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1.1 Introduction 

With the aim of reducing the dependence on oil, avoiding plastic waste accumula-

tion and taking into account the large increase in single use plastics in many areas like 

packaging, the development of new greener alternatives have intensified. The objective of 

these alternatives is to use materials that cover all the needs according to the application 

required, and at the same time may suffer degradation by environmental stimuli after their 

useful life, such as bioplastics.
1, 2

 

The term bioplastic is used for those plastics that are biobased, biodegradable, or 

both, and they are commonly differentiated in three main groups. Biobased or partially 

biobased non-biodegradable plastics such as biobased PE, PP, or PET, plastics that are 

both biobased and biodegradable, such as PLA and PHA or PBS, and plastics that are 

based on fossil resources and are biodegradable, such as PBAT.
3
 

Among these group, the family of aliphatic polyesters is one of the most attractive 

because of their biodegradability and biocompatibility. They have attracted considerable 

attention and numerous research works have been published dealing with biodegradable 

aliphatic polyesters.
4-6

 Unfortunately, these kinds of biopolymers do not usually fulfill all 

the mechanical requirements needed and they are also characterized by a high 

crystallinity which limits their biodegradation rate. Therefore, in order to tailor these 

properties, the synthesis of random copolyesters with bio-based comonomers has been 

done to obtain versatile random copolymers. Copolymerization has been used to limit 

their degree of crystallization and improve their physical properties to extend their appli-

cations in the biodegradable polymer market. Additionally, some works showed that 

through the variation of the copolymer composition thermal properties could be con-

trolled without significant loss of crystalline properties.  

Several random copolyesters, such as poly(butylene succinate-ran-hexamethylene 

succinate),
7
 poly(butylene succinate-ran-adipate),

8, 9
 poly(butylene succinate-ran-
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diethylene glycol succinate),
10

 poly(butylene succinate-ran-butylene fumarate),
11

 

poly(butylene succinate-ran-ethylene succinate),
12, 13

 poly(butylene succinate-ran-

propylene succinate)
15

 and poly(butylene succinate-ran-butylene azelate)
14, 15

 have been 

synthesized and studied obtaining promising results for the future of green polymers. 

Therefore, the study of the crystallization behavior of random copolymers is very 

important because of its strong correlation with biodegradation rates, mechanical proper-

ties and applications.
16, 17

 For this purpose, the research project entitled: Crystallization 

and Morphology of Poly(butylene succinate-ran-butylene azelate) Random Isodimorphic 

Copolymers, has been developed in the University of the Basque Country (UPV / EHU) 

in the Polymer Science and Technology department of the Chemistry Faculty. 

1.2 Objectives 

This work is focused on the study of crystallization and morphology of poly(butylene 

succinate-ran-butylene azelate) random isodimorphic copolymers. For that next specific 

objectives are followed: 

 

 Study the nonisothermal and isothermal crystallization by Differential Scanning 

Calorimetry (DSC).  

 Study the crystallization structure by wide angle X-ray scattering (WAXS) and 

small angle X-ray scattering (SAXS). 

 Study the isodimorphic behavior of copolymers by analyzing the experimental dif-

fraction spacings (d) and lamellar thicknesses by WAXS and SAXS techniques. 

 Analyze the crystallization morphology of copolymers by polarized light optical 

microscopy (PLOM), and atomic force microscopy (AFM) techniques.  

 Perform detailed isothermal studies of the nucleation kinetics, spherulitic growth 

rates and overall crystallization kinetics by DSC and PLOM techniques.  

 Perform self-nucleation and successive self-nucleation and annealing (SSA) stud-

ies. 
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 Study the complex development of the amorphous phase, especially at composi-

tions around the eutectic point by broadband dielectric spectroscopy (BDS). 

 

1.3 Structure 

This PhD work has been reported in eight chapters. In Chapter 1 a general introduc-

tion is given and the research objectives presented. After that, a general scheme of how 

the work is organized, the background and bibliographical review of most significant 

results about polyesters and more exactly about isodimorphism are shown.  

In Chapter 2, in order to better understand the present research the main crystallization 

theories are showed in relation to the morphology and crystallization kinetics. 

In Chapter 3, the homopolymers and copolymers used in this work are presented, as well 

as a brief explanation of their synthesis. Furthermore, the main experimental techniques 

and the conditions used are also included. 

All results obtained are presented in the following four independent chapters; Chapters 4, 

5, 6 and 7. In the chapter 4, the structure, non-isothermal crystallization and morphology 

of the PBS-ran-PBAz copolymers previously synthesized by Mincheva et al.
18

 are stud-

ied. For this purpose, DSC, WAXS and SAXS techniques have been used and the ob-

tained results correlated with those obtained from PLOM and AFM. 

In chapter 5, self-nucleation and SSA techniques have been used to corroborate the 

isodimorphic behavior due to these techniques promote segregation of molecular defects 

that interrupt crystallizable sequences. 

Chapter 6 shows the dielectric spectroscopy measurements in PBS-ran-PBAz copoly-

mers. As well as the rate dependence crystallization studies employing combined DSC 

and Dielectric spectroscopy techniques.  

Chapter 7 shows the detailed isothermal studies of the nucleation kinetics, spherulitic 

growth rates and overall crystallization kinetics studied by DSC and PLOM techniques. 
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Finally, Chapter 8 presents the general conclusions reached after the development of the 

present investigation. And in this chapter we also include the scientific articles published 

in correlation with this PhD work.  

1.4 Background 

This Ph.D. thesis is focused on the study of Poly(butylene succinate-ran-butylene 

azelate) (PBAz) random isodimorphic copolyesters, therefore in this bibliographical re-

view most significant results about polyesters and more exactly about isodimorphism are 

shown in relation to the work that has been done.  

1.4.1 Bioplastics 

From the first synthetic polymers, such as Bakelite, which were discovered at the 

beginning of the twentieth century, the study of new polymer varieties, as well as new 

techniques for their synthesis and processing has never stopped. Currently, plastics have 

managed to occupy an important place in all aspects of our daily life, as well as in indus-

try,
19

 in addition, it is estimated that the consumption of polymers increases approximate-

ly 4% every year.
20

  

However, the raw material from which the vast majority of commercialized plastics 

are obtained is the crude oil. Even though oil does not come from a renewable source, the 

biggest problem of most plastics derived from the petrochemical industry is their re-

sistance to degradation by microorganisms which are in the environment.
21

 The lack of 

degradability is considered a very advantageous property for some applications such as 

construction or automotive, but at same time it contributes to the accumulation of unde-

sirable plastic waste which not only are found in landfills or any other waste management 

facilities, but also in all types of environments. Among the urban solid waste, the most 

common polymers are those obtained from petroleum, Polypropylene (PP) and Polyeth-

ylene (PE) already represent 60% of the waste, nearly followed by Polystyrene (PS) and 

Polyvinyl Chloride (PVC).
20

 Therefore, due to these disadvantages with traditional poly-

mers, considerable efforts have been made in the last decades in search of alternative ma-
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terials which can be synthesized from renewable sources, or that can easily be degraded 

in the environment or in the best cases, polymers that are both biobased and biodegrada-

ble.
19

  

Since the 1970s, the search for biopolymers has been ongoing. They are obtained 

from different sources such as vegetable fats and oils, corn starch, straw, wood chips, and 

food waste. The most common biobased polymers among others are Poly(lactic acid) 

(PLA), Polyhydroxybutyrate (PHB), cellulose derivatives (CA, CAB) and starch deriva-

tives. Biodegradability studies have also been carried out in polymers which are not nec-

essarily obtained from renewable sources. This means that biodegradability depends on 

the chemical structure of the polymer and not on the raw material. Examples of biode-

gradable polymers are the Poly(lactic acids) (PLA), polyhydroxyalkanoate (PHA), cellu-

lose derivatives, starch and also polybutylene adipate-terephthalate (PBAT) and 

Polybutylene succinate (PBS) or Poly(-caprolactone) which can be obtained from petro-

leum and from biomass.
22

 

Most of biodegradable polymers belong to the group of polyesters, due to the ester 

bond, which can be easily hydrolyzed by microbial enzymes. Polyesters are normally 

synthesized from a reaction of a diol chemical compound and one or more dicarboxylic 

acids group. The diol groups used may be based on renewable resources. In the case of 

the acid group they can also come from renewable sources such as succinic or adipic acid, 

or even come from the petrochemical industry such as terephthalic acid or dimethyl ter-

ephthalate  (DMT). 
23, 24

  

1.4.2 Polyesters 

Polyesters are defined as polymers containing at least one ester linking group per 

repeating unit (-COO-). They can be obtained by a wide range of reactions but the most 

important one, as explained before, is the polyesterification between dibasic acids and 

diols or their derivatives (see Figure 1.1). Especially the aliphatic ones are the most ex-

tensively studied class of polyesters.
25
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Figure 1. 1 Polyesterification reactions. 

Polyesters were first developed in the years 1939-1941 by British chemists at Cali-

co Printers Association, Ltd., based on the work of W.H. Carothers in 1926. After that 

DuPont bought the rights in 1946 to produce polyester fibers in the United States, and by 

1951 DuPont begun to market the fiber under the name Dacron. Polyesters are nowadays 

one of the most important classes of polymers in use; there are hundreds of polyesters due 

to the large number of combinations of diols and diacids, although only a few are of 

commercial importance.
25

 

They can be classified into two groups according to the bonding of the constituent 

monomers.  

 The first group consists of the poly(hydroxyl acid)s, which are polyesters synthe-

sized from hydroxyl acids (hydroxyl-carboxylic acids), HO-R-COOH, or by ring-

opening polymerization of cyclic monomers, –R-COO-. The most common 

poly(hydroxyl acid)s are Poly(lactic acid) (PLA), Polyglycolide (PGA), the 

Polyhyroxyalkanoates (PHAs), Polyhydroxybutyrate (PHB) and Poly(ε-

caprolactone) (PCL). 

 The second group consist of the poly(alkylene dicarboxylate)s. These are prepared 

by polycondensation of diols and dicarboxylic acids. They are also classified into 

two groups: aliphatic polyesters such as Poly(ethylene succinate) (PES) and 

Poly(butylene succinate) (PBS), Poly(butylene adipate) (PBA), Poly(propylene 

fumarate) (PPF) and polyesters containing aromatic units such as Poly(ethylene 

terephtalate) PET, Poly(buthylene terephtalate) PBT and Poly(ethylene furanoate) 

(PEF). 

In general, aliphatic polyesters have relatively poor mechanical and thermal proper-

ties and the applicability of this type of polymer is sometimes limited. On the contrary, 
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polyesters with aromatic units have better physical and mechanical properties, but they 

are so resistant to the attack of bacteria and fungi under environmental conditions that 

they have a very low biodegradation rate. For those reasons, the use of polymer combina-

tions and their study has become important in order to compensate the low properties and 

obtain materials with improved behavior as compared to pure homopolymers. Many of 

these polyesters are also mixed in different proportions with another class of polymers, or 

with other polyesters in order to reduce the cost of the final product, produce plastics with 

modified properties or increase their biodegradability. As an example among them, ali-

phatic / aromatic copolymers which are designed to combine the biodegradability of the 

aliphatic unit with the beneficial physical properties of the aromatic unit have attracted 

increasing interest.
5, 26

 In this case, the properties and biodegradable behavior depends on 

the proportion of the polyesters, obtaining a lower rate of degradation with a higher frac-

tion of the aromatic polyester. 

1.4.2.1 Aliphatic Polyesters 

As both polymers used in this work, aliphatic polyesters are known to be the most 

promising category of biodegradable polymers and environmentally benign materials. 

The properties of these type of polymers depend on the presence of branches in the ali-

phatic chain that produce changes in the chemical structure and influence the geometric 

regularity, polarity and mobility of the molecular chains. The aliphatic and cycloaliphatic 

polyesters are fairly resistant to the oxidation by the air or ozone under normal conditions, 

but are rapidly degraded by ammonia, hydrazine, hot alkaline solutions and primary or 

secondary amines, which divide the ester bond by forming hydroxyl groups and salts or 

amid derivatives of the carboxyl functionality. Theoretically they are also potentially de-

gradable in the presence of water, which by hydrolysis causes the breaking of the ester 

bonds in the main chain.  

The melting points of the linear aliphatic polyesters increase with the increase of the 

methylene / ester group ratio in the repeating unit. In addition, in has been reported that 

polyesters with an even number of methylene groups have higher melting points than 

those containing an odd number of methylene groups.
27

 Due to their combination of low 
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melting point, solubility and limited hydrolytic stability, most aliphatic polyesters are not 

used as structural materials, but their low glass transition temperatures allow them to be 

used as plasticizers and as components in other polymers such as polyurethanes. Despite 

aliphatic polyesters are considered the most economical alternative between biodegrada-

ble polymers to replace the plastics currently used in packaging, bottles and others (PE, 

PET, PVC) in order to protect the environment, the widespread application of the aliphat-

ic polyesters is limited by several physical drawbacks associated with the polymer, such 

as poor mechanical strength and low melting points. To overcome these limitations, stud-

ies have concentrated on the development of new materials. As explained before, polyes-

ters have the advantage of being modified according to the user requirements. Their 

crystallinity degree, thermal transitions, mechanical strength, and degradation can be al-

tered based on molecular weight, composition (when used in copolymers), or addition of 

substituents to the polymer backbones.
28

  

Aliphatic polyesters are often blended with other resins to improve their processing 

and end use properties. For example, they can be blended with starch to lower cost and to 

increase the biodegradability. They are also used as the matrix resin for mostly unidirec-

tional bio-composite materials. Often natural fibers like flax, hemp, jute, bamboo, ele-

phant grass, and kenaf are used as reinforcing fibers. Thanks to the versatility they 

provide, they have been used in a wide variety of biomedical applications, such as drug 

delivery and tissue engineering.
29

 

 

1.4.3 Poly(butylene succinate) (PBS) 

 

Figure 1. 2. Chemical Structure of Poly(butylene succinate) (PBS). 
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Poly (butylene succinate) (PBS) is an aliphatic polyester obtained from succinic ac-

id and 1,4-butanediol. The synthesis of both monomers can be carried out from fossil-

based or renewable resources; from fermentation of microorganisms on renewable 

feedstocks, such as glucose and starch.
30

 It is also a promising biodegradable polyester 

because of its good mechanical properties that are comparable with those of such widely 

used polymers as low-density polyethylene and other polyolefins.
22, 31

 

The glass transition temperature of this semycrystalline thermoplastic is remarkably 

low (being around -30 ºC), and the melting temperature is around 115ºC. With respect to 

its mechanical properties, it generally shows excellent mechanical and processability 

properties but not always a high enough biodegradability rate. The tensile yield strength 

of unoriented samples reaches up to 30-35 MPa, which is comparable to that of polypro-

pylene. Additionally, PBS is flexible with Young’s modulus in the range of 300–500 MPa 

depending on the degree of crystallinity.
32

  

Through copolymerization with different types and different monomer contents the 

variation on physical properties and the rate of biodegradation of the PBS materials over a 

wide range is achieved. PBS has a wide temperature window for the processing of ther-

moplastics, which makes it suitable for extrusion, injection molding, thermoforming and 

film blowing. Among its applications PBS is usually used to produce fast food packages, 

bottles, supermarket bags, flushable hygiene products, mulch film and compost bags. In 

addition, PBS and PBS-based copolymers have been used in biomedical application,
33

 

most commonly in tissue engineering where these polymers have been employed in 

films
31, 34, 35

  and as scaffolds.
36, 37

 In some other cases, they have been also used as drug 

delivery systems.
38-40

  

Although its production is based mainly on fossil resources, there are several com-

panies (BASF, Myriant, Reverdia etc.) that are making great efforts to achieve the synthe-

sis of PBS only from renewable sources. The objective is to reach a level of production 

that allows serving the large industrial demand with a material obtained entirely from 

green origin. PBS is commercially available since 1993 and is now produced under the 

trade name BionolleTM by Showa-Denko
41

 and by Mitsubishi Chemical Corporation 

under the trade name GS PlaTM.
42
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The synthesis of PBS can be performed by a two-stage polycondensation reaction: 

the first one, esterification at atmospheric pressure of succinic acid with1,4-butanediol 

(BD) or transesterification of dimethyl succinate with BD to obtain oligomers. And the 

second one, polycondensation at reduced pressure of the oligomers removing BD to form 

high-molecular weight PBS (Figure 1.3). Different catalysts are traditionally employed 

for the synthesis of PBS, one of the most common is the titanium(IV) butoxide (TBT). 

Other types of catalysts such as organometallic or metal-oxide compounds were also test-

ed and the results obtained reported by Jacquel et al.
43

 

 

 

Figure 1. 3. Chemical synthesis of PBS by means of a two-stage process: esterification of succin-

ic acid with 1,4-butanediol or transesterification of dimethyl succinate with 1,4-butanediol. 

The semicrystalline PBS is a polymorphic material that depending on the conditions 

of preparation can crystallize in two different ways. Two polymorphs, i.e., α and β form, 

have been reported for PBS.
44

 Under the usual conditions such as cooling from the melt 

or solution crystallization, the common modification, α form, is produced. Ichikawa et 

al.
45

 proposed a monoclinic unit cell with dimensions (a = 0.523 nm, b = 0.912 nm, c = 

1.090 nm, and β= 123.9
◦
). The most intense reflections for PBS appeared at Bragg dis-

tances of 0.452, 0.404, and 0.392 nm, and they can be indexed to (020), (021) and (110) 

planes, (Figure 1.4(a)). 

The β form of PBS, obtained by the stretching of the conventional α form crystals, 

was also reported by Ichikawa et al.
46

 This β-form is characterized by chains in an all-

trans conformation packed in a monoclinic unit cell with lattice dimensions of a = 0.584 

nm, b = 0.832 nm, c (fiber axis) = 1.186 nm, and ȕ=131.6◦, according to a space group of 

P21/n, Figure 1.4(b). The difference between the fiber repeat periods of the α- and β-form 

crystals are mainly attributed to the conformational difference of the tetramethylene units. 
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Figure 1. 4 Crystal structures of PBS (a) α- and (b) β-form on the a´−b (bottom) and b–c 

(top) base planes. All hydrogen atoms are omitted. (From reference
45

). 

 

As explained before the PBS-based copolymers have been prepared in order to 

modify the PBS properties such as thermal and mechanical behavior or biodegradability 

rate. The two main synthetic strategies adopted to obtain PBS-based copolymers are 

copolycondensation and reactive blending.  

By copolycondensation the synthesis of random copolymers is obtained where dif-

ferent comonomeric units have been introduced along the PBS macromolecular chain. 

Typical examples include: another aliphatic polyester Poly(butylene adipate) PBA which 

has been widely estudied,
8, 9, 32, 34, 47, 48

 an aromatic polyester Poly(butylene terephtalate) 

PBT and quite recently  a novel polyester Poly(neopenthyl succinate) PNS. 

Xu and Guo
32

 reported the physical properties of poly(butylene succinate-co-

butylene adipate) (PBSA) copolyesters which varied with comonomer content. Results 

showed an interesting behavior when PBSA compositions with between 5 and 15 mol 

percent of BA content possessed a higher crystallinity degree and tensile strength than 
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PBS homopolymer. The biodegradation rate of PBSA film was also improved with the 

increase of BA content from 0 to 20 mol%. This could be due to the cocrystallization of 

BA units in the crystal lattice of PBS. These results are in good agreement with other ex-

amples of random copolymers
15

, whose crystallinity does not decrease with the minor 

comonomer content. There are other examples of systems where this does not happen,
9
 as 

even with smaller comonomer contents the crystallinity degree decreases. 

Nagata et al.
49

 and Guo et al.
26

 also copolymerized succinic acid with terephthalic 

acid to produce the aliphatic/aromatic polyester poly(butylene succinate-co-butylene ter-

ephthalate) (PBST). In this case, as much comonomer content both melting point and 

crystallinity degree decreased showing the lowest values at 30–40 mol% of butylene ter-

ephthalate (BT) units. The tensile strength and elongation at break of PBST depended on 

the degree of crystallinity (Xc), since PBST with highest Xc demonstrated higher tensile 

strength and lower elongation at break. In this case, the biodegradation of samples did not 

improve and the increase in aromatic comonomer content made the biodegradation rate 

slower.  

Guidotti et al.
50

 have recently synthesized novel random PBS-based copolymers 

containing aliphatic side chains in order to obtain sustainable flexible food packaging. In 

this work Poly(butylene/2-butyl,2-ethyl-propylene succinate) (P(BSmBEPSn)) and 

Poly(butylene/neopenthyl succinate) (P(BS70NS30)) random copolymers were prepared. 

Results showed that the presence of the side alkyl groups did not alter the thermal stabil-

ity, whereas it significantly reduced the sample crystallinity degree, making these materi-

als more flexible. The barrier performances to O2, CO2 and N2 gases were also evaluated, 

envisioning for these new materials an application in food packaging and were found to 

be worse than in PBS homopolymer. However, some of them were comparable to or even 

better than those of Low Density Polyethylene (LDPE), widely employed for flexible 

food packaging. 

On the other hand, by reactive blending, it has been possible to obtain multiblock 

copolymers with different block lengths by simply varying the mixing time. To this pur-

pose, PBS has been copolymerised with other aliphatic polyesters such as Poly(lactic ac-

id) (PLA). PLA is usually obtained in the amorphous state after being processed, and due 
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to its slow crystallization rate in comparison to the cooling rates employed during pro-

cessing; the use of PLA in some applications is limited. In order to enhance the physical 

properties of PLA, PLA and PBS multi-blocks within the PLA-mb-PBS copolymers were 

prepared by D’Ambrosio et al.51
 According to their results PBS had a dilution effect on 

PLA blocks, increasing the PLA chain mobility, thus lowering the crystallization and 

melting temperature and increasing the undercooling during isothermal crystallization. 

The decrease of both the melting temperature and the crystallinity degree with PBS con-

tent, indicated that the PBS blocks perturb the PLA blocks stereocomplexation. However, 

the PBS blocks could retard or increase the crystallization kinetics, depending on the PBS 

amount in the blend.  

Other authors realized PBS-based composites by blending the polyester with organ-

ic materials like collagen
40

 and chestnut fibres (CSF)
52

 or inorganic ones such as calcium 

phosphate,
53

 fluoroapatite
54

 and hydroxyapatite (HA),
55, 56

 where a decrease in the melting 

point and a slight increase of the crystallinity were observed for PBS blend. Grigoriadou  

et al.
57

  prepared PBS composites containing silica nanotubes or strontium hydroxyapatite 

nanorods. And in this case melting point did not decrease with the addition of a small 

amount of nanofiller, in the contrary, crystallinity degree increased due to the nanoparti-

cles acted as nucleating agents. 

 

1.4.4 Poly(butylene azelate) PBAz 

 

Figure 1. 5. Chemical Structure of Poly(butylene azelate) (PBAz). 

Poly (butylene azelate) (PBAz) is an aliphatic polyester obtained from azelaic acid 

and 1,4-butanediol. Azelaic acid is industrially produced from the oxidation of oleic acid 

through ozonolysis,
58

 and can be directly extracted from barley, rye, sorghum, or wheat 

through an adequate biocatalysis-based process.
59
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Polyesters based on azelaic acid had not been studied till recently. Papageorgiu et 

al.
60

 analyzed the crystallization and enzymatic degradation of poly(butylene azelate) in 

comparison with poly(ethylene azelate) (PEAz) and poly(propylene azelate) (PPAz) wich 

were synthesized by the two-stage melt polycondensation method. 

The glass transition temperature of this semycrystalline thermoplastic is lower than 

the Tg of PBS (being around -63 ºC), and the melting temperature is around 41ºC. 

In the case of PBAz, the crystalline unit cell had not been reported in the literature. 

Diaz et al.
61

 reported that fiber patterns from the melt drawn homopolymer were con-

sistent with an orthorhombic unit cell with the following dimensions: a = 0.496 nm, b = 

0.746 nm, and c = 3.65 nm. Following these results the most intense reflections (at 0.416 

and 0.377 nm) for PBAz were indexed as (110) and (020) planes. 

 

1.4.5 Random isodimorphic copolymers 

As explained before, copolymers are versatile materials that have been attracting 

academic and industrial interest for decades. There are several types of copolymers in-

cluding block, graft and random amongst others.
62

 Specially random copolymerization is 

a simple synthetic method of combining the properties of two distinct homopolymers. It 

provides random covalent links between different comonomers, therefore ensuring in 

most cases total melt miscibility, a fact that sets random copolymers apart from the typi-

cal immiscible polymer blends. Their thermal and mechanical properties can be tailored 

by changing the composition of the copolymer.  

Random copolymers constituted by two crystallizable units may show different 

crystallization behavior depending on their miscibility and ability to share crystal lattic-

es.
44, 63, 64

 Provided that the two crystallizable repeating units meet strict molecular re-

quirements, the copolymers can crystallize in the same crystal lattice, in the entire 

composition range. In other words, the two comonomeric units along the chain can co-

crystallize regardless of the composition. Therefore, the two comonomers can be consid-

ered totally miscible in the crystalline state, and total inclusion of comonomers in a single 
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crystal lattice or isomorphic behavior occurs. Figure 1.6 shows a scheme of the 

comonomer unit arrangement inside one lamella for the isomorphic case. Thermal and 

structural properties, such as melting temperatures and lattice parameters, typically show 

linear dependence on composition as it is shown in Figure 1.9 with blue triangles.  

The concept of isomorphism in the polymer field was first considered by Natta et 

al.
65

 The requirements to observe macromolecular isomorphism in random copolymers 

have been summarized by Allegra and Bassi,
63

 who highlighted that: (i) the different 

monomer units must have approximately the same shape, occupy the same volume, and 

acquire a compatible chain conformation, (ii) the crystalline phase of “parent 

homopolymers” should be analogous in chain conformation, lattice symmetry and dimen-

sions, (iv) the comonomers must be miscible in the melt (v) and the two homopolymer 

must have similar rates of crystallization. As a result, a total inclusion of both 

comonomers in the crystalline lattice occurs, and the composition of the crystal perfectly 

reflects the one of the polymer chain. Because of the specific conditions to be met, only 

four random    copolyesters have been reported to exhibit isomorphic crystallization: 

P(HG-ran-HA),
66

 P(CL-ran-OPD),
67

 P(CL-ran-PDL),
68

 and P(BS-ran-SF).
11

 

 

 

Figure 1. 6. Scheme of the comonomer unit arrangement inside a lamellar crystal for the isomor-

phic case. 

 

The second case of cocrystallization in random copolymers, isodimorphism, oc-

curs when the two homopolymers (A and B) do not share a common crystalline structure, 

but they still have similar repeating units so that two crystal structures depending on 

composition are formed (A-ran-B) constituted by the respective repeating units. A partial 
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inclusion of comonomer A in the unit cell of homopolymer B crystals is typically ob-

served for copolymers with compositions rich in B units, and vice-versa. Figure 1.7 

shows a scheme of the comonomer unit arrangements inside lamellae for the 

isodimorphic case. Comonomer inclusion is only partial, i.e., the concentration of 

comonomer A inside the B crystals can be lower than its exclusion to the amorphous 

phase. Since both comonomers can be hosted in the crystals of the majority component 

(comonomer A in the B crystals, and vice-versa), a pseudo-eutectic trend of the thermal 

properties (melting and crystallization temperatures, as well as their enthalpies) is ob-

tained. Figure 1.9 shows (in red and green squares and circles) two examples of how the-

se thermal properties could behave in this case. 

