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Abstract

This work focuses on the automatic extraction of Adverse Drug Reactions
(ADRs) in Electronic Health Records (EHRs) written in Spanish. That is,
our aim is to extract a response to a medicine which is noxious and unin-
tended and occurs at doses normally used. From Natural Language Process-
ing (NLP) perspective, this is approached as a relation extraction task in
which the drug is the causative agent of a disease, the adverse reaction.

ADR extraction from EHRs involves major challenges. First, ADRs are
rare events. That is, drugs and diseases found in an EHR are often unrelated
or sometimes related as treatment, but seldom as ADRs. This implies the
inference of a predictive model from samples with skewed class distribution.
Second, EHRs are written by experts under time pressure, employing rich
medical jargon together with colloquial expressions, not always grammatical,
and it is not infrequent to �nd misspellings and both standard and non-
standard abbreviations. All this leads to a high lexical variability.

To cope with these challenges, we explored several ADR detection algo-
rithms and representations to characterize the ADR candidates. In addition,
we assessed the tolerance of the ADR detection model to external noise such
as the incorrect detection of the medical entities involved in the ADR extrac-
tion (drugs and diseases).
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1
Introduction

1.1 Motivation

An Adverse Drug Reaction (ADR) is de�ned by the World Health Organiza-
tion (WHO) as `a response to a medicine which is noxious and unintended,
and which occurs at doses normally used in man' (World Health Organiza-
tion, 2002b). From this de�nition we can draw that the ADRs are di�cult
to avoid given that they happen when the medicine is taken correctly. In-
deed, ADRs are the 4th to 6th largest cause for mortality in the USA (World
Health Organization, 2002b). They result in the death of several thousands
of patients each year, and many more su�er from ADRs. The percentage
of hospital admissions due to ADRs was 11.5% in Norway, 13.0% in France
and 16.0% in UK (World Health Organization, 2002b). This also entails
costs of 15-20% of the hospital budget (World Health Organization, 2002b).
In Spain, according to the �National study on hospitalisation-related ad-
verse events (ENEAS)� developed by the Ministry of Health and Consumer
A�airs (Ministerio de Sanidad y Consumo, 2006), an ADR is de�ned as
`alterations and/or injuries caused when the drugs are used appropriately,
which are hardly preventable'. The ENEAS study indicates that 37.4% of
the adverse events detected during the hospitalization were related to the
medication.

The WHO informed about the importance of reporting ADRs to un-
derstand and treat the diseases caused by drugs and, as a result, improve
the patients care (World Health Organization, 2002a). In fact, it was cre-
ated VigiBase, the WHO global database of Individual Case Safety Re-

1
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ports (Lindquist, 2008). The aim was to store the spontaneous reports in a
international database to enable the earliest possible detection of drug-related
problems. Other Spontaneous Reporting Systems (SRSs) were also created in
di�erent countries. For example, in USA the FDA Adverse Event Reporting
System, in UK the Yellow Card System of Medicines and Healthcare products
Regulatory Agency and in Spain the Spanish System of Pharmacovigilance
of medicines for Human Use, which employs the database FEDRA developed
by the Spanish Agency of Medicines and Medical devices. However, ADRs
are still heavily under-reported, which makes their prevention di�cult. Some
of the reasons for under-reporting of ADRs are lack of time, di�erent care
priorities, uncertainty about the drug causing the ADR, di�culty in access-
ing reporting forms, lack of awareness of the requirements for reporting and
lack of understanding of the purpose of SRSs (Hazell and Shakir, 2006). Note
that, in these spontaneous reports, the ADRs have to be indicated manually
by the medical experts. This process is not carried out automatically.

The creation of a system to automatically extract ADRs on Electronic
Health Records (EHRs) would increase the reporting of the ADRs. Given
that information stored digitally by the hospitals is growing, Natural Lan-
guage Processing (NLP) techniques can be used to create a system that helps
the doctors to analyze the ADRs of the patients in a given EHR, facilitat-
ing the decision making process and alleviating the work-load. As a con-
sequence, the patients' health could improve and the pharmaco-surveillance
service would be informed about the detected ADRs.

Precisely, research in the biomedical domain has attracted considerable
attention in the last years in the NLP research community. Examples of this
are workshops such as BioNLP (Demner-Fushman et al., 2018), BioTxtM
(Limsopatham and Collier, 2016) and Louhi (Lavelli et al., 2018). BioNLP is
interested in NLP for the biological and medical domains. BioTxtM focuses
on NLP and text mining for biomedical and clinical text. Louhi is concerned
about the automated processing of health documents. Moreover, we �nd the
�Plan for the Advancement of Language Technology (Plan TL)� (Ministerio
de Energía, Turismo y Agenda Digital, 2015) created by the Spanish govern-
ment with the aim of developing the NLP and machine translation industries
for Spanish and the co-o�cial languages of Spain. The Plan TL involves dif-
ferent domains such as healthcare, education and tourism, re�ecting that
NLP can improve the quality and capacity of di�erent public services. In the
second Hackathon of the Language Technology organized in this plan, a new
category for the biomedicine was introduced.
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Due to the relevance that NLP has gained in the biomedical domain,
several projects emerged at international level. In Europe, we �nd the �EU-
ADR� project (Coloma et al., 2011), under the support of the European
Commission (EC). The aim of this project is to exploit information from
various EHR databases in Europe to produce a computerized integrated sys-
tem for the early detection of ADRs. In USA, we �nd the �Big mechanism�
program (Cohen, 2015), �nanced by the Defense Advanced Research Projects
Agency (DARPA). The aim of this program is to develop technology to read
research abstracts and papers to extract pieces of causal mechanisms, as-
semble these pieces into more complete causal models, and reason over these
models to produce explanations. This program focuses mainly on the domain
of cancer biology.

1.2 Framework

Our research was developed within the IXA group1 of the University of the
Basque Country (UPV/EHU), a multidisciplinary group composed of com-
puter scientists and linguists among others. The IXA group combines lin-
guistic modeling and data analysis with innovative probabilistic and ma-
chine learning approaches to NLP. To this group, several projects related
with the medical domain and close to our work were granted by the Span-
ish Ministry of Science and Innovation (EXTRECM: TIN2013-46616-C2-1-
R, PROSAMED: 2014111003) and the Basque Government (DETEAMI:
2014111003). These projects focus on the analysis of health records writ-
ten in Spanish. This work was developed mainly within the framework of
DETEAMI and PROSAMED projects:

• DETEAMI: �Detección automática de efectos adversos a medicamen-
tos en informes médicos usando tecnologías de procesamiento del lenguaje
natural� (meaning `Automatic detection of adverse drug reactions in
medical records using natural language processing techniques'). This
project arises from the collaboration with di�erent hospitals of the
Basque Country. The aim is the development of a prototype to val-
idate information extraction techniques for the medical domain. The
hospital would be the client of this prototype. Our work is related with
the �fth phase of the project. This phase consists in the creation of

1IXA group web page: http://ixa.si.ehu.eus/

http://ixa.si.ehu.eus/
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a prototype for the detection of ADRs in EHRs generated for the pa-
tients. To this end, rule-based methods and machine learning methods
would be employed.

• PROSAMED: �PROcesamiento Semántico textual Avanzado para la
detección de diagnósticos, procedimientos, otros conceptos y sus rela-
ciones en informes MEDicos� (meaning `Advance semantic textual pro-
cessing for the detection of diagnostic codes, procedures, concepts and
their relationships in health records'). This project arises from the col-
laboration with research groups of other universities and institutions of
the health system. The aim is the creation of solutions for processing
medical texts. Our work is related with the fourth phase of the project.
This phase consists in the implementation of a system to detect drug-
disease pairs that correspond to ADRs of the patients in EHRs. To
this end, machine learning (supervised as well as unsupervised meth-
ods) would be employed.

Within the framework of these projects and according to the consensus of
medical experts, the ADR extraction was de�ned as a relation extraction
task. That is, the aim is to detect ADR relations between the entities (drugs
and diseases) recognized in a given text. For NLP, relation extraction is a
crucial step towards natural language understanding applications (Bach and
Badaskar, 2007). A fact that demonstrates the interest on relation extraction
is the competitions created to this end. Some examples are SemEval-2010
Task 8 (Hendrickx et al., 2010) and SemEval-2018 Task 7 (Gábor et al., 2018).
SemEval-2010 Task 8 was created to obtain semantic relations between pairs
of words, there were 9 semantic relations. SemEval-2018 Task 7 was devoted
to semantic relation extraction and classi�cation in scienti�c papers, the
relations could be classi�ed in 6 categories.

Relation extraction consists in �nding and classifying semantic relations
among the text entities (Jurafsky and Martin, 2018). These relations can be
binary, when two entities are involved, or complex, when multiple entities
are involved (Zhou et al., 2014). In the medical domain there are de�ned
some binary relations such as `pharmacologic substance [causes] pathological
function' or `pharmacologic substance [treats] pathologic function' (Jurafsky
and Martin, 2018). In this case, the binary relation that we wanted to �nd
is similar to the one given in the �rst example. Speci�cally, we found the
relation `disease [caused-by] drug', that indicates a relation of type caused-by
between the drug and the disease (e.g. `astenia [caused-by] interferon').
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The NLP techniques that can be used for relation extraction tasks are
divided in i) rule-based methods and ii) machine learning methods (Zhou
et al., 2014). The machine learning methods, in turn, are divided in super-
vised and unsupervised methods (Dalianis, 2018). In this case we opted for
supervised machine learning techniques, using EHRs with ADR annotations.
The algorithm for relation extraction using supervised learning can be de-
�ned as in Figure 1.1 (Jurafsky and Martin, 2018). According to this, for
relation extraction (find relations), �rst it is necessary to recognize the
entities (find entities). In our case e1 is the drug and e2 is the disease.
Finally, the relations created with these entities are classi�ed (classify re-

lation) by assigning the label of the predicted class. In our case the relation
is caused-by.

Figure 1.1: Relation extraction algorithm.

For the ADR extraction developed in this work, we distinguished the two
steps involved in this task:

1. Medical Entity Recognition (MER) to �nd �drug� entities and
�disease� entities. The �drug� entity encompasses either a brand name,
a substance or an active ingredient and the �disease� entity encompasses
either a disease, a sign or a symptom.

2. ADR detection to discover the relations between �drug� entities and
�disease� entities that correspond to ADRs. The �drug� entity would
be the causative agent and the �disease� entity would be the caused
adverse reaction.

These steps can be developed using a pipeline approach as shown in Fig-
ure 1.2 for an extract from an EHR. First, the medical entities are recognized
(e.g. the diseases `�ebre de predominio vespertino', `sudoración', `astenia'
and the drug `Interferon') and then, the ADR relations are detected between
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the previous entities (e.g. the pairs `�ebre de predominio vespertino - Inter-
feron', `sudoración - Interferon', `astenia - Interferon'). This implies that
ADR detection relies on the quality of the MER step. The ADR detection
step explores the relations between drug-disease pairs, thus, an unrecognized
entity might yield to undisclosed relations. Our work focused on the sec-
ond step, the ADR detection, although we also explored the in�uence of the
automatic recognition of medical entities in the detection of ADR relations.

In the ADR extraction process, we had to overcome some challenges
that make this supervised classi�cation task di�cult. We can observe these
in the EHR shown in Figure 1.3, from which we extracted the example shown
previously. On the one hand, the ADRs are minority relations because gen-
erally the drug and the disease are either unrelated or related as treatment
and, thus, the ADRs are rare cases. For example, the drug `Interferon'
(meaning `Interferon') was prescribed as a treatment for a disease di�erent
to the caused adverse reactions, `VHC' (meaning `HCV'). On the other hand,
the EHRs show multiple lexical variations. For example, the doctor refers
to the drug `Interferon' (meaning `Interferon') also with their abbreviation
`iFN' or with the name `iFN pegilado', `persistencia de la �ebre' (meaning
`persistence of the fever') refers to the disease `�ebre de predominio vesper-
tino' mentioned before and `rash cutaneo' (meaning `skin rash') refers to
the disease `rash pruriginoso de predominio troncular consistente en máculas
eritematosas'. In addition, our EHRs are written in Spanish whereas the
majority of biomedical NLP research has been done in English. The Spanish
and other languages di�erent to English count with few resources and tools
to apply NLP in the medical domain. In this line, it is remarkable the recent
interest in developing NLP tools for languages other than English (Névéol
et al., 2018).
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Figure 1.2: Scheme of the ADR extraction pipeline. The pipeline is applied
to the sentence `Current State: The patient has reported predominantly
evening fever of 38◦, together with sweating and weakness since April, date on
which treatment with Interferon was started, being the symptoms attributed
initially to this treatment.'.
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Figure 1.3: Example of an annotated EHR.
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1.3 Objectives and research questions

The main objective of this work is the creation of a model able to detect
automatically ADRs in EHRs written in Spanish. This, in turn, encompasses
the sub-objectives stated below:

• Detect ADRs by discovering relations between the causative drug and
the caused diseases.
The aim is to detect drug-disease pairs related as ADRs and not only
the disease caused by the drug. The projects in which this work is
framed (DETEAMI and PROSAMED) stated that indicating explicitly
the entities involved in an ADR can result more useful for their study.

• Discover approaches to overcome the class imbalance.
Given that ADRs are rare events, it is frequent to �nd the class im-
balance problem in this task. Machine learning algorithms tend to
expect balanced class distributions and learning the minority class is
di�cult for them. For this reason, our intention is to explore di�er-
ent techniques that could help to tackle this issue improving the ADR
detection or �nd approaches that could be robust against imbalanced
distributions of the class.

• Discover robust representations to cope with the lexical variability and
the data sparsity.
This is a challenge goal due to two factors. First, the EHRs are writ-
ten during consultation time and each doctor uses di�erent terms or
expressions, producing lexical variations. Second, due to con�dential-
ity issues, there is a lack of available EHRs. Then, our intention is
to explore di�erent representations in order to make the most of the
annotated corpus.

According to the objective, the focus of this work can be summarized in
the following main research question:

How can NLP techniques be applied to aid in the extraction of ADRs in
EHRs written in Spanish?

Derived from this main research question, there are some research ques-
tions that we intend to answer. Unlike in other dissertations, we present
these research questions along the chapters where each one emerges naturally,
instead of in the introduction, in an attempt to facilitate their understanding.
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1.4 Document structure

This dissertation is arranged in eight chapters. A brief description about the
points addressed in each chapter is given below.

• Chapter 1 - Introduction

In this chapter we introduce this work by explaining the motivation
to develop the ADR extraction and the framework. We also present
the objectives to achieve together with the main research question to
address.

• Chapter 2 - Related work

We make a review of the di�erent works related with the ADR extrac-
tion task. We focus on the de�nition of ADR extraction, the techniques
and features employed for the ADR classi�cation, the corpora and the
evaluation schemes used for ADR extraction.

• Chapter 3 - Experimental framework

In order to reach a better understanding of the experiments, we present
the corpora employed in our work. Furthermore, we describe the
schemes and metrics employed for the evaluation of our systems.

• Chapter 4 - Adverse Drug Reaction detection with symbolic represen-
tations and Random Forest

We describe the features employed to create the symbolic characteri-
zations of the ADR events, our �rst approach. We present the Ran-
dom Forest classi�er used for ADR detection of intra-sentence as well
as inter-sentence ADRs. We also explain the approaches explored to
tackle the class imbalance.

• Chapter 5 - Adverse Drug Reaction detection with dense representa-
tions and Random Forest

We explain the dense characterizations created from embeddings that
were used together with the Random Forest classi�er overcoming the
class imbalance, our second approach. Moreover, we propose di�erent
smoothing techniques that were applied to the dense representations in
order to improve the proximity between semantically related words.
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• Chapter 6 - Adverse Drug Reaction detection with dense representa-
tions and Joint Attentive Bidirectional Long Short-Term Memory

We change the classi�er and we explain the neural networks used for
ADR detection, including the core-features employed to infer the dense
representations, as our third approach. We also present the techniques
explored to overcome the class imbalance suited for neural networks.

• Chapter 7 - Tolerance of ADR detection to noise

Until now, we just focus on the ADR detection step and we try di�erent
representations and classi�ers. In this chapter we discuss the results
obtained with the best performing approach, using slightly di�erent
corpora and incorporating the automatic detection of medical entities
(the entire pipeline of Figure 1.2).

• Chapter 8 - Conclusions and future work

Finally, we give the �nal conclusions, which include the response to
the research questions and the main contributions. We explain the
future lines of work regarding the ADR extraction. We also show the
publications related to this work.

Apart from the chapters described above, we include appendices to ex-
plain some tasks developed in parallel and inherent to event extraction.

• Appendix A - Negated medical entity recognition

We explain the two approaches explored to detect negated entities au-
tomatically. These negated entities are used to discard negative ADR
candidates.

• Appendix B - Medical entity recognition

We brie�y explain some experiments developed to detect medical enti-
ties automatically. These entities are those used to observe the in�uence
of MER step on ADR detection (see Figure 1.2).

• Appendix C - Detailed results: ADR detection with dense representa-
tions and Random Forest

We give detailed results of the experiments developed in Chapter 5
for ADR detection using dense representations and the Random Forest
classi�er.

The abbreviations used throughout this document are expanded in page xxiii.





2
Related work

2.1 Introduction

In this chapter we review the di�erent ways in which ADR extraction was
tackled in related works. At the same time, we make a comparison and
position our work with respect to previous approaches in terms of relevance.
Our aim is to explain the di�erentiating factors and, above all, to align
each work with ours. To begin with, we summarized in Table 2.1, related
works in terms of the factors we found most di�erentiating to approach ADR
extraction. Each factor, de�ned in depth in the forthcoming sections, is listed
here:

i De�nition of ADR extraction: Presence of the ADR in a piece of text
(denoted as �P�), Mention of the ADR as an entity (�M�), Relation
between the entities involved in the ADR (�R�).

ii ADR classi�cation techniques: Traditional (�T�), Deep Learning (�DL�).

iii ADR characterization features: Symbolic (�S�), Dense (�D�).

iv Corpora for ADR extraction: EHR (�E�), Social Media (�SM�), Scien-
ti�c Publications (�SP�), Others (�O�) as textual genres and English
(�EN�), Japanese (�J�), Swedish (�SW�) as languages.

v Evaluation of ADR extraction: Hold-Out (�HO�) and k-fold Cross-
Validation (�CV�) as evaluation schemes. The F-measure (�F�) of the

13
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positive class obtained with hold-out is given as evaluation metric when-
ever possible; in other cases, the macro (�M �) or micro (�µ�) values or
even the Area Under the ROC curve (�AUC�) are given. In the ta-
ble we always report the results corresponding to the best performing
experiment.

Note that, for example, the de�nition of ADR itself is a conspicuous dif-
ferentiating factor but also the characterization of ADRs, the approaches
employed to extract them or the assessment techniques. Moreover, Table 2.1
just intends to summarize outstanding works but does not cope with all the
works mentioned throughout this chapter. As an example, the table does not
encompass those works that did not resort to supervised machine learning.
By contrast, we found of interest to include not only works devoted to ADR
extraction (in the top of the table) but also works within the medical do-
main in closely related tasks (in the middle) and relevant relation extraction
approaches applied out of the medical domain (in the bottom).
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ADR extraction

Aramaki et al. (2010) R T S E J 10CV F 59.8

Miura et al. (2010) R T S E J 5CV F 37.5

Sohn et al. (2011) P T S E EN HO F 74.5

Botsis et al. (2011) P T S E EN HO FM 81.3

Gurulingappa et al. (2011) P T S SP EN 10CV F 76.0

Gurulingappa et al. (2012a) R T S SP EN HO F 87.0

Karlsson et al. (2013) P T S E SW 10CV AUC 87.0

Patki et al. (2014) P T S SM EN 10CV F 65.2

Ginn et al. (2014) P T S SM EN 10CV F 76.6

Zhao et al. (2014) P T S E SW 10CV AUC 71.7

Zhao et al. (2015) P T S E SW 10CV AUC 76.3

Friedrich and Dalianis (2015) P T S E SW 10CV F 67.0

Li et al. (2015) R T S SP EN 10CV F 51.1

(Continued on next page)
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Sarker and Gonzalez (2015) P T S SP EN HO F 81.2

Nikfarjam et al. (2015) M T S,D SM EN HO F 82.1

Lin et al. (2015) M T S,D SM EN HO F 62.5

Henriksson et al. (2015a) R T S,D E SW HO F 27.2

Henriksson et al. (2015b) P T D E SW 10CV AUC 94.0

Zhang et al. (2016) P T S,D SM EN HO F 54.9

Huynh et al. (2016) P DL D SP EN 10CV F 87.0

Stanovsky et al. (2017) M DL D SM EN HO F 93.4

Lee et al. (2017) P DL D SM EN HO F 64.5

Tutubalina and Nikolenko (2017) M DL D SM EN HO FM 79.8

Akhtyamova et al. (2017) P DL D SM EN HO F 54.2

Cocos et al. (2017) M DL D SM EN HO F 75.5

Gupta et al. (2018) M DL D SM EN HO F 75.1

Wunnava et al. (2018) M DL D E EN HO F 63.5

Masino et al. (2018) P DL D SM EN HO F 45.7

Fabregat et al. (2018) R DL D SP EN 10CV FM 75.6

medical domain

Jagannatha and Yu (2016a) M DL D E EN 10CV Fµ 80.3

Jagannatha and Yu (2016b) M DL D E EN 10CV Fµ 86.3

Luo (2017) R DL D E EN HO Fµ 77.5

Li et al. (2017) R DL D SP EN HO F 66.1

Raj et al. (2017) R DL D E EN HO F 64.4

Legrand et al. (2018) R DL D SP EN HO FM 83.9

He et al. (2019) R DL D E EN HO Fµ 69.7

relation extraction applied to other domains

Celli (2010) R T S O EN 10CV F 26.7

Zeng et al. (2014) R DL D O EN HO FM 82.7

Ebrahimi and Dou (2015) R DL D O EN HO F 82.7

Nguyen and Grishman (2015) R DL D O EN HO FM 82.8

Miwa and Bansal (2016) R DL D O EN HO FM 85.5

Zheng et al. (2016) R DL D O EN HO FM 83.8

(Continued on next page)
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Zhou et al. (2016) R DL D O EN HO FM 84.0

Katiyar and Cardie (2017) R DL D O EN HO Fµ 55.9

Christopoulou et al. (2018) R DL D O EN HO Fµ 64.2

Ren et al. (2018) R DL D O EN HO FM 87.4

Le et al. (2018) R DL D O EN HO FM 86.3

Table 2.1: Overview of the related works in chronological order, separating
those devoted to ADR extraction (in the top), those within the medical
domain (in the middle) and those out of the medical domain (in the bottom).
The di�erent values are: Presence (denoted as �P�), Mention (�M�), Relation
(�R�), Traditional (�T�), Deep Learning (�DL�), Symbolic (�S�), Dense (�D�),
EHR (�E�), Social Media (�SM�), Scienti�c Publications (�SP�), Others (�O�),
English (�EN�), Japanese (�J�), Swedish (�SW�), Hold-Out (�HD�), Cross-
Validation (�CV�), F-measure (�F�), Area Under the ROC Curve (�AUC�),
together with macro (�M �), micro (�µ�).

The rest of the chapter is organized as follows, Section 2.2 explains the
di�erent ways in which the ADR extraction task was de�ned. Section 2.3
presents classi�cation approaches employed to infer the ADR extraction mod-
els. Section 2.4 explores a key-issue in machine learning, that is, the set of
features used for the ADR characterization. Section 2.5 mentions alterna-
tive textual genres of corpora and languages employed in ADR extraction.
Section 2.6 shows alternative assessment approaches employed to evaluate
the ADR extraction approaches. That is, each factor is developed in one
of the sections. Furthermore, after having reviewed a key-factor, we discuss
our task and state the strategy adopted in our work. Finally, Section 2.7
provides some concluding remarks.
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2.2 De�nition of ADR extraction

One of the di�erentiating factors in related works dealing with ADR extrac-
tion is the de�nition of the task itself. We distinguished three de�nitions:
presence of ADRs, ADR mentions and ADR relations (referred to as �P�, �M�
and �R� respectively in Table 2.1). Hereafter, we elaborate on each de�nition.

• Presence of ADRs: Some authors refer to ADR extraction as the
detection of presence (or absence) of ADRs in a document. It involves
a binary classi�cation of the document itself. The classi�er deter-
mines whether or not a document, such as a health record, contains
an ADR (Botsis et al., 2011; Karlsson et al., 2013; Zhao et al., 2014,
2015; Friedrich and Dalianis, 2015; Henriksson et al., 2015b). This bi-
nary classi�cation can be targeted at the entire document, as in the
aforementioned cases, or at smaller parts of the document, such as at
a paragraph or at a single sentence (Sohn et al., 2011; Gurulingappa
et al., 2011; Patki et al., 2014; Ginn et al., 2014; Sarker and Gon-
zalez, 2015; Zhang et al., 2016; Huynh et al., 2016; Lee et al., 2017;
Akhtyamova et al., 2017; Masino et al., 2018).

• ADR mentions: Other authors refer to ADR extraction as the ex-
traction of a subset of entities, namely, the adverse reactions. These
entities are those labeled as �Adverse reaction to drug� in the Sys-
tematized Nomenclature of Medicine Clinical Terms (SNOMED CT)
hierarchy. In this case, the focus is only the disease (�nding, sign or
symptom) resulting from some medication intake but the medication
is not marked (Nikfarjam et al., 2015; Lin et al., 2015; Jagannatha
and Yu, 2016a,b; Stanovsky et al., 2017; Tutubalina and Nikolenko,
2017; Cocos et al., 2017; Gupta et al., 2018; Wunnava et al., 2018).
The core approach for this task is, generally, a Named Entity Recogni-
tion (NER) system particularly suited for diseases that correspond to
adverse reactions (a subset of diseases in SNOMED CT).

• ADR relations: Others interpret the task as the extraction of rela-
tions between drugs and diseases (the adverse reactions). From the
NLP perspective this consists in a relation extraction task of cause-
e�ect events in which the drug is the causing agent and the disease the
reaction or e�ect. With this de�nition, it is the related drug-disease
pair itself that is referred to as ADR (Aramaki et al., 2010; Miura
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et al., 2010; Gurulingappa et al., 2012a; Li et al., 2015; Henriksson
et al., 2015a; Luo, 2017; Raj et al., 2017; Legrand et al., 2018; He
et al., 2019). Note that this task is more thorough than the detection
of presence of ADRs, since the detection of mere presence does not
explicitly indicate which was the ADR). Besides, it is more compre-
hensive than the extraction of just the adverse reaction (the disease)
as it omits the causative drug.

Positioning our work with respect to related works. The de�nition
of ADR extraction constraints, considerably, the amount of information pro-
vided. Our work is framed within the DETEAMI and PROSAMED projects
(see Section 1.2). In order to meet the needs of these projects, the ADR
extraction was de�ned as a relation extraction task. Accordingly, we extract
drug-disease pairs in which the drug is responsible of the disease considered
an adverse reaction. However, this approach is more complex than the other
two because it entails the recognition of the entities and the detection of
causal relations. To cope with relation extraction we followed the pipeline
approach shown in Figure 1.2. The majority of our work rests on the second
step, that is, the detection of causal relations. To this end, as was done
by Aramaki et al. (2010) and Miura et al. (2010), the gold mentions (entities
manually annotated by the experts) were employed in Chapter 4, Chapter 5
and Chapter 6. Nevertheless, we completed the pipeline and automatically
recognized medical entities to later extract ADRs in Chapter 7.

2.3 ADR classi�cation techniques

Reviewing the methods employed to extract ADRs, our impression is that the
mainstream follows supervised classi�cation techniques. In this line, we dis-
tinguished the so called traditional machine learning algorithms and emerg-
ing deep learning approaches (referred to as �T� and �DL� respectively in
Table 2.1).

• Traditional machine learning algorithms: These are the classi�ers
typically used to learn from the data and make a prediction employing
hand-crafted features (Goldberg and Hirst, 2017). In works related
with ADR extraction we can highlight classi�ers such as Naive Bayes
(NB), Support Vector Machines (SVM), Random Forest (RF), Decision
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Trees (DT), Conditional Random Fields (CRF) or Maximum Entropy
(ME).

� NB: It predicts the class based on a set of given features, assuming
that features are independent given the class. It was tested in
several works such as (Botsis et al., 2011; Ginn et al., 2014; Zhao
et al., 2014, 2015; Sarker and Gonzalez, 2015).

� SVM: It selects the hyperplane that separates the feature space
by their class with more con�dence (Aramaki et al., 2010; Miura
et al., 2010; Gurulingappa et al., 2012a). SVM was the best per-
forming one among several classi�ers such as NB, RF, DT and ME
in (Patki et al., 2014; Ginn et al., 2014; Friedrich and Dalianis,
2015; Sarker and Gonzalez, 2015).

� RF: It is an ensemble of decision trees, where each decision tree is
created with a subset of the features used to classify a given exam-
ple (Henriksson et al., 2015a,b). RF outperformed other classi�ers
such as NB, SVM and DT in (Karlsson et al., 2013; Zhao et al.,
2014, 2015).

� DT: It consists of a series of nodes sorted by their relevance, where
each node represents a feature, the branches represents the values
of them and the leaf nodes are the classes (Celli, 2010; Sohn et al.,
2011).

� CRF: It predicts sequences of labels for sequences of input sam-
ples (Nikfarjam et al., 2015; Lin et al., 2015). It was employed to
�nd ADR mentions.

� ME: It selects the class that has the largest entropy based on the
principle that the distribution should be as uniform as possible,
that is, has maximal entropy (Zhang et al., 2016). ME was the
best performing classi�er in comparison with others such as NB,
SVM and DT in (Gurulingappa et al., 2011).

� Others: Other classi�ers used for the task were structured per-
ceptron for training and multiple-beam search algorithm for de-
coding (Li et al., 2015) and Generalized Additive Model (Botsis
et al., 2011).

• Deep learning algorithms: These are neural networks with several
hidden layers that not only predict, but also represent the data by
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automatically inferred features (Goldberg and Hirst, 2017). We can
distinguish two main neural network architectures, the Convolutional
Neural Network (CNN) and the Recurrent Neural Network (RNN) and,
in turn, in the last group it is possible to distinguish Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU). We can also �nd
the Bidirectional Recurrent Neural Network (Bi-RNN), which includes
the Bidirectional Long Short-Term Memory (Bi-LSTM). The ADR ex-
traction in related works was based mainly on the aforementioned neu-
ral networks.

� CNN: It produces a �xed size vector representation that captures
the most informative local aspects (Zeng et al., 2014; Nguyen and
Grishman, 2015; Lee et al., 2017; Akhtyamova et al., 2017; Masino
et al., 2018; He et al., 2019). CNN outperformed Recurrent Con-
volutional Neural Network, Convolutional Recurrent Neural Net-
work and Convolutional Neural Network with Attention in (Huynh
et al., 2016).

� RNN: It has recurrent hidden states in a way that the activation
of a hidden state depends on the previous hidden state (Ebrahimi
and Dou, 2015; Cocos et al., 2017).

� LSTM: It is a type of RNN with a gating mechanism that preserves
the memory and the error gradients across time (Luo, 2017). The
models inferred with LSTM performed better than those inferred
with CNN in (Zheng et al., 2016; Fabregat et al., 2018; Legrand
et al., 2018).

� GRU: It is also an RNN with a gating mechanism, but with sub-
stantially fewer gates and without a separate memory component.
GRU outperformed Bi-LSTM in (Jagannatha and Yu, 2016a; Tu-
tubalina and Nikolenko, 2017).

� Bi-LSTM: It is an LSTM that considers the forward and backward
states (Jagannatha and Yu, 2016b; Miwa and Bansal, 2016; Zhou
et al., 2016; Stanovsky et al., 2017; Li et al., 2017; Gupta et al.,
2018; Wunnava et al., 2018; Christopoulou et al., 2018).

� Others: Some of the aforementioned classi�ers were combined such
as Convolutional Recurrent Neural Network (Raj et al., 2017),
multichanel Bi-LSTM with CNN (Le et al., 2018) or even a CNN
model for the text descriptions together with a CNN model and a
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Bidirectional Recurrent Convolutional Neural Network model for
the sentence representation (Ren et al., 2018).

Some of the aforementioned works compared their neural network imple-
mentations with the traditional classi�ers, concluding that the neural net-
works o�ered better results with less feature engineering. This makes their
use promising to improve the performance of our work. The majority of the
related works dealing with ADR extraction employed supervised methods
and this is what we did in this work, this is why we do not include unsu-
pervised methods in Table 2.1. However, unsupervised methods can also be
used. For example, Duque et al. (2015) created a knowledge representation
model that assigns relations according to the statistical signi�cance of their
co-occurrence in the same document.

Positioning our work with respect to related works. ADR extrac-
tion evolved from traditional to deep-learning classi�ers. In our work, we also
explored the two types of machine learning algorithms. Speci�cally, in Chap-
ter 4 and Chapter 5 we explain the experimentation made with traditional
classi�ers and in Chapter 6 the experimentation made with deep learning
classi�ers. Although in some of the works based on relation extraction the
classi�ers were used to jointly extract the entities and the relations, such
as was done by Li et al. (2015), Miwa and Bansal (2016), Li et al. (2017)
and Katiyar and Cardie (2017), we used a pipeline method.

2.4 ADR characterization features

To infer the models with the machine learning algorithms, it is necessary to
represent the instances with a set of features. In any of the classi�cation tech-
niques the characterization of the instances plays an important role. In the
classi�ers mentioned previously, we distinguish symbolic and dense features
for the characterization (referred to as �S� and �D� respectively in Table 2.1).

• Symbolic features: These features are used for the traditional ma-
chine learning algorithms employed in the most earlier related works
and are mainly based on word-forms, n-grams, lemmas, etc. Often,
feature engineering led the authors to incorporate other numeric fea-
tures. In what follows we review the most relevant ones. It is possible
to distinguish representations that contain general features.
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� Entity: Word-forms of the entities (e.g. drug and disease) (Ara-
maki et al., 2010; Li et al., 2015).

� Context: Words between the entities (Aramaki et al., 2010; Li
et al., 2015; Celli, 2010) or before and after the entities (Li et al.,
2015).

� Distance: Number of words between the entities (Miura et al.,
2010; Li et al., 2015; Celli, 2010) or surrounding the entities (Ara-
maki et al., 2010; Miura et al., 2010).

� Order: Order in which the entities involved in a pair appear (e.g.
disease-drug or drug-disease) (Miura et al., 2010).

� Lemma: Lemmas of the corresponding word-forms (Botsis et al.,
2011; Gurulingappa et al., 2011, 2012a).

� Part-Of-Speech (POS): POS tags of the corresponding word-form
(Gurulingappa et al., 2012a; Li et al., 2015).

� A�xes: Su�xes and pre�xes of the corresponding word-forms (Gu-
rulingappa et al., 2011; Li et al., 2015).

� N-grams: Sequence of contiguous n word-forms (Patki et al., 2014;
Sarker and Gonzalez, 2015).

� Synset expansions: Synonyms according to WordNet (Patki et al.,
2014; Sarker and Gonzalez, 2015).

