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Abstract: The corrective focus is a particular kind of prosodic prominence where the 

speaker is intended to correct or to emphasize a concept. This work develops an Artificial 

Cognitive System (ACS) based on Recurrent Neural Networks that analyzes suitable 

features of the audio channel in order to automatically identify the Corrective Focus on 

speech signals. Two different approaches to build the ACS have been developed. The first 

one addresses the detection of focused syllables within a given Intonational Unit whereas 

the second one identifies a whole IU as focused or not. The experimental evaluation over 

an Italian Corpus has shown the ability of the Artificial Cognitive System to identify the 

focus in the speaker IUs. This ability can lead to further important improvements in human-

machine communication. The addressed problem is a good example of synergies between 

Humans and Artificial Cognitive Systems. 
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1 Introduction 

The stress prominence in speech is a phenomenon clearly related to human 

communication. Speakers usually focus acoustically one or more syllables of their 

speech in order to express emotions, which allows to position this work in the 

field of Affective Computing [1], or to introduce a new topic/concept into the 

dialog. Corrective focus is a particular kind of prosodic prominence where the 

speaker is intending to correct or to emphasize a concept. Thus, hereinafter we 

will refer to focus instead of citing the more general concept of prominence. The 

focus is a clearly cultural phenomenon, which is very dependent of the language 

and additional cultural facts. Thus, it is more frequent in some languages such as 
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English and Italian than in Spanish or French, that are very strong syllable-timed 

languages. The focus fits into the list of paralinguistic [2] and suprasegmental 

characteristics of human speech defined as prosody, involved in the cognitive 

processes of communicating and understanding. As a consequence, the automatic 

recognition of the occurrence of a prosodic prominence [3], or a focus in 

particular, in human speech is interesting for many different fields of study, 

Linguistics, Cognitive Sciences, etc. Moreover, it takes an important role in 

Human-Machine Communication. 

In summary, the problem addressed in this work is the analysis of the intra-

cognitive communication [4, 5] between a set of speakers who emphasized a word 

according to their communicative intention and a set of listeners aimed at 

detecting the focus in order to properly decode the message emitted by the sender. 

In this framework this work develops an Artificial Cognitive System (ACS) that 

plays the role of the listener resulting in inter-cognitive infocommunications [4, 5] 

between each speaker and the artificial system, thus using just the audio as the 

only CogInfoCom channel [6]. The ACS is based on Recurrent Neural Networks 

(RNNs) that analyzed suitable features of the audio channel. The capacities of 

such an artificial system are compared to the ones of the humans listeners 

allowing to analyze the synergies between Humans and artificial cognitive 

systems, i.e. between Engineering and Cognitive Sciences [7]. The results of our 

experiments showed the ability of the artificial cognitive system to identify the 

focus in the speaker IUs, which can result in further important improvements in 

human-machine communication [8]. 

The main novelty of this work lies in addressing the automatic focus detection 

with RNNs. This choice is based on the concept that the human speech is a 

continuous signal in the temporal domain where each syllable (focused or not) 

keeps a clear relation with the previous and following ones. In particular, we 

propose two different approaches to build the ACS. The first one is aimed at 

detecting focused syllables within a given utterance or Intonational Unit (IU), as 

explained in [9]. The second one identifies a whole IU as focused or not, so each 

of them address a different goal. Additional contributions refer to the proposed 

network structures that are powered only by the acoustic part of the message. 

Hence, the textual input is not required and as a consequence many technical 

problems can be bypassed allowing the methodology be improved and adapted to 

deal with other languages. 

The experimental evaluation of the proposal was carried out over a subset of 

Italian Intonational Units based on the CALLIOPE Corpus [10, 11]. This corpus 

aims at cataloging IUs from an acoustic point of view, which agrees with our goal 

to investigate the prosody. Thus, we go beyond the analyses based on linguistic 

and language related contents, and consider the speech from a phonological and 

psychoacoustic point of view, as proposed in [12]. 
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Section 2 deals with the pragmatic role and automatic detection of the corrective 

focus and includes some related works. Section 3 describes the two proposed 

approaches for the automatic corrective focus detection that are intended to 

reproduce the mechanism of understanding the focus normally unconsciously 

implemented at the cognitive level. Experiments carried out are fully described in 

Section 4. Section 4.2 shows the experiments carried out under the syllable-based 

approach whereas Section 4.3 deals with the experiments achieved at IU level. 