 

Figure 1. 7. Scheme of the comonomer unit arrangement in lamellae for isodimorphism case. 

Isodimorphic copolymers are characterized by a homopolymer-A-rich crystalline 

phase on one side of the pseudo-eutectic region and a homopolymer-B-rich crystalline 

phase on the other side of the eutectic region. Furthermore, some copolymers can display 

double crystalline superstructural morphologies at the pseudo-eutectic region. 

There are no general rules that can unambiguously predict if a copolymer will dis-

play isodimorphism or not. In fact, even in those cases where the comonomers have simi-

lar chemical structures and are miscible in the amorphous phase, the possibility of 

forming a mixed crystalline unit cell, or in other words the efficiency of comonomer in-

clusion, is not easily determined. In spite of this, some features affecting isodimorphic 

behavior have been highlighted in the literature. For instance, a homopolymer with a 

large unit cell is expected to include more easily a comonomer whose respective 

homopolymer presents a smaller unit cell.
69

 Also, a comonomer with an even number of 

methylene groups in the repeating unit will most likely include similar even CH2 

comonomers in its unit cell, and exclude those with odd number of carbon atoms in their 



                                                                                                                  General Introduction and Objectives 

19 

chemical structure.
66, 70

 These empirical rules, related to the miscibility of the 

comonomers in the crystalline state are not always strictly obeyed. 
In Figure 1.9, two curves for the isodimorphic case are shown (cases (b) and (c)), 

representing different degrees of inclusion of the comonomers in the homopolymer crys-

tal lattice.  With a higher degree of inclusion, the crystallization/melting behavior deviates 

less from the isomorphic case (b). In contrast, when the comonomer units are largely ex-

cluded from the crystals, even though the copolymer may still able to crystallize in all 

compositions (c), the thermal response will be closer to that of a copolymer characterized 

by a complete rejection of the co-units to the amorphous phase (see Figure 1.9(d)).  

The third behavior studied in random copolymers is the total exclusion of minor 

comonomer. When cocrystallization cannot occur and comonomer A is completely re-

jected from the crystalline structure of the major component (comonomer B), the transi-

tion temperatures and enthalpies are strongly depressed as the content of comonomer A 

increases in the random copolymer, and there exists a range of copolymer compositions 

where the copolymer remains completely amorphous. This case is shown in Figure 1.8 

and an example of the thermal properties plotted as orange and pink stars in Figure 1.9. In 

those cases, 20 % of co-units randomly distributed along the chains is enough to com-

pletely inhibit the crystallization. A clear example of this behavior is given by statistical 

ethylene/1-octene or propene/1-octene synthesized with metallocene catalysts.
71, 72

 

 

Figure 1. 8. Scheme of the comonomer unit arrangement inside a lamella for the full exclusion 

case. 
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Figure 1. 9. Melting (or crystallization) temperature as a function of comonomer content for dif-

ferent possible copolymers. From top to bottom four cases are represented: (a) isomorphic behav-

ior, (b) isodimorphic behavior for copolymers with small amount of comonomer exclusion, (c) 

isodimorphic behavior with a large amount of comonomer exclusion, (d) copolymers with total 

exclusion of second comonomer. 

 

In this work, isodimorphism of PBSAz random copolymers has been studied in 

great detail. In the literature, other isodimorphic cases have also been studied in different 

copolyestres, most frequently in aliphatic copolyesters
9, 12, 13, 18, 47, 61, 66, 70, 73-89

 and also in 

aromatic/aliphatic coplyesters.
48, 85, 90-97

 

1.4.5.1 Characterization of isodimorphic copolymers 

The isodimorphic character of random copolyesters is reflected in various aspects 

of their crystallization. On the one hand, isodimorphism studies have been focus on the 

pseudo-eutectic feature of the thermal transitions which can be analyzed by different Dif-

ferential scanning calorimetry (DSC). On the other hand, it has been also studied the par-

tial inclusion of the minority co-unit in the crystalline unit cell by techniques such as 

Wide and Small Angle X-Ray Scattering (WAXS/SAXS) and Infrared Spectroscopy (FT-

IR). In addition, the experimental estimations of the equilibrium melting points have been 

compared with theoretical models which account for the effect of partial inclusion of the 

comonomer in the crystal on this thermodynamic value. 
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1.4.5.1.1 The pseudo-eutectic feature of the thermal transitions in isodimorphism 

The isodimorphic behavior in random copolymers is clearly manifested in non-

isothermal heating and cooling experiments, since the transition temperatures show a 

strong and characteristic dependence on copolymer composition. Despite being random, 

these copolymers can crystallize in the entire composition range. With the increase of 

minor comonomer concentration the melting point and crystallinity of the copolymers 

decreases, as it has been shown in Figure 1.9 part b. Therefore, despite the interruption of 

the comonomer sequences that crystallizes by the minor comonomer repeating units, ma-

jor component phase can still crystallize in these copolymers, even when the content of 

comonomer is as high as 40-60 %. This indicates that co-crystallization (or minor 

comonomer inclusion within the major crystal phase) of the two comonomers in the same 

crystal lattice is possible to some extent. 

The pseudo-eutectic behavior of isodimorphic polymers is manifested by a decrease 

in the transition temperatures with composition departing from those of the two 

homopolyesters, until a minimum value is reached. The comonomer concentration at 

which this minimum is found is generally located around the equimolar composition,
79, 80

 

however, some systems show pseudo-eutectic points in significantly different concentra-

tion intervals (e.g., 60:40, 80:20).
9, 15, 66, 74, 76, 82, 97, 98

 For instance, in poly (hexamethylene 

dicarboxilate) copolymers the eutectic composition shifts from a co-unit concentration of 

50 to 20 %, with increasing the length of aliphatic diacids from 4 to 8 CH2 units.
74

 In 

most studies,
9, 15, 66, 74, 80, 97

 the minimum of crystallization/melting temperature is located 

at compositions shifted towards higher contents of the comonomer whose respective 

homopolyester has a lower melting point.  
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1.4.5.1.2 Study of co-units cocrystallization by Wide Angle X-ray Scattering 

(WAXS) 

In many cases,
12, 66, 70, 76, 79, 80, 82, 97, 99-101

 the partial inclusion of the minor 

comonomer into the crystalline structure of the major component of a random copolymer 

has been revealed by X-ray diffraction. As explained before, in isodimorphic materials 

WAXS results usually show that all compositions contain only one type of crystal. On 

one side of the pseudo-eutectic point, the samples only display reflections that are con-

sistent with the type of unit cell of the phase which crystallized in this case. And in the 

other side, the samples only display reflections that are consistent with the type of unit 

cell of the phase which crystallized in the other case. The WAXS analysis can also reveal 

the (partial) inclusion of a co-unit in a given structure. Indeed, when the crystal hosts a 

repeating unit different from that which constitutes the homopolymer, several different 

situations can arise, depending on the specific crystallographic features of the considered 

systems. In particular, upon inclusion of a comonomer, a crystalline unit cell can: a) in-

crease in size to accommodate the bulkier co-unit; b) shrink in certain directions, as a 

result of a lower volume occupied by the defect; c) remain unchanged in size.  

Yu et al.
66

 reported both increasing and decreasing crystal lattice size studying the 

case of poly (hexamethylene dicarboxilate) copolyesters, where the chain length of the 

aliphatic diacid was varied. In WAXS results little or no variations in the spacings was 

observed when comonomers with lower number of methylene units were included in the 

crystals of the homopolymer with longer aliphatic sequences, i.e., as in the case of 

glutaric acid substituting pimelic acid (3 and 5 methylene units, respectively), Figure 

1.10a, or pimelic acid (5 methylene) copolymerized with azelaic acid (7 CH2), Figure 

1.10b. On the other hand, accommodating a diacid with higher number of CH2 in the unit 

cell of a polyester with a shorter diacid led to both an increase or decrease in the distance 

between a given family of planes (P(HG-ran-HP) and P(HP-ran-HAz) plotted in Figure 

1.10a and b, respectively). The difference may depend on the details of the specific struc-

ture, i.e., on the volume occupied by the co-unit in the acquired conformation along the 

considered crystallographic direction. 



                                                                                                                  General Introduction and Objectives 

23 

0 20 40 60 80 100

30

40

50

T
m
 (

ºC
)

PHP Content (wt%)

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

(2=23.7)

(2=24.2)

(2=20.9)

d
-s

p
a
c
in

g
 (

n
m

)

(2=21.8)
(a)

 

0 20 40 60 80 100

40

45

50

55

T
m
 (

ºC
)

PHA Content (wt%)

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

(2=23.5)

(2=21.1)

(2=23.7)

(2=20.9)

d
-s

p
a
c
in

g
 (

n
m

)

(b)

 

 

Figure 1. 10 d-spacings values of characteristic planes and Tm as a function of 

(co)monomer content of (a) poly (hexamethylene glutarate-co-hexamethylene pimelate) 

P(HG-co-HP) and (b) poly (hexamethylene pimelate-co-hexamethylene azelate) P(HP-

co-HAz) . (From reference 
66

) 

 

1.4.5.1.3 Study of co-units cocrystallization by FT infrared spectroscopy (FT-IR) 

A more direct evidence of co-crystallization of the co-units can be obtained by FT 

infrared spectroscopy (FT-IR). Inoue et al. 
76, 79, 80

 and Li et al.
75, 77

 studied the 

crystallization behavior of several aliphatic random copolyesters with this technique. In 

those works, some IR absorption bands were assigned specifically to a given co-unit in 

the crystalline state of the isodimorphic copolymers. The intensities of these characteristic 

bands of both comonomers simultaneously increased with time during crystallization and 

decreased with temperature upon melting. This result proved the co-existence of the two 

units in the crystalline lattice of the different homopolymers. Furthermore, by applying 

Lambert-Beer’s law  Inoue et al.76
 and Swinehart et al. 

102
 estimated the content of co-unit 

included in the crystals.
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1.4.5.1.4 Study of co-units cocrystallization by comparing the equilibrium melting 

point with theoretical exclusion-inclusion models 

Some works
12, 66, 70, 74, 78, 97, 99, 103

 have reported an indirect way to derive infor-

mation on the partitioning of co-units between the crystalline and amorphous phase by 

comparing the experimental estimations of the equilibrium melting points with theoretical 

exclusion-inclusion models
64

, which account for the effect of partial inclusion of the 

comonomer in the crystal on this thermodynamic value. With these equations also per-

centage of the minor comonomer units which were practically incorporated in the crystals 

are also estimated. 

When minor comonomer units were totally rejected from the crystal into the amor-

phous phase, Flory 
104, 105

 and Baur 
106

 exclusion models could be applied. In comonomer 

inclusion two models were used in order to analyze the partial inclusion of the 

comonomer B in crystals of the A repeating unit; the Sanchez and Eby model,
107, 108

 and 

the Wendling and Suter theory.
109, 110

 The latter provided the best fit for the experimental 

results using as fitting parameter the defect free energy (ε),
109-111

 and from this equation 

information about which comonomer incorporates easier was also obtained by calculating 

the value of (ε). In addition, percentages of the minor comonomer units which incorporate 

in the crystals were also estimated. 

Jeong et al.
99

 studied the poly(butylene terephthalate-ran-butylene 2,6-naphthalate) 

(P(BT-ran-BN)) copolymer. When the defect free energy was calculated by using the 

Wendling and Suter equilibrium inclusion model, the defect free energy in the case of 

incorporation of BN units in the PBT type crystal was higher than in the opposite case, 

concluding that the incorporation of bulkier BN units in the PBT type crystal was more 

sterically hindered than the opposite case. The percentage of inclusion was bigger when 

introducing PBT units in PBN crystals than in the opposite case and that in both respec-

tive PBT and PBN crystal structure, the comonomer concentration in cocrystals increased 

with increasing the comonomer composition in bulk. However, in both cases, the 

comonomer concentration in each crystal was lower than the copolymer concentration in 
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a total inclusion model suggesting that a fraction of the comonomer unit was rejected in 

the amorphous phase. 

Yu et al.
74

 analyzed different random aliphatic copolyesters derived from 1,6-

hexanediol  with different diacids with chain length of 4, 6, 8 and 10 to investigate the 

effect of chain length of aliphatic diacids on miscibility and competition of 

cocrystallization behavior. By quantifying the defect free energy parameter (ε) calculated 

from Wendling-Suter method, they concluded that when HS unit (hexamethylene succin-

ate) incorporated into the crystal type of the different chain length diacids, the one with 

longer chain length had better miscibility with the inserted HS unit. Furthermore, the 

comonomer concentration in crystal increased not lineally with the comonomer content, 

deducing that it was easier to create the excess volume necessary for a comonomer unit in 

an already imperfect crystal lattice. 

1.4.5.2 Other studies in isodimorphic copolymers 

1.4.5.2.1 Isothermal study in isodimorphic copolymers 

For isodimorphic random copolyesters there are several literature reports dealing 

with DSC isothermal crystallization kinetics, however, they typically cover a limited 

range of compositions, i.e., close to the major components 
14, 83, 85, 99

. This limitation is 

related to the widely different crystallization temperature range or kinetics observed when 

changing from one type of crystalline phase to the other.   

In all reported cases the crystallization rate, expressed as the reciprocal of the half-

crystallization time (1/τ50%), decreases with increasing Tc, a common trend in the tempera-

ture range close to the melting point of the sample, where crystallization is dominated by 

nucleation control (in this case both primary and secondary nucleation, as the experiments 

are performed by DSC). In addition, due to the differences in Tc of the different composi-

tions of the same system, the half-crystallization times curves shifts to lower temperatures 

as the second comonomer is incorporated in the copolymers, indicating a large change in 

supercooling. This behavior is attributed to a diluting effect of the comonomer, which is 

preferentially not included in the crystals, and to the decrease of the equilibrium melting 

point with increasing comonomer content. Secondary nucleation constants were also cal-
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culated by these studies, and results showed that the value increased with the comonomer 

content. 

1.4.5.2.2 Rate dependence calorimetric data 

In the majority of reported works about isodimorphic systems only a single melt-

ing point was found for all compositions which belonged to each rich phase. Only in 

some few cases in compositions near the pseudo-eutectic point two crystalline phases 

could be found. Rate-dependent experiments provided an efficient strategy to detect the 

formation of two co-existing crystalline phases around the pseudo-eutectic point, and also 

managed to facilitate the crystallization of one of the rich phases making more hindering 

the crystallization of the other. 

Diaz et al.
14

 applied different cooling rates (followed by heating at a constant heat-

ing rate) in order to generate different thermal histories. They found that at a very slow 

cooling rate of 5 ºC/min, the crystallization of the phase which crystallized at lower tem-

peratures was inhibited. During subsequent heating, both rich phases could crystallize, 

and at faster cooling rates the phase which crystallized at lower temperature could also 

crystallize more, but they never found a cooling rate at which the rich phase that crystal-

lized at higher temperatures could be inhibited. In another reported case, Pérez-Camargo 

et al.
9
  found that at a very high cooling rate of 50 ºC/min, it was possible to inhibit the 

crystallization of both phases. And when the copolymer was cooled at a very slow rate 

(i.e., at 1 °C/min), only the phase which crystallizes at higher temperature is able to crys-

tallize as in the case of Diaz et al. 

1.4.5.2.3 Mechanical and degradation studies 

As explained at the beginning of this bibliography part, one of the most important 

reasons why copolymerization has been carried out was in order to improve some proper-

ties of its parent homopolymers. Therefore several works have studied the impact of co-

polymerization on mechanical properties.
12, 48, 70, 78, 91, 93, 98

 On the other hand, as many of 

the studied polyesters tend to crystallize very quickly, as a consequence they show very 

low degradation rates. With the help of copolymerization this problem has been tried to 

solve and many studies on degradation such as biodegradation, hydrolytic and enzymatic 
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degradation have been reported.
12, 13, 47, 61, 70, 81, 83, 86, 89, 91, 94-96

 Furthermore, studies of bio-

compatibility have been done obtaining promising results focused on biomedical chemis-

try.
70

 

Tan et al.
78

 synthetized and analyzed the poly(butylene succinate-co-hexamethylene 

succinate) (P(BS-co-HS)) copolyesters.  When they studied the mechanical properties of 

the copolymers, results showed that the incorporation of HS altered the tensile failure 

mechanism from brittle failure for neat PBS to ductile for P(BS-co-HS) copolyesters with 

HS content higher than 30 mol%. Young’s modulus and yield stress show a composition-

al dependence of both, decreasing as the composition becomes more equimolar. By con-

trast, the elongation at break increases with increasing comonomer content. In this 

system, copolymerization provided a tunable solubility, thermal and mechanical proper-

ties of the copolymers, making them an attractive option for a wide range of applications 

in biodegradable packaging and coatings. 

Papageorgiou et al.
12

 also studied the mechanical properties of a random copolymer, 

poly(butylene-ran-propylene succinate) (PBPSu). Results showed that there was a direct 

dependence of the mechanical properties on the copolymer composition, and that with the 

amount of BSu units increased in the copolymers the tensile strength at break as well as 

the Young’s modulus increased. On the other hand, since PPSu is a soft material, tensile 

properties decreased with increasing propylene succinate (PSu) content and at high PSu 

amounts the tensile strength and Young’s modulus were very low and almost identical to 

those of the neat PPSu. 

In another work Papageorgiou et al.
91

 analyzed aromatic/aliphatic poly(propylene 

terephthalate-co-succinate) (PPTSu) random copolyesters of high molecular weight. Neat 

PPSu showed fast biodegradation rates, however by the introduction of terephthalate units 

in the macromolecular chains of the aliphatic polyester PPSu, a decrease of the biodegra-

dation rates of the PPTSu copolymers resulted. Although copolymers with up to 60 mol% 

terephthalate content showed significant biodegradation rates, copolymers with more than 

70 mol % terephthalate units and PPT practically did not hydrolyze. In conclusion, by the 
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increasing of the terephthalate content in this copolymer hydrolytic degradation rates 

could be limited. 

Hong et al.
86

 reported the copolymerization of Ȗ-butyrolactone (Ȗ-BL) with ε-

caprolactone (ε-CL). The hydrolytic degradation behavior of ε-CL/Ȗ-BL copolymers with 

different levels of Ȗ-BL incorporation as well as the control PCL and PBL homopolymers 

was studied by monitoring the weight variation of the polymer film samples immersed in 

neutral, acidic, and basic aqueous solutions. The study of hydrolytic stability showed that 

incorporation of Ȗ-BL into PCL accelerated the hydrolytic degradation rate of PCL, which 

could be modulated by changing the copolyester composition. Comparing PCL with and 

PBL-co-PCL copolymers, the hydrolytic degradation of PBL was relatively fast, especial-

ly in the basic aqueous solution. In a study of 1 month only 4.7% of weight remained for 

PBL while PCL still had 87% weight remained. Despite this it was also noteworthy that 

the copolymer even with a high level of Ȗ-BL incorporation (76 mol %) still exhibited 

relatively strong resistance toward hydrolytic degradation, rendering its degradation be-

havior resembling more closely to PCL than to PBL. 

Papageorgiou et al.
70

 studied the biodegradability and biocompatibility of 

Poly[propyleneco-(ethylene succinate)] random copolymers in comparison with poly(L-

lactic acid) (PLA) which is a polymer of high biocompatibility and widely used in bio-

medical applications. The biocompatibility of PPSu and its PPESu copolymers was eval-

uated by measuring the viability of HUVEC cells in the presence of different 

concentrations of the polymers. The results showed that the biocompatibility of PPSu was 

comparable to that of PLA, and also the synthetized PPESu copolymers had also similar 

cytotoxicity with PPSu, and thus they were also considered as biocompatible polymers. 
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1.4.6 Poly(butylene succinate-ran-butylene azelate) (PBS-ran-PBAz) 

copolymers 

Poly(butylene succinate-ran-butylene azelate) (PBS-ran-PBAz) copolymers, were 

firstly synthesized by Ravi et al.
59

 by melt polycondensation. In this work only a 50/50 

mol% copolymer was synthesized and also they analyzed its enzymatic biodegradation, 

obtaining as results that the copolymer exhibited a low biodegradation rate due to its high 

crystallinity degree. Later, Mincheva et al.
18

  synthetized random PBS-ran-PBAz 

copolyesters with SuA/AzA molar ratio varied in the whole range via an adapted two-step 

melt polycondensation. They also analyzed the thermal properties, crystallinity and me-

chanical properties by differential scanning calorimetry (DSC) and dynamic mechanical 

thermal analyses (DMTA).  

Very similar PBS-ran-PBAz random copolymers were synthesized by Diaz et al.
14, 

61
 with parallel results. They studied the structure of the copolymers by wide angle X-ray 

scattering (WAXS) and performed nonisothermal and isothermal crystallization. In their 

work, there were results that indicate possible isodimorphic behavior, like a systematic 

variation of the crystalline unit cell density with copolymer composition and composition 

dependent changes of Lauritzen and Hoffman parameters for the overall isothermal crys-

tallization. However, since the equilibrium melting points (obtained by Hoffman−Weeks 

extrapolations) were found to decrease according to the Baur exclusion model, they final-

ly concluded that monomer exclusion was predominant during crystallization.  

In the present PhD work, we make use of the previously synthesized PBS-ran-

PBAz copolymers by Mincheva et al.
18

 to study their structure, nonisothermal and iso-

thermal crystallization and morphology. We have performed small angle X-ray scattering 

(SAXS), and have correlated the results with data obtained from WAXS, polarized light 

optical microscopy (PLOM), and Atomic Force Microscopy (AFM). Self-nucleation and 

Successive Self-nucleation and Annealing (SSA) studies have also been performed as 

well as the study of the dielectric relaxation of PBS-ran-PBAz for the first time in this 

type of random copolymers. 
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2.1 Introduction 

The study of crystallization in polymers has attracted much attention as thermal and 

mechanical properties of semicrystalline materials depend on the number, dimensions and 

organization of their crystalline structures. Although a polymer can crystallize during its 

polymerization reaction or from a solution, the crystallization of the polymer from the 

melt state is the most significant because of its similarity to most industrial processing 

techniques. 

The study of crystallization in relation to temperature can be carried out in an iso-

thermal way, in which the material is rapidly cooled from the melt and left crystallizing at 

a constant temperature, or in a non-isothermal way, in which the material is cooled at a 

controlled rate. Despite the fact that during industrial processes crystallization is mostly 

developed in a non-isothermal way, obtaining like that a large distribution of crystals with 

different thickness and thermal stability, not only are non-isothermal studies done, but 

also many studies under isothermal conditions are carried out which are after extrapolated 

to dynamic or non-isothermal processes. 

Crystallization is the combination between nucleation and growth processes. The 

crystallization of a polymer can occur only in a limited range of temperatures; the glass 

transition temperature (Tg) which is the lower temperature limit and the melting tempera-

ture the upper limit. Below Tg, the mobility of the polymer chains is restricted while close 

to Tm the nucleation process is inhibited. It is known that the nucleation rate (  ) and the 

growth rate (G) do not depend in the same way on the degree of supercooling. Generally, 

the maximum of    appears at higher supercooling (see Figure 2.1), at these low tempera-

tures the segmental mobility is reduced and this favors the nucleation rate generating a 

greater number of crystals of small size. On the other hand, at higher temperatures crys-

talline growth is favored and fewer nuclei are formed generating larger spherulites.
1-5

  



Chapter 2 

44 

Gmax

Tm

Temperature (º C)

Tg

Nmax

.

 

Figure 2. 1 . Schematic representation of the nucleation rate and the crystalline growth rate (G) 

as a function of temperature. (Figure modified from reference 
6
) 

In this chapter the fundamental processes involved in polymer crystallization are 

briefly summarized.  

2.2 Crystal Morphology 

The first macromolecular structures studied by X-rays were the ones corresponding to 

different types of celluloses. In 1928 Hengstenberg and Mark estimated that crystals di-

mensions of cellulose were 55 Å width and 600 Å length.
7
 These values are too small, as 

compared to macromolecules of high molecular weight which reach lengths of 1000 Å, so 

they wondered how these large chains were arranged in the crystals considering their 

small crystal size. In 1930 Herrmann reported the fringed-micelle model, which is pre-

sented schematized in Figure 2.2 and is essentially based on a double phase system char-

acterized by crystalline and amorphous regions.
8
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Figure 2. 2. The fringed-micelle model scheme. 

Figure 2.2 shows that crystalline regions are composed of short-length stacks of 

different macromolecular chains aligned parallel to each other, and that the amorphous 

regions are constituted by disordered sequences which interconnect the regions of well-

ordered chains. This model was able to explain, among others, the properties of hardness 

and flexibility based on the amorphous and crystalline percentages of the material, but it 

was not able to predict the optical properties. In 1938, Storks introduced the concept of 

“chain-folding” since he concluded that the chains of the semicrystalline trans-

polyisoprene had to fold when it crystallized.
1
  

Finally, in 1957 Keller
9
 managed to obtain single crystals of polyethylene from a 

diluted xylene solution. The electron diffraction studies of the single crystals showed that 

the polymer chains had their axis placed perpendicularly to the single crystal base, which 

was explained by assuming that chains fold perpendicularly to the most extensive sides of 

the crystal. During the same year Fischer
10

 and Till
11

 also reported single polymeric crys-

tals with very similar lamellar morphologies to those reported by Keller. Therefore, the 

“folded-chain model” proposed by Keller (illustrated in Figure 2.3) represented an im-

portant advance in the understanding of the organization of polymeric crystals obtained 

from solution.
1
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Figure 2. 3. Scheme of the concept of “chain-folding” proposed by Keller. (From reference 
9
) 

Keller reported that lamellae with folded chains are the fundamental unit of poly-

mer morphology, which grow to form supramolecular structures such as spherulites, 

axialites and hedrites.
1-3

 Flexible polymers capable to crystallize form spherically sym-

metric aggregates of radial lamellae known as spherulites. These structures appear as 

birefringent spheres which are observable by Polarized Light Optical Microscope 

(PLOM) and generally show characteristic extinction patterns called Maltese cross which 

are formed parallel and perpendicularly to the direction of polarization. A typical example 

of spherulites is shown in Figure 2.4. 

 

 

Figure 2. 4. Spherulites of poly(lactic acid) (PLA). 
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Transmission electron microscopy measurements in the internal areas of the 

spherulites, showed that they are constituted by lamellae (separated by amorphous 

interlamellar zones) which grow radially. The chains are arranged perpendicularly to the 

flat horizontal surface of the lamella and are therefore tangential to the spherulite and to 

the direction of growth (see Figure 2.5).
1-3

 The thickness of typical lamellae in polymers 

vary from 50 to 400 Å. The primary lamellae (or "parent lamellae") extend from the cen-

ter to the end of the spherulite and along its growth axis new branches are formed by sec-

ondary lamellae (or "daughter lamellae"). 

 

 

Figure 2. 5 Scheme of development of a spherulite from a homogeneous nucleus. REF? 

From the point of view of spherulitic morphology, the model proposed by 

Mandelkern
2
  in 1964 is currently accepted, in which three fundamental regions are de-

fined (Figure 2.6): the first corresponds to the crystalline region formed by lamellae; the 

second corresponds to the amorphous region with a totally disordered conformation and 

similar characteristics to those of the melt; and a third, the interfacial region, formed by 

chains which are also part of the lamellae and are in between this interfacial region. 