� Polarity: Value indicating the polarity by how a change happens;
if a bad thing was reduced, the outcome is positive and if a bad
thing was increased, the outcome is negative (e.g. more-good,
more-bad, less-good and less-bad) (Patki et al., 2014; Sarker and
Gonzalez, 2015).

� Sentiword scores: Score that represents the general sentiment (Patki
et al., 2014; Sarker and Gonzalez, 2015).

� Others: Words of a text segment (e.g. sentence, document) (Gu-
rulingappa et al., 2011, 2012a; Friedrich and Dalianis, 2015) and
vector where the value of the ith feature is equal to the number
of times that feature or word occurs (Ginn et al., 2014).

There are also features related with the medical domain.
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� Presence: Value indicating the presence of side e�ect keywords
(Sohn et al., 2011) or the presence of drugs (Karlsson et al., 2013)
and number of tokens matching with the DrugBank and MedDRA
lexicons (Gurulingappa et al., 2011).

� Clinical measurements: Values of the measurements taken during
the hospitalization, such as blood pressure or pulse rate (Zhao
et al., 2014).

� Clinical codes: Diagnoses encoded by the International Statistical
Classi�cation of Diseases and Related Health Problems in its 10th
version (ICD-10) and drugs encoded by the Anatomical Thera-
peutic Chemical Classi�cation System (ATC) (Zhao et al., 2014,
2015).

� Uni�ed Medical Language System (UMLS) medical semantic types
and Concept Unique Identi�ers (CUIs): Frequency of these terms
in a document (Sarker and Gonzalez, 2015).

� ADR lexicon: Matches with a lexicon formed with ADR men-
tions (Sarker and Gonzalez, 2015).

• Dense features: These features consist of n-dimensional (Rn) vectors
created from embeddings (vectorial representation of the words gener-
ated with unsupervised methods). They can be embeddings or features
derived from them. On the one hand, we can di�erentiate the dense
representations used for the traditional classi�ers. Sometimes these
dense features are combined with the symbolic ones.

� Vectors: Sum of the semantic vectors of each word to represent the
context (Henriksson et al., 2015a), concatenation of vectors from
semantic spaces built with di�erent context window sizes (Henriks-
son et al., 2015b) and average of vectors of words (Zhang et al.,
2016).

� Clusters: Number of the cluster associated to the token, obtained
by K-means clustering on the word-embeddings (Nikfarjam et al.,
2015; Lin et al., 2015).

On the other hand, we can di�erentiate the dense features employed
by the neural networks, which are automatically inferred from dense
core-features.
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� Word embedding: Embedding corresponding to the word (Huynh
et al., 2016; Jagannatha and Yu, 2016a,b; Zheng et al., 2016;
Akhtyamova et al., 2017; Cocos et al., 2017; Raj et al., 2017;
Katiyar and Cardie, 2017; Gupta et al., 2018; Masino et al., 2018).
This can be augmented with knowledge graph embeddings of DB-
pedia, (Stanovsky et al., 2017) or with the concatenation of the
character-level representation (Tutubalina and Nikolenko, 2017;
Wunnava et al., 2018). This feature apart from being used alone, it
was also combined with other core-features described below (Zeng
et al., 2014; Ebrahimi and Dou, 2015; Nguyen and Grishman, 2015;
Miwa and Bansal, 2016; Zhou et al., 2016; Katiyar and Cardie,
2017; Christopoulou et al., 2018; Ren et al., 2018; Le et al., 2018).

� Position embeddings: Embeddings of the relative distances of the
current word to the entities involved in a relation (Zeng et al.,
2014; Nguyen and Grishman, 2015; Zhou et al., 2016; Luo, 2017;
Christopoulou et al., 2018; Ren et al., 2018).

� Dependency type embedding: Embedding of the dependency type
with the parent in the dependency tree (Miwa and Bansal, 2016;
Li et al., 2017).

� Entity embeddings: Embeddings of the entities involved in a re-
lation (Li et al., 2017; Legrand et al., 2018).

� POS embedding: Embedding corresponding to the POS tag of a
word (Miwa and Bansal, 2016; Le et al., 2018).

� Entity type embedding: Embedding corresponding to the seman-
tic type of the entity (Miwa and Bansal, 2016; Christopoulou et al.,
2018).

� WordNet embeddings: One-hot vectors that determine whichWord-
Net super-senses the token belongs to (Le et al., 2018).

� Character embedding: Character-level embedding corresponding
to each character of a token (Le et al., 2018).

� Others: Concatenation of the concept position, the concept con-
tents, the concept types and the relation type (He et al., 2019)
and di�erent phrase embeddings (Lee et al., 2017).

Apart from the features associated with the entities and their context,
the features related with the distance and their position seem particularly
interesting since we represent the ADRs as drug-disease pairs.
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Positioning our work with respect to related works. In our work
we explored both symbolic and dense representations. The symbolic fea-
tures chosen for the traditional classi�ers are explained in Chapter 4, the
dense features for the traditional classi�ers are explained in Chapter 5 and
the dense features for the deep learning algorithms are explained in Chap-
ter 6. In the related works we observed that, initially, a wide variety of
features were proposed and, in some cases, the authors selected a subset of
relevant features. In our case, we did the same for both symbolic and dense
features. Furthermore, for the dense representations the authors employed
either medical embeddings or generic embeddings. In our case, we explored
both of them, but we focused on medical embeddings (particularly, for the
initialization of the core-features of the deep learning algorithms). Note that
the core-features can be initialized randomly or with pre-trained embeddings.

2.5 Corpora for ADR extraction

ADR extraction was applied to several textual genres. Furthermore, most
of the available corpora for this task are written in English and developing
approaches for languages other than English is challenging (Dalianis, 2018).

Regarding the textual genres, we found three types in the related works:
EHRs, text from social media and scienti�c publications (referred to as �E�,
�SM� and �SC� respectively in Table 2.1).

• EHRs: They are written by experts on the medical domain, they do
not use a fully formal register and they can contain abbreviations or
typos. We found a few works dealing with EHRs (Aramaki et al., 2010;
Miura et al., 2010; Sohn et al., 2011; Karlsson et al., 2013; Zhao et al.,
2014, 2015; Friedrich and Dalianis, 2015; Henriksson et al., 2015a,b;
Jagannatha and Yu, 2016a,b; Luo, 2017; Raj et al., 2017; Wunnava
et al., 2018; He et al., 2019).

• Social media: These corpora mainly consist of comments from so-
cial networks such as Twitter or medical forums, which are written
by non-experts using a colloquial register with abbreviations and often
contain typos. There are several corpora that comprise texts from so-
cial media (Patki et al., 2014; Ginn et al., 2014; Sarker and Gonzalez,
2015; Nikfarjam et al., 2015; Lin et al., 2015; Zhang et al., 2016; Huynh
et al., 2016; Stanovsky et al., 2017; Lee et al., 2017; Tutubalina and
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Nikolenko, 2017; Akhtyamova et al., 2017; Cocos et al., 2017; Gupta
et al., 2018; Masino et al., 2018).

• Scienti�c publications: These corpora are written by experts using
a formal register and seldom have typos. There are several corpora
that comprise texts from scienti�c publications (Gurulingappa et al.,
2011, 2012a; Li et al., 2015; Sarker and Gonzalez, 2015; Huynh et al.,
2016; Li et al., 2017; Legrand et al., 2018).

In some of the aforementioned works, several corpora of di�erent textual
genres were used (Li et al., 2017; Raj et al., 2017; Legrand et al., 2018).

With regard to the language, in the medical domain there is interest
in working with languages other than English. In fact, we found clinical
corpora written in di�erent languages, some of which are mentioned brie�y
below. After that, we focus on the corpora shown in works related with
ADRs, paying special attention to those written in Spanish.

There are clinical corpora written in other languages that do not have
ADRs annotated explicitly. For French, there are a corpus that comprises
case reports and EHRs (Deléger et al., 2014) and the Medical Entity and
Relation LIMSI annOtated Text (MERLOT) corpus (Campillos et al., 2018),
which comprises clinical notes from di�erent hospitals. For German, there is
a corpus that consists of discharge summaries and clinical notes (Roller et al.,
2016) and a corpus that comprises EHRs (Zubke, 2017). For Italian, there is a
corpus formed by medical reports, including discharge summaries, diagnoses
and medical test reports (Attardi et al., 2015). For Portuguese, there is
a corpus with electronic medical records from di�erent specialties (Lamy
et al., 2018). In all these corpora the entities and relations between them
were annotated, except in (Zubke, 2017), with annotations about the numeric
values, and in (Attardi et al., 2015), with annotations about medical entities
and their relations with the negation and speculation.

The same happens with other clinical corpora written in Spanish. The
UHU-HUVR corpus (Cruz et al., 2017) and the IULA Spanish Clinical Record
Corpus (IULA-SCRC) (Marimon et al., 2017) consist of clinical reports with
annotations about negation and are publicly available. The Spanish corpus
extracted from the MultiMedica corpus (Moreno-Sandoval and Campillos-
Llanos, 2013) contains journalistic texts from OCU-Salud as well as encyclo-
pedic articles from Tu otro médico and was tagged with POS (Llanos and
Ueda, 2015). The eHealth-KD corpus (Piad-Mor�s et al., 2019) has articles
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collected from MedlinePlus and was annotated with semantic concepts and
relations. The DrugSemantics corpus (Moreno et al., 2017) consists of texts
from Summaries Product Characteristics, with annotations about entities
such as drugs or diseases (the adverse e�ects are included in the diseases).
The BARR2 corpus (Intxaurrondo et al., 2018) has documents from Scien-
ti�c Electronic Library Online (SciELO), which contains scienti�c journals
of Latin America, South Africa and Spain and were annotated with medical
abbreviations.

Hereafter, we present the corpora explored in related works for ADR
extraction sorted by language. These languages are English, Japanese and
Swedish (referred to as �EN�, �J� and �SW� respectively in Table 2.1). More-
over, we present a corpus written in Spanish with annotations about ADRs.

• English

� Corpus of 237 electronic medical records from patients in the psy-
chiatry and psychology department at Mayo Clinic. The records
were annotated with the relations between the side e�ect and the
causative drug. This corpus was used by Sohn et al. (2011).

� EHRs from cancer patients such as 780 EHRs used by Jagannatha
and Yu (2016a), 1,154 EHRs used by Jagannatha and Yu (2016b)
or 1,089 EHRs from 21 cancer patients provided by University of
Massachusetts for the challenge for Detecting Medication and Ad-
verse Drug Events from Electronic Health Records used by (Wun-
nava et al., 2018). This last set of EHRs was released to the par-
ticipant. In all the aforementioned records several medical entities
were annotated, including adverse drug event mentions.

� Corpus of the 2010 i2b2/VA relation challenge (Uzuner et al.,
2011), which consists of 871 discharge summaries and progress
reports provided by Partners Healthcare, Beth Israel Deaconess
Medical Center and the University of Pittsburgh Medical Cen-
ter. The documents were annotated with di�erent relations among
medical problems, tests and treatments, such as medical problem
caused by a treatment. This corpus is publicly available and was
used by Luo (2017), Raj et al. (2017) and He et al. (2019).

� Corpus created through the extraction of tweets related to 74
drugs of interest from Twitter (Ginn et al., 2014), which contains
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a total of 10,822 tweets. They were labeled with medical mentions
that include the adverse drug reactions. This corpus was employed
in the Paci�c Symposium on Biocomputing 2016 social media min-
ing shared task for ADR classi�cation (Sarker et al., 2016) and
was used by Ginn et al. (2014), Lin et al. (2015), Zhang et al.
(2016), Lee et al. (2017), Akhtyamova et al. (2017) and Masino
et al. (2018).

� Other corpus created through the extraction of tweets related to
81 drugs of interest (Nikfarjam et al., 2015), which contains 1,784
tweets. They were labeled with medical mentions that include
the adverse drug reactions. This was used by Nikfarjam et al.
(2015), Cocos et al. (2017) and Gupta et al. (2018).

� Corpus created with 10,617 comments from DailyStrength, a health
related social network where people share their personal knowl-
edge and experiences regarding diseases and/or treatments (Patki
et al., 2014). This corpus was also labeled with medical men-
tions, including adverse drug reactions. It was used by Patki et al.
(2014).

� Other corpus created with 6,279 comments from DailyStrength (Nik-
farjam et al., 2015). These comments were also labeled with medi-
cal mentions, including adverse drug reactions. It was used by Nik-
farjam et al. (2015).

� CSIRO Adverse Drug Event Corpus (CADEC) (Karimi et al.,
2015), which contains 1,250 posts from Ask a Patient, a medical
forum that collects ratings and reviews of medications from their
consumers. This corpus was labeled with medical entities, includ-
ing adverse drug reaction mentions. It was used by Tutubalina
and Nikolenko (2017) and Stanovsky et al. (2017).

� ADE corpus (Gurulingappa et al., 2012b), which contains 2,972
PubMed case reports. They were labeled with relationships be-
tween the drugs and adverse e�ects as well as between the drugs
and dosages. It was used by Gurulingappa et al. (2011), Gurulin-
gappa et al. (2012a), Li et al. (2015), Li et al. (2017) and Legrand
et al. (2018).

� EU-ADR corpus (Van Mulligen et al., 2012), which consist of 100
Medline abstracts obtained from PubMed. The drug, disease, tar-
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gets and their relationships were annotated (the diseases corre-
spond to ADR mentions). It was used by Legrand et al. (2018).

� Corpus of 6,034 case reports that were submitted to Vaccine Ad-
verse Event Reporting System. These reports were labeld as posi-
tive or negative according to the presence of adverse events. This
corpus was used by Botsis et al. (2011).

• Swedish

� Dataset extracted from the Stockholm EPR Corpus (Dalianis et al.,
2012), comprising 700,000 health records from Karolinska Uni-
versity Hospital in Stockholm. This corpus was annotated with
medical entities and relations such as adverse events. It was
used by Karlsson et al. (2013), Zhao et al. (2014), Zhao et al.
(2015), Friedrich and Dalianis (2015), Henriksson et al. (2015a)
and Henriksson et al. (2015b).

• Japanese

� Corpus that comprises 3,012 discharge summaries gathered from
all departments of the University of Tokyo Hospital. It was anno-
tated with adverse e�ect relations between symptoms and drugs
and was use by Aramaki et al. (2010) and Miura et al. (2010).

• Spanish
For Spanish, we found a corpus that, as explained below, was used
with interesting techniques based on rules and unsupervised methods.
In this case, we focus on supervised machine learning algorithms for
relation extraction, this is why Table 2.1 just includes works that em-
ployed them.

� SpanishADRCorpus (Segura-Bedmar et al., 2014b) labeled with
drugs and e�ects as entities and drug indications and adverse
drug reactions as relations. It is composed by 400 documents
gathered from ForumClinic, a health network website in Spanish.
Note that, this corpus was employed for ADR extraction with
techniques based on rules and unsupervised methods. For ex-
ample, Segura-Bedmar et al. (2014b) identi�ed drug and adverse
event mentions by a dictionary-matching approach. Instead, we
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approached this task as relation extraction. Segura-Bedmar et al.
(2014a) and de la Peña et al. (2014) identi�ed drugs and e�ects
also with a dictionary-based approach and next, extracted indi-
cation and ADR relations with a method based on co-occurrence.
In this method, the pairs co-occurring within a window of n to-
kens are treated as relations and the indication and ADR relations
are found by looking-up a table created previously with these re-
lations. Segura-Bedmar et al. (2015) identi�ed drugs and e�ects
with another dictionary-based approach and next, extracted in-
dication and ADR relations using distant-supervision. With the
distant supervision approach, two entities that co-occur in a sen-
tence form a relation and a knowledge base is used instead of an
annotated corpus for the learning process.

Positioning our work with respect to related works. In our work we
focus on EHRs written in Spanish. Obtaining large sets of EHRs is di�cult,
even more if they are written in languages other than English, since they
contain personal information of the patients that cannot be publicly avail-
able. Most often, the authors give the number of documents of the corpus.
Nevertheless, the average number of tokens per document is missed and this
makes di�cult to make a comparison. For example, in other works they
compare corpus of EHRs with a very di�erent number of documents (over
100,000 for Spanish and over 1,000,000 for Swedish) but a similar number of
tokens (about 50 millions) (Pérez et al., 2017). In our case, we tried to give
an exhaustive analysis of our corpora in Chapter 3.

2.6 Evaluation of ADR extraction

The related works assessed their experiments in di�erent ways. These assess-
ments may di�er in terms of evaluation scheme as well as evaluation metrics.
In Table 2.1, we can see the results obtained in these experiments together
with the corresponding evaluation schemes and metrics.

With regard to the evaluation schemes, we found that the majority
of the works reported a hold-out evaluation scheme, even though, k-fold
cross-validation is also popular (referred to as �HO� and �CV� respectively
in Table 2.1). In other cases the authors used both of them depending on
the experiment.
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Regarding the evaluation metrics, the majority of the works reported
the precision, recall and f-measure. Some exceptions are the Area Un-
der ROC Curve (AUC) showing or not the Receiver Operating Char-
acteristic (ROC) curve and the accuracy. Note that sometimes, the
authors only o�ered the averaged results of all the classes. For example, the
macro-averaged measures or the micro-averaged measures. In this case, we
show the f-measure of the positive class whenever it is possible (referred to
as �F� in Table 2.1).

Positioning our work with respect to related works. In our work
we employed hold-out and k-fold cross-validation. We also employed several
evaluation metrics, paying particular attention to the f-measure of the posi-
tive class. The reason is that the bias in the learning, due to the class imbal-
ance, makes easier to predict correctly the majority class than the minority
class and, hence, we prefer to study the di�cult situation (the f-measure of
the positive class). The evaluation schemes and metrics used to assess our
experiments are summarized in Section 3.3.

2.7 Concluding remarks

In this chapter we shown the main di�erences found in the related works
to tackle the ADR extraction. The most outstanding di�erentiating factor
rest on the de�nition of ADR extraction and, accordingly, the NLP approach
adopted to tackle it. ADR extraction de�ned as relation extraction is the
most comprehensive one since it clearly reveals both the causative drug and
the caused disease. In this work we pay particularly attention to the ADR
discovery step. To deal with this, there are numerous techniques, in our case,
we opted for supervised classi�cation. We developed traditional approaches
as well as emerging approaches based on deep-learning. The main di�erence
rests on the features employed, either hand-crafted or automatically inferred.
As in related works, we found the characterization of ADRs a key issue and
we explored both symbolic and dense features.

In addition, related works developed their experiments with corpora of
di�erent textual genres and mainly in English. In our case, we focus on
EHRs written in Spanish. Apart from the corpora, the evaluation schemes
and metrics also di�er in related works. This makes di�cult to compare the
performance of the approaches proposed throughout all the works.





3
Experimental framework

3.1 Introduction

Before starting with ADR extraction, we �nd necessary to explain some
details of the experimental framework. This is an attempt to help the reader
to understand the results of the experiments developed in the next chapters.
Speci�cally, the aim is to explain the main characteristics of the corpus used
in this work and describe the evaluation process carried out to asses the
models inferred from the corpus.

The rest of the chapter is organized as follows: Section 3.2 describes the
di�erent corpora used during this work, the annotated as well as the unanno-
tated ones. Section 3.3 explains the evaluation schemes and the evaluation
metrics used to evaluate the predictive models. Section 3.4 provides the
concluding remarks.

3.2 Corpora

This work was developed using EHRs, which are de�ned as `a repository of
information regarding the health of a subject of care, in computer processable
form' (ISO, 2005). The EHRs are often written by the doctors during the
actual consultation. Thus, these records present some challenges in relation
to i) con�dentiality, ii) structure, and iii) lexical variability.

Regarding con�dentiality, the EHRs contain sensitive information about
the patients (Cohen and Demner-Fushman, 2014), which makes them di�-

33
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cult to access. In our case, in order to cope with legal and ethical issues,
we worked with documents that were dissociated in advance by the Basque
Health Service (Osakidetza), according to the DETEAMI and PROSAMED
projects (see Section 1.2). In this way, the EHRs did not contain any per-
sonal information regarding the patients. In addition, the EHRs used in this
work were subject to an agreement between Osakidetza and the University
of the Basque Country.

Regarding structure, the EHRs are written in a free style, that is to
say, they are not structured in standardized sections (Cohen and Demner-
Fushman, 2014). Speci�cally, these EHRs are semi-structured, which means
that they have two main �elds. The �rst one for personal data of the patient
(name, age, dates relating to admittance, etc.) that were not provided by
the hospital for privacy issues. The second one contains the antecedents,
clinical analysis, evolution, diagnosis, treatment, etc. This second �eld is
unstructured in our corpus, although some other hospitals use templates
that divide this into several sub-�elds.

Regarding lexical variability, the EHRs frequently contain standard
and non-standard abbreviations, misspellings or punctuation errors because
they are written under time pressure (Leaman et al., 2015; Dalianis, 2018).
These variants in the terminology make these records di�cult to process
using general-purpose NLP tools (Dalianis, 2018).

Figure 3.1 shows some examples of EHRs. In Figure 3.1a we can ob-
serve that the entire EHR does not contain personal information about the
patient or the doctor because it was dissociated previously. We can also
observe that Figure 3.1a and Figure 3.1b do not follow the same structure:
in Figure 3.1a we can distinguish only the sections `diagnostico' (meaning
`diagnosis') and `tratamiento' (meaning `treatment'), whereas in Figure 3.1b
we can distinguish the sections `evolución' (meaning `evolution') and `impre-
sión diagnostica' (meaning `diagnostic impression'). Furthermore, in both
cases we can see abbreviations such as `I.V.' (meaning `intravenous'), `IZQ.'
(meaning `left'), `gr.' (meaning `gram') or `ADH' (meaning `antidiuretic hor-
mone') and misspellings and punctuation errors such as `diagnostico' instead
of `diagnóstico' (meaning `diagnostic'), `�emon' instead of `�emón' (meaning
`abscess') or `estadío' instead of `estadio' (meaning `stage').
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Paciente que ingresa por presentar odinofagia.

Habiéndosele efectuado tratamiento médico I.V., es dado de alta en

el día de la fecha.

DIAGNOSTICO: - FLEMON PERIAMIGDALINO IZQ.

TRATAMIENTO:

- AUGMENTINE 850: 1/8 horas (1 semana).

- IBUPROFENO 600: 1/8 horas (3 días), posteriormente, si dolor.

- PARACETAMOL 1 gr.: 1/6 horas, si más dolor.

Seguirá control por su médico de atención primaria.

(a) Entire short EHR.

EVOLUCIÓN:

El paciente presenta una enfermedad de Parkinson idiopática de

predominio rígido-acinética con importante rigidez axial y de

predominio derecho (estadío 3 de Hoehn-Yahr).

Asimismo, presenta una hiponatremia atribuible a baja ingesta de

sodio y toma de tiazídicos bien tolerada.

Posteriormente, ha sido valorado por Nefrología quienes consideran

probable que asocie una secreción inadecuada de ADH a las

circunstancias previamente citadas, aconsejando restricción hídrica

y dieta salada.

No se han apreciado otras alteraciones agudas sobreañadidas.

Se han suspendido los tiazídicos y se eleva discretamente el

sinemet.

Asimismo, ha presentado hipoglucemias matutinas asintomáticas, por

lo que se disminuye la dosis de metformina.

IMPRESIÓN DIAGNÓSTICA:

- ENFERMEDAD DE PARKINSON IDIOPÁTICA ESTADÍO 3-4 DE HOEHN YAHR

- HIPONATREMIA NORMOVOLÉMICA EN RELACIÓN CON BAJA INGESTA DE

SODIO, TIAZÍDICOS, DIARREA Y PROBABLEMENTE UN SÍNDROME DE SECRECIÓN

INADECUADA DE ADH SOBREAÑADIDO

- LOS ANTERIORES

(b) Extract from large EHR.

Figure 3.1: Examples of EHRs in raw text.



36 3 - EXPERIMENTAL FRAMEWORK

3.2.1 Annotated corpora

Manually annotated EHRs were used to infer the ADR extraction model and
also to assess its predictions with respect to the ground truth. If the access
to EHRs was di�cult, the access to annotated EHRs is even more di�cult
since the annotation process require experts and is very time-consuming. Fig-
ure 3.2 shows the EHRs of the examples given previously in Figure 3.1 with
the corresponding annotations of the medical entities and their relationships.
Note that the terms that correspond to medical entities can be monolexical
and polilexical or sintagmatic. The monolexical terms are formed by one
word, for example, `hiponatremia' (meaning `hyponatremia'). The polilexical
or syntagmatic terms are formed by more than one word, for example, `enfer-
medad de Parkinson idiopática' (meaning `idiopathic Parkinson's disease').
The documents were annotated with the annotation toolkit Brat (Stenetorp
et al., 2012) and following mainly the process explained by Oronoz et al.
(2015).

Among the entities labeled in the EHRs we can distinguish:

i Diseases, signs and symptoms joined in the Disease group and denoted
as �Grp_Enfermedad�. For example, in Figure 3.3 we found `HTA',
`HDA', `ulcus gástrico', `hepatopatía crónica', `cirrosis', `hipertensión
portal', `varices esofágicas', `bradicardia sinusal', `descompensaciones
ascíticas' (meaning `HBP', `upper GI bleeding', `gastric ulcer', `chronic
liver', `cirrhosis', `portal hypertension', `esophageal varices', `sinus brady-
cardia', `ascitic decompositions' respectively).

ii Allergies denoted as �Alergia�. For example, in Figure 3.3 we found
`alergias medicamentosas' (meaning `drug allergies').

iii Brand-name drugs, substances and active principles joined in the Drug
group and denoted as �Grp_Medicamento�. For example, in Figure 3.3
we found `Aines', `etílica', `betabloqueante' (meaning `NSAIDs', `ethylic',
`beta-blocker' respectively).

iv Procedures denoted as �Procedimiento�. For example, in Figure 3.3 we
found `paracentesis evacuadora' (meaning ` evacuative paracentesis').

In our work we focus on the following entities: Disease group, Allergies and
Drug group.
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(a) Entire short EHR manually annotated by the experts.

(b) Extract from large EHR manually annotated by the experts.

Figure 3.2: Examples of EHRs with medical entities and relations annotated
by the experts.
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Figure 3.3: Extract from an EHR with annotations of the di�erent types of
medical entities.

There are some entities that are not a continuous sequence of words.
Figure 3.4 shows examples of discontinuous entities. In Figure 3.4a ap-
pears the simple discontinuous entity `sangrado paraespinal'. In Figure 3.4b
the discontinuous entity `dolor de rodilla izquierda' overlaps with the entity
`limitación de movilidad de rodilla izquierda' given that there is a compound
sentence.

There are also some entities that appear negated. In all the cases, the enti-
ties that appear modi�ed by a negation cue correspond to �Grp_Enfermedad�
or �Alergia�. In Figure 3.5 we can see examples of negated entities. In
Figure 3.5a the entity `dislipemia' is negated by the negation cue `no' and
`hiperuricemia' is negated by `ni'. In Figure 3.5b the entity `dé�cit motor' is
negated by the negation cue `no', the discontinuous entity `dé�cit sentitivo'
is negated by the same negation cue `no' and the discontinuous entity `dé�cit
de campo visual' is negated by the negation cue `ni'. In Figure 3.5c the entity
`febril' is negated by the pre�x `a'.
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(a) Discontinuous entity without overlap.

(b) Discontinuous entity with overlap.

Figure 3.4: Examples of discontinuous entities. The discontinuity is rep-
resented with a discontinuous line. Figure 3.4a means `There is other soft
parts small bleeding in high posterior cervical paraspinal between C2 and
C5.'. Figure 3.4b means `He presents the following symptoms: Pain and
limited mobility of left knee.'.

(a) Negated entities.

(b) Discontinuous negated entities.

(c) Negated entity with pre�x.

Figure 3.5: Examples of negated entities. The negation is represented with
a cross. Figure 3.5a means `No dyslipidemia nor diagnosed hiperuricemia.'.
Figure 3.5b means `No motor, sensory nor visual �eld de�cit.'. Figure 3.5c
means `Exploration: Afebrile.'.
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Among the relations labeled in the EHRs we can distinguish:

i Relations between the Disease group, the allergies and the Drug group
labeled as �Causada_por� resulting in the pairs (Disease group, Drug
group), (Disease group, Disease group) and (Allergy, Drug group) .

ii Relations between the Disease group and the procedures labeled as
�Relacion_con� resulting in the pair (Disease group, Procedure).

In our work we focus only on the following relations: (Disease group, Drug
group) and (Allergy, Drug group).

These relations can be both inter-sentence and intra-sentence. The intra-
sentence relations have the entities in the same sentence and the inter-
sentence relations have the entities in di�erent sentences. Note that we
use the sentence splitting made by FreeLing-Med (Oronoz et al., 2013), which
takes into account the full stops and line breaks. Figure 3.6 shows examples
of ADR events labeled by the experts. In Figure 3.6a there is an intra-
sentence ADR between the entities `neutropenia severa' and `quimioterapia'
and an inter-sentence ADR between `neutropenia severa' and `CHOP'. In
Figure 3.6b there is an intra-sentence ADR between the entities `intoxicación'
and `acenocumarol' and an inter-sentence ADR between `intoxicación' and
`sintrom'. Note that `CHOP' is an acronym for a type of chemotherapy and
`acenocumarol' is a component of `sintrom'.

In this work we employed three annotated corpora that involve EHRs from
two hospitals. The �rst one, the gold standard corpus (IxaMed-GS), was used
along the main experimentation for ADR extraction in Chapter 4, Chapter 5
and Chapter 6 and also for negation detection in Appendix A and entity
recognition in Appendix B. Within the framework of the DETEAMI and
PROSAMED projects (see Section 1.2), more EHRs were harvested yielding
other two corpora: the cross hospital corpus (IxaMed-CH), which contains
the EHRs of IxaMed-GS, and the extended corpus (IxaMed-E), which con-
tains some EHRs of IxaMed-CH but not of IxaMed-GS. Both were used for
the �nal experimentation in Chapter 7. Note that the EHRs of the IxaMed-
CH corpus and the IxaMed-E corpus were annotated during the development
of the thesis, only the IxaMed-GS corpus was available from the beginning
of our research work.
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(a) Inter-sentence and intra-sentence ADRs.

(b) Inter-sentence and intra-sentence ADRs.

Figure 3.6: Examples of inter-sentence and intra-sentence ADRs. The ADRs
are represented by an arrow that links the drug and the disease involved. Fig-
ure 3.6a means `NHL - T/NK nasal type in treatment with CHOP + Valtrex
with partial response after 4 cycles. Severe neutropenia post-chemotherapy.'.
Figure 3.6b means `In treatment with Sintrom, Prevencor, Rocaltrol and oral
iron. Diagnoses: acenocumarol intoxication'.
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Figure 3.7 shows graphically the distribution of the EHRs along the three
corpora, which are explained more in depth in the sections below.

Figure 3.7: Venn diagram of the annotated EHRs in the gold standard
corpus (denoted as IxaMed-GS), the cross hospital corpus (IxaMed-CH) and
the extended corpus (IxaMed-E).

In order to infer and evaluate the models, each corpus was divided in
train, development and test sets randomly selected without replacement. The
division was done according to the number of documents, then the propor-
tion between the number of positive and negative instances can be di�erent
for each set. Note that, since IxaMed-GS is part of IxaMed-CH, the sets
made with the IxaMed-GS corpus were maintained when it was joined with
the new documents of the IxaMed-CH corpus. Moreover, while the positive
ADR relations were those manually annotated by the experts, the negative
relations were created by combining all the Disease group and Allergy enti-
ties with all the Drug group entities present in each document. Next, the
main characteristics of the three corpora are explained more in depth.

Gold Standard corpus

The gold standard corpus, named IxaMed-GS (Oronoz et al., 2015), consists
of EHRs written in Spanish from a hospital within Osakidetza, the Galdakao-
Usansolo hospital. It comprises some of the discharge records generated
from 2008 to 2012, manually annotated by two experts from the pharmacy
and pharmacovigilance departments of the hospital. The Inter Annotator
Agreement (IAA) was 90.53% for entities and 82.86% for relations and a
consensus was reached at the end.

Table 3.1 provides the quantitative description of the corpus: number of
documents, word-forms, vocabulary, Out-Of-Vocabulary (OOV) words and
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medical entities that the experts manually tagged in IxaMed-GS together
with the number of ADR relations of each class. The OOVs are words of
the evaluation set that were not seen in the training set. For example, the
words `cefaleas', `colecistitis', `cortisol' and `embolismo' (meaning `headaches',
`cholecystitis', `cortisol' and `embolism' respectively) appear in the evaluation
set but not in the training set. This corpus has 75 EHRs that sum up to
41,633 word-forms. The vocabulary established by the train set is of size
4,934, producing 1,526 OOVs in the dev set and the vocabulary established
by the train and dev sets is of size 6,460, producing 979 OOVs in the test set.
Around 9% of the entities are discontinuous and about 20% of the entities
are negated. 82% of the relations annotated as ADRs by the experts were
intra-sentence. With respect to all candidate relations (the relations that the
system explores), the intra-sentence relations represent just 1%. Note that
the corpus is highly imbalanced, that is, there is a highly unequal distribution
of the instances of each class. As it was expected, there are many more drug-
disease pairs unrelated (class 	) than related as ADR (class ⊕). Speci�cally,
in the train set there is a total of 22,459 negative relations but only 69 positive
relations.

IxaMed-GS Train Dev Test
Documents 41 17 17
Word-forms 20,689 11,246 9,698
Vocabulary 4,934 - -
OOVs - 1,526 979

Entities

Drug 503 346 354
Disease 1,341 737 629
Negated 399 214 150
Non-negated 1,445 869 833

Relations

Inter- and Intra-sentence ⊕ 69 45 33
Inter- and Intra-sentence 	 22,459 17,363 24,187
Intra-sentence ⊕ 53 30 27
Intra-sentence 	 231 134 173

Table 3.1: Quantitative description of the IxaMed-GS corpus. Positive
relations (denoted as ⊕) refer to ADRs while negative relations (	) refer to
non-ADRs.



44 3 - EXPERIMENTAL FRAMEWORK

Admittedly, the number of documents might seem small. For example, in
related works that �nd ADRs as in a binary relation classi�cation task, the
authors employed about 400 documents (Aramaki et al., 2010; Miura et al.,
2010; Henriksson et al., 2015a) or even about 2,000 (Li et al., 2015, 2017).
However, an striking characteristic of our EHRs is that the average number
of tokens per document (500) is higher than in other EHRs, such as those
used for Swedish (50) (Pérez et al., 2017). In any case, we also assessed our
approach using corpora with more documents.

Cross Hospitals corpus

The cross hospital corpus, referred to as IxaMed-CH, contains EHRs from
two hospitals within Osakidetza, the Galdakao-Usansolo and Basurto hospi-
tals. The documents of the �rst hospital comprised some of the discharge
records generated from 2008 to 2012 and the document of the second hospital
comprised some of the discharge records generated from 2014. Interestingly,
in these EHRs, the domain was preserved (medical domain), while the sub-
domains were not exactly the same, as both hospitals count on di�erent spe-
cialties (e.g. internal medicine, cardiology, etc.). The new documents were
labeled by other two expert annotators following the guideline created for
the annotation of the gold standard. Then, the way to make annotations can
di�er in some cases from the used in the previous corpus. The IAA achieved
was 89.66% for entities and 71.42% for relations, which was estimated as an
extrapolation of the agreement obtained in a set of randomly selected EHRs,
and a consensus was reached at the end.

