 20% 40% 20% 

Rv3615c 0% 0% 0% 0% 20% 100% 20% 0% 

ESAT-6/CFP-10 0% 0% 0% 0% 0% 60% 20% 0% 

VAC/NIN 

Bovine – Avian PPD 0% 0% 0% 0% 100% 40% 40% 80% 

Rv3615c 0% 0% 0% 0% 0% 80% 100% 80% 

ESAT-6/CFP-10 0% 0% 0% 0% 80% 100% 100% 100% 

NVAC/INFEC 

Bovine – Avian PPD 0% 0% 0% 0% 100% 100% 100% 100% 

Rv3615c 0% 0% 0% 0% 80% 100% 100% 100% 

ESAT-6/CFP-10 0% 0% 0% 0% 100% 100% 100% 100% 

 

VAC/NIN: vaccinated non-infected group. VAC/INFEC: vaccinated infected group. 

NVAC/INFEC: non-vaccinated infected group. W: week. The Optical Density (OD) cut-off for 

Rv3615 - PBS is >0.1 and > 0.3 for ESAT-6/CFP10 - PBS. For the standard antigens the met 

requirements are B-PPD > A-PPD and OD for B-PPD - PBS is > 0.1. Vaccination was 

performed at W0 and experimental challenge at W18. 

 

Comparative Intradermal Test (CIT).  

Skin test raw data and interpretation are detailed on Table 2. All calves included 

in the VAC/NIN group (5/5) showed a PPD-A response bias and were therefore 

classified as CIT-negative. However, substantial responses were recorded to PPD-B 

which meant that 3/5 calves were classified as SIT-positive (Table 2). 

The skin test was performed using two more antigenic preparations: ESAT-

6/CFP10-Rv3615c as a peptide or protein cocktail. We considered a skin increase of 2 

mm or greater as a positive result. Using this cut-off value, 1/5 VAC/NIN animals tested 

positive to the ESAT-6/CFP10-Rv3615c peptide cocktail while none responded to the 

protein cocktail (0/5, Table 2). Taken together, while the Sp of the SIT is compromised 

by PTB vaccination, this limitation can be overcome by using the CIT or defined protein 

antigens as skin test reagent.  
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Table 2. Intradermal Response: raw data and interpretation. 

State Calf 
A-PPD 

(mm) 

B-PPD 

(mm) 

Interpretation 

ESAT-6/CFP10/Rv3615c 

cocktail (mm 
interpretation) 

SIT CIT Peptide Protein 

VAC/NIN 

1 12 5 + N 0 N 0 N 

2 14 5 + N 3 + 0 N 

3 9 3 N N 1 N 0 N 

4 6 4 + N 0 N 0 N 

5 8 3 N N 0 N 0 N 

VAC/INFEC 

6 9 9 + N 3 + 5 + 

7 7 6 + N 6 + 4 + 

8 12 23 + + 11 + 15 + 

9 11 10 + N 6 + 3 + 

10 8 18 + + 7 + 7 + 

NVAC/INFEC 

11 2 9 + + 5 + 6 + 

12 1 8 + + 8 + 6 + 

13 1 12 + + 9 + 7 + 

14 0 9 + + 3 + 3 + 

15 1 5 + N 4 + 6 + 

 

VAC/NIN: vaccinated non infected group. NVAC/INFEC: non vaccinated infected group. 

VAC/INFEC: vaccinated infected group. PPD: protein purified derivative. SIT: single intradermal 

test, CIT: comparative intradermal test. N: negative. +: positive. Δmm: skin thickness increase in 

mm. The SIT is considered positive when an increase equal or bigger than 4mm is observed in 

the PPD-B injection site after 72h. The CIT is considered positive when the skin thickness 

increase at the PPD-B injection site is 4 mm greater than the increase induced at the PPD-A 

injection site after 72h. A ESAT 6/CFP10/Rv3615c peptide or protein cocktail result will be 

considered positive if the skin thickness increase is equal to or bigger than 2mm. 

 

Following M. bovis infection, the detection (Se) of infection in the PTB vaccinated 

group (VAC/INFEC) was severely compromised as 3/5 animals escaped CIT detection 

due to the PPD-A biased responses (Table 2) as well as in the non-vaccinated/infected 

group (NVAC/INFEC) were an animal out of 5 was considered as a negative one (4/5 

Table 2). As discussed, the SIT is severely compromised in respect of Sp following 

PTB vaccination, and therefore the observation that it detected all infected animals 

regardless of their vaccination status is irrelevant (Table 2, VAC/INFEC and 

NVAC/INFEC groups, 10/10, Table 2). In marked contrast, the ability of the defined 
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antigen reagents to detect M. bovis infected calves was not affected by their 

vaccination status, as 10/10 animals in the VAC/INFEC and NVAC/INF groups were 

detected by protein and peptide cocktails (Table 2). 

Table 3 shows the relative increase of the skin thickness 72h after the 

intradermal inoculation. The VAC/INFEC group showed the greatest (Mean = 230%) 

relative skin increase to the B-PPD followed by the NVAC/INFEC while the VAC/NIN 

group exhibited the smallest (Mean = 63.8%) skin relative increase with the B-PPD. 

The A-PPD showed the greatest skin increase in the vaccinated groups (VAC/INFEC 

(Mean = 127.4%) and VAC/NIN (Mean = 128.6%)). Both, peptide and protein cocktails 

showed highest skin increase percentages in the infected groups, (VAC/INFEC: Mean 

= 87.6% and Mean = 101%; NVAC/INFEC: Mean = 92.6%; and Mean = 86.4% 

respectively) (Table 3). 

Table 3. Individual skin test results: skin thickness increase relative to the initial reading. 

State Calf 
Avian-PPD 

% 

Bovine-PPD 

% 

ESAT-6/CFP10/Rv3615c 

Peptide cocktail 

% 

Protein cocktail 

% 

VAC/NIN 

1 
2 
3 
4 
5 

120 
140 
150 
100 
133 

63 
56 
60 
80 
60 

0 
30 
17 
0 
0 

0 
0 
0 
0 
0 

MV= 128.6 63.8 9.4 0 

VAC/INFEC 

6 
7 
8 
9 

10 

150 
140 
109 
138 
100 

150 
150 
383 
167 
300 

43 
120 
100 
75 
100 

71 
100 
167 
50 
117 

MV= 127.4 230 87.6 101 

NVAC/INFEC 

11 
12 
13 
14 
15 

33 
13 
13 
0 

17 

180 
133 
171 
113 
62 

83 
133 
180 
27 
40 

120 
100 
88 
38 
86 

MV= 15.2 131.8 92.6 86.4 

 

VAC/NIN: vaccinated non infected group. NVAC/INFEC: non vaccinated infected group. 

VAC/INFEC: vaccinated infected group. Δ%: skin thickness increase at 72 h after inoculation 

expressed as a percentage. MV: mean value. 
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Table 4 shows the performance of the different alternative diagnostic criteria. A 

SIT interpretation with an absolute skin thickness increase of 6 mm or more detected 

all the VAC/INFEC animals but none of the VAC/NIN, accounting for 100% Se and Sp.  

With a comparative interpretation where an increase of 6 mm in the B-PPD that was 

equal to or greater than the A-PPD, all VAC/NIN were correctly classified as negative, 

but only 3/5 of the VAC/INFEC were scored as positive. Thus the Se was 60% and the 

Sp 100%.  

Table 4. Skin thickness interpretation criteria after application of the different antigens in 

the skin test. 

A-PPD: avian purified protein derivative. B-PPD: bovine purified protein derivative. 

Antigen 
Test type and 
interpretation 

Cut-off positive criteria 
Sensitivity 

% 
Specificity 

% 

Official diagnostic criteria: vaccinated and non-vaccinated animals 

PPD 

Single official 
Standard: Δmm B-PPD≥4 100 40 

Strict: : Δmm B-PPD>2 100 0 

Comparative 
official 

Standard: Δmm B-PPD≥4 and >A-
PPD 

70 100 

Strict: Δmm B-PPD>2 and >A-PPD 70 100 

Alternative diagnostic criteria (vaccinated animals only) 

PPD 

Simple absolute Δmm ≥ 6 100 100 

Comparative 
absolute 

Δmm ≥ 6 and B-PPD ≥ A-PPD 60 100 

Single relative ≥ 100% 100 100 

Comparative 
relative 

≥ 100% and B-PPD ≥ A-PPD 100 100 

Peptide 
cocktail 

Simple absolute Δmm ≥ 3 100 80 

Single relative ≥ 40% 100 100 

Protein 
cocktail 

Simple absolute Δmm ≥ 3 100 100 

Single relative ≥ 30% 100 100 

Alternative diagnostic criteria (non-vaccinated animals only) 

Peptide 
cocktail 

Simple absolute Δmm ≥ 3 100 100 

Peptide 
cocktail 

Simple absolute Δmm ≥ 3 100 100 
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In order to establish criteria, focus was set on the vaccinated groups because 

the aim of this work was to set up the parameters to be able to differentiate 

VAC/INFEC animals from those which were only PTB-vaccinated. Regarding relative 

readings, for the SIT, a cut-off at a 100% skin increase classified all the animals in the 

VAC/INFEC as bTB positive, while all in the VAC/NIN group were classified as non-

bTB reactors (Table 3). This yielded 100% Se and 100% Sp (Table 4). A comparative 

reading, scoring as positive  B-PPD relative increase greater than the A-PPD increase, 

also yielded 100% Se and Sp. Using the protein cocktail two different cut-offs were 

established. The first one takes into account the absolute skin increase and the second 

the relative. Despite the low number of animals belonging to each group, these results 

are very interesting since all the animals were correctly classified. 

DISCUSSION 

The main aim of this study was to assess the interference of an inactivated PTB 

vaccine with the official bTB diagnostic tests. In order to improve the diagnostic efficacy 

of the CMI-based test, the immunological response of the animals was determined 

comparing the standard antigens PPD-A and PPD-B with two different formulations of 

defined antigens (ESAT-6/CFP10 and Rv3615c) (Vordermeier et al., 2011). In addition, 

new criteria for result interpretation according to the vaccination status of animals were 

explored. 

  During the last decade great efforts have been dedicated to the study and 

development of new specific antigens (Meng et al., 2015; Vordermeier et al., 2011) that 

have been thoroughly assessed by in vitro IFN-gamma tests (Casal et al., 2012). The 

use of these antigens has received attention for the skin test (Whelan et al., 2010) in 

PTB vaccinated animals, and it has been proven that protein (Flores-Villalva et al., 

2012; Whelan et al., 2010) and peptidic cocktails (Casal et al., 2012) can be suitable 

under field conditions. 
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Furthermore, to the best of our knowledge, this is the first time that the skin test 

has been performed with these specific cocktails in PTB vaccinated animals and 

subsequently M. bovis infected cattle, although these antigens had been previously 

shown not to be recognized following PTB vaccination in goats (Pérez de Val et al., 

2012).  

The M. bovis challenge process was carried out successfully; all the calves 

belonging to infected groups became infected regardless of their vaccination status. 

However, the severity and extension of the lesions was lower in the VAC/INFEC 

animals (data not shown). These results are in agreement with the findings from Pérez 

del Val et al (Pérez de Val et al., 2012) who also reported that Map vaccinated and M. 

bovis infected goats showed minor severity and extension of the lesions in an 

experimental setting, suggesting that PTB vaccination could provide a certain degree of 

containment of bTB dissemination (Pérez de Val et al., 2012). 

The dynamics of the IFN-gamma test results show that PTB vaccination 

induced a response against standard PPD mycobacterial antigens that was 

predominantly of the avian type before to M. bovis challenge. Although a noticeable 

degree of cross reactivity to B-PPD was observed it did not affect the Sp of the CIT. 

After infection, all groups switched to a predominantly bovine PPD-biased response 

that was slightly lower in the vaccinated group compared to the non-vaccinated group. 

All the animals belonging to the VAC/INFEC group were categorized as infected only in 

the first sampling post-challenge at W20, while all NVAC/INFEC animals were positive 

throughout the complete post-infection period. This indicates that IFN-gamma test did 

not work well in vaccinated animals in terms of Se and also Sp. 

The more specific antigens worked better in terms of Se, in particular ESAT-

6/CFP10 that only failed to detect one animal on W20, two weeks post challenge. It 

was also the most specific since it only yielded false positive results in the non-infected 
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group for two animals four weeks post-infection (W22) and for one calf eight weeks 

post-infection (W26). The movement of the animals to the P3 facilities might have 

changed the microbial environment and induced an unspecific cellular immune 

response that reached a certain development in the VAC/NIN group, but that was 

quickly replaced by a more specific one in the animals that were challenged with M. 

bovis. 

Results have demonstrated that the response pattern of the traditional antigens 

versus the more specific ones can be very different. The ESAT-6/CFP10 and Rv3615 

antigens did not show any kind of response during the post-vaccination period and they 

just underwent a raise in their response after M. bovis challenge. A-PPD and B-PPD 

responses based on the IFN-gamma release made differentiation difficult especially 

among the VAC/INFEC animals. Similar results have been observed with the same 

antigens in goats (Pérez de Val et al., 2012). 

In this experiment we decided to apply 2 interpretation criteria for the qualitative 

IFN-gamma results: one for the B-PPD and a second one for the specific antigens 

responses. The most extended OD cut-off point (0.1) was selected for the B-PPD. For 

the ESAT-6/CFP10 the OD cut-off was set at 0.3 and at 0.1 for Rv3615c. Selecting 

these cut-offs, the Se of the technique in the most problematic group (VAC/INFEC) 

reached 100% when the ESAT-6/CFP10 antigen was used. This Se rate was 

maintained from the second post-infection sampling throughout the experiment. Our 

data showed that the Se obtained with this specific antigen was higher than the one 

obtained with B-PPD as previous researchers demonstrated (Aagaard et al., 2006; 

Flores-Villalva et al., 2012). 