The difference in size and morphology between the spherulites of different poly-

mers will depend on the chemical nature, the molecular weight and its distribution, the 

crystallization conditions and the density of active nuclei present in the material. 
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Figure 2. 6. Radial growth of spherulite in two dimensions. Amorphous and crystalline regions. 

Different techniques such as Wide Angle and Small Angle X-ray Scattering, Polarized 

Light Optical Microscopy, Phase-contrast Microscopy and even Transmission Electron 

Microscopy, are used to study these crystalline superstructures. In the present work, Po-

larized Optical Microscopy technique (PLOM) has mostly used since it provides a simple 

and useful way to directly visualize crystalline morphologies while determining 

spherulitic growth rates and nucleation density and kinetics. 

2.3 Crystallization Kinetics 

2.3.1  Introduction 

The crystallization in polymers can be defined as a first-order phase transformation of 

a supercooled liquid.
3
 In the case of very low molecular weight molecules, they can crys-

tallize almost immediately after reaching the equilibrium melting point, but in the case of 

polymers, they are only able to crystallize at considerable high supercoolings. As briefly 

explained above in the text, polymer crystallization takes place at temperatures between 

the melting temperature (Tm) and the glass transition temperature (Tg). Starting from the 

melt, as temperature decreases the crystallization rate increases as the energetic barrier 

needed for phase transformation decreases, but as temperature is further decrease, the 

diffusion of molecular segments decreases and consequently reduces the crystallization 

rate. The lower the crystallization temperature the thinner the lamellar formed, i.e., they 
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would be more metastable. This effect becomes more significant as the temperature ap-

proaches the glass transition. When polymers crystallize from the melt, as the crystalliza-

tion temperature further decreases they crystallize first slowly, then more rapidly with a 

maximum crystallization rate, and finally slowly again following a bell shape trend.
2-3

 On 

the other side, when they crystallize from the vitreous state, same phenomenon happens 

but in this case as temperature increases. Hence the high-temperature limit is controlled 

by the thermodynamic forces and the low-temperature limit by diffusion limitations of 

molecular segments. 

Polymer crystallization involves primary crystallization, secondary crystallization and 

crystal reorganization processes. In order to better understand the kinetic analysis of the 

results which are presented along this PhD thesis work, below in the text some fundamen-

tal aspects of nucleation and crystal growth, will be presented and also the most important 

nucleation and growth theories will be discussed  

2.3.2 Nucleation   

Nucleation is the first step in the formation of crystals in melt polymers. The process 

of crystal nucleation has been extensively described in the literature and its kinetics dis-

cussed in a large number of articles and books.
2, 4, 12-16

 

The first stage of primary nucleation involves both translational and rotational diffusion 

of crystallizable units with an appropriate orientation and position which are able to de-

velop a stable nucleus. This step is controlled by the free enthalpy change due to the 

phase transformation. At a nucleus critical size r *,  the enthalpy barrier required to allow 

the nucleus growth is surpassed and from this point chains addition occurs irreversibly 

and the crystal begins the growth process. 

Two nucleation mechanisms are known; homogeneous nucleation, when the for-

mation of the nuclei occurs in the bulk phase, and heterogeneous nucleation, when the 

formation occurs on preexisting surfaces or heterogeneities. When nucleation goes 

through a homogeneous mechanism, intrinsically unstable particles (embryos) are formed 

in the melt because of thermal fluctuations. For those very small particles the decrease in 

free energy due to phase transition is exceeded by the increase in interfacial free energy. 
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Regarding to the critical size of these particles, as the nucleation step is an active process 

associated with a free energy barrier to be overcome, there is a critical size separating 

these particles whose free energy of formation increases during growth from those whose 

energy decreases. If the size of embryos surpasses this critical value, they turns into kinet-

ically stable aggregates (nuclei) of a growing crystal, otherwise, they disappear again.
4, 17

 

The critical radius of the sphere (r*) associated with the free energy barrier is obtained 

following next equation
1
: 

               2.1 

where ΔHᵒ is the enthalpy of fusion, Tmᵒ is the melting temperature at the thermo-dynamic 

equilibrium, σ is the specific free surface energy of the nucleus at the surface and ΔT rep-

resents supercooling defined as (Tmᵒ- Tc). Similarly, the free energy barrier which must be 

overcome in order to form stable aggregates is expressed by the following equation: 

                      2.2 

Equations 2.1 and 2.2 show that nucleation occurs more easily at lower crystalliza-

tion temperatures since the free energy barrier associated with the process is smaller due 

to the nucleus critical size needed is also smaller. 

The formation rate of crystalline nuclei which overcome the critical size and are 

able to grow is obtained by the following equation proposed by Turnbull and Fisher.
18

 In 

which nucleation rate (  ), and temperature are related.  

                   2.3 

   is the nucleation rate, ED is the activation energy for the diffusion process and ΔG* 

represents the free energy for the formation of an aggregate with critical dimensions. 

The combination of equations 2.2 and 2.3 shows that during a controlled cooling from the 

molten state ΔG * progressively decreases and therefore the nucleation process increases. 
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At further temperature decreases the nucleation rate reaches a maximum value, and then 

decreases again with the approximation to the glass transition. One of the consequences 

of the temperature decrease is the viscosity increase which leads to a decrease of chains 

diffusion. 

As explained before, nucleation can occur in different ways; the homogeneous nuclea-

tion, when nucleation process occurs in the bulk phase and nuclei are formed only by 

segments of polymer chains, and the heterogeneous nucleation, when nucleation occurs 

on preexisting surfaces or heterogeneities and impurities. Heterogeneous nucleation 

commonly occurs in polymers, since it is very difficult to produce pure polymer without 

any heterogeneities such as catalyst residues and solvent impurities.  Furthermore, heter-

ogeneous nucleation is thermodynamically favored due to the presence of impurities al-

lows heterogeneous nucleation to take place at smaller supercooling temperatures since 

the free energy barrier to be overcome will be smaller than forming new nuclei. 

 

2.3.3 Crystal Growth 

Crystal growth occurs by secondary and tertiary nucleation. The initial step is the 

formation of secondary nuclei which is followed by a series of tertiary nucleation events.
1
 

The relationship of spherulitic growth rate (G), which involves the transport (diffusion) 

term and the secondary nucleation term, with temperature is similar to that of the primary 

nucleation. Due to both terms have an opposite temperature dependence behavior, as it is 

shown in Figure 2.7 the growth rate exhibits a maximum and follows a bell shape curve 

as function of the crystallization temperature (or supercooling). On the left side of the bell 

shape curve, at high supercooling the dominant term is the molecular transport (diffu-

sion). The diffusion of the macromolecules to the growing front becomes very difficult as 

melt viscosity greatly increases as the temperature reaches the glass transition tempera-

ture, where growth rate decreases to zero. On the right side of the bell shape curve, at 

high crystallization temperatures, the growth rate is driven by thermodynamic forces of 

the secondary nucleation.
19
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Figure 2. 7. Crystal growth rate (G) as a function of the isothermal crystallization temperature. 

 

2.3.4 Polymer crystallization theories 

Once nuclei are formed, their growth is affected by different factors such as structural 

regularity, plasticizers, molecular weight and flexibility. Several theories have been de-

veloped in order to explain polymer crystallization and the most important are divided by 

thermodynamic theories
20, 21

 and kinetics theories.
1-4

 The former explain some character-

istics about semicrystalline state such as the crystal thickness, however there is a general 

agreement which considers that kinetic factors control the growth rate and the morpholo-

gy of polymers. 

Kinetic theories are able to predict the temperature dependence with the growth rate, the 

initial crystal thickness (      and other important morphological parameters. These theo-

ries also explain that the final state is the kinetically most favorable state. Furthermore, 

the growth rate varies with crystal thickness (lc) and therefore the result on a of different 

crystal thicknesses distribution will depend on the relation between the crystallization rate 

and the crystal thickness at each particular temperature. 

Depending on the different polymer crystallization theories, they can take into 

consideration the overall crystallization kinetics, which includes both primary nucleation 

and crystal growth contributions,
17

 or only the secondary nucleation (crystal growth). The 

most common theories among others are the Lauritzen and Hoffman (LH) model,
13-14
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which was developed to provide analytical expressions to quantify the energy barrier as-

sociated to the crystal growth, the Sadler and Gilmer theory,
1,22

 the Strobl mesomorphic 

precursors thesis,
4
 and the “free growth” theory formulated by Göler and Sachs.

2,23
  

 

Figure 2. 8. Growth model of a polymer lamellar crystal through the successive deposition of 

adjacent chain segments (Taken and modified from reference
24

 ). 

The last “free growth” theory formulated by Göler and Sachs is one of the first theo-

ries developed and the Avrami equation is one of its possible solutions. This theory also 

establishes that once a given nuclei is created, it grows unrestricted without the influence 

of others around that may have also been nucleated and could be growing within the same 

time. 
2,19, 25

 

 

2.3.5 The Avrami Equation 

The Avrami equation describes how solids transform from one phase (state of matter) 

to another at constant temperature. The crystallization process occurs when polymers ar-

range into regular crystalline structures from an amorphous state, and as explained before 

in the text, the overall rate of crystallization involves two processes: the nucleation rate 

and the crystal growth rate.
26

 One way to follow the crystallization kinetics has been de-

veloped through isothermal tests which are usually performed in a DSC. One of the most 

well-known theories used in order to study the isothermal overall crystallization kinetics 

is the Avrami model, which gives information about the variation of the crystalline con-

tent as a function of time at a constant crystallization temperature (Tc). 
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Avrami's model was proposed by Evans, Kolmogoroff and Avrami during the 

1930s and 1940s, and it successfully describes the crystallization phenomenon of macro-

molecular chains,
27-30

 however, it does not give any detail of the molecular process in-

volved in the nucleation and growth of polymeric crystals. The development of Avrami's 

theory as well as its limits have been described in detail,
1,31

 and it can be expressed as the 

following equation:
25

                     2.4 

where Vc is the relative volumetric transformed fraction and k the overall crystallization 

rate constant which includes contributions from both nucleation and growth. n is the 

Avrami index, whose value depends on the mechanism of nucleation and on the dimen-

sionality of crystal growth, t is the experimental time and t0 the induction time. 

The induction time correction deals with the fact that a certain time may elapse be-

fore crystallization starts. In other words, once the isothermal crystallization temperature 

is reached, there is period of time in which there is not crystallization. This time is called 

the induction time. In mathematical terms, the Avrami equation is only defined when 

crystallization starts. Therefore, the experimental induction time must be subtracted from 

the absolute time.
32

 

One way to express Vc as a funtion of mass fraction of the samples which crystallizes 

(Wc), is presented in equation 2.5; 

                     2.5 

where Wc is the mass fraction of the sample, ρc the density of a 100% crystalline sample 

and ρa the density of 100% amorphous sample. Wc is calculated from the following equa-

tion (equation 2.6), from the integration of the DSC experimental data measured during 

the isothermal crystallization;
1
 

                 2.6 



                                                                                                              Polymer crystallization theory 

55 

where H(t) is the enthalpy variation as function of the time spent at a given crystalliza-

tion temperature and Htotal is the maximum enthalpy value reached at the end of the iso-

thermal crystallization process. 

The Avrami constant (k) is used to provide a quantitative evaluation of the crystal-

lization evolution since it includes the contribution of both nucleation and crystal growth 

events. It is directly related with the overall crystallization rate        and follows next 

equation:
17

 

                2.7 

where        is the inverse of the half of the crystallization time (that can be considered 

an experimental measurement of the overall crystallization rate), and      corresponds to 

the time needed to achieve 50% of the overall crystallization. 

On the other hand, the Avrami index also determines the nucleation type and the 

crystal growth geometry according to n value, which is composed of two terms: 
33

         2.8 

nd represents the dimensionality of the growing crystals. This term only have integer val-

ues, 1, 2 or 3, corresponding to the formation of one, two and three dimensional entities. 

In the case of polymers the possible dimensions of the growing crystal are 2 or 3. They 

represent axialites (two dimensional lamellar aggregates) and spherulites (superstructural 

three dimensional aggregates), respectively.  

The term nn represents the time dependence of the nucleation. This term has a 

range of values between 0 and 1, where zero corresponds to an instantaneous nucleation, 

and one to a sporadic nucleation. However, there are several cases where nucleation is not 

purely instantaneous or purely sporadic and non-integer contributions to the Avrami in-

dex are obtained. Next table (table 2.1) represent the different combinations of both 

terms. 
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Table 2. 1. Avrami Index n for various types of nucleation and crystal dimensionality. 
25, 32 

Avrami index(n) Crystal dimensionality 

(nd) 

Nucleation dependence 

(nn) 

Description 

1 1 0 Intantaneus needle 

2 1 1 Sporadic needle 

2 2 0 Intantaneous Axialite 

3 2 1 Sporadic Axialite 

3 3 0 Intantaneous Spherulite 

4 3 1 Sporadic Spherulite 

 

The crystallization rate can be expressed as the inverse of the half of the crystalli-

zation time, which is usually close to the time at which spherulites impinged on one an-

other and it is usually close to the time where primary crystallization ends and secondary 

crystallization begins. It can also be defined as the time needed to achieve 50% of the 

overall crystallization, and it is calculated by equation 2.9: 

                     

                                 

2.9 

In equation 2.9 it is assumed that at 50% of the conversion1-Vc is equal to 0.5. 

Therefore, the inverse of this time needed to achieve the 50% of the total transformation 

to the semi-crystalline state during the isothermal crystallization process           pro-

vides an experimental measure of the overall crystallization rate which includes both nu-

cleation and growth. This value is determined experimentally from the isothermal 

crystallization at a given Tc, as shown in Figure 2.9 a. 
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Figure 2. 9. Avrami fits obtained by Origin: (a) Isothermal curve fit (b) Representation of the 

Avrami equation, (c) Untransformed relative amorphous fraction (1-Vc), as a function of time. 
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After applying logarithmic properties to both sides, the following equation is ob-

tained equation 2.10:                                      2.10 

Following this equation straight lines are obtained for each studied temperature 

and from the slopes the Avrami index are calculated. By using the Origin plug-in devel-

oped by Lorenzo et al.
25

, the Avrami fits are obtained. The Figure 2.9 shows an example 

of a representative fit of Avrami model and the Figure 2.9b the straight line previously 

mentioned in equation 2.10.  

Figure 2.9a shows the Avrami fit to an isothermal crystallization curve obtained by 

DSC, while Figure 2.9b shows the untransformed relative amorphous fraction that indi-

cates which percentage of transformation fits the equation. A good fit requires R2 values 

larger than to 0.9990 according to the recommendations of Lorenzo et al.25 while the 

Avrami equation must be fitted up to 50% of transformation, as it assumes free growth of 

the superstructural entities. 
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3.1 Materials 

Poly(butylene succinate-ran-butylene azelate) (PBS-ran-PBAz) copolymers were 

synthesized and characterized by the group of Professor Philippe Dubois in the University 

of Mons (UMONS), Belgium.
1
 

The synthesis of PBS-ran-PBAz copolyesters was performed via a two-stage melt 

polycondensation. The reaction was performed in a specially designed and adapted 250 

mL Inox Autoclave reactor (Autoclave-France, France) allowing high vacuum coupling 

with effective stirring for rapid byproduct diffusion and elimination. 

1. Esterification at atmospheric pressure of SuA, DMAz, and BDO. 

In the first step, 165 g of a mixture of SuA, DMAz, and BDO ([COOH]:[COOCH3] 

1.0:0, 0.8:0.2, 0.6:0.4, 0.5:0.5, 0.4:0.6, 0.2:0.8 and 0:1.0 and [COOH/COOCH3]:[OH] 

1:1.5, mol/mol) was directly charged into the Autoclave reactor at room temperature. The 

reactor was closed and purged with N2 under stirring for 30 min. After that the tempera-

ture was increased to 190 °C under stirring and N2 flow stopped. The reaction was con-

ducted in the absence of catalyst at this temperature (190 °C) for 2h and at 200 °C for 2h 

under atmospheric pressure. 

2. Polycondensation at reduced pressure.  

In the second step, in order to start polycondensation stage TBT (1.4 mmol/mol diacid/ 

diester) was added and the pressur reduced to 20 mbar for 1 h 30 min. The reaction was 

further conducted at 230 °C for 1 h and at 250 °C for an extra 4 h. 

When the reaction ended the product was then collected, cooled to room tempera-

ture, purified by dissolution in chloroform and washing once with 0.1 M aqueous hydro-

chloric acid solution. Then twice with demineralized water for catalyst extraction, and 

precipitated in seven-fold (v/v) excess of cold heptane. Finally the precipitate was recov-

ered by filtering and drying until a constant weight at 40 °C under reduced pressure over-

night. 
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Table 3. 1. Characteristic Features of the PBS-ran-PBAz Copolyesters. 

 

a
Average sequence length of BS and BAz units (LBS, LBAz) and degree of randomness (R) calculated based 

on the expanded 13C NMR spectra. 
b
Molecular characteristics of the P(BS-co-BAz) polyesters as obtained 

by SEC in chloroform using PS standards. 
c
As obtained from 1H NMR (CDCl3, 300 MHz). 

 

 

Figure 3. 1. (a) Chemmical structure of poly(butylenesuccinate) (PBS). (b) Chemical structure of 

poly(butyleneazelate) (PBAz). (c) Chemical structure of the PBS-ran-PBAz copolymers. 

 

3.2 Experimental Techniques  

3.2.1 Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry, or DSC, is a thermoanalytical technique in which 

the difference in heat capacity (Cp) of a sample and a reference is recorded as a function 

of temperature. This technique is used to observe fusion and crystallization events as well 

as glass transition temperatures Tg. DSC can also be used to study oxidation, as well as 

other chemical reactions. 

DSC is composed by two cells where in one the sample in a suitable pan and in the 

other the reference pan are placed. Two heating circuits control the temperature average 
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2 0.8/0.2 0.82/0.18 94 7.83 1.47 0.81  22 300 39 300 37 100 1.76 

3 0.6/0.4 0.61/0.39 93 7.37 1.82 0.7  31 300 161 600 62 500 5.16 

4 0.5/0.5 0.58/0.42 87 2.17 1.92 0.98  36 500 125 000 77 500 3.44 

5 0.4/0.6 0.45/0.55 92 1.85 2.32 0.97  38 300 124 300 80 600 3.24 

6 0.2/0.8 0.25/0.75 85 1.69 3.05 0.92  39 600 136 600 73 200 3.45 

7 0/1 0/1 89 
   

 42 500 102 800 79 700 2.42 
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and the difference between the two ovens. The first circuit changes the temperature of the 

two ovens, both the sample and the reference, at a constant speed as indicated in the pro-

gram. The second circuit compensates the temperature difference between the two ovens 

when any exothermic or endothermic process occurs in the sample, maintaining the tem-

perature of the sample and the reference constant. This instrument uses a feedback loop to 

maintain the sample at a set temperature while measuring the power needed to do this 

against a reference furnace.  

In polymers this technique allows to determine the changes that polymers suffer when 

the temperature varies, such as the melting temperature (Tm), the glass transition tempera-

ture (Tg), the crystallization temperature (Tc) or cold crystallization temperature (Tcc), 

transitions between crystalline phases, the percentage of crystallinity of a material as well 

as the enthalpies corresponding to the aforementioned thermal transitions. In addition, 

from the corresponding enthalpies the degree of crystallinity of the samples is calculated 

following equation;                                                                                  3.1 

where ΔHm is the value of melting enthalpy and ΔH(100%) is the heat of fusion of a 100 % 

crystalline polymer.  

DSC measurements were performed using a PerkinElmer Pyris 1 calorimeter equipped 

with a refrigerated cooling system Intracooler 2P, under nitrogen atmosphere flow and 

calibrated with indium (Tm = 156.61 ºC y ΔHm = 28.71 J/g). The samples were weighted 

(∼ 5mg) and sealed in aluminum pans.  

The experimental conditions used according to the different studies are described in 

the following sections. 

 

3.2.1.1 Nonisothermal studies 

The nonisothermal measurements were performed following next steps: 

a) Erasure of previous thermal history by heating the samples to 30 °C above their 

peak melting temperature for 3 min. 
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b) Cooling the molten sample to -30 °C at a controlled temperature (1, 5, 10 o 20 

°C/min).  

c) Hold the simple at -30 ºC for 1 minute. 

d) Heating from -30 ºC to to 30 °C above their peak melting temperature at a con-

trolled temperature (1, 5, 10 o 20 °C/min). 

From these measurements the glass transition temperatures (Tg), the crystallization 

temperature (Tc) or the cold crystallization temperature (Tcc), the melting temperature 

(Tm) and the corresponding enthalpies of each one have been obtained.  

 

3.2.1.2 Isothermal studies 

Isothermal measurements were performed using the procedure recommended by Lorenzo 

et al.
2
 

a) Erasure of previous thermal history by heating the samples to 30 °C above their 

peak melting temperature for 3 min. 

b) Quenching the samples to a chosen isothermal crystallization temperature Tc at 60 

°C/min. 

c) Isothermal crystallization until saturation.  

d) Heating from Tc to 30 °C above their peak melting temperature at 20 ºC/min. 

In this case all the samples were able to crystallize during cooling; therefore before 

starting with the isothermal procedure, the minimum isothermal crystallization tempera-

ture was first determined. This was done by heating the sample directly from the chosen 

Tc temperature, after being quenched from the melt. The lowest temperature which did 

not show any melting enthalpy during immediate subsequent heating was the minimum 

isothermal crystallization temperature employed. In most cases a total of 10 or 17 iso-

thermal temperatures were tested with variations of 1 ° C between them. 
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3.2.1.3 Self-nucleation (SN) Studies 

Self-nucleation is a technique designed to enhance nucleation density. Crystal frag-

ments or chain segments with residual crystal memory are the best nucleating source for 

any polymer.
3-5

  The SN procedure applied here consists of several steps which are also 

plotted in Figure 3.2:  

a) Erasure of previous thermal history by heating the samples to 30 °C above their 

peak melting temperature for 3 min (or to a temperature above the equilibrium 

melting point, if such temperature is known). All thermally sensitive nuclei are 

destroyed in this step leaving only temperature-resistant heterogeneous nuclei. 

b) Cre tio  of the i iti l “st  d rd” semicryst lli e st te by cooli g the molte   ol-

ymer at 10°/min down to −30 °C. The peak crystallization temperature is recorded 

duri g cooli g   d ide tified  s the “st  d rd” cryst lli  tio  tem er ture (or 

standard Tc), since it is a function of the number density of thermally stable nuclei 

of the polymer sample. 

c) The sample is heated from −30 °C up to a selected self-nucleation temperature 

(denoted Ts) at 10 °C/min, and then the sample is held at this Ts temperature for 5 

min. During this period of time at Ts, the sample could melt, self-nucleate or self-

nucleate and anneal depending on the temperature value. 

d) Subsequent cooling at 10 °C/min from Ts down to −30 °C.  

e) Final melting. The sample is heated from −30 °C to above its melting point at 10 

°C/min to record the full melting behavior. 

The effects of the SN treatment can be assessed by examining steps d) and e) above. 

Fillon et al.
3
 defined the so-c lled “dom i s” of self-nucleation as follows: 

Domain I (complete melting domain). The polymer is in domain I when complete 

melting occurs and the crystalline memory of the material is erased.  

Domain II (exclusive self-nucleation domain). When the Ts temperature is able to self-

nucleate the material without causing annealing, Tc (the peak crystallization tempera-

ture) is shifted to higher temperatures while the subsequent melting does not show 

any signs of annealing. When the sample is within domain II, an increase in nuclea-
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tion density is obtained as indicated by the increase in Tc values. The minimum Ts 

tem er ture  ithi  dom i  II is defi ed  s the “ide l self- ucle tio  tem er ture” 

(Tc,ideal), since it is the temperature that causes maximum self-nucleation without an-

nealing.  

Domain III (self-nucleation and annealing domain). When Ts is too low, partial melt-

ing is produced, and the unmolten crystals anneal during the 5 min at Ts. 
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Figure 3. 2. Self-Nucleation thermal procedure. 

3.2.1.4 Successive Self Nucleation and Annealing (SSA) 

Successive self Nucleation and Annealing (SSA) thermal protocol was designed 

and implemented for the first time by Müller et al. in 1997 and its use has become widely 

spread in the past decades.
6-14

 This technique is based on the molecular segregation pro-

cess that occurs when polymers are isothermally crystallized from the melt.
4, 15

 

Thermal fractionation exploits the molecular segregation capacity exhibited by 

semicrystalline polymeric systems when they are isothermally crystallized or annealed. 

Fractionation occurs because defects that interrupt the linear crystallizable sequences are 

generally segregated to the amorphous regions of the material. SSA sequentially applies a 

series of self-nucleation and annealing steps to a polymer sample. After the thermal con-

ditioning is over, a final DSC heating scan shows the distribution of thermal fractions 
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(i.e., distribution of peak melting points) induced by the SSA treatment as a result of the 

heterogeneous nature of the chain structure of the polymer under analysis. SSA is capable 

of performing thermal fractionation with much better resolution and in faster times than 

previously available techniques, such as step crystallization. 
15, 16

 

The SSA experimental protocol is based on the sequential application of self-

nucleation and annealing steps designed to perform thermal fractionation in a fast and 

efficient way. The procedure to apply SSA is shown schematically in Figure 3.3 and de-

scribed below: 

(a) Erasure of thermal history by heating the samples to 30 ºC above their peak melt-

ing temperature for 3 min. 

(b) The sample is cooled at 20 ºC/min to -30 ºC to cre te the i iti l ‘‘st  d rd’’ ther-

mal history. Then, the sample is equilibrated at -30 ºC during 3 min. 

(c) The sample is heated at 20 ºC/min to a temperature denoted Ts. At this first Ts 

temperature, the sample will only self-nucleate without any annealing (i.e., Ts will 

be high enough to almost completely melt the polymer but low enough to leave 

self-nuclei that can later self-seed the polymer during cooling). In fact, this first Ts 

temperature corresponds with the ideal self-nucleation temperature within Domain 

II (see ref. 16) of the sample with the highest melting point (i.e., neat PBS).  

(d)  The sample is held at this Ts for 5 min. The same fractionation time (i.e., 5 min) 

will be used in the following different SSA steps.  

(e)  The sample is cooled at a constant rate at 20 ºC/min from Ts to -30 ºC, so the pol-

ymer will crystallize during cooling after self-nucleation. Then, the sample is 

equilibrated at -30 ºC during 3 min. 

(f)  The sample is heated at 20 ºC/min from -30ºC to Ts (1), and it is held at this tem-

perature for 5 min. The difference in temperature between Ts and Ts (1) is set at 5 

ºC, and it is denoted as the fractionation window (ΔTf). It determines the size of 

the thermal fraction and it is kept constant during all SSA experiments. The Ts (1) 

temperature will be within Domain III. Therefore, the unmolten part of the sample 

will undergo annealing and in this way the first thermal fraction is created, i.e., a 

fraction of lamellar crystals with melting points higher than Ts (1). 
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(g) The sample is cooled down from Ts (1) to -30 ºC at 20 ºC/min, and is held at this 

temperature for 3 min. 