Section 4.4 includes a perceptual test concerning the focus recognition by Italian 

native speakers, allowing a comparison between the prediction ability of humans 

and ACSs. Finally, some concluding remarks are reported in Section 5. 

2 Related Work 

The stress prominence in speech [13] is a phenomenon that is easily and naturally 

produced and perceived by humans during a conversation. It is mainly produced 

with communicative purpose, but it is also related to the emotional status. Among 

the different kind of stress prominences, the corrective focus [14] is the main 

subject of research in this work. It consists in an acoustic stress applied to a 

syllable or entire word, in order to correct a content or a concept cited by the 

previous speaker. 

Prosodic and paralinguistic cues have been largely explored in Natural Language 

Processing (NLP) [4], as well as the particular topic of the automatic detection of 

prominence [15]. Although textual information has been used in addition to 

acoustic features for the automatic focus detection [16], we are interested in 

working only with acoustic features because it simplifies the ACS and also makes 

it more language-independent. In this framework, [17] proposes a free-of-text 

automatic detection of stress on the Hungarian language at syllable level based on 

peaks of prosodic features. 

If we consider Neural Networks methodologies in this area, the number of 

researches decrease considerably, and it is really limited narrowing down to the 

Italian language [18, 19]. Multiple types of stresses have been studied and 

classified with standard Feedforward Neural Networks [20, 21, 22] and with 

Convolutional Neural Networks [23, 24] with more success than other machine 

learning techniques. However, to the best of our knowledge RNNs have never 

been applied to detect the focus yet. 

Another topic of interest regards the acoustic feature selection involved in focus 

characterization. Several studies have been carried out to determine which features 

are the most informative [15, 25, 26]. These seem to converge on variants of the 

same features: the duration of the focused syllable, the energy, the fundamental 

frequency contour, and the spectral emphasis. We report our own conclusions 
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throughout the Section 4, where we show that the optimal feature selection 

depends on how the focus detection problem is addressed. 

3 Automatic Corrective Focus Detection 

The automatic recognition of the focus occurrence has a direct application for 

forensic or NLP purposes, where there is a need to identify new topics as well as a 

pragmatic and emotional discontinuities of the speaker on large amount of data. In 

such a case a procedure that works well at sentence level is needed. Distinctively, 

linguistic and phonology subjects, such as the characterization of dialects or the 

learning of a language, might require a more refined system allowing to get the 

time position of the focus into a word. 

As a consequence we propose to formalize two different pattern recognition tasks 

to be solved. In the first task a given syllable in an IU has to be classified as 

focused or not focused. To this end the acoustic features of the given syllable as 

well as its previous and following temporal context will be considered. This task 

was named as the focus in syllables classification problem (FSP). 

The second task will deal with whole IUs. In this case, the ACS will predict if any 

syllable in the sentence has been uttered with a corrective focused or not. 

Therefore, the acoustic features will be calculated at regular time windows in the 

whole IU. This task will be referred as the focus in IUs classification problem 

(FIUP). 

3.1 The Focus in Syllables Classification Problem (FSP) 

This Section describes the FSP approach aimed at detecting focused syllables in 

given IUs. The section first includes some details of the feature extraction 

methodology for this problem, then it explains two ways to combine these features 

in order to build the input of the classifiers, and it finally describes the structure of 

the proposed Neural Networks. 

Feature extraction.  The feature extraction procedure was based on a short-term 

analysis of the speech signal over 25 ms windows overlapping each 10 ms. For 

each frame we extracted: Pitch, Zero-Crossing Rate (ZCR), Energy, the Spectral 

Centroid, Spectral Spread, 13 Mel-frequency Cepstral Coefficients (MFCCs), 16 

Linear Predictive Coefficients (LPCs) and 29 Bark features1. Additionally, we 

                                                           
1 Pitch, LPCs, and Bark features were extracted with the Praat Speech Analysis Tool 

[27] whereas ZCR, energy, spectral centroid, spectral spread and MFCCs with the 

PyAudioAnalysis library. 
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computed the first and second derivatives of these 63 features, which increased the 

number of available features per frame to 189. 

Then this number was increased again to 378 by adding the long-term smoothed 

features of the short-term ones. The smoothing was carried out by calculating the 

average value of the short-term features centered on the given frame. The number 

of feature vectors involved in that average were 23 (the central one and 11 

previous and following vectors). This time interval is very close to the mean 

syllable duration in Italian: (0.235 ± 0.1) s2. This makes sense because the 

problem to be solved is the detection of focused syllables which are quasi-stable 

during their duration. Finally, every feature vector was normalized so that its 

mean and standard deviation per IU are 0 and 1 respectively. 