Regarding the conventional CIT results, all the animals belonging to the 

VAC/NIN and NVAC/INFEC groups were correctly classified in relation to the infectious 

status according to treatment and necropsy results. The interference problem arose 
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when the VAC/INFEC group has to be diagnosed using the same criteria. Applying the 

traditional comparative skin test 60% of the VAC/INFEC animals were misclassified as 

M. bovis non-infected. 

If new cut-off points were set up, this drawback could be overcome. Regarding 

the vaccinated and non-vaccinated groups alternative cut-offs were established for 

every antigen studied (Table 4). As it can be observed, from all the assessed 

possibilities, those which measured the relative increase of the skin thickness were the 

most reliable in both vaccinated groups, in terms of Se and Sp. 

When the non-vaccinated animals were taken into account, whether the chosen 

diagnostic interpretation is the official criterion or the new criterion, 100% of the animals 

were diagnosed correctly in relation to our gold standard: the necropsy results. These 

outcomes reinforce the idea that our efforts should focus on validating a technique able 

to identify all the animals from the problematic group, VAC/INFEC animals. 

In spite of the low number of animals and that they were kept under 

experimental conditions, the Se and Sp obtained (100% respectively) when using the 

protein cocktail in the skin test were very encouraging. All the animals belonging to the 

three different groups were correctly classified. That is why in view of the outstanding 

results it would be of great interest to test the protein cocktail under field conditions. 

In this experimental scheme, we have demonstrated that it is possible to 

differentiate M. bovis infected animals even after PTB vaccination by including the 

specific antigens into the skin test, or by adopting new interpretation criteria for the 

conventional ones. These findings lend support to the PTB vaccination strategies 

showing that vaccination in bTB affected environments should not be a problem. 
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CONCLUSIONS 

Our results prove that the ESAT-6/CFP10 and Rv3615c proteinic and peptidic 

cocktails can be used as skin test reagents in the face of PTB vaccination and M. bovis 

infection without compromising either Se or Sp. In respect to IFN-gamma results, use 

of these defined antigens improved the Se and Sp compared to the conventional 

antigens A-PPD and B-PPD. In conclusion PTB vaccination produces interference in 

cattle experimentally infected with M. bovis, but this could be overcome if new testing 

strategies such as new specific antigens were applied alternative to or complementing 

the official bTB diagnostic tests or if new diagnostic criteria with traditional antigens 

were established. Although the results presented are promising, this study has been 

performed in experimental bTB infection conditions and they should be further 

validated in field conditions. 
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Abstract 

Although paratuberculosis (PTB) vaccination has been recognized as an effective 

tool to control the disease, its use has been limited in countries undergoing bovine 

tuberculosis (bTB) eradication programs because of its interference with the diagnostic 

techniques. Due to this restraint, little is known about the effect of vaccinating against 

PTB on the progression of bTB infection. To assess this topic, an experimental 

infection was carried out including the following three groups of five calves each: non-

vaccinated infected with Mycobacterium bovis (NVI), vaccinated against PTB infected 

with M. bovis (VI), and vaccinated against PTB non-infected (VNI). The level of 

infection attending to pathological and bacteriological parameters was evaluated at 

necropsy in collected tissue samples. Infection was confirmed in all challenged animals 

being the lung and thoracic regions most affected for all studied parameters. The VI 

group presented 15.62% less gross lesions in the thoracic region than the NVI, 

although no significant differences were found. Only one vaccinated animal presented 

gross lesions in the lung, compared to three non-vaccinated calves. NVI animals 

showed an average of 1.8 lung lobes with gross lesions whereas in the vaccinated 

mailto:jgarrido@neiker.eus
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group the average number of affected lobes was 0.2, representing an 89% reduction. 

Significant differences were not found, although a tendency was observed (p = 0.126). 

Pathological and culture scores showed the same tendency. Vaccination induced a 

71.42 and 60% reduction in lesion and culture scores in the lung as well as a 23.75 and 

26.66% decline, respectively, in the thoracic region. The VI group showed lower 

positivity in the rest of the areas for all measured criteria except for the head. In order 

to reinforce our results, further research on a larger sample size is needed, but the 

results from this study suggest that PTB vaccination could confer certain degree of 

protection against bTB infection, supporting the view that PTB vaccination could 

increase resistance to the main mycobacterioses that affect animals. 

Keywords: paratuberculosis, bovine tuberculosis, vaccine, interference, crossed-protection. 

INTRODUCTION 

Bovine tuberculosis (bTB) and paratuberculosis (PTB) are mycobacterial 

diseases that have a huge economic impact on cattle, especially on dairy herds 

(Hasonova and Pavlik, 2006; Waters et al., 2012). Both present a widespread 

distribution, affecting domestic hosts (Aagaard et al., 2010; Muñoz-Mendoza et al., 

2016) and wildlife species (Aranaz et al., 2004; Carta et al., 2013), promoting the 

successful dissemination of their etiological agents. 

Paratuberculosis or Johne’s disease is caused by Mycobacterium avium subsp. 

paratuberculosis (MAP). Progression of the disease causes a chronic gastrointestinal 

granulomatous inflammation. Different factors, such as the long incubation period of 

the disease, fecal oral route transmission, intermittent excretion periods added to high 

resistance of mycobacteria in the environment, and limited performance of diagnostic 

methods, make control of the infection difficult to achieve. PTB vaccination has been 

proven to restrain the disease in cattle (Juste et al., 2009), sheep (Reddacliff et al., 

2006), and goats (Singh et al., 2007). Excretion of bacterial burden is considerably 

reduced, containing the spread of the infection and therefore diminishing the number of 
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clinical cases (Alonso-Hearn et al., 2012; Bastida and Juste, 2011). Nevertheless, the 

interference induced by PTB vaccination with the current interpretation criteria (Serrano 

et al., 2017) of the bTB official diagnostic tests (Garrido et al., 2013) results in the 

restricted use of PTB vaccination. MAP-based vaccination in cattle is not allowed by 

the Animal Health Authorities of most countries. Despite the diagnostic interference, a 

certain degree of containment of the lesion dissemination from the target organs after a 

bTB infection has been previously reported in PTB-vaccinated goats (Pérez de Val et 

al., 2012). This suggests that if interference issues are avoided, PTB vaccination can 

be used for PTB control and might also be beneficial against bTB conferring some 

degree of protection. 

The degree of interference of PTB vaccination with official bTB diagnostic tests 

has been evaluated previously in cattle (Garrido et al., 2013; Köhler et al., 2001) and 

goats (Bezos et al., 2012; Chartier et al., 2012). Cross reactivity in the skin test has 

proven to be limited if the comparative intradermal test is used in bTB-free bovine 

herds (Garrido et al., 2013). These findings have been based on an exhaustive 

analysis of results from a vaccine clinical trial under field conditions. To evaluate the 

effect of PTB vaccination on bTB infection and the interference with bTB diagnosis, an 

experimental infection with Mycobacterium bovis (M. bovis) in bovines previously 

vaccinated against PTB was performed. Results on interference using alternative 

diagnostic criteria and specific antigens have been reported in a separate paper 

(Serrano et al., 2017) while pathological and bacteriological changes associated with 

vaccination in a bTB experimental infection are the goal of this report. 

MATERIALS AND METHODS 

Ethics Statement 

Animals used in this study had their origin in commercial farms. With the purpose 

of obtaining data for this trial, calves were submitted to clinical practices standardized 

and regulated by the European, Spanish and Regional Law and Ethics Committee. The 
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experimental design underwent ethical review and approval by NEIKER’s Animal Care 

and Use Committee and by the Agriculture Department (PARAPATO-1264-BFA). 

Animal Selection 

Thirty Friesian calves from 13 different farms in northern Spain were selected in a 

feedlot. For final selection of animals, absence of previous contact with mycobacteria 

was considered. IFN-γ release assay (IGRA) with standard tuberculins (A-PPD, B 

PPD) as well as with more specific antigens (ESAT-6/CFP10 and Rv3615c) (Juste and 

Perez, 2011) already tested for the diagnosis of bTB was the assay used for this 

purpose. The first blood sampling was carried out at week 0, at the age of 2 months. 

After the blood samples were collected, 20 randomly selected animals were vaccinated 

subcutaneously in the dewlap with 1 ml of a heat-inactivated vaccine (Silirum® CZV, 

Pontevedra, Spain) and 10 remained unvaccinated. In order to reassure the absence of 

previous contact with M. bovis or other mycobacteria, blood samplings at the feedlot 

were repeated twice, at weeks 4 and 12. Finally 10 vaccinated and five non-vaccinated 

animals with negative results for IGRA and without evident pathologies were selected 

and transported to the biosafety level 3 (BSL-3) facilities in NEIKER where three 

groups of five animals each were formed.  

M. bovis Challenge  

A 2-week adaptation period was established for the calves after their arrival at the 

BSL-3 facilities. At week 18 post-vaccination, five vaccinated and five non-vaccinated 

animals were challenged by the endotracheal route with 106 colony-forming units 

(CFUs) of a M. bovis field isolate suspended in 2 ml of phosphate-buffered saline after 

intramuscular sedation with Xylazine (10 mg/50 kg). The M. bovis challenging isolate 

was spoligotype SB0339 according to the M. bovis Spoligotype Database website 

(http://www.mbovis.org). The final experimental groups were as follows: PTB 

vaccinated and M. bovis infected (VI), PTB vaccinated and M. bovis non-infected (VNI), 
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and PTB non-vaccinated and M. bovis infected (NVI). 

Post mortem Studies 

The animals were slaughtered at week 14 post-infection in three consecutive 

days, five calves per day. Upon sedation with XILAGESIC® 2% (10 mg/50 kg lw) 

(Laboratorios Calier, S.A., Barcelona, Spain), animals were euthanized by an 

intravenous injection of T61 (4–6 ml/50 kg) (Intervet International GMBH, 

Unterschleissheim, Germany). Complete necropsy was performed although special 

focus was set on the respiratory system. All tissue specimens were individually 

collected and processed for pathological and microbiological analysis. Collected 

tissues per region included were: head [tonsils, nasal turbinate, and parotid and 

retropharyngeal and mandibular lymph nodes (LNs)], thorax (tracheal, 

tracheobronchial, mediastinal, pulmonary, and prescapular LNs), lung (right and left 

cranial and caudal lobes and medium and accessory lobes), abdomen (liver, spleen, 

and hepatic LNs), and others (prefemoral LNs). 

Gross Pathology 

All tissues were visually inspected for lesions compatible with TB infection. 

Scoring of lesions according to Palmer et al. (Palmer et al., 2007) was performed 

independently by two researchers, and the mean value of both scores was used. 

Briefly, the scoring system for lung was as follows: 0: no visible gross lesion, 1: no 

visible external gross lesion but internal detected after splicing, 2: less than five lesions 

smaller than 10 mm, 3: over five lesions smaller than 10 mm, 4: more than one lesion 

bigger than 10 mm, and 5: gross confluent lesions. In the case of LNs, scoring was as 

follows: 0: no visible gross lesions, 1: focal lesions of 1–2 mm, 2: a lot of small foci, and 

3: extended lesions. Once scores were assigned to each lesion, total and regional 

scores per animal were calculated by adding them. 
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Bacterial Culture 

Bacterial tissue culture was performed as described previously (Garrido et al., 

2011). Briefly, 2 g of tissue samples were homogenized in 10 ml of sterile distilled 

water. Five millilitres of the suspension was decontaminated and processed for liquid 

culture in BBL MGIT tubes supplemented with BBL MGIT PANTA and BACTEC MGIT 

growth supplement (Becton Dickinson, Franklin Lakes, NJ, USA) following 

manufacturer’s instructions. BBL MGIT tubes were incubated for 42 days in a BACTEC 

MGIT 960 System. The remaining 5 ml were decontaminated in hexadecyl-pyridinium 

chloride 0.75% (w/v) for 12–18 h for solid culture. After a 5 min centrifugation step at 

2,500 × g, pellets were cultured in Coletsos tubes (bioMérieux SAF-69280 Marcy 

l’Etoile France) at 37°C during 4 months.  

Once the MGIT incubation period finished, DNA extraction was performed on 

culture from all positive tubes and some negative tubes. PCR was carried out 

subsequently to confirm that growth was due to M. bovis (Sevilla et al., 2015).  

After the incubation period for solid culture was completed, colonies were 

visualized under a stereoscope and scraped for DNA extraction and M. tuberculosis 

complex PCR confirmation (Sevilla et al., 2015). All isolates were confirmed as M. 

bovis SB0339 by spoligotyping (Kamerbeek et al., 1997). A culture score was defined 

in order to categorize the infection level of each tissue. In this case, scores were as 

follows: 0: no growth, 1: less than 10 colonies, 2: between 10 and 50 colonies, and 3: 

over 50 colonies (Garrido et al., 2011).  

A tissue was considered positive for culture when it gave a positive result by solid 

culture, liquid culture, or both. 
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Statistical Analysis 

Reduction by vaccination was calculated by the formula (1 − VI/NVI) × 100 for 

each of the following parameters: solid culture score, number of positive tissues by 

culture, gross lesion score, and number of affected areas by gross pathology.  