(h)   te s ‘‘f’’   d ‘‘g’’  re re e ted u til the full melti g r  ge of the samples is 

covered. The number of repetitions (cycles) is chosen to cover the entire melting 

r  ge of the s m les  ith   “st  d rd” therm l histories. I  the c se of  e t P   

the fractionation was performed with 10 cycles (from 116ºC to 71ºC) while in the 

case of BS58BAz42, 14 cycles (from 76ºC to 11ºC).  

(i)  Finally, the sample is heated at 20 ºC/min to the melt state, during this final heat-

ing run the consequences of SSA fractionation are revealed.  
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Figure 3. 3. SSA thermal protocol schematic representation. Cooling and heating scans are per-

formed at a constant scanning rate. 

 

3.2.2 Wide Angle X-ray Scattering (WAXS) and Small Angle X-ray 

Scattering (SAXS) 

Wide-angle X-ray Scattering (WAXS) and Small Angle X-ray Scattering (SAXS) are 

X-ray-diffraction techniques that are often used to determine the crystalline structure of 

polymers. WAXS specifically refers to the analysis of Bragg peaks scattered to wide an-
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gles, which (by Bragg's law) implies that they are caused by sub-nanometer-sized struc-

tures. When X-rays are directed in solids they will scatter in predictable patterns based 

upon the internal structure of the solid. The diffraction pattern generated allows research-

ers to determine the chemical composition or phase composition of the film, the texture of 

the film (preferred alignment of crystallites), the crystallite size and presence of film 

stress. According to this method the sample is scanned in a wide-angle X-ray goniometer, 

and the sc tteri g i te sity is  lotted  s   fu ctio  of the 2θ   gle. X-ray diffraction is a 

non destructive method of characterization of solid materials. A crystalline solid consists 

of regularly spaced atoms (electrons) that can be described by imaginary planes. The dis-

tance between these planes is called the d-spacing. The intensity of the d-space pattern is 

directly proportional to the number of electrons (atoms) that are found in the imaginary 

planes. 

By using Small Angle X-ray Scaterring (SAXS) technique, nanoscale density differ-

ences in a sample can be quantified. This is achieved by analyzing the elastic scattering 

behaviour of X-rays when travelling through the material, recording their scattering at 

small angles (typically 0.1 - 10°, hence the "Small-angle" in its name). Depending on the 

angular range in which a clear scattering signal can be recorded, SAXS is capable of de-

livering structural information of dimensions between 1 and 100 nm, and of repeat dis-

tances in partially ordered systems of up to 150 nm.  

Wide Angle X-r y sc tteri g me sureme ts  ere  erformed o     ru er     d   ce 

diffr ctometer  or i g i    r llel be m geometry.  y usi g     bel mirror, the original-

ly divergent incident X-ray beam from a line focus X-ray tube (Cu, operating at 40 kV 

  d 40 m ) is tr  sformed i to    i te se   d   r llel be m th t is free of Kȕ r di tio . 

The parallel beam optics required in the secondary beam path is achieved by an equatorial 

axial Soller slit of 0.2°. The linear detector LYNXEYE used presents an active area of 

14.4 mm ×16 mm.  e sureme ts  ere  erformed i  reflectio  (θ−2θ co figur tio ) 

varyi g 2θ from 4 to 30°  ith   ste  of 0.05°. The me suri g time em loyed   s 10 

s/point. The films were placed in an Anton Paar TTK 450 low-temperature chamber un-

der   cuum co ditio s  llo i g   ri tio s of the s m le tem er ture bet ee  −193   d 

450 °C with 0.1 °C resolution. 
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SAXS was used to probe the lamellar structure within the spherulites by determining 

their long periods. The experiments were conducted on a Rigaku 3-pinhole PSAXS-L 

equipment operating at 45 kV and 0.88 mA. The MicroMax-002+ X-ray Generator Sys-

tem is composed by a microfocus sealed tube source module and an integrated X-ray gen-

erator unit  hich  roduces CuKα tr  sitio  photons of wavelength Ȝ = 1.54 Å. The flight 

path and the sample chamber in this equipment are under vacuum. The scattered X-rays 

are detected on a two dimensional multiwire X-ray detector (Gabriel design, 2D-200X). 

This gas-filled proportional type detector offers a 200 mm diameter active area with c.a. 

200 ȝm resolutio . The azimuthally averaged scattered intensities were obtained as a 

function of wave vector q, q = 4πλ−1 sin θ, where θ is half the scattering angle. Recipro-

cal space calibration was done using silver behenate as standard. Films were placed in a 

 i   m  cie tific I strume ts TH   600 tem er ture co troller (r  ge: −196 to +600 

°C, stability <0.1 °C) in transmission geometry, with a sample to detector distance of 2 m. 

Measuring times of 20 min were employed. 

3.2.3 Polarized Light Optical Microscopy (PLOM) 

The polarized light microscope is an optical microscope equipped with two polarizers 

located above and below the sample. The polarized light microscope is designed to ob-

serve and photograph samples that are visible primarily due to their optically anisotropic 

character. In order to accomplish this task, the microscope must be equipped with both 

a polarizer, positioned in the light path somewhere before the specimen, and 

an analyzer (a second polarizer), placed in the optical pathway between the objective rear 

aperture and the observation tubes or camera port. When the polarizers are crossed, light 

goes only in the orthogonal direction. This means that light is not transmitted when there 

is no sample or when the sample has an isotropic disordered structure, as in the case of 

amorphous polymers or semicrystalline molten polymers. In the case when polarizers are 

crossed and a semicrystalline polymer is observed, a birefringent sample, an interference 

phenomenon occurs allowing the light beam to pass through the microscope. Therefore, 

the areas of the sample with ordered anisotropic regions appear bright on a smooth and 

dark background, which corresponds to the fraction of amorphous or molten material. 
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The spherulitic morphologies were observed by two polarized light optical microscopy 

(PLOM). A Leitz Aristomet polarized microscope equipped with polarizers and a sensi-

tive red tint plate (this was employed to determine the sign of the spherulites) and an 

Olympus BX51 polarized light optical microscope. A Linkam THMS600hot stage con-

nected to a liquid nitrogen system was used to control the temperature. The samples were 

pressed on a glass slide and covered with a glass coverslip. They were heated to a tem-

perature of 30 °C above their DSC melting peak and they were kept at this temperature 

for 5 min to erase previous thermal history. Samples were then quickly cooled to the se-

lected crystallization temperature. Micrographs were taken with a Leica DC420 digital 

camera. 

3.2.3.1 Spherulitic growth rate (G) 

Spherulite growth rate experiments were also performed by recording their growth by 

P O  (Olym us  X51), i cor or ti g   Ȝ  l te i  bet ee  the  ol ri ers  t 45° to f cili-

tate observation and determine the sign of the birefringence. In order to determine the 

spherulitic growth rate (G) as a function of crystallization temperature (Tc) The dimen-

sions of the spherulites were periodically registered with an Olympus SC50 digital cam-

era after following procedure described below: 

(a) Erasure of thermal history by heating the samples to 30 ºC above their peak melt-

ing temperature for 3 min. 

(b) The sample is cooled from the melt to a selected isothermal crystallization tem-

perature (  ) at 60°C /min. 

(c) At this temperature (Tc) the dimensions of the spherulites are periodically regis-

tered until they impinged on one another completely filling the microscope obser-

vation field. 

(d) With DIGIMIZER program, the radius of the spherulites are measured taking into 

account the scale used in the measurements. Once the radio data is obtained, it is 

plotted as a function of time obtaining a straight line whose slope corresponds to 

G at that measured Tc. 

(e) The processes described from a) to d) are repeated at different crystallization tem-

peratures (Tc) in order to know Spherulite growth rate at different temperatures. 
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3.2.3.2 Nucleation density (ρ) 

The density of nuclei as a function of time was determined counting the number of nu-

clei as a function of time. To do this, the steps from (a) to (c) described in the previous 

section are followed. In this case once Tc is reached, photographs are taken until the satu-

ration when spherulites impinge on one another completely filling the microscope field. 

As the thickness of the sample is also determined, the nuclei number in a given volume, 

the density of nuclei (ρ) at a selected crystallization temperature (Tc) is obtained accord-

ing to equation 3.2; 

3.2.4 Atomic Force Microscopy (AFM) 

Atomic Force Microscopy (AFM) is a type of scanning probe microscopy (SPM), with 

demonstrated resolution on the order of fractions of a nanometer, more than 1000 times 

better than the optical diffraction limit. The information is gathered by "feeling" or 

"touching" the surface with a mechanical probe. Though AFM polymer morphology at 

the nanoscale can be observed, including lamellar thickness and growth mode of the crys-

tals. 

AFM measurements were performed using a Di_Veeco Multimode scanning probe 

microscope equipped with a Nanoscope IIIa controller. For AFM studies, the sample 

BS45BAz55 (see Table 1) was spin-coated into a homogeneous thin film on a mica sub-

strate from chloroform solution (40 mg/mL). The film was then melted to erase thermal 

history at 100 °C for 5 min. Then it was cooled at 10 °C/min until 35 °C. At this tempera-

ture, the sample was isothermally crystallized for 15.5 h, and then cooled to room tem-

perature. Height and phase images of spherulites were recorded in tapping mode using 

silicon TESP tips having a resonance frequency of approximately 320 kHz and a cantile-

ver spring constant about 42 N/m. The micrographs size were in a range of 1 to 3 ȝm. 

 

 

                   3.2 
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3.2.5 Broadband Dielectric Spectroscopy (BDS) 

The dielectric spectroscopy technique is used to study relaxation processes which are 

caused by the rotational fluctuations of molecular dipoles. This technique is based on the 

application of an external field (   ) which weakly perturb the molecular dipole system of a 

sample from the equilibrium.
17

 Once the field is removed, the dipole system is able to 

return to the equilibrium supplying information about the spontaneous fluctuations in the 

system, and therefore through this technique information about the dynamical processes 

of characteristic parts of a molecules or systems is obtained. Whit this technique the die-

lectric properties of a medium can be measured as a function of the frequency, by an ex-

ternal oscillating field, and also in the time domain.  

Measurements of the complex dielectric permittivity (ε* = εƍ − iεƎ) vs frequency were 

performed in the range 10
−1−10

6
 Hz, using a Novocontrol high resolution dielectric ana-

lyzer (alpha-A analyzer). The sample preparation consisted in forming a parallel plate 

capacitor filled with the sample previously melted in a hot stage under nitrogen atmos-

phere. An upper electrode of 20 mm was placed on the previously prepared film over the 

gold coated dis ,   d   se  r tio  of 100 ȝm bet ee  both electrodes   s m i t i ed by 

using a cross-shaped Teflon spacer of small area. The sample cell was set in a cryostat, 

and its temperature was controlled via a nitrogen gas jet stream coupled with the 

Novocontrol Quatro controller. Before the dielectric measurements, the sample capacitor 

was subjected to vacuum for a few hours, and once inside the BDS cell, it was heated 

above the melting temperature of the polymer to erase thermal history. Isothermal fre-

quency scans were performed every fifth degree during cooling down to 130 K. Sample 

temperature was controlled by nitrogen gas flow with temperature stability better than 

±0.1 K. In addition isochronal measurements at frequencies every decade between 10– 

10
6
 Hz were carried out at a 3 K/min heating rate. 

When analyzing the data, the ratio ε*/ε∞ has been used trying to minimize the effect of 

the uncertainties in sample geometry when comparing results from different samples. 

Note that ε∞, as determined from very low temperature behavior at high frequencies, is 

free of significant dipole reorientation contributions and therefore related mainly with the 



Chapter 3                                                                                                                              

78 

induced polarization phenomena. Consequently, no significant differences in the actual ε∞ 

values among the different samples should exist. 
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4.1 Introduction 

As explained before in Chapter 1, the copolymerization is an interesting way to modify 

the crystallization behavior of homopolymers, introducing new monomers and sequences 

inside the macromolecular architectures. In this chapter, we make use of the previously 

synthesized PBS-ran-PBAz copolymers by Mincheva et al.
1
 in order to study their struc-

ture, nonisothermal crystallization and morphology, as well as analyze their properties 

which can be tailored by composition and thermal history. We also studied if comonomer 

inclusion is present during nonisothermal crystallization and if copolymers can be consid-

ered isodimorphic under such conditions; for that, results obtained from small angle X-

ray scattering (SAXS) measurements have been correlated with data obtained from DSC, 

WAXS, PLOM, and AFM. 

4.2 Differential scanning calorimetry  

4.2.1 Nonisothermal DSC measurements 

The standard nonisothermal behavior of neat PBS and PBAz homopolymers and PBS-

ran-PBAz copolymers are presented in Figure 4.1. Table 4.1 lists all the relevant transi-

tion temperatures and enthalpies. The copolymers exhibited a single glass transition tem-

perature (Tg) (see Table 4.1) in between the Tg values of the homopolymers, as expected 

for random copolymers that form a miscible amorphous phase. 

Even though the prepared copolymers are random, as demonstrated previously by 

13
C NMR,

1
 all samples were able to crystallize, and their crystallization and melting tem-

peratures were found to be a strong function of composition. The results are consistent 

with previous works.
1-3
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Table 4. 1. Molar Composition Determined by 1 H NMR and Thermal Transitions Determined by 

DSC (at 10°C/min) of the Materials Employed in This Work
a
.   Code Composition  Data DSC 

(PBS/PBAz), mol
1
     Theoretical Exp. Tg,onset 

(ºC) 

Tm1 

(ºC) 

Tm2 

(ºC) 
m 

J/g
m 

J/g
Tc 

(ºC) 
c 

J/g (
1
H NMR) 1 BS 1/0 1/0 -36 114.7 -- 66 -- 75 69 2 BS82BAz18 0.8/0.2 0.82/0.18 -50 98 -- 70 -- 59 72 3 BS61BAz39 0.6/0.4 0.61/0.39 -56 72.3 -- 70 -- 12 79 4 BS58BAz42 0.5/0.5 0.58/0.42 -57 60.3 -- 74 -- 3.2 77 5 BS45BAz55 0.4/0.6 0.45/0.55 -61 46.3 26.4 72 57 9.4 57 6 BS25BAz75 0.2/0.8 0.25/0.75 -62 -- 34.4 -- 80 16 67 7 BAz 0/1 0/1 -63 -- 41.2 -- 65 22 58 

a
The melting enthalpies are normalized by composition in all cases. The crystallization enthalpies are also 

normalized by composition, except for the coincident crystallization case in sample BS45BAz55. Estimation 

of errors is based on the repetition of DSC experiments; calibration and baseline drifts indicate that transi-

tion temperatures are valid within 0.5 °C (except for Tg measurements which are within 1 °C) and enthalpy 

values within 1 J/g.  

One way to explain why the copolymers can crystallize in the entire composition 

range is to consider that the PBS-ran-PBAz copolymers are isodimorphic and therefore 

can crystallize in crystalline unit cells that resemble those of the homopolymers, but with 

inclusions of the second component repeating units.  

Figure 4.1a shows that all materials exhibit a main sharp crystallization peak dur-

ing cooling from the melt that in some cases contains a high temperature shoulder or tail, 

like in BS61BAz39 and BS45BAz55.  

The subsequent heating scans, after cooling from the melt (Figure 4.1a), are pre-

sented in Figure 4.1b. PBS exhibits cold crystallization during the scan followed by a 

double melting peak. The presence of two melting peaks could be due to a partial melting 

and recrystallization process during the heating scan or to the melting of two populations 

with different mean lamellar thickness (one lamellar population formed during the cool-
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ing scan in Figure 4.1a and the second during the cold crystallization process in Figure 

4.1b). PBAz displays a single sharp melting endotherm that is consistent with its previous 

comparably sharp crystallization exotherm (Figure 4.1a). 
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Figure 4. 1. (a) Cooling DSC scans from the melt and (b) subsequent heating scans for the indi-

cated homopolymers and random copolymers samples. Scanning rates: 10 ºC/min. 

When BAz is incorporated in the copolymer, the melting of the crystalline PBS 

phase is depressed to lower temperatures because PBS linear sequences are frequently 

interrupted by PBAz repeating units. However, since at high PBAz incorporation (for 

copolymers where PBAz content is between 39 and 55%), the PBS phase is still undergo-

ing crystallization (according to WAXS measurements to be presented below), it is possi-

ble that PBS crystals incorporate some randomly distributed repeating units of BAz. 

WAXS results to be presented below confirm the inclusion of PBAz into PBS-rich crys-

talline phase. We will refer to those copolymeric PBS crystals (that contain PBAz moie-

ties in their unit cells) as PBS-rich crystalline phase.  

WAXS results (to be presented below) indicate that only PBS-rich crystals are 

formed in the samples with 58% or more PBS content. On the other hand, both WAXS 
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and DSC show that BS45BAz55 is the only copolymer that is able to form both PBS-rich 

and PBAz-rich phase crystals. Finally, the copolymer with 75% PBAz contains only 

PBAz-rich crystals. 

Figure 4.2 shows plots of crystallization (Figure 4.2a) and melting (Figure 4.2b) 

temperatures as a function of composition, with legends identifying the crystalline phases 

in accordance with parallel WAXS experiments (presented below). The presence of a 

eutectic point is readily apparent and has been reported for several iso-dimorphic 

copolyesters.
4
  

Figure 4.2 illustrates the tremendous potential of the thermal properties of 

isodimorphic copolymers. By a careful choice of composition, the melting point and 

therefore the applications of these biobased copolymers can be tailored from room tem-

perature to 100 °C. 
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Figure 4. 2. Peak crystallization (a) and melting (b) temperatures as a function of copolymer 

composition. 

According to the thermal behavior presented in Figure 4.2, the eutectic point 

should be very close to 55% BAz content. For copolymers where the random copolymer 

chains contain a majority of BS repeating units (i.e., whose composition is lower or equal 
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to 42% BAz), PBS dominates the copolymer structural behavior. In these cases, the crys-

tals with a large amount of BS repeating units (and a small amount of BAz “impurities” 

within their unit cells) will be thermodynamically favored and in fact, only PBS type 

crystals are formed according to WAXS (see below). On the other hand, for compositions 

with more than 55% BAz, only PBAz like crystals can form. For compositions near the 

eutectic point both crystalline phases can be produced in double crystalline random co-

polymers.  

For the BS45BAz55 copolymer, whose composition is near the eutectic point, coin-

cident crystallization of both phases occurs. This means that the crystallization exotherms 

of the PBS and the PBAz-rich phase overlap (see Figure 4.1a) and as a result a single 

point is plotted in Figure 4.2a, since only one sharp crystallization peak is observed (the 

exotherm is broad and asymmetric). During the heating scan (Figure 4.1b) fully separate 

melting of PBAz and PBS-rich crystalline phases is clearly seen and two melting points 

were plotted in Figure 4.2b at the corresponding composition for 55% BAz. This is the 

only copolymer that is able to develop a double crystalline structure because it is close to 

the eutectic point where both phases have similar chances for crystallization. It would be 

highly unlikely that a random copolymer with an almost symmetric composition exhibits 

the crystallization of its two components without isodimorphic behavior (i.e., some 

comonomer inclusion must be present in both phases as confirmed by WAXS below). 

A closer look at the coincident crystallization of both phases within BS45BAz55 is 

presented in Figure 4.3. Figure 4.3a shows cooling scans from the melt at 10 °C/min that 

are stopped at specific temperatures followed by immediate reheat scans (also at 10 

°C/min) to record the melting behavior, see Figure 4.3b.  

When BS45BAz55 is cooled down to −30 °C, both phases crystallize until satura-

tion (at 10 °C/min). The cooling DSC scan in Figure 4.3a shows a wide crystallization 

exotherm with a high temperature shoulder (between 25 and 12.5 °C), a sharp peak at 

approximately 9 °C, and a broad weak crystallization exotherm between 0 and −25 °C 
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(seen only in a close-up indicated with an arrow). The subsequent heating scan shown in 

Figure 4.3b clearly demonstrates the melting of both PBAz-rich crystalline phase (in a 

broad bimodal melting range, with a low intensity first peak between −10 and 20 °C, 

hence a closeup is provided, and a sharp second peak at 26 °C approximately) and PBS-

rich crystalline phase (with a broad bimodal melting peak between 27 and 56 °C).  

The complex thermal behavior of BS45BAz55 can be understood by comparing Figure 

4.3a and Figure 4.3b:  

a) Upon cooling from the melt, only PBS-rich phase crystallizes as long as the sam-

ple is cooled down to 20 °C (see data for cooling and subsequent heating scans 

from the melt down to 20 and 15 °C, the first two traces at the top of parts a and b 

of Figure 4.3 and their corresponding enthalpy values). Notice the total absence of 

a melting peak for the PBAz-rich phase for the top DSC trace corresponding to 20 

°C in Figure 4.3b. In the case of 15 °C, a very small melting peak corresponding 

to the PBAz-rich phase crystals fusion was detected.  

b) The PBAz-rich phase can only start its crystallization from the melt when cooled 

down to temperatures of at least 15 °C (see above) and below, in a coincident 

fashion with the PBS-rich phase (see the corresponding DSC traces labeled with 

15 and 12.5 °C in Figure 4.3a). Upon subsequent heating from 12.5 °C, note the 

small but clear melting peak at approximately 26 °C that corresponds to the 

PBAz-rich crystals fusion in Figure 4.3b.  

c) The PBS-rich phase achieves its maximum degree of crystallinity when cooled 

down to 10 °C according to Figure 4.3b. The enthalpy values reported in Figure 

4.3b for the melting of the PBS-rich phase increase as the sample is cooled to pro-

gressively lower temperatures and then become constant within the error of the 

measurements at temperatures of 10 °C or below (25−27 J/g). 

d) The PBAz-rich phase keeps crystallizing all the way down to −30 °C, although 

most of the crystallization had already occurred at 0 °C.  

e) The main crystallization peak at 9 °C in Figure 4.3a occurs in a temperature range 

where both phases crystallize simultaneously or coincidentally.  
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Coincident crystallization processes have also been found in double crystalline 

diblock copolymers that are either miscible in the melt or in the weak segregation re-

gime.
5-8

 Following these previous works, we decided to employ the self-nucleation 

technique
9, 10

 to try to separate the individual crystallization process for each phase. 
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Figure 4. 3. (a) DSC cooling scans for the double crystalline BS45BAz55 that exhibits coincident 

crystallization. The legend contains the total crystallization enthalpy (left-hand side) and the final 

temperature of the scan (right-hand side). (b) Subsequent DSC heating scans. The legend con-

tains the melting enthalpy of the PBAz-rich phase (low temperature melting peak at approximate-

ly 26 °C) and the PBS-rich phase (bimodal melting peak in the range 29−60 °C) without 
normalizing by composition. The legend also includes (right-hand side) the starting temperature 

for the scan. Scanning rate: 10 °C/min. 

4.3 X-ray Scattering 

4.3.1 Wide Angle X-ray Scattering (WAXS) 

Samples for WAXS were prepared by melting films in a hot stage at identical condi-

tions to the thermal protocol applied to the samples for the DSC measurements shown in 

Figure 4.1, except that they were cooled initially to 25 °C at 10 °C/min. Then they were 
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loaded in the diffractometer chamber at 25 °C and the WAXS patterns were measured, as 

shown in Figure 4.4. 
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Figure 4. 4. WAXS diffraction patterns for samples cooled from the melt at 10 °C/min to 25 °C. 

Measurements performed at 25 °C. See text. 

 

Table 4.2 lists all the reflections and the d spacings calculated by employing 

Braggs law. The data reported in Table 4.2 for poly(butylene succinate) is consistent with 

the most common α form whose monoclinic unit cell dimensions are reported to be
11-13

 a 

= 0.523 nm, b = 0.908−0.912 nm, c = 1.079−1.090, nm and β = 123.9°. The most intense 

reflections for PBS appeared at 0.452, 0.404, and 0.392, and they can be indexed to (020), 

(021) and (110) planes,
3, 11-13

 as indicated in Figure 4.4. In the case of PBAz, the crystal-

line unit cell has not been reported in the literature yet. A recent publication
3
 has reported 

that fiber patterns from the melt drawn homopolymer are consistent with an orthorhombic 

unit cell with the following dimensions: a = 0.496 nm, b = 0.746 nm, and c = 3.65 nm. 

Following their results,
3
 the most intense reflections (at 0.416 and 0.377 nm) for PBAz 

have been tentatively indexed in Figure 4.4 as (110) and (020).  
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A careful examination of the WAXS patterns of Figure 4.4 indicates that at 25 °C, 

almost all samples contain only one type of crystal. The samples with more than 58% BS 

only display reflections that are consistent with a PBS type unit cell. BAz and BS25BAz75 

display a WAXS pattern that is characteristic of neat PBAz. 

Table 4. 2. Calculated Diffraction Spacings (d) According to Bragg’s Law for the Indicated Sam-

ples at Two Different Temperatures (See Text). 

  25ºC -30ºC 

Sample 2θ d (nm) 2θ d (nm) 

BS 19.60 0.452 19.70 0.450 

21.95 0.404 22.10 0.402 

  22.55 0.392 22.80 0.389 

BS82BAz18 19.55 0.454 19.65 0.451 

21.80 0.407 21.95 0.404 

  22.60 0.393 22.8 0.389 

BS61BAz39 19.45 0.456 19.45 0.456 

21.65 0.409 21.7 0.409 

  22.45 0.396 22.70 0.391 

BS58BAz42 19.40 0.457 19.40 0.457 

21.50 0.413 21.63 0.410 

  22.35 0.397 21.65 0.392 

BS45BAz55 19.35 0.458 19.34 0.458 

19.75 0.449 20.00 0.443 

21.35 0.416 21.30 0.417 

22.45 0.396 21.75 0.390 

  23.60 0.377 23.90 0.371 

BS25BAz75 21.30 0.417 21.45 0.414 

  23.70 0.375 23.95 0.371 

BAz 21.35 0.416 21.45 0.414 

  23.55 0.377 23.80 0.373 

 

The only sample that contains characteristic reflections of both phases is 

BS45BAz55, but the WAXS pattern is completely dominated by PBS reflections, since the 

reflections of the PBAz phase that can be detected have extremely small intensity values 

(at 0.416 and 0.377 nm as shown in Figure 4.4), indicating that the amount of PBAz like 
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crystals is minimal at room temperature. This is consistent with the DSC curves presented 

in Figure 4.1b and the data reported in Table 4.1 that indicates a Tm value for the PBAz 

phase within the copolymer of 26.4 °C. Therefore, at 25 °C, the temperature at which the 

WAXS patterns were taken, the PBAz phase was almost completely molten, especially 

since the temperature control within the WAXS chamber has a precision of ±1 °C.  

As the amount of PBAz increases in the copolymers from 18 to 55%, the PBS-rich 

phase exhibits a PBS like unit cell with d spacings that slightly increase with PBAz con-

tent. The change in d spacings with BAz content is plotted in Figure 4.5. The change is 

small but beyond experimental error (±0.001 nm) and the increase in diffraction spacings 

with composition is systematic. Presumably, the crystal unit cells have to increase slightly 

their volume to accommodate the extra PBAz repeating units that coexist with the PBS 

major component as a result of isodimorphism. Since the increase in d spacings is small, 

this probably indicates that comonomer incorporation is also small but finite.  
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Figure 4. 5. Experimental diffraction spacings (d) for PBS-rich crystalline phase as a function of 

BAz molar content. From bottom to top, the series of data points joint together by arbitrary trend 

lines are for (110), (021), and (020) planes respectively of PBS (or PBS-rich) crystalline unit cell 

(green, blue, and red symbols). 