Building the input to the classifiers. In order to build the input vector to be 

supplied to the classifier we assume that each IU in the corpus is segmented into 

syllables, i.e. that we know when each syllable starts and ends. Thus, given a 

syllable in a IU the input vector will consist of the feature vector corresponding to 

the center of the syllable under consideration along with some additional feature 

vectors representing the syllable context as well as the duration (in seconds) of the 

syllable. At this point two different methods to get such a context were proposed: 

a fixed frame distance and a context size related to the syllable duration. 

Fixed frame distance. In this approach both the context size and the frame 

distance are fixed. The first refers to the number of left and right context 

feature vectors that will be selected, whereas the second to the distance 

between consecutive context vectors. As an example, if the context size is 

fixed to 2 and the frame distance equals 3, the input would be built as in the 

Figure 1. 

 

Figure 1 

An example of how to build the input with fixed frame distance. In this case, 5 vectors were taken in 

total: the central one and two left and right context vectors, according to the context size. The frame 

distance was set to 3. 

                                                           
2 This value was computed after an automatic syllable segmentation process of our corpus. 
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Beginning, center and ending of neighbor syllables. In this approach the 

context feature vectors are selected among the ones representing the 

beginning, the center and the end of the neighbor syllables, according to the 

segmentation of the IU into syllables. Hence, in this case we only need to 

specify the context size. Figure 2 shows an example of the input for a 

context size set to 3. 

 

Figure 2 

An input built using feature vectors corresponding to the beginning, center and ending of neighbor 

syllables. Since the context size was set to 3, the vectors corresponding to the end of the central 

syllable (which is also the one that corresponds to the beginning of the next syllable), to the center of 

the next syllable and to the end of the next syllable were selected as the right context. Symmetrically, 

the left context consists of the vectors corresponding to the beginning of the central syllable, to the 

center of the previous syllable and to the beginning of it. 

Classifiers. The previous methods allow the generation of training examples that 

can be used by common machine learning algorithms. Once the specific set of 

acoustic features are selected and the methodology to build the input is chosen, all 

the feature vectors can be concatenated to form a fixed-dimensional input vector 

representing each syllable in the corpus. Then, classifiers such us Naive Bayes, 

Support Vector Machines (SVM) and conventional Feedforward Deep Neural 

Networks can be directly trained. These classifiers were used for the experiments 

shown in Section 4.2. However, the temporal relationship between the feature 

vectors that compose the input of each training example is not considered enough 

by these classifiers. Thus, more complex neural networks based on recurrent 

layers might be more suitable. In this framework we propose RNNs with two 

parallel sets of recurrent layers. The first one processes the left (previous in time) 

context vectors forward, i.e., it takes first the farthest context vector in the left-side 

and sequentially all the left context vectors until the central vector is processed. 

Symmetrically, the other set of recurrent layers processes the right context vectors 

backwards. Additionally, our architecture includes another parallel set of 

feedforward layers, which processes the scalar corresponding to the duration of 

the syllable we want to classify. Finally, the three sets are merged and the network 

ends with a set of feedforward layers. Figure 3 shows a graphical representation of 

the proposed Bidirectional RNNs. These networks led to the best system 

performance when dealing with the FSP according to the experiments carried out 

(see Section 4.2). 
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Figure 3 

An example architecture of a neural network used in the FSP. The two sets of recurrent layers consist 

of a single LSTM layer each. The duration of the syllable is also processed with a single feedforward 

layer. Then the output of these three layers are merged into a feedforward layer followed by a softmax 

layer of two outputs, one per class. 

3.1 The Focus in IUs Classification Problem (FIUP) 

This Section describes the FIUP approach aimed at classifying a whole IU as 

focused or not. The feature extraction methodology for this problem is the one 

used to deal with FSP problem. Thus, this section just explains the way to 

combine these features in order to build the input of the classifiers, and then it 

describes the structure of the proposed Neural Networks. 

Building the input to the classifiers. We propose two different ways to build the 

input of the classifiers: the first one is based on regular sampling of the sequence 

of feature vectors whereas the second one is based on the output of the networks 

classifying syllables (FSP) as focused or not focused. 