Table 3.2 provides the quantitative description of the corpus. This corpus
has 267 EHRs that sum up to 158,263 word-forms. The vocabulary estab-
lished by the train set is of size 13,809, producing 2,628 OOVs in the dev set
and the vocabulary established by the train and dev sets is of size 16,437,
producing 2,280 OOVs in the test set. Around 2% of the entities are dis-
continuous and about 19% of the entities are negated. 83% of the relations
annotated as ADRs by the experts were intra-sentence. With respect to
all candidate relations, the intra-sentence relations represent just 1%. Note
that the corpus is again highly imbalanced. In the train set of IxaMed-CH
the proportion of negative relations is higher than the proportion of positive
relations in relation to IxaMed-GS, hence, the class imbalance challenge is
harder.
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IxaMed-CH Train Dev Test
Documents 157 55 55
Word-forms 91,088 34,004 33,171
Vocabulary 13,809 - -
OOVs - 2,628 2,280

Entities

Drug 2,436 943 887
Disease 6,828 2,328 2,473
Negated 1,716 602 662
Non-negated 7,548 2,669 2,698

Relations

Inter- and Intra-sentence ⊕ 237 96 76
Inter- and Intra-sentence 	 132,382 46,299 53,726
Intra-sentence ⊕ 197 79 62
Intra-sentence 	 2,162 366 559

Table 3.2: Quantitative description of the IxaMed-CH corpus. Positive
relations (denoted as ⊕) refer to ADRs while negative relations (	) refer to
non-ADRs.

Extended corpus

The extended corpus, referred to as IxaMed-E, also contains EHRs from the
Galdakao-Usansolo and Basurto hospitals. These EHRs were labeled in the
same way that the new documents of the IxaMed-CH corpus.

Table 3.3 provides the quantitative description of the corpus. This cor-
pus has 463 EHRs that sum up to 230,040 word-forms. The vocabulary
established by the train set is of size 18,003, producing 3,182 OOVs in the
dev set and the vocabulary established by the train and dev sets is of size
21,185, producing 2,735 OOVs in the test set. Around 0.3% of the entities
are discontinuous and about 21% of the entities are negated. 86% of the
relations annotated as ADRs by the experts were intra-sentence. With re-
spect to all candidate relations, the intra-sentence relations represent 8%.
Note that in the train set of IxaMed-E the proportion of negative relations
is higher than the proportion of positive relations in relation to IxaMed-GS
and IxaMed-CH, hence, the class imbalance challenge is even harder.
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IxaMed-E Train Dev Test
Documents 279 92 92
Word-forms 138,695 47,487 43,858
Vocabulary 18,003 - -
OOVs - 3,182 2,735

Entities

Drug 3,474 1,128 1,122
Disease 10,894 3,831 3,387
Negated 2,976 1,064 913
Non-negated 11,392 3,895 3,596

Relations

Inter- and Intra-sentence ⊕ 374 128 91
Inter- and Intra-sentence 	 159,931 56,103 52,252
Intra-sentence ⊕ 332 113 82
Intra-sentence 	 12,877 5,312 3,756

Table 3.3: Quantitative description of the IxaMed-E corpus. Positive re-
lations (denoted as ⊕) refer to ADRs while negative relations (	) refer to
non-ADRs.

3.2.2 Unannotated corpora

For the use of supervised machine learning approaches employed in ADR
extraction, it is necessary to have the corpus annotated. However, useful
features can be extracted from unannotated corpora (e.g. embeddings). To
this end, we explored two di�erent unannotated corpora written in Spanish
that can be divided in in-domain corpus and out-domain corpus, described
in the sections below.

In-domain corpus

The in-domain corpus, referred to as uEHR, that stands for unannotated
EHRs. This also comprises EHRs from the Galdakao-Usansolo and Basurto
hospitals, but they are not the same as those used in the annotated corpora.
Table 3.4 shows the number of documents, word-forms and vocabulary.



Evaluation 47

uEHR
Domain in-domain
Documents 190,130
Word-forms 109,618,393
Vocabulary 286,984

Table 3.4: Quantitative description of uEHR, the in-domain corpus used to
generate the embeddings.

Out-domain corpus

The out-domain corpus is the Spanish Billion Word Corpus and Embeddings
(SBWCE) (Cardellino, 2016). This was obtained from the web and comprises
journalistic texts, legislative texts, medical texts from the IULA Treebank,
dumps from Wikipedia, etc. Table 3.5 shows the number of word-forms and
vocabulary. Note that we are unaware of the number of documents of this
corpus because this information was not provided by the authors.

SBWCE
Domain out-domain
Documents -
Word-forms 1,420,665,810
Vocabulary 1,000,653

Table 3.5: Quantitative description of SBWCE, the out-domain corpus used
to generate the embeddings.

3.3 Evaluation

In order to assess the quality of the ADR extraction models inferred, we
turned to widely used evaluation schemes and metrics mentioned below.

3.3.1 Evaluation schemes

The evaluation can be done according to di�erent evaluation schemes. In this
work we employed hold-out and k-fold cross-validation (Manning et al.,
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1999). The hold-out evaluation would enable us to expect how would perform
the model on di�erent data. The k-fold cross-validation would perform better
in cases where the data is not large enough.

Speci�cally, during the experimentation done in Chapter 4, Chapter 5
and Chapter 6 we based on the hold-out evaluation using the train, dev and
test sets described in the previous section.This evaluation was done in two
ways: �rst training with the train set and evaluating with the dev set and
next, training with the train and dev sets and evaluating with the test set.
Finally, in Chapter 7 we also corroborated the results using strati�ed 10-fold
cross-validation.

3.3.2 Evaluation metrics

The predictions given by a model can be correct or incorrect depending on the
real class. These situations are represented through a confusion matrix, as
shown Table 3.6. This confusion matrix corresponds to a binary classi�cation
problem, as is our case. Following widely used notation, the positive class
(⊕) indicates an ADR relation, the negative class (	) indicates an unrelated
pair and the values of the confusion matrix are: True Positive (TP), False
Negative (FN), False Positive (FP), True Negative (TN).

predicted

⊕ 	
TP FN ⊕

real
FP TN 	

Table 3.6: Confusion matrix that presents the number of instances predicted
by the system as either positive or negative together with their real class.

With the values of the confusion matrix we calculated the evaluation
metrics commonly reported (Manning et al., 1999; Dalianis, 2018): preci-
sion (denoted as P), recall (R) and f-measure (F). These are shown in
expressions (3.1), (3.2) and (3.3) respectively.

P =
TP

TP + FP
(3.1)

R =
TP

TP + FN
(3.2)
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F = 2
P ·R
P +R

=
2TP

2TP + FN + FP
(3.3)

In this work, the precision, recall and f-measure were obtained for the pos-
itive and negative classes and their averages: weighted-average (denoted as
W. Avg.), micro-average (Micro Avg.) and macro-average (Macro Avg.).
The averages for precision are given in expressions (3.4), (3.5) and (3.6),
where C is the number of classes and L is the number of instances, being Li
the number of instances of class i.

W. Avg. P =
1

L

C∑
i=1

Li
TPi

TPi + FPi
(3.4)

Micro Avg. P =

∑C
i=1 TPi∑C

i=1(TPi + FPi)
(3.5)

Macro Avg. P =
1

C

C∑
i=1

TPi
TPi + FPi

(3.6)

The averages for recall are given in expressions (3.7), (3.8) and (3.9).

W. Avg. R =
1

L

C∑
i=1

Li
TPi

TPi + FNi

(3.7)

Micro Avg. R =

∑C
i=1 TPi∑C

i=1(TPi + FNi)
(3.8)

Macro Avg. R =
1

C

C∑
i=1

TPi
TPi + FNi

(3.9)

The averages for f-measure are given in expressions (3.10), (3.11) and (3.12).

W. Avg. F =
1

L

C∑
i=1

Li
2TPi

2TPi + FNi + FPi
(3.10)
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Micro Avg. F =
2
∑C

i=1 TPi∑C
i=1(2TPi + FNi + FPi)

(3.11)

Macro Avg. F =
1

C

C∑
i=1

2TPi
2TPi + FNi + FPi

(3.12)

Weighted-averaging computes the metric using the confusion matrix of each
class and calculating the weighted mean where the weights are the number of
instances of each class. Micro-averaging computes the metric using a single
confusion matrix obtained by summing each value of the confusion matrix
for all the classes. Macro-averaging computes the metric using the confusion
matrix of each class and calculating the unweighted mean (Manning et al.,
1999; Dessì et al., 2018). The macro-average treats all classes equally, by con-
trast, the weighted-average and the micro-average favor densely populated
classes (Sokolova and Lapalme, 2009). Given the unequal distribution of the
class of our corpora, among all the averages, we would pay more attention
to the macro-averaged results. In this work we focus mainly on the results
obtained for the positive class because it would give a more realistic assess-
ment of the ADR extraction. The aforementioned metrics were calculated
following the de�nition given by Sokolova and Lapalme (2009) for ADR de-
tection, using Scikit-learn libraries of Python (Pedregosa et al., 2011) and
corroborating the results of the classes with Weka libraries of Java (Hall
et al., 2009)

Other useful measures for the tasks with skewed classes are the ROC
curve and the AUC given that they are not sensible to data distribu-
tions (Fawcett, 2006). ROC graphs show how the True Positive Rate (TPR)
changes against the False Positive Rate (FPR) obtained with di�erent thresh-
olds (Manning et al., 1999; Fawcett, 2006). The AUC was used as main
evaluation metric in several related works (Karlsson et al., 2013; Zhao et al.,
2014, 2015; Henriksson et al., 2015b). These metrics are also given in this
work and were calculated following using Scikit-learn libraries of Python (Pe-
dregosa et al., 2011).

3.4 Concluding remarks

Obtaining EHRs is di�cult due to the fact that they are subject to strict
con�dentiality regulations. These are written in a free style generating a wide
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lexical variability, which is re�ected in the OOVs of the dev and test sets of
each corpus. Annotating EHRs is complex, lots of the entities involved in
the ADRs comprise more than one word and these can be situated in a long
distance from one another. Furthermore, the ADRs are not frequent events,
which leads to unequal distribution of the class, that is, class imbalance.

Selecting the way of evaluating the ADR extraction is not straightforward
and there is not a single trend in related works. Depending of the size of the
corpus, the distribution of the class or the algorithms, one of the evaluation
metrics can be better than the rest. For example, the weighted-average and
the micro-average favor densely populated classes, but the macro-average
treats all classes equally. Then, the latter would be preferable in cases with
class imbalance as ours.





4
Adverse Drug Reaction detection with

symbolic representations and

Random Forest

4.1 Introduction

In this work the goal is to detect ADRs. In order to decide how to start to
tackle this task, we revised related works and we observed that, in the �rst
attempts made to detect ADRs with models inferred using machine learning,
the authors employed symbolic representations. These symbolic represen-
tations were discrete features (e.g. word-form, lemma, POS). Furthermore,
the classi�ers widely used were NB, SVM and RF. For example, Aramaki
et al. (2010) employed the entities, the words and the distance between
them. Miura et al. (2010) included features such as the morphemes between
the entities or the order of the entities involved in the ADR. In both cases,
the model was inferred with the SVM classi�er. Gurulingappa et al. (2012a)
employed the tokens of the sentences and their POS tags, lemmas and �ags
indicating if a token is a part of a named entity or not. The model was in-
ferred using SVM. Karlsson et al. (2013) used features that correspond to the
presence and temporality of di�erent drugs and diagnoses codes, obtaining
better results with the RF classi�er than with the J-Rip rule learner. Patki
et al. (2014), apart from n-grams, incorporated as features the synonyms of
the terms and sentiment scores. Ginn et al. (2014) used a vector with the
number of times that each word appeared. In both cases, the NB and SVM
classi�ers were used. Zhao et al. (2014, 2015) employed clinical measures and

53
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clinical codes. RF outperformed the additional classi�ers that were explored.
As a result, we decided to �nd a suitable symbolic representation and

classi�er to detect ADRs following the suggestions given in related works.
To do this, we had to take into account that we wanted to detect drug-
disease pairs and not only the disease or the presence of ADRs. We also
had to consider that we addressed intra-sentence and inter-sentence ADRs,
given that following with the annotations of the experts, the drugs and the
diseases related as ADRs were either in the same sentence or in di�erent
sentences. By contrast, the majority of related works (Aramaki et al., 2010;
Miura et al., 2010; Li et al., 2015) only detected intra-sentence ADRs. In our
opinion, both considering the ADRs as relations and �nding inter-sentence
ADRs made the task more challenging. Furthermore, the experiments were
done with the gold mentions (the entities manually annotated by the experts)
as in (Aramaki et al., 2010; Miura et al., 2010), given that our �rst goal is
to develop the ADR detection (as mentioned in Section 1.3).

All in all, in this chapter our aim is to address the following research
questions:

Research Question 1

Which are appropriate symbolic features for ADR representation to aid
machine learning algorithms?

Research Question 2

To what extent are supervised machine learning approaches appropriate
for ADR detection given that ADRs are infrequent relations?

The rest of the chapter is organized as follows: Section 4.2 describes the
features for the symbolic characterization. Section 4.3 explains the selected
classi�er. Section 4.4 explains the approaches used to tackle the class im-
balance problem. Section 4.5 gives the experimental results. Section 4.6
provides the �nal conclusions.

4.2 Symbolic characterization

In view of the related works mentioned in the introduction (Section 4.1), we
decided to explore symbolic features in our characterization. To obtain some
of them we needed the morphosyntactic and semantic analyzer FreeLing-
Med (Oronoz et al., 2013). As a result, the terms in SNOMED CT with their
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corresponding semantic tag (substances, disorders, procedures, �ndings), the
medical abbreviations and the brand-drug names from the drug database
Bot PLUS were identi�ed. Morphological and syntactic pieces of information
were also provided, such as the lemma or the POS tag.

Our set of features is described below together with the values that these
would take to represent the drug-disease pair `esteroideo - descompensación
hiperglucémica'. Figure 4.1 shows graphically this example, which was ex-
tracted from the sentence `A consecuencia del tratamiento esteroideo se pro-
duce descompensación hiperglucémica que precisa tratamiento con insulin-
ización'.

1. Entity-words and context-words: The medical-entity terms for
both drug and disease together with the left and right context-words
were kept. The context was a window of size k, with k=3 in our case, an
intermediate value among the sizes used in other works (Gurulingappa
et al., 2011; Li et al., 2013). Overall, this yielded 14 features. More-
over, we also experimented with di�erent values of k in Section 4.5.
In our example, the values of these features are given in the �rst line
of Figure 4.1 (�word-form�). The entity-words are descompensacion-
hiperglucemica and esteroideo and the context-words are esteroideo, se,
produce, que, precisa, tratamiento, consecuencia, del, tratamiento, se,
produce, descompensacion.

2. Entity-lemmas and context-lemmas: These features corresponded
to the lemmas of the aforementioned entity-words and context-words
(14 nominal features). In our example, the values of these features are
given in the second line of Figure 4.1 (�lemma�). The entity-lemmas are
`descompensacion - hiperglucemica', esteroideo and the context-lemmas
are esteroideo, se, producir, que, precisa, tratamiento, consecuencia, del,
tratamiento, se, producir, descompensacion.

3. Entity-POS and context-POS: These were 14 features that corre-
sponded to the POS of the aforementioned entity-words and context-
words. In our example, the values of these features are given in the
third line of Figure 4.1 (�POS�). The entity-POS tags are `NCFS000 -
NCFS000', NCMS000 and the context-POS are NCMS000, P00CN000,
VMIP3SO, PR0CN000, VMIP3SO, NCMS000, NCMS000, `SPS00 -
DA0MS0', NCMS000, P00CN000, VMIP3SO, NCFS000.
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4. Drug family: A nominal feature that corresponded to the ATC clas-
si�cation (World Health Organization, 2003) of the drug entity. In our
example, the value of this feature is given in the fourth line of Fig-
ure 4.1 (�drug family'). In this case, the drug is not found in the list of
drug families and the value is `NO HAY FAMILIA'.

5. Presence/absence of other drugs: A numeric feature to indicate
whether there were other drugs in the context of the target drug and
disease. Speci�cally, the value of this feature was the number of drugs
in the context. In our example, the value of this feature is given in the
�fth line of Figure 4.1 (�drugs�). In this case, there is one drug in the
left context of the disease, which is the drug of the ADR, and the value
is 1.

6. Negation modi�ers: These were two binary features to determine
whether each entity of the pair was negated. If we do not have these
annotations, it is possible to use a system to automatically detect the
negated entities. Speci�cally, we explored the detection of negated enti-
ties in EHRs with two approaches: 1) the rule-based system NegEx (San-
tiso et al., 2017) and 2) a CRF classi�er (Santiso et al., 2018b) (turn to
Appendix A to see more information about the detection of negated en-
tities). According to the example, the values of these features are given
in the sixth line of Figure 4.1 (�negation�). Given that the entities are
not negated, the values are noNegado for the disease and noNegado for
the drug.

7. Trigger words: A binary feature that indicated the presence or ab-
sence of trigger words like �causado por� (caused by), �relacionado con�
(related with), �secundario a� (secundary to), �debido a� (due to) be-
tween the drug and the disease of the pair. In our example, the value
of this feature is given in the seventh line of Figure 4.1 (�trigger-word�).
In this case, there are not trigger-words between the entities and the
value is false.

8. Distances: The number of characters and sentences from the drug
entity to the disease entity (2 numeric features). The distance could be
negative if the drug entity preceded the disease entity. The intuition
was that if a drug and a disease entities were close, the probability
of forming an ADR was higher. In our example, the values of these
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features are given in the eighth line of Figure 4.1 (�distances�). The
distance given in characters is -12 and the distance given in sentences
is 0. Note that the distance in sentences is meaningless if we restrict
to detect intra-sentence ADRs.

Figure 4.1: Scheme of the features used for the symbolic characterization of
the ADR `esteroideo - descompensación hiperglucémica' present in the sen-
tence `As a result of the steroidal treatment, it was produced an hypergly-
caemic decompensation that needs treatment with insulinization'. The fea-
tures related with the entities are highlighted in dark blue and the features
related with the context in light blue.

We applied attribute selection to select the most relevant attributes
using Information Gain (Quinlan, 1986) with respect to the class, that is,
the higher the Information Gain the better the correlation with the class.
We selected the 20 most relevant ones because, inspecting the relevance of
the features taking into account all the instances, we observed that around
this position the value of the Information Gain was approximately a half of
the one obtained by the best feature (see Table 4.1). In this way, we also
took into account the word-form of the drug.
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Ranking InfoGain Feature
1 0.013641 distance (characters)
2 0.012797 distance (sentences)
3 0.012522 disease
4 0.011723 disease lemma
5 0.010339 2nd word of the context after the disease
6 0.010091 2nd lemma of the context after the disease
7 0.009826 2nd word of the context before the disease
8 0.009760 3rd word of the context after the disease
9 0.009628 2nd lemma of the context before the disease
10 0.009490 3rd lemma of the context after the disease
11 0.009291 1st word of the context before the disease
12 0.008945 1st lemma of the context before the disease
13 0.008798 3rd word of the context before the disease
14 0.008641 3rd lemma of the context before the disease
15 0.008441 1st word of the context after the disease
16 0.008253 1st lemma of the context after the disease
17 0.007695 3rd word of the context after the drug
18 0.007457 3rd lemma of the context after the drug
19 0.007359 drug
20 0.007275 2nd word of the context before the drug
21 0.007196 3rd word of the context before the drug
22 0.007066 2nd lemma of the context before the drug
23 0.007005 drug lemma
24 0.006986 2nd word of the context after the drug
25 0.006936 2nd lemma of the context before the drug
26 0.006827 3rd lemma of the context before the drug
27 0.006048 1st word of the context after the drug
28 0.005957 1st lemma of the context after the drug
29 0.005491 disease POS
30 0.004794 1st word of the context before the drug
31 0.004575 1st lemma of the context before the drug
32 0.003876 2nd POS of the context before the drug
33 0.003862 1st POS of the context before the disease
34 0.003538 3rd POS of the context before the drug
35 0.003493 1st POS of the context before the drug

(Continued on next page)
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Ranking InfoGain Feature
36 0.003453 2nd POS of the context after the drug
37 0.003273 3rd POS of the context after the drug)
38 0.003225 1st POS of the context after the drug
39 0.002778 2nd POS of the context after the disease
40 0.002690 1st POS of the context after the disease
41 0.002558 drug POS
42 0.002556 3rd POS of the context before the disease
43 0.002270 3rd POS of the context after the disease
44 0.001800 drug family
45 0.001737 2nd POS of the context before the disease
46 0.001378 negated entity
47 0.000315 drugs
48 0.000188 trigger-words
49 0.000000 negated drug

Table 4.1: Ranking of the features according to the Information Gain (de-
noted as �InfoGain�). These features are those created for the symbolic rep-
resentation of the intra-sentence as well as inter-sentence ADR candidates in
the IxaMed-GS corpus.

Furthermore, the feature values allowed OOV words, in a way that it is
possible to include in the evaluation set instances with values that do not
appear in the features of the train set.

4.3 The choice of classi�er

With the aim of checking if our set of features was useful to detect the ADRs
in our EHRs, we developed an experiment using the RF classi�er (Breiman,
2001). In the introduction (see Section 4.1) we already commented that this
classi�er was used in related works about ADR detection. Apart from this,
the selection of this classi�er was motivated by preliminary experiments that
we developed in the degree thesis and in the master thesis, where we observed
that RF was able to carry out the ADR detection (Santiso et al., 2014) and
resulted more robust for this task in comparison with other classi�ers such as
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SVM (Casillas et al., 2016b). Note that, since this was explained in previous
works, we do not go into detail and we summarize the lessons learned.

RF combines a number of decision trees being each tree built on the basis
of the C4.5 algorithm and with a sample of data obtained using bagging,
there are other variants that are built based on bootstrapping. RF has the
characteristic of introducing some randomness to split the nodes of each
tree. Particularly, each time a node is generated in the tree, instead of
choosing the attribute that maximizes the Information Gain, it selects the
best attribute among a random subset of features. The bagging and the
random features selection help to avoid over�tting and, for this reason, it
obtains good generalization ability (Qi, 2012). Figure 4.2 shows the general
architecture of the RF algorithm. X is the instance, n is the number of trees,
c1, c2 and cn are the class assigned to the instance for each tree and c is the
�nal class assigned to the instance selected by voting.

Figure 4.2: Scheme of the general architecture of the Random Forest algo-
rithm.

In the experiment developed for this �rst approximation, all the instances
were predicted as non-ADRs. That is to say, the classi�er assigned the neg-
ative class to all of them. Inspecting the instances of the set used to infer
the model we observed the presence of skewed class distribution and our
impression was that the ADRs had not been detected due to the class im-
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balance problem. This is the highly unequal distribution of instances of each
class, there is a big amount of examples of one class (normal cases) and a
small amount of the other one (anomalous cases) (Chandola et al., 2009).
Naturally, this imbalance was higher taking into account intra-sentence and
inter-sentence ADR candidates than taking into account just intra-sentence
ADR candidates. In Figure 4.3 we can see that there are 16 inter-sentence
ADRs (the entities of the pair are in di�erent sentences) and 53 intra-sentence
(the entities of the pair are in the same sentence).

Figure 4.3: Histogram of the number of inter-sentence and intra-sentence
instances in the train set of the IxaMed-GS corpus for the positive class
(denoted as ⊕) and the negative class (	). Note that the number of instances
is represented with a di�erent scale for each class.

According to this information, we thought that it was necessary to tackle
the class imbalance using the approaches described below (see Section 4.4).
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4.4 Techniques to overcome the class imbalance

In the last years, several attempts were made to overcome the class imbal-
ance (He and Garcia, 2009; Nanni et al., 2015). There are related works
devoted to �nd ADRs with symbolic representations that had also to tackle
this problem. For example, Aramaki et al. (2010) and Miura et al. (2010) ob-
served that the few positive data, worsened the performance of their model.
Sohn et al. (2011) employed up-sampling to increase the number of positive
instances (imbalance ratio of 1:7). Botsis et al. (2011) and Patki et al. (2014)
applied cost-sensitive learning (imbalance ratio of 1:25 and 1:3 respectively).
Ginn et al. (2014) divided the corpus in three datasets with di�erent distribu-
tions of the class (imbalance ratio ranging from 1:1 to 1:2). Zhao et al. (2014)
and Zhao et al. (2015) decided to use AUC as evaluation metric since it is
robust against distribution changes (higher imbalance ratio of 1:43). Sarker
and Gonzalez (2015) used di�erent corpora to extract ADRs and observed
that the combination of the di�erent datasets helps to improve the perfor-
mance in presence of class imbalance. In our work, we turned to di�erent
techniques that could be divided in the following groups:

• Sampling: The sampling methods add or remove instances, which al-
lows to obtain an equal distribution of the class and avoid the bias (Es-
tabrooks et al., 2004). These methods are applied only on the training
set. On the one hand, in order to make uniform the class distribution,
we resorted to re-sample (Hall et al., 2009) and spread-subsample (Hall
et al., 2009). On the other hand, we employed three self-implemented
techniques to reduce the number of instances of the majority class.
These techniques do not uniform the class distribution necessarily, that
is to say, we can obtain an imbalanced distribution again, although with
a lower ratio. They were the following: numeric sub-sample (discards
those instances where the distances in term of words between the en-
tities are higher or lower than a given threshold), nominal sub-sample
(discards those instances that correspond to the same drug and disease
within the same document) and negation sub-sample (discards those
instances that contain a negated entity).

• Cost-sensitive learning: Cost-sensitive learning (Domingos, 1999)
assigns stronger penalties to instances in which the majority class is pre-
dicted incorrectly in each iteration of the inference stage. We made the
classi�er cost-sensitive by applying costs to each type of error as (Elkan,
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2001) proposed. The weights that we assigned to the False Positives
(FPs) were the proportion of positive instances (the number of pos-
itive instances into the total number of instances) and to the False
Negatives (FNs) the proportion of negative instances (the number of
negative instances into the total number of instances).

• Ensemble learning: Ensemble learning combines di�erent learning
approaches in an attempt to improve the de�nition of the decision
boundary for each region, paying attention to the minority class (Galar
et al., 2012). On the one hand, we used ensemble techniques that
generate multiple versions of a classi�er, such as bagging (Breiman,
1996) and boosting (Freund and Schapire, 1996). On the other hand,
we used ensemble techniques that combined the outputs obtained by
di�erent classi�ers, such as stacking (Wolpert, 1992). Furthermore,
we employed other algorithms to combine the predictions of di�erent
classi�ers, such as weighted voting, majority voting and OR voting.

• One-class classi�cation: The one-class classi�cation (Chang and Lin,
2011) treats the instances of the minority class as outliers, inferring
regularities about the majority class and focusing on discarding the
minority class (Lee and Cho, 2006). For our task the outliers would be
the ADRs, given that this is the minority class.

These techniques to overcome the class imbalance were applied in di�er-
ent ways: i) using the individual techniques, ii) using combinations of the
individual techniques, and iii) using ensembles of the individual techniques
and their combinations. As a result, the approaches explored in Table 4.2
were explored.
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X 6
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X 9
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X X 10

X X X 11

X X 12

X X X 13
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weighted

voting

X

16
X X
X X X

X

majority

voting

X

17
X X
X X X

X

OR

voting

X

18
X X
X X X

X

stacking

X

19
X X
X X X

X

Table 4.2: Di�erent techniques to overcome the class imbalance (applied
individually, in combination or with ensembles) produced di�erent experi-
mental approaches. The rows of each ensemble method correspond to the
employed approaches ("Individual" or �Combination�).
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4.5 Results

In this section we show the results obtained with the di�erent approaches
proposed to tackle the class imbalance. Before this, we consider important
to bear in mind that the models were inferred with RF (Breiman, 2001) as
main classi�er. This was implemented in Java with the Weka libraries (Hall
et al., 2009). To improve the performance of the classi�er, we carried out a
parameter selection to choose the number of trees to be generated and the
number of attributes to use in the randomization process. The �ne-tuning
was carried out exploring 10 values close to the values by default. In addition,
we removed the accents and we transformed all the words to lowercase. To
assess the models we used the IxaMed-GS corpus and the hold-out evaluation
scheme (see Section 3.3.1).

Figure 4.4 shows the f-measure of the positive class for the dev set ob-
tained for the detection of inter-sentence and intra-sentence ADRs tack-
ling the class imbalance. From our experimental framework, we observed
that there were two approaches that obtained better results than the rest: i)
re-sample (approach 1) and ii) combination of re-sample and cost-sensitive
(approach 10). The f-measure for the positive class was 11.2 and 11.0 re-
spectively. Additionally, we observed that with the approach 1 we obtained
178 FPs and 32 FNs and with the approach 10 we obtained 208 FPs and 30
FNs. Given the di�erence in the number of FPs (30 FPs), we found that
the application of re-sample before using the cost-sensitive classi�er resulted
robust to overcome this highly skewed classi�cation task.

The application of the approaches to overcome the class imbalance was
of much help. In fact, the experiments developed without tackling the im-
balance (the baselines) performed worse than with the application of the
approach that resulted the most e�ective to overcome the class imbalance.
This happened for both inter- and intra-sentence relations and for only intra-
sentence relations. Table 4.3 provides detailed results of these experiments.
The best approach using inter- and intra-sentence scope (approach 10) en-
tails re-sample and cost-sensitive and its corresponding baseline is Baseline-
0. The best approach using intra-sentence scope (approach 1) entails re-
sample and its corresponding baseline is Baseline-1. It is obvious that the
results obtained at sentence level outperformed those obtained in the exper-
iments that take into account all the relations. Speci�cally, the f-measure
of the positive class varied from 11.0 to 46.2. In addition, for intra-sentence
relation, the use of re-sample outperformed the baseline from 37.8 to 46.2.
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Figure 4.4: F-measure for the positive class obtained in the experiments
developed with the approaches of Table 4.2 to overcome the class imbalance.
The models were inferred with the train set and evaluated with the dev set
of IxaMed-GS corpus using the Random Forest classi�er and exploring inter-
and intra-sentence relations.
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Scope Approach Precision Recall F-measure Class

Inter- and Intra-
sentence

Baseline-0

0.0 0.0 0.0 ⊕
99.7 1.0 99.9 	
99.5 99.7 99.6 W. Avg.
99.7 99.7 99.7 Micro Avg.
49.9 50.0 49.9 Macro Avg.

Approach10

6.8 28.9 11.0 ⊕
99.8 99.0 99.4 	
99.6 99.8 99.2 W. Avg.
99.8 99.8 99.8 Micro Avg.
53.3 63.9 55.2 Macro Avg.

Intra-sentence

Baseline-1

1.0 23.3 37.8 ⊕
85.4 1.0 92.1 	
88.0 86.0 82.2 W. Avg.
86.0 86.0 86.0 Micro Avg.
92.7 61.7 65.0 Macro Avg.

Approach1

54.5 40.0 46.2 ⊕
87.3 92.5 89.9 	
81.3 82.9 81.9 W. Avg.
82.9 82.9 82.9 Micro Avg.
70.9 66.3 68.0 Macro Avg.

Table 4.3: Results of the best performing models (approaches 1 an 10 in
Table 4.2) and the baselines, when are used the inter- and intra-sentence
relations or just the intra-sentence relations. The models were inferred with
the train set and evaluated with the dev set of the IxaMed-GS corpus using
the Random Forest classi�er.

In all the experiments developed before, we applied feature selection
to select the 20 most relevant features. Surprisingly, in Table 4.4 we can
observe that the results of the best performing experiment increased from
44.8 to 46.2 without the feature selection, that is, using all the features. This
corroborated that the feature selection was bene�cial in this case. For this
experiment developed only with the intra-sentence relations, the rank of the
selected features correspond to the features 3, 4, 5, 7, 6, 17, 9, 11, 19, 12,
24, 8, 23, 25, 10, 18, 13, 14, 21 and 20 in Table 4.1. These correspond to the
word-forms and lemmas of the entities and their contexts.
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Feature selection Precision Recall F-measure Class

without

40.5 50.0 44.8 ⊕
88.2 83.6 85.8 	
79.5 77.4 78.3 W. Avg.
77.4 77.4 77.4 Micro Avg.
64.4 66.8 65.3 Macro Avg.

with

54.5 40.0 46.2 ⊕
87.3 92.5 89.9 	
81.3 82.9 81.9 W. Avg.
82.9 82.9 82.9 Micro Avg.
70.9 66.3 68.0 Macro Avg.

Table 4.4: Results of the best performing model (intra-sentence ADRs and
re-sample) with and without feature selection. The model was inferred with
the train set and evaluated with the dev set of the IxaMed-GS corpus using
the Random Forest classi�er.

Given that the performance was assessed with a context-window of length
3 (see context-word features in Section 4.2), we explored the impact associ-
ated with the length of the context-window (k). These results are shown
in Figure 4.5, where none of the new context-window length (2,4,6) outper-
formed the results obtained with length 3.

Finally, Table 4.5 gives full details of the results achieved with the best
performing con�guration (approach 10 in Table 4.2) for the dev and test sets.
For the dev set, the f-measure of the positive class was, 46.2. For the test
set, the f-measure of the positive class was 43.2.

In addition, we analysed the ROC curve and the AUC. Figure 4.6 shows
the ROC curve and the AUC of the aforementioned experiments for the dev
and test sets. Unexpectedly, the AUC of the test set is better than the AUC
of the dev set, contrary to the happened with the f-measure.
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Figure 4.5: F-measure of the positive class varying the length of the context-
window (k) for the best performing model (intra-sentence ADRs and re-
sample). The model was inferred with the train set and evaluated with the
dev set of the IxaMed-GS corpus using the Random Forest classi�er. Note
that the f-measure of the positive class is represented from 30.
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Precision Recall F-measure Class
54.5 40.0 46.2 ⊕
87.3 92.5 89.9 	
81.3 82.9 81.9 W. Avg.
82.9 82.9 82.9 Micro Avg.
70.9 66.3 68.0 Macro Avg.

(a) Model inferred with the train set and evaluated with the dev set.

Precision Recall F-measure Class
34.0 59.3 43.2 ⊕
92.8 82.1 87.1 	
84.9 79.0 81.2 W. Avg.
79.0 79.0 79.0 Micro Avg.
63.4 70.7 65.2 Macro Avg.

(b) Model inferred with the train and dev sets and evaluated with the test set.

Table 4.5: Results of the best performing model (intra-sentence ADRs and
re-sample) inferred with the IxaMed-GS corpus and the Random Forest clas-
si�er.
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(a) Model inferred with the train set and evaluated with the dev set.

(b) Model inferred with the train and dev sets and evaluated with the test set.