Crystallization and Morphology of PBS-ran-PBAz Copolymers 

 

95 

In the other extreme of compositions, where PBAz is the major phase, the d 

spacings of PBAz do not exhibit a clear trend with composition, partly because of the 

limited number of samples (see Table 4.2).  

Figure 4.6 shows WAXS patterns that were measured for the same samples of 

Figure 4.4 after they were cooled down to −30 °C in order to promote the crystallization 

of the PBAz phase within the copolymers. As expected, in all samples, most d spacings 

decreased (see Table 4.2) as compared to those measured at 25 °C, because of the effect 

of temperature on the unit cell volume. Besides these small changes in d spacings, only 

one sample experienced a significant and large change in its WAXS pattern. This is the 

double crystalline BS45BAz55 copolymer, for which the PBAz-rich phase was able to 

crystallize upon cooling to −30 °C and now exhibits much more intense reflections (i.e., 

the (110) reflection appearing at 0.417 nm and the (200) reflection at 0.371 nm) corre-

sponding to the PBAz like unit cell, as compared to the WAXS pattern in Figure 4.4 (tak-

en at 25 °C). 
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Figure 4. 6. WAXS diffraction patterns taken at −30 °C for the indicated samples. 
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4.3.2 Small Angle X-ray Scattering (SAXS) 

Analogous experiments to those performed by WAXS were conducted employing 

SAXS. The results for the measurements at +25 °C and −30 °C are presented in Figure 

4.7a and Figure 4.7b respectively, where the intensity is plotted as a function of the scat-

tering vector q. Most samples exhibit a clear intense maximum that can be interpreted as 

the scattering caused by lamellar stacks. 
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Figure 4. 7. Intensity as a function of scattering vector for the indicated homopolymers and co-

polymers. Data taken at the following temperatures: (a) +25 °C and (b) −30 °C. 

The long periods (d*) were estimated by equation 4.1 from Lorentz corrected plots 

(Iq
2
 versus q): 

                                                           4.1 

At 25 °C our WAXS results have shown that only one type of crystal is present in 

the materials, i.e., either the PBS-rich phase or the PBAz-rich phase. Therefore, any sub-

sidiary low intensity maxima located at higher q values in Figure 4.7a as compared to the 

highest intensity peak can be explained as second or third order reflections arising from 
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the lamellar structure, since their positions correspond to approximately 2qmax and 

3qmax and the intensities are much lower compared to their first order peaks. 

When the SAXS patterns are measured at −30 °C (Figure 4.7b), the BS45BAz55 

copolymer exhibits a remarkable change as a result of the crystallization of both PBS-rich 

and PBAz-rich phases. The SAXS pattern taken at −30 °C exhibits two scattering peaks 

with almost equivalent intensity indicating that the material is constituted by two types of 

lamellar stacks with enough density contrast to be able to individually produce small an-

gle scattering at discrete q values. The peak located at lower q values can be assigned to 

the long period of the PBS-rich lamellar stacks (see Figure 4.8 below) while that at higher 

q values to the PBAz-rich phase lamellar long period. No significant changes were ob-

served for the other samples at −30 °C (when compared with 25 °C) except relatively 

small changes in d values.  

Figure 4.8 shows a plot of the measured long periods as a function of copolymer 

composition. The long periods were obtained from the data presented in Figure 4.7 and 

also from one additional experiment that was performed to evaluate reversibility and re-

producibility. After the samples were cooled to −30 °C, they were heated back to 25 °C 

and remeasured, and both data sets obtained at 25 °C were equivalent within experimental 

errors as shown in Figure 4.8 (labeled 25 and 25 °C, second heating). 

SAXS data for this type of copolymers had not been reported in the literature as 

far as the authors are aware. It is interesting to note that d* spacings strongly depend on 

composition (Figure 4.8). A vertical line has been drawn at the composition correspond-

ing to the BS45BAz55 copolymer (dash line in Figure 4.8), which should be very close to 

the eutectic point of the system. To the left of the eutectic all data points correspond to d* 

spacings of the PBS-rich phase. To the right of the eutectic the data points correspond to 

the d* spacings of the PBAz-rich phase. The lines that go through the data points have 

been drawn arbitrarily to guide the eye.  
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Figure 4. 8. Long periods (d*) obtained by SAXS as a function of copolymer composition (ex-

pressed as BAz molar fraction). Arbitrary lines have been drawn joining the data points to guide 

the eye. 

Let us consider in Figure 4.8 the long period values to the left of the eutectic point, 

i.e., for PBS and PBS-rich crystalline phases. PBS crystallizes forming spherulites that 

contain lamellar stacks with an average long period of approximately 8.5 nm. For the 

PBS-rich phase, both at +25 °C and at −30 °C, spherulites are also formed (see below) 

and the lamellar long period increases with BAz content in the copolymers to values as 

high as 13.5−16.3 nm. This is a remarkable behavior indicating that the incorporation of 

PBAz both in the crystalline unit cell (Figure 4.4) and in the amorphous regions of the 

PBS-rich interlamellar zones has a synergistic effect on the morphology at the lamellar 

level. Increases in long period can indicate changes in lamellar thickness and/or 

interlamellar regions (amorphous intervening layer). The changes in the lamellar thick-

ness are estimated below.  

In the case of the PBAz-rich phase, the behavior shown in Figure 4.8 is very pecu-

liar in two aspects: (a) d* increases when 25% BS is included in the copolymer, a behav-

ior that may be related to the incorporation of some BS repeating units in the PBAz-rich 

phase lamellae (a similar case to that described above for the PBS-rich copolymers). (b) 

At −30 °C, the long period of the PBAz-rich phase experiences a dramatic decrease when 
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45% BS is incorporated in the copolymer. This reduction in long period is caused by the 

previous crystallization of the PBS-rich phase within the BS45BAz55 copolymer. When 

the sample was originally cooled from the melt, the PBS phase crystallized forming space 

filling spherulites (see Figure 4.11) that constitute a template for the copolymer morphol-

ogy. Upon further cooling to −30 °C, the PBAz-rich phase had to crystallize within the 

confined interlamellar regions of the previously obtained PBS-rich phase spherulites.  

The changes in the SAXS pattern of the BS45BAz55 copolymer while it transforms 

from a single semicrystalline material (i.e., containing only of PBS-rich phase lamellae) 

to a double crystalline material (i.e., containing both PBS-rich and PBAz-rich phase la-

mellae) can be clearly observed in Figure 4.9a. In this figure, the sample was first heated 

from −30 to 40 °C in order to fully melt the PBAz-rich crystalline phase. Then SAXS 

patterns were taken at increasingly lower temperatures, as the sample was cooled down as 

shown in Figure 4.9a. 

The SAXS patterns at 40, 30, and 20 °C do not exhibit significant changes (see 

Figure 4.9a) since only the PBS-rich crystalline lamellar stacks are present (as confirmed 

by WAXS). At 10 °C, the PBAz-rich phase starts to crystallize and the SAXS patterns 

progressively evolve. Such evolution can be seen in Figure 4.9b where the change in long 

periods as a function of temperature is represented. The first SAXS maxima correspond to 

the long period of the PBS-rich phase, which remains approximately constant until 20 °C. 

However, as the PBAz-rich phase starts to crystallize at temperatures below 20 °C (and a 

second maximum develops at higher q values), the long spacing of the PBS-rich phase 

decreases (see Figure 4.9b, first SAXS maximum data). Such a decrease indicates that 

extensive lamellar rearrangement occurs within the spherulites (together with the density 

increase that accompanies crystallization) for the two types of lamellae to coexist inside 

the mixed spherulites formed by this isodimorphic random copolymer. 
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Figure 4. 9. (a) Intensity versus scattering vector for the BS45BAz55 copolymer as it is cooled from 

+40 °C down to −30 °C. (b) Long spacings (d*) calculated from SAXS data presented in (a) as a 
function of temperature. Arbitrary lines have been drawn joining the data points to guide the eye. 

Perfect interlamellar stacking (or interdigitation, where alternating lamellae of 

each phase are stack on one another) would not be consistent with the values obtained at 

−30 °C for the two characteristic long periods of each crystalline phase: approximately 

13.3 and 8.5 nm (Figure 4.9b). The results may stem from average long periods of a com-

plicated interfibrillar structure that could be schematically represented in the model 

shown in Figure 4.10. Similar structures have been observed in crystalline/crystalline 

binary blends.
14-21

 

Calculation of the lamellar thickness requires the knowledge of the crystallinity 

degree of each phase. The calculation of the lamellar thickness, l, could be performed 

employing the following approximation:                                                         4.2 

where xv is the crystalline volume fraction that can be estimated from the following equa-

tions: 
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                                                    4.3 

                                                       4.4 

where     is the mass fraction of crystals,   is the experimentally determined density of 

the sample (at 25 °C), and    is the density of a 100% crystalline sample.  

 

Figure 4. 10. Schematic (not to scale) model of the possible double crystalline lamellar stacking 

morphology inside mixed spherulites of the BS45BAz55 copolymer at −30 °C. The blue lines indi-

cate PBS-rich lamellae while the red lines correspond to PBAz lamellae. 

 

The mass fraction of crystals can be calculated from the enthalpy of fusion of the 

phase under consideration (ΔHm), the enthalpy of fusion of a 100% crystalline sample and 

the weight fraction of the phase under consideration (W) employing eq 4. The density of 

the samples at 25 °C was determined experimentally and the results are listed in Table 

4.3. The crystalline density of PBS can be found in the literature as well as its ΔHm(100%) 

value: ΔHm(100%) = 210 J/g
22

 and ρc= 1.26 g/ cm
3
.
23

 A value for ΔHm(100%) of 150 J/g has 

been reported
24

 for PBAz. However, since the crystalline structure of PBAz has not been 

solved, its crystalline density is unknown.  
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Table 4.3 reports the calculations of the lamellar thickness based on DSC and den-

sity determinations at both +25 and −30 °C. The calculated values exhibit, for the PBS 

phase, an increasing trend in l as the BAz content in the copolymers increase. The values 

increase from approximately 2.6 nm for PBS up to 5.0 nm for the PBS-rich phase within 

the BS45BAz55 copolymer. Since the crystallinity degrees determined by DSC do not vary 

much (less than 15%) with copolymer composition for the PBS-rich phase, the lamellar 

thickness variation follows the trend exhibited by the long period in Figure 4.8 when the 

amount of PBAz is increased (left side of the eutectic). 

An attempt was also made to calculate the crystallinity degrees employing WAXS 

data taken at −30 °C. Following the method of Krimm and Tobolsky,
25

 the crystallinity 

index was calculated by deconvolution of amorphous and crystalline scattering peaks. 

The values of l in that case exhibit a different trend with composition compared with 

those calculated by DSC (see Table 4.3). The striking results manifest the complicated 

structure of the PBS-ran-PBAz copolymers. It is possible that the thermodynamic param-

eters of these materials are composition dependent, such as equilibrium melting tempera-

ture, enthalpy of fusion for 100% crystallinity, and folded surface free energy. Therefore, 

some well-established regulations may not be applicable in these materials. 
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Table 4. 3. Density (±0.0003 g/cm3 ), Normalized Enthalpy of Crystallization (±1 J/g), Mass and 

Volume Crystalline Fractions (±0.01), Long Period, and lamellar Thickness Values (±0.1 nm). 

25ºC – 100ºC 

    

ρ  
(g/cm

3
) 

m

J/g χm χv 

d* 

(nm) 


nm

1 BS 1.2447 67 0.32 0.32 8.2 2.6 

2 BS82BAz18 1.1973 67 0.32 0.3 9.4 2.8 

3 BS61BAz39 1.1672 68 0.32 0.3 12 3.6 

4 BS58BAz42 1.1399 79 0.38 0.34 12.6 4.3 

5 BS45BAz55 1.1355 73 0.35 0.31 16.1 5 

6 BS25BAz75 1.1224 74 0.5 -- 18.3  9.1* 

7 BAz 1.1087 51 0.34 -- 17.4  5.9* 

aThese values were calculated using the following approximation: l = d*χm because ρc is unknown for 
PBAz. The density of the samples was measured at 25 °C and was also used for the calculations at −30 °C 
(although a change in density must have occurred). 

 

 

 

 

 

 

 

-30ºC – 100ºC 

    

ρ 
(g/cm

3
) 

m 

J/g χm χv 

d* 

(nm)  
χc  

(WAXS) 

 nm
WAXS

1 BS 1.2447 67 0.32 0.32 8 2.6 0.61 5.3 

2 BS82BAz18 1.1973 68 0.32 0.31 9.2 2.8 0.45 4.5 

3 BS61BAz39 1.1672 83 0.4 0.37 10.5 3.9 0.29 3.6 

4 BS58BAz42 1.1399 80 0.38 0.34 10.8 3.7 0.25 3.2 

5 BS45BAz55 1.1355 79 0.38 0.34 13.3 4.5 

41 0.27 -- 8.5  2.3* 

6 BS25BAz75 1.1224 81 0.54 -- 16.5  8.9* 0.62 10.7 

7 BAz 1.1087 50 0.33 -- 15.6  5.2* 0.57 9.2 
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4.4 Examination of the BS45BAz55 Copolymer 

4.4.1 Polarized Light Optical Microscopy (PLOM) 

BS45BAz55 is the only copolymer that developed a double crystalline morphology. 

This isodimorphic copolymer features a morphology that is somewhat similar to that ex-

hibited by double crystalline diblock copolymers that are miscible or in the weak segrega-

tion regime.
6, 26, 27

 Upon cooling from the melt in a PLOM hot stage at 10 °C/min, the 

first phase capable of crystallization is the PBS-rich phase.  

Figure 4.11 shows PBS-rich phase spherulites after the sample was cooled from the 

melt and held at 35 °C for 38 min. This phase develops negative spherulitic superstructur-

al aggregates that resemble those of PBS but exhibit irregular edges (not perfectly circu-

lar). At this temperature the PBAz-rich phase is in the melt. If the sample is held at this 

temperature for a long time (a couple of days for instance), the whole field fills with im-

pinged PBS-rich phase spherulites that contain within them two phases: (a) A crystalline 

phase constituted by PBS-rich phase radial lamellae, where mostly BS repeating units are 

organized in stacked unit cells with their c axis tangentially arranged, and a certain pro-

portion of BAz units that have been able to enter the PBS crystalline unit cells; and (b) an 

amorphous phase constituted by copolymer chains with BAz and BS repeating units in 

the amorphous intraspherulitic regions.  

Parts b and c of Figure 4.11 show the result of quenching the sample shown in Figure 

4.11a from 35 °C down to 8 °C, a temperature at which the BAz-rich phase crystallizes 

rapidly. The remaining PBS amorphous phase can also crystallize at 8 °C. As a result of 

enhanced nucleation at this lower temperature, a higher number of spherulites can be 

seen. Figure 4.11c is a micrograph taken after just 2 min at 8 °C and the microscope field 

is already filled with impinging mixed spherulites that contain lamellar crystals of both 

phases, as indicated schematically in Figure 4.10. Figure 4.11d shows the morphology 

after the sample was heated back up to 25 °C to melt the PBAz-rich phase crystals. The 

field remains full with PBS-rich phase spherulites as expected since the molten PBAz-

rich phase is within the intraspherulitic regions of the PBS phase.  
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Figure 4. 11. Polarized light optical micrographs of the BS45BAz55 copolymer: (a) the sample was 

cooled from the melt and held at 35 °C for 38 min, (b) micrograph taken after the sample in part 

a was quenched rapidly from 35 °C down to 8 °C and (c) after 2 min at 8 °C, and (d) the sample 

was reheated to 25 °C. See text. 
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4.4.2 AFM Examination 

A sample of the same BS45BAz55 copolymer was spin coated onto a mica substrate 

(see Experimental Section). The sample was then isothermally crystallized at 35 °C for 

15.5 h and then cooled to 25 °C. The sample was observed at 25 °C under an AFM mi-

croscope. At room temperature we can consider that only the PBS-rich phase is present, 

since the PBAz-rich phase is mostly in the melt state. Figure 4.12a shows a panoramic 

view of the crystalline texture of the sample obtained in the phase contrast mode. The 

image shows edge on and flat on PBS-rich phase lamellae embedded in an amorphous 

matrix where the potentially crystallizable (at much lower temperatures) PBAz-rich phase 

is in the molten state. Taking advantage of the regions of the sample where many edge on 

lamellae are located (see Figure 4.12, parts b and c, which represents a close up of two 

areas within Figure 4.12a), measurements were taken of at least 50 representative lamel-

lae and their long period and lamellar thickness were averaged. The values obtained were 

as follows: d* = 15.2 ± 0.3 nm and l = 5.2 ± 0.8 nm. These values are in excellent agree-

ment with the values obtained by SAXS at 25 °C where a d* value of 16.1 nm was meas-

ured and an l value of 5.0 nm was calculated (see Table 4.3). Our AFM microscope 

cannot cool below room temperature and we were not able to see the crystallization of the 

PBAz-rich phase by AFM. However, the evidence by PLOM and SAXS are consistent 

with the schematic picture shown in Figure 4.10. 
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Figure 4. 12. AFM phase contrast micrographs for a spin-coated BS45BAz55 copolymer sample 

observed at 25 °C.  
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4.5 Conclusions 

Regulating the composition of isodimorphic random copolymers is a valuable tool to 

tailor their properties in an unusually wide temperature range. The melting temperature of 

the materials goes through a eutectic point when plotted as a function of composition. 

WAXS measurements demonstrated that apart from one composition around the eutectic 

point, all of the other random copolyesters were characterized by the sole crystallization 

of the most abundant component. Our WAXS results showed that small but reproducible 

changes are produced in the crystalline unit cell of the dominant crystalline phase upon 

inclusion of comonomer units.  

On the other hand, very large changes were observed in terms of crystallization and 

melting temperatures as well as in the superstructural and lamellar morphology when 

PBAz is incorporated randomly into PBS macromolecular chains. Lamellar spacings and 

lamellar thicknesses were found to be strongly dependent on copolymer composition by 

SAXS determinations.  

In the interesting case of the double crystalline copolymer with a composition close to 

the eutectic point (BS45BAz55), coincident crystallization occurred when the material was 

cooled from the melt at 10 °C/min.  

Considering the results from WAXS, SAXS, PLOM, and AFM for the double crystal-

line BS45BAz55 copolymer, a clear morphological picture emerged. When the material is 

cooled from the melt, PBS-rich space filling spherulites are formed and they produce a 

template for the copolymer morphology. These spherulites are constituted by radially 

growing lamellae of PBS-rich crystals with amorphous intervening layers of PBAz-rich 

phase. Upon further cooling from the melt, the PBAz-rich phase crystallizes forming 

much smaller lamellae that are stacked within the intraspherulitic regions of the large 

PBS-rich spherulites. The two types of lamellae coexist within these unusual mixed 

spherulites and have enough contrast and different spacings to produce two well-defined 

equally intensive SAXS maxima.  
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5.1 Introduction 

In this chapter we make use of self-nucleation and successive self-nucleation and 

annealing SSA techniques to corroborate the isodimorphic behavior of PBS-ran-PBAz 

samples. Self-nucleation is a technique designed to enhance nucleation density and gives 

information about self-nucleation domains. In the other hand, SSA technique promotes 

segregation of molecular defects that interrupt crystallizable sequences, and together with 

the SAXS and WAXS analysis before and after SSA fractionation, it allows an 

examination of the isodimorphic nature of the copolymers. 

5.2 Standard DSC  

Melting and crystallization characteristics of neat PBS and PBAz homopolymers 

and PBS-ran-PBAz copolymers derived from standard DSC are presented in Table 5.1. 

The melting and crystallization enthalpies reported in Table 5.1 have been normalized to 

take into account the weight fraction of the crystallizable phase. All copolymers were 

semicrystalline despite being random as demonstrated previously by 
13

C NMR.
1
 

Crystallization and melting temperatures decrease with respect to those of the 

homopolymers when the percentage of the minority comonomer increases, showing an 

eutectic point at intermediate compositions (see Figures 4.1 and 4.2 in chapter 4, which 

correspond to the same materials). In a previous investigation of these materials, in 

Charter 4,
2
 it was concluded that these copolymers are isodimorphic. The results indicated 

that an inclusion of a small amount of repeating units of the minor comonomer in the 

crystalline cell of major component occurs.
2
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 Table 5. 1. Molar composition determined by 
1
H NMR, number-average molecular weight 

determined by SEC
1
 and thermal transitions determined by DSC (at 20 °C min

-1
) of the materials 

employed in this work.
a
 

Code 
Composition 

(PBS/PBAz), 

mol 1H NMR 

Mn 

(g/mol)
SEC

 

Data DSC 

Tm1 

(ºC) 

Tm2 

(ºC) 

m 

J/g
m 

J/g
Tc 

(ºC) 

c 

J/g

1 BS 1/0 25.3 116.2 -- 65 
 

71.9 69 

2 BS82BAz18 0.82/0.18 22.3 98.3 -- 69 -- 60.6 77 

3 BS61BAz39 0.61/0.39 31.3 74.3 -- 68 -- 17.2 77 

4 BS58BAz42 0.58/0.42 36.5 60.9 -- 90 
 

1.8 84 

5 BS45BAz55 0.45/0.55 38.3 46.9 28.3 66 61 9.9 59 

6 BS25BAz75 0.25/0.75 39.6 -- 39.2 -- 73 15.9 74 

7 BAZ 0/1 42.5 -- 44.2 -- 60 22.1 60 

a
The melting enthalpies are normalized by composition in all cases. The crystallization enthalpies are also 

normalized by composition, except for the coincident crystallization case in sample BS45BAz55. Estimation of 

errors based on the repetition of DSC experiments, calibration and baseline drifts indicate that transition 

temperatures are valid within 0.5 ºC and enthalpy values within 1 J/g. 

In addition, BS45BAz55, whose composition is near the eutectic point, is the only 

copolymer that shows two melting points (see Table 5.1) that corresponds to PBAz and 

PBS-rich crystalline phases, respectively. These results confirm that this random 

copolymer exhibits an isodimorphic behavior (i.e., some comonomer inclusion must be 

present in both phases as confirmed by WAXS below) as it would be highly unlikely that 

the two components of a random copolymer with an almost symmetric composition could 

crystallize. 

5.3 Self-nucleation behavior of PBS, PBAz and BS45BAz55 

Copolymer 

5.3.1 DSC results and PLOM results 

In order to illustrate the self-nucleation process with a simple case, this technique 

was first applied (as described in Chapter 3, Experimental Part) to PBS. Figure 5.1a 

shows cooling scans from selected Ts temperatures. At temperatures of 134ºC and above, 

crystalline memory is completely erased and only high temperature resistant 
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heterogeneities capable of nucleating the polymer during cooling remain. As a 

consequence, the peak crystallization temperature is constant in Figure 5.1 for these Ts 

temperatures and the melting traces are invariant upon subsequent heating, as seen in 

Figure 5.1b. The described behavior occurs for Ts values equal or larger than 134ºC, 

when the sample is within the complete melting domain (Domain I). 

When Ts temperatures lower than 134ºC (but higher than or equal to 116ºC) are 

employed, PBS experiences only self-nucleation, and its crystallization temperature 

increases (Figure 5.1a). The corresponding maximum peak melting point in Figure 5.1b 

does not show signs of annealing. Therefore, the sample falls under the exclusive self-

nucleation domain (Domain II). For higher Ts values within Domain II, like 133ºC, the 

melting process of the sample upon subsequent heating (after the cooling from Ts shown 

in Figure 5.1a) does not change significantly, since cold crystallization is still observed in 

Figure 5.1b. However, at further decrease in Ts values within Domain II, cold 

crystallization disappears from the heating DSC trace and the double melting process is 

more pronounced (see for example the DSC traces corresponding to Ts =117 or 116ºC in 

Figure 5.1b). This is a consequence of an increase in the crystallization enthalpy produced 

during cooling from these lower Ts values as a result of the self-nucleation effect 

(compare the crystallization exotherms in Figure 5.1a for the samples cooled from Ts 

values 133ºC and 117ºC for example). 

Finally when the Ts temperature is lower or equal to 115ºC, partial melting occurs 

and the unmelted crystals experience annealing during the 5 min holding time at Ts, the 

sample is then in the self-nucleating and annealing domain (Domain III). This is easily 

distinguished by the appearance of a high temperature additional melting peak, signaled 

with an arrow in Figure 5.1b.  
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Figure 5. 1. Self-nucleation of PBS homopolymer: (a) DSC cooling scans from the indicated self-

nucleation (Ts) temperatures and (b) subsequent heating scans at 10ºC/min. 

 

Figure 5.2 shows the standard DSC melting trace of the PBS homopolymer 

employed in this work where the different self-nucleation domains have been indicated by 

color codes (red for domain I, blue for domain II and green for domain III, the same color 

codes are employed in Figure 5.1) while the domain transitions are marked by vertical 

lines. It is remarkable how domain II extends to temperatures well above the end of PBS 

melting. The self-nuclei in the temperature region between 120 and 133 °C cannot be 

crystalline in nature and must be produced by residual chain segmental orientation in the 

melt as a result of a crystalline memory phenomenon.
3
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Figure 5. 2. Representation of the self-nucleation domains for PBS homopolymer on top of the 

standard DSC melting trace. Insets include PLOM micrographs taken during cooling from Ts = 

145 °C (domain I) and Ts = 116 °C (domain II). The data points represent peak crystallization 

temperatures (plotted on the right-hand side y axis) as a function of Ts values (plotted on the x 

axis). 

Figure 5.2 illustrates the changes in peak crystallization temperatures as a function 

of Ts values (see right-hand side y axis for Tc values and x axis for Ts values). Crossing 

from domain I to domain II causes a large increase in Tc that is proportional to the 

exponential increase in nucleation density that occurs during self-nucleation.
4, 5

 When the 

sample enters domain III, Tc values increase further while the unmelted crystal population 

is annealed. 

Two representative polarized light optical microscopy (PLOM) micrographs are 

floted in Figure 5.3 to illustrate the enhancement in nucleation density. The micrographs 

were taken during cooling from 145 °C (domain I) or from 116 °C (domain II) at the 

same cooling rate of 10 °C/min. The superstructural aggregates are clear negative 

spherulites partially or totally impinged with one another in domain II. The much higher 

number of spherulites in the self-nucleated sample is readily seen, as the number of 

spherulites is proportional to the number of active nuclei (i.e., each spherulite is nucleated 

by one active heterogeneous nuclei). The Ts value of 116 °C is the lowest Ts value within 

domain II or the ideal self-nucleation temperature, i.e., the Ts temperature that causes 
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maximum self-nucleation without annealing. Therefore, it is not surprising that very small 

spherulites were produced upon cooling after self-nucleation at 116 °C. 

 

Figure 5. 3. Polarized optical micrographs of PBS.  (a) The sample was cooled  from the 145ºC 

(domain I), (b) Sample  cooled  from the 116ºC (domain II). 

Similar self-nucleation experiments were performed to the PBS-rich phase of the 

BS45BAz55 copolymer and are presented in Figure 5.4 with similar color codes as those 

employed to indicate the self-nucleation domains in Figure 5.2.  