Fixed frame distance. If we use a fixed sampling rate from the beginning to 

the end of the IU to select the feature vectors that will be involved in the 

classification process, more than one training example per IU can be 

generated. More precisely, if the frame distance was set to n, we can 

generate n examples, just alternating the vector from where the sampling 

starts. 

From the FSP to the FIUP. In this approach we take advantage of the 

classifiers trained to solve the FSP. Each given IU can be automatically 

segmented into (pseudo-)syllables. Then, the input corresponding to each of 



A. López-Zorrilla et al. Corrective Focus Detection in Italian Speech Using Neural Networks 

 – 116 – 

these pseudo-syllables can be propagated across an already trained classifier. 

Afterwards, these predictions can be used as an alternative input to train a 

classifier to deal with FIUP. This approach is specially interesting if the 

classifier trained to solve the FSP is a Neural Network, since not only its 

output can be used, but also the output of the penultimate layer, which 

contents more features about the syllable. 

Classifiers. An additional difference between the FSP and the FIUP approaches is 

that common classifiers cannot directly be trained. In fact, Naive Bayes and SVMs 

classifiers as well as Feedforward Neural Networks require the dimension of input 

vector to be fixed for all the examples. However, such a condition will certainly 

not be met due to the variable length of the IUs (if we are using the first way to 

build input), and/or because of the variable number of syllables in the IUs. 

RNNs, though, are still directly trainable in this scenario. These are able to 

sequentially process any sequence of vectors of arbitrary length, which makes 

them really suitable for this task. In particular, we propose bidirectional RNNs. 

One set of layers processes the whole sequence of feature vectors forwards, from 

the first vector to the last. Another set of layers processes the sequence in the 

inverse order, backwards from the last vector to the first. Figure 4 shows a 

graphical representation of the proposed structure. Note that the proposed RNN is 

able to deal with inputs obtained under the two building methodologies proposed. 

 

Figure 4 

An example RNN used in the FIUP. A LSTM layer processes the input forwards and another forward. 

The network ends  in a softmax layer of two outputs. 
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4 Experimental Study 

Two series of experiments were carried out to evaluate the performance of the 

ACS. The first series aims to validate the proposals described in Section 3.1 when 

dealing with the FSP whereas the second one focus in the FIUP under the 

approaches proposed in Section 3.2. An additional set of experiments allow to 

analyse the human perception abilities for the same data collection. A subset of 

the Standard Italian Corpus (SIC) described in Section 4.1 was used for all the 

experiments. 

4.1 The Standard Italian Corpus 

Italian is a romance, iso-syllabic and free-stress language [19]. Then, the position 

of a contrastive focus is just a communicative choice of the speaker. The presence 

of focus has been related to the duration of the syllable, or to the distance between 

peaks of energy (syllable nuclei). In fact, the duration of a focused syllable is 

typically higher than the one of not focused syllables of the same speaker. 

However, it is unrelated to the tonic/tonic syllables alternations providing the 

rhythm [26]. 

The Corpus selected to carry out the proposed series of experiments is based on 

CALLIOPE (Combined and Assessed List of Latent Influences On Prosodic 

Expressivity), a conceptual model created within the LYV project3 aiming at 

categorizing all IUs. Each IU is thus associated to a ''point'' into this space and 

associated to a tuple composed of 12 labels (detailed descriptions in [10]). In this 

multidimensional space each dimension represents a characteristic influencing the 

vocal paralinguistic components of the speech assuming values in a set of labels. 

Table 1 

List of the CALLIOPE dimensions 

Group Dimensions (Fi) 

Dialogic Structure (F1), Linguitic modality (F2), Intonational focus (F3), 

Rhetorical form (F4), Motivational state (F5), Speech mood (F6), 

Spontaneity (F7), Punctuation forms (F8), Emotions (F9) 

Background Expressiveness skill (F10), Social context (F11), Launguage (F12) 

Each IU has a subjective correspondence with a specific prosodic unit. Starting 

from this conceptual model a database of Italian standard speech has been defined 

and created. CALLIOPE dimensions are divided into two groups as shown in 

Table 4.1. The Dialogic group contains characteristics directly related with the 

                                                           
3 LYV is a project of the Polisocial program 2016-2017, http://www.polisocial.polimi.it 

focused on the improvement of prosodic and expressive skills of Italian speakers with 

cognitive disabilities, through the use of technology in complex contexts [28]. 
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communication context, where the corresponding sets of labels are fully defined. 