For the analysis, the number of tissues with positive cultures, with bTB 

compatible gross lesion and the solid culture and lesion scores, was calculated per 

area and animal. Differences in the degree of pathology and bacterial burden (lesion 

scores and culture scores) were compared using the Mann–Whitney U-test. 

Differences in the number of affected tissues by gross pathology and culture were 

assessed using Student’s paired two-sample t-test, whereas Fisher’s exact test was 

used for proportions of animals with lesions. Spearman’s correlation test was applied to 

assess the association between culture and gross pathology results. In all cases, 

significance of the differences among groups for all variables was accepted at p < 0.05. 

RESULTS 

Clinical Signs 

All animals included in the study went through the whole experiment,and no 

adverse reactions were reported after vaccination or challenge. No clinical signs of bTB 

such as wasting and coughing were observed in any of the animals after challenge. 

Infection of all challenged animals was confirmed by bacteriological and pathological 

analysis. The VNI group did not present gross lesions compatible with bTB or culture 

positive tissues.  

Post mortem Analysis  

Detailed pathology results from the infected groups of the study are shown in 

Table 1. The thoracic region and lung were the areas presenting a higher number of 

affected tissues and the NVI presented slightly higher scores as expected. Culture 
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results from the infected groups of the study are shown in Table 2. In this case, again 

thorax and lung were the most affected areas, although the VI group only presented 

one animal with one positive tissue. The analysis has been focused separately on 

head, thorax, and lung as well as on the total where all areas of the animal have been 

considered. The analysis of number of tissues presenting pathology and culture 

positive results is shown in Table 3.  

Table 1. Tissues with tuberculosis compatible lesions in the infected groups of the study. 

VI, vaccinated infected; NVI, non-vaccinated infected; LN, lymph node. One LN affected (right 

or left): dotted; two LNs affected (both right and left or two of three, cranial, caudal, or medial): 

light gray; three LNs affected (cranial, caudal, and medial): dark gray. Lesion score is the sum 

of the scores of all tissues. 

Table 2. Tissues with positive culture results in the infected groups of the study. 

VI, vaccinated infected; NVI, non-vaccinated infected; LN, lymph node. MGIT culture positive: 

dotted; solid culture positive: light gray; both MGIT and solid culture positive: dark gray. Culture 

score is the sum of the scores of all tissues. 
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In the thoracic region, the NVI group presented a mean of 6.4 LNs with gross 

lesions with a minimum of two and a maximum of 10 affected LNs in each animal 

compared to the VI group with an average of 5.4 LNs affected with a minimum of two 

and a maximum of nine affected LNs. Significant differences among groups were not 

observed (p = 0.643). However, the reduction due to vaccination was of 15.62%. 

Of the six lung lobes evaluated, the NVI group presented an average of 1.8 lobes 

with gross lesions with a minimum of zero and a maximum of five affected lobes per 

animal, much higher than the mean of 0.2 affected lobes found in the VI group, which 

had a minimum of zero and a maximum of one affected lobes. Although significant 

differences were not observed between the number of affected lobes, the tendency 

should be considered (t-test, p = 0.126). This represents an 89% reduction due to 

vaccination. Only one animal (1/5, 20%) from the VI group presented lesions in the 

lung compared to three animals (3/5, 60%) from the NVI group (Fisher’s test; p = 

0.189).  

Table 3. Gross pathology and bacteriology analysis considering number of affected 

tissues per area. 

             Pathology  Bacteriology 

 Mean (SEM) t-test  Mean (SEM) t-test 

 NVI VI p % R  NVI VI p % R 

Head 0.4 (0.40) 0.6 (0.4) 0.733 0.00  1.0 (0.55) 1.4 (0.4) 0.572 0.00 

Thorax 6.4 (1.43) 5.4 (1.50) 0.643 15.62  3.4 (0.60) 3.4 (0.40) 1.000 0.00 

Lung 1.8 (0.92) 0.2 (0.20) 0.126 89.00  1.0 (0.55) 0.2 (0.20) 0.207 80.00 

Total 9.2 (1.74) 6.8 (2.35) 0.436 26.10  6.6 (1.40) 5.4 (0.93) 0.495 18.18 

NVI, non-vaccinated infected; VI, vaccinated infected; R, reduction due to vaccination. 

Table 4. Gross pathology and bacteriology analysis considering lesion and culture score 

per area. 

             Pathology  Bacteriology 

 Mean (SEM) U-test  Mean (SEM) U-test 

 NVI VI p % R  NVI VI p % R 

Head 0.4 (0.40) 0.6 (0.40) 0.606 0.00  0.2 (0.20) 0.2 (0.20) 1.000 0.00 

Thorax 16.0 (4.13) 12.2 (3.60) 0.401 23.75  6.0 (1.58) 4.4 (1.07) 0.344 26.66 

Lung 2.8 (1.85) 0.8 (0.80) 0.288 71.42  1.0 (0.77) 0.4 (0.40) 0.521 60.00 

Total 20.0 (4.10) 14.4 (4.90) 0.530 28.00  7.4 (1.83) 5.0 (1.37) 0.248 32.43 

NVI, non-vaccinated infected; VI, vaccinated infected; R, reduction due to vaccination. 
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The number of affected tissues was always lower in the VI group than in the NVI 

groups except for the area that compromised the head. In this case, two animals 

presented gross lesions, one in one tissue and another in two in the VI group, whereas 

the NVI group presented one animal with gross lesions in two tissues. Tissue culture 

positivity was also slightly higher in the head in the VI group where an average of 1.4 ± 

0.4 tissues with detectable bacteria was observed compared to the mean of 1±0.55 

tissues in the NVI group. In the VI group, four animals presented positive tissue culture 

(4/5, 80%) compared to three in the NVI group (3/5, 60%).  

Pathology and culture scores were always lower in the VI group than in the NVI 

group (Table 4 and Figure 1) except for the head where lesion scores were slightly 

higher in the VI group (0.6 ± 0.4 vs .0.4 ± 0.4). In any case, significant differences were 

not observed among analyzed areas. However, reductions in lung of 71.42 and 60% in 

lesion and culture scores, respectively, and of 23.75 and 26.66% in the vaccinated 

group for the same parameters in thorax should be noted. Correlation between both 

diagnostic methods considering number of affected tissues was best fit in lung (r = 

0.988, p < 0.0001), followed by head (r = 0.746, p = 0.013), total (r = 0.667, p = 0.035), 

and thorax (r = 0.655, p = 0.04). 
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Figure 1.  Bovine tuberculosis lesion and culture scores for total (A,D), thorax (B,E), and 

lung (C,F). The solid lines present median values 

DISCUSSION 

Although the efficacy of PTB vaccination has been repeatedly demonstrated 

(Alonso-Hearn et al., 2012; Bannantine et al., 2014; Juste et al., 2009; Juste and 

Perez, 2011), its use has been restricted due to the cross-reactivity with current bTB 

diagnostic methods. Interference issues have probably led to the lack of knowledge on 

the effect of PTB vaccination in the development of bTB infection. This is the first study 

examining this topic in bovines under experimental conditions.  

In this particular experimental setting, all animals became infected regardless of 

their vaccination status showing positive culture results and macroscopic lesions 

compatible with bTB. In both groups, thorax and lung were the most affected areas. 

The majority of tissue sites affected by infection in terms of lesion development or 

bacterial colonization, as well as the highest lesion and culture scores appeared in 

these two areas. However, PTB vaccination seemed to induce a moderate protective 

response against M. bovis challenge, which led to a reduction of the pathological and 

bacteriological results in both areas of the VI group. The effect of vaccination was most 
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evident in the lung as seen by the fact that only one animal (1/5, 20%) of the VI group 

presented lesions and detectable bacteria in this area compared to the NVI group 

where three animals were affected (3/5, 60%). Same tendency was observed in the 

remaining studied areas except for the head, where the protective effect was not 

evident. Although differences among groups were not statistically significant and only 

tendencies have been observed, the degree of protection observed can be considered 

biologically relevant. To reinforce the appealing results obtained from this first trial, it 

would be necessary to carry out further studies with a larger sample size. 

These results suggest that a certain degree of heterologous protection against M. 

bovis infection takes place after PTB vaccination, and although the protection conferred 

is probably not enough to impede the establishment of the disease or prevent 

horizontal transmission within a herd, it may contain the infection to some extent. 

Results from this experiment indicate that this containment would clearly benefit the 

lung (60–89%) reduction in lesions and bacterial burden) since reduction due to 

vaccination in the thoracic region was less notorious and absent in the head area. This 

may be important considering that the main excretion route of M. bovis is through the 

respiratory system, and therefore, the reduction of the bacterial load in the lung may 

lead to a reduction of this figure in the environment.  

These findings partially agree with the results obtained by Pérez de Val et al. 

(Pérez de Val et al., 2012) in goats after PTB vaccination and subsequent challenge 

with M. bovis where, lesions in vaccinated goats appeared only in the lung and 

corresponding LNs whereas non vaccinated animals showed an increased 

dissemination frequency of the lesions. In that case (Pérez de Val et al., 2012), goats 

were challenged through the endobronchial route and, therefore, infection progressed 

mainly affecting the lower respiratory tract. In another study in goats in which the 

transthoracic route was used, lesions were mainly located in lung and mediastinic and 

mesenteric LNs (Bezos et al., 2010). In our study, thorax was the primary focus and 
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extrathoracic and extrapulmonary dissemination of bacteria to the upper respiratory 

tract or head area (retropharyngeal, mandibular, parotid LNs, and nasal turbinate) 

occurred in four animals of the VI group and three animals of the NVI group. This could 

be due to a pulmonary dissemination to the head by mycobacterial shedding in the 

tracheobronchial secretions and subsequent ingestion as hypothesized in previous 

reports (Pérez De Val et al., 2011). Bacteria and gross lesions were detected in spleen 

of one animal of the NVI group, whereas only gross lesions were observed in spleen 

and liver of one animal of the VI group indicating that systemic circulation of 

mycobacteria had occurred. 

Added to the route, the challenging dose can be crucial for the pathological 

outcome of the infection. In previous studies in goats (Bezos et al., 2010; Pérez de Val 

et al., 2012; Pérez De Val et al., 2011), animals were challenged with lower doses of 

Mycobacterium caprae (102–1.5 × 103 CFUs), but as stated before in those studies, the 

inoculum was directly deposited into the lung. The selected dose (106 CFU) and 

infection route (endotracheal) may be responsible for the wider spreading of the lesions 

in our study. This high dose was applied to guarantee infection for vaccine evaluation. 

In any case, considering the fact that in experimental conditions the bacterial load 

administered for challenge is most probably many logs higher than the amount of M. 

bovis that an animal will be in contact with in field conditions it could be expected that 

higher protection levels would be observed in these cases. 

Positive correlations were found between pathological and bacteriological 

techniques as expected. These were best fit in the lung, area that poses the most 

noticeable partial protective effect by the vaccine.  

The results presented here suggest that vaccination against PTB modifies the 

course of experimental bTB infection by decreasing the severity of the lesions and the 

bacterial burden. Although our results are not conclusive, they support the view that 



Second study 

118 

mycobacterial vaccines could potentially be useful tools for disease control in specific 

settings where vaccination does not interfere with eradication programs. 
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ABSTRACT 

Animal tuberculosis (TB) remains a major problem in some countries despite the 

existence of control programmes focused mainly on cattle. In this species, aerogenous 

transmission is accepted as the most frequent infection route, affecting mainly the 

respiratory system. Under the hypothesis that the oral route could be playing a more 

relevant role in transmission, diagnosis and disease persistence than previously 

thought, this study was performed to assess the course of TB infection in cattle and its 

effects on diagnosis depending on the route of entry of Mycobacterium bovis. Two 

groups of five calves each were either endotracheally (EC) or orally (OC) challenged. 

mailto:jgarrido@neiker.eus
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Necropsies were carried out 12 weeks after challenge except for three OC calves 

slaughtered 8 weeks later. All animals reacted to the tuberculin skin test and the entire 

EC group was positive to the interferon-gamma release assay (IGRA) 2 weeks after 

challenge and thereafter. The first positive IGRA results for OC calves (3/5) were 

recorded 4 weeks after challenge. Group comparison revealed significant differences in 

lesion and positive culture location and scoring. TB-compatible gross lesions and 

positive cultures were more frequently found in the thorax (p < 0.001) and lung (p < 

0.05) of EC animals, whereas OC animals presented lesions (p = 0.23) and positive 

cultures (p < 0.05) mainly located in the abdomen. These results indicate that the 

infection route seems to be a determining factor for both the distribution and the time 

needed for the development of visible lesions. Our study suggests that confirmation of 

TB infection in some skin reactor animals can be problematic if current post-mortem 

examination and diagnostics are not improved. 

INTRODUCTION 

Mycobacterium bovis (M. bovis) is the main etiological agent of animal 

tuberculosis (TB), a mycobacterial infectious disease with a worldwide distribution 

(Humblet et al., 2009) that affects cattle (Pollock and Neill, 2002), other domestic hosts 

(Pesciaroli et al., 2014), wildlife (Gortázar et al., 2015) and humans (Olea-Popelka et 

al., 2017). The huge economic losses caused by bovine TB added to the impact of its 

zoonotic nature led to implement control strategies for over a century in many countries 

(Caminiti et al., 2016; Good et al., 2018). Although eradication of TB has been 

accomplished in some countries, the presence of M. bovis in herds continues to pose 

serious problems for animal and human health in many others (De Kantor and Ritacco, 

2006; Essey and Koller, 1994; Good et al., 2018; Radunz, 2006; Rivière et al., 2014). 