Figure 4.6: ROC curve and AUC of the best experiment (intra-sentence
ADRs and re-sample). The model was inferred with the IxaMed-GS corpus
and the Random Forest classi�er.
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4.5.1 Discussion

The ADR detection was developed with the RF classi�er. This classi�er
was already employed by other authors (Zhao et al., 2014, 2015) for ADR
extraction with symbolic characterizations with promising results.

RF selects the features that it considers more relevant to generate the
trees. However, applying feature selection strategies in advance resulted
bene�cial. It is possible that this helped the classi�er to pay less attention
to the redundant features. Among all the hand-crafted features used in our
symbolic representation, the 20 most relevant features for the intra-sentence
scope were the word-forms and lemmas of the entities and their contexts.
By contrast, the distances are the most relevant ones when inter- and intra-
sentence scope is considered, as shows Table 4.1.

Regarding the class imbalance, trying to classify drug-disease pairs into
ADR or non-ADR relations was not straightforward due to the imbalance
ratio. This was 1:222, when we took into account all the ADR candidates
(inter-sentence and intra-sentence ADRs). We incorporated individual ap-
proaches to overcome the class imbalance and we learned that, in this task,
individual techniques were not of much help, except for Sampling. Experi-
ments disclosed that it was worth combining Sampling with Cost-sensitive
learning. Particularly, the best results, in terms of f-measure of the posi-
tive class, were achieved with the application of re-sample before using the
cost-sensitive classi�er.

Restricting the ADR detection to sentence level alleviated drastically the
class imbalance problem, obtaining an imbalance ratio of 1:4. Indeed, there
are related works (Aramaki et al., 2010; Miura et al., 2010; Li et al., 2015) that
only explored drug-disease pairs placed in the same sentence. Although some
of the ADR instances were not taken into account because their entities were
situated in di�erent sentences, the imbalance reduction helped to improve the
ADR detection. This improvement was notable, above all, in the precision
(changing from 7.2 to 34.0 in the dev set). The use of a Sampling technique
such as re-sample was also useful and made possible to capture a higher
number of ADRs. Furthermore, we proved that a context-window of length
3 was optimal being the f-measure of the positive class 43.2.

We regard to the OOVs, these were analyzed in the intra-sentence re-
lations. To be precise, we analyzed those values of each features in the
evaluation set that do not appear among the values of each features in the
training set. We observed that 26% (851 of 3,280) of the values of the dev
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set were not found in the train set. This can a�ect negatively to the perfor-
mance of the system. For example, the performance of the ADR detection
could worsen using all the features because the number of values not found
is higher than applying attribute selection.

So far, we distinguished between inter- and intra-sentence relations. How-
ever, in an EHR the same drug-disease pair can appear in di�erent positions
of the document. Therefore, the experts requested, in the framework of the
DETEAMI and PROSAMED projects mentioned in Section 1.2, not to mark
just each pair in its corresponding position in the document, but also provide
them as a summary. Hence, we developed a variant of our previous system
in which if a drug-disease pair appeared several times in a document and
was predicted as ADR at least once, this pair is labeled as ADR in the sum-
mary (Santiso et al., 2016). The experts validated the ADR extraction with
an on-line prototype of the system (Casillas et al., 2016a) and they consid-
ered that although it was useful to get a summary of each EHR, it was more
precise to get the prediction for each drug-disease individually throughout
the document.

4.5.2 Error analysis

After analyzing the results, we inspected the predictions made by this model.
We observed that it was able to detect ADRs that were not found by the
model inferred without applying re-sample. To illustrate this, see Figure 4.7,
where the black arrows �Causada_por� correspond to the ADRs annotated
by the experts and the red arrows �Causada_por_system� correspond to the
predictions made by the system. For example, the ADRs `hipoglucemia - sep-
trin' and `hipoglucemia - timetropin' were detected (the pairs `hiperglucemia
- novonorm', `disminución del apetito - trimetropin', `disminución del apetito
- novonorm' were incorrectly detected as ADRs). Note that the black arrows
�Causada_por� correspond to the ADRs annotated by the experts and the
red arrows �Causada_por_system� correspond to the predictions made by
the system.
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Figure 4.7: Example of sentence in which the model inferred with the sym-
bolic characterization detected the ADRs annotated by the experts. The sen-
tence means `Hypoglycemias induced by septrin (the trimethoprim interferes
with the hepatic metabolism of the novonorm and by decreased appetite)'.

We also observed several sources of errors. First, in very long sentences
(around 60 words) with a wide combination of potential events (around 14),
it was not infrequent to �nd FPs. For example, in the sentence shown in
Figure 4.8 the pairs `dm tipo 2 - insulina lantus', `dislipemia - insulina lantus'
and `resistencia insulina - insulina lantus' were incorrectly detected as ADRs,
producing 3 FPs (the ADR `intolerancia - diamben' was detected correctly).

Second, the system detected as ADR some drug-disease pairs that are
related as treatment, yielding FPs. This could happen because sometimes
the word �treatment� also appears when an adverse reaction is indicated. For
example, in the sentence shown in Figure 4.9 the pairs `reacción alérgica -
amoxicilina-clavulanico', `reacción alérgica - esteroides' and `reacción alér-
gica - antibiótico' were incorrectly detected as ADRs, producing 3 FPs. By
contrast, the ADR `reacción alérgica - levo�oxacino' was detected correctly.

Furthermore, in speculative sentences with medical uncertainty (Velupil-
lai and Kvist, 2012), that is, sentences where the diagnosis of the doctor about
an ADR is uncertain, we found FNs. For example, in the sentence given
in Figure 4.10 the uncertain ADRs `descompensación cardiaca izquierda -
AINEs' and `liger empeoramiento de su función renal - AINEs' were labeled
by the experts, but their were not detected by the system. Our impression is
that this type of error happened because the system generalizes as non-ADR
some uncertain ADRs that were labeled by the experts.

In brief, the application of re-sample helped to increase the number of
detected ADRs. We found as sources of FPs long sentences with a wide
combination of drug-disease pairs and sentences with drug-disease pairs that
are related as treatment. The sources of FNs were speculative sentences.
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Figure 4.8: Example of long sentence in which the best performing model
committed 3 FPs. The sentence means `Diagnosed with megaloblastic ane-
mia, exogenous obesity, essential HTN, dyslipidemia, anxiety-depressive syn-
drome and type 2 DM of 18 years of evolution admitted to Endocrinol-
ogy in 2006 because of bad chronic metabolic control, then presenting non-
proliferative diabetic retinopathy, diabetic nephropathy in microalbuminuria
with preserved renal function phase, diabetic polyneuritis, which required
high doses of Insulin Lantus due to the presence of insulin resistance and
intolerance to Diamben.'.
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Figure 4.9: Example of sentence related with a treatment in which the
best performing model committed 3 FPs. The sentence means `Evolution:
The patient is initially treated with levo�oxacin showing an allergic reaction
(pharyngeal, lip, ... edema), for this reason she received treatment with
steroids and the antibiotic is modi�ed changing into amoxicillin-clavulanic.'.

Figure 4.10: Example of speculative sentence in which the best performing
model committed 2 FNs. The sentence means `Evolution and comment: He
is a patient of 88 years old, with severe CKD that is not suitable for dialysis
and signi�cant micro-aortic valvular heart disease with moderate systolic
dysfunction of LV, that presents symptoms compatible with left heart failure
and slight deterioration of his kidney function, in probable relation with the
recent take of NSAIDs.'.



Conclusions 77

4.6 Conclusions

4.6.1 Concluding remarks

In this chapter we developed an ADR detection system using a symbolic
characterization and the RF classi�er. We started exploring inter-sentence
as well as intra-sentence ADRs, obtaining extremely poor results due to
the imbalanced datasets. We explored di�erent approaches to overcome the
class imbalance and we obtained some improvement of the performance with
the combination of re-sample and cost-sensitive learning. After that, we re-
stricted the ADR detection to intra-sentence relations. In other words, we
only used drug-disease pairs placed in the same sentence. This yielded a
better performance of the ADR detection system. Thereafter, we decided to
restrict our system to the sentence-level ADR detection.

According to this experimentation, we answered to the following research
questions:

Research Question 1

Which are appropriate symbolic features for ADR representation to aid
machine learning algorithms?

The symbolic characterizations together with the machine learning al-
gorithms can be used to detect ADRs in EHRs written in Spanish.
When the ADR extraction is developed as a relation extraction task,
the causative drug and the caused disease are involved in the relation.
If inter-sentence and intra-sentence ADRs are taken into account, fea-
tures related with the distances between the entities involved result
relevant for the task. If the ADR detection is focused on intra-sentence
ADRs, the word-forms and the lemmas of the entities and their contexts
are more relevant.

Research Question 2

To what extent are supervised machine learning approaches appropriate
for ADR detection given that ADRs are infrequent relations?

With imbalanced datasets the machine learning algorithms such as
Random Forest tend to be biased and learning to predict the minority
class is complex. The application of approaches to overcome the class
imbalance improves the performance of the ADR detection model to
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�nd inter- and intra-sentence ADRs. However, inter- and intra-sentence
ADRs is ambitious and the restriction to intra-sentence ADRs improves
drastically the detection of ADRs.

Open question. The symbolic characterization employed in this case can
be problematic to obtain the lemmas or the POS used as features since the
EHRs contain misspellings or abbreviations that can make their processing
di�cult. In addition, the generalization over unseen words is not robust
with symbolic features. Therefore, in the next chapter we explore dense
characterizations based on word-embeddings to represent the drug-disease
pairs.

4.6.2 Publications

This work lead to the following publications:

1. Sara Santiso, Arantza Casillas, Alicia Pérez, Maite Oronoz, and Koldo
Gojenola. Adverse drug event prediction combining shallow analysis
and machine learning. In Proceedings of the 5th International Workshop
on Health Text Mining and Information Analysis (Louhi), pages 85�89,
Gothenburg, Sweden, April 26-30 2014.

2. Arantza Casillas, Alicia Pérez, Maite Oronoz, Koldo Gojenola, and
Sara Santiso. Learning to extract adverse drug reaction events from
electronic health records in Spanish. Expert Systems with Applications,
61:235�245, 2016.

3. Sara Santiso, Arantza Casillas, Alicia Pérez, Maite Oronoz, and Koldo
Gojenola. Document-level adverse drug reaction event extraction on
electronic health records in Spanish. Procesamiento del Lenguaje Nat-
ural, 56:49�56, 2016.

4. Arantza Casillas, Arantza Díaz de Ilarraza, Kike Fernandez, Koldo
Gojenola, Maite Oronoz, Alicia Pérez, and Sara Santiso. IXAmed-
IE: on-line medical entity identi�cation and ADR event extraction in
Spanish. In 2016 IEEE International Conference on Bioinformatics
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5
Adverse Drug Reaction detection with

dense representations and

Random Forest

5.1 Introduction

The characterization of the drug-disease pairs is an important factor in the
ADR detection from EHRs. We observed that the results obtained by the
symbolic characterizations were not good enough for the ADR detection sys-
tem. The underlying di�culties from the symbolic characterization are the
lack of corpus and the lexical variability. In Chapter 3 we explained that
EHRs are subject to strict con�dentiality regulations making the access to
them di�cult and, as a consequence, there are few examples to train the
predictive model. Furthermore, the same concept can be expressed by dif-
ferent word-forms, with or without abbreviations, using either standard or
non-standard terminology and with misspellings. For example, the term `dia-
betes mellitus tipo 2' was also written as `diabetes mellitus tipo II', `diabetes
tipo 2', `dm tipo 2', or `dm2'. Accordingly, machine learning from text with
disperse symbolic representations is not straightforward (Farhan et al., 2016).

Then, we found necessary representations robust against lexical variations
and we decided to characterize the drug-disease pairs using dense represen-
tations based on embeddings. The embeddings (Mikolov et al., 2013a) are
vector representations of the words in a continuous space of small dimension.
That is, each word is mapped to a vector of real numbers enabling, thus,
algebraic operations. These dense or continuous representations of words

81
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help inference algorithms to achieve a better performance in NLP tasks by
grouping semantically related words (Gormley et al., 2015). The main bene-
�t of the embeddings is the generalization ability (Goldberg and Hirst, 2017).
In ADR extraction we can �nd related works that included embeddings in
their representations. Nikfarjam et al. (2015) and Lin et al. (2015) combined
discrete features, such as the context, the POS or the lemmas, with the
clusters obtained from the embeddings. Given that both works treated the
ADR extraction as a mention detection task, they used the CRF classi�er,
frequently used in NER tasks. Henriksson et al. (2015a) used entity classes,
entity unigrams, entity bigrams, distance and context represented by words,
semantic vectors and multiple semantic vectors. Furthermore, they had to
apply sub-sampling and weights to overcome the class imbalance of ratio
1:8. Henriksson et al. (2015b) made ensembles of di�erent models created
changing the window size of the context used to generate the embeddings.
In both cases they took into account the drug and the disease and they used
the RF classi�er. Zhang et al. (2016) used word-embeddings by averaging the
vectors of each tweet. These embeddings were used in one of the classi�ers of
their ensemble method implemented with ME. These works concluded that
the dense representations based on embeddings improved the results.

Despite exploring dense representations, given that we do not have cor-
pora as large as in other domains, we had doubts concerning the quality of
our generated embeddings. Then, our hypothesis was that our embeddings
might be not good enough and we transformed the continuous space into a
coarse-grained one. In this way, these smoothed space would enable to avoid
super�cial variations derived from errors.

It is important to explain that, according to the �ndings from Chapter 4,
we decided to focus on intra-sentence ADRs. That is to say, we only found
ADRs that have the drug and the disease in the same sentence. Further-
more, we continued using the RF algorithm to infer the model, as was done
with the symbolic representation. This allowed us to compare the impact
of the representation with the same classi�er. We also employed the gold
mentions (the entities manually annotated by the experts) to focus on the
ADR detection.

With the experiments developed in this chapter, our aim is to address
the following research questions:
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Research Question 3

Can dense features be used to represent ADRs in order to help to
overcome the lexical variability of the EHRs written in Spanish?

Research Question 4

Given that dense spaces might be unreliable because the corpora formed
by EHRs tend to be small, is it advisable to transform the original dense
spaces into coarse-grained ones using smoothing techniques?

The rest of the chapter is organized as follows: Section 5.2 explains the
embeddings used for the dense representation, generated with di�erent ap-
proaches and corpora. Section 5.3 explains simple smoothing techniques
proposed to smooth the dense space. Section 5.4 describes the features em-
ployed to characterize the ADRs. Section 5.5 gives the results obtained dur-
ing the evaluation of the di�erent experiments and the discussion of them.
Section 5.6 provides the �nal conclusions.

5.2 Word-embedding generation

Given that we decided to use a dense representation to characterize the
ADRs, we had to select the techniques and the corpora to create the em-
beddings. The embeddings were trained with unsupervised methods and are
based on the hypothesis that words with similar meanings tend to appear
in similar contexts (Harris, 1954). These methods have as input an unan-
notated corpus and the output is a vocabulary (Σ) where each word of the
corpus appears together with the corresponding vector in Rn, as shown in
Figure 5.1a. Figure 5.1b shows the representation of some example embed-
dings in the vector space. We can see that words with similar meaning are
close to each other. For example, the word `dm' is closer to `diabetesmellitus',
`diabetes' and `hiperglucemia' than to `disnea', `�ebre', `diarrea' and `astenia'.
Note that this example also makes possible to observe that the lexical vari-
ants of the same concept appears close to each other. The words `diabetes',
`diabetesmellitus' and `dm' refer to the same disease and appear close in the
vector space.
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w ∈ Σ f(w) ∈ Rn
diabetesmellitus -0.043090 -0.020025 ... -0.029354 -0.014414
diabetes 0.171899 -0.216604 ... -0.118141 0.150151
dm -0.073951 -0.006072 ... -0.146678 0.008422
hiperglucemia -0.129522 0.046963 ... 0.069404 0.025743
disnea -0.093281 0.054698 ... -0.199195 0.254324
astenia -0.345448 0.156622 ... -0.208091 0.042582
diarrea -0.167453 0.097724 ... -0.113169 0.034976
fiebre 0.043911 -0.008858 ... -0.151012 -0.198613

(a) Vocabulary obtained in the embedding generation where each word appears together
with the corresponding embedding.

(b) Projection of the embeddings in the vector space.

Table 5.1: Example of embeddings obtained with the embedding generation
approaches. These embeddings correspond to the words `diabetesmellitus',
`diabetes', `dm', `hiperglucemia', `disnea', `astenia', `diarrea', `�ebre' (mean-
ing `diabetesmellitus', `diabetes', `dm', `hyperglycemia', `dyspnea', `asthe-
nia', `diarrhoea' and `fever' respectively).
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The embedding extraction approaches selected for this work were
the following ones:

• word2vec: We used the Continuous Bag-of-Words (CBOW) architec-
ture which projects all the words in the same position by averaging the
vectors of the context. That is, the word is predicted from the context.
In this case, the order of the context words does not matter (Mikolov
et al., 2013a).

• skipNgram: We used the Skip-Gram architecture which tries to max-
imize classi�cation of a word based on another word in the same sen-
tence. That is, the context is predicted from the word. In this variant
the model is sensitive to the positioning of the words (Ling et al., 2015).

• GloVe: It is trained on a global word-word co-occurrence matrix,
which contains the statistics of how frequently words co-occur with
one another in a given corpus. It tries to minimize the sum of the
squares of a log-bilinear model (Pennington et al., 2014).

These models have in common that are inspired by neural networks. How-
ever, GloVe is based on the co-occurrence of word pairs and word2vec with
CBOW and skipNgram are based in the context. Apart from the aforemen-
tioned approaches, there are more recent approaches such as FastText (Bo-
janowski et al., 2017), which is an extension of Skip-Gram that takes into
account subword information, ELMo (Peters et al., 2018), which generates
context-sensitive representations from language models, or BERT (Devlin
et al., 2018), which context-sensitive representations from masked language
models in order to take into account the left and right contexts simultane-
ously. Unfortunately, when we developed this task these approaches were
not available. Then, we did not include these in our experimentation.

Regarding the corpora, to represent the words into a dense space, a
large unannotated corpus is required. In this work we employed embed-
dings extracted from an in-domain corpus formed by EHRs (denoted as
uEHR). We also explored an out-domain corpus formed by SBWCE. Both
are written in Spanish, but the number of words of the out-domain dataset is
approximately 10 times higher than in the in-domain dataset (109,618,393 vs
1,420,665,810) and their vocabulary is 4 times higher (286,984 vs 1,000,653)
(turn to Section 3.2.2 for more details about the unannotated corpora). The
motivation was to asses the impact in the lexical variability and, speci�cally,
in the OOV words.
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5.3 Smoothing techniques

To learn high-quality word-embeddings, huge datasets are needed (Mikolov
et al., 2013a,b). We were aware of the fact that datasets on EHRs tend
to be sparse. Hence, we assumed that the vectors derived from the word-
embedding generation process would not be ideal. If the corpus is small, the
frequency of the words is low and it is di�cult for the embeddings to establish
the semantic relationships. This can be seen with the in-domain and the out-
domain datasets, the ratio between the number of tokens and the vocabulary
is about 1:300 for the in-domain and 1:1,000 for the out-domain. That is, in
the in-domain corpus the words are repeated with a lower frequency.

As a consequence, we decided to apply smoothing techniques to transform
the representation space into a more coarse-grained one as if we had zoomed-
out. In other application context, smoothing techniques enabled to extract
more �exible and robust information from data by capturing patterns and
avoiding noise (Simono�, 2012). It can seem contradictory turning to a con-
tinuous representation to, next, obtain a more coarse-grained representation.
However, the vectors obtained with smoothing techniques let us to bene�t
from the dense representations and, at the same time, improve the proximity
between semantic related words that was lost due to the few corpus available
to train the embeddings.

Next, we explain the four smoothing techniques used in this work: i)
direction cosines, ii) truncation, iii) Principal Component Analysis (PCA),
and iv) clustering.

5.3.1 Direction cosines

One of the smoothing techniques examined in this work is the transformation
of the algebraic basis vectors into the representation space provided by di-
rection cosines, also known as length normalization (Artetxe et al., 2016).
The direction cosines are the cosine of the angles that the vector forms with
the coordinate axes, each of which serves as a component of the direction
vector. Given a vector ~v = (x1, · · · , xn) ∈ Rn, its corresponding direction
vector ~u is obtained as in expression (5.1), being ||~v|| the norm of ~v. It is
straightforward to verify that ||~u|| = 1. That is, the direction cosines are
normal and, in spheric coordinates, all the elements would have a radius
r = 1. In the three-dimensional (n = 3) space, given ~v we would get, as
direction cosines, ~u = (u1, u2, u3) = (cosα, cosβ, cosγ) with the angles shown
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in Figure 5.1.

~u = (u1, · · · , un) =
~v

||~v||
=

(
x1
||~v||

, · · · , xn
||~v||

)
(5.1)

(a) The direction cosines associated to vector ~v are (u1, u2, u3), that correspond, respec-
tively, to the cosine of the angles α, β, γ.

(b) The points v1 and w1 are represented by u1 after applying of the direction cosines.

Figure 5.1: Smoothing with direction cosines settles equivalences between
two vectors in the same direction and di�erent radius.
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5.3.2 Truncation

Another technique used to smooth a continuous space is truncation. Trun-
cating by a second or third signi�cant digit regards all the elements in a small
neighborhood as equivalent. As depicted in Figure 5.2, all the elements in
a small hyper-cube are assimilated by the same vector. This technique was
employed in the medical domain by Henriksson et al. (2015a). However,
they rounded up the cosine similarity used as feature in their representation
instead of the components of the vectorial representation.

Figure 5.2: Smoothing by truncating makes equivalent elements close in a
small hyper-cube. Al the points in the hyper-cube, such as v1, are represented
by the same vector after applying of truncation.

5.3.3 Principal Component Analysis

We employed PCA to reduce the dimension of a continuous space. The orig-
inal vectors may have correlated variables that are transformed into linearly
uncorrelated variables called principal components. As a result, the basis
is changed into a smaller set of orthogonal components in the directions of
maximum variance. PCA was used in the medical domain by Jacobson and
Dalianis (2016) to reduce the dimension of the vectors. Unlike our work,
they applied PCA to TF-IDF values and not to embeddings.
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5.3.4 Clustering

We used clustering as a natural means of decreasing the granularity of a
continuous space. Clustering creates equivalent classes in a way that close
points in the continuous space are assigned a label from a �nite set. This
can be seen as an alternative means of discretization. Clustering embeddings
was used in other works related with the medical domain (Nikfarjam et al.,
2015; Lin et al., 2015) to add a high level abstraction to the feature space
by assigning the same cluster to similar tokens. In both cases the clusters
were included in symbolic representations and not in dense representations.
In our work we proposed to cluster the entity vectors using two approaches:

• K-means: We used the k-means algorithm implemented in word2vec.
This assigns the vector to the cluster with the nearest centroid, which
consists in the mean of the vectors of the cluster and is initialized by
assigning randomly a vector (Mikolov et al., 2013a).

• Brown: It is a hierarchical clustering where a greedy algorithm merges
those clusters for which the loss in average mutual information is least
(Brown et al., 1992). In this work, the binary paths that represent the
Brown clusters were truncated to reduce the granularity. That is to
say, the three was pruned.

5.4 Dense characterization

The di�erent embedding generation approaches and smoothing techniques
gave place to multiple dense representations that were used during the ex-
perimentation. In this section we describe these representations. Note that
we continued addressing the ADR extraction as a relation extraction task,
contrary to Lin et al. (2015), Nikfarjam et al. (2015), or Henriksson et al.
(2015b), to take into account the drug and the disease involved in the ADR.
The characterization of the drug-disease pairs was based on the characteri-
zation of each entity, denoted as x and y.

To develop the experimentation, we found necessary to have a symbolic
representation that could be used to make a direct comparison with a basic
dense representation. To this end, we created two equivalent representations,
where the words were represented with symbolic features in one case and with
dense features in the other case. We want to remark that this symbolic repre-
sentation is not the one used in Chapter 4 because it contains more features.
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As a result, we have three perspectives described below: i) concatenation of
words, ii) concatenation of embeddings, and iii) context-aware embeddings.

First, we used a symbolic representation denoted as concatenation of
words (Baseline-0). This leads to a nominal space that encompasses the
word-forms within the left and right contexts of each entity. Second, we used
a characterization where each aforementioned word-form was replaced by
its corresponding embedding, denoted as concatenation of embeddings
(Baseline-1). This is a straightforward variant to convert the symbolic space
into a dense space. Third, we used the context-aware embeddings to rep-
resent each entity and their contexts, which were computed as in (5.2). This
performs a weighted sum of the embeddings in a context-window of length
k with respect to the focus word, the target entity vj, and yields ṽj. This
context-aware representation is much more compact than the concatenation
of embeddings, since it keeps the dimension of the search space rather than
increasing it by concatenating all vectors. Another interesting fact about the
context-aware representation is that the weight (wi) serves to either diminish
or enhance the importance of the context-words.

ṽj = ca(vj) = vj +
∑
−k≤i≤k
i 6=0

wivi+j (5.2)

In this work we explored three weighting strategies: i) constant weight:
wi = 1, ii) diminishing the contribution of context words as the distance to
the drug or disease increases: wi = |k−i+1|

2k
(the weight is proportional to

the distance between the context-word and the entity in the total number of
context-words), and iii) learning the weights of each word according to the
Information Gain (Quinlan, 1986): wi = InfoGain(c, sj+i), being c the class
and sj+i the symbolic representation that corresponds to the vector ṽj+i.

We would like to point out that in order to obtain the embedding of a
token with more than one word, we computed the centroid (average of the
vectors involved). In this way, external resources are not needed and this
arithmetic can be used for embeddings of any domain. For example, the
disease s `descompensación cardiaca izquierda' (meaning `left heart failure')
comprises three words: s1 = `descompensación', s2 = `cardiaca' and s1 =
`izquierda', that correspond to three vectors: v1, v2 and v3 respectively.
Then, s is represented by v = v1+v2+v3

3
. The OOV words were represented

by the null vector (
−→
0 ). In our case, with the arithmetics involved to compute

the vectors described in (5.2), it works as if we had omitted the OOVs.
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Finally, we made use of additional features related with the vector of each
entity: the modulus of the disease and drug vectors (|x| and |y|). We also
made use of features associated with the relation vector −→xy: the modulus
(|xy|) and the cosine of the angle between the entity vectors (cos θ).

Altogether, the di�erent ADR representations explored in this work are
summarized in Table 5.2. In addition, these features are shown graphically
in Figure 5.3 for the drug-disease pair `esteroideo - descompensación hiper-
glucémica' (meaning `steroidal - hyperglycaemic decompensation'), which was
extracted from the sentence `A consecuencia del tratamiento esteroideo se
produce descompensación hiperglucémica que precisa tratamiento con insulin-
ización' (meaning `As a result of the steroidal treatment, it was produce an
hyperglycaemic decompensation that needs treatment with insulinization').
Note that we organized the experiments in a way that we could see the in-
�uence of each feature and smoothing technique.

First, we used the word-based representation of each entity with their
contexts (referred to as representation 0) to develop Baseline-0. After that,
we replaced the words by their corresponding embeddings (representation 1)
to develop Baseline-1, which allows to compare symbolic and dense charac-
terizations. These baselines appear under �baseline� in Figure 5.3. Next,
we turned to the proposed context-aware representations. These ones ap-
pear under �context-aware� in Figure 5.3. We obtain the context-aware
representation (representation 2) to compare it with the concatenation of
the embeddings used in the previous representation. To the context-aware
representation created in the euclidean space we added truncation (repre-
sentation 3) and PCA (representation 4). Next, we also employed these
representations using the direction cosines (representation 5, 6 and 7 respec-
tively) to compare this space with the previously explored euclidean space.
Furthermore, we added the Brown and K-means clusters to the previous rep-
resentation (representation 8). Note that PCA was not applied to the vector
of each entity, but to the entire vector of the pair. These representations are
grouped under �smoothing� in Figure 5.3. Finally, we included the addi-
tional features, that is, the modulus of the drug, the disease and the relation
vector together with the cosine of the angle (representation 9 and 10). These
representations are grouped under �additional� in Figure 5.3.

Let us now mention the resulting dimension for each representation (see
Table 5.2). Baseline-0 involved two entities with a context-window of k words
yielding 2k+1 features for each entity. With k = 3 we obtained 2 · (2k+1) =
14 symbolic features. Baseline-1 replaced each word by their corresponding
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vector of 300 dimensions yielding 2 · (2k+ 1) · 300 = 4, 200 numeric features.
When we used the context-aware representation, each entity was represented
by one vector obtaining 2 · 300 = 600 numeric features. When we applied
PCA, we reduced the dimensions of the vector to 50. The clusters just added
1 dimension to the representation. The same happened with the additional
features, they added 1 dimension to the representation.
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B0 0 X X X 14

B1 1 X X X 4,200
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2 X X X 600

3 X X X X 600

4 X X X X X 50

5 X X X 600

6 X X X X 600

7 X X X X X 50

8 X X X X X X X 54

9 X X X X X X X X X X 58

10 X X X X X X X X 54

Table 5.2: Di�erent dense characterizations to represent ADR relations led
us to di�erent experimental approaches (B0 and B1 stand for Baseline-0
and Baseline-1 respectively). Note that �Features� corresponds to the set
of words or embedding used to represent the drug-disease pair, �Smoothing�
corresponds to the smoothing techniques applied to the context-aware em-
beddings and �Additional� corresponds to those features derived from the
embeddings. The last column shows the dimension of the feature-space.
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Figure 5.3: Scheme of the features included in each dense representation of
the ADR `esteroideo - descompensación hiperglucémica'. The features related
with the entities are highlighted in dark blue and the features related with
the context in light blue.
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5.5 Results

In this section we give the results obtained with the aforementioned rep-
resentations. The experiments were done with the RF classi�er (Breiman,
2001), following the same conditions that in the best performing experiment
of Chapter 4 (see Section 4.5).

The embeddings of these experiments were trained using a window of
size (s) 10 and yielding vectors of 300 dimensions. The window s used to
extract the embeddings should not be confused with the context-window k
of expression (5.2) used to create the context-aware embeddings. Regarding
the practical details of applying smoothing techniques, the components of
the vectors used to represent the drug-disease pairs were truncated to 2
decimals. Next, we reduced to 50 dimensions using PCA implemented in
Java, including libraries available in Weka (Hall et al., 2009). The PCA
dimension was decided on a grid-search. The optimization criterion used the
f-measure of the positive class obtained with the hold-out scheme, inferring
the model with the train set and evaluating with the dev set. Furthermore, we
proposed to cluster the entity vectors with a set of 500 clusters. The Brown
clusters were truncated to a maximum of 10 bits. To assess the models we
also used the IxaMed-GS corpus and the hold-out evaluation scheme, as it
was explained in Section 3.3.1.

First, we obtained the baselines (see Table 5.3) that correspond to rep-
resentations 0-1 in Table 5.2. The results corroborated that the dense rep-
resentations outperformed the symbolic representation, except for the em-
beddings trained with GloVe and the in-domain corpus. We concluded that
performance with dense characterizations, even used in replacement of word-
forms, is much better than with symbolic characterizations. In our best
case, the f-measure of the positive class improved from 36.8 to 51.7. For the
out-domain corpus we generated the embeddings with skipNgram given that
this architecture is better at capturing infrequent words. Surprisingly, these
out-domain embeddings o�ered good results, being the second best result
among the baselines with an f-measure for the positive class of 46.2. Despite
this, word-embeddings can be used in a smarter way with the context-aware
representations.
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B0 X

30.4 46.7 36.8 ⊕
86.4 76.1 81.0 	
76.2 70.7 72.9 W. Avg.
70.7 70.7 70.7 Micro Avg.
58.4 61.4 58.9 Macro Avg.

B1

X X X

53.6 50.0 51.7 ⊕
89.0 90.3 89.6 	
82.5 82.9 82.7 W. Avg.
82.9 82.9 82.9 Micro Avg.
71.3 70.1 70.7 Macro Avg.

X X X

48.1 43.3 45.6 ⊕
87.6 89.6 88.6 	
80.4 81.1 80.7 W. Avg.
81.1 81.1 81.1 Micro Avg.
67.9 66.4 67.1 Macro Avg.

X X X

23.7 30.0 26.5 ⊕
83.3 78.4 80.8 	
72.4 69.5 70.8 W. Avg.
69.5 69.5 69.5 Micro Avg.
53.5 54.2 53.6 Macro Avg.

X X X

54.5 40.0 46.2 ⊕
87.3 92.5 89.9 	
81.3 82.9 81.9 W. Avg.
82.9 82.9 82.9 Micro Avg.
70.9 66.3 68.0 Macro Avg.

Table 5.3: Baseline results in either a symbolic or a dense space for the dev
set of the IxaMed-GS corpus using the Random Forest classi�er.
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Next, we explored alternative context-aware representations, to be pre-
cise, representations 2 to 10 in Table 5.2. These experiments yielded more
than 30 new results with di�erent metrics each one. Instead of tabulating
them all (as we did for the baselines) for compactness, we simply summarized
them focusing on the f-measure of the positive class, as shown in Figure 5.4.
Turn to Appendix C to see detailed results of these experiments. If we fo-
cus on the embedding generation approaches, the embeddings trained with
GloVe achieved the best performance using the context-aware representa-
tion, obtaining an f-measure for the positive class of 62.3. If we focus on the
characterization of ADRs, those representations that applied only truncation
(representations 3 and 6) or truncation and PCA (representations 5 and 7)
were more e�ective applied to the direction cosines than applied to the eu-
clidean space. Speci�cally, using the vectors generated with GloVe and the
in-domain corpus (the best performing experiment), the f-measure increased
from 49.1 to 53.7 applying truncation to the direction cosines and from 52.2
to 62.3 applying truncation and PCA to the direction cosines. However, the
clusters resulted counterproductive, the f-measure decreased from 62.3 to
50.0. Regarding the additional features, these improved the results obtained
with the inclusion of the clusters from 50.0 to 60.0, but not the results of the
best experiment. All in all, the best representation included three of our four
proposals to smooth the vectors of the embedding-based characterization: 1)
direction cosines, 2) truncation, and 3) PCA.

Finally, given that the context-aware representations were created with
a context-window (k) of length 3, we explored the impact of the length k of
the context-window using the constant weighting. In Figure 5.5 we can see
that a context-window of size 4 (k=4) improved the f-measure of the positive
class obtained with k=3 from 62.3 to 63.9.