The second group contains background dimensions, i.e, characteristics that exist 

regardless of whether or not there is an interaction. 

The selected corpus concerns a subspace of the CALLIOPE model, obtained 

narrowing the field of recordings by setting 6 dimensions as follows. The 

language (F12) is the Standard Italian [29], recited by able-bodied (F10) actors (F7) 

and the contents concern daily situations (F11) and absence of particular 

motivational states (F5) emotions (F9). The corpus considers 13 Calliope's labels 

(among the remaining 6 dimensions) an includes the Corrective Focus, which was 

validated by a perceptive test performed on about 200 Italian native-speakers. 

Audio files were recorded in WAV format (44.1 kHz 16 bit) with different modes 

and microphones to obtain a model as independent as possible from the technical 

apparatus. 14 speakers (7 men and 7 women) aged between 33 and 48 were 

recorded. Each speaker recorded 278 IUs (139 with meaning and 139 pseudo-

sentences [30] with equal prosody) so that the corpus contains 1946 sentences 

with meaning and 1946 pseudo-sentences. Considering both real and pseudo 

sentences, 2884 IUs do not contain any prosodic prominence while 1008 contains 

one or more corrective focuses. 

This database is ready for the experimental evaluation of the proposals to solve the 

FIUP through the second series of experiments. However, the FSP needs a 

segmentation of each IU into syllables that have to be labelled. To this end we 

proposed an automatic syllable segmentation procedure that was based on the 

syllable positions provided by Praat [27], i.e. the beginning and end of each 

syllable. Some few errors appeared for long syllables that were sometimes split 

into two subsegments. Then, we manually labeled each of these (pseudo-)syllables 

as focused or not focused. In total, the resulting corpus consists of 44923 pseudo-

syllables; 1867 focused and 43056 not focused. This corpus is highly unbalanced 

and includes one focused pseudo-syllable per 22 non focused ones, approximately. 

4.2 Study of the FSP 

Preliminar experiments. The initial experiments included the parametric Naïve 

Bayes classifier and the geometric SVM one as well as Feedforward Neural 

Networks. The average F1-score between the two classes in our dataset was used 

to evaluate the performance of each classifier. This measure was computed after a 

7-fold cross-validation process. In each iteration the instances of 2 of the 14 

speakers in the corpus were left as the test partition. All the neural networks were 

implemented with the WBNN toolkit4, while the Scikit-learn toolkit was chosen to 

                                                           
4   The first and second authors of this work are the main developers of this open source 

toolkit,. which is still under development. It can be found at 

https://github.com/develask/White-Box-Neural-Networks. 
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train the Naïve Bayes and the SVM classifiers. Columns 2 to 4 in Table 2 show 

the results of these experiments and confirm that Neural Networks outperform 

both SVM and Naive Bayes classifiers in terms of the average F1-score. 

Table 2 

Average F1-score obtained by different classifiers 

 
Best RNN 

Best feedforward 

NN 
Best SVM 

Best Naïve 

Bayes 

Average 

F1-score 
0.693 0.618 0.576 0.512 

Experiments with the proposed Recurrent Neural Networks. We then focused 

on bidirectional RNNs due to their ability to process sequences of variable length. 

In particular, we explored several RNN architectures and hyperparameters as well 

as several ways to build the input to the network and its parameters. First column, 

in Table 2 shows the best results that were achieved with RNN that clearly 

outperfomed the ones obtained by Feedforward NN. The structure of this best 

RNN is very similar to the one previously shown in Figure 3. Each recurrent layer 

consists of 10 LSTM cells5, the layer that processes the syllable duration is made 

of 8 sigmoidal units, the layer after merging the three sets of parallel layers 

consists of 20 sigmoidal units, and the network ends in a softmax layer of two 

units, one per class. Results in column one in Table 2 were obtained when the set 

B of features (pitch, energy and spectral centroid without any derivative) was 

selected. Finally, a fixed frame distance of 11 and a context size of 9 vectors 

resulted to be the best configuration to build the RNN input. The RNNs were 

trained by stochastic gradient descent with an exponentially decaying learning rate 

during a fixed number of epochs. The best choice for theses parameters was to 

reduce the learning rate from 0.5 to 0.1 throughout 75 epochs. 

This is the configuration for the ACS achieving the higher system performance 

shown in Table 2, i.e. the best RNN. To get these results we had previously 

explored two techniques to deal with the imbalance of the data set. We first 

included a classical variable decision threshold to determine the confidence level6 

required by the RNN to predict that the input corresponds to a focused syllable. 