This discrepancy has been observed despite the similarity of the eradication programs 

used in the different countries (Collins, 2006; Reviriego Gordejo and Vermeersch, 

2006). There are several reasons for the persistence of the disease in cattle, but it is 

usually attributed to the existence of wild reservoirs (Gortázar et al., 2015). Domestic 
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reservoirs include goats (Napp et al., 2013), sheep (Muñoz-Mendoza et al., 2015) and 

pigs (Di Marco et al., 2012), depending on the characteristics of the local host 

community. 

Different transmission pathways do exist for cattle. These include direct or 

indirect inhalation, oropharyngeal exposure and/or ingestion of M. bovis and, more 

unlikely because of the active eradication programs, transplacental or mammary 

transmission (Domingo et al., 2014). Lesion distribution and progression seem to be 

shaped by the route of introduction of the bacterium (Liebana et al., 2008; Neill et al., 

2005). There is a general acceptance that the aerogenous transmission is the most 

frequent one in cattle and lesions are usually found in the respiratory system and 

associated lymph nodes (LN) (Domingo et al., 2014; Liebana et al., 2008). This also 

seems to be the case for natural intra-species transmission in the badger, the principal 

wild animal reservoir in Ireland and UK (Gormley and Corner, 2018). Lesions can also 

reach these LN and other tissues or LN of the head region (Domingo et al., 2014; 

Fitzgerald et al., 2016; Liebana et al., 2008) after oral exposure to M. bovis. However, 

ingestion of bacilli is usually associated with affected LN and tissues of the digestive 

system with or without visible lesions (Domingo et al., 2014; Liebana et al., 2008). Oral 

exposure to M. bovis could represent a more relevant route of infection than previously 

thought. In the wildlife-livestock interface inter-species transmission is of an indirect 

nature, for instance through shared water or food (Barasona et al., 2017; Cowie et al., 

2016). In these cases, infection will most likely enter the host by the oral route. 

Widespread contamination of environmental samples in the Iberian Peninsula suggests 

that indirect transmission contributes to the maintenance of tuberculosis in multi-host–

pathogen systems (Santos et al., 2015b, 2015a). 

Cell mediated immunity (CMI)-based diagnostics used in eradication campaigns, 

namely, intradermal tests and interferon-gamma release assay (IGRA), have been 

deemed of poor specificity because the confirmatory tests (pathological examination 

and culture) fail to demonstrate the presence of lesions and the involvement of M. 
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bovis quite frequently (de la Rua-Domenech et al., 2006). However, disagreements 

between confirmatory tests and official CMI-based methods are to be expected 

because their best sensitivity and specificity values are achieved at different 

immunopathological stages of the infection (de la Rua-Domenech et al., 2006; 

O’Hagan et al., 2015). Specificities above 99% have been estimated recently for the 

comparative intradermal skin test using surveillance tests results from officially TB free 

herds in Great Britain (Goodchild et al., 2015). According to an observational case–

control study on confirmed reactors from Northern Ireland, a substantial percentage of 

non-confirmed reactors could result from imperfect sensitivities of the confirmatory 

tests (O’Hagan et al., 2015)]. The estimated specificity for the single intradermal test 

was also high in a study from Spain (Álvarez et al., 2012) but infection cannot be 

confirmed in many slaughtered cattle. This situation raises a lack of confidence of 

farmers and field veterinarians in official in vivo tests (Ciaravino et al., 2017). An 

epidemiological investigation in Spain pointed out that residual infection and 

interactions in the wildlife-domestic interface are probably the most relevant causes of 

bovine TB breakdowns (Guta et al., 2014). In order to shed some light on this problem 

by giving additional reliable explanations for the occurrence of part of the non-

confirmed reactor animals, we studied possible differences in the course of 

experimental TB infection in calves depending on the route of entry of M. bovis and its 

implications for diagnosis. 

MATERIALS AND METHODS 

Animal selection 

This project was aimed at studying the interference of paratuberculosis 

vaccination on TB diagnosis (Serrano et al., 2017a, 2017b), the effect of M. bovis 

inoculation route on the pathology and diagnostics of bovine TB (the present work) and 

the efficacy of an inactivated vaccine to protect them from oral and endotracheal 

challenge with M. bovis (unpublished work to be submitted). The data presented in this 

paper were obtained from two control groups belonging to two experimental infections 
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included in the same research project. For this project, thirty, two-month-old animals 

per experiment were preselected from the same feedlot that had originally purchased 

them from 13 different farms in northern Spain with no known history of TB. In order to 

confirm the absence of previous contact with M. bovis or other mycobacteria, an IGRA 

with avian and bovine purified protein derivative standard tuberculins (A-PPD, B-PPD) 

(CZ Veterinaria, Pontevedra, Spain) was performed in three different samplings at the 

feedlot. Finally, only 15 animals were recruited and transported to the biosafety level 3 

(BSL-3) facilities in NEIKER for each experiment, each with three groups of five calves. 

In the present work, ten calves were used, five calves from the endotracheal challenge 

control group (experiment 1) and five calves from the oral challenge control group 

(experiment 2). Housing conditions, calf keepers and experimental procedures were 

exactly the same in both experiments. 

All the experimental procedures involving animal housing and care were carried 

out in agreement with the European, National and Regional Law and Ethics Committee 

regulations. The experimental design underwent ethical review and was approved by 

NEIKER’s Animal Care and Use Committee (OEBA-NEIKER-2015-010) and by the 

competent local authority, the Department of Agriculture of Diputación Foral de Bizkaia 

(PARAPATO-1264-BFA). 

M. bovis challenge 

After their arrival to the BSL-3 facilities, calves went through a 2-week adaptation 

period. Afterwards, all calves were challenged with the same M. bovis field isolate 

suspended in 2 mL of phosphate-buffered saline (PBS) at the same dose of 

approximately 106 colony forming units (CFU). The isolate (SB0339 spoligotype profile) 

was originally obtained from a naturally infected wild boar. This strain has been used in 

previous experiments at NEIKER and its spoligotype is shared by domestic and wild M. 

bovis isolates. The chosen challenge route was different for each of the groups. For the 

orally challenged group (OC) the infective dose was administered with a syringe and 

the heads of the animals were maintained upwards until deglutition was observed and 
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no spilling was confirmed. In the group challenged by the endotracheal route (EC), 

firstly, the needle was introduced in the space between two consecutive tracheal rings 

located in the range of number 25 and 30 and air was aspirated to assure that the 

inoculum would be introduced inside the trachea and then the dose was injected. Only 

EC calves underwent previous intramuscular sedation with XILAGESIC® 2% (10 mg/50 

kg) (Laboratorios Calier, S.A., Barcelona, Spain). 

Interferon-gamma release assay (IGRA) 

At the BSL-3 facilities, five samplings were performed at 0, 2, 4, 8 and 12 weeks 

after challenge and an additional one for three EC animals 20 weeks after challenge. 

Blood was collected from the jugular or caudal vein in tubes with lithium heparin. 

Stimulation of whole blood with A and B-PPD as well as with PBS (nil control) was 

carried out within 8 h of collection. The IDScreen® Ruminant interferon-gamma kit 

(IDvet, Grabels, France) licensed by the Spanish Government (Ministerio de 

Agricultura y Pesca, Alimentación y Medio Ambiente) was used for the detection of 

interferon-gamma in the stimulated blood supernatants according to the manufacturer’s 

instructions. The standard cut-off of the kit was used to consider a sample positive (i.e., 

S/P% ≥ 35). 

Skin test 

The skin test was carried out in all animals 12 weeks after challenge and it was 

performed by inoculating 0.1 mL (2500 IU) of A- and B-PPD in the neck. The skin-fold 

thickness was measured before and 72 h after inoculation. The results of skin 

thickness increase were interpreted according to the standards of official criteria (EU 

Council Directive 64/432/CEE and Spanish RD 2611/1996) for both Single Intradermal 

Test (SIT) and Comparative Intradermal Test (CIT). A calf was considered SIT positive, 

inconclusive or negative when the increase was 4 mm or greater, between 2 and 4 mm 

or less than 2 mm, respectively. For CIT, animals were deemed positive, inconclusive 

or negative when the bovine injection site exceeded the avian site by greater than 4, 1-

4 and 1 mm or less, respectively. 
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Necropsies 

All animals were systematically and thoroughly necropsied. Necropsies from the 

entire EC group were carried out 12 weeks after challenge. However, animals from the 

OC group were slaughtered at two different time points. Initially, necropsies began 12 

weeks after challenge and gross lesions were absent in the first two animals. 

Considering that lesions could be at the initial stages of disease and not visible at this 

time point, the duration of the experiment with the three remaining calves was 

extended for 8 additional weeks. At the end of the study, animals were sedated by an 

intramuscular injection of XILAGESIC® 2% (2.5 mg/50 kg) and intravenously injected 

with T61 (4–6 mL/50 kg) (Intervet International GMBH, Unterschleissheim, Germany). 

Organs were thoroughly inspected for TB-compatible lesions and collected samples 

were distributed within five body areas as follows: head (nasal turbinate, palatine 

tonsils and mandibular, parotid and retropharyngeal lymph nodes (LN), thorax 

(tracheal, prescapular, tracheobronchial and mediastinal LN), lung (right and left cranial 

and caudal lobes and medium and accessory lobes), abdomen (hepatic, jejunal and 

ileocecal LN as well as liver and spleen) and others (prefemoral and popliteal LN). 

Gross pathology 

Organs and tissues were visually inspected for the presence of lesions and all of 

them were thoroughly palpated and sliced in search of deeper lesions. The TB 

compatible lesions found were classified according to Palmer et al. (Palmer et al., 

2007). Briefly, two scoring systems were established to measure the severity of the 

lesions in lung and in LN. The scoring scale for lungs was as follows: 0, no visible 

lesions; 1, no external gross lesions, but lesions seen upon slicing; 2, less than 5 

lesions of < 10 mm in diameter; 3, more than 5 lesions of < 10 mm in diameter; 4, more 

than 1 distinct gross lesion of > 10 mm in diameter; 5, coalescing gross lesions. Lesion 

classification of the LN was ranked as follows: 0, no visible lesions; 1, small focal lesion 

(1–2 mm in diameter); 2, several small foci; 3, extensive lesions. 
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Culture 

Samples were processed to confirm the presence of mycobacteria in solid 

(Coletsos-Difco, Francisco Soria Melguizo SA, Madrid, Spain) and liquid culture (BBL 

Mycobacteria growth indicator tubes (MGIT), Becton–Dickinson, Franklin Lakes, NJ, 

USA) according to the protocol described previously by Garrido et al. (Garrido et al., 

2011). Briefly, 2 g of tissue was homogenized in 10 mL of sterile distilled water. Five 

milliliter were decontaminated in hexadecyl-pyridinium chloride 0.75% (w/v) for 12–18 h 

for solid culture. Samples were centrifuged at 2500 × g for 5 min; pellets were cultured 

in Coletsos tubes at 37 °C for 4 months. The remaining 5 mL were decontaminated and 

processed for liquid culture in BBL MGIT tubes supplemented with BBL MGIT PANTA 

and BACTEC MGIT growth supplement according to the manufacturer’s instructions. 

BBL MGIT tubes were incubated for 42 days in a BACTEC MGIT 960 System. 

Colonies were visualized under a stereomicroscope. According to the number of 

colonies in each tube, a culture score was defined in order to categorize the infection 

level of each tissue. Score categories were as follows: 0, no growth; 1, less than 10 

colonies; 2, between 10 and 50 colonies; 3, over 50 colonies (Garrido et al., 2011).  

DNA was extracted from all positive cultures and a M. tuberculosis complex-specific 

PCR (Sevilla et al., 2015) was performed to confirm that M. bovis was responsible for 

the growth. All isolates were confirmed as M. bovis SB0339 by spoligotyping 

(Kamerbeek et al., 1997). 

Statistics 

The number of affected tissues and culture positive samples, as well as scores 

for gross lesions and cultures were calculated per area and per animal. Differences in 

the distribution of lesions and positive culture results between groups were assessed 

using Chi square test. Mann-Whitney U-test was used to study the differences between 

lesion and culture scores of the different areas of both groups. Correlation between 

skin test results and lesion scores as well as between skin test results and number of 
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tissues with lesions was performed by Spearman. Statistical significance was 

considered at p values < 0.05. Statistical analysis was completed using R Commander. 

RESULTS 

No mortality was recorded during the experiments. All animals completed the 

trials without showing TB-compatible clinical signs.  

Ante mortem diagnosis: SIT, CIT and IGRA tests  

Reactivity to both ante mortem diagnostic techniques was confirmed in both 

groups (see Table 1). Two weeks after challenge, all EC animals were categorized as 

reactors to the IGRA test. This positive reactor state remained throughout the 

experiment for all animals except for one calf that tested negative 12 weeks after 

challenge. In the case of the OC group, reactivity was first detected 4 weeks after 

challenge in three of these animals and all five became positive 8 weeks after 

challenge. However, in the following sampling (12 weeks after challenge) two of them 

were IGRA negative again.  