Furthermore, we explored the impact of the other two weighting strategies
associated with expression (5.2) proposed for the entity characterization de-
scribed in Section 5.4, that is, diminished weighting and InfoGain weighting.
With k=2, the diminished weighting outperformed the other two weights and
with k=6, the weight based on InfoGain outperformed the other two weights.
However, with k=3 and k=4 the best results were obtained with constant
weighting.
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Figure 5.4: F-measure of the positive class with the 10 representations pre-
sented in Table 5.2 for the dev set of the IxaMed-GS corpus using the Random
Forest classi�er. The embeddings were extracted using three di�erent tech-
niques (denoted as w2v, sNg, and glove to refer to word2vec, skipNgram,
and GloVe respectively) and from two sources, denoted by the su�x, where
Med stands for in-domain medical source and the su�x Gen stands for the
general out-domain source.
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Figure 5.5: F-measure of the positive class varying the length of the context-
window (k) for the best performing model (representation 7 in Table 5.2
incorporating the embeddings extracted with GloVe from the in-domain cor-
pus). The model was inferred with the train set and evaluated with the dev
set of the IxaMed-GS corpus using the Random Forest classi�er. Note that
the f-measure of the positive class is represented from 35.
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Given that the EHRs tend to have a high lexical variability, an impor-
tant point to take into account is the tolerance to noise of the model with
respect to OOV words. The EHRs of the IxaMed-GS have 37% of instances
in which the entities were not found in the embedding vocabulary. To be
precise, 22% (71 of 328) of the entities of each drug-disease pair did not have
their corresponding embedding. We wondered about the impact of the OOVs
on the performance. If we evaluate the model that o�ered the best perfor-
mance (representation 7 in Table 5.2) discarding the instances with OOVs
from the dev set, we observed a slight improvement in the performance, from
63.9 to 68.3. We also tried to tackle the representation of OOVs by means
of character-embeddings, as was proposed by Chen et al. (2015). That is to
say, we created the character-embeddings by considering each character as an
individual word and using word-embedding generation approaches to learn
the character-embeddings. Overall, this approach did not improve the per-
formance of the ADR extraction system. The results of the best performing
model decreased from 63.9 to 55.9. So far, we referred to the OOVs derived
from the embeddings. For the symbolic representations, there are other type
of OOVs mentioned in Chapter 4 (see Section 4.2 and Section 4.5), the words
from the dev set that were not found on the train set. In this regard, the
IxaMed-GS corpus has 76% of instances with OOVs, that were represented
by the missing value. To be precise, 52% (170 of 328) of the entities of each
drug-disease pair were not in the vocabulary corresponding to the drugs and
the diseases. If we evaluate the model inferred with the symbolic character-
ization of Baseline-0 (concatenation of words) discarding the instances with
OOVs from the dev set, we observed that the results improved from 36.8
to 63.2. The results obtained in these experiments implies that the sym-
bolic characterization produces more OOVs that the dense characterization
created with embeddings.

Table 5.4 gives full detailed results achieved with the best performing
model (representation 7 in Table 5.2) for the dev and test sets. In both
cases the results obtained in Chapter 4 (see Table 4.5) were improved. The
f-measure of the positive class increased from 46.2 to 63.9 in the dev set and
from 43.2 to 55.4 in the test set.

In addition, we analyzed the ROC curve and the AUC. Figure 5.6 shows
the ROC curve and the AUC of the aforementioned experiments for the dev
and test sets. In both cases the points are above the diagonal and the AUC
obtained in Chapter 4 (see Figure 4.6) was improved, from 0.77 to 0.87 in
the dev set and from 0.82 to 0.86 in the test set.
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Precision Recall F-measure Class
54.8 76.7 63.9 ⊕
94.3 85.8 89.8 	
87.0 84.1 85.1 W. Avg.
84.1 84.1 84.1 Micro Avg.
74.5 81.2 76.9 Macro Avg.

(a) Model inferred with the train set and evaluated with the dev set.

Precision Recall F-measure Class
47.4 66.7 55.4 ⊕
94.4 88.4 91.3 	
88.1 85.5 86.5 W. Avg.
85.5 85.5 85.5 Micro Avg.
70.9 77.6 73.4 Macro Avg.

(b) Model inferred with the train and dev sets and evaluated with the test set.

Table 5.4: Results of the best performing model (representation 7 in Ta-
ble 5.2) inferred with the IxaMed-GS corpus and the Random Forest classi-
�er. The dense representation was extracted with GloVe from the in-domain
corpus, with embeddings of 300 dimensions and a context-window of size 4.
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(a) Model inferred with the train set and evaluated with the dev set.

(b) Model inferred with the train and dev sets and evaluated with the test set.

Figure 5.6: ROC curve and AUC of the best experiment (representation
7 in Table 5.2). The model was inferred with the IxaMed-GS corpus and
the Random Forest classi�er. The dense representation was extracted with
GloVe from the in-domain corpus, using embeddings of 300 dimensions and
a context-window of size 4.
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5.5.1 Discussion

We compared the results obtained using the concatenation of words with
those obtained replacing the symbolic features by arrays of numbers, that
is, concatenation of embeddings (see Table 5.3). Unexpectedly, replac-
ing the words by their embedding led to signi�cant improvements, but the
resulting feature vectors had a high dimension. Even though the embed-
ding concatenation turned out to be useful, the continuous space o�ered
alternative ways to encompass the context using a feature vectors of lower
dimension. Instead of using an embedding for each word, we built a single
context-aware embedding. We explored di�erent dense representations
by virtue of sets of embeddings extracted from in- and out-domain corpora,
as well as di�erent generation techniques (word2vec, skipNgram, GloVe) and
dimensions. As was known from previous works (Lai et al., 2016), di�erent
embedding generation strategies and settings have an impact on the per-
formance, while no single technique suitable for all domains and tasks has
been reported in previous work. In our case, the di�erence between the out-
domain embeddings and the best performing approach was small. Note that
the content of the out-domain corpus comprises 13 times more word-forms
than the in-domain corpus. Wang et al. (2018b) concluded that embeddings
trained with in-domain corpus do not necessarily have better performance
than those trained with general-domain corpus. From our results we learned
that using a corpora with representative variants of contexts might mitigate
the lack of speci�c corpora.

Given that we were aware of the fact that in-domain corpora tend to
be scarce, we did not rely completely on the inferred space and conformed
to a bigger-grained space. To do this, we explored simple though e�cient
smoothing techniques applicable on dense spaces. We observed that the
smoothing techniques outperformed their corresponding non-smoothed coun-
terpart. Note that ADRs are rare cases, hence, in the training process the
ADRs are under-represented and, accordingly, the statistics obtained might
be biased to the majority cases. Thus, smoothing helped to the location of
rare cases in a nearby region. In particular, truncating the space is equiva-
lent to a discretization and, in this task, it shown signi�cant bene�ts to the
classi�cation of ADRs, and even more so if the representation space chosen
is given in terms of direction cosines. In general, the dimension reduction
with PCA also resulted bene�cial. In fact, in the experiment with the best
results we made use of PCA and this �nding is important because using fewer
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features speeds up the training process. Unfortunately, the clusters used in
other works with promising results did not bene�t our proposed ADR char-
acterization and were discarded.

We also observed that taking a context-window of 4 words with equally
weighting was reasonable for ADR detection. The other two weightings (di-
minishing weighting and InfoGain weighting) did not show improvements.

Regarding the OOV words, the embeddings were less sensitive to OOVs
than the symbolic representations because fewer instances were a�ected. As
consequence, there are smaller variations in the results when the instances
with OOVs are discarded, particularly, in comparison to the impact of OOVs
with symbolic features. We found that other possible option to tackle the
OOVs could be to use FastText since it generates the embeddings of sub-
words units. Furthermore, the use of a context-aware representations and
the smoothing techniques, principally PCA, helped to avoid the OOV words.

5.5.2 Error analysis

After analyzing the experimental results, we compared the predictions made
by the best performing model, obtained with the smoothed dense represen-
tation and re-sample, and the predictions made with the symbolic represen-
tation and re-sample, the best performing model of Chapter 4.

We found that, with the dense representation, the ADRs of the example
given for the symbolic one were also detected. In the sentence shown in
Figure 5.7 we can see that the pairs `hipoglucemia - septrin' and `hipoglucemia
- timetropin' were detected (the pairs `disminución del apetito - septrin' and
`disminución del apetito - trimetropin' were incorrectly detected as ADRs,
one less than with the symbolic characterization). Note that the black arrows
�Causada_por� correspond to the ADRs annotated by the experts and the
red arrows �Causada_por_system� correspond to the predictions made by
the system.
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Figure 5.7: Example of sentence in which the model inferred with a dense
representation with smoothing detected ADRs discovered by the symbolic
characterization. The sentence means `Hypoglycemias induced by septrin
(the trimethoprim interferes with the hepatic metabolism of the novonorm
and by decreased appetite)'.

We also found that this dense representation, that incorporates the smooth-
ing techniques, was able to detect ADRs not discovered by the symbolic one.
For example, in the sentence shown in Figure 5.8 the ADR `episodio alérgico
- contraste iodado' was detected (contrary to the happened without applying
smoothing), despite of the fact that the ADR `alérgico - yodo' appeared for
training. Moreover, this ADR was detected in the same way that `reacción
alérgica - contraste iodado' was discovered previously.

Figure 5.8: Example of a sentence in which the model inferred with a dense
representation with smoothing detected correctly the ADR annotated by
the experts. This ADR was not detected by the model inferred without
smoothing. The sentence means `After the realization of the CT scan with
iodine contrast he su�ered an allergic attack with a good response to iv
corticoids and antihistamines.'.
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This manual analysis also revealed several sources of errors. First, in
very long sentences (around 40 words) with a wide combination of po-
tential events (around 13), it was not infrequent to �nd FPs. Second, the
system continued detecting as ADR some drug-disease pairs that are related
as treatment, yielding FPs.

Apart from these errors, some FPs were obtained due to errors in the
labels of the entities assigned by the experts. This con�rms again that gold
standards are not necessarily free from errors (Perotte et al., 2014). For
example, in the sentence shown in Figure 5.9 the entity �vómito� would be
�Grp_Enfermedad� instead of �Grp_Medicamento�. This caused of 3 of the
4 FPs: `hipoglucemias - vómito', `nauseas - vómito', `disminución del apetito
- vómito'.

Figure 5.9: Example of sentence in which the best performing model com-
mitted 3 of the 4 FPs because some entities were incorrectly labeled by the
experts. The sentence means `Approximately during the month that she has
been with the treatment with Septrin, the patient also refers multiple hy-
poglycemias and appearance of persistent nauseas with some vomit of small
amount and intense decreased appetite that the patient associates with the
start of the treatment of pain with patches of Transtec.'.

In addition, we observed again some FNs in speculative sentences with
medical uncertainty (Velupillai and Kvist, 2012), that is, sentences were the
diagnosis of the doctor about an ADR is uncertain (this type of error could
happen because the system generalizes as non-ADR some uncertain ADRs
that were labeled by the experts).
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In brief, with the smoothed dense characterization the system was able
to detect more ADRs. Some of them corresponded to pairs that were not
seen during training because they appeared represented with di�erent terms.
We found as sources of FPs long sentences with a wide combination of drug-
disease pairs and sentences with drug-disease pairs that are related as treat-
ment. Furthermore, some FPs occurred because of errors in the annotation
of the entities made by the experts. The sources of FNs were speculative
sentences.

5.6 Conclusions

5.6.1 Concluding remarks

In this chapter we explored dense representation to characterize the ADRs
with the aim of overcoming the lexical variability of the EHRs. These
achieved better results that the symbolic characterization used in Chapter 4.
In practice, we explored the context-aware representations in di�erent con-
tinuous spaces generated with in- and out-domain corpora, resulting more
e�cient the in-domain corpus. Furthermore, we delved into continuous ADR
representations combined with simple e�cient smoothing techniques. Some
of these alternative smoothing techniques resulted useful such as: i) direction
cosines: the vector was represented in a di�erent based, ii) truncation: the
space was discretized, iii) PCA to carry out dimension reduction.

According to these results, we answered to the following research ques-
tions:

Research Question 3

Can dense features be used to represent ADRs in order to help to
overcome the lexical variability of the EHRs written in Spanish?

Detecting ADRs from real EHRs is a challenging task due to the high
lexical variability. The dense representations created with embeddings
enables the machine learning algorithm to perform better than the
symbolic characterizations. This could mean that, with dense repre-
sentations the model is able to generalize to ADRs whose entities are
semantically related. For example, terms that correspond to the same
disease.
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Research Question 4

Given that dense spaces might be unreliable because the corpora formed
by EHRs tend to be small, is it advisable to transform the original dense
spaces into coarse-grained ones using smoothing techniques?

The use of smoothing techniques such as the combination of direction
cosines, truncation and PCA improve the dense representation of the
drug-disease pairs. Smoothing helps to avoid super�cial variations and,
hence, makes di�erent (but close) points in the space equivalent. In this
way, the system increases the generalization ability and is able to group
diseases or drugs that correspond to the same category.

Open questions. In the symbolic representations as well as in the dense
representations we took into account the context by including the surround-
ing words of the entities in the features. In the case of the dense representa-
tions, we also employed context-aware embeddings. Note that we could turn
to approach such as ELMo or BERT to generate contextual embeddings. In
both cases we had to develop an extensive feature engineering to obtain the
ADR characterization. However, we considered that there was still a gap for
improvement in making robust the representation of the entities with their
context. In this way, our purposes are exploring latent features discovered
automatically and generate synergies between the representation and the
training of the classi�er, because, so far, they were developed as independent
processes. Thus, it seems appropriate to employ neural networks for ADR
detection in the following chapter.

5.6.2 Publications

This work lead to the following publication:

1. Sara Santiso, Alicia Pérez, and Arantza Casillas. Smoothing dense
spaces for improved relation extraction between drugs and adverse re-
actions. International Journal of Medical Informatics.
[accepted, awaiting publication]
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6.1 Introduction

For ADR detection, the representation seems crucial. As a consequence, we
explored symbolic and dense features, which were used together with the
traditional classi�er RF. In order to obtain these features, we had to create
a tough preprocessing in each case. We also observed that the use of context
is important in the representation, but we only considered the contextual
information by including in the representation the surrounding words of the
entities involved in the ADRs. Furthermore, given that the features and the
training of the classi�er are developed independently, the features may not
be optimized for the classi�er.

To overcome these issues we opted to infer the predictive model using deep
learning algorithms, where the representation and the model are optimized
jointly during the inference. Deep neural networks obtain high-level features
using multiple levels of representation obtained by successive transforma-
tions, starting from a raw input to more and more abstract levels (Lecun
et al., 2015). These algorithms could be useful mainly for two reasons: i)
they reduce the need of designing hand-crafted features and ii) there are
some architectures that consider the context during the inference. Emerg-
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ing trends in classi�cation promote the use of neural networks. The neural
networks with embedding-based features outperformed the traditional clas-
si�ers with hand-crafted features in several works (Nguyen and Grishman,
2015; Huynh et al., 2016; Feng et al., 2016).

In related works we observed that the authors turned to deep learning
for ADR extraction, instead of using the traditional machine learning algo-
rithms. For example, there are works in which the authors employed CNNs
such as Lee et al. (2017), that used as core-features phrase embeddings ob-
tained with other CNN. Akhtyamova et al. (2017) and Masino et al. (2018)
used word-embeddings as core-features. In other works the authors turned
to RNNs, such as Cocos et al. (2017), also with word-embeddings as core-
features. Others opted for Bi-LSTM networks such as Gupta et al. (2018)
and Stanovsky et al. (2017). The later augmented the word-embeddings
with knowledge graph embeddings of DBpedia. Tutubalina and Nikolenko
(2017) and Wunnava et al. (2018) combined a Bi-LSTM network and a CRF
classi�er. The latter augmented the word-embeddings with character-level
representations. There are other authors such as Huynh et al. (2016) that
explored a CNN and a Recurrent Convolutional Neural Network and pro-
posed two new neural networks, a Convolutional Recurrent Neural Network
and a Convolutional Neural Network with Attention. They used GRU in the
recurrent layers and observed that the CNN outperformed the rest.

Neural networks learn the representation of words as vectors as part of
the training process and also learn to combine word vectors in a way that is
useful for prediction (Goldberg and Hirst, 2017). In this way, the time needed
to design the hand-crafted features is reduced and the resulting vectorial
representation can be helpful to generalize and tackle the data sparsity (Zhou
et al., 2016). In this regard, we proposed to employ a lemmatized version
of the corpus and the embeddings to create the core-features of the neural
networks. The intuition is that the embedded lemmas can help to tackle the
variability of the terminology employed by the doctors in the EHRs. Indeed,
embedded lemmas were used in other works (Straková et al., 2016) for NER.

Among the di�erent architectures used to implement the neural networks,
we can distinguish mainly CNNs and RNNs. Unlike CNNs, RNNs (Elman,
1990) consider the previous states and this allows representing the words in a
sequence following the structure of the sentence. The fact of considering the
previous states would let us incorporate the contextual information in the
representation. For this reason, we opted for LSTM networks (Hochreiter
and Schmidhuber, 1997), a type of RNN that uses memory cells to capture
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long-range dependencies.
In addition to this, our purpose also was to explore if the neural net-

works are robust against the class imbalance problem that present our ADR
candidates.

At this point, we would like to clarify that we continued using the gold
mentions (the entities manually annotated by the experts) to create the drug-
disease pairs, that is, our ADR candidates. We also restricted to the intra-
sentence ADRs following the �ndings from Chapter 4.

According to this, in this chapter the aim is to address the following
research questions:

Research Question 5

Given that the dense features used to characterize the ADRs are in-
ferred together with the model, can the Bi-LSTM networks help to cope
with the lexical variability?

Research Question 6

Are the Bi-LSTM networks sensitive to the class imbalance present in
ADR detection?

The rest of the chapter is organized as follows: Section 6.2 describes the
neural network architecture and its training process. Section 6.3 gives the
results obtained during the evaluation of the di�erent experiments and the
discussion of them. Section 6.4 provides the conclusions.

6.2 Joint AB-LSTM

From the previous works we learned that CNNs (Lee et al., 2017; Akhtyamova
et al., 2017; Masino et al., 2018; He et al., 2019), RNNs (Cocos et al., 2017),
LSTM networks (Luo, 2017) or Bi-LSTM networks (Stanovsky et al., 2017;
Gupta et al., 2018; Wunnava et al., 2018; Jagannatha and Yu, 2016b; Li
et al., 2017) were used as deep learning algorithms to extract ADRs (de�ned
as presence, mention or relation).

In this work we focused on Bi-LSTM networks since, not only they con-
sider the information of the backward states, but they also use the input
sequence in reverse to get information of the forward states. Then, they
make possible to infer features containing information about the context of
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the entire sentence. Figure 6.1 shows the architecture of a Bi-LSTM where
x1, x2 and x3 are the input sequences and z1, z2 and z3 are the outputs of
the network.

Figure 6.1: Scheme of the architecture of the Bi-LSTM network.

To be precise, we opted for a Joint Attentive Bidirectional Long Short-
Term Memory (AB-LSTM) network (Sahu and Anand, 2018). This was
employed by Sahu and Anand (2018) for a Drug-Drug Interaction (DDI)
extraction task where, instead of �nding drug-disease pairs, they found drug-
drug pairs. In this architecture two Bi-LSTMs are trained: one with max
pooling and the other with attentive pooling. Generally, pooling is used
together with CNNs to �nd salient features regarding the class that can
appear in di�erent places (Goldberg and Hirst, 2017). In this case, it is used
together with Bi-LSTM networks in order to obtain feature vectors of the
same length (taking the last token output of the LSTM for can decrease
the performance of the model on longer sequences). Finally, the resulting
features are concatenated. The aim is to exploit the attention mechanism to
capture important clues. The layers of this Joint AB-LSTM are depicted in
Figure 6.2 and each of them is explained below.
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Figure 6.2: Scheme of the Joint AB-LSTM employed for the ADR detection.
The features related with the entities are highlighted in light blue.

1. Feature Layer: This layer is designed to extract a set of core-features
relevant to predicting ADR relations. The input of the system is the
raw text, sentence by sentence. Then, for each word the following
features are considered: i) Word (w): the corresponding word-form, ii)
Distance1 (d1): the number of words from the disease to the current
word, iii) Distance2 (d2): the number of words from the drug to the
current word. Note that Sahu and Anand (2018) observed that the
distances were relevant in the representation.
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2. Embedding Layer: The symbolic features extracted from the previ-
ous layer (w, d1, d2) are transformed into dense ones. To do this, the
corresponding embedding is retrieved for each feature and, next, all of
them are concatenated, as is represented in expression (6.1). Here, xt is
the vector used to represent the tth word of the sentence and comprises
the embeddings of each symbolic feature mentioned above, denoted as
v1t, v2t and v3t.

xt = v1t, v2t, v3t (6.1)

3. Bi-LSTM Layer: The sequence of input vectors (xt) is used to feed
the non-linear classi�er presented next, an LSTM, which is a type of
RNN (Elman, 1990). The RNN is able to process sequential data and
contains hidden states that store information about the previous states.
However, the RNN is hard to train e�ectively because of the vanish-
ing gradients problem (Pascanu et al., 2013). That is, the gradient of
the optimization techniques (errors) tend to be smaller as the back-
propagation process happens and does not learn temporally distant
events. As a consequence, the RNN hardly captures long-range depen-
dencies. The LSTM (Hochreiter and Schmidhuber, 1997) architecture
was designed to solve the vanishing gradients problem. The main idea
is to introduce gating mechanisms that can preserve gradients across
time, the information is added to the memory cells and the gates reg-
ulate the information through them. Nevertheless, the LSTM only
considers information about the previous states. The Bi-LSTM, a type
of Bi-RNN (Schuster and Paliwal, 1997), allows to encompass informa-
tion about the forward and backward states generated by two LSTMs,
considering information about the past and the future. The LSTM is
described formally in (6.2), where it, ft, ot are the input, forget and
output gates respectively (being t the tth word of the sentence). ct is
the current memory cell state, ht is the current hidden state, ct−1 is the
previous memory cell state and ht−1 is the previous hidden state. Ui,
Uf , Uo, Uc are weight matrices of the recurrent connections, Wi, Wf ,
Wo, Wc are weight matrices of the input connections and bi, bf , bo, bc
are bias vectors associated with corresponding gates and states (being
i for the input gate, f for the forget gate, o for the output gate and c
for the memory cell). σ is the sigmoid activation function, tanh is the
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hyperbolic tangent function and ∗ is the element-wise product.

it =σ(Uixt +Wiht−1 + bi)

ft =σ(Ufxt +Wfht−1 + bf )

ot =σ(Uoxt +Woht−1 + bo)

ct =ct−1 ∗ ft + it ∗ tanh(Ucxt +Wcht−1 + bc)

ht = tanh(ct) ∗ ot

(6.2)

For a Bi-LSTM, the �nal output for the tth word (zt) is the concatena-
tion of the backward and forward LSTM as shown in (6.3), where hlt
corresponds to the left (backward) LSTM and hrt corresponds to the
right (forward) LSTM.

zt = hlt, h
r
t (6.3)

4. Pooling Layer: Pooling is used to capture the most relevant features
reducing the dimensions of the feature vector and is generally employed
with CNNs (Goldberg and Hirst, 2017). Di�erent pooling strategies
can be applied: i) attentive pooling, ii) max pooling, and iii) average
pooling. Attentive pooling takes the optimal information based on
a weighted linear combination of feature vectors, where the weights
are assigned according to the importance of these features. This is
represented in (6.4), where Z is the output matrix of the Bi-LSTM
layer, wa is the learning parameter and α is the attention weight vector.
An important point is that α would be di�erent for every sentence,
indicating that relevant context words may appear in distinct positions
in di�erent sentences.

H = tanh(Z)

α =softmax(waTH)

z =αZT

(6.4)

Max pooling obtains the position with the most important information
across the entire sentence. This is represented in (6.5), where zt is the
output of the Bi-LSTM layer for the tth word andm is the total number
of words in the sentence.

z = max
1≤t≤m

[zt] (6.5)
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Average pooling obtains the optimal by computing the average of fea-
ture vectors. This is represented in (6.6), where where zt is the output
of the Bi-LSTM layer for the tth word and m is the total number of
words in the sentence.

z =
1

m

m∑
t=1

[zt] (6.6)

This implementation used two pooling approaches (max pooling and
attentive pooling). Each pooling technique is applied to a Bi-LSTM
and then, the features obtained with each one are concatenated. We
explored each pooling approach separately and their combinations.

5. Softmax Layer: The tanh activation function is applied to the output
of the pooling layer to obtain the input of the fully connected layer.
There are other activation functions such as sigmoid or ReLU. In gen-
eral, both ReLU and tanh signi�cantly outperform the sigmoid activa-
tion function (Goldberg and Hirst, 2017), but ReLU is commonly used
with CNNs (Akhtyamova et al., 2017). The Softmax function was ap-
plied in the output of the fully connected layer for prediction, that is, to
obtain the probability distribution over the possible classes and select
the class with maximum probability. This is shown in (6.7), where h2

is the output of the pooling layer, h3 is the input of the fully connected
layer, W and b are the weight matrix and bias vector, respectively and
ŷ is the class that maximizes the probability.

h3 = tanh(h2)

p(y|x) =softmax(Wh3T + b)

ŷ = argmax
y∈{⊕,	}

p(y|x)
(6.7)

So far, we explained the layers of the Joint AB-LSTM network. Regard-
ing the training, the cross-entropy loss function was optimized by means of
the Adam algorithm (Kingma and Ba, 2015). The Adam algorithm was de-
signed for gradient-based optimization of stochastic objective functions and
is an adaptive learning rate method, that is, it computes individual learning
rates for di�erent parameters. The Adam algorithm shows fast convergence
while maintaining robustness in the choice of the learning rate (Goldberg and
Hirst, 2017). We employed two regularization methods: i) L2-regularization,
which places a squared penalty on parameters with large values by adding
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an additive term to the loss function and ii) Dropout (Hinton et al., 2012),
which randomly drops a set of neurons (features) in each training case. In
general, the regularization methods are used to reduce the over-�tting that
can occur in the neural networks (Goldberg and Hirst, 2017). We also ex-
plored the use of Batch Normalization. It is used to reduce the internal
covariate shift, the change in the distribution of network activations due to
the change in network parameters during training (Io�e and Szegedy, 2015).
This mechanism allows the use of higher learning rates, reduces the need for
dropout and can also speed up the training process.

In addition, we observed that the class imbalance was tackled in some
of the aforementioned related works. Stanovsky et al. (2017) applied Syn-
thetic Minority Oversampling TEchnique (SMOTE), Lee et al. (2017) found
an optimal threshold for prediction probabilities, Akhtyamova et al. (2017)
assigned more weight on the output of the minority class, Luo et al. (2017) ap-
plied sub-sample and Masino et al. (2018) formed each batch by randomly se-
lecting half of the batch from the positive instances and half of the batch from
the negative instances. In our case, we explored the following techniques: i)
re-sample, which obtains the same number of instances for the positive and
the negative class by over-sampling the minority class and sub-sampling the
majority class, ii) re-sample per batch, which is the aforementioned technique
but applied to the instances of each batch, and iii) cost-sensitive learning,
which assigns weights, inversely proportional to each class distribution, to
the outputs of the network.

6.3 Results

In this section we present the results obtained in the experiments carried out
with the Joint AB-LSTM. The hyper-parameters of the Joint AB-LSTM were
�ne-tuned. The values of the learning rate, dropout and L2-regularization
were selected by means of a grid-search using batches of size 100 and hidden
layers of size 200 and we explored a maximum of 18 epochs applying early-
stopping criteria (the values by default in the software of Sahu and Anand
(2018)). For the learning rate and L2-regularization the values explored
ranged from 0 to 1 with geometric increments (0.0001, 0.001, 0.01, 0.1) and
for the dropout from 0 to 1 with 5 steps of constant length equal to 0.2 (0.2,
0.4, 0.6, 0.8). Having selected these values, we also explored di�erent hidden
layers sizes with a grid-search from 50 to 300 with steps of 50 (100, 150,
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200, 250) and di�erent epochs and batches sizes with other grid-search using
the values 18, 38 and 100 for the epochs and 50 and 100 for the batch sizes
(for the number of epochs it is generally used a value around 100, but in
some works lower values were used such as 40 (Jagannatha and Yu, 2016a),
30 (Gupta et al., 2018) or even 18 (Cocos et al., 2017)). The deep learning
approaches were implemented using the TensorFlow package (Abadi et al.,
2015) in Python.

Turning to practical details, we used pre-trained word-embeddings to
represent the words and for the distances the embeddings were initialized
with random values. These were created on the basis of the unannotated
dataset formed by EHRs, with 109,618,393 word-forms and a vocabulary of
286,984 words (see Section 3.2.2). We made use of GloVe (Pennington et al.,
2014) with a window of size (s) 10 and yielding vectors of 300 dimensions.
In case of �nding OOV words during the initialization, these values were
initialized randomly. Regarding the preprocessing, the digits were replaced
with `DG' and the words were changed to lowercase. The short sentences
were extended with padding `PAD' until reaching the maximum length. The
lemmatized versions of the corpora were created using FreeLing-Med (Oronoz
et al., 2013). To assess the models we used the IxaMed-GS corpus and the
hold-out evaluation scheme (see Section 3.3.1). Note that the training process
of the Joint AB-LSTM model entails some randomness, for example, in the
batch selection. Thus, the results obtained in several runs can di�er slightly.
For this reason, we decided to make three runs and provide the averaged
results.

First, we created a baseline with a Feed Forward Neural Network (FFNN)
using the embeddings generated with word-form as core-features. A FFNN
might seem the natural architecture to cope with dense features in the con-
text of ADR detection. Speci�cally, this FFNN could be seen as a simpli�ed
version of the Joint AB-LSTM that does not make use of the Bi-LSTM layer,
depicted in Figure 6.2. Thus, the ability to cope with the context is dimin-
ished. The results of the baseline for the IxaMed-GS corpus are given in
Table 6.1, where we can see that the f-measure achieved for the positive class
was 36.5. Surprisingly, despite employing a neural network, the results of this
FFNN underperformed from 46.2 to 36.5 those obtained in Chapter 4 with
the best performing model inferred with RF using the symbolic representa-
tion (see Table 4.5) and underperformed from 63.9 to 36.5 those obtained in
Chapter 5 with the best performing model inferred with RF using dense rep-
resentation (see Table 5.4). Furthermore, we can observe that this approach
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is unstable. For example, the standard deviation for the f-measure of the
positive class is quite high, 8.2.

Approach Features Precision Recall F-measure Class

FFNN word-forms

89.3±11.1 23.3±6.7 36.5±8.2 ⊕
85.4±1.1 99.3±0.8 91.8±0.6 	
86.1±1.9 85.4±1.1 81.7±1.9 W. Avg.
85.4±1.1 85.4±1.1 85.4±1.1 Micro Avg.
87.3±5.4 61.2±3.3 64.1±4.4 Macro Avg.

Table 6.1: Baseline results (mean and standard deviation) obtained for the
dev set of the IxaMed-GS corpus with the FFNN.

Next, we developed the experiments with the Joint AB-LSTM network.
We assessed di�erent core-features (embeddings generated with word-forms
and lemmas) and the impact of Batch Normalization. In addition, we
assessed the techniques explored to tackle the class imbalance. The results
achieved are shown in Table 6.2. The best performing approach employed
lemmas and Batch Normalization, as well as cost-sensitive learning to tackle
the class imbalance. This outperformed the most simple approach, increasing
the f-measure of the positive class from 68.0 to 78.8. However, this approach
is more unstable that the second best one, which does not overcome the
class imbalance. The second best approach achieved an f-measure for the
positive class of 76.3, but the standard deviation decreased from 3.4 to 1.3.
Then, we decided to continue our experimentation without tackling the class
imbalance.

Finally, we assessed di�erent pooling strategies with the experiment that
included embedded lemmas and Batch Normalization. Widely used pooling
strategies in NLP include max, average and attentive pooling (Goldberg and
Hirst, 2017). We explored the impact of each of them separately and also
their combinations. The results given in Figure 6.3 show that the combina-
tion of both max and attentive pooling (the used in the previous experiments
given in Table 6.2) provided the best performance, being max pooling the
approach that o�ered a better performance separately.
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Approach Features BN Class imbalance F-measure⊕

Joint AB-LSTM

word-forms

without - 68.0±5.6

with

- 74.5±2.2
re-sample 60.4±2.0

re-sample per batch 60.7±1.7
cost-sensitive 73.2±4.5

lemmas

without - 74.1±1.6

with

- 76.3±1.3
re-sample 60.3±2.9

re-sample per batch 63.9±3.7
cost-sensitive 78.8±3.4

Table 6.2: F-measure of the positive class (mean and standard deviation)
obtained for the dev set of the IxaMed-GS corpus using the Joint AB-LSTM
network. Di�erent features (word-forms and lemmas), the impact of Batch
Normalization (denoted as �BN�) and the approaches used to tackle the class
imbalance (re-sample, re-sample per batch and cost-sensitive learning) are
assessed.

In brief, the Joint AB-LSTM with embedded lemmas, Batch Normaliza-
tion and the combination of max and attentive pooling achieved the best
performance. Table 6.3 gives full details of the best performing model for
the dev and test sets. For the dev set, the f-measure of the positive class is
76.3. For the test set, the f-measure of the positive class is 71.9. In both
cases the results obtained in Chapter 5 (see Table 5.4) were improved. The
f-measure of the positive class increased from 63.9 to 76.3 in the dev set and
from 55.4 to 71.9 in the test set.

In addition, we also analyzed the ROC curve and the AUC. Figure 6.4
shows the ROC curves and the AUCs of the aforementioned experiments for
the dev and test sets. Note that we calculated the mean of the results ob-
tained in three evaluations. For this reason, there are three ROC curves in
the same graphic. In both cases the points are above the diagonal and the
averaged AUC outperforms the AUC obtained in Chapter 5 (see Figure 4.6),
from 0.87 to 0.88 in the dev set and from 0.86 to 0.93 in the test set. Un-
expectedly, the AUC of the test set is better than the AUC of the dev set,
contrary to the happened with the f-measure.
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Figure 6.3: F-measure of the positive class obtained for the dev set of the
IxaMed-GS corpus using the Joint AB-LSTM network. Di�erent pooling
strategies were assessed using the con�guration that includes embedded lem-
mas and Batch Normalization. Attentive pooling is denoted as Att, Max
pooling is denoted as Max and Average pooling is denoted as Avg. Note that
the f-measure of the positive class is represented from 40.
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Precision Recall F-measure Class
87.2±0.3 67.8±1.9 76.3±1.3 ⊕
93.2±0.3 97.8±0.0 95.4±0.2 	
92.1±0.3 92.3±0.3 91.9±0.4 W. Avg.
92.3±0.3 92.3±0.3 92.3±0.3 Micro Avg.
90.2±0.3 82.8±1.0 85.8±0.8 Macro Avg.

(a) Model inferred with the train set and evaluated with the dev set.

Precision Recall F-measure Class
72.4±4.1 71.4±0.0 71.9±2.0 ⊕
95.3±0.1 95.5±0.9 95.4±0.5 	
92.0±0.6 92.1±0.8 92.0±0.7 W. Avg.
92.1±0.8 91.8±1.0 92.7±0.8 Micro Avg.
83.8±2.1 83.4±0.4 83.6±1.2 Macro Avg.

(b) Model inferred with the train and dev sets and evaluated with the test set.

Table 6.3: Results (mean and standard deviation) of the best performing
model inferred with the IxaMed-GS corpus and the Joint AB-LSTM network
using lemmas and Batch Normalization.
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(a) Model inferred with the train set and evaluated with the dev set.

(b) Model inferred with the train and dev sets and evaluated with the test set.