An exhaustive search of this parameter was carried out to maximize the average 

F1-score between the two classes in the training partition. As an alternative we 

proposed to apply an increasing imbalance schedule in the training data [32]. To 

this end the network was trained with different data each epoch, starting from a 

not very unbalanced subset of the training data and slowly adding more examples 

from the majority class. The best schedule was to increase the imbalance from 5 (5 

non-focused syllables per each focused one) to the real imbalance (around 22), 

                                                           
5    We implemented the LSTM version proposed in [31]. 
6   The confidence level is the output of the neuron of the softmax layer that corresponds 

to focused syllables. 
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with a scaled hyperbolic tangent function. Table 3 shows how the performance 

was improved with the use of these techniques. 

Table 3 

Average F1-score obtained with the proposed techniques to deal with unbalanced data 

 RNN with threshold 

and imbalance schedule 

RNN with 

threshold 

Baseline 

RNN 

Average 

F1-score 
0.693      0.618     0.576 

Effect of the sets of features. We explored a variety of features as well as several 

ways to combine them. Then, the six sets of features listed below were selected. 

Additionally, we also experimented with sets that added the first derivatives of the 

proposed features on the one hand or the first and the second derivatives on the 

other hand. Note that all the features correspond to the long-term smoothed 

version. 

Set A. Pitch and energy. 

Set B. Pitch, energy and spectral centroid. 

Set C. Pitch, energy, spectral centroid, ZCR and spectral spread. 

Set D. Pitch, energy, spectral centroid, ZCR, spectral spread and 13 MFCCs. 

Set E. Pitch, energy, spectral centroid, ZCR, spectral spread and 16 LPCs. 

Set F. Pitch, energy, spectral centroid, ZCR, spectral spread and 29 Bark features. 

Figure 5 shows the performance of the described best model when different sets of 

features were used. First and second derivatives led to a decrease of performance 

for all the feature sets. i.e. they did not add any information. Pitch, energy and 

spectral centroid resulted to be the most informative features for this problem. The 

high performance obtained by the ACS when a so reduced set of features was used 

outlines the capability of the proposed RNN structure and configuration. 

 

Figure 5 

Average F1-score obtained with the best network trained with different sets of features. The three 

columns showed per set indicate the performance when no derivatives are added (left column), when 

the first derivative is added (central column) and when the first and second derivatives are added (right 

column). 



Acta Polytechnica Hungarica Vol. 15, No. 5, 2018 

 – 121 – 

Effect of the context. Figure 6 shows the ACS performance of the described best 

model and best set of features for different values of the context size and frame 

distance as defined in Section 3.1. Figure 6 evidences that a lack of information, 

i.e. a small context size, drastically worsens the system's performance. However, 

big context sizes do not significantly reduce the classification capacity of the 

proposed ACS. Thus, the ability of the LSTMs to forget non relevant events 

appear to pay off but the computation time is clearly much higher. On the other 

hand, the analysis of the frame distance shows an optimal range between 5 and 15 

frame distance where the performance does not significantly depend on the value 

of this parameter. However, the average F1-score clearly decays out of this range. 

Thus, low frame distances considers a few context but very big ones seem to lead 

to a loss of important events. 

 

Figure 6 

Average F1 score in the FSP of the described best network and best set of features for different values 

of the context size and frame distance as defined in Section 3.1 

4.3 Study of the FIUP 

A second series of experiments were carried out with the Standard Italian Corpus 

in order to deal with the FIUP. The sets of parameters defined in Section 4.2 were 

also considered for these experiments. 

Experiments with the proposed RNNs. The RNNs proposed to solve the FIUP 

are based on the architectures described in Figure 4. The best results were 

obtained when 60 LSTM cells per recurrent layer were considered and the RNN 
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was trained during 40 epochs. The best learning rate schedule was still an 

exponentially decaying one from 0.5 to 0.1. In addition, a variable decision 

threshold was included to optimize the average F1-score in the training partition. 

However, the use of a schedule throughout the epochs to deal to the imbalance at 

training time did not lead to any improvement in this case. This is probably due to 

the fact that the imbalance is not so high in the FIUP (around 3 IUs without focus 

per each IUs with focus). 