Figure 5.4a shows that when the PBS-rich phase is self-nucleated, within domain II (blue 

curves in Figure 5.4a the complex crystallization peak changes as Ts decreases. The high 

temperature shoulder progressively shifts to higher temperature provoking a separation of 

the original peak that contained a shoulder into two peaks. At Ts = 59 °C, the peak 

crystallization temperature of the PBS-rich phase is above 25 °C. At the same time a low 

temperature crystallization exotherm develops at temperatures below 0 °C that 

corresponds to the crystallization of the PBAz-rich phase. Upon comparing in Figure 5.4a 

the DSC cooling curves from Ts = 100 °C (domain I) and Ts = 59 °C (domain II), it is 

clear that trough self-nucleation the separate crystallization of each phase has been 

achieved. However, the PBS-rich phase that after self-nucleation crystallizes at much 

higher temperatures does not nucleate the PBAz-rich phase. On the contrary, the self-

nucleated PBS-rich phase antinucleates the PBAz-rich phase, as will be also evidenced 

below in Figure 5.4a. 
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Figure 5. 4. Self-nucleation of the PBS-rich crystalline phase within BS45BAz55: (a) DSC cooling 

scans from the indicated self-nucleation (Ts) temperatures and (b) subsequent heating scans at 10 

°C/min. 

Figure 5.4b shows the subsequent DSC heating scans, after the cooling runs 

performed in Figure 5.4a. The self-nucleation process produces, besides a separate 

crystallization, a broadening of the PBAz-rich phase melting (i.e., the melting process 

occurring between 0 and 27 °C) when Ts temperatures are in the lower range of domain II 

(at 59 °C). The melting enthalpy of the PBS-rich phase varies as expected during the self-

nucleation process.
4, 5

 However, in the case of the PBAz-rich phase, the melting enthalpy 

sharply decreases when the sample goes from domain I to domain II. This is due to the 

antinucleation effect caused by the anticipated crystallization of the PBS-rich phase when 

it is self-nucleated. 

The self-nucleation domains of the PBS-rich phase within BS45BAz55 are 

schematically shown by vertical lines on top of the DSC standard heating scan of the 

material presented in Figure 5.5. The crystallization peak temperatures corresponding to 

the self-nucleation of the material are also presented in Figure 5.5. In domain I coincident 

crystallization occurs and only one Tc value is plotted in Figure 5.5. When the material is 

self-nucleated, an interesting behavior is observed. As the PBSrich phase is self-

nucleated, its Tc value is greatly increased as Ts decreases as expected. However, the peak 
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crystallization temperature of the PBAz-rich phase is seen to dramatically decrease as Ts 

decreases, an evidence of antinucleation. 
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Figure 5. 5. Representation of the self-nucleation domains for the PBS-rich crystalline phase 

within BS45BAz55 on top of a standard DSC melting trace for the copolymer. The data points 

represent peak crystallization temperatures for the indicated phases (plotted on the right-hand 

side y axis) as a function of Ts values (plotted on the x axis). 

The BS45BAz55 random copolymer forms a single phase melt (a fact that was also 

corroborated by SAXS, data not shown). Upon cooling from the melt, the PBS-rich phase 

crystallizes first (at higher temperatures) in space filling spherulites (see PLOM 

micrographs in Figure 4.11 in Chapter 4) where later (at lower temperatures) the PBAz-

rich phase must accommodate inside their interlamellar spaces. If the PBS-rich phase is 

self-nucleated, it can crystallize to saturation at much higher temperatures well before the 

PBAz-rich phase starts to crystallize. The PBAz-rich phase antinucleation is therefore 

probably caused by topological restrictions created in the interlamellar domains of PBS-

rich phase spherulites that are fully grown and impinged with one another. 

On the other hand, when the BS45BAz55 is not self-nucleated, upon cooling from 

the melt at 10 °C/min, the PBS-rich phase cannot complete its crystallization before the 

PBAz-rich phase starts to crystallize and coincident crystallization or simultaneous 

crystallization develops. 
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5.4 Successive Self-nucleation and Annealing (SSA) 

5.4.1 SSA in PBS-ran-PBAz copolymers 

Figure 5.6 shows DSC heating scans of both homopolymers (PBS and PBAz) and 

BS45BAz55 copolymer, before and after having been subjected to SSA treatments. Vertical 

lines indicate the values of the Ts temperatures employed for the fractionation. All studied 

samples (Figure 5.6 and Figure 5.7) exhibit fractionation, and therefore a distribution of 

lamellar sizes that melt at distinct temperatures has been produced by SSA. The higher 

the melting point is, the thicker the lamellae are.  

As it is clearly seen in Figure 5.6, the SSA technique is less effective in linear 

homopolymers, because the only possible thermal fractionation that can be achieved is 

due to molecular segregation based on chain length differences. Nevertheless, a certain 

degree of thermal fractionation is achieved in both homopolymers probably aided by their 

low melt viscosity. Similar behavior of linear chain polyesters has also been reported.
6-10

  

In all cases, the number of expected fractions was generated by the SSA 

fractionation, taking into account that the ideal self-nucleation temperature causes only 

self-nucleation and no annealing, therefore this first Ts temperature does not generate a 

thermal fraction.
11

 In Figure 5.6a, the standard DSC scan of PBS (after having been 

cooled at 20 °C/min) exhibits a cold crystallization exotherm before a large bimodal 

melting endotherm. After SSA, the cold crystallization disappears, as the successive self-

nucleation and annealing treatments induce crystallization of the PBS sample up to 

saturation, as expected.  

SSA is particularly sensitive to chain branches or to any molecular unit (e.g., 

comonomer) that interrupts the linear sequence of the crystallizable chains. This makes 

SSA an ideal technique to study copolymers where one of the monomers cannot 

crystallize and interrupts the crystallization of the other. The typical example is that of 

ethylene/-olefin copolymers, where short chain branches are excluded from the crystal 

lattice.
11
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Figure 5. 6. DSC heating scans (20ºC/min) for a) BS, b) BAz and c) BS45BAz55, before and after 

SSA fractionation. 

In the present case of isodimorphic copolymers, will SSA be capable of 

fractionating the copolymer samples up to a larger extent than their parent 

homopolymers? If both comonomers were equally incorporated inside the crystal 

lamellae, then SSA would not be able to fractionate the copolymers up to a larger extent 

than the homopolymers. 

According to the results presented in Figures 5.6 and 5.7, SSA can fractionate 

PBS-ran-PBAz random copolymers up to a greater extent (in terms of quality of 

fractionation and relative amount of each fraction) than in the case of the parent 

homopolymers. This is an interesting result, since it indicates that the degree of 

isodimorphism achieved by the copolymers is limited, as anticipated from the small 

changes in the unit cell dimensions (see ref. 5 and below). In other words, when the PBS-

rich phase crystallizes, it excludes a large number of PBAz repeating units (and vice 
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versa) from the growing crystals, leading to the molecular fractionation phenomenon that 

is the basis of thermal fractionation. 

Each melting peak obtained in the final DSC heating scan after SSA corresponds 

to the melting of a different thermal fraction. Each thermal fraction will be formed by 

chains whose crystallisable chain lengths are similar. The higher the melting point, the 

longer the crystallisable sequence length and the larger the average lamellar thickness in 

the crystals belonging to the thermal fraction.  

Figure 5.7 shows the evolution of the SSA fractionation profiles with composition. 

The blue color has been assigned to the PBAz and PBAz-rich thermal fractions, while red 

has been used for PBS and PBS-rich fractions.  
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Figure 5. 7. Final heating DSC scans after applying the SSA protocol for the indicated 

homopolymers and random copolymer samples. 

In the case of neat PBAz (code BAz in Table 5.1), the most important and largest 

thermal fraction within the material is that corresponding to the sharp highest temperature 

peak (at approximately 45 °C), see Figure 5.7a. The behavior changes when BAz is added 

in the copolymers. When 25 mol% of BS is included in the copolymer, the fractionation 

profile is qualitatively similar to that of neat PBAz. However, it shows a significant 

displacement to lower temperatures. Such melting point depression of the dominant 

fraction (which now peaks at 41.5 °C) is due to the interruption of the crystallizable linear 

BAz units by the 25 mol % BS component that is randomly distributed within the chains. 
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Only a small portion of such BS units can be incorporated in the PBAz-rich crystals (as 

indicated by WAXS below), while the rest are acting as defects that restrict PBAz 

crystallization. Additionally, subtle changes in the fractionation profile can be also seen. 

The relative proportion of the first (highest melting point) fraction with respect to the 

second is changing, as the first fraction decreases in height while the second slightly 

increases in the BS25BAz75 copolymer as compared to neat PBAz (see also Figure 5.8 

below). 

When the amount of BS in the copolymer increases to 45%, the PBAz component 

is still able to crystallize and to fractionate by SSA (see Figure 5.7a). However, the 

fractionation profile that corresponds to the PBAz-rich phase has greatly changed. The 

second highest melting point fraction is now as intense and important as the first. The 

results of Figure 5.7a indicate that as the amount of BS units in the copolymer increases, 

the exclusion of BS repeating units from the PBAz-rich phase crystals also increases. As 

the quality of the fractionation increases, melting points of the fractions decrease and the 

total crystal fraction (as judged by the enthalpy of melting) also decreases. It should be 

noted that in Figure 5.7a, a change in scale had to be introduced to represent the 

copolymer with 45 molar % BS.  

Figure 5.7b shows the final heating scan after SSA, or SSA fractionation profiles, 

for neat PBS and PBS-rich copolymers. For all cases presented in Figure 5.7b only PBS 

or PBS rich crystals are formed (with crystal unit cells very similar to that of neat PBS as 

will be shown below). For these PBS rich copolymers, the addition of PBAz units lowers 

their Tg values (see ref. 5). Therefore, apart from the interruption of the linear PBS 

sequences by BAz repeating units, a plasticization effect also contributes to the melting 

point depressions. As can be seen in Figure 5.9 below, the copolymers PBS-rich phase 

experiences a far larger melting point depression with composition than the PBAz-rich 

phase. From the large changes in the fractionation profiles caused by only 18 mol% BAz 

addition, it seems the effect of adding BAz to PBS is more significant than adding BS 

units to PBAz.   
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The large change in the distribution of SSA thermal fractions for the PBS-rich 

crystalline phase in the copolymers can be appreciated in Figure 5.8. In order to 

quantitatively assess the changes in fractionation profile, the relative height (hr) of each 

thermal fraction was calculated for the 6 highest melting temperature thermal fractions, 

employing the following expression (Equation 5.1):                                     5.1 

where hi is the height of the melting peak of thermal fraction ‘‘i’’. 
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Figure 5. 8. Distribution of SSA fractions expressed as normalized height values corresponding 

to the 6 highest temperature melting fractions. 

The results are plotted in Figure 5.8. Fraction 1 starts as the dominant fraction 

(i.e., that with the maximum relative height) in neat PBS. As BAz units are added to the 

copolymer, the importance of fraction 1 gradually decreases, at the expense of the 

increase in the other fractions. The dominant fraction gradually changes from fraction 1 to 

fraction 2 and finally to fractions 3, as the amount of BAz in the copolymer increases. 

The large changes observed in Figure 5.8 indicate that as the amount of BAz in 

the copolymer increases, the comonomer exclusion to the amorphous regions also 

increases, suggesting that the amount of comonomer inclusion is relatively small and does 

not increase very much with composition. These results are consistent with the WAXS 

results to be presented below. 
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Figure 5.9 compares the melting temperatures of the highest temperature peak as a 

function of composition after SSA fractionation, with a trend line of the melting 

temperatures of samples without SSA. SSA promotes molecular segregation and lamellar 

thickening during the fractionation periods where unmolten crystals are sequentially 

annealed. Therefore, SSA should promote the maximum exclusion of non-crystallizable 

defects to the amorphous regions of the sample. Hence, one would expect that in the 

present case, SSA would induce more comonomer exclusion as samples that have not 

been treated with the SSA protocol. 
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Figure 5. 9. Highest temperature peak melting values as a function of copolymer composition. 

Data points correspond to measurements after SSA fractionation (i.e., Tm values of the highest 

temperature fraction for each sample are shown) and the trend line corresponds to melting peak 

values of the samples determined during a second DSC scan at 20 ºC/min (without SSA 

fractionation). 

According to the thermal behavior presented in Figure 5.9, the differences 

between samples with and without SSA fractionation are not very large. As expected, the 

melting point values are slightly higher for the samples submitted to SSA fractionation. 

For copolymers where the random copolymer chains contain a majority of BS repeating 

units, PBS dominates the copolymer structural behavior, whereas for compositions with 

more than 55 % BAz, only PBAz like crystals can form according to WAXS (see below). 

As demonstrated previously,
12

 the BS45BAz55 random copolymer is a special 

material. It is very near the eutectic composition observed in Figure 5.9. The presence of 
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a eutectic point has also been reported for several isodimorphic copolyesters
12

 

Furthermore, this is one of the few copolymers where both PBAz and PBS-rich 

crystalline phases can be formed, and therefore it is a double crystalline random 

copolyester. During the heating scans separate melting of PBAz and PBS-rich crystalline 

phases can be clearly observed for samples with or without SSA. Figure 5.7a shows how 

after SSA, both crystalline components are clearly fractionated indicating a high degree 

of comonomer exclusion. 

The two melting points corresponding to the BS45BAz55 random copolymer are 

also plotted in Figure 5.9 at the corresponding composition. Such double crystalline 

structure in a random copolymer is difficult to explain without some degree of 

isodimorphism. Otherwise, a nearly 50/50 random copolymer where total comonomer 

exclusion is present would be completely amorphous. 

5.4.2 Wide Angle X-ray Scattering (WAXS) 

Samples for WAXS were prepared in the DSC using the same SSA thermal 

protocol applied to the samples for the DSC measurements shown in Figure 5.6 and 

Figure 5.7 but without the final heating scan, in order to preserve the morphology created 

by SSA fractionation. Then they were loaded in the diffractometer chamber at 25 °C and 

the WAXS patterns were measured.  

Figures 5.10a and 5.10b, and Figures 5.10c and 5.10d, show the diffractograms at 

25 °C of the samples without and with SSA fractionation respectively. If the WAXS 

patterns before and after SSA are compared, no large qualitative differences are 

appreciated. The WAXS pattern for poly(butylene succinate) corresponds to the most 

common α form, whose monoclinic unit cell dimensions are reported to be13-16
 a = 0.523 

nm, b = 0.908−0.912 nm, c = 1.079−1.090, nm and β = 123.9°. The most intense 

reflections for PBS appeared at 0.452, 0.404, and 0.392 nm, and they have been indexed 

in Figure 5.10 as (020/    ), (021) and (110) planes.
2, 13-17
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Figure 5. 10. WAXS diffraction patterns at 25 °C: (a) and (b) before SSA, (c) and (d) after SSA. 

For PBAz, a recent publication
17

 has reported that fiber patterns from a melt 

drawn homopolymer are consistent with an orthorhombic unit cell with the following 

dimensions: a = 0.496 nm, b = 0.746 nm, and c = 3.65 nm. The most intense WAXS 

reflections of this homopolymer appeared at 0.416 and 0.377 nm and they have been 

indexed to (110) and (020) as indicated in Figure 5.10. 

The WAXS patterns of Figure 5.10 indicate that at 25 °C, almost all samples 

contain only one type of crystal. The samples which have more than 58 % BS only 

display reflections that are consistent with a PBS type unit cell. On the other hand, the 

BAz and BS25BAz75 display a WAXS pattern that is characteristic of neat PBAz. 

BS45BAz55 contains characteristic reflections of both phases, although the WAXS pattern 
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is completely dominated by PBS reflections. The reason behind this result is that the 

PBAz phase is partially molten at 25 °C, the temperature at which the WAXS patterns 

were taken (see Figure 5.6c). 

Analysing the WAXS patterns in more detail, the samples after SSA fractionations 

(Figure 5.10b) show more intense and narrower signals than the samples without SSA 

fractionation (Figure 5.10a), as a result of the higher crystallinity degree (see below Table 

5.2) which was increased considerably as a result of the SSA thermal treatment. 

In order to better appreciate differences in the samples before and after SSA, 

Figures 5.10c and 6d presents close-ups for 3 specific samples. Figure 5.10d shows that a 

new small signal (appearing at 2 values of approximately 19.7-19.8°) that is not present 

in neat BS appears after SSA in the WAXS patterns of BS61BAz39 and BS58BAz42 but is 

absent in the samples without SSA (Figure 5.10c). 

As the peak indexed as (020/    ) in neat PBS (Figure 5.10a) is a mixture of (020) and 

(    ) reflections,
16

 with very close d spacings, the new peak that appears at ~19.75° in 

the copolymer samples (Figure 5.10d) could be assigned to the (    ) reflection of PBS. It 

has been reported before,
2, 17

 that when the BAz content increases in the copolymer 

samples, the lattice spacings increases as well. This increase occurs to accommodate the 

BAz units that are larger in size as compared to the BS units. The (020) plane reflects the 

intermolecular distances, while the (    ) is influenced by both the intermolecular 

distance and repeating length along the chain. If we only consider the expansion along b 

axis (more loosely packed compared with a axis), the (020) plane expanses much faster 

than (    ) plane. This causes the splitting of the two overlapped peaks. Another reason 

for the assignment is that the intensity of (    ) reflection is much weaker compared with 

the (020) reflection, according to Ichikawa et al.
14

 The splitting of the (020) and (    ) 

reflections becomes more significant in samples after SSA (Figure 5.10d). Another 

observation is that the intensity of (110) reflection becomes obviously stronger after SSA. 

This indicates that the crystallites can rearrange their internal structure during SSA. 
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Figure 5.11 shows the d spacing values of selected diffraction planes for the PBS-

rich samples, before (solid line) and after SSA fractionation (data points). The PBS-rich 

phase in the copolymers exhibits a PBS like unit cell whose size increases when BAz is 

included in the copolymer. 
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Figure 5. 11. Experimental diffraction spacings (d) for PBS and PBS-rich crystalline phases as a 

function of BAz molar content. From bottom to top, data for (110), (021), and (020) planes are 

presented. Data points correspond to samples after SSA fractionation and solid lines to 

measurements without SSA fractionation. 

Although the d spacing values after SSA are slightly smaller than those in samples 

without SSA, there are no big differences between d spacing before and after SSA. 

Therefore, it seems that even an SSA fractionation protocol, which usually drives 

polymeric crystals closer to equilibrium, is not enough to expel all the minority 

comonomer groups to the amorphous regions. Therefore, the crystal unit cells have to 

increase slightly their volume (an increase in (020) plane distances indicates a unit cell 

expansion, as the unit cell dimension b increases) to accommodate the extra PBAz 

repeating units that coexist with the PBS major component when BAz content increases, 

supporting the idea of isodimorphic cocrystallization. 
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5.4.3 Small Angle X-ray Scattering (SAXS)  

In order to get information about lamellar sizes, analogous experiments to those 

performed by WAXS were conducted employing SAXS. Figure 5.12a and Figure 5.12b 

show the plots of relative SAXS scattering intensities before and after SSA fractionation 

respectively. All the samples exhibit an intense main maximum that can be interpreted as 

the long period of the lamellar stacks. Secondary maxima are seen in some cases due to 

higher order reflections. 
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Figure 5. 12. Intensity as a function of scattering vector for the indicated homopolymers and 

copolymers. Data taken at 25 °C: (a) before SSA and (b) after SSA. 

The long periods (d*) corresponding to Figure 5.12 were estimated by equation 

5.2 from Lorentz corrected plots (Iq
2
 versus q):                      5.2 

Figure 5.13 presents how the obtained long periods (d*) vary as a function of 

copolymer composition. The qualitative trends before and after SSA are similar. The long 

period strongly depends on composition. All values to the left of the BS45BAz55 

copolymer correspond to d* spacings of PBS and the PBS-rich phase within the 

copolymers, while of the only two remaining data points correspond to the PBAz-rich 
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phase and PBAz respectively. Additionally, the long period values to the left of the 

eutectic point, (i.e., PBS and PBS-rich crystalline phases), increase with BAz content in 

the copolymers. This behavior indicates that the incorporation of PBAz both in the 

crystalline unit cell and in the amorphous regions of the PBS rich interlamellar zones has 

a synergistic effect on the morphology at the lamellar level. On the other hand, when 25 

% BS is included in the PBAz rich copolymer, d* increases. This behavior is related to 

the incorporation of some BS repeating units inside the PBAz-rich phase lamellae. 

SSA fractionation promotes annealing and should therefore induce lamellar 

thickening. However, the results after SSA in Figure 5.13, do not show significant 

changes in d* (only a small increment in some cases for the PBS and PBS-rich samples, 

while a decrease is seen for the PBAz and PBAz-rich cases). To demonstrate whether the 

increase of the long period (d*) comes from the amorphous layer (la) or the crystalline 

layer (lc), the contribution of each component has to be calculated. 
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Figure 5. 13. Long periods (d*) obtained by SAXS as a function of copolymer composition 

(expressed as BAz molar fraction). Data points correspond to samples after SSA fractionation and 

solid lines to measurements without SSA fractionation. The shadowed area shows differences in 

trends before and after SSA. 

The calculation of the crystalline lamellar thickness, lc, was performed employing 

the following approximation: 
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                                   5.3 

where xv is the crystalline volume fraction that was estimated from the following 

equations.                 5.4 

                      5.5 

where xm is the mass fraction of crystals, ρ is the experimentally determined density of the 

sample (at 25 °C), and ρc is the density of a 100% crystalline sample. The mass fraction 

of crystals can be calculated from the enthalpy of fusion of the phase under consideration 

(ΔHm), the enthalpy of fusion of a 100% crystalline sample and the weight fraction of the 

phase under consideration (W) employing equation 5.5.  

la = d* - lc      5.6 

Table 5. 2. Density (±0.0003 g cm
-3

), normalized crystallization enthalpy (±1 J g
-1

), mass and 

volume crystalline fractions (±0.01), long period, and lamellar thickness values (±0.1 nm). 

Before SSA (25 °C) 

 
ρ 

(g/cm
3
) 

ΔHm  
(J/g) Xm Xv d

*
 (nm) lc (nm) lc

’
 (nm) 

BS 1.2447 67 0.32 0.32 8.2 2.6 2.7 
BS82BAz18 1.1973 67 0.32 0.30 9.4 2.8 2.8 
BS61BAz39 1.1672 68 0.32 0.30 12.0 3.6 4.1 
BS58BAz42 1.1399 79 0.38 0.34 12.6 4.3 4.1 
BS45BAz55 1.1355 73 0.35 0.31 16.1 5.0 -- 
BS25BAz75 1.1224 68 0.45 - 18.3 8.3

a 
6.7 

BAz 1.1087 51 0.34 - 17.4 5.9
a 

6.2 

After SSA (25 °C) 

 
ρ 

(g/cm
3
) 

ΔHm  
(J/g) Xm Xv d

*
 (nm) lc (nm) lc

’
 (nm) 

BS 1.2770 100 0.48 0.48 9.7 4.7 3.1 
BS82BAz18 1.2066 101 0.48 0.46 10.2 4.7 2.9 
BS61BAz39 1.2105 85 0.41 0.39 11.7 4.6 4.2 
BS58BAz42 1.1672 73 0.35 0.32 13.7 4.4 4.3 
BS45BAz55 1.1831 77 0.37 0.35 16.5 5.7 -- 
BS25BAz75 1.1041 74 0.49 - 17.5 8.6

a 
6.4 

BAz 1.1331 66 0.44 - 16.6 7.3
a 

5.7 
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a
These values were calculated using the following approximation: lc = d*xm because ρc is unknown for 

PBAz. The density of the samples was measured at 25 °C. 

 

The density of the samples was measured at 25 °C and the results are listed in 

Table 5.2. The melting enthalpies reported in Table 5.2 have been normalized to take into 

account the weight fraction of the crystallizable phase. The enthalpy of fusion of a 100% 

crystalline sample and the crystalline density of PBS can be found in the literature, 

ΔHm(100%) = 210 J g
-1

 
18

 and ρc= 1.26 g cm
-3

.
19

 A value for ΔHm(100%) of 150 J g
-1

 has been 

reported
20

 for PBAz. However, since the number of repeating units per unit cell is 

unknown, its density cannot be calculated.  The thickness of amorphous layer can be 

calculated by equation 5.6. 

The average lamellar thickness was also calculated by the one-dimensional 

electron density correlation function K(z).
21

 

                                           5.7 

where z is the correlation distance along which the direction of the electron density 

distribution is measured. I(q) is the 1-dimensional intensity profile. Multiplication of q
2
 is 

carried out to account for the isotropic distribution. In this work, as the measured q range 

does not reach the Guinier region and Porod region, no extrapolation was carried out. 

Figure 5.14 shows a typical correlation function, demonstrating how the 

crystalline layer thickness lc´ can be estimated. The data obtained from the correlation 

function analysis (lc´) was included in Table 5.2. It should be noted that multiple 

oscillations were observed in the K(z) curves of BS45BAz55, indicating the failure of the 

method. This can be explained since that sample cannot be described by a simple two 

phase model, probably because of the existence of two crystalline phases at 25 °C. It is 

observed that the lamellar thickness measured by the correlation function analysis is 

smaller than that calculated by multiplying the long period by the crystal volume fraction. 
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However, the lamellar thickness calculated by the two methods shows a similar variation 

with copolymer composition. 
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Figure 5. 14. Example showing the analysis of lamellar structure using electron density 

correlation analysis. The sample is BAz before SSA. As the crystallinities of the copolymers were 

believed to be smaller than 0.5, the smaller value was assigned to the crystalline layer thickness. 

Figure 5.15 shows a plot of the calculated crystalline lamellar thickness (lc) and 

amorphous layer thickness (la) as a function of copolymer composition before and after 

SSA. To better appreciate the differences, an area between the data points before and after 

SSA has been shaded. Figure 5.15 demonstrates how the crystalline lamellar thickness 

values are higher after SSA fractionation for most samples, as expected. However, Table 

5.2 shows that for the electron density correlation analysis, similar results are obtained, 

except for PBAz and BS25BAz75. In these two cases the differences are very small before 

and after SSA and the results may be influenced by the way the values are extracted from 

the data. 

The trends observed in Figure 5.15 can be explained by the compensating effect 

that the crystalline fraction has on the long period value (reflected in equation 3 and 6). In 

other words, although the crystalline phase volume is higher, there is also less 

interlamellar amorphous phase and the values of long period remain almost unchanged 

before and after SSA (see Figure 5.13). From these results it can be concluded that after 

SSA thermal fractionation, total exclusion of the minor comonomer units in the crystals is 

not obtained. 
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Figure 5. 15. Crystalline lamellar thickness (lc) and amorphous layer thickness (la) obtained as a 

function of copolymer composition (expressed as BAz molar fraction). The shadowed areas show 

differences in trends before and after SSA. 

5.5 Conclusions 

This work shows that a low degree of co-crystallization (i.e., comonomer 

inclusion) occurs in PBS-ran-PBAz random copolymers when they are cooled from the 

melt or subjected to an SSA fractionation protocol. For PBS-rich copolymers, the PBS-

rich phase can accommodate a small amount of BAz units within the PBS like crystalline 

unit cells that are formed. A similar phenomenon occurs with PBAz-rich copolymers. In 

the case of the BS45BAz55 random copolymer (which has a composition near the pseudo-

eutectic point), two crystalline phases are formed, each one with a minor content of the 

second co-unit within the copolymer. After self-nucleation of the PBS-rich crystalline 

phase, the separate crystallization of both phases can be achieved in this double 

crystalline BS45BAz55 copolymer.  