Table 1. Results for IGRA and skin tuberculin tests performed 

Group Calf IGRA test   Skin test 

 ID Weeks after challenge (mm) skin thickness  Interpretation 

0 2 4 8 12 20 PPD-A PPD-B PPD-B – PPD-A SIT CIT 

EC 

1 

2 

3 

4 

5 

N 

N 

N 

N 

N 

P 

P 

P 

P 

P 

P 

P 

P 

P 

P 

P 

P 

P 

P 

P 

P 

P 

N
a
 

P 

P 

- 

- 

- 

- 

- 

 

1 

1 

1 

0 

2 

5 

12 

8 

9 

9 

4 

11 

7 

9 

7 

 

P 

P 

P 

P 

P 

I 

P 

P 

P 

P 

OC 

6 

7 

8 

9 

10 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

P 

P 

P 

P 

P 

P 

P 

P 

P 

N
b
 

N
C
 

P 

P 

- 

- 

P 

P 

P 

 

3 

9 

3 

2 

5 

16 

22 

10 

8 

17 

13 

13 

7 

6 

12 

 

P 

P 

P 

P 

P 

P 

P 

P 

P 

P 

 

SIT: Single Intradermal Test, CIT: Comparative Intradermal Test, EC: endotracheally 

challenged, OC: orally challenged, Δ: increase, A-PPD: avian PPD, B-PPD: bovine PPD, P: 

positive, I: inconclusive, N: negative. 
a
 IDscreen S/P% = 28.06. 

b 
IDscreen S/P% = 20.17. 

c 
IDscreen S/P% = 22.26. 

—: these animals were necropsied 12 weeks after challenge. The remaining three were tested 

for IGRA once more before being necropsied 20 weeks after challenge. 
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On the contrary, all calves from both groups came out as clearly reactors to the 

SIT and CIT except for one EC calf with an inconclusive CIT result. This animal was 

exactly at the uppermost skin thickness increase limit (4 mm) to be considered 

inconclusive but was clearly positive to all IGRA tests from week 2 after challenge on.  

Skin test (PPD-B–PPD-A) was negatively although not significantly correlated 

with lesion scores (rho = −0.446, p = 0.197) and the number of tissues with lesions (rho 

= −0.588, p = 0.074). 

Post mortem analysis 

All animals from the EC group presented gross lesions compatible with TB (Table 

2). Almost all of the affected tissues found in the EC group (22/28, 79%) were located 

in the thoracic LN and in the lungs: all five EC animals (5/5, 100%) presented lesions in 

the thoracic area and three of them (3/5, 60%) also in the lung lobes. Macroscopic 

lesions in head and abdominal tissues were only found in one of the EC calves (1/5, 

20%). Only one affected prefemoral LN was observed and it belonged to an EC animal. 

In the OC group no gross lesions were observed in the two calves slaughtered 12 

weeks after challenge. The three remaining OC animals (3/5, 60%) (Table 2) 

necropsied 20 weeks after challenge presented macroscopic lesions that appeared in 

two of the five defined areas. In the thoracic region only one affected tissue was 

detected in one animal. The abdomen was the most affected area (Table 2). More 

precisely, one of these OC calves showed macroscopic lesions in the proximal, 

medium or distal jejunal LN while another animal had visible lesions only at the 

proximal and medium jejunal LN.  
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Table 2. Distribution and score of confirmed tuberculous lesions in the tissues of the 

studied groups. 

 

One LN affected (right or left): dotted; two LN affected (both right and left or two of three, 

cranial, caudal, or medial): light gray; three LN affected (cranial, caudal, and medial): dark gray. 

Total Lesion score is the sum of the scores of all tissues per animal. 

R: right, L: left, EC: endotracheally challenged, OC: oral challenged, AC: after challenge, LN: 

lymph node. 

Group comparison shows that EC calves presented more macroscopic lesions 

than OC animals (p < 0.001). These differences were also significant for the thoracic 

and lung areas (p < 0.001 and p < 0.05, respectively). However, OC animals presented 

more tissues with macroscopic lesions at the abdomen although differences were not 

significant and only a tendency was observed (p = 0.23).  

Lesion scores (shown in Table 2) were always lower for the OC group compared 

to the EC group in all areas, except for the abdomen (Table 2 and Figure 1), being five 

times higher in this area for the OC group (16 vs. 3 respectively) (p = 0.35). EC animals 

had significantly higher pathology scores in the thoracic and lung areas (p < 0.001 and 

p < 0.05, respectively).  
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Figure 1. Tuberculous lesion scores in Mycobacterium bovis challenged calves. Dot plot 

representing lesion score distribution in head, thorax, lung, abdomen and total (sum of all areas) 

for each animal. Horizontal lines show the median values. Significant differences were found in 

the thorax (p < 0.001) and lung (p < 0.05). EC: endotracheally challenged, OC: orally 

challenged. 

Tissue culture results are shown in Table 3. Culture and/or histopathology 

confirmed the involvement of M. bovis in all tissues presenting gross lesions and 

additional positive tissues were detected in those showing no macroscopic lesion. In 

the EC group, more animals (3/5, 60%) yielded positive cultures in the head area than 

those displaying macroscopic lesions (1/5, 20%). Similarly, in the OC group not only 

the three animals (3/5, 60%) presenting gross lesions at different sites were confirmed 

by culture but also the two calves with no macroscopic lesion (5/5; 100%) yielded M. 

bovis isolates from abdominal tissues. EC animals had significantly more positive 

cultures than OC calves in the thoracic and pulmonary regions (p < 0.001 and p < 0.05, 

respectively). Significant differences were also found in relation to the abdominal area 

where OC animals showed more tissues with positive culture (p < 0.05).  
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Table 3. Distribution of M. bovis positive cultures and culture scores in the tissues of 

each group. 

 

MGIT culture positive: dotted; solid culture positive: light gray; both MGIT and solid culture 

positive: dark gray. Culture score is the sum of the scores of all tissues per animal. 

R: right, L: left, EC: endotracheally challenged, OC: oral challenged, AC: after challenge, LN: 

lymph node. 

Detailed culture scores are shown in Table 3 and Figure 2. Culture scores were 

always lower in the OC group (thorax p < 0.05), except for the abdominal area (Figure 

2), where the OC group presented total culture scores ten times higher (10 vs. 1) 

although significant differences were not observed (p = 0.68). 

 

Figure 2. Culture scores in Mycobacterium bovis challenged calves. Dot plot representing 

culture score distribution in head, thorax, lung, abdomen and total (sum of all areas) for each 

animal. Horizontal lines show the median values. Significant differences were found in the 

thorax (p < 0.05). 

 EC: endotracheally challenged, OC: orally challenged. 
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DISCUSSION 

In this experiment, infection was confirmed in all ten animals by culture and 

histopathology regardless of the challenge route. Despite the small size of study 

groups, anatomic distribution of gross lesions, culture results as well as pathology and 

culture scores showed significant differences between both groups. In the EC group, 

macroscopic lesions and isolation of the etiological agent were observed in all defined 

areas. However, most of the tissues presenting gross lesions and positive culture, as 

well as the highest lesion and culture scores, appeared in the thorax and lungs. In 

contrast, the OC group presented a different picture showing the abdomen as the most 

affected area, with 4 positive animals out of 5. Furthermore, infection was confirmed by 

culture in four abdominal LN belonging to the two calves with no visible TB-compatible 

lesions that were slaughtered at the same time point as the EC group (12 weeks after 

challenge).  

As could be expected (Gormley and Corner, 2018; Pollock et al., 2006), these 

experimental results suggest that depending on the route of infection the distribution of 

lesions can vary; that is, after an endotracheal challenge, lesions are more likely to be 

found in the respiratory tract and associated tissues whereas the digestive tract is the 

most affected area after an oral challenge. Although the number of animals used was 

small, these findings are consistent with the results obtained in previous studies where 

it was stated that after inhalation of M. bovis most lesions appear in the nasopharynx 

and lower respiratory tract, including the lungs and associated LN and that M. bovis 

ingestion usually causes lesions in the mesenteric lymph nodes (Collins and Grange, 

1983; Domingo et al., 2014; Pollock et al., 2006). Moreover, the results obtained by 

Fitzgerald et al. (Fitzgerald et al., 2016) in tuberculous cows housed together and in 

calves and cats fed with waste-TB-milk showed the same tendency in the number and 

distribution of lesions as well as in the areas where positive cultures were detected. 

Lesions were detected in the thorax in cows infected by airborne transmission and 

abdominal area for the calves and cats fed with waste milk.  
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Although the thoracic and lung areas were the primary site of confirmed infection 

for the EC group, isolation of bacteria from the head, abdominal area or prefemoral LN 

occurred in three out of five of the animals. This extrapulmonary and extrathoracic 

dissemination of the etiological agent could be due to oropharyngeal exposure and/or 

swallowing of tracheobronchial secretions carrying bacteria as mentioned in previous 

studies (Pérez De Val et al., 2011). By contrast, the primary affected site in the OC 

group was the abdomen instead of the thoracic or lung areas. One animal showed no 

positive culture for the jejunal LN. The same animal was the only one with a positive 

culture in the thoracic and head areas. The mandibular and mediastinal LN of this 

animal could have become infected through oropharyngeal exposure and/or inhalation 

during challenge or with bacteria shed by the other infected OC calves.  

According to the outcomes of this experimental study, the time needed for the 

development of macroscopic lesions seems to differ depending on the infection route. 

All animals from both groups were clearly reactors to the skin test 12 weeks after 

challenge, and all five EC calves showed gross lesions during the necropsies. 

However, lesions were not visible in all OC animals despite positive skin tests and 

cultures. No macroscopic lesions were found in the two OC calves slaughtered at the 

same time point as the five EC animals. The three OC calves slaughtered 20 weeks 

after challenge showed visible lesions. A recent cross-sectional study suggested that 

tuberculin reaction size (PPD-B–PPD-A size) was significantly positively associated 

with maximum TB lesion number and size (Byrne et al., 2018). In contrast to this report 

studying natural TB cases, we could not see such an association in our experimental 

setting. In fact, we have seen a negative, although not significant correlation and the 

greatest tuberculin reaction sizes recorded belonged to the two OC calves only 

confirmed by M. bovis isolation from abdominal lymph nodes (Tables 1, 2 and 3). As 

stated in other studies, the cellular immune response gets activated during the very 

early stages of the infection (Ritacco et al., 1991; Welsh et al., 2005) and our data 

suggest that 12 weeks after an oral challenge, the etiological agent may have been 
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able to spread into different abdominal LN as seen by culture results but the time 

required for visible lesion development seems to take longer. 

In line with this, IGRA was able to identify all infected animals in the EC group as 

early as 2 weeks after challenge. In contrast, the OC group displayed positive animals 

(3/5) for the first time, 4 weeks after challenge, suggesting that mounting a CMI 

response capable of producing detectable interferon-gamma levels could need more 

time in animals infected through the oral route. One EC and two OC animals turned to 

a negative IGRA status after being positive, but they were clear reactors to the skin 

test. This phenomenon may simply be related to the performance of the diagnostic kit 

used or to the dynamics of the immune response to infection of these calves. Despite 

this, a recent study reported significantly lower sensitivities for IDScreen® compared to 

the Bovigam® Kit (Casal et al., 2017). These authors introduced an additional cut-off 

point (S/P% ≥ 16) following information provided by the manufacturer (Casal et al., 

2017). The three samples that turned negative would be deemed positive if this 

alternative cut-off point was used in our study. Further studies are needed to assess 

the performance of the different IGRA tests.  

We believe that there is not a fully established habit of inspecting tissues from the 

digestive system as thoroughly as other anatomic sites in abattoirs. Submitting 

samples from these tissues to the laboratory has not been made common practice 

unless macroscopic lesions were observed. Taking this into account, in this study we 

aimed to explore the possibility of attributing a more relevant role to oral transmission in 

the epidemiology and diagnosis of bovine TB in light of recent research dealing with 

this widespread wildlife-livestock-multi-host infectious disease (Barasona et al., 2017; 

Cowie et al., 2016; Fitzgerald et al., 2016; Good et al., 2018; Gortázar et al., 2015; 

Guta et al., 2014; Santos et al., 2015b, 2015a) and the relatively low confirmation rate 

of skin test reactor cattle (Byrne et al., 2018; Ciaravino et al., 2017; de la Rua-

Domenech et al., 2006; Goodchild et al., 2015; Gormley and Corner, 2018; O’Hagan et 

al., 2015). Our results demonstrate that the so-called nonconfirmed reactors can be 
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composed of animals in early stages of the infection, animals able to contain the 

spread of bacteria or animals with difficult to detect lesions or lesions in tissues seldom 

affected and inspected, among others. Reasons for unspecific CMI-based test results 

have been carefully described in previous reports (de la Rua-Domenech et al., 2006).  

These results may contribute to explain the scenario often found in 

slaughterhouses where animals that are reactors to the ante mortem techniques show 

no TB-compatible gross lesions during inspection. The sensitivity of visual inspection 

for lesion detection can be severely compromised because of the difficulty of 

distinguishing small lesions or infection foci; this issue increases as the dimension of 

the animal and samples to be checked increases (Gormley and Corner, 2018). At 

population level scales, Byrne et al. (Byrne et al., 2018) showed that a significant 

proportion of reactor cattle do not present visible lesions at abattoir inspection. In 

Northern Ireland not all reactor animals are subjected to laboratory testing depending 

on some epidemiological and pathological parameters (O’Hagan et al., 2015). Usually, 

bulked retropharyngeal, bronchial and mediastinal LN from up to five reactors without 

macroscopic lesions and at least one lesion from three reactors with visible lesions are 

submitted to histological examination and/or culture. Under this TB breakdown 

management strategy, visible lesions were found in 43% of the reactors, although TB 

could not be confirmed in 0.2% of these cases (O’Hagan et al., 2015). On the contrary, 

the 95.7% of reactors with no visible lesions (the remaining 57% of reactors) could not 

be confirmed as infected by histology and/or culture of the LN mentioned above. This 

insensitivity can be accentuated when only the digestive tract is involved in infection. 