Effect of the sets of features. Figure 7 shows the performance of the described 

best RNN when different sets of features were used. Unlike the FSP problem the 

first derivatives seem to be significant mainly for set F. In fact, the size window 

analysis is now bigger so that the information provided by derivatives is 

meaningful. Moreover, Set F, which consists of the pitch, the energy, the spectral 

centroid, ZCR, the spectral spread and 29 Bark features, led to the higher ACL 

performance for this problem achieving a great average F1-score of 0.826. In the 

same way spectral changes seem also to be more significant for larger windows. 

 

Figure 7 

Average F1-score obtained with the best network trained with different sets of features for the FIUP. 

As before, the columns represent the addition of no derivatives, the addition of the first derivatives, and 

the addition of the first and second derivatives. 

Effect of the context. When dealing with the FIUP the context is just represented 

by the frame distance at which input vectors at subsampled. Figure 8 shows the 

ACS performance of the described best model and best set of features for different 

values of the frame distance as defined in Section 3.2. Figure 8 evidences a similar 

effect of the frame distance in system performance than the one analyzed for FSP. 

In fact, Figure 8 still shows an optimal range where the performance does not 

significantly depend on the value of this parameter and a very strong decrease of 

F1-score out of this range. Thus, once again big frame distances seem to lead to a 

loss of important information. 
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Figure 8 

Average F1 score of the described best network and best set of features for different values of the 

frame distance in the FIUP as defined in Section 3.2 

From the FSP to the FIUP. Figure 9 shows the results when predictions from 

previous FSP classifier were used as inputs for RNN proposed in Section 4.2 to 

deal with FIUP. Figure 9 evidences that the ACS performances are now lower 

than the ones got by the previous direct approach. However, let us note that the 

best result (a F1-score of 0.756) was obtained with an RNN trained on top of the 

outputs (of the last and penultimate layers) of a network that processes the Set F of 

features, with no derivatives. Thus, the spectral information seem to be also 

meaningful with this approach when dealing with the FIUP. 

 

Figure 9 

Average F1-score got when training RNNs on top of the features extracted with FSP classifiers 
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4.4 Human Perception Tests for the FIUP 

A series of Human Perception Tests was also carried out with the Italian Corpus. 

To this end a set of 203 adults, Italian native-speakers, were asked to recognize 

the 13 labels mentioned in Section 4.1. They classified all the sentences and 

pseudo-sentences in the corpus without repetitions, i.e., only one speaker per IU. 

In this work we just considered the question related to the presence of a corrective 

focus. The average F1-score between the two classes was 0.444, which is much 

lower than the performance got by both approaches of the ACS dealing with the 

same FIUP, i.e. 0.826 and 0.756 respectively in terms of F1 scores. 

The low perceptive rates may be due to the listener's need of the context provided 

by a previous interaction of other speaker. It seems that one single IU is not 

enough to ensure the human focus recognition. In contrast, with the narrow 

context preferred by the ACS, the human auditory apparatus seems to require a 

very broad one, extending to other parts of the dialogue. 

Concluding Remarks 

The corrective focus is a particular kind of prosodic prominence where the 

speaker is intended to correct or to emphasize a concept. This work has developed 

an Artificial Cognitive System (ACS) that played the role of the listener resulting 

in inter-cognitive infocommunication between a speaker and the artificial system, 

thus using just the audio as the only CogInfoCom channel. The ACS is based on 

Recurrent Neural Networks that analyze suitable features of the audio channel. 

Two different approaches to build the ACS has been developed. The first one 

addressed the detection of focused syllables within a given Intonational Unit 

whereas the second one identify a whole IU as focused or not. For the first 

problem the proposed RNN achieved an F-score of 0.693 with a reduced set of 

acoustic features whereas the RNN were able to get a really high F1-score of 

0.826, with a larger set of acoustic features that also includes variations. 

Experimental results showed the need of context to detect the focus. However, this 

context is reduced to neighbor syllables. On the other hand, human perception 

experiments showed that Humans were able to get just an F1 score of 0.444 

probably due to the lack of broad contexts including previous dialog turns. 

The results of our experiments showed the ability of the Artificial Cognitive 

System to identify the focus in the speaker IUs, which can lead to further 

important improvements in human-machine communication. The behavior of the 

ACS to identifies the focus in speech that can be interpreted, to some extend, as an 

estimation, optimistic in this case, of the human cognitive load when dealing with 

the same problem, showing synergies between Humans and Artificial Cognitive 

Systems. 
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