SSA results have demonstrated that comonomer exclusion drives the fractionation 

ability of the samples. Therefore, the amount of comonomer inclusion is much lower than 

the amount of comonomer exclusion during crystallization.  
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Isodimorphism stems from the similarity of the repeating units of PBS and PBAz 

and it is independent of kinetic factors. This conclusion is reached after determining that 

the degree of comonomer exclusion remains almost unchanged, even after SSA, a thermal 

fractionation technique that promotes segregation of molecular defects that interrupt 

crystallizable sequences.  
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6.1 Introduction 

In this chapter Poly(butylene succinate-ran-butylene azelate) random copolyesters 

(PBS-ran-PBAz) were studied using Broadband Dielectric Spectroscopy (BDS) and Dif-

ferential Scanning Calorimetry (DSC), in order to study the complex development of the 

amorphous phase.  

The crystallinity of polymeric materials affects the properties of the remaining amor-

phous phase in a complex way. It has been generally found that the glass transition of 

semicrystalline polymers occurs at higher temperatures than that of the corresponding 

fully amorphous material, additionally, the glass transition range for these semicrystalline 

materials is usually much broader.
1
 These facts reflect constrains that the crystalline 

phase exert on the amorphous phase of polymers, which eventually lead to the disappear-

ance of the glass transition for materials with crystallinity around 50% or higher. This 

result is usually attributed to the presence of amorphous segments forming what has been 

called the rigid amorphous fraction (RAF),
1
 whose motions are severely restricted by the 

crystallites. In this view, a semicrystalline polymer would be composed by at least 3 frac-

tions: the crystalline one, the RAF and the (mobile) constrained amorphous fraction or 

CAF. The latter would be responsible for the measurable glass transition by DSC, where-

as the melting process and the X-ray diffraction reflections are manifestations of the crys-

talline phase. The RAF still has local mobility, as proved by its contribution to the 

secondary relaxations.
2
 In addition, in the initial stages of crystallization, the experiments 

evidence the coexistence of these two amorphous fractions with the unconstrained amor-

phous fraction (UCAF) which is characteristic of the fully amorphous material.
3, 4

  

Taking all this into account, one could expect that the situation encountered in copol-

ymers with crystallizable components is probably more intricate since each of the 3 
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amorphous fractions described above could be found, each one with a different 

comonomer concentration. In this chapter, we have investigated this complex case in 

poly(butylene succinate-ran-butylene azelate) isodimorphic copolymers. By analyzing the 

dielectric relaxation of these materials we have had access to both the local and segmental 

dynamics. The data analysis provided the distinct contributions of the succinate and 

azelate groups to the local copolymer relaxation allowing a quantification of the fraction 

of each component involved in the crystalline phase. On the other hand, the behavior of 

the dielectric relaxation loss peak above the glass transition temperature strongly suggests 

that a significant UCAF remains in most of the copolymers despite of the relatively high 

crystallinity. Interestingly, the segmental dynamics is found to be very sensitive to the 

details of the crystallization process, indicative of subtle changes induced by crystalliza-

tion in the remaining amorphous phase.  

6.2 Broadband Dielectric Spectroscopy (BDS) Results 

6.2.1 BDS of Homopolymers 

Figure 6.1 presents isochronal plots of permittivity loss versus temperature at 10
2
 Hz 

for PBS and PBAz homopolymers (denoted BS and BAz). Two peaks are observed for 

each sample, which correspond to different kinds of molecular motions. On one hand, the 

 relaxation process, detected at high temperatures is related with the cooperative mobili-

ty of relatively large segments of the polymer, those related with the glass transition. On 

the other hand, the β relaxation, detected at lower temperatures is attributed to local mo-

lecular rearrangements occurring in the glassy state.
5
 It should be noted that a single β 

relaxation is observed for semicrystalline PBS, which is at odds with a recently published 

work where an additional slower β relaxation component was observed.
6
 We confirmed 

that this difference is attributed to the careful drying of the sample used before our dielec-

tric experiments (see Appendix part). For both PBS and PBAz, the dielectric relaxations 

are related with reorientations of the dipole moments in the ester groups.  
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Figure 6. 1. Isochronal plots of ´´/ for BS and BAz homopolymers at 10
2
 Hz. 

 The isothermal permittivity loss versus frequency for the homopolymers at differ-

ent temperatures, where the β relaxation can be easily recognized, is shown in Figure 

6.2a. The BAz β relaxation peaks have higher intensity as compared to those correspond-

ing to BS. Moreover, the peak frequency, fmax, of BAz losses occurs at markedly higher 

frequencies than those of BS, indicating a faster local dynamics of the former. This could 

be attributed to the longer aliphatic part of the BAz repeating unit. In order to quantify 

these differences, the relaxation time from each isothermal plot has been calculated as:                     6.1 

The resulting values are presented in Figure 6.2b. For both polymers a clear Ar-

rhenius behavior is found and accordingly the data have been fitted to Arrhenius equa-

tion:  

                        6.2 

The resulting fitting parameters are shown in Table 1. The activation energy for BS, as 

determined from the Arrhenius fit, is 41.1 kJ/mol, which agrees very well with values 
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previously reported,
7, 8

 whereas the value for BAz is 39.2 kJ/mol. No values of activation 

energy for BAz have been found in literature, but the value obtained here is close to those 

reported for other aliphatic polyesters.
9-13

  

As can be seen in Table 6.1, the values obtained for    are far smaller than those 

corresponding to typical vibrational frequencies, a situation that is often found when ana-

lyzing the secondary relaxations of polymers. These extremely low values are indicating 

that the molecular origin of the relaxation does not correspond to single activated jumps 

between two equivalent positions of molecular units over an energy barrier, and therefore, 

a more complex situation should be envisaged. One way of describing such behavior is by 

using the Eyring equation, where the relaxation time is expressed in terms of the differ-

ence in the Gibbs free energy, G=H-TS, between the equilibrium and the activated 

state. This leads to an equation (eq. 6.3) similar to the Arrhenius one, where an entropic 

term appears in addition to the enthalpic one, i.e. 

                                                  6.3 

where h is Plank's constant and H and S are, respectively, the enthalpic and entropic 

changes corresponding to the activated state. When the data in Figure 6.2b are described 

in this way, nearly undistinguishable fitting, from the Arrhenius one, is found and the 

corresponding parameters are also shown in Table 6.1. As expected the entropic terms 

take relatively large values. When comparing the values of the entropic terms for the two 

polymers we found a significantly larger value for BAz, a fact indicative of more com-

plex local arrangements. On the other hand, the enthalpic terms obtained with the Eyring 

analysis are about 10% smaller than the activation energies obtained from the Arrhenius 

fitting above but follow the same trend. 

To analyze more quantitatively the  relaxations, the main part of the loss peak 

has been described by a Gaussian-like function: 
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                                      6.4 

The fittings to eq. 4 are shown as solid lines in Figure 6.2a. In this way, the main 

part of the curves (data around the loss peak) are well described, although some devia-

tions at very high and very low frequencies remains evident. 

In the framework of the Eyring description used above, the Full Width at Falf 

Maximum of this Gaussian description of      ,                , can be approxi-

mately related to the FWHM of the corresponding distributions of the enthalpic and en-

tropic terms in the Eyring equation as:
14

  

   6.5 

The values of        obtained at different temperatures are well described by 

this equation and the so obtained        and        values, corresponding to the 

distributions of the enthalpic and entropic terms, are also included in Table 6.1. It is found 

that the distribution width of the entropic term is markedly larger for BS than for BAz, 

whereas those of the enthalpic terms are not so quite similar to each other. 

Table 6. 1.  Parameters Describing the Temperature Dependence of the β relaxation of the 
Homopolymers. Typical uncertainty values are indicated in the table head. 

β  

relaxation 

τ(s) 

± 30 (%) 

Ea ± 1 

(kJ/mol) 

H ± 1
(kJ/mol)

S ± 0.001
(kJ K/mol)

FWHMH 

± 5 (%) 

FWHMS 

± 5 (%) 

BS 3.4 × 10
-16

 41 40 0.046 56 110 

BAz 7.3 × 10
-17

 39 38 0.06 49 64 

 

 

฀
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Figure 6. 2. (a) Dielectric loss spectra versus frequency of both homopolymers at 160, 190 and 

210 K. Lines are the descriptions of the main loss peaks in terms of Gaussian like functions (b) 

Arrhenius plots of β processes for BS and BAz homopolymers. Solid lines are Arrhenius fittings. 

Figures 6.3a and 6.3b show representative isothermal dielectric loss curves in the 

temperature range relevant for the  relaxation. In these graphs, it can be observed that 

the  relaxation peaks have lower intensity than those for the β relaxations at the same 

temperature and this makes difficult an accurate quantitative analysis. The relatively low 

values of the dielectric losses corresponding to the  relaxation can be attributed to the 

relatively high crystallinity of the polymers which simultaneously produce a broad relaxa-

tion and reduced dramatically the relaxation strength which is proportional to the area 

below the loss peak.
3
 Consequently the quantification of the  relaxation rate has been 

made by using the isochronal representation of the dielectric losses (see Figure 6.1 as an 

example). In this representation when selecting low frequencies, the  relaxation is ob-

served as a clear and prominent loss peak a few degrees above Tg, well separated from the 

secondary relaxation, which is detected at temperatures well below Tg. Moreover, the 

usually high apparent activation energy of the  relaxation gives rise to a relatively sharp 

peak. The dramatic differences between the isothermal and isochronal representation of 

the  relaxation data is a general feature in systems where a broad distribution of relaxa-

tion times exist, as it is the case of semicrystalline polymers, polymer networks, polymer 

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0.00

0.01

0.02

0.03a)

 BS

BAz

 160 K

 190 K

 210 K

 160 K

 190 K

 210 K

 

´
´/
 

Frecuency (Hz)

0 -7

-6

-5

-4

-3

-2

-1

0

4 4.5 5 5.5 6 6.5 7 7.5 8

lo
g

 
 (

s
)

1000/T (1/K)

BS

BAz

b)



                                                                                                                  Broadband Dielectric Spectroscopy 

153  

blends, etc. Using the isochronal representation of the dielectric losses at different fre-

quencies, the temperature (Tmax) at which the  relaxation loss-peak occurs has been de-

termined for both polymers. The results obtained are plotted in Figure 6.3c. In this figure, 

the equivalent results obtained from raw data of isothermal dielectric relaxation at 250 K 

for BS and 220 K for BAz are included for comparison purposes (star symbols). In this 

way, we confirm that the differences between both types of analysis are not large.  

In order to describe the temperature dependence of  relaxation, the data in Figure 

6.3c were fitted to a Vogel-Fulcher-Tamman-like equation (VFT), 

                                6.6 

where T0 is the Vogel temperature, B is an energetic term and f would correspond to a 

typical vibration frequency. The obtained fitting lines are shown in Figure 6.3c and the 

parameters are included in Table 6.2. As the  relaxation in BAz is rather close to the β 

relaxation (see Figure 6.1), the loss peak temperature determined using high frequency 

data can be influenced significantly by contributions from the β relaxation. Thus, in the 

fitting of BAz data only the low frequency range has been taken into account, and be-

cause that the value f was taken equal to that found for BS. In this way a good descrip-

tion of the data of BAz is obtained below f=10
4
 Hz. Note that at this frequency the β 

relaxation of BAz is already less than 2 decades faster than the  relaxation (see dotted 

line in Figure 6.3 c).  

Here it is important to recall the connection between the  relaxation and the glass 

transition. In a semicrystalline polymer mobile dipolar entities exist only in the amor-

phous phase and the reorientation of the molecular dipoles is essentially blocked below 

the glass transition temperature. Therefore, a glass transition temperature can be deter-

mined from dielectric experiments as the temperature at which molecular mobility is ex-

tremely small. The dielectric glass transition temperature values, Tg,BDS, calculated using 
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equation 6 as  f(Tg,BDS)=10
-3

 Hz are shown in Table 6.2. As it can be seen, these values are 

almost the same as those determined for Tg by DSC measurements. 
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Figure 6. 3. (a) Dielectric loss spectra versus frequency of BS homopolymer at different tempera-

tures. (b) Dielectric loss spectra versus frequency of BAz homopolymer at different temperatures 

(c) Arrhenius plot of the peak frequencies of BS, BAz and BS45BAz55. Solid lines represent the 

corresponding VFT fit of  relaxation, dotted line represents the Arrhenius fit of β relaxation for 
the BAz homopolymer. 
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Table 6. 2. Parameters Describing the Temperature Dependence of the  Relaxation of the 

Homopolymers and Glass Transition Temperatures Determined by DSC. 

 

 

 

 

(*)The value was taken equal to that found for BS because in the fitting of BAz data only the low frequency 

range was taken into account. 

 

6.2.2 BDS of Copolymers 

Analogous measurements have been made for all copolymer samples. Figure 6.4 

shows the isochronal plots of ´´/ at relatively low frequency (10
2 

Hz), where  and β 

relaxation can be easily located, for all copolymer compositions. The results for both 

homopolymers are plotted for comparison purposes with dotted lines. 

 

Figure 6. 4. Isochronal plots of ´´/ for PBS-ran-PBAz copolymers at 10
2
 Hz. 
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At first sight, it is obvious that the dielectric behavior of the copolymers is far 

from monotonous. This evidences the high sensitivity of dielectric relaxations to changes 

in copolymer composition, which influences simultaneously the structural characteristics 

(crystallinity) and the mobility of the amorphous phase.   

When local dynamics are investigated in semicrystalline polymers, it is found that 

the dielectric relaxation strength is proportional in a good approximation to the total 

amorphous fraction.
2, 15

 However, polymer crystallinity does not have a large effect (if 

any) neither on the characteristic time of the relaxation process nor on the shape of the 

loss curve. Therefore, the data in the β relaxation range can provide quantitative infor-

mation on the fraction of comonomers involved in the crystallinity of the copolymers 

investigated. 

Figure 6.5 shows the isothermal β dielectric relaxation loss spectra at 160 K for all 

materials. The dielectric results for both homopolymers are plotted with open symbols, 

and the lines correspond to the Gaussian description used above. By assuming that most 

local molecular motions in a copolymer remain largely unaffected with respect to those in 

the pure polymers, which is in agreement with the already reported results on 

polybutadienes with different microstructures (ranging from 1,4-polybutadyene to 1,2-

polybutadyene),
16

  the dielectric  relaxation in the copolymers could be expressed as: 

 

where    corresponds to mass crystalline fraction of the homopolymer,      and       

accounts for the relative fraction of the corresponding comonomer incorporated in the 

crystalline phase, and consequently not contributing to the β dielectric relaxation.  

Once the β relaxations of the homopolymers were properly described with the 

Gaussian description presented above, under this assumption, the β relaxation of a copol-

                                                                  6.7 
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ymer with BS mass fraction      is fully determined by the relative fractions of both 

comonomers RFBS and RFBAz incorporated in the crystalline phase. Following this meth-

od we have look for the suitable values of RFBS and RFBAz that provide the best descrip-

tion of the β relaxation of the copolymers. The resulting values are shown in Table 6.3 as 

compared with the previously reported copolymer crystallinities obtained by DSC in 

Chapter 4.
17

  

Table 6. 3. Comonomer Relative Mass Fractions in the Crystalline Phase (± 0.01) Deduced from 

BDS and Mass Fractions in the Different Crystalline Forms (± 0.01) Determined by DSC.
17

  

 

 

 

 

 

 

When comparing the values obtained by DSC and BDS in Table 6.3, it should be 

noted that DSC determines the total weight fraction of segments incorporated within the 

crystals of the BS rich phase and/or BAz rich phase respectively, whereas BDS is sensi-

tive to the loss of mobile comonomers irrespectively to the kind of crystals that are 

formed. In particular, if large co-crystallization takes place, the analysis of BDS and DSC 

experiments would not provide the same numbers. This is likely the case for BS25BAz75, 

where BDS detects a fraction of BS being involved in the crystallization but no BS like 

crystallization was detectable by DSC.
17

 This result is consistent with the isodimorphic 

nature of the copolymers, where a small fraction of the minority comonomer is incorpo-

rated in the crystalline unit cells of the majority component, as previously demonstrated 

by WAXS and thermal fractionation in Chapter 4 and 5.
17, 18

 Despite the different sensitiv-

        

 
     

 
RFBS RFBAz XmPBS ΧmPBAz 

BS 1 1 0.32 - 0.32 - 

BS82BAz18 0.82 0.76 0.32 0 0.32 0 

BS61BAz39 0.61 0.53 0.43 0 0.4 0 

BS58BAz42 0.58 0.5 0.38 0 0.38 0 

BS45BAz55 0.45 0.37 0.4 0.28 0.38 0.27 

BS25BAz75 0.25 0.19 0.1 0.52 0 0.54 

BAz 0 0 - 0.33 - 0.33 
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ities of DSC and BDS to crystallization phenomena, a remarkable good agreement be-

tween the crystallized mass fraction of each comonomer and the amount of the corre-

sponding crystalline phase is found in most of the copolymers. This result is consistent 

with the already reported fact that the amount of comonomer exclusion is in general much 

larger than the amount of comonomer inclusion during crystallization of these copoly-

mers.
17, 18
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Figure 6. 5. Calculations of new dielectric loss spectra versus frequency at 160 K. 

Homopolymers and BS82BAz18 are without vertical displacement. For the sake of clarity, losses of 

the other compositions are vertically shifted and the corresponding zero level displayed as a dot-

ted line. 

Concerning the  relaxation, the situation is more complex, because as aforemen-

tioned all the characteristics of the  relaxation are strongly affected by crystallinity, the 

relaxation strength is dramatically reduced, the relaxation time becomes much longer and 

the relaxation curves extend over large frequency ranges. Moreover, in crystallizable co-

polymers the fraction of comonomer involved in the different amorphous fractions RAF, 

CAF and UCAF cannot be anticipated. As can be seen in Figure 6.4, when increasing the 

BS fraction in the copolymers with respect to BAz homopolymer, there is a clear increase 

in the dielectric loss intensity, without much change in the peak position. The former 

would be related with the decreasing crystallinity of the copolymers, whereas the later 
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possibly indicates that the more mobile amorphous fraction of the copolymers is rich in 

BAz comonomers. This trend continues up to the copolymer with the highest BS fraction 

(82 % molar fraction), where a clear drop in intensity and a peak shift is detected.  

The behavior described in the previous paragraph is in qualitative agreement with 

the output of the analysis of the β relaxation summarized in Table 6.3. For example, see 

Table 6.4, for BS82BAz18 the BS mass fraction within the copolymer in amorphous frac-

tions     is 0.51 and that of BAz (     ) is 0.24. Conversely, for BS61BAz39 the BS mass 

fraction in the copolymer in the amorphous fractions (    ) is 0.30 and that of BAz 

(     ) is 0.47. These differences can explain the quite dramatic changes in the  relaxa-

tion between both copolymers. Moreover, as described above the 3 different amorphous 

fractions (RAF, CAF and UCAF) that can exist in each copolymer sample could present 

different fractions of the two comonomers, with no clear reasons a priori for any trend. 

Table 6. 4. Total (m) and Amorphous (A) Mass Fractions of BS and BAz within the Copolymers 

(± 0.01).           
 

      

       

BS 0/1 0.68 - 

BS82BAz18 0.76/0.24 0.51 0.24 

BS61BAz39 0.53/0.47 0.3 0.47 

BS58BAz42 0.50/0.50 0.31 0.5 

BS45BAz55 0.37/0.63 0.22 0.45 

BS25BAz75 0.19/0.81 0.17 0.39 

BAz 0/1 - 0.67 

 

Due to the difficulties mentioned above for the homopolymers, the quantitative 

analysis of the  relaxation time in the copolymers has also been made by using the 

isochronal data representations (as those shown in Figure 6.4). In this way, the glass tran-

sition temperature determined from BDS has been calculated for the copolymers follow-
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ing the same procedure used for the homopolymers, i.e., calculating by means of the VFT 

fit the temperature at which the peak loss would occur for a frequency of 10
-3

 Hz, see 

copolymer data in Figure 6.3c as an example. As for BAz, the value of f was fixed and 

only the low frequency data (f<10
4
Hz) were used in the fitting. The Tg,BDS results are 

shown in Figure 6.6 as a function of BAz fraction in comparison with glass transition 

temperatures determined by calorimetry Tg, DSC.   

 

 

Figure 6. 6. Glass transition temperatures as a function of weight fraction of amorphous BAz 

with respect to the total amorphous phase. Dashed line and dotted lines correspond to the Fox 

equation with the glass transition of semicrystalline and amorphous polymers respectively. 

 

When selecting the horizontal axes of Figure 6.6 for a mixture of partially crystal-

line polymers, several circumstances have to be taken into account. On one hand, the 

crystalline fraction does not participate directly in the glass transition phenomena, alt-

hough it can have a significant impact in the glass transition temperature of the surround-

ing amorphous phase. On the other hand, the amorphous regions in semicrystalline 

polymers tend to have some polymer strands with short range local order packing that 
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apparently does not contribute to the glass transition as detected by DSC,
19

 but can also 

affect the value of the glass transition temperature. Our choice in Figure 6.6 has been us-

ing as horizontal axis the mass fraction of amorphous BAz with respect to the total amor-

phous phase in the copolymer. These values have been determined from the output of the 

analysis of the dielectric β relaxation results shown above.  

The values of Tg,DSC lie close to the prediction of the Fox equation obtained from 

the values of the Tg,DSC of the homopolymers (see dashed line in Figure 6.6). However, 

significant differences between Tg,BDS and Tg,DSC are found in most of the copolymers. 

Tg,BDS values are generally 5 K lower than those determined by DSC. Nevertheless, for 

BS45BAz55 (whose amorphous BAz mass fraction with respect to the total amorphous 

phase is 0.67) a rather good agreement between Tg,BDS and Tg,DSC is found, as it was also 

the case for the homopolymers. 

As already commented, differences between Tg,BDS and Tg,DSC can be explained by 

taking into account the effects of the crystalline regions on the mobility of the remaining 

amorphous phase. In a recent work on poly(butylene succinate),
6
 it has been found that 

the glass transition temperature of a fully amorphous PBS (blue star symbol in Figure 6.6) 

is about 6 K smaller than that of crystallized PBS. As far as we are aware, no correspond-

ing value for PBAz has been reported. Thus, in order to obtain a Tg,DSC value for amor-

phous BAz (yellow star symbol in Figure 6.6), a new DSC experiment was performed on 

a sample of the homopolymer previously cooled at a high rate by quenching the polymer 

melt in liquid nitrogen. The subsequent heating scan exhibits a clear step in heat flow 

immediately followed by cold-crystallization peak corroborating that a measurable 

amount of unconstrained amorphous fraction (UCAF) was obtained in the sample during 

the fast cooling. The so obtained Tg,DSC value is about 3.5 K smaller than that of crystal-

lized PBAz. In line with these results, dielectric experiments on poly(propylene succin-

ate) (PPS)
11

 (a polymer belonging to the same family as PBAz and PBS) provided an 

estimate of the difference in glass transition temperature of about 5 K when comparing 

data of fully amorphous PPS and those of PPS with 20% crystallinity. It is noteworthy 
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that these differences are about the same as those observed between Tg,BDS and Tg,DSC re-

sults in most of the copolymers, particularly when BAz is not involved in crystallization, 

i.e., in the copolymers BS82BAz18, BS61BAz39, and BS58BAz42.  

As the BDS values of Tg have been determined from the peak position of the die-

lectric losses, these values will most probably reflect the segmental mobility in the most 

mobile amorphous fraction. If only two amorphous fractions would exist in a polymer 

material (RAF and CAF) the Tg value would reflect the mobility of the CAF, however, in 

a situation where also an unconstrained amorphous fraction (UCAF) exists,
4
 the dominant 

dielectric signal would correspond to the later. Taking this into account, we have evaluat-

ed the prediction of the glass transition temperatures for fully amorphous mixtures of BS 

and BAz using the Fox equation with the values of Tg for amorphous PBS and PBAz giv-

en above (232 K and 207 K respectively). The resulting values for the copolymers are 

presented in Figure 6.6 as a dotted line. Interestingly, the Tg,BDS values of the copolymers 

lie in general below but close the Fox prediction for fully amorphous copolymers (see 

Figure 6.6), suggesting that a possible explanation of the differences found between BDS 

and DSC Tg values would be that in the copolymers where BAz is not involved in the 

crystallization, a significant amount of UCAF is present, where no relevant effects of the 

crystalline phase on the molecular motions exist. This phase would present a prominent 

dielectric relaxation because of the absence of any constrain in the dipole moment reori-

entation and therefore it would determine the temperature of the loss peak. The stretched 

high temperature tail in the dielectric loss curves would be due to the CAF contributions. 

On the contrary, the DSC values are determined from the midpoint of the heat flow jump 

and they would be sensitive to the molecular motions occurring in the majority CAF, 

which are slower because of the influence of crystallinity, and the corresponding Tg val-

ues would be shifted to higher temperatures. 

A similar difference between Tg values is also present for the copolymer with higher 

BAz content (BS25BAz75), a sample containing about 50% of BAz chains in the crystal-

line phase. In this sample, the low values of the dielectric Tg would be also indicative of 
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the fact that a significant amount of UCAF is present. Again, the fact that the Tg value 

from DSC occurs at higher temperature would be explained by the slower motions in the 

CAF that are not influencing much the position of the dielectric loss peak. 

6.2.3 Rate dependence in BS45BAz55 copolymer 

BS45BAz55 is the only copolymer where Tg,BDS and Tg,DSC nearly coincide and this 

would mean that no significant UCAF exists in this copolymer, which is congruent with 

the presence in this copolymer of two distinct crystalline phases each rich in one of the 

comonomers.
17

 In the previous chapter (Chapter 4) it was found that in BS45BAz55 copol-

ymer non-trivial differences in the crystalline state appear, depending on the thermal his-

tory used during crystallization. When the melted copolymer was cooled-down at 

relatively high rates, both BS-rich phase and BAz-rich phase crystallization occurs. How-

ever, by self-nucleation of the BS-rich phase the crystallization of the BAz-rich phase was 

strongly reduced due to the fact that BAz crystallization had to occur in the interlamellar 

domains of BS-rich phase spherulites, (Figure 4.10 in Chapter 4). Trying to determine the 

influence of the crystallization process on the dielectric relaxation results, new BDS ex-

periments were performed on a BS45BAz55 copolymer crystallized using different proto-

cols, namely different cooling rates (10 and 50 K/min) and also promoting BS-rich phase 

self-nucleation (annealing at 333 K during 5 min). Representative curves obtained after 

different treatments for BS45BAz55 are shown in Figure 6.7a. When comparing the differ-

ent curves, the strong impact of the way the sample crystallizes on the dielectric relaxa-

tion is evident. At low temperatures, the isochronal plots on fast cooled samples display a 

weaker  relaxation, which implies a higher crystallinity. The quantification of the crys-

talline fraction of the different comonomers in these samples, see Table 6.5, was obtained 

following the same procedure described above. In this way, we obtained high values of 

the BAz fraction in the crystalline phase (RFBS up to 0.39) for the fast cooled sample with 

only slightly smaller BS fraction in the crystalline phase (RFBAz 0.37 vs 0.40). Similarly, 

the analysis of the melting process by DSC experiments on samples subjected to similar 
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thermal histories, shown in Figure 6.7b, also evidenced an increasing BAz crystallinity 

when the cooling rate is increased.  