Figure 6.4: ROC curves and AUCs of the best experiment (embedded lem-
mas and Batch Normalization). The model was inferred with the IxaMed-GS
corpus and the Joint AB-LSTM network. There are 3 ROC curves and AUCs
because the evaluation was done with 3 runs.
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6.3.1 Discussion

We used a FFNN as baseline, a simpli�ed version of the Joint AB-LSTM
that skips the Bi-LSTM layer. This was outperformed by the Joint AB-
LSTM, which corroborates that the high-level features inferred by context-
aware architectures (as is the case of the Bi-LSTM network) are important
for the improvement of ADR detection. A drawback of the neural networks
is that, although we did not have to resort to a complex manual feature
engineering, we needed to explore a lot of hyper-parameters to adjust the
neural network and obtain good results (Luo, 2017).

We found that Batch Normalization was helpful. In the previous ex-
periments (see Table 6.2), the best performing value for the learning rate
was 0.001 without Batch Normalization and 0.01 with Batch Normalization.
This could con�rm that the use of Batch Normalization allows higher learn-
ing rates (Io�e and Szegedy, 2015). With regard to the optimal value for
the dropout, this was 0.6 without Batch Normalization and 1.0 with Batch
Normalization. This �nding could also con�rm that the need for dropout
was reduced (Io�e and Szegedy, 2015). Unfortunately, we also observed that
the standard deviations of the results obtained in three runs were high.

A key issue in this work was to apply a mechanism to deal with high
lexical variability. We assessed experimentally the use of word-forms and
lemmas as core-features provided to the feature layer (see Table 6.2). We
found that lemmatization was e�ective. It seemed that lemmas helped to
overcome lexical variability, even though deep neural networks make use of
high-level features inferred automatically. Note that the lemmas were a rel-
evant features for the symbolic characterization (see Table 4.1).

Regarding the class imbalance, in the experiments carried out using the
Joint AB-LSTM network without any mechanism to deal with the class im-
balance, we obtained better results than with the best approach found with
RF, that incorporated mechanisms against this issue. This could mean that
the Joint AB-LSTM without external mechanisms remained robust against
imbalanced classes.

In addition, we compared di�erent pooling strategies such as max,
average and attention pooling (Goldberg and Hirst, 2017) separately and
also their combinations. According to the results, it seemed as if max and
attention pooling complimented each other. This did not happen with the
combination of attentive pooling and average pooling which o�ered worse
results separately than max pooling. According to Suárez-Paniagua and
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Segura-Bedmar (2018), that also analyzed the di�erent pooling strategies,
this can be due to the padding applied to the sentences, which can a�ect to
the representation.

6.3.2 Error Analysis

After that, we inspected manually the predictions given by the best perform-
ing model, which made use of the Joint AB-LSMT with embedded lemmas
and Batch Normalization.

With respect to the ADRs of the example given for the best performing
model obtained with the symbolic representation in Chapter 4, all of them
were also detected. In the sentence shown in Figure 6.5 we can see that the
pairs `hipoglucemia - septrin' and `hipoglucemia - timetropin' were detected
(the pairs `hipoglucemia - novonorm' was incorrectly detected as ADRs, one
less than with the dense characterization). Note that the black arrows �Cau-
sada_por� correspond to the ADRs annotated by the experts and the red
arrows �Causada_por_system� correspond to the predictions made by the
system.

Figure 6.5: Example of sentence in which the model inferred with the
Joint AB-LSTM and the embedded lemmas detected the ADRs discovered by
the symbolic characterization. The sentence means `Hypoglycemias induced
by septrin (the trimethoprim interferes with the hepatic metabolism of the
novonorm and by decreased appetite)'.

With respect to the ADR of the example given for the best performing
model obtained with the smoothed dense representation in Chapter 5, it was
also detected. In the sentence shown in Figure 6.6 we can see that the pair
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`episodio alérgico - contraste iodado' was detected (the pair `episodio alérgico
- corticoides' was incorrectly detected as ADR).

Figure 6.6: Example of sentence in which the model inferred with the Joint
AB-LSTM and the embedded lemmas detected correctly the ADR discovered
by the smoothed dense characterization. The sentence means `After the
realization of the CT scan with iodine contrast he su�ered an allergic attack
with a good response to iv corticoids and antihistamines.'.

Furthermore, we found that it was able to detect ADRs that were not
found by the aforementioned models. For example, in the sentence shown
in Figure 6.7 the ADR `deterioro de la función renal - Septrin Forte' was
detected. This could corroborate that deep learning algorithms help to gen-
eralize, because this ADR was not seen during the training and was also
detected the ADR `insu�ciencia renal - Septrin Forte', as happened with the
smoothed dense representation. Both diseases correspond to renal diseases.

We also observed several sources of errors. First, in long sentences
(around 20 words) with a wide combination of potential events (around 5),
we found FPs.

Second, some pairs were evaluated as FPs due to the errors made by
the experts annotating the ADR relations. This con�rms again that gold-
standards are not necessarily free from errors (Perotte et al., 2014), the
annotation is not trivial and can generate slight discrepancies among the
experts. For example, in the sentence shown in Figure 6.8 the pair `edema
angioneurótico - iecas' was not labeled as ADR by the experts when �edema
angioneurótico� is the same disease that �angioedema�, producing an FP (the
ADR `edema angioneurótico - iecas' was detected correctly).

In addition, we continued �nding FNs in speculative sentences with med-
ical uncertainty (Velupillai and Kvist, 2012), that is, sentences were the
diagnosis of the doctor about an ADR is uncertain.
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Figure 6.7: Example of sentence in which the model inferred with the Joint
AB-LSTM and the embedded lemmas detected correctly the ADR annotated
by the experts. The sentence means `Current State: the patient as well as the
daughter assure that the ulcers have improved in an impressive way, despite
of this as a month ago, it was demonstrated the presence in a culture of
ulcer of a multi-resistant Coli, she has been treated with Septrin Forte for 30
days with controls for Home Hospitalization until it has been detected the
presence of a deterioration of kidney function with increase of the Cr to 1,44
mg/dl.'.

Figure 6.8: Example of sentence in which the best performing model com-
mitted an FP because the experts did not annotated some ADR relations.
The sentence means `Seen in Allergology surgery for having presented several
episodes of angioneurotic edema being diagnosed of probable angioedema for
ACE inhibitors and factitious urticaria.'.
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In brief, with deep learning the system was able to detect more ADRs,
which were not seen during the training. We found as sources of FPs long
sentences with a wide combination of drug-disease pairs, but we did not
observe FPs related with the word treatment. Furthermore, we observed
that we can discover ADRs initially omitted by the experts. The sources of
FNs were also speculative sentences.

6.4 Conclusions

6.4.1 Concluding remarks

In this chapter we employed neural networks to detect ADRs in real EHRs,
to be precise a Joint AB-LSTM. The Joint AB-LSTM outperformed the
results obtained with the RF classi�er in Chapter 4 and Chapter 5. Our
impression is that this happened because the Bi-LSTM architecture helped
to represent information about the context in the inferred high-level features.
The embedded lemmas were useful to improve the performance of the system
by reducing the lexical variability. In addition, the Joint AB-LSTM seemed
robust against the imbalanced distribution of the classes.

Taking into account these results, we answered to the following research
questions:

Research Question 5

Can the Bi-LSTM networks help to cope with the lexical variability
given that the dense features used to characterize the ADRs are inferred
together with the model?

The FFNN does not outperform traditional classi�ers such as Random
Forest with smoothed dense features. However, the Bi-LSTM network
outperforms them, particularly when embedded lemmas are used as
core-features. It seems that the information captured from the context
by the Bi-LSTM networks is relevant for the ADR detection and im-
proves the generalization ability, which is helpful to cope with lexical
variations.

Research Question 6

Are the Bi-LSTM networks sensitive to the class imbalance present in
ADR detection?



Conclusions 129

With the traditional machine learning algorithms, the results are much
lower if we do not tackle the class imbalance. By contrast, the ap-
proaches explored to tackle this problem in neural networks, such as
re-sample or cost-sensitive learning, seem unnecessary and can even
deteriorate the performance of the ADR detection model. In fact, Bi-
LSTM networks can detect the majority of the ADRs present on the
EHRs, without applying any mechanism to overcome the class imbal-
ance.

Open questions. To develop the ADR detection, we employed the IxaMed-
GS corpus to infer and evaluate all the models. The weak point of this study
rests on the fact that the corpus does not have a high number of docu-
ments. Maybe, there are few examples to train and evaluate the model and
we wonder whether this approach could be generalizable using more exam-
ples. Furthermore, the drug-disease pairs were created according to the gold
mentions in order to focus only on the ADR detection. We know that the
use of entities detected automatically leads to drop in performance of the
ADR extraction. So far we explored an upper boundary of the system. For
this reason, in the following chapter we intend to see the in�uence of larger
corpus and automatically recognized entities in the performance of our ADR
extraction system.

6.4.2 Publications

This work lead to the following publication:

1. Sara Santiso, Alicia Pérez, and Arantza Casillas. Exploring Joint AB-
LSTM with embedded lemmas for Adverse Drug Reaction discovery.
IEEE Journal of Biomedical and Health Informatics, 1�8, 2018.





7
Tolerance of Adverse Drug Reaction

detection to noise

7.1 Introduction

In the previous chapters we explored three di�erent strategies to detect ADRs
as relations between the causative drug and the caused disease: i) symbolic
representation with RF, ii) dense representation with RF, and iii) dense rep-
resentation with Joint AB-LSTM. That is, for ADR detection we explored
two types of representations, symbolic and dense, and two types of classi�ers,
traditional machine learning algorithms and deep learning algorithms.

First, the model was inferred using the Random Forest classi�er and a
symbolic representation (symbolic + RF). We created the symbolic represen-
tations of the intra-sentence and inter-sentence ADRs. Due to the skewed
distribution of the class, we resorted to techniques to tackle the class im-
balance. Despite this, we also had to reduce the imbalance by restricting to
intra-sentence ADRs. At the end, the best performing model was obtained
using intra-sentence relations and re-sample. This approach was explained in
Chapter 4. Second, we created the model using the Random Forest classi�er
and a dense representation (dense + RF). We created the embeddings with
di�erent unannotated corpora and embedding generation approaches. These
were used to represent the ADR candidates by means of concatenation and
by means of context-aware embeddings. We also applied to these representa-
tions several smoothing techniques. At the end, the best performing model
was obtained using context-aware embeddings created with GloVe, balanced
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with re-sample, and applying truncation, director cosines and PCA. This ap-
proach was explained in Chapter 5. Third, we inferred the model with a dense
representation and the Joint AB-LSTM classi�er (dense + Joint AB-LSTM).
We checked the in�uence of embedded lemmas and Batch Normalization. We
also explored the robustness of the neural network architecture for the skewed
class distribution. At the end, the best performing model was obtained us-
ing the embedded lemmas as core-features and Batch Normalization. This
approach was explained in Chapter 6.

Along the experimentation, we observed how the performance of the ADR
detection improved with each of the aforementioned strategies. That is, the
best results were obtained with the Joint AB-LSTM and the dense repre-
sentation. This is shown in Table 7.1, which gives the results obtained with
the best performing model of each chapter. So far, we o�ered the results
obtained with a hold-out evaluation in order to facilitate the reading. In
this table we also o�er the results obtained with the 10-fold cross-validation
scheme in order to make possible to compare these results.

According to the results, the dense representation resulted useful since
the f-measure of the positive class obtained with the symbolic representation
improved in all the cases (from 46.2 to 63.9 in the dev set, from 43.2 to
55.4 in the test set and from 21.3 to 56.8 with 10-fold cross-validation).
Furthermore, the abstract representation automatically inferred by the Joint
AB-LSTM was even better, improving the dense representation in all the
cases (from 63.9 to 76.3 in the dev set, from 55.4 to 71.9 in the test set and
from 56.8 to 75.6 with 10-fold cross-validation).

We also developed signi�cance tests with these experiments. In view
of the related works (Botsis et al., 2011; Zhao et al., 2014, 2015; Henriksson
et al., 2015b), we opted for the Wilcoxon test (Wilcoxon, 1945) and the Fried-
man test (Friedman, 1940). According to the Wilcoxon test, the di�erences
between the results obtained in each fold of the 10-fold cross-validation were
statistically signi�cant with a con�dence level of 99% in both comparisons:
i) RF with symbolic and dense representations and ii) a dense representa-
tion with RF and Joint AB-LSTM. Furthermore, the di�erences among the
three approaches were statistically signi�cant with a con�dence level of 99%,
according to the Friedman test.
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Approach
Precision Recall F-measure Class

Features Classi�er

Symbolic RF

54.5 40.0 46.2 ⊕
87.3 92.5 89.9 	
81.3 82.9 81.9 W. Avg.

82.9 82.9 82.9 Micro Avg.

70.9 66.3 68.0 Macro Avg.

Dense RF

54.8 76.7 63.9 ⊕
94.3 85.8 89.8 	
87.0 84.1 85.1 W. Avg.

84.1 84.1 84.1 Micro Avg.

74.5 81.2 76.9 Macro Avg.

Dense Joint AB-LSTM

87.2±0.3 67.8±1.9 76.3±1.3 ⊕
93.2±0.3 97.8±0.0 95.4±0.2 	
92.1±0.3 92.3±0.3 91.9±0.4 W. Avg.

92.3±0.3 92.3±0.3 92.3±0.3 Micro Avg.

90.2±0.3 82.8±1.0 85.8±0.8 Macro Avg.

(a) Hold-out: model inferred with the train set and evaluated with the dev set.

Approach
Precision Recall F-measure Class

Features Classi�er

Symbolic RF

34.0 59.3 43.2 ⊕
92.8 82.1 87.1 	
84.9 79.0 81.2 W. Avg.

79.0 79.0 79.0 Micro Avg.

63.4 70.7 65.2 Macro Avg.

Dense RF

47.4 66.7 55.4 ⊕
94.4 88.4 91.3 	
88.1 85.5 86.5 W. Avg.

85.5 85.5 85.5 Micro Avg.

70.9 77.6 73.4 Macro Avg.

Dense Joint AB-LSTM

72.4±4.1 71.4±0.0 71.9±2.0 ⊕
95.3±0.1 95.5±0.9 95.4±0.5 	
92.0±0.6 92.1±0.8 92.0±0.7 W. Avg.

92.1±0.8 91.8±1.0 92.7±0.8 Micro Avg.

83.8±2.1 83.4±0.4 83.6±1.2 Macro Avg.

(b) Hold-out: model inferred with the train and dev sets and evaluated with the test set.
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Approach
Precision Recall F-measure Class

Features Classi�er

Symbolic
RF

18.3 25.5 21.3 ⊕
83.4 76.8 80.0 	
72.4 68.1 70.0 W. Avg.

68.1 68.1 68.1 Micro Avg.

50.9 51.1 50.6 Macro Avg.

Dense
RF

54.6 59.1 56.8 ⊕
91.5 90.0 90.7 	
85.2 84.7 85.0 W. Avg.

84.7 84.7 84.7 Micro Avg.

73.1 74.5 73.7 Macro Avg.

Dense
Joint AB-LSTM

81.3±1.3 71.7±3.7 75.6±2.8 ⊕
94.3±0.7 96.4±0.2 95.3±0.4 	
92.0±0.8 92.1±0.7 91.9±0.8 W. Avg.

92.1±0.7 92.1±0.7 92.1±0.7 Micro Avg.

87.6±1.1 84.0±1.9 85.4±1.6 Macro Avg.

(c) 10-fold cross-validation: folds created with the train, dev and test sets.

Table 7.1: Results of each best performing approach (symbolic + RF, dense
+ RF, dense + Joint AB-LSTM) for the IxaMed-GS corpus.

The results given in Table 7.1 together with the signi�cance tests corrob-
orated that the Joint AB-LSTM with dense representation outperformed the
rest of approaches. Nevertheless, we should also analyze how would change
the performance of the ADR extraction under some variants. On the one
hand, we are interested in discovering if the model is able to continue learn-
ing with larger corpora. As mentioned in Chapter 3, throughout this thesis
more documents were acquired. However, they can be sightly di�erent be-
cause some of them correspond to several hospitals with di�erent specialties
and were labeled by di�erent experts. On the other hand, we feel curious
about the deterioration of second step of the ADR extraction system (ADR
detection) if we employ entities recognized automatically in the �rst step
(MER). That is, using a real MER system instead of the gold mentions (the
manual annotations given by the experts). So far we focused on the second
step to get the performance of the ADR detection, but we are also interested
on assessing the performance of the entire ADR extraction system as in real
scenarios (turn to Figure 1.2 to see the two steps of the pipeline).
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As a consequence, in this chapter we shall address the following research
questions:

Research Question 7

How do the variations in the size and sub-domains of the corpus a�ect
to the performance of the ADR detection model?

Research Question 8

How is the tolerance of the ADR detection model to the noise intro-
duced by the automatic medical entity recognition?

The rest of the chapter is organized as follows: Section 7.2 gives detailed
evaluations of the best performing experiment using corpora of di�erent sizes
and hospitals. Section 7.3 gives detailed evaluations of the best performing
experiment with misrecognized drug-disease pairs due to the use a MER
system. Section 7.4 provides the �nal conclusions.

7.2 Tolerance of ADR detection to corpus vari-

ations

According to the results shown in the previous section, we selected the Joint
AB-LSTM as the best performing approach and our purpose was to assess
the impact on it of slight variations in the data: i) di�erent size of corpora
(increase the number of EHRs), motivated by Akhtyamova et al. (2017) who
mentioned that the size of the training corpora had some impact in the ac-
curacy of a CNN model for ADR extraction, and ii) EHRs from di�erent
hospitals and annotated by di�erent experts, motivated by Sarker and Gon-
zalez (2015) who observed that multi-corpus training can provide signi�cant
improvements in classi�cation accuracies if the corpora used are compatible.

When we started to work on ADR detection, we just had the IxaMed-GS
corpus and the number of documents was not high (although the number
of words is comparable with other corpus (Pérez et al., 2017)). With this
corpus we carried out the experimentation shown in Chapter 4, Chapter 5
and Chapter 6. During the development of this work, within the framework
of the DETEAMI and PROSAMED projects, we got more EHRs leading
to the IxaMed-CH corpus and the IxaMed-E corpus. In summary, IxaMed-
GS (see Table 3.1) consists of 75 EHRs (41,633 words) from the Galdakao
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hospital. This corpus has 110 positive instances and 538 negative instances.
IxaMed-CH (see Table 3.2) consists of 267 EHRs (158,263 words) from the
Galdakao and Basurto hospitals. This corpus has 338 positive instances and
3,087 negative instances. IxaMed-E (see Table 3.3) consists of 463 EHRs
(230,040 words) from the Galdakao and Basurto hospitals. This corpus has
527 positive instances and 21,945 negative instances. Apart from increasing
the number of instances in each one, curiously, the imbalance ratio (the ratio
between positive and negative instances) is approximately three times higher
from one to the other. To be precise, for IxaMed-GS is 1:4, for IxaMed-CH
is 1:11 and for IxaMed-E is 1:33. Moreover, the are more OOV words when
the corpus is larger. Turn to Section 3.2.1 for more details about the three
corpora.

7.2.1 Results

With the aforementioned annotated corpora, we applied the Joint AB-LSTM
classi�er with a dense representation (using embedded lemmas and Batch
Normalization). Given that in the experiments developed with the IxaMed-
GS corpus in Chapter 6 it was not clear whether the use of cost-sensitive
learning was bene�cial to improve the performance of the Joint AB-LSTM,
we decided to employ this mechanism to tackle the class imbalance with the
three corpora.

Figure 7.1 shows the boxplots of these results. It is possible to see again
that with the IxaMed-GS corpus the results were better using cost-sensitive
learning than without tackling the class imbalance, but the dispersion was
notably high. By contrast, with the IxaMed-CH and IxaMed-E corpora the
results obtained with cost-sensitive learning were lower than without tackling
the class imbalance. Furthermore, comparing the boxplots of the two best
performing experiments, we can observe that the di�erences are not signif-
icant. Therefore, it resulted that the best Joint AB-LSTM implementation
was the one that did not resort to any mechanism to overcome the class
imbalance.
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Figure 7.1: Boxplots of the f-measure for the positive class obtained in three
runs of the Joint AB-LSTM (with embedded lemmas and Batch Normal-
ization) for the dev set of each corpus (IxaMed-GS, IxaMed-CH, IxaMed-
E). They show the results obtained using cost-sensitive learning (denoted
as �cost-sensitive�) and those obtained without applying any mechanism to
overcome the class imbalance (�imbalanced�).

Table 7.2 shows the detailed results obtained using these corpora (IxaMed-
GS, IxaMed-CH and IxaMed-E) and the Joint AB-LSTM with embedded
lemmas and Batch Normalization. In this case, the training of the mod-
els and the evaluation were done with the same corpus in each experiment.
According to the f-measure of the positive class, the IxaMed-CH corpus out-
performed the IxaMed-GS corpus from 76.3 to 77.9 in the dev set, from 71.9
to 73.3 in the test set and from 75.6 to 75.9 with 10-fold cross-validation. The
IxaMed-E corpus outperformed the IxaMed-CH corpus from 77.9 to 79.9 in
the dev set, from 73.3 to 75.2 in the test set and from 75.9 to 80.8 with
10-fold cross-validation. In brief, the models inferred with larger corpora
outperformed those inferred with smaller corpora.
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Corpus Precision Recall F-measure Class

IxaMed-GS

87.2±0.3 67.8±1.9 76.3±1.3 ⊕
93.2±0.3 97.8±0.0 95.4±0.2 	
92.1±0.3 92.3±0.3 91.9±0.4 W. Avg.

92.3±0.3 92.3±0.3 92.3±0.3 Micro Avg.

90.2±0.3 82.8±1.0 85.8±0.8 Macro Avg.

IxaMed-CH

89.3±0.6 69.2±1.4 77.9±0.7 ⊕
94.1±0.2 98.3±0.2 96.2±0.1 	
93.2±0.1 93.4±0.1 93.1±0.2 W. Avg.

93.4±0.1 93.4±0.1 93.4±0.1 Micro Avg.

91.6±0.2 83.7±0.6 87.0±0.3 Macro Avg.

IxaMed-E

90.3±0.8 71.8±2.3 79.9±1.3 ⊕
94.7±0.4 98.5±0.2 96.6±0.2 	
94.0±0.3 94.2±0.3 93.9±0.3 W. Avg.

94.2±0.3 94.2±0.3 94.2±0.3 Micro Avg.

92.6±0.3 85.2±1.0 88.3±0.7 Macro Avg.

(a) Hold-out: model inferred with the train set and evaluated with the dev set.

Corpus Precision Recall F-measure Class

IxaMed-GS

72.4±4.1 71.4±0.0 71.9±2.0 ⊕
95.3±0.1 95.5±0.9 95.4±0.5 	
92.0±0.6 92.1±0.8 92.0±0.7 W. Avg.

92.1±0.8 91.8±1.0 92.7±0.8 Micro Avg.

83.8±2.1 83.4±0.4 83.6±1.2 Macro Avg.

IxaMed-CH

76.0±2.8 70.9±5.6 73.3±2.2 ⊕
96.1±0.7 96.9±0.7 96.5±0.2 	
93.7±0.5 93.8±0.3 93.7±0.4 W. Avg.

93.8±0.3 93.8±0.3 93.8±0.3 Micro Avg.

86.1±1.2 83.9±2.5 84.9±1.2 Macro Avg.

IxaMed-E

74.4±5.1 76.0±2.9 75.2±3.9 ⊕
96.5±0.5 96.2±0.9 96.3±0.6 	
93.7±1.0 93.6±1.1 93.7±1.0 W. Avg.

93.6±1.0 93.6±1.1 93.6±1.1 Micro Avg.

85.4±2.7 86.1±1.9 85.8±2.3 Macro Avg.

(b) Hold-out: model inferred with the train and dev sets and evaluated with the test set.
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Corpus Precision Recall F-measure Class

IxaMed-GS

81.3±1.3 71.7±3.7 75.6±2.8 ⊕
94.3±0.7 96.4±0.2 95.3±0.4 	
92.0±0.8 92.1±0.7 91.9±0.8 W. Avg.

92.1±0.7 92.1±0.7 92.1±0.7 Micro Avg.

87.6±1.1 84.0±1.9 85.4±1.6 Macro Avg.

IxaMed-CH

83.2±0.7 70.2±0.5 75.9±0.2 ⊕
95.7±0.1 97.8±0.1 96.8±0.0 	
94.1±0.0 94.3±0.0 94.1±0.0 W. Avg.

94.3±0.0 94.3±0.0 94.3±0.0 Micro Avg.

89.5±0.3 84.0±0.2 86.3±0.1 Macro Avg.

IxaMed-E

86.1±0.3 76.2±1.3 80.8±0.8 ⊕
95.2±0.2 97.4±0.0 96.3±0.1 	
93.6±0.2 93.8±0.2 93.6±0.2 W. Avg.

93.8±0.2 93.8±0.2 93.8±0.2 Micro Avg.

90.6±0.2 86.8±0.6 88.5±0.5 Macro Avg.

(c) 10-fold cross-validation: folds created with the train, dev and test sets.

Table 7.2: Results of the best performing approach (dense + Joint AB-
LSTM) with each corpus (IxaMed-GS, IxaMed-CH, IxaMed-E).

In addition, we made cross-corpus evaluations, that is to say, we inferred
the model with the same corpus and assessed it with the three of them. This
enabled us to compare the results obtained by each model with a �xed eval-
uation set. Table 7.3 shows these results. An inspection of this table shows
that i) the same model tended to o�er higher results when the evaluation
set was smaller and lower results when the evaluation set was higher and ii)
comparing each model under the same evaluation set, the results tended to
improve when the model was inferred with larger corpora. For example, if
we focus on the train set of IxaMed-E, the f-measure of the positive class
for the dev set was 83.3 evaluating with IxaMed-GS, 82.2 with IxaMed-CH
and 79.9 with IxaMed-E. If we focus on the evaluation made with the dev
set of IxaMed-E, the f-measure of the positive class was 51.4 training with
IxaMed-GS, 79.9 with IxaMed-CH and 79.9 with IxaMed-E.
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Corpus
Precision Recall F-measure ClassTraining Evaluation

IxaMed-GS

IxaMed-GS

87.2±0.3 67.8±1.9 76.3±1.3 ⊕
93.2±0.3 97.8±0.0 95.4±0.2 	
92.1±0.3 92.3±0.3 91.9±0.4 W. Avg.
92.3±0.3 92.3±0.3 92.3±0.3 Micro Avg.
90.2±0.3 82.8±1.0 85.8±0.8 Macro Avg.

IxaMed-CH

79.0±3.3 53.0±3.8 63.3±2.9 ⊕
91.1±0.6 97.1±0.6 88.4±10.0 	
89.1±0.8 89.7±0.7 88.9±0.8 W. Avg.
89.7±0.7 89.7±0.7 89.7±0.7 Micro Avg.
85.0±1.7 75.0±1.8 78.7±3.3 Macro Avg.

IxaMed-E

54.7±3.5 41.0±3.1 51.4±8.2 ⊕
90.0±1.8 94.3±0.3 90.8±1.1 	
84.2±1.0 85.6±0.6 84.4±0.5 W. Avg.
85.6±0.6 85.6±0.6 85.6±0.6 Micro Avg.
72.3±0.9 67.7±1.6 71.1±3.6 Macro Avg.

IxaMed-CH

IxaMed-GS

98.5±2.6 72.2±1.9 83.3±2.2 ⊕
94.2±0.4 99.8±0.4 96.9±0.4 	
94.9±0.8 94.8±0.8 94.4±0.7 W. Avg.
94.8±0.8 94.8±0.8 94.8±0.8 Micro Avg.
96.3±1.5 86.0±1.2 90.1±1.3 Macro Avg.

IxaMed-CH

89.3±0.6 69.2±1.4 77.9±0.7 ⊕
94.1±0.2 98.3±0.2 96.2±0.1 	
93.2±0.1 93.4±0.1 93.1±0.2 W. Avg.
93.4±0.1 93.4±0.1 93.4±0.1 Micro Avg.
91.6±0.2 83.7±0.6 87.0±0.3 Macro Avg.

IxaMed-E

95.7±1.6 68.7±1.8 79.9±0.6 ⊕
94.2±0.3 99.4±0.3 96.8±0.1 	
94.5±0.1 94.4±0.1 90.7±5.7 W. Avg.
94.4±0.1 94.4±0.1 94.4±0.1 Micro Avg.
95.0±0.7 84.0±0.7 88.3±0.4 Macro Avg.

IxaMed-E

IxaMed-GS

98.6±2.5 72.2±1.9 83.3±1.1 ⊕
94.2±0.3 99.8±0.4 96.9±0.2 	
95.0±0.4 94.7±0.4 94.4±0.3 W. Avg.
94.7±0.4 94.7±0.4 94.7±0.4 Micro Avg.
96.4±1.2 86.0±0.9 90.1±0.7 Macro Avg.

IxaMed-CH

90.5±3.2 75.0±2.2 82.0±0.8 ⊕
95.1±0.4 98.4±0.7 96.7±0.2 	
94.4±0.3 94.5±0.4 94.3±0.3 W. Avg.
94.5±0.4 94.5±0.4 94.5±0.4 Micro Avg.
92.8±1.5 86.7±0.9 89.3±0.5 Macro Avg.

IxaMed-E

90.3±0.8 71.8±2.3 79.9±1.3 ⊕
94.7±0.4 98.5±0.2 96.6±0.2 	
94.0±0.3 94.2±0.3 93.9±0.3 W. Avg.
94.2±0.3 94.2±0.3 94.2±0.3 Micro Avg.
92.6±0.3 85.2±1.0 88.3±0.7 Macro Avg.

(a) Hold-out: model inferred with the train set and evaluated with the dev set.
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Corpus
Precision Recall F-measure ClassTraining Evaluation

IxaMed-GS

IxaMed-GS

72.4±4.1 71.4±0.0 71.9±2.0 ⊕
95.3±0.1 95.5±0.9 95.4±0.5 	
92.0±0.6 92.1±0.8 92.0±0.7 W. Avg.
92.1±0.8 91.8±1.0 92.7±0.8 Micro Avg.
83.8±2.1 83.4±0.4 83.6±1.2 Macro Avg.

IxaMed-CH

41.8±6.1 58.6±5.2 48.6±4.6 ⊕
94.0±0.7 88.7±2.6 91.3±1.5 	
87.8±1.2 85.1±2.3 86.2±1.8 W. Avg.
85.1±2.3 85.1±2.3 85.1±2.3 Micro Avg.
67.9±3.2 73.6±2.7 69.9±3.0 Macro Avg.

IxaMed-E

35.4±2.0 58.5±4.4 44.1±2.8 ⊕
93.4±0.7 84.5±0.4 88.7±0.4 	
86.0±0.8 81.3±0.8 83.1±0.7 W. Avg.
81.3±0.8 81.3±0.8 81.3±0.8 Micro Avg.
64.4±1.4 71.5±2.3 66.5±1.6 Macro Avg.

IxaMed-CH

IxaMed-GS

84.5±2.2 71.4±3.6 77.4±2.5 ⊕
95.4±0.6 97.8±0.3 96.6±0.3 	
93.8±0.6 94.1±0.6 93.9±0.7 W. Avg.
94.1±0.6 94.1±0.6 94.1±0.6 Micro Avg.
90.0±1.3 84.6±1.8 87.0±1.4 Macro Avg.

IxaMed-CH

76.0±2.8 70.9±5.6 73.3±2.2 ⊕
96.1±0.7 96.9±0.7 96.5±0.2 	
93.7±0.5 93.8±0.3 93.7±0.4 W. Avg.
93.8±0.3 93.8±0.3 93.8±0.3 Micro Avg.
86.1±1.2 83.9±2.5 84.9±1.2 Macro Avg.

IxaMed-E

81.8±1.4 74.8±1.3 78.1±0.6 ⊕
96.4±0.2 97.6±0.3 97.0±0.1 	
94.5±0.2 94.7±0.2 94.6±0.2 W. Avg.
94.7±0.2 94.7±0.2 94.7±0.2 Micro Avg.
89.1±0.6 86.2±0.6 87.6±0.3 Macro Avg.

IxaMed-E

IxaMed-GS

84.5±4.9 69.1±5.4 75.8±1.8 ⊕
95.0±0.8 97.8±0.9 96.4±0.2 	
93.5±0.4 93.7±0.3 93.5±0.4 W. Avg.
93.7±0.3 93.7±0.3 93.7±0.3 Micro Avg.
89.7±2.1 83.4±2.3 86.1±0.9 Macro Avg.

IxaMed-CH

81.6±3.4 82.8±2.5 82.1±0.6 ⊕
97.7±0.3 97.4±0.7 97.6±0.2 	
95.8±0.2 95.7±0.3 95.7±0.2 W. Avg.
95.7±0.3 95.7±0.3 95.7±0.3 Micro Avg.
89.7±1.6 90.1±0.9 89.8±0.4 Macro Avg.

IxaMed-E

74.4±5.1 76.0±2.9 75.2±3.9 ⊕
96.5±0.5 96.2±0.9 96.3±0.6 	
93.7±1.0 93.6±1.1 93.7±1.0 W. Avg.
93.6±1.0 93.6±1.1 93.6±1.1 Micro Avg.
85.4±2.7 86.1±1.9 85.8±2.3 Macro Avg.

(b) Hold-out: model inferred with the train and dev sets and evaluated with the test set.

Table 7.3: Results of the best performing approach (dense + Joint AB-
LSTM) with cross-corpus experiments. The models inferred with each corpus
are assessed with the evaluation set of each corpus (IxaMed-GS, IxaMed-CH,
IxaMed-E).
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7.2.2 Discussion

In order to examine the results where the training and the evaluation of the
experiments were done with the same corpus (see Table 7.2), we would like
to remind that the class imbalance triples from one corpus to the other.
Despite of the increasing skew, the results improved as the size of the corpus
increased. Then, we could state that the Joint AB-LSTM was much more
robust against unequal distributions than the traditional classi�er used in
the previous two approaches (Chapter 4 and Chapter 5).

While both IxaMed-CH and IxaMed-E preserve the domain, the sub-
domains are not exactly the same as in IxaMed-GS. Besides, the annota-
tions might di�er slightly as di�erent experts were involved in the annotation
process. Interestingly, the results suggested that the inference process was
not a�ected and, as the corpora increased, the model was enhanced.

We also should bear in mind that the lexical variability is higher as the
size of the corpus increases (see the OOVs of the three annotated corpora
in Section 3.2.1). Nevertheless, the performance of the Joint AB-LSTM
did not drop as the variability increases. That is, this approach seemed to
manage with changes in the lexicon, at least, provided that the number of
data increases.

The results of the cross-corpus evaluation shown in Table 7.3 would cor-
roborate the previous analysis. That is, the generalization ability increased
when the model was inferred using corpora with more instances.