Lesions in this location can readily go unnoticed because these tissues are normally 

removed at the beginning of slaughtering without being as carefully examined as the 

thoracic and head tissues. This is of particular relevance in a context of multi-host 

infection and likely oral inter-species transmission (Barasona et al., 2017; Cowie et al., 

2016). 
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Although additional research on challenge dose and time required for visible 

lesion development is necessary, our results indicate that depending on the route of 

infection, the distribution and development of lesions may vary, and this can have 

implications for TB diagnostics in terms of confirmation of skin test reactor calves. 

Therefore, since M. bovis persists in cattle population and non-confirmed reactors 

arise, there is an urgent need to improve current control and inspection protocols. 

Further studies with more animals per group are needed to assess the impact of the 

route of infection on TB transmission, pathology and diagnosis also under natural 

conditions. 
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Nowadays tuberculosis continues to be a worldwide distributed disease 

affecting humans and animals. It is considered as one of the top 10 causes of death 

among humans and also it is the infectious disease with the greatest mortality rate 

(World Health Organization, 2018). In addition, tuberculosis together with 

paratuberculosis are two of the diseases that cause the greatest economic losses to 

the livestock sector. Although the tuberculosis bacillus was one of the first infectious 

agents discovered and the implementation of eradication programs throughout the 

world further underlined its importance, there are still aspects of the pathogenesis that 

remain unclear, difficulting the diagnosis of subclinical cases. Also infections with Map 

and other mycobacteria may interfere with the diagnostic tests against bovine 

tuberculosis being the reason for paratuberculosis vaccination not to be allowed in 

countries undergoing bovine tuberculosis eradication programs in cattle.  

The main objective of this dissertation was to contribute to improve knowledge 

in two fundamental aspects of bovine tuberculosis: diagnosis and pathogenesis. This 

main objective was split into three specific questions: 1) Is it possible to avoid 

paratuberculosis vaccination interference in the detection of M. bovis carrriers? 2) Does 

paratuberculosis vaccination provide some degree of heterologous protection against 

tuberculosis? 3) Does tuberculosis infection route affect the diagnostic test results? As 

a consequence, the first study aims to find a way to avoid the interference 

paratuberculosis vaccination may cause with the official diagnostic techniques for 

bovine tuberculosis. The two remaining articles address the evolution of the course of 

the disease under different situations. While the effect of Map vaccination on M. bovis 

infected animals was assessed in the second study, possible differences in the 

pathogenesis of bovine tuberculosis depending on the M. bovis infection route were 

studied in the third assay as well as its implications for the diagnosis.  

Each study has been reported independently and, therefore, its results have 

been discussed separately. However a joint discussion of the results obtained in each 
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study can also contribute to integrate related knowledge and add new perspectives to 

the management of both tuberculosis and paratuberculosis control. 

Accurate diagnosis of bovine tuberculosis may be influenced by the antigenic 

similarity of the pathogen to other non-tuberculosis mycobacteria such as Map or 

environmental mycobacteria as well as by the use of paratuberculosis vaccines. During 

the first experiment an infection with M. bovis was carried out under experimental 

conditions on cattle previously vaccinated against Map. Because vaccination against 

Map in cattle is not allowed in most countries due to interference with the current 

diagnostic techniques for bovine tuberculosis, both: alternative interpretation diagnostic 

criteria to those officially established and more specific M. bovis antigens were tested. 

Over the last decades significant progress has been made determining more 

specific or DIVA diagnostic M. bovis antigens. Two of the major antigenic targets 

identified in cattle and humans are ESAT-6 and CFP-10 (Pollock and Andersen, 1997; 

Vordermeier et al., 2011; Meng et al., 2015). In addition Rv3615c usefulness as a DIVA 

diagnostic reagent has also been confirmed after identifying M. bovis naturally infected 

bovines categorized as negative for ESAT-6/CFP-10 (Sidders et al., 2008). 

Furthermore the effect of paratuberculosis infection or vaccination in the detection of 

bovine tuberculosis using the specific antigens has been assessed in previous studies. 

When used in the IFN-γ release test, ESAT-6, CFP-10, and Rv3615c showed high 

specificity values in cattle and goats infected with paratuberculosis or vaccinated with 

different heat-killed Map vaccines (Stabel et al., 2011; Flores-Villalva et al., 2012; 

Jones et al., 2012; Pérez de Val et al., 2012; Coad et al., 2013).  

However results obtained in our first study did not show high specificity values. 

Reactive calves to both tuberculins, as well as to the specific antigens (ESAT-6/CFP10 

and Rv3615c) were found in the Map vaccinated M. bovis non-infected group from the 

second sampling upon arrival to BSL-3 facilities. This could have been caused by a 

change in their microbial environment that would have induced a temporarily rising of 

the unspecific cellular immune response over the cut-off. However all non-infected 
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calves became non-reactors for both specific antigens before the end of the 

experiment, while a fraction remained reactive for the official antigens. The ESAT-

6/CFP10 combination showed the highest specificity since it only missclassified three 

animals as false positive results during the whole experiment.  

As for the sensitivity of the IFN-γ test our data were in line with previous 

experiments (Aagaard et al., 2006; Flores-Villalva et al., 2012). Results showed that 

the ESAT-6/CFP10 antigen combination was more sensitive than the official 

tuberculins. All calves from the most problematic group (Map vaccinated, M. bovis 

infected) were correctly identified by the ESAT-6/CFP10 antigen combination from the 

second sampling post-infection until the end of the experiment.  

Results obtained from the first study in relation to the tuberculin skin test show 

that the CIT is a more specific approach (Sp=100%) of the technique, rightly classifying 

as negative Map vaccinated M. bovis non-infected calves, than the SIT (Sp=40%). 

These outcomes match with previous studies carried out under field conditions in cattle 

(Garrido et al., 2013) and goats (Chartier et al., 2012). However the SIT showed a 

higher sensitivity (Se=100%) than the CIT (Se=60%) after classifying all calves 

correctly from both infected groups. Three out of the four misclassified animals by the 

CIT as non-reactors belong to the most problematic group (Map vaccinated M. bovis 

infected). Similar outcomes were obtained previously in goats (Pérez de Val et al., 

2012). This situation implies that our approach measuring the relative increase of the 

skin thickness produced by the avian and bovine antigens was more reliable and could 

provide a substantial improvement in the interpretation of the CIT in cases where an 

heterologous sensitization has occurred. Indeed, all animals from both vaccinated 

groups were correctly classified after applying this alternative criterion to the SIT and 

CIT boosting their specificity and sensitivity from 40% and 60% up to 100% 

respectively. 

In addition, a protein and a peptide cocktail formed by the above mentioned 

three specific antigens were also tested. To the best of our knowledge, this is the first 
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time that the skin test has been performed with these three specific antigens combined 

in both cocktails in paratuberculosis vaccinated calves subsequently infected with M. 

bovis. Nevertheless in previous studies minimal false-positive responses to the 

Rv3615c antigen alone and to the combination of ESAT-6 and CFP-10 in goats and 

calves were observed (Flores-Villalva et al., 2012; Jones et al., 2012). As for the avian 

and bovine antigens different cut-offs were tested and, once again, the relative 

increase of the skin thickness criteria displayed the most encouraging results. 

Furthermore after applying this criterion with the protein cocktail, all animals from the 

three groups were correctly classified achieving a specificity and sensitivity of 100% 

respectively.    

In this first paper the existence of the interference produced by the vaccine 

against paratuberculosis with the diagnostic techniques of tuberculosis is once again 

confirmed. However, our results indicate that the use of the vaccine against Map does 

not have to be at the expense of an accurate diagnosis of tuberculosis, since no Map-

vaccinated and M. bovis infected animals were overlooked. Moreover the further 

development and progressive incorporation of these specific antigens into the routine 

diagnosis of tuberculosis could represent an impulse for the control strategies of both 

tuberculosis and paratuberculosis through vaccination, without harming the detection of 

infected animals. 

The restriction of Map vaccination in cattle leads to a lack of knowledge about 

the effect that this effective vaccine against Map (Juste et al., 2009; Juste and Perez, 

2011; Alonso-Hearn et al., 2012), pathogen which shares a very similar antigenic 

composition with M. bovis, could have on the establishment and evolution of bovine 

tuberculosis. 

To the best of our knowledge the effect of a Map heat-inactivated vaccine on 

the pathogenesis of the bovine tuberculosis has only been studied in one previous 

experiment in goats (Pérez de Val et al., 2012). The second study making up this 

dissertation would be the first assay examining this topic in bovines under experimental 
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conditions. In this case the perspective changed from diagnostic interference to 

protection against bovine tuberculosis which has already been described at a certain 

degree in goats (Pérez de Val et al., 2012). This hypothesis could be confirmed since 

vaccination led to a reduction of the pathological and bacteriological results in the lung 

and the thorax area. Although no statistical differences were found between groups, 

the degree of protection observed can be considered as epidemiologically relevant. 

Lung benefits clearly from this containment. Compared to the unvaccinated animals the 

vaccinated group presented a reduction of 89% and 71% in the number of visible 

lesions and their severity respectively at the lung, as well as 80% less positive culture 

results and a 60% reduction of the bacterial burden.  

Although the degree of protection conferred is probably not enough to impede 

the establishment of the disease it may contain it to some extent. In addition being the 

respiratory system the main excretion route of M. bovis, the reduction of the bacterial 

load in the lung may lead to a reduction of the presence of the pathogen in the 

environment and consequently diminish the transmission rates of the disease. It is well 

known that vaccination coverage or efficiency does not need to be 100% in order to 

keep diseases under control in a population (Johni and Samuell, 2000).   

Unlike what was observed by Pérez de Val and co-workers (Pérez de Val et al., 

2012) lesions in the vaccinated group were also found in areas other than the lung and 

corresponding lymph nodes such as the head and abdomen. This could be due to 

pulmonary dissemination to the oral cavity of mycobacterial shedding by 

tracheobronchial secretions and subsequent ingestion after the endotracheal 

challenge, as previously hypothesized in another study (Pérez De Val et al., 2011). 

However the wider spreading of the lesions can be explained by other reasons too: the 

selected dose and the infection route. In our study the selected dose was minimum 3 

logs higher than in previous studies and the inoculum was introduced in the host 

through the trachea instead of being directly deposited in the lung (Bezos et al., 2010; 

Pérez de Val et al., 2012).  
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The protective effect of the Map vaccine described in our second study, despite 

having used such a high infective dose, is very promising: higher protection levels 

could be expected under field conditions knowing that the amount of M. bovis that free 

animals are exposed to is most probably many logs lower. 

The reported spread of lesions by the second study hints at the infection route 

as a possible reason for the lack of visible lesions in many skin test positive animals.  

The complexity of the bovine tuberculosis epidemiology combined with gaps in 

knowledge and poor specificity deemed diagnostic techniques have raised a lack of 

confidence of the farmers and field veterinarians in the official in vivo tests (Ciaravino et 

al., 2017). Therefore, the third study included in this dissertation is a comparison of the 

spread of lesions and infection according to two experimental routes: oral and 

intratracheal. 

However significant different results obtained in the third study indicate that the 

lack of specificity associated with the techniques may not be responsible for the non-

confirmed reactors. This study sustained the hypothesis that the oral route could play a 

more relevant role in transmission, diagnosis and disease persistence than previously 

thought. Wildlife species contribute to the maintenance and spread of the disease and 

the indirect transmission by ingestion of contaminated food and water by cattle has 

been accepted as the most important transmission route between feral animals and 

cattle. We aimed to explore pathological differences between calves infected through 

the oral and the respiratory route. Previous assays have stated that lesion distribution 

seems to be determined by the route of entry of the pathogen. After the ingestion of 

bacilli, lesions usually appear in lymph nodes and tissues of the abdominal system and 

in the respiratory system and associated lymph nodes after a respiratory infection 

(Collins and Grange, 1983; Pollock et al., 2006; Liebana et al., 2008; Domingo et al., 

2014). The fact that the aerogenous transmission is considered to be the most frequent 

in cattle has biased the carcasses visual inspection at the slaughterhouses focusing 

mostly on the target organs after a respiratory infection. 
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Results confirmed that the CMI response got activated during the first stages of 

infection as stated in previous studies (Ritacco et al., 1991; Welsh et al., 2005). 

However despite the positive IFN-γ status being reached by all animals during the 

experiment, our results showed that displaying a full active CMI response producing 

detectable amounts of IFN-γ may take longer after an oral than a respiratory infection.  

Outcomes of this study suggest that time needed for the development of 

macroscopic lesions seems to depend on the infection route. All animals appeared as 

clearly skin tuberculin reactors 12 weeks after challenge. The endotracheally 

challenged calves were sacrificed at the skin test lecture day and all of them presented 

gross lesions. On the other hand two orally challenged calves were categorized as 

non-confirmed reactors since no macroscopic lesions were observed during the 

necropsies at the same day. Necropsies of the three remaining calves challenged 

through the oral route were not carried out until week 20 post challenge and compatible 

lesions with bovine tuberculosis were found in all of them. Our data confirmed that 12 

weeks after an oral challenge the pathogen has spread into different abdominal lymph 

nodes as seen by positive culture results. Nevertheless lesion development has been 

proven to take longer than after a respiratory challenge since isolation from the two 

non-confirmed reactors were obtained from macroscopic lesion free tissues.  

 These results may contribute to explain the scenario often found in 

slaughterhouses where no bovine tuberculosis compatible lesions are found in animals 

clearly reactive to the CMI response techniques and, on the other hand, to regain the 

farmers’ confidence on the in vivo tests. 