7.2.3 Error analysis

Inspecting the predictions made by these models, we observed that some-
times a drug-disease pair detected as non-ADR by the model inferred with
the IxaMed-GS corpus, was correctly detected as ADR by the model inferred
with the IxaMed-CH corpus, avoiding FNs. For example, in the sentence
given in Figure 7.2 the ADR `hiperglucemia leve - tto. corticoideo' is detected
with IxaMed-CH although it was not detected with IxaMed-GS. Interestingly,
this ADR was detected in the same way that the ADR `diabete mellitus tipo
2 - tratamiento corticoideo' was detected previously, despite of the fact that
during the training the observed ADRs were `diabetes mellitus - corticoter-
apia', `hiperglucemia - corticoides', `hiperglucemia - tratamiento corticoideo'.
That is, di�erent terms were used to make reference to the same ADR. Note
that the black arrows �Causada_por� correspond to the ADRs annotated by
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the experts and the red arrows �Causada_por_system� correspond to the
predictions made by the system.

Figure 7.2: Example of sentence in which the ADR is detected with the
IxaMed-CH corpus and it was not detected with the IxaMed-GS corpus.
The sentence means `During admission and in relation with the corticoidal
treatment, he presents slight hyperglycemia controlled with very low doses of
Actrapid and diet, being discharged in treatment with Darcotin at low doses
and in downward trend.'.

We also observed that with the IxaMed-E corpus it was possible to detect
ADRs such as `cefalea - nitroglicerina', which is shown in the sentence given
in Figure 7.3.

Figure 7.3: Example of sentence in which the ADR is detected with the
IxaMed-E corpus. The sentence means `Equally the headache of the patient
has improved as the doses of the nitroglycerin patches decreased.'.

7.3 Tolerance of ADR detection to noise de-

rived from MER

Our system is implemented as a pipeline with two steps (see Figure 1.2).
First, the medical entities (e.g. drugs and diseases) are recognized. Second,
the drug-disease pairs are classi�ed as ADR or non-ADR. As a consequence,
the errors generated in the MER step are propagated to the ADR detection
step. With the aim of assessing the tolerance to noise of the ADR detection,
we selected the Joint AB-LSTM with the IxaMed-E as the best performing
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approach. First, we computed the performance of the ADR detection system
with an ideal MER system, that is, using the gold mentions (the entities
annotated by the experts). This enables to focus on the performance of the
ADR detection as an isolated stage in an ideal situation. Next, we made use
of a real MER system in the �rst step and assessed the performance of the
ADR detection model. Finally, we introduced, gradually, random noise to
the gold mentions in an automatic way. In this way, we compared the real
MER with the noise that other MER systems could introduce.

In this case, to recognize automatically the entities we resorted to the
CRF classi�er (La�erty et al., 2001), which is an algorithm for sequence la-
beling widely used for NER. There are more sophisticated approaches based
on deep learning that reached promising results for entity recognition (Lam-
ple et al., 2016; Habibi et al., 2017; Ju et al., 2018; Weegar et al., 2018).
Nevertheless, since our purpose was to get errors in order to assess their
propagation and given that the MER itself is not the main objective of this
work, we decided not to resort to the best MER approaches.

7.3.1 Results

To analyze the in�uence of the errors propagated from the automatic entity
recognition on ADR detection, we carried out three experiments:

1. Using for MER an ideal system able to guess the mentions as an expert
would do and a real system for automatic ADR detection (this is the
situation explored so far in Table 7.2). This scenario allows us to assess
the scope of the ADR detection.

2. Using a real system for automatic MER and an ideal system for ADR
detection. In this way, we can derive the upper threshold achievable
by a real ADR detection system with a real MER.

3. Using both, MER and ADR detection, real systems.
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First, we assessed the MER system. The CRF classi�er was created
using the freely available implementation CRF++ (Kudo, 2005) and using
as features the lemma, the POS and the semantic tag. The results obtained
training with the train set and evaluating with the dev set (train vs dev)
and the results obtained training with the train and dev sets and evaluating
with the test set (train∪dev vs test) are shown in Table 7.4. We observed
that f-measure was 57.4 and 57.2 respectively with exact-match. Turn to
Appendix B for more information about the MER experiments.

Exact Partial
P R F P R F

train vs dev 64.4 51.7 57.4 90.7 79.8 84.9
train∪dev vs test 63.6 52.1 57.2 89.6 80.4 84.8

Table 7.4: Precision (P), Recall (R) and F-measure (F) for MER using the
CRF classi�er with the IxaMed-E corpus.

After that, we obtained the results of the aforementioned three scenarios,
which are shown in Table 7.5. Note that we employed the MER entities only
in the evaluation sets (dev and test), as in a real system. As it was expected,
the performance of the Joint AB-LSTM decreased from the �rst scenario to
the third one, since we replaced the ideal MER system with the CRF (the
f-measure of the positive class decreased from 79.9 to 74.5 in the dev set
and from 75.2 to 65.7 in the test set). In fact, the second scenario, with
CRF as MER and ideal ADR detection system, gives us the upper threshold
performance in case of dropping entities (the f-measure of the positive class
was 87.0 in the dev set and 77.1 in the test set). Note that the recall of the
positive class in the second scenario was 76.9 in the dev set and 62.8 in the
test set and not 100.0%. This happened because it was not possible to �nd
all the ADR relations due to unlabeled entities.
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ADR extraction
Precision Recall F-measure Class

MER ADR detection

Ideal Joint AB-LSTM

90.3±0.8 71.8±2.3 79.9±1.3 ⊕
94.7±0.4 98.5±0.2 96.6±0.2 	
94.0±0.3 94.2±0.3 93.9±0.3 W. Avg.
94.2±0.3 94.2±0.3 94.2±0.3 Micro Avg.
92.6±0.3 85.2±1.0 88.3±0.7 Macro Avg.

CRF Ideal

100.0±0.0 76.9±0.0 87.0±0.0 ⊕
95.7±0.0 100.0±0.0 97.8±0.0 	
96.4±0.0 96.3±0.0 96.1±0.0 W. Avg.
96.3±0.0 96.3±0.0 96.3±0.0 Micro Avg.
97.9±0.0 88.5±0.0 92.4±0.0 Macro Avg.

CRF Joint AB-LSTM

96.4±2.0 60.7±0.0 74.5±0.6 ⊕
92.9±0.0 99.5±0.3 96.1±0.1 	
93.5±0.3 93.3±0.2 92.6±0.2 W. Avg.
93.3±0.2 93.3±0.2 93.3±0.2 Micro Avg.
94.7±1.0 80.1±0.2 85.3±0.4 Macro Avg.

(a) Hold-out: model inferred with the train set and evaluated with the dev set.

ADR extraction
Precision Recall F-measure Class

MER ADR detection

Ideal Joint AB-LSTM

74.4±5.1 76.0±2.9 75.2±3.9 ⊕
96.5±0.5 96.2±0.9 96.3±0.6 	
93.7±1.0 93.6±1.1 93.7±1.0 W. Avg.
93.6±1.0 93.6±1.1 93.6±1.1 Micro Avg.
85.4±2.7 86.1±1.9 85.8±2.3 Macro Avg.

CRF Ideal

100.0±0.0 62.8±0.0 77.1±0.0 ⊕
94.9±0.0 100.0±0.0 97.4±0.0 	
95.5±0.0 95.3±0.0 94.8±0.0 W. Avg.
95.3±0.0 95.3±0.0 95.3±0.0 Micro Avg.
97.4±0.0 81.4±0.0 87.3±0.0 Macro Avg.

CRF Joint AB-LSTM

86.2±2.6 53.1±1.4 65.7±1.4 ⊕
93.6±0.2 98.8±0.3 96.1±0.2 	
92.6±0.4 93.0±0.3 92.3±0.4 W. Avg.
93.0±0.3 93.0±0.3 93.0±0.3 Micro Avg.
89.9±1.3 75.9±0.7 80.9±0.8 Macro Avg.

(b) Hold-out: model inferred with the train and dev sets and evaluated with the test set.

Table 7.5: Results of the best performing approach (dense + Joint AB-
LSTM) with the IxaMed-E corpus, evaluated using the gold mentions and
the automatic entities obtained with MER.
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In addition, we developed the third scenario randomly missing 20%, 40%,
60% and 80% of the entities, yielding the results shown in Figure 7.4. We
can observe that as the percentage of missed entities increases, the f-measure
of the positive class decreases. Speci�cally, it follows a quartic polynomial
function, which is represented in (7.1) for the dev set and in (7.2) for the test
set.

f(x) = −3.66 · 10−5x4 + 6.33 · 10−3x3 − 3.35 · 10−1x2 + 4.08x+ 79.9 (7.1)

f(x) = −2.66 · 10−5x4 + 4.69 · 10−3x3 − 2.53 · 10−1x2 + 3.08x+ 75.2 (7.2)

For instance, when 20% of the entities were dropped randomly, the f-measure
of the positive class for the dev set decreased from 79.9 to 72.2. Note that
from 20% to the right of Figure 7.4 depicts too pessimistic situations since,
current approaches in MER are above 85.75% of f-measure for Spanish and
90.94% of f-measure for English (Lample et al., 2016).

Figure 7.4: Performance of the ADR extraction system with the IxaMed-E
corpus, varying the percentage of entities dropped in the evaluation set.
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7.3.2 Discussion

When the ideal MER is replaced with the CRF classi�er, whenever an entity
that takes place in an ADR was not recognized by the CRF (leading to a False
Negative entity), an ADR candidate is missed and thus the ADR detection
system cannot detect it (yielding a False Negative relation). This happened
with around 58% of the undetected ADRs in the dev set and around 80%
in the test set. However, the decay in performance from the �rst scenario
to the third one was not as high as one might expect, bearing in mind that
the f-measure for the CRF was relatively low (57.4 in the dev set and 57.2
in the test set). Speci�cally, the performance worsened 5.4 points in the
dev set and 10 in the test set. The reason is simple, a big number of the
entities missed corresponded to non-ADR relations. The cause of this can
be explained, again, with the class imbalance. ADR relations are scarce and
missing some entities does not have an impact in the results while they are
important in clinical practice. Speci�cally, the CRF errors caused around
41% of the undetected ADRs in the dev set and 34% in the test set.

In addition, when an entity is incorrectly recognized by the CRF (leading
to a False Positive entity), a new ADR candidate is created and the ADR
detection can retrieve it as ADR (yielding a False Positive relation). This
does not a�ect to the result given in Table 7.5 because the evaluations are
based on the gold annotation made by the experts. Nevertheless, this would
produce around 20% of the incorrect ADRs in the dev set and 36% in the
test set.

7.3.3 Error analysis

Analyzing the predictions obtained with the MER entities, we can �nd ex-
amples of ADRs that were not found by the system because their entities
were not detected in the entity recognition step. For instance, in the sen-
tence given in Figure 7.5 the ADR `enteropatía - AINEs' was not detected
as ADR by the system because the entity �enteropatía� was not recognized
by the MER system.
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Figure 7.5: Example of sentence in which an ADR was not detected by the
system due to the MER errors. The sentence means `Anemia in probable
relation to enteropathy because of NSAIDs (pending to �nish study by A-P
CT Scan and see evolution of anemia)'.

In these predictions we can also �nd cases where the prediction was not
correct because the drug-disease pair contained an entity that was not labeled
by the experts. Then, this ADR did not appear among those annotated by
the experts. For example, in the sentence given in Figure 7.6 the word
�anticoagulación� was detected as drug. Then, it was created the extra pair
`hemoptisis - anticoagulación', which was incorrectly predicted as ADR.

Figure 7.6: Example of sentence in which a drug-disease pair was incor-
rectly predicted as ADR by the system due to MER errors. The sentence
means `Self-limited slight hemoptysis in patient undergoing treatment with
oral anticoagulation'.

7.4 Conclusions

In this chapter, we corroborated that the model inferred with the Joint AB-
LSTM yielded the best performance for ADR detection among the three
proposed approaches. Next, we found that with the IxaMed-E corpus the
performance of the model improved, despite introducing slight variation in
the sub-domains, increasing the lexical variability and also the class imbal-
ance. Our impression is that the size of the corpus is relevant to overcome
these challenges. Finally, we also evaluated the model with the entities ob-
tained automatically and we observed that the MER errors do not have as
high impact on the results as we expected.
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Figure 7.7 shows a summary of the aforementioned results, in terms of
f-measure of the positive class, for the dev set (Figure 7.7a) and the test
set (Figure 7.7b). We can see graphically that the performance improved
progressively with each approach and with each corpus and worsened when
the ADR candidates were created with the automatic entities obtained with
a MER system.

With this experimentation, we answered to the following research ques-
tions:

Research Question 7

How do the variations in the size and sub-domains of the corpus a�ect
to the performance of the ADR detection model?

The number of instances used to train the model has a high in�uence
on the detection ability of the ADR extraction. To be precise, the
larger the corpus the better the results. In addition, the model can be
robust to the di�erent sub-domains introduced by the use of EHRs of
di�erent hospitals with di�erent departments. Then, despite the fact
that EHRs are di�cult to obtain, it is advisable to employ as many as
possible.

Research Question 8

How is the tolerance of the ADR detection model to the noise intro-
duced by the automatic medical entity recognition?

The use of the automatic entities to create the drug-disease pairs wors-
ens the performance of the ADR detection. Mainly, the model inferred
in the ADR detection step cannot �nd the ADRs with entities that
were not recognized in the entity recognition step. However, the drop
in performance is lower than we expected.

Open questions. Having seen that the neural networks o�er a better per-
formance and are more robust against class imbalance, we found of much
interest to explore again the extraction of inter-sentence and intra-sentence
ADRs with this approach.
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(a) F-measure of the positive class obtained for the dev set.

(b) F-measure of the positive class obtained for the test set.

Figure 7.7: Summary of the results obtained in the comparison of the three
approaches (symbolic + RF, dense + RF and dense + Joint AB-LSTM'), the
three corpus (IxaMed-GS, IxaMed-CH and IxaMed-E) and the two MER sys-
tems (�manual� stands for gold mentions and �automatic� for CRF entities).
Note that the f-measure is represented from 35.





8
Conclusions and future work

8.1 Summary of the research

In this work we developed ADR extraction, that is, extraction of drug-disease
pairs in which the drug caused the disease. We approached it as a relation
extraction task, even though some related works de�ned ADR extraction as
the recognition of the caused disease while omitted the causing drug (details
about the de�nition adopted in this work are given in Section 1.2 and the
de�nitions and approaches in related works are given in Section 2.2). We
considered the extraction of both inter- and intra-sentence relations, that
is to say, relations where the entities are placed in the same sentence or in
di�erent sentences. However, considering all the possible relations produced
a high class imbalance and the results achieved were poor. Thus, following
the main stream, we restricted to intra-sentence relation extraction. Despite
of this, there was still an unequal distribution of the class produced because
the ADRs are rare events and then, there were four times more negative than
positive instances.

We extracted ADRs from EHRs written in Spanish. The EHRs are writ-
ten using informal language, presenting misspellings as well as standard and
non-standard abbreviations (turn to Section 3.2 for more information about
the EHRs). This increases the lexical variability present in this type of doc-
uments. Furthermore, our work is focused on Spanish, a language with fewer
available resources than others such as English. This makes processing these
documents di�cult (Névéol et al., 2018).

With this framework, we had to tackle some challenges to improve the
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ADR detection. Mainly, we had to overcome the class imbalance of the ADR
instances and the lexical variability of the EHRs.

Our main objective was to create a model able to detect automatically
ADRs in EHRs written in Spanish (see Section 1.3). To this end, we turned
to a pipeline approach to �nd ADR relations and we focused particularly on
the ADR detection step than on the MER step (turn to Figure 1.2 to see
the scheme of the pipeline). Note that the research works on MER achieved
an f-measure of 90%, while research works on relation extraction achieved an
f-measure about 70% (Dalianis, 2018). First, we started using symbolic repre-
sentations of drug-disease pairs with a traditional classi�er such as RF. Next,
we replaced the symbolic representations by dense representations based on
embeddings and improved them with some smoothing techniques. Finally,
we resorted to neural networks, a di�erent classi�cation algorithm that is
able to infer abstract dense features. In addition, we analyzed the e�ect of
large corpora and automatic entities in the performance of the model.

From the experiments, we concluded that the neural networks, speci�cally
the Joint AB-LSTM, was the best option for ADR detection. Furthermore,
the performance was improved using a larger corpora, achieving an f-measure
for the positive class of 79.9 in the dev set, 75.2 in the test set and 80.8 with
10-fold cross-validation.

In the rest of this chapter, we give the responses to the main research
question together with the concluding remarks (Section 8.2), we present our
contributions (Section 8.3), we explain the future lines of the work (Sec-
tion 8.4), we enumerate the publications derived from this work (Section 8.5)
and the intellectual property registry (Section 8.6).

8.2 Concluding remarks

This work was boosted by the following research question:

Main Research Question

How can NLP techniques be applied to aid in the extraction of ADRs
in EHRs written in Spanish?

This main research question was broken down into eight research ques-
tions that arose and were responded throughout Chapters 4, 5, 6 and 7. In
this section we bring together the concluding remarks arisen after thinking
over the responses suggested to these research questions.
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ADRs are rare events, then, supervised classi�cation algorithms tend to
be biased and learning to predict the minority class is complex. The appli-
cation of approaches to overcome the class imbalance improves the perfor-
mance of the ADR detection model to �nd inter- as well as intra-sentence
ADRs. However, the results are considerably better in the intra-sentence
scope than in the inter-sentence scope.

A key issue in the extraction of ADRs is the operative characteriza-
tion of events. With regard to initial symbolic characterizations, if both
inter-sentence and intra-sentence relations are taken into account, features
related to the distances between the entities involved result relevant for the
task. If the ADR detection is focused on intra-sentence ADRs, the word-
forms and the lemmas of the entities and their contexts are more relevant.
NLP rapidly evolved towards dense characterizations. Dense representations
have the strength of exploiting semantic relatedness in dense low dimensional
spaces. This is an important factor in our task to cope with lexical variabil-
ity. We corroborated that dense representations outperform symbolic ones
and it seemed as if the model gains generalization ability.

Another important factor is the classi�cation approach. In this work
we compared a traditional supervised classi�cation approach (RF) and an
emerging technique based on deep neural networks (Joint AB-LSTM) and
found that Joint AB-LSTM outperformed RF. We speculated about the
reasons behind. An outstanding di�erence between traditional and neural
approaches rests on the generation of the inherent characterization for the
instances. While traditional approaches make use of hand-crafted features
(either in their symbolic or embedded as dense representations), neural ap-
proaches infer, automatically, abstract features. Nevertheless, we found that
FFNN did not outperform the RF when the instances were characterized
with smoothed embeddings. Our hypothesis to explain that Joint AB-LSTM
outperform RF is that the information captured from the context is crucial
in relation extraction. While RF exploits the context in a static way, Joint
AB-LSTM can leverage the context dynamically. Furthermore, we observed,
empirically, that Joint AB-LSTM networks are less sensitive to class imbal-
ance than RF.

Variations in the size and domain of the corpus have an e�ect in the
performance of the ADR detection model. To be precise, the larger the
corpus the better the results. Regarding the variations associated to di�erent
sub-domains introduced by the use of EHRs of di�erent hospitals, Joint AB-
LSTM resulted robust. Needless to say, the errors propagated from the MER
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step a�ect the ADR detection. Missing entities lead to undiscovered relations.
However, the drop in performance is not as dramatic as we expected and
follows a polynomial function of degree 4.

8.3 Contributions

The main contribution of this work is that the ADR extraction was developed
using EHRs written in Spanish. To the best of our knowledge, for ADR
extraction in texts written in Spanish, we are the �rst employing EHRs.
Other contributions derived from the tasks carried out during this work are:

• Combination of approaches to tackle the high class imbalance.
(Chapter 4)

We made a step ahead in the development of NLP methods that deal
with ADR extraction de�ned as relation extraction task between a
causative drug and the adverse reaction. As a �rst approach we tack-
led both inter- and intra-sentence ADR extraction, even though the
main-stream in the related works just focused on intra-sentence rela-
tions. In this context, inference algorithms should be suited to cope
with the challenge of an extremely high class imbalance (a extremely
high number of candidates are unrelated as ADRs). Although the im-
balance problem diminishes considerably in intra-sentence scenarios, we
explored classical approaches to tackle the class imbalance (sampling,
cost-sensitive learning, ensemble learning, one-class classi�cation) in
the context of inter- and intra-sentence ADR extraction. We observed
that the combination of them, precisely sampling and cost-sensitive
learning, was bene�cial in our framework.

Besides, in an attempt to discard non-ADR instances and alleviate the
class imbalance we tried, as well, negation extraction. We developed
two ways of detecting negated medical entities in EHRs: an adaptation
of the NegEx tool and a CRF using dense characterizations. We cor-
roborated, however, that class imbalance can be, somehow, tackled in
intra-sentence ADR extraction while there is room for improvement in
inter-sentence relation extraction.
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• Mechanisms to deal with lexical variability. (Chapter 5 and
Chapter 6)

NLP in the medical domain dealing with EHRs has, among others,
the challenge of high lexical variability (large specialized vocabularies,
non-standard abbreviations, misspellings, etc.) and lack of available
corpora. Quantitatively, there is a re�ect of the lexical variability in
the remarkable ratio of OOV elements. To cope with this issue it re-
sults crucial to propose not only competitive inference algorithms but
also robust characterizations of the instances. Throughout this work we
analyzed two state-of-the-art classi�cation techniques (RF, Joint AB-
LSTM) and two alternative representations (symbolic, dense). We ex-
perimentally corroborated that context-aware embeddings (dense rep-
resentations created taking into account the embeddings of the context-
words) are useful to preserve the lexical nuances in this domain. In ad-
dition, to alleviate the in�uence that the lack of training samples might
have in the quality of the inferred dense representations, we proposed
the use of smoothing techniques. Note that while we are using dense
representations, applying smoothing techniques yields coarse grained
representations. That is, smoothing helps to avoid super�cial varia-
tions and, hence, makes di�erent (but close) points in the space to be
equivalent.

Moreover, we have observed that dense spaces of lemmas also helped
to tackle the lexical variability. In fact, lemmatization was particularly
e�ective in the neural networks used for ADR extraction.

• Tolerance to external noise. (Chapter 7)

We exposed the ADR extraction system to two types of sources of noise.
On the one hand, we assessed the impact of corpora from slightly dif-
ferent sources (di�erent hospitals with di�erent services or specializa-
tions). On the other hand, we analyzed the in�uence of miss-recognized
medical entities into the ADR detection step leading to a fully auto-
matic ADR extraction system. We corroborated that the Joint AB-
LSTM is able to cope with these types of noise although, naturally,
there is a small decrease in its performance due to the missed entities
involved in the ADR pairs.



158 8 - CONCLUSIONS AND FUTURE WORK

8.4 Future work

As a result of this work, we have a model able to extract ADRs following the
objectives stated in Section 1.3. However, there are still several points that
we would like to tackle as future work:

• Extract intra-sentence as well as inter-sentence ADRs.
Because of the high class imbalance, we focused on ADRs whose entities
are in the same sentence. The model inferred with neural networks
seemed less sensitive to class imbalance. Then, we would like to �nd
ADRs with entities placed in di�erent sentences using this approach.
We could explore two options, incorporating the inter-sentence ADRs
as new examples to infer the model or inferring a separate model to
detect the inter-sentences ADRs.

• Develop entity recognition and relation extraction simultane-
ously.
Given that with the pipeline models the errors of the entity recogni-
tion are propagated to the relation extraction, we would like to create a
neural joint model for entity recognition and relation extraction (Zheng
et al., 2016; Li et al., 2017). That is, using neural networks to develop
simultaneously the MER and the ADR detection steps.

8.5 Publications

Derived from this work, we have some publications describing the task and
the results. There are 5 of them in journals indexed by the Journal Citation
Report (JCR): 3 Q1, 1 Q2 and 1 Q3. All the articles are enumerated below
in reverse chronological order of their publication together with the Impact
Factor (IF):

1. Sara Santiso, Alicia Pérez, and Arantza Casillas. Smoothing dense
spaces for improved relation extraction between drugs and adverse re-
actions International Journal of Medical Informatics. Elsevier. ISSN
1386-5056.
JCR: Q1, IF: 2.957
[accepted, awaiting publication]
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2. Sara Santiso, Arantza Casillas, Alicia Pérez, and Maite Oronoz. Word-
embeddings for negation detection in health records written in Spanish.
Soft Computing, 1�7, 2018. Springer. ISSN 1432-7643. DOI https://
doi.org/10.1007/s00500-018-3650-7. URL https://link.springer.

com/content/pdf/10.1007%2Fs00500-018-3650-7.pdf.
JCR: Q2, IF: 2.367

3. Sara Santiso, Alicia Pérez, and Arantza Casillas. Exploring Joint
AB-LSTM with embedded lemmas for Adverse Drug Reaction discov-
ery. IEEE Journal of Biomedical and Health Informatics, 1�8, 2018.
IEEE. ISSN 2168-2194. DOI https://doi.org/10.1109/JBHI.2018.
2879744. URL https://ieeexplore.ieee.org/stamp/stamp.jsp?

tp=&arnumber=8523679.
JCR: Q1, IF: 3.850

4. Sara Santiso, Arantza Casillas, and Alicia Pérez. The class imbal-
ance problem detecting Adverse Drug Reactions in Electronic Health
Records. Health Informatics Journal, 1�11, 2018. SAGE. ISSN 1460-
4582. DOI https://doi.org/10.1177/1460458218799470. URL
https://journals.sagepub.com/doi/pdf/10.1177/1460458218799470.
JCR: Q3, IF: 1.833

5. Sara Santiso, Arantza Casillas, Alicia Pérez, and Maite Oronoz. Medi-
cal entity recognition and negation extraction: Assessment of NegEx on
Health Records in Spanish. In 2017 International Work-Conference on
Bioinformatics and Biomedical Engineering (IWBBIO), pages 177�188,
Granada, Spain, April 26-28 2017. Springer. ISSN 0302-9743. DOI
https://doi.org/10.1007/978-3-319-56148-6_15. URL https:

//link.springer.com/chapter/10.1007/978-3-319-56148-6_15.
Lecture Notes in Computer Science (LNCS), Lecture Notes
in Bioinformatics (LNBI)

6. Arantza Casillas, Arantza Díaz de Ilarraza, Kike Fernandez, Koldo Go-
jenola, Maite Oronoz, Alicia Pérez, and Sara Santiso. IXAmed-IE: on-
line medical entity identi�cation and ADR event extraction in Span-
ish. In 2016 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pages 845�849, Shenzhen, China, December 15-
18 2016. IEEE. DOI http://doi.ieeecomputersociety.org/10.

https://doi.org/10.1007/s00500-018-3650-7
https://doi.org/10.1007/s00500-018-3650-7
https://link.springer.com/content/pdf/10.1007%2Fs00500-018-3650-7.pdf
https://link.springer.com/content/pdf/10.1007%2Fs00500-018-3650-7.pdf
https://doi.org/10.1109/JBHI.2018.2879744
https://doi.org/10.1109/JBHI.2018.2879744
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8523679
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8523679
https://doi.org/10.1177/1460458218799470
https://journals.sagepub.com/doi/pdf/10.1177/1460458218799470
https://doi.org/10.1007/978-3-319-56148-6_15
https://link.springer.com/chapter/10.1007/978-3-319-56148-6_15
https://link.springer.com/chapter/10.1007/978-3-319-56148-6_15
http://doi.ieeecomputersociety.org/10.1109/BIBM.2016.7822636
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1109/BIBM.2016.7822636. URL https://ieeexplore.ieee.org/

stamp/stamp.jsp?tp=&arnumber=7822636.

7. Arantza Casillas, Alicia Pérez, Maite Oronoz, Koldo Gojenola, and
Sara Santiso. Learning to extract adverse drug reaction events from
electronic health records in Spanish. Expert Systems with Applica-
tions, 61:235�245, 2016. Elsevier. ISSN 0957-4174. DOI http:

//dx.doi.org/10.1016/j.eswa.2016.05.034. URL https://www.

sciencedirect.com/science/article/pii/S0957417416302615.
JCR: Q1, IF: 3.768

8. Sara Santiso, Arantza Casillas, Alicia Pérez, Maite Oronoz, and Koldo
Gojenola. Document-level adverse drug reaction event extraction on
electronic health records in Spanish. Procesamiento del Lenguaje Nat-
ural, 56:49�56, 2016. Sociedad Española para el Procesamiento del
Lenguaje Natural. ISSN 1135-5948. URL http://journal.sepln.

org/sepln/ojs/ojs/index.php/pln/article/view/5286.
Certi�cate of Excellence FECYT

9. Sara Santiso, Arantza Casillas, Alicia Pérez, Maite Oronoz, and Koldo
Gojenola. Adverse drug event prediction combining shallow analysis
and machine learning. In Proceedings of the 5th International Work-
shop on Health Text Mining and Information Analysis (Louhi), pages
85�89, Gothenburg, Sweden, April 26-30 2014. Association for Com-
putational Linguistics. URL http://www.aclweb.org/anthology/

W14-1113.

8.6 Intellectual Property Registry

Apart from the publications enumerated in the previous section, we hold the
intellectual property registry of a system for automatic entity recognition:

1. Aitziber Atucha, Arantza Casillas, Koldo Gojenola, Maite Oronoz, Ali-
cia Pérez, Olatz Perez de Viñaspre, and Sara Santiso. Sistema au-
tomático para la detección automática de entidades del dominio médico
en español. Number: SS-23-19. Place: Donostia. Date: 01/18/2019.

http://doi.ieeecomputersociety.org/10.1109/BIBM.2016.7822636
http://doi.ieeecomputersociety.org/10.1109/BIBM.2016.7822636
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7822636
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7822636
http://dx.doi.org/10.1016/j.eswa.2016.05.034
http://dx.doi.org/10.1016/j.eswa.2016.05.034
https://www.sciencedirect.com/science/article/pii/S0957417416302615
https://www.sciencedirect.com/science/article/pii/S0957417416302615
http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/5286
http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/5286
http://www.aclweb.org/anthology/W14-1113
http://www.aclweb.org/anthology/W14-1113
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A
Negated Medical Entity Recognition

A.1 Introduction

The negation is a linguistic phenomenon that inverts the truth value of a
sentence or clause. Consequently, the identi�cation of negated entities is
crucial for automatic systems to interpret the information correctly. However,
sometimes we do not pay enough attention to it.

The negation is present in all languages and is relatively frequent. A prove
of this is that in biomedical texts such as the BioScope corpus, about 13% of
the sentences contain negated statements (Vincze et al., 2008). Then, it is
important to take into account this for the creation of automatic information
extraction systems. Above all in medical records, which are used by the
doctor to express impressions, hypothesized explanations of experimental
results or negative �ndings (Li et al., 2010). According to Ceusters et al.
(2007), substantial fraction of the observations made by clinicians and entered
into patient records are expressed by means of negation or by using terms
which contain negative quali�ers.

In the last years, the interest on negation detection has increased. For
example, the SEM Shared Task 2012 (Morante and Blanco, 2012) was aimed
at resolving the scope and focus of negation and the SEPLN 2017 conference
and SEPLN 2018 conference (Jiménez-Zafra et al., 2019) included a workshop
about Spanish Negation (NEGES).

To tackle the negation we distinguished between the negation trigger
word and the scope. The negation trigger word is the cue that indicates
the negation, these cues can be nouns (`inability'), verbs (`prevents'), prepo-
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sitions (`without'), adverbs (`never'), determiners (`no'), pronouns (`none'),
pre�xes (`unsolved') or conjunctions (`neither ... no') (Morante and Daele-
mans, 2012). The scope is the part of the text a�ected by the negation.
Inside the scope there is the focus, the word that is negated explicitly (Martí
et al., 2016).

In this work we explored two di�erent approaches for negation detection,
one based on regular expressions using NegEx (Chapman et al., 2001) and
another based on machine learning using CRF (La�erty et al., 2001). In
this case, the scope of the negation is restricted to the medical entities, that
is to say, we are only interested on the detection of the negated entities
and not on the detection of other type of negated information. The interest
in negation detection is that it could be used to discard those pairs that
contain negated entities, or as a feature to represent the drug-disease pairs
in the ADR extraction task, as it was explained in Chapter 4.

The rest of the appendix is organized as follows: Section A.2 describes
previous works on detection of negated entities. Section A.3 explains the ap-
proach based on NegEx and shows the results obtained in the experiments.
Section A.4 explains the approach based on CRF and shows the results ob-
tained in the experiments. Finally, Section A.5 is devoted to present the
conclusions.

A.2 Related work

Given that we explored two approaches for the detection of the negated enti-
ties, we di�erentiate those related works that employed rule-based approaches
(speci�cally, NegEx) and those that employed machine learning methods.

The NegEx algorithm was developed by Chapman et al. (2001) to detect
the negation of �ndings and diseases in narrative medical records in English.
Observing that NegEx was used for texts written in other languages di�erent
from English, Chapman et al. (2013) decided to create a shareable lexicon
for NegEx in order to facilitate its use in other languages (Swedish, French
and German). To do this, the negation triggers were translated by research
groups and they were represented using lexical ontologies.

Skeppstedt (2010) and Skeppstedt et al. (2011) adapted NegEx to Swedish
clinical texts (EHRs). Skeppstedt (2010) used the Swedish translation of ICD-
10 codes for symptoms and diseases and Skeppstedt et al. (2011) used the
terms of the Swedish translation of SNOMED CT belonging to the semantic
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categories ��nding� or �disorder�. In both cases, the negation trigger words
were translated to English and expanded. Weegar et al. (2015) employed the
adaptation of NegEx to Swedish in order to �nd cervical cancer symptoms.

Deléger and Grouin (2012) adapted Negex to French to detect the nega-
tion in clinical reports in cardiology and Cotik et al. (2016) adapted Negex
to German to detect the negation in discharge summaries and clinical notes
of the nephrology domain. In both cases, the adaptation was done by trans-
lating the negation phrases to the corresponding language.

For Spanish, Costumero et al. (2014) adapted NegEx to detect negated
entities in medical documents written in Spanish. To this end, the NegEx
algorithm was not changed, but the terms used as negation triggers.

Regarding the machine learning approaches for the detection of the
negated entities, Cruz et al. (2010) proved that these approaches were able
to outperform approaches based on regular expressions. Speci�cally, the
authors focused on the detection of the negation expressions and used the
C4.5 and NB algorithms.

Before the aforementioned work, Morante et al. (2008) already divided the
negation detection in two phases: i) identi�cation of the negation signals and
ii) determination of the negation scope, using k-Nearest Neighbors in both
of them. Next, Morante and Daelemans (2009) employed di�erent classi�ers
for each phase. For the negation signal, the IGTREE algorithm was used
and for the negation scope, the CRF algorithm was used a metalearner with
three base classi�ers: i) Memory-based learning , ii) SVM, and iii) CRF.
After that, Agarwal and Yu (2010) and Cruz et al. (2012) also detected the
negated entities with two phases. Agarwal and Yu (2010) used CRF in both
of them and Cruz et al. (2012) used C4.5 and SVM also in both of them.

The main features used by Morante et al. (2008) and Morante and Daele-
mans (2009) for the �rst phase (identi�cation of the negation signals) were
the word-form, lemma, POS and chunk of the token and its context. For
the second phase (determination of the negation scope) the main features
were the word-form, POS and chunk of the negation signal, the paired token,
the tokens between the negation signal and the token in focus. The features
used in both phases by Cruz et al. (2012) also contain information about the
signal, the paired token, their context or the tokens in between such as the
lemma or POS. However, Agarwal and Yu (2010),replaced the non-cue words
by the POS tag and the cue word by the tag `CUE' for the negation scope
detection.