In the present doctoral dissertation applied and fundamental knowledge 

advances have been made regarding bovine tuberculosis diagnosis and pathogenesis, 

respectively. The improvements of knowledge regarding the development of the 

disease as well as the ability to reach an accurate diagnosis regardless of the different 

immunological status are crucial elements in preventing the transmission of the 

disease. Even more specifically, it must be underlined that the conclusions of these 
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studies may have a direct application in tuberculosis control programs as well as in the 

postmortem inspection in the slaughterhouses. In addition control of paratuberculosis 

could also benefit from the outcomes obtained since the use of the Map vaccines could 

be facilitated by them. 
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1. Paratuberculosis vaccination interference on the bovine tuberculosis diagnostic 

tests can be overcome if alternative diagnostic criteria or new more specific 

antigens are taken into account. The use of the defined ESAT-6/CFP10 antigen 

in the INF-γ test and the inoculation of three specific antigens (ESAT-6/CFP10 

and Rv3615c) as skin test reagents in form of a proteinic cocktail avoid the 

interference linked to Map vaccination. 

 

2. Vaccination against paratuberculosis confers some degree of heterologous 

protection against experimental M. bovis infections by reducing the severity of 

the lesions and the bacterial burden. The containment of the infection benefits 

the lung above all. This could be of great importance since the respiratory 

pathway is the main excretion route of M. bovis and a reduction of the bacterial 

load in the lung may lead to a reduction of the pathogen presence in the 

environment. 

 

3. The development of a fully active cellular immune response capable of 

producing detectable levels of IFN-γ needs a longer period of time after an oral 

infection than after a respiratory infection. 

 

4. The route of infection plays a critical previously unrecognized role in the 

location and bacterial burden of tuberculous lesions. Both parameters remain 

restricted to the abdominal area after an oral infection whereas the respiratory 

system is the main target after an aerogenous infection. In addition time 

required for gross lesions development seems to be longer after an oral 

infection. 
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8.1. SUMMARY 

Animal tuberculosis caused by infection with M. bovis is a global concern 

involving Animal and Public Health with derivations on conservation and economy. 

Cattle are the main domestic host both because of the disease epidemiology and the 

importance of this species in the livestock industry. Therefore bovine tuberculosis is the 

main objective of disease control programs throughout the world. However other 

livestock species including goats, sheep and pigs as well as several wild hosts 

contribute to maintain the disease. Official bovine tuberculosis eradication programs in 

cattle are based on intensive test and cull strategies. Nevertheless the limitation of the 

in vivo diagnostic methods, partly due to the complex development of the disease and 

to cross-reactions with other mycobacteria, together with the existence of wildlife 

reservoirs severely hampers success of the current control efforts. 

The main objective of this Doctoral Thesis was to contribute to improve the 

knowledge in two fundamental research areas of the bovine tuberculosis: diagnosis 

and pathogenesis. 

Due to the possible interference with the official bovine tuberculosis diagnostic 

methods, vaccination against Map in cattle is banned although its effectiveness has 

been proven in different species. Therefore the first study focused on searching 

alternative interpretation criteria for the standard intradermal tuberculin test and on 

assessing new more specific antigens in order to overcome the vaccination 

interference. Study I outcomes highlight that this interference can be completely 

avoided if new testing strategies such as specific antigens or new diagnostic criteria for 

the traditional comparative avian and bovine tuberculin test are established. 

The banning of paratuberculosis vaccination in cattle means that little is known 

about the effect that this effective vaccine against Map could have in the development 

of a bovine tuberculosis infection. The second study was carried out to evaluate the 
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effect of paratuberculosis vaccination on preventing experimental M. bovis infection in 

calves. For that purpose pathological and bacteriological changes associated with the 

use of the vaccine were assessed. Results obtained show that the development of an 

experimental M. bovis infection can be modified by the use of a paratuberculosis 

vaccine. A decrease in the severity of the lesions and the bacterial burden was 

observed suggesting that a certain degree of heterologous protection against M. bovis 

may be conferred by the Map vaccine. The level of protection may not be enough to 

impede the establishment of the disease or transmission within a herd, but it may be 

helpful to contain the infection to some degree.   

Although the presence of bovine tuberculosis in cattle has been drastically 

reduced since the implementation of eradication programs, many countries still have a 

residual infection rate. The aerogenous entry is accepted as the most frequent 

transmission route in cattle, affecting mainly the respiratory system. On the other hand 

different wildlife species contribute to the maintenance and spread of the disease. In 

addition indirect transmission by ingestion of contaminated food and water by cattle 

has been described as the most important transmission pathway between wildlife and 

livestock. However, only few experiments have been carried out in order to assess the 

oral route as a transmission pathway. Therefore the third study aimed to explain the 

appearance of reactive animals to the official CMI-based diagnostic tests but not 

presenting any macroscopic lesions. The hypothesis of the paper was that the oral 

route could be playing a more relevant role in transmission, detection and disease 

persistence. Differences in the development of the disease after an oral and a 

respiratory infection under experimental conditions were assessed. All animals were 

reactors to the tuberculin skin test. However results suggest that after a respiratory 

infection lesions are more likely to be found in the respiratory system and associated 

lymph nodes whereas after the oral infection lesions tend to appear in the abdominal 

area. In addition outcomes of the last study suggest that after an oral infection time 



Summary 

163 

required for the development of gross lesions seems to take longer than after a 

respiratory infection.  

Results obtained in this Thesis may have a direct application in the tuberculosis 

erradication programs and could facilitate the use of the paratuberculosis vaccine. 
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8.2. RESUMEN 

La tuberculosis es una enfermedad infecciosa causada por bacterias 

pertenecientes al complejo Mycobacterium tuberculosis (MTC). De acuerdo con datos 

recientemente aportados por la Organización Mundial de la Salud, la tuberculosis 

continúa siendo a día de hoy una de las diez principales causas de mortalidad a nivel 

mundial, además de estar considerada como la principal causa de muerte por un 

agente infeccioso. Actualmente se estima que 1,7 billones de personas están 

infectadas de manera latente por el patógeno, de las cuales el 5-10% acabarán 

desarrollando la enfermedad. Además de los humanos, diferentes especies animales 

se pueden ver afectadas también por esta enfermedad.  

Las micobacterias más estudiadas en animales han sido Mycobacterium bovis 

(M. bovis) y Mycobacterium. Caprae. La tuberculosis animal ha sido descrita 

mayoritariamente en ganado bovino, considerado como el hospedador mayoritario 

debido a la situación epidemiológica que presenta esta especie, así como por su 

importancia en la industria ganadera. Sin embargo se ha demostrado que otras 

especies domésticas rumiantes (cabras y ovejas) y no rumiantes (cerdos, caballos, 

gatos…) así como animales silvestres (ciervos, gamos, jabalíes, tejones…) pueden 

verse afectados también por la enfermedad. Por otra parte, M. bovis está clasificado 

como microorganismo zoonótico, por lo que la tuberculosis bovina está considerada 

como un objetivo primordial de control no sólo por la Sanidad Animal sino también por 

la Salud Pública. 

Los programas de erradicación se centran en el ganado bovino y en el caprino 

bajo determinadas circunstancias. Sin embargo existen otros animales domésticos 

como las ovejas o cerdos que, junto con la fauna silvestre, principalmente ciervo y 

jabalí, pueden contribuir al mantenimiento de la infección ya que se encuentran 

exentos de seguimientos rutinarios. Los datos observados en España desde el inicio 

de las campañas de saneamiento bovino en la década de los 80 han sido 

satisfactorios. Sin embargo hay comunidades autónomas, principalmente aquellas con 
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mayor número de animales en extensivo y con mayor densidad de fauna silvestre, 

cuyas prevalencias a nivel de explotación siguen siendo altas.  

El diagnóstico in vivo de la enfermedad se fundamenta en la prueba de la 

intradermotuberculinización. Esta técnica diagnóstica se basa en la inyección 

intradérmica de derivados proteicos purificados de tuberculina y en su capacidad para 

detectar una hipersensibilidad retardada en animales infectados. Los programas 

oficiales de erradicación de la tuberculosis en el ganado vacuno se basan en 

estrategias de detección y eliminación. Sin embargo las limitaciones de los métodos de 

diagnóstico in vivo, en parte debido al complejo desarrollo de la enfermedad y a las 

reacciones cruzadas con otras micobacterias, junto con la existencia de reservorios de 

fauna silvestre, comprometen el éxito de las campañas de saneamiento bovino frente 

a la tuberculosis. 

Una de la micobacterias próximas a M. bovis y que puede interferir con las 

técnicas de rutina en el diagnóstico de la tuberculosis es Mycobacterium avium subsp. 

paratuberculosis (Map), agente etiológico de la paratuberculosis. La paratuberculosis 

es una enteritis granulomatosa crónica que afecta sobre todo a explotaciones de 

rumiantes y cuya patogenia no ha sido claramente definida. Aunque históricamente la 

enfermedad estaba ligada a los rumiantes domésticos, se ha demostrado que Map 

también está presente en rumiantes silvestres (ciervos, gamos…) y no rumiantes 

(conejos, liebres, jabalíes. tejones, algunas aves…). La vacunación se muestra como 

el método más efectivo para controlar la enfermedad. Varios estudios han confirmado 

la reducción de la carga de Map excretada en heces. Esto se traduce en una menor 

exposición de los animales al agente pudiendo disminuir de esta manera el número de 

casos clínicos. Además el uso de la vacuna también reduce la extensión de las 

lesiones propias de la enfermedad así como la colonización de tejido intestinal por el 

patógeno. Teniendo en cuenta que la principal ruta de infección es la fecal-oral, debido 

a la contaminación de los alimentos con las heces, la reducción de la excreción es 

fundamental para minimizar el riesgo de infección de nuevos animales. Sin embargo, 
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la vacunación frente a paratuberculosis está restringida por posibles interferencias con 

el diagnóstico de la tuberculosis.  

El objetivo principal de esta tesis ha sido contribuir a mejorar el área de 

conocimiento de dos aspectos fundamentales de la tuberculosis bovina: el diagnóstico 

y la patogénesis. Para encontrar respuesta a las cuestiones que nos planteábamos 

antes de comenzar la Tesis, el objetivo principal se dividió en tres preguntas 

específicas:  

1) ¿Sería posible evitar la interferencia de la vacunación contra la paratuberculosis 

en la detección de animales infectados con M. bovis?  

2) ¿Podría proporcionar la vacunación contra la paratuberculosis algún grado de 

protección heteróloga contra la tuberculosis?  

3) ¿Cómo afecta la vía de infección a la distribución de las lesiones y al tiempo de 

generación de respuesta de los animales? 

En consecuencia, el primer estudio se centró en encontrar una forma de evitar la 

interferencia que la vacunación contra la paratuberculosis puede causar en las 

técnicas oficiales de diagnóstico de la tuberculosis bovina. Los dos artículos restantes 

abordaron la evolución del curso de la enfermedad en diferentes situaciones. Mientras 

que en el segundo estudio se evaluó el efecto de la vacunación frente a 

paratuberculosis en animales posteriormente infectados de manera experimental con 

M. bovis, en el tercer ensayo se estudiaron las posibles diferencias en la patogenia de 

la tuberculosis bovina en función de dos vías de infección diferentes con M. bovis, así 

como las implicaciones que esto podría acarrear para un diagnóstico certero.   

Aunque la eficacia de la vacuna frente a paratuberculosis ha sido probada en 

repetidas ocasiones en diferentes especies, su uso en ganado bovino no está 

permitido debido a la posible interferencia con los métodos oficiales de diagnóstico de 

la tuberculosis. El primer estudio se centró en la búsqueda de criterios alternativos de 
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interpretación para la prueba de la intradermotuberculinización oficial y en la 

evaluación de nuevos antígenos más específicos para evitar la interferencia de la 

vacunación. Los resultados de este primer estudio destacan que esta interferencia 

puede evitarse por completo si se establecen nuevas estrategias como el uso de 

antígenos específicos o nuevos criterios de interpretación en la prueba de la 

intradermorreacción. 

La prohibición de la vacunación frente a la paratuberculosis en el ganado bovino 

tiene como resultado un bajo conocimiento sobre el efecto que esta vacuna podría 

tener en el control de la tuberculosis bovina, siendo ambas enfermedades ocasionadas 

por patógenos con una composición antigénica similar. Por esta razón el segundo 

estudio se llevó a cabo para evaluar el efecto de la vacunación contra la 

paratuberculosis en la prevención de la infección experimental por M. bovis en 

terneros. Para ello se evaluaron los cambios patológicos y bacteriológicos asociados al 

uso de la vacuna. Los resultados obtenidos tras una infección experimental con M. 

bovis permitieron observar una disminución del nivel de gravedad de las lesiones así 

como de la carga bacteriana, lo que sugiere que la vacunación frente a Map puede 

conferir cierto grado de protección heteróloga frente a M. bovis. Es cierto que el nivel 

de protección puede que no sea suficiente para impedir el establecimiento de la 

enfermedad o la transmisión dentro de un rebaño, pero puede ser útil para contener el 

desarrollo lesional y el riesgo de transmisión.  