Apart from this, we found that Kang et al. (2017) also used dense rep-
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resentations. Speci�cally, the authors incorporated word-embeddings and
character-embeddings to a CRF algorithm to detect the negation in admis-
sion notes and discharge summaries, but these were written in Chinese.

In the aforementioned works that detected negated entities using machine
learning approaches, the authors employed the BioScope corpus, with the
exception of Kang et al. (2017), that used admission notes and discharge
summaries written in Chinese.

A.3 Negation detection with NegEx

The �rst approach used for the detection of the negated medical entities was
the rule-based system NegEx (Chapman et al., 2001). According to the cre-
ators of NegEx, �NegEx is a simple algorithm that could be implemented
quickly and easily to determine whether an indexed term is negated� (Chap-
man et al., 2001). However, it was already used to detect the negation in
EHRs yielding good results. For this reason, we decided to use this algorithm
for the task.

Negex identi�es the UMLS terms in the text and later it searches the
trigger words that indicate negation, labeling as negated entities those inside
a token-window near the negation trigger word. This means that the task is
divided in two steps: i) it is developed the detection of the entities and ii) it
is determined if these entities are negated or not.

A.3.1 NegEx adaptation

NegEx preprocesses the text by individual sentences using exact-match with
respect to two lists, one for gathering the medical terms from UMLS and
another one for listing the negation trigger words. This supposes a limitation
mainly for the NER stage given that the lists have to be modi�ed when we
want to add new entities or we use NegEx in other domains and languages.
Otherwise, some entities are not recognized and, therefore, we can not detect
their negations. We consider negation detection the more robust part in
NegEx as although it also uses exact-match, the negation trigger words are
common in di�erent types of texts.

Motivated by this, we made an adaptation that makes possible to apply
di�erent techniques for the entity recognition and not restrict to the simply
exact-matching integrated in NegEx. This adaptation consists in replacing
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each medical entity (e.g. drugs and diseases) by a reserved word that corre-
spond to the entity type. For example, for the sentence `no haber presentado
hipoglucemias hasta el momento actual' (meaning `it has not presented hypo-
glycemias until the current moment'), the input of NegEx would be `no haber
presentado Grp_Enfermedad hasta el momento actual' (�Grp_Enfermedad�
would be the word reserved for the diseases).

Figure A.1 shows the work�ow of the original version of NegEx (Fig-
ure A.1a) and the work�ow of our adaptation (Figure A.1b). In our adap-
tation the entities can be recognized in a previous step using di�erent NER
approaches and they are replaced with the corresponding entity type. After
that, the NegEx algorithm is used as in the original version, but with a short
list of the words reserved for the entity types instead of a list of entities.
Finally, those entities that appear negated in the records are obtained.

(a) Original NegEx. (b) NegEx adaptation.

Figure A.1: Work�ow of NegEx before and after our adaptation.

In order to see the variation of the negation detection depending on the
entities recognized in the previous step, we explored the di�erent NER ap-
proaches described bellow:

NER 1 : NegEx NER with dictionary list

We resorted to the strategy of NegEx to identify the entities, applying
exact-matching to �nd in the document the words given by a list. This
could be considered an approximation to the original NegEx strategy
for Spanish given that the list consisted in a dictionary created with the
medical entities (drugs and diseases) obtained from di�erent sources.
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The diseases of the list were the diseases and symptoms of the ICD-10.
The drugs of the list were the drug families of the ATC classi�cation,
the drugs of Bot PLUS and the active ingredients of ICD-10.

NER 2 : NegEx NER with manual annotations list

We also resorted to the strategy of NegEx to identify the entities. How-
ever, in this case the list had the medical entities annotated by experts
in the EHRs.

NER 3 : Conditional Random Fields (CRF)

The entities were recognized using the CRF algorithm (see Appendix B).
For the creation of a basic CRF we transformed all the terms to lower-
case and we used as features the pre�xes and su�xes, which are the 4
�rst and last characters of the word. The reason is that some diseases
are characterized by their a�xes, for example, the su�x �-tis� indicates
in�ammation.

NER 4 : NegEx NER with manual annotations list + CRF

It consisted in the union of the entities detected by NegEx NER with
manual annotations list and the entities detected by CRF.

NER 5 : Oracle

The recognized entities were those labeled by the experts. This could
be considered as a perfect NER and shall provide us a upper threshold
on the error propagation to the negation detection stage.

As explained before, to �nd the negation trigger words it is need a list to
develop the exact-match. We used the list of negation trigger words created
by (Costumero et al., 2014) for their adaptation of NegEx to Spanish. This
list consists of the translation from English into Spanish of the 86 trigger
words used in the original NegEx lexicon. We also included in the list 41 of
the trigger words used in the Swedish NegEx version by (Skeppstedt, 2011).
All in all, we accomplished a list of 121 di�erent trigger words. Some words
appeared in both list, for example, `sin' (meaning `without') or `ausencia de'
(meaning `absence of'), that is, expressions that usually indicate the presence
of a negation in any language.

Table A.1 shows the most frequent entities and negation trigger words in
the same set of EHRs, respectively. The majority of the negation triggers
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corresponded to 3 words (`no', `ni', `sin'). With only 3 words it was possible
to detect approximately 98% of the negations.

entity frequency
1 `hta' `ht' 40
2 `�ebre' `fever' 25
3 `disnea' `dyspnea' 24
4 `dislipemia' `dyslipemia' 12
5 `cardiomegalia' `cardiomegaly' 12
6 `tos' `cough' 11
7 `dolor `pain' 11
8 `mareo' `sickness' 10
. . . - - -

(a) Entities.

negation trigger word frequency
1 `no' `no', `not' 215
2 `ni' �nor' 141
3 `sin' `without' 83
4 `niega' `denies' 3
5 `ausencia de' `absence of' 3
6 `ningún' `neither' 1
. . . - - -

(b) Negation trigger words.

Table A.1: Lists of the most frequent entities and negation trigger words
together with their frequency in the EHRs.

A.3.2 Evaluation

Given that the negation detection was developed with the entities recognized
by �ve di�erent NER approaches, we present �rst the results of the entity
recognition and secondly the results of the negation detection. In both cases,
we used the IxaMed-GS corpus (see Section 3.2.1) to infer and evaluate the
models. It is important to explain that the evaluation was done with exact-
match and partial-match (see Section 3.3).

Table A.2 shows the results achieved for the entity recognition. In this
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case, we focused on the detection of diseases. We can see that the approach
that o�ers worse results was NegEx NER with dictionary list. The main rea-
son would be that the entities are not described by the experts in the same
way that they appear in these dictionaries, then only few entities were found.
We can also appreciate that using NegEx NER with manual annotations list,
more entities were detected, but the precision was still low. Moreover, the
results obtained with the CRF classi�er outperformed those obtained with
NegEx NER with manual annotation list. In general, with CRF the entities
were detected with more precision. We also developed the evaluation of the
approach that combines NegEx NER with manual annotation list and CRF.
At �rst sight, the performance of this system should be better. However,
CRF continued obtaining better results because NegEx NER with manual
annotation list increased the number of FPs and, as a consequence, the pre-
cision worsened. Finally, as was expected, with the Oracle approach all the
entities were found correctly given that this NER approach simply uses the
entities labeled by the experts.

Exact Partial
P R F P R F

NER 1 45.3 4.7 8.5 96.9 10.0 18.2
NER 2 36.5 39.5 37.9 69.4 74.1 71.7
NER 3 60.8 41.0 49.0 91.8 63.8 75.3
NER 4 36.4 44.7 40.1 70.2 83.3 76.2
NER 5 100.0 100.0 100.0 100.0 100.0 100.0

Table A.2: Precision (P), Recall (R) and F-measure (F) for the test set of
the IxaMed-GS corpus in entity recognition with NegEx.

After having recognized the entities, the adapted NegEx had to detect
the negation. Inherent to the cascade approach, the errors from the entity
extraction are propagated to the negation detection. Note that, in the eval-
uation, a TP is an entity correctly identi�ed as negated by the system.

Table A.3 shows the results achieved for the negation detection. Accord-
ing to this, the negation detection using the entities obtained with NegEx
NER with dictionary list had the worst results (the f-measure for partial-
match was 11.8). With this approach only few entities were detected, then,
it was not possible to obtain a high recall for the negation detection. More-
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over, the negation detection using the entities of CRF improved the results of
the previous system (the f-measure for partial-match was 57.1). The idea was
that the performance of NegEx would be better with these entities. However,
the NegEx NER with manual annotation list approach was better than the
previous one because it was able to recognize more diseases (the f-measure
for partial-match was 73.8). To be precise, the recall was higher. Next, we
evaluated the union of NegEx NER with manual annotation list and CRF for
the entity recognition. This approach helped to improve the results obtained
with CRF but not with NegEx NER with manual annotation list because the
number of negated entities detected correctly increased less than the num-
ber of those detected incorrectly (the f-measure for partial-match was 64.7).
Finally, we can see the performance of NegEx if all the entities labeled by
experts would be recognized. With exact-match the results were better than
the o�ered by the rest of approaches. Nevertheless, it did not happen for the
partial-match given that, for example, the system could recognize two entities
that experts labeled as one (the f-measure for partial-match was 66.4).

Exact Partial
P R F P R F

NER 1 45.5 3.5 6.5 81.8 6.3 11.8
NER 2 42.1 35.9 38.8 80.2 68.3 73.8
NER 3 59.8 34.5 43.8 78.0 45.1 57.1
NER 4 39.2 35.9 37.5 67.7 62.0 64.7
NER 5 87.4 53.5 66.4 87.4 53.5 66.4

Table A.3: Precision (P), Recall (R) and F-measure (F) for the test set of
the IxaMed-GS corpus in negation detection with NegEx.

A.4 Negation detection with CRF

The second approach used for the detection of negated medical entities was
a machine learning system implemented with the CRF algorithm (La�erty
et al., 2001) (turn to Section B.3 for more information about CRF). The main
reason was that machine learning methods were proven able to outperform
regular expressions Cruz et al. (2010).
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The creation of a supervised system for negation detection needs a big
amount of annotated data to represent the information in a big-dimensional
space, but this is not always possible to acquire. Above all, in a language
di�erent to English, which counts on a variety of tools and resources in com-
parison to others (Névéol et al., 2018) (see Section 1.2). Furthermore, in
the medical domain, documents such as EHRs are subject to con�dentiality
agreements. For negation detection in the medical domain in Spanish, we
only found publicly available the corpora created in (Cruz et al., 2017; Mari-
mon et al., 2017). At the same time, in EHRs such as the used in this work,
one word can be represented with di�erent word-forms, using or not abbrevi-
ations, or with misspellings. This causes that, with a symbolic representation
based on word-forms, one concept can have multiple representations. Turn
to Section 3.2 to see more information about the EHRs. Both, the sparsity
of data and the lexical variability tend to decrease the performance of the
inferred models.

With the motivation of overcoming these issues, we decided to tackle
negation detection by means of robust dense characterizations created with
embeddings, following the idea presented in Chapter 5. Word-embeddings
allow to represent words in a continuous space of small dimension and help
inference algorithms to achieve better performance by grouping semantically
related words (Mikolov et al., 2013a).

By contrast to mainstream techniques, that detect the negation cue and
their scope, we were not interested in a broad scope, instead, we wish to mark
absence of diseases or drugs. For this reason, we used an approach similar
to NER, where the entities that we want to �nd are the negated ones.

A.4.1 Characterization

In order to train the model with the CRF classi�er, it is necessary to repre-
sent the information through a set of representative features. The features
used to detect the negated entities can be grouped in word-based represen-
tations (�Words�), embedding-based representation (�Embeddings�), clusters
derived from the embeddings (�Cluster�), entity labels (�Entity�) and nega-
tion trigger-word labels (�Trigger�). The features of each group are described
below:
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• Words

� Word-form: Surface form of the tokens derived from FreeLing-
Med analyzer (Oronoz et al., 2013). For example, the word-
form of the disease `dolor torácico' (meaning `chest pain') is `do-
lor_torácico'.

• Embeddings

� uEHRs: Vector corresponding to each word-form created with
the in-domain dataset. For example, for the word `medicación'
(meaning `medication') the vector is `-2.300574, 0.68526, -2.457934,
-1.15529, -2.444549'.

� SBWCE: Vector corresponding to each word-form created with
the out-domain dataset. For example, for the word `medicación'
(meaning `medication') the vector is `-0.332582, -6.167073, 3.17304,
0.504322, -0.667798'.

• Clusters:

� K-means: Cluster assigned to each word using the k-means al-
gorithm, which assigns the vector to the cluster with the nearest
centroid. For example, for the word `medicación' (meaning `med-
ication') the cluster is `231'.

� Brown: Cluster assigned to each word using the Brown algo-
rithm, which merges those clusters for which the loss in the aver-
age mutual information is least. For example, for the word `med-
icación' (medication) the cluster is `10011110111'.

� Brown truncated: Aforementioned Brown cluster truncated to
reduce the granularity. For example, for the word `medicación'
(meaning `medication') the cluster is `1001111011'.

• Entity

� Manual: Label in BIO notation indicating if the token belongs
(BI) or not (O) to a medical entity according to the annotations
made by the experts. For example, for the word `�ebre' (meaning
`fever') the label is `B-Grp_Enfermedad'.
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� CRF: Label in BIO notation indicating if the token belongs (BI)
or not (O) to a medical entity according to the predictions made
by a CRF classi�er. The features used for this classi�er were the
word-form, lemma, POS and semantic tag (see Appendix B). For
example, for the word `antibiótico' (meaning `antibiotic') the label
is `B-Grp_Medicamento'.

• Trigger

� Label: Label in BIO notation indicating if the token belongs (BI)
or not (O) to a negation trigger word. For example, for the word
`no' the label is `B-Neg_TriggerWord'.

The embeddings of the in-domain corpus were created with GloVe (Pen-
nington et al., 2014) and the embeddings of the out-domain corpus with
skipNgram (Ling et al., 2015) (turn to Section 3.2.2 for further details of the
unannotated corpora). Using in both cases a window of size 10 and yielding
vectors of 300 components, as was done for the embeddings used in Chap-
ter 5 and Chapter 6. The embedding-based characterizations the dimensions
of the vectors were reduced to 5 component. This was done by means of the
Principal Component Analysis (PCA), using the Weka libraries (Hall et al.,
2009). Regarding the clusters, for the k-means cluster we used the algorithm
implemented in word2vec (Mikolov et al., 2013a), for the Brown cluster we
used the Brown algorithm (Brown et al., 1992) and the truncation was done
using a maximum of 10 bits.

Combining the aforementioned features, we created di�erent characteri-
zations to represent the tokens of the EHRs. Firstly, we created the baselines.
The �rst baseline (B1) makes use of word-forms. The second baseline (B2)
exploits the embedding corresponding to the word-forms. In this way, we
could observe if simple embedding-based features outperformed word-based
features. Secondly, we included features related to the entities, the negation
trigger word and the clusters. The characterization C2.1 uses the word-
embedding together with the CRFs entity label and negation trigger word
label. Speci�cally, the characterization C2.2 adds to the previous character-
ization the features corresponding to the clusters. These characterizations
enabled us to compare again words and embeddings but, in this case, en-
hanced with features supposed useful for negation detection. The characteri-
zations U2.1 and U2.2 are like the previous ones but using the gold entities
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in order to have an upper threshold. Table A.4 summarizes the alternative
characterizations together with the total number of features employed.

Words Embeddings Clusters Entity Trigger
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B1 X 1
B2 X X 10
C2.1 X X X X 12
C2.2 X X X X X X X 15
U2.1 X X X X 12
U2.2 X X X X X X X 15

Table A.4: Features used for each characterization employed to represent
the documents. The last column shows the dimension of the feature-space.

A.4.2 Evaluation

The evaluation of the detection of negated entities was done using the IxaMed-
GS corpus (see Section 3.2.1) and the hold-out evaluation scheme (see Sec-
tion 3.3). Note that the precision, recall and f-measure were calculated at
two levels: exact-match and partial-match (turn to Appendix B for more in-
formation about these evaluations). To infer the negation detection models
we used a freely available implementation of CRF, CRF++ (Kudo, 2005).
The templates were �ne-tuned on the basis of the scores achieved on the de-
velopment set. To be precise, the template chosen was a window [-2,-1,0,1,2]
for the EHRs embeddings, [-3,-2,-1,0,1,2,3] for the SBWCE embeddings, [-2,-
1,0,1,2] for the entity label, [-1,1] for the negation trigger word and [-1,0,1]
for the clusters. With this template, a second system was trained making
use of both train and dev sets and, next, it was evaluated on the test set.
Finally, the results provided by the CRF classi�er for each characterization
(Table A.4) are shown in Table A.5.
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Exact Partial
P R F P R F

B1 37.2 23.2 28.6 88.3 59.7 71.2
B2 42.0 24.5 31.0 92.0 58.3 71.4
C2.1 43.2 27.2 33.3 91.6 61.7 73.7
C2.2 42.9 27.8 33.7 91.8 63.8 75.3
U2.1 51.7 41.1 45.8 93.3 82.4 87.5
U2.2 50.8 40.4 45.0 93.3 83.0 87.8

Table A.5: Precision (P), Recall (R) and F-measure (F) for the test set of
the IxaMed-GS corpus in negation detection with the CRF classi�er.

First, we compared the results obtained with word-based features (base-
line B1) and embedding-based features (baseline B2). These results show
that just replacing the symbolic characterization by a dense characterization
improved the performance. The f-measure increased from 28.6 to 31.0 for
exact-match and from 71.2 to 71.4 for partial-match. After testing that the
word-embeddings could be useful in the characterization for the identi�cation
of negated entities, we explored the use of the entity and negation trigger la-
bels for the embedding-based characterization (C2.1). We can see that this
experiment outperforms both baselines. Furthermore, the incorporation of
the clusters created from the embeddings (characterization C2.2) can help to
improve the negation detection of the baseline (baseline B2) in the majority
of the cases. The f-measure improved from 33.3 to 33.7 for exact-match and
from 73.7 to 75.3 for partial-match. It could be because of the incorporation
of di�erent granularity levels in the representation.

Regarding the upper threshold, we can see that with the manual anno-
tations the f-measure was always higher than with the CRF predictions, as
was expected. Speci�cally, the f-measure increased from 33.7 to 45.0 for
exact-match and from 75.3 to 87.8 for partial match. It happened because
the f-measure for the entity recognition was 64.2 for the exact-match and
86.4 for the partial-match. In addition, we observed that if we do not take
into account the discontinuous entities during the evaluation, the f-measure
increased from 45.0 to 54.2 for the exact-match and worsened from 87.8 to
76.8 for the partial-match (using the upper threshold U2.2). This re�ects
that the discontinuous entities are only found partially. We also observed
that this system can be able to detect entities that appear negated by means
of a pre�x, for instance, `asintomático' (maning `asymptomatic').
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A.5 Conclusions

We explored two di�erent approaches to recognize medical entities in EHRs
written in Spanish. Firstly, we adapted the NegEx rule-based system. Sec-
ondly, we created a machine learning system with the CRF classi�er using
dense features.

NegEx originally tackles the entity recognition by means of exact-match.
Nevertheless, exact-match requires a big e�ort to keep the lists updated,
particularly to deal with spontaneous EHRs. We made an adaptation that
enables the use of any entity recognition technique able to generalize and,
hence, recognize misspelled entities. According to the results, the entity
recognition system that o�ered better results was the CRF classi�er, which
recognizes the entities with higher precision. However, the negation detection
was better with the NegEx NER with manual annotation list because this ap-
proach commits less errors among the detected negations than the union of
both. We learned that we could extend NegEx to detect the negation implicit
to several pre�xes. We also observed that the presence of discontinuous en-
tities makes the detection of negated entities challenging because sometimes
the negation trigger word is not in the span considered by NegEx.

Detecting the negation with the CRF classi�er, we observed that the use
of embeddings instead of symbolic features was helpful to detect negated en-
tities. Above all, in cases with sparse data, as happens with the EHRs. The
best results were obtained with the characterization C2.2, that includes the
clusters. In this case, the system was be able to detect entities negated with
pre�xes and the majority of the discontinuous entities were found partially.
To the best of our knowledge, this is the �rst time that the negation detec-
tion was done using embedding in the characterization for texts written in
Spanish.

Comparing both systems according to the upper threshold, we can see
that for the exact-match evaluation the f-measure is higher with NegEx, but
for the partial-match evaluation the f-measure is higher with CRF.





B
Medical Entity Recognition

B.1 Introduction

NER is an essential �rst step in extracting information from texts (Grishman,
2003). The main reason is that the information obtained with NER can
be introduced later in other tasks such as relation extraction (Wang et al.,
2018a).

As a result of the importance of NER, we can found di�erent shared tasks
such as CoNLL-2002 (Tjong Kim Sang, 2002), CoNLL-2003 (Tjong Kim Sang
and De Meulder, 2003) and GermEval 2014 (Benikova et al., 2003). CoNLL-
2002 shared task and CoNLL-2003 shared task were devoted to language-
independent named entity recognition. The �rst one was tested on texts
written in Spanish and Dutch and the second one was tested on texts written
in English and German. GermEval 2014 shared task was devoted to named
entity recognition for German.

NER can be de�ned as the task of identifying and semantically classifying
named entities in text (Patrick and Wang, 2005). In the medical domain,
medical entities such as diseases or drugs are found and this is called MER. In
this work we develop MER, where we can distinguish two parts: i) medical
entity boundary identi�cation and ii) medical entity classi�cation. MER
entails some di�culties with respect to the classical NER (Ben Abacha and
Zweigenbaum, 2011). On the one hand, the medical entities have a high
terminological variations (di�erent terms express the same concept). On the
other hand, the evolution of entity naming (new names and abbreviations).

The di�erent approaches used to develop MER can be divided in: i)
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dictionary-based methods, ii) rule-based methods, and iii) machine learning
methods (Wang et al., 2018a). In this work, the methodology proposed for
this task is based on machine learning, consists in the use of algorithms that
perform the classi�cation task. Speci�cally, we employ the CRF classi�er.
In this way, we perform both parts of MER simultaneously.

The rest of the appendix is organized as follows: Section B.2 presents the
state-of-the-art about MER. Section B.3 explains the methods used for the
recognition of the medical entities. Section B.4 shows the results obtained
during the experimentation. Finally, Section B.5 is devoted to give a brief
conclusion about this task.

B.2 Related work

In the approaches used in related works to develop the medical entity recog-
nition, we can distinguish di�erent supervised machine learning algorithms
and also di�erent types of features for the characterization.

Among the classi�ers used for this task, we can �nd ME, SVM and CRF.
For example, Lin et al. (2004) employed the ME classi�er and added a post-
process based on rules to improve the detection, creating and hybrid ap-
proach. Kazama et al. (2002) used SVM to develop the biomedical named en-
tity recognition. The authors also compared SVM with ME concluding that
SVM achieved better results. Settles (2004) and Tang et al. (2015) decided
to employ the CRF classi�er for this task. Moreover, to expedite the train-
ing speed, Tang et al. (2015) implemented the model training process on a
parallel optimization program framework based on MapReduce. Ben Abacha
and Zweigenbaum (2011) compared SVM and CRF classi�ers and concluded
that CRF yielded better results.

In the aforementioned works, di�erent features for the characterization
were explored. Among the features used for MER we can �nd orthographical
features related with the use of capital letter or the presence of numbers in
the token (Lin et al., 2004; Tang et al., 2015; Ben Abacha and Zweigenbaum,
2011). Morphological features that consist of the su�xes and pre�xes of the
words (using di�erent character lengths) (Lin et al., 2004; Kazama et al.,
2002; Settles, 2004; Tang et al., 2015; Ben Abacha and Zweigenbaum, 2011).
POS features (Lin et al., 2004; Kazama et al., 2002; Tang et al., 2015) and
lemma features (Ben Abacha and Zweigenbaum, 2011). We can also �nd
semantic features indicating the semantic category of the word (Tang et al.,
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2015; Ben Abacha and Zweigenbaum, 2011) and trigger word and keyword
features (Tang et al., 2015).

In these works, the representation is based on word-based features. How-
ever, we can also �nd works such as (Copara et al., 2016), where the authors
used dense characterizations for NER. Copara et al. (2016) tried 4 di�erent
representations: 1) Brown clustering, 2) Clustering embeddings, 3) Binarized
embeddings, and 4) Distributional prototypes. These were created with the
Spanish Billion Corpus and the English Wikipedia, that is to say, they use
cross-lingual word representation. The experiments were conducted with the
CRF classi�er and the authors concluded that the cluster-based features im-
proved the baseline whereas the embedding-based features worsened it.

Regarding the corpus, Lin et al. (2004) and Kazama et al. (2002) used the
GENIA corpus. This corpus forms part of the corpus of the BioNLP/NLPBA
2004 shared task used by Settles (2004) and Tang et al. (2015). Speci�cally,
the training set is the GENIA corpus, which consist of 2,000 abstracts from
Medline database, and the test set consists of 404 abstracts also from Medline
database. Ben Abacha and Zweigenbaum (2011) employed the i2b2/VA 2010
challenge corpus, formed by clinical texts. Finally, Copara et al. (2016)
turned to the CONLL 2002 corpus, which is written in Spanish and is not
related with the biomedical domain.

B.3 Entity recognition with CRF

For MER we used the CRF classi�er (La�erty et al., 2001), given that the
majority of the tools created for NER are based on CRF (Wang et al., 2018a).
This classi�er involves a probabilistic framework for labeling and segmenting
sequential data. CRF constructs a conditional model p(Y |X) to create a
discriminative framework from the jointly distributed variables X and Y ,
instead of modeling the marginal p(X). X are observation sequences and Y
their corresponding label sequences. That is to say, it takes into account the
information of the earlier and later tokens to make the predictions.

We characterized each token in two di�erent ways denoted as i) basic
features and ii) complex features. The basic features consist in information
about the morphology of the words. These are the lowercase word-form,
pre�xes and su�xes. The complex features involve information about the
syntax an the semantics of the words. These are the lemma, the POS and the
semantic tag, which were obtained with the FreeLing-Med analyzer (Oronoz
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et al., 2013). The entities were tagged using the BIO format: B (beginning),
I (inside), O (outside).

B.4 Evaluation

The MER task was evaluated using the IxaMed-GS corpus (see Section 3.2.1)
and the hold-out evaluation scheme (see Section 3.3). Note that the precision,
recall and f-measure were calculated at two levels with the software of the
SemEval task �Analysis of Clinical Text� (Nakov and Zesch, 2014):

• Exact-match: The entity found by the system is the same as the
entity annotated by the experts. The comparison is made using the
o�sets, that is to say, the position of the �rst and last characters of the
entity in the text.

• Partial-match: The entity found by the system and the entity of the
manual annotation overlap, that is to say, the initial o�set of one of
the entities is between the o�sets of the other entity.

First, the evaluation was done using the train set for training and the
dev set for evaluating. Finally, we give the �nal results training with the
train and dev sets and evaluating with the test sets. To infer the MER
models we used a freely available implementation of CRF, CRF++ (Kudo,
2005). The template chosen for the basic features was a window [-2,-1,0,1,2]
for the word-form, [-2,-1,0,1,2] for the pre�xes and [-2,-1,0,1,2] for the suf-
�xes. The template chosen for the complex features was a window [-1,0,1]
for the word-form, [-2,-1,0,1,2] for the lemma, [-1,0,1] for the POS and [-2,-
1,0,1,2] for the semantic tag. The results for the �Grp_Enfermedad� and
�Grp_Medicamento� entity types are shown in Table B.1. In this table we
can also see the evaluation of FreeLing-Med for NER (Oronoz et al., 2013),
which is used as baseline since the complex features were created with infor-
mation obtained from it.

In these results we can observe that the MER task performed better with
the CRF classi�er that uses the features based on FreeLing-Med (complex
features). Furthermore, the results obtained with partial-match were better
that those obtained with exact-match (with a di�erence of approximately
20.0). This could happen due to the terms with more than one word and the
discontinuous entities. With the terms that comprise more than one word,
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the scope of the recognized entity can be smaller or bigger than the given in
the manual annotations. With the discontinuous entities, in some cases the
model only detects one of the parts of this entity.

Classi�er Features
Exact Partial

P R F P R F
FreeLing-Med - 46.5 45.0 45.7 75.6 71.5 73.5
CRF basic 70.7 45.2 55.1 94.3 61.6 74.5
CRF complex 75.1 56.5 64.5 96.3 73.2 83.2

Table B.1: Precision (P), Recall (R) and F-measure (F) for the test set of
the IxaMed-GS corpus for MER.

In addition, we also show the results achieved for MER with CRF and the
complex features using the IxaMed-E corpus. The reason is the experiments
with automatic entities made in Chapter 7. Speci�cally, we used the entities
recognized by CRF to create the drug-disease pairs and see their in�uence
on the performance of ADR extraction (see Section 7.3). Given that these
experiments were evaluated for the dev and the test set, in Table B.2 we
show the results obtained for MER in both sets.

In comparison with the results obtained for the test set of the IxaMed-GS
corpus, we can observe that there was only a slightly improvement for the
partial-match. The f-measure changed from 83.2 to 84.8.

Classi�er Features
Exact Partial

P R F P R F
CRF complex 64.4 51.7 57.4 90.7 79.8 84.9

(a) Model inferred with the train set and evaluated with the dev set.

Classi�er Features
Exact Partial

P R F P R F
CRF complex 63.6 52.1 57.2 89.6 80.4 84.8

(b) Model inferred with the train and dev sets and evaluated with the test set.

Table B.2: Precision (P), Recall (R) and F-measure (F) for MER using the
CRF classi�er with the IxaMed-E corpus.
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B.5 Conclusions

We tackled in a shallow manner the MER task using CRF as classi�er. The
best performance was obtained using the syntactic and semantic features,
that is, the lemma, the POS and the semantic tag. Although FreeLing-Med
o�ered worse results for this task, its information was bene�cial as features
for the CRF classi�er.



C
Detailed results: Adverse Drug Reaction

detection with dense representations

and Random Forest

In this appendix we show the detailed results of the experiments developed
for ADR detection using dense representations and the RF classi�er in Chap-
ter 5. Given that these experiments yielded 40 results with di�erent met-
rics, they were represented in Figure 5.4 for compactness. Now, apart from
showing these results in Figure C.1 grouped by the approach and corpus
employed to generate the embeddings, we tabulate the detailed results. Ta-
bles C.1, C.2, C.3 and C.4 contain the precision, recall and f-measure for the
positive (⊕) and the negative (	) class of the experiments developed training
with the train set and evaluating with the dev set.
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Figure C.1: F-measure of the positive class with the 10 representations pre-
sented in Table 5.2 for the dev set of the IxaMed-GS corpus using the Random
Forest classi�er. The embeddings were extracted using three di�erent tech-
niques (denoted as w2v, sNg, and glove to refer to word2vec, skipNgram,
and GloVe respectively) and from two sources, denoted by the su�x, where
Med stands for in-domain medical source and the su�x Gen stands for the
general out-domain source.
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Representation Precision Recall F-measure Class

1
53.6 50.0 51.7 ⊕
89.0 90.3 89.6 	

2
46.4 43.3 44.8 ⊕
87.5 88.8 88.1 	

3
46.7 23.3 31.1 ⊕
84.6 94.0 89.0 	

4
45.2 46.7 45.9 ⊕
88.0 87.3 87.6 	

5
37.8 46.7 41.8 ⊕
87.4 82.8 85.1 	

6
50.0 50.0 50.0 ⊕
88.8 88.8 88.8 	

7
48.5 53.3 50.8 ⊕
89.3 87.3 88.3 	

8
43.8 46.7 45.2 ⊕
87.9 86.6 87.2 	

9
50.0 56.7 53.1 ⊕
90.0 87.3 88.6 	

10
51.5 56.7 54.0 ⊕
90.1 88.1 89.1 	

Table C.1: Results of the 10 representations of Table 5.2 with word2vec
embeddings and in-domain corpus for the dev set of the IxaMed-GS corpus
using the Random Forest classi�er.
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Representation Precision Recall F-measure Class

1
48.1 43.3 45.6 ⊕
87.6 89.6 88.6 	

2
41.7 33.3 37.0 ⊕
85.7 89.6 87.6 	

3
50.0 46.7 48.3 ⊕
88.2 89.6 88.9 	

4
40.4 63.3 49.4 ⊕
90.6 79.1 84.5 	

5
40.9 30.0 34.6 ⊕
85.2 90.3 87.7 	

6
52.6 66.7 58.8 ⊕
92.1 86.6 89.2 	

7
37.0 56.7 44.7 ⊕
89.0 78.4 83.3 	

8
57.1 40.0 47.1 ⊕
87.4 93.3 90.3 	

9
51.2 70.0 59.2 ⊕
92.7 85.1 88.7 	

10
40.7 36.7 38.6 ⊕
86.1 88.1 87.1 	

Table C.2: Results of the 10 representations of Table 5.2 with skipNgram
embeddings and in-domain corpus for the dev set of the IxaMed-GS corpus
using the Random Forest classi�er.
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Representation Precision Recall F-measure Class

1
23.7 30.0 26.5 ⊕
83.3 78.4 80.8 	

2
40.5 56.7 47.2 ⊕
89.3 81.3 85.2 	

3
56.5 43.3 49.1 ⊕
87.9 92.5 90.2 	

4
46.2 60.0 52.2 ⊕
90.4 84.3 87.3 	

5
38.2 43.3 40.6 ⊕
86.9 84.3 85.6 	

6
48.6 60.0 53.7 ⊕
90.6 85.8 88.1 	

7
61.3 63.3 62.3 ⊕
91.7 91.0 91.4 	

8
47.1 53.3 50.0 ⊕
89.2 86.6 87.9 	

9
55.6 66.7 60.6 ⊕
92.2 88.1 90.1 	

10
54.8 56.7 55.7 ⊕
90.2 89.6 89.9 	

Table C.3: Results of the 10 representations of Table 5.2 with GloVe em-
beddings and in-domain corpus for the dev set of the IxaMed-GS corpus
using the Random Forest classi�er.
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Representation Precision Recall F-measure Class

1
54.5 40.0 46.2 ⊕
87.3 92.5 89.9 	

2
33.3 60.0 42.9 ⊕
89.1 73.1 80.3 	

3
34.1 46.7 39.4 ⊕
87.0 79.9 83.3 	

4
42.9 40.0 41.4 ⊕
86.8 88.1 87.4 	

5
51.4 63.3 56.7 ⊕
91.3 86.6 88.9 	

6
34.9 50.0 41.1 ⊕
87.6 79.1 83.1 	

7
41.9 60.0 49.3 ⊕
90.1 81.3 85.5 	

8
36.4 53.3 43.2 ⊕
88.3 79.1 83.5 	

9
32.1 56.7 41.0 ⊕
88.3 73.1 80.0 	

10
37.8 46.7 41.8 ⊕
87.4 82.8 85.1 	

Table C.4: Results of the 10 representations of Table 5.2 with skipNgram
embeddings and out-domain corpus for the dev set of the IxaMed-GS corpus
using the Random Forest classi�er.
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