Aunque la presencia de tuberculosis bovina se ha reducido notablemente desde la 

introducción de los programas de erradicación, la mayoría de los países todavía 

cuentan con una tasa de infección residual. La entrada aerógena del patógeno es 

aceptada como la vía de transmisión más frecuente en el ganado vacuno. Sin 

embargo, diferentes especies de fauna silvestre contribuyen al mantenimiento y la 

propagación del agente infeccioso, siendo la transmisión indirecta por ingestión de 

alimentos y agua contaminados por parte del ganado bovino la vía de transmisión más 
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importante entre las especies silvestres y el ganado vacuno. Sin embargo la 

importancia de la ruta de transmisión oral en la tuberculosis bovina sólo ha sido 

abordada en un número reducido de experimentos. Por lo tanto el objetivo del tercer 

estudio fue encontrar una explicación a la presencia de animales reactivos a las 

pruebas diagnósticas oficiales basadas en la respuesta inmune celular, pero carentes 

de lesiones macroscópicas. La hipótesis presentada en este tercer trabajo fue que la 

vía oral podría estar jugando un papel relevante en la transmisión, detección y 

persistencia de la enfermedad. Para ello se evaluaron las diferencias en el desarrollo 

de la enfermedad en función de si la ruta de entrada había sido la  oral o la respiratoria 

bajo condiciones experimentales. Todos los animales mostraron reacciones positivas a 

la prueba de la intradermotuberculinización. Sin embargo los resultados obtenidos 

sugieren que la localización de las lesiones varía en base a la ruta de entrada del 

patógeno. Aquellos animales infectados por vía respiratoria presentaron la mayoría de 

las lesiones en el sistema respiratorio y ganglios linfáticos asociados, mientras que las 

lesiones se concentraron en el área abdominal en aquellos animales que fueron 

infectados por la vía oral. Además, los resultados de este último estudio sugieren que 

no sólo la localización de las lesiones difiere en relación a la vía de infección sino 

también el tiempo requerido para el desarrollo de las mismas, ya que la aparición de 

lesiones macroscópicas tras la infección oral requirió de un mayor espacio de tiempo 

que tras la infección por vía respiratoria. 

Como conclusión final cabría señalar que los resultados obtenidos en esta Tesis 

podrían tener una aplicación directa en los programas de erradicación de la 

tuberculosis además de facilitar el uso de la vacuna contra la paratuberculosis en 

ganado bovino. 
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8.3. LABURPENA 

Mycobacterium bovis (M.bovis) animalien tuberkulosia sortzen duen bakterioa da 

eta ekonomian eta kontserbazioan duen eraginagatik Osasun Publikoko kezka 

orokortzat jotzen da. Abeltzaintzan duen garrantziagatik eta bakterioaren 

epidemiologiagatik, tuberkulosiaren ostalari nagusia abelgorria da. Izan ere, behi-

tuberkulosia munduan zehar ezartzen diren kontrol  programetan garrantzi gehien 

duena da, nahiz eta beste ostalari batzuek gaixotasuna mantentzeko ahalmena izan; 

adibidez, ardiek, ahuntzek, txerriek eta zenbait animali basatiek. Abereen behi-

tuberkulosia errotik erauzteko programa eraginkorrak animalien diagnosian eta hiltzeko 

estrategia zorrotzetan oinarritzen dira. Hala ere, gaur egungo metodo diagnostikoak 

mugak ditu. Lehenengoa, gaixotasunaren eboluzioak duen konplexutasuna; bigarrena, 

beste mikobakteria batzuekin erakusten duen erreakzio gurutzatua eta hirugarrena, 

animali basatiek gaixotasunaren ostalari izateko duten gaitasuna. 

Doktorego tesi honen helburu nagusia behi-tuberkulosiaren bi funtsezko ikerketa 

arloetan ezagutza hobetzea izan da: diagnostikoa eta patogenia.  

Paratuberkulosiaren aurkako txertoak zenbait espezietan eraginkortasun ona 

erakutsi duen arren, bere erabilera debekatuta dago behi-tuberkulosiaren 

diagnostikoan erabiltzen den metodoarekin interferentzia egin dezakeelako. Hori dela 

eta, lehenengo azterlanak dermis barneko tuberkulina probaren estandarra eta 

antigeno espezifiko berrien ebaluazioa aztertzen du, txertoak ematen duen erreakzio 

gurutzatua saihesteko. Lehenengo azterlanaren (Study I) emaitzen arabera, 

interferentzia hori guztiz saihestu daiteke, espezifikoagoak diren antigeno berriak 

sortuz edota hegazti eta behi-tuberkulina konparatze proba interpretatzeko irizpide 

berriak sortuz. 

Abereen paratuberkulosiaren txertoa behietan erabiltzearen debekuak, 

tuberkulosiaren infekzioaren garapenean duen efektua ezagutzen ez dela aditzera 
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ematen du.  Bigarren azterlanean (Study II) txahalak esperimentalki txertatu eta M. 

bovis-ekin infektatu ziren tuberkulosiaren garapenean paratuberculosiaren aurkako 

txertoaren ondorioak ikertzeko. Helburua betetzeko txertoari lotutako aldaketa 

patologikoak zein bakteriologikoak aztertu ziren. Lortutako emaitzek, 

paratuberkulosiaren aurkako txertoa erabiliz M. bovis-ek sortzen duen infekzioa 

moldatu daitekeela erakutsi zuten. Lesioen larritasuna eta bakterio-karga murriztu 

zirenez, paratuberkulosiaren aurkako txertoak M. bovis-en infekzioaren aurkako 

zenbait babes heterologo eman dezakeela adierazten du. Babes maila ez da nahikoa 

gaixotasuna edo transmisioa guztiz eragozteko, baina lagungarria izan daiteke 

infekzioa neurri batean menderatzeko. 

 

Nahiz eta erauzte programa ofizialei esker behi-tuberkulosia asko gutxitu den, 

oraindik gaixotasunaren hondarrak herrialde askotan aurki daitezke. Bakterioaren 

transmisio ohikoa aire-bidez ematen da, arnas aparatuan kalte gehien egiten. 

Bestalde, zenbait espezie basatiek gaitz hau mantentzen eta barreiatzen laguntzen 

dute. Gainera, elikagai eta ur kutsatuen bidez gertatzen den zeharkako transmisioa, 

aho-bidez gertatzen dena, abeltzaintza eta espezie basatien arteko transmisio modu 

nagusitzat hartu da. Hala ere, esperimentu gutxi burutu dira aho-bidezko transmisioa 

balioesteko. Hori dela eta, hirugarren azterlanean lesio makroskopikorik gabeko baina 

dermis barneko tuberkulina proban erreakzioa izan zuten animaliak aztertu ziren. 

Adierazi zen hipotesia honako hau da: aho-bidezko transmisioak tuberkulosiaren 

iraupenean, detekzioan eta transmisioan orain arte pentsatu dena baino eragin 

handiagoa du. Horretarako,  aho eta aire-bidezko infekzioak konparatzeko 

esperimentua burutu zen eta gaixotasunaren garapenean agertu ziren 

desberdintasunak aztertu ziren. Animalia guztiek dermis barneko tuberkulina proban 

erreakzioa izan zuten. Bestalde, aire-bidezko infekzioaren ondorioz arnas-aparatuko 

gongoil linfatikoetan eta birikietan lesio gehiago agertu ziren; aho bidezkoan; berriz, 

digestio aparatuko organoetan. Gainera, aho-bidez infektatu ziren animaliek denbora 
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gehiago behar izan zuten lesio makroskopiko larriak garatzeko aire-bidez infektatu 

zirenek baino. 

Doktorengo tesi honen aurkikuntzak tuberkulosiaren erauzketa programan eta 

paratuberkulosiaren txertoaren erabileran aplikazio zuzena izan dezake. 
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8.4. ZUSSAMENFASSUNG 

Tiertuberkulose, die durch eine Infektion durch Mycobacterium bovis (M. bovis) 

verursacht wird, ist ein weltweites Problem, das Tiergesundheit, Artenschutz, die 

Volkswirtschaft und sogar die öffentliche Gesundheit betrifft, da sie als Zoonose 

klassifiziert ist. Rinder stellen den größten Anteil an Schlachtvieh dar und sind deshalb 

das Hauptziel der Seuchenbekämpfung. Jedoch tragen andere Nutztiere wie Ziegen, 

Schafe und Schweine genau sowie verschiedene Wildtiere zum Fortbestand der 

Krankheit bei. Effektive Programme zur Auslöschung der bovinen Tuberkulose bei 

Rindern basieren auf intensiven Kontroll- und Keulungsstrategien. Jedoch könnten die 

aktuellen Anstrengungen zur Kontrolle durch die beschränkten Möglichkeiten der in 

vivo Diagnosemethoden, die teilweise aufgrund des komplexen Krankheitsverlaufs und 

Kreuzreaktionen mit anderen Mikobakterien beruhen, negativ beeinträchtigt werden. 

Ein zusätzlicher negativer Einfluss resultiert aus dem Fortbestand der Krankheit bei 

Wildtieren. 

 Das Hauptziel dieser Doktorarbeit war es, das Wissen in zwei Gebieten der 

Grundlagenforschung zur Rindertuberkulose zu erweitern: Diagnose und Pathogenese. 

 Wegen der möglichen Beeinträchtigung der amtlichen Methoden zur Diagnose 

der bovinen Tuberkulose ist die Impfung gegen Mycobacterium avium subsp. 

paratuberculosis (Map) bei Rindern untersagt, obwohl ihre Effektivität in anderen 

Tierarten bewiesen ist. Daher setzte die erste Studie den Akzent auf die Suche nach 

alternativen Interpretationskriterien des intradermalen Tuberkulin- Standardtestes und 

auf die Bewertung neuer, noch spezifischerer Antigene, um die Störung der Diagnose 

von Rindertuberkulose durch die Map Impfungen zu vermeiden. 

Die Ergebnisse der ersten Studie heben hervor, dass die Beeinflussung komplett 

vermieden werden kann, wenn neue Test-Strategien wie spezifische Antigene oder 
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neue Diagnose-Kriterien für die herkömmlichen Vogel- und Rindertuberkulin eingeführt 

werden. 

 Das Verbot der Paratuberkulose-Impfung bei Rindern hat zur Folge, dass nur 

wenig über die möglichen Auswirkungen dieses wirksamen Impfstoffs gegen Map bei 

der Entwicklung einer Rindertuberkulose-Infektion bekannt ist. Die zweite Studie wurde 

durchgeführt, um den Effekt einer Paratuberkulose-Impfung bei experimentell mit M. 

bovis infizierten Rindern evaluieren zu können. Zu diesem Zweck wurden 

pathologische und bakteriologische Veränderungen in Zusammenhang mit dem 

Einsatz des Impfstoffes untersucht. Die hieraus gewonnenen Ergebnisse zeigen, dass 

die Entwicklung einer experimentell herbeigeführten M. bovis Infektion durch den 

Einsatz des Paratuberkulose-Impfstoffes modifiziert werden kann. Ein Rückgang in der 

Schwere der Läsionen und bei der Bakterienbelastung war zu beobachten, was 

andeutet, dass ein bestimmter Grad an heterologem Schutz gegen M. bovis durch die 

Map-Impfung erreicht werden kann. Das Schutzniveau ist wohl nicht ausreichend, um 

den Ausbruch der Krankheit oder die Übertragung innerhalb einer Herde zu verhindern, 

könnte aber nützlich sein, die Krankheit bis zu einem gewissen Grad einzudämmen. 

 Obwohl das Vorkommen der bovinen Tuberkulose bei Rindern seit der 

Einführung von Auslöschungsprogrammen drastisch reduziert wurde, weisen viele 

Länder immer noch eine hohe Infektionsrate auf. Die Atemwegsübertragung wird 

allgemein als die häufigste Übertragungsart angesehen. 

Bei dieser Übertragungsart ist vor allem das System der Atemwege betroffen. 

Darüber hinaus tragen verschiedene Wildtiere zu Erhalt und Verbreitung der Krankheit 

bei. Dazu kommt die indirekte Übertragung durch die Inkorporation verseuchter 

Nahrung und Wasser durch Rinder, was als der häufigste Übertragungsweg zwischen 

Vieh und Wild beschrieben wird.   

Jedoch wurden nur wenige Experimente durchgeführt, die die Atemwege als 

Übertragungsweg zum Untersuchungsgegenstand hatten.  
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Aus diesem Grund zielte die dritte Studie darauf ab, die Symptome von bei CMI- 

basierten Diagnosetests positiv getesteten, aber keine makroskopischen Läsionen 

aufweisenden, Tiere zu erklären. Die Hypothese dieser Arbeit war es nun, dass der 

orale Weg eine größere Rolle bei Übertragung, Detektion und Persistenz der Krankheit 

spielen könnte als bisher angenommen. Unterschiede im Krankheitsverlauf bei oraler 

Infektion bzw. Infektion über die Atemwege wurden untersucht (unter 

Experimentalbedingungen). Alle Tiere reagierten positiv auf den Tuberkulin-Hauttest. 

Die Ergebnisse zeigten jedoch Unterschiede beim Ort des Auftretens infektiöser 

Läsionen: Nach einer Atemwegsinfektion traten diese eher im Atemwegssystem und 

den verbundenen Lymphknoten auf, wohingegen sie nach einer oralen Infektion eher 

im abdominalen Bereich auftraten. Zusätzlich zeigten die Ergebnisse der letzten 

Studie, dass nach einer oralen Infektion die Ausbildung sichtbarer Läsionen längere 

Zeit in Anspruch nahm als nach einer Atemwegsinfektion. 

 Die Ergebnisse dieser Arbeit könnten direkte Anwendung in 

Tuberkuloseausrottungsprogrammen finden und könnten den Einsatz der 

Paratuberkulose-Impfung erleichtern. 
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