The previous results show that fast cooling promotes BAz-rich phase crystallization 

most likely because of the limited development of BS crystals. This is in agreement with 

the interpretation of the aforementioned DSC experiments involving BS-rich phase self-

nucleation, where the opposite situation (good development of the BS crystallinity) takes 

place and the crystalline relative fraction of BAz decreases from 0.32 to 0.25 (Table 6.5). 

Thus, when the PBS-rich phase is self-nucleated, it crystallizes to saturation at higher 

temperatures before the PBAz-rich phase starts to crystallize, and therefore the PBAz-rich 

crystallization is mainly restricted to the interlamellar domains of PBS-rich phase 

spherulites which are fully grown and impinged with one another. When considering the 

corresponding effects on the  relaxation, rather dramatic changes among the experi-

mental data recorded on the same copolymer composition (i.e., BS45BAz55) were found 

after using different cooling rates. Namely, for the samples cooled fast enough (at 10 and 

50 K/min) the peak intensity (Figure 6.7a) markedly increases and the peak occurs at sig-

nificantly lower temperatures. These characteristics suggest that in these crystallization 

conditions a significant amount of UCAF exists. The new peak position in this copolymer 

agrees well with that determined for those copolymers with lower BAz amount 

(BS58BAz42 and BS61BAz39) but showing no evidence of BAz comonomer crystallization 

(see Figure 6.6 and the insert showing a close up of the region around the BS45BAz55 co-

polymer data). In agreement with this result, also the glass transition temperature as de-

termined by these new BDS experiments in fast cooled BS45BAz55 copolymer samples 

lies about 5 K below that determined by BDS in the originally measured BS45BAz55 co-

polymer (See Figure 6.6). In spite of that, the value of Tg,DSC in the fast cooled BS45BAz55 

copolymer remains approximately the same, as shown in Figure 6.7c. All this is in line 

with the idea that in addition to RAF and CAF a significant UCAF would be present in 

BS45BAz55 copolymer when it is cooled rapidly from the melt, whereas, if present, it 

would not be relevant when slow BS crystallization is allowed to develop before BAz 
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crystallization can take place. This would be the situation of the sample subjected to self-

nucleation procedure and also that of the copolymer cooled down slowly (at a rate smaller 

than ca. 5 K/min). 

 

 

Figure 6. 7. (a) Isochronal plots of ´´/ for BS45BAz55 copolymer at different cooling protocols 

(10
2
 Hz) for double crystalline BS45BAz55 after being cooled at different rates. And corresponding 

DSC scans: (b) using a heating rate of 10K/min that exhibits both BS-rich phase and BAz-rich 

phases melting peaks, (c) using a heating rate of 3 K/min which shows the Tg,DSC curves. 

All previous results concerning the glass transition temperature as determined by 

BDS and DSC manifest the structural complexity of double crystalline random copoly-

mers. In the particular case investigated here each crystalline phase is rich in one of the 
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comonomers as was evidenced by previous studies. In addition of the crystalline phases, 

three distinct amorphous fractions (RAF, CAF and UCAF) exist in most copolymers. 

Two of them, i.e., CAF and UCAF, contribute to the calorimetric Tg, while UCAF domi-

nates the dielectric relaxation loss peak position defining the dielectric Tg. Finally, all 

three amorphous fractions (RAF, CAF and UCAF) contribute to the local dielectric sec-

ondary relaxation.  

Table 6. 5. BS45BAz55 Mass Fractions in the Crystalline Phase Deduced from BDS (± 0.01) and 

Mass Fractions in the Different Crystalline Forms Determined by DSC (± 0.01), Using Different 

Crystallization Protocols. 

Crystallization 

Protocol 

RFBS  

(BDS) 

RFBAz  

(BDS) 

XmPBS 

(DSC) 

ΧmPBAz 

(DSC) 

50 K/min 0.37 0.39 0.36 0.43 

10 K/min 0.37 0.32 0.36 0.33 

Self-

nucleation 

333 K 

0.4 0.25 0.33 0.3 

 

As can be seen in Figure 6.6 the data points obtained by DSC when represented as a 

function of the amorphous BAz content with respect to the total amorphous content of the 

copolymer lie below the Fox equation predictions obtained using the glass transition tem-

peratures of the semicrystalline homopolymers. A possible explanation for the deviation 

would be that the RAF is relatively enriched in BS comonomers and consequently the 

mobile amorphous fractions would be enriched in BAz comonomers. When considering 

the Tg,BDS values, the comparison with the Fox equation predictions using the glass transi-

tion temperatures of the amorphous homopolymers also show a similar trend, which again 

suggests that the UCAF would be enriched in BAz comonomer. Moreover, the results 

obtained in the BS45BAz55 copolymer crystallized using different protocols indicate that 

the amount of the phases/fractions and the comonomer partitioning in each of them can be 

very sensitive to the sample crystallization details. 
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6.3 Conclusions 

Dielectric relaxation of PBS-ran-PBAz random copolymers provides detailed infor-

mation on the dynamics of the comonomers remaining in the amorphous phase. The char-

acteristics of the more local molecular motions determine the dielectric  relaxation for 

both homopolymers and copolymers, which is in agreement with previously reported re-

sults on polybutadienes with different microstructures.
16

 This result allows using the re-

laxation strength of the dielectric  relaxation to quantify the comonomer fraction 

involved in the crystalline and amorphous phases, with results in overall good agreement 

with crystallinity values determined from DSC experiments. This agreement confirms 

that in these copolymers the amount of comonomer exclusion is much larger than the 

amount comonomer inclusion during crystallization.  

On the other hand, we found that the  relaxation of the copolymers depends not only 

on the crystalline fraction but also on the details of the crystallization process. In most 

cases, the peak temperature of the relaxation determined at low frequencies reflects in 

general segmental motions that are not much affected by the constrains imposed by the 

neighboring crystals. The relatively low values of the resulting dielectric glass transition 

temperatures, when compared with the calorimetric glass transition temperatures, suggest 

the presence of three distinct amorphous fractions in most of the copolymers. Particularly, 

there is a significant amount of unconstrained amorphous fraction (UCAF) dominating 

the dielectric loss peak position. Nevertheless, it seems that there is a majority constrain 

amorphous fraction (CAF) determining the calorimetric glass transition. Experiments also 

showed that the multiphase character and the corresponding comonomer fractions can be 

influenced by the details of the crystallization protocol used. To conclude, it is notewor-

thy of remark that only by the combination of experimental techniques sensitive to differ-

ent aspects of the complex structure of random copolymers formed with crystallizable 

comonomers it is possible to access the details of the structural organization of these ex-

tremely complex polymeric materials. 
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6.4 Appendix  
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Figure A1. Isochronal plots of ´´/ for undried and dried BS homopolymer at 10
1
 Hz.  
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Figure A2. Dielectric loss spectra versus frequency of undried and dried BS homopolymer at 

190K. 
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Figure A1 and A2 present, respectively, isochronal and isothermal plots of permittivity 

losses on undried and high vacuum dried BS samples. In order to obtain the undried BS 

data, the measurements were carried out on a previously dried sample stored for weeks in 

a desiccator and without having been subjected to any further drying protocol. After that 

measurement, the same sample was dried under high vacuum (10
-5

 Torr) overnight and 

the measurements were repeated. Both samples show a clear dielectric relaxation at low 

temperature, which is attributed to local dipole reorientation occurring in the glassy state. 

The dried sample presents a single peak, in agreement with what has been observed in 

similar homopolymers in literature
11

  and in BAz in this work. Moreover, the β relaxation 

measured in dried BS is similar to that determined in amorphous BS by Charlon et al.
6
 

which is in line with the general finding that crystallization of polymers does not affect 

the secondary relaxation except in an amplitude factor.
2, 3, 12, 15

 However Charlon et al.
6
 

observed a double peak structure in the β relaxation of crystallized BS which looks very 

much the same determined by us in the undried BS. The above results clearly evidence 

that new relaxation mode at low-frequencies/high-temperature is not an intrinsic charac-

teristic of PBS but would be most likely related to the uptake of water molecules. This 

finding is against the interpretation given by Charlon et al. in ref (2) where they conclud-

ed that the presence of this new relaxation peak is due to the same molecular arrange-

ments of the β relaxation in fully amorphous BS but taking place in a more constrained 

amorphous environment. Already commented, this interpretation is against the general 

finding that crystallization of polymers does not affect the secondary relaxation except in 

an amplitude factor.
2, 3, 12
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7.1 Introduction 

In this chapter, a detailed isothermal study of the nucleation kinetics, spherulitic 

growth rates and overall crystallization kinetics of PBS-ran-PBAz copolymers is 

performed in a wide composition range in order to demonstrate the dramatic influence 

of composition on crystallization kinetics. By measuring nucleation, growth and overall 

crystallization kinetics, it is possible to ascertain which factors determine the final 

solidification kinetics of the copolymers and assess the influence of composition. In 

addition, the enthalpy of melting of 100% crystalline PBS and PBAz is also determined 

by a novel and practical technique: extrapolating real time synchrotron Wide Angle X-

ray Scattering (WAXS) isothermal crystallization data and isothermal DSC data. 

7.2 Isothermal crystallization 

7.2.1 Nucleation kinetics studied by PLOM  

Nucleation data obtained by polarized light optical microscopy are plotted in 

Figures 7.1a, 7.1b, 7.1c, 7.1d and 7.1e. These figures show the nucleation density ρ 

(N/mm
3
) as a function of time for neat PBS-rich copolymers. On the other hand, due to 

the high nucleation density of the samples which contain only PBAz-rich crystals (i.e., 

BS25BAz75 copolymer and PBAz homopolymer), it was impossible to determine their 

nucleation kinetics.  

The nucleation behavior observed in all samples (e.g., Figures 7.1a, 7.1b, 7.1c, 

7.1d and 7.1e) was close to instantaneous. A more detailed analysis indicates that two 

important parameters affect the nucleation density of PBS-rich copolymers (Figure 

7.1f): (a) the chosen isothermal crystallization temperature and (b) the increase of the 

BAz minor comonomer content.  



Chapter 7 

176 

 

0 1000 2000 3000 4000 5000

0

2x103

4x103

6x103

8x103

1x104

1x104

1x104

 
(N

/m
m

3
)

Time (s)

 90 ºC

 92 ºC

 94 ºC

 96 ºC

 98 ºC

 100 ºC

 102 ºC

PBS
a)

0 20000 40000

0

5x103

1x104

2x104

2x104

3x104

3x104

4x104

 
(N

/m
m

3
)

Time (s)

 70 ºC

 72 ºC

 74 ºC

 76 ºC

 78 ºC

 80 ºC

 82 ºC

 84 ºC

BS82BAz18

b)

0 30000 60000

0

2x104

4x104

6x104

8x104

 
(N

/m
m

3
)

Time (s)

 60 ºC

 62 ºC

 64 ºC

 66 ºC

 68 ºC

 70 ºC

BS61BAz39

c)

 

0 5000 10000 15000

0

1x104

2x104

3x104

4x104

5x104

6x104
 

(N
/m

m
3
)

Time (s)

 40 ºC

 42 ºC

 44 ºC

 46 ºC

 50 ºC

BS58BAz42

d)

 

0 5000 10000

0

1x104

2x104

3x104

4x104

5x104

6x104

 
(N

/m
m

3
)

Time (s)

 32 ºC

 34 ºC

 36 ºC

 38 ºC

 40 ºC

 42 ºC

BS45BAz55

e)

30 40 50 60 70 80 90 100
0

10000

20000

30000

40000

50000

60000

 BS  BS82BAz18  BS61BAz39

 BS58BAz42  BS45BAz55

 
(N

/m
m

3
)

Tc (ºC)

f)

 
Figure 7.1. (a), (b),(c) and (d) Nucleation density as a function of time for PBS and BS58BAz42 copolymer. 

(f) Nucleation density at saturation values (long time) as a function of crystallization temperature Tc.  
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At lower isothermal crystallization temperatures the nucleation density was 

higher than that obtained at higher temperatures, due to the increase in the 

thermodynamic driving force required for nucleation as supercooling increases for any 

given sample.
1
 For example, in the case of PBS homopolymer, when the sample is 

measured at 90ºC, it only takes 3 minutes to fill the whole microscope field with 

spherulites. However, when it is measured at 102ºC, more than one hour is needed for 

the entire field to be completely filled with crystalline superstructures.  

On the other hand, the incorporation of BAz comonomer significantly increases 

the nucleation density for the PBS-rich phase. This can be easily appreciated in Figure 

7.1f, where nucleation density increases with the BAz content, and also in PLOM 

micrographs of PBS-ran-PBAz copolymers presented in Figure 7.2. These micrographs 

were taken, after the samples were cooled from the melt at 5 ºC/min and had impinged 

on one another completely filling the microscope observation field (therefore, the 

temperature at which the images were taken varies depending on the crystallization 

range of the sample).  

 

Figure 7.2. Polarized light optical micrographs of PBS-rich copolymers during non-isothermal 

crystallization from the melt at 5 ºC/min. Pictures were taken when spherulites completely 

covered the microscope field under observation.   

BS82BAz18
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The spherulites are negative in all cases with Maltese Cross extinction patterns. 

Additionally, regular banding was observed in the PBS-rich copolymer spherulites but 

not in neat PBS, where some highly irregular banding can only be observed near the 

spherulite edges in Figure 7.2. The addition of miscible “impurities”, such as 

plasticizers and miscible polymeric components is known to induce banding.
2
 In the 

present case, the addition of comonomeric units in a random fashion within the PBS 

chain also causes a similar effect. The accumulation of the excluded comonomeric units 

near the lamellar surfaces (it has to be remembered that in these isodimorphic 

copolymers there are both included and excluded comonomer units within the crystals 

according to our own previous works in chapters 4,5 and 6) 
3-5

 may be the determining 

factor to induce lamellar twisting in the present case.  

In the case of the compositions rich in PBAz, although the density of nuclei 

could not be measured for both samples, the BS25BAz75 copolymer and PBAz 

homopolymer, results showed that the incorporation of BS comonomer affects 

decreasing the nucleation density, the opposite effect of what occurs in the PBS-rich 

samples. Figure 7.3 shows polarized light optical micrographs of both samples after 

cooling from the melt at 5 ºC/min (Figure 7.3a and 7.3b) and also isothermally 

crystallized at same supercooling temperature (Figure 7.3c and 7.3d). When both 

compositions are cooled from the melt, much lower nuclei density is appreciated in 

BS25BAz75 copolymer because of the incorporation of the addition of BS comonomer 

causes an unexpected antinucleation effect. This effect is better appreciated when both 

are isothermally crystallized at same supercooling temperature, where while PBAz 

continues showing high nuclei density in the micrograph BS25BAz75 copolymer (Figure 

7.3d) less and bigger espherulites appear.  
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Figure 7.3. Polarized light optical micrographs, a) PBAz homopolymer and b) BS25BAz75 

copopolymer during non-isothermal crystallization from the melt at 5 ºC/min. c) BS25BAz75 

homopolymer isothermally crystallized at 35ºC and d) PBAz copolymer isothermally 

crystallized at 24ºC.  

 

7.2.2 Kinetics of superstructural growth (secondary nucleation) by PLOM 

The spherulitic growth rate of PBS and PBS-rich copolymers as a function of the 

isothermal crystallization temperature is shown in Figure 7.4. As explained before, due 

to the high nucleation density of some samples only compositions rich in PBS were 

measured. Experiments were performed by cooling the samples from the melt to a 

chosen crystallization temperature in the range between 100 and 32ºC. From the slope 

of plots of radius versus time (which were always linear), spherulitic growth rates, G 

(μm/min), for each composition was determined at different crystallization 

temperatures. 

Figure 7.4, shows the spherulitic growth rate   (μm/min) as a function of   . In this 

case, only the right side of the typical bell-shape trend caused by the competition 

between thermodynamic control of secondary nucleation and diffusion was observed.
6
 

When lower Tc values were employed, both the nucleation and the growth rates were too 

high and measurements of spherulitic growth before impingement proved impossible.  

BS25BAz75PBAz 

BS25BAz75PBAz 

a) b) 

c) d) 



Chapter 7 

180 

 

 

Figure 7.4. (a) and (b) spherulitic growth rates determined by PLOM for neat PBS and PBS-

rich copolymers. The solid lines are the fits to the Lauritzen−Hoffman (LH) theory. (c) and (d) 
spherulitic growth rates as a function of supercooling.  

The spherulitic growth rate   (μm/min) depends strongly on the copolymer 

composition, as   dramatically decreases with the increase of BAz-units content. As a 

result big differences are observed between compositions with only 18 % of BAz 

content and compositions with more than 39 % of BAz content (see Figure 7.4a and 

7.4b). The supercooling required for crystallization also increases with BAz content in 

the copolymers as a result of the change in equilibrium melting temperature with 

composition. When   is plotted as a function of supercooling (ΔT = Tm
0
 − Tc), using the 

equilibrium melting temperatures (Tm
0
 ) determined below, in Figure 7.4c and 7.4d, it 

can be observed that the representation as a function of supercooling shifts the curves in 

the x-axis “nearly or little” normalizing the differences in crystallization. However, the 

curves are not superimposed also on the vertical axis, as the kinetic differences between 

PBS-rich copolymer chains cannot be normalized by Tm
0 

thermodynamic variable. 
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These results indicate that apart from this thermodynamic effect, also kinetic effects 

affect the chains diffusion of copolymers due to PBS linear sequences are frequently 

interrupted by BAz repeating units and the thermodynamic driving force required for 

crystallization has to increase.
3
  

Summarizing the results obtained so far, the incorporation of BAz units in the 

random copolymers with a majority of PBS content causes two opposing trends: an 

increase in nucleation density and a decrease in spherulitic growth kinetics. The 

competition between these two factors will determine the overall crystallization rate 

(that was determined by DSC and will be presented in the next section).  

7.2.3 Overall Isothermal Crystallization 

To determine the overall crystallization rate of PBS, PBAz and PBS-ran-PBAz 

copolymers, isothermal crystallization experiments were performed by DSC. From DSC 

experiments, the inverse of the half-crystallization time        ) was determined and 

plotted against the crystallization temperature, (Figure 7.5a). The       value is the 

inverse of the time needed to achieve the 50% of the total transformation to the semi-

crystalline state during the isothermal crystallization process and provides an 

experimental measure of the overall crystallization rate which includes both nucleation 

and growth. 

For those compositions rich in PBS, results show that when the BAz comonomer 

content increases the inverse of the half-crystallization time decreases as well as it 

occurs with espherulitic growth (  , explained above in the text. However, as in overall 

crystallization both nuclei density and spherulite growth rate contribute, in this case        does not decrease as dramatically as   with the increase of BAz-units, and 

therefore the nucleation density is thought to affect strongly in DSC crystallization 
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Figure 7.5. Inverse of half-crystallization time as a function of (a) Tc and (b) supercooling ΔT 
for indicated PBS-ran-PBAz samples.  

On the other side, it was not possible to measure the nucleation density of both 

PBAz homopolymer and BS25BAz75 by PLOM, but in this case, the half-crystallization 

time (        determined by DSC for both samples showed an almost equal behavior. 

When these results are plotted against supercooling (  ) (Figure 7.5b), there are no 

differences between the pure PBAz and the copolymers, and the curves in the x-axis are 

shifted normalizing the differences in crystallization temperature exhibited by both 

compositions. Furthermore, the curves are also superimposed on the vertical axis. 

Although the micrographs in Figure 7.3 showed that the density of nuclei decreases 

when 25% of BS content was added in the copolymer, the overall crystallization rate 

seems not to be affected, indicating that two important behaviors could be affecting the 

crystallization of PBAz-rich copolymers: (a) the aggregation of BS comonomer has a 

plasticizing effect in the PBAz-rich phase or (b) the inclusion of this BS-units in the 

PBAz crystalline region could easily be carried out and the exclusion of these units does 

not limit that much the crystallinity. This latter behavior would be in overall good 

agreement with what Wending Sutter equation proposed in (Figure 7.13a), explained 

below in the text. This theory suggested that the energy barrier needed in order to 

introduce BS comonomer units in the PBAz-rich crystalline face is much lower than in 
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the opposite case. In addition, the estimation of the minor comonomer percentage 

incorporated in PBAz crystals predicted a large amount of comonomer inclusions.  
7.2.4 Fitting of DSC Isothermal Data to the Avrami Model 

The isothermal experimental data obtained from the DSC measurements were fitted 

to the Avrami equation.
7-9

 

1 − Vc (t – t0) = exp(−k(t – t0)
n
)      7.1 

where       is the relative volumetric transformed fraction as a function of time,   the 

experimental time and    is the induction time for crystallization.   is the overall 

crystallization rate constant and   is the Avrami index, which strongly depends on both  

the time dependence of the nucleation (  ) and the crystal growth geometry (  ). 
10

 In 

polymers with spherulitic-type morphology (3D structure), the Avrami index expected 

is between 3 and 4, while in crystals growing with 2D aggregates, such as axialites, the 

Avrami values would be between 2 and 3. In both cases, the final value will depend on 

whether the nucleation event is sporadic or instantaneous.
6, 11, 12

   

The fits to the Avrami equation were performed using the Origin plug-in 

developed by Lorenzo et al.
7
, and in Figure 7.6 an example of a representative fit of 

Avrami model for the BS25BAz75 copolymer crystallization at 24ºC is plotted. 

Even though Avrami fit estimations were made for all the compositions and at 

different crystallization temperatures, the result of the BS25BAz75 copolymer was taken 

as an example of a good fit between the Avrami model and the experimental data 

predicted by DSC isothermal scans. In Figure 7.6c it can be observed how the Avrami 

equation could perfectly describe the overall crystallization kinetics of the chosen 

copolymer in the primary crystallization range, i.e., in a  conversion range of 3−20%, 

with a correlation coefficient of 1.000. The fit of the Avrami equation was very good 

until at least 50% conversion (see Figure 7.6a and Figure 7.6b) and only experienced 

significant deviations from the experimental data beyond 75% conversion. 
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Figure 7.6. (a–c) The fits to the Avrami equation using the Origin plug-in developed by Lorenzo 

et al.
7
 and the experimental data for the BS25BAz75 copolymer sample. 
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Figure 7.7 shows the Avrami index as a function of    for all the compositions. 

Most of the samples exhibited an expected Avrami index value between 2.5 and 4, since 

by PLOM spherulites were observed for all the samples. In addition, it appears to be a 

tendency of increasing the Avrami index with temperature, due to a more sporadic 

nucleation produced at lower temperatures. Nevertheless, some compositions exhibited 

Avrami index values close to 1.5, a value which agreed well with instantaneously 

nucleated axialites (or 2D aggregates). This low value could be explained for several 

reasons. On the one hand, the high nucleation density of the samples. It must be 

remembered that by adding BAz comonomer units the nucleation density was greatly 

enhanced, and the samples in which PBS-rich phase crystallizes but with the highest 

BAz content show the lowest Avrami index values. On the other hand, the low 

isothermal temperatures,    values, used to study the overall crystallization rate by DSC, 

which produced an even more instantaneous nucleation. In DSC studies, the overall 

crystallization kinetics can be determined at even lower temperatures than those 

employed in determining spherulitic growth kinetics, as long as the sample does not 

crystallized during the cooling step to Tc (at 60 ºC/min). 
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Figure 7.7. Avrami index as a function of Tc. 
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7.2.5 Enthalpy of fusion of the 100% crystalline polymers 

The heat of fusion of a 100 % crystalline polymer (          ) is a required value 

for the estimation of crystalline fraction of polymers by DSC. In this work, we have 

reevaluated these values for both PBS and PBAz employing combined DSC and X-ray 

diffraction (WAXS) measurements.  

In order to calculate the           
 of a polymer, the most commonly used method 

in the literature is to prepare samples with different crystallinity degrees (applying 

different cooling rates for instance) and then determine their crystallinities by WAXS. 

The experimental heats of fusion are determined by DSC and then a plot is made of 

WAXS crystallinity degree versus enthalpy of fusion and an exptrapolation is made to 

100% crystallinity. The difficulty in this method is that it is not easy to prepare fast 

crystallizing polymer samples (like PBS and PBAz) with different crystallinities. In 

fact, if the available values from the literature are examined,
13, 14

 they were determined 

by extrapolating 6 measurements only. 

In the present work, we propose a new fast method to determine the 100% enthalpy 

of fusion of a fast crystallizing polymer by making use of real time WAXS 

measurements at the synchrotron. A sample of each homopolymer was heated to erase 

its thermal history (at a temperature 30 ºC higher than the melting peak registered by 

DSC at 10 ºC/min) and then cooled at 50 ºC/min to a selected crystallization 

temperature. During the isothermal crystallization process, WAXS patterns were 

obtained every 10 seconds until the sample complete its crystallization process. 

Employing the WAXS patterns, the crystallinity values were calculated using the 

relative areas under the crystalline peaks. Before the crystallization starts, just when the 

sample reaches the desired crystallization temperature after cooling from the melt, the 

sample is in the melt, so the WAXS pattern at time= 0 corresponds to the amorphous 

halo that is later used for the crystallinity calculations. Figure 7.8 shows an example of 

the WAXS patterns observed at different crystallization times at a Tc=34ºC for PBAz 

homopolymer. 
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Figure 7.8. WAXS patterns for PBAz homopolymer at different crystallization times at 34ºC.  

In Figure 7.9, crystallinity degree values calculated by WAXS are plotted 

against the crystallization enthalpy values obtained at each measured time from the 

respective DSC isothermal curve. Both DSC and WAXS measurements were done at 3 

different isothermal temperatures for each homopolymer. 

The values for the enthalpy of fusion of the 100% crystalline polyester were 

found to be           = 150±10 J/g for PBS and           = 137±10 J/g for PBAz. In 

the case of PBS, this value resulted between           = 110 J/g estimated empirically 

by the group contribution method
15

 and the           = 210 J/g calculated by 

Papagerorgiu et al.
14

. In the case of PBAz, the new value resulted lower than           = 160 J/g estimated by the group contribution method
15

 and also than the           =150 J/g calculated by Papagerorgiu et al.
13

. 
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Figure 7.9. DSC crystallization enthalpy values as a function of crystallinity degrees obtained 

by WAXS.  

 

7.2.6 Equilibrium Melting Temperature (Tmº) 

The equilibrium melting temperature    , is the melting point of lamellar crystals 

with infinite thickness and negligible surface effects on melting. It represents the first 

order transition of a hypothetical macroscopic perfect crystal.
16

 It is very important to 

determine this parameter in order to analyze the crystallization growth kinetics, and in 

the case of copolymers every composition will show a different value of    , as melting 

is a function of the nature, type and distribution of comonomer units.
16

 In this work, 

several methods have been used to estimate this value.  

The first method used to evaluate     was The Thomson−Gibbs approach,
17, 18

 which 

is based on the thermodynamic consideration that the melting temperature of a crystal of 

finite thickness is smaller than that of a crystal of infinite thickness. The 

Thomson−Gibbs approach is also considered a good way in order to obtain     values of 

copolymers, since more than one experimental technique is used for its calculation, such 

as the DSC and SAXS. The method follows equation 7.2: 

                          7.2 
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where     is the equilibrium melting point,         is the enthalpy per unit volume of 

a perfect crystal (100% crystalline), and σe is the fold surface free energy. Following 

this equation, experimental values of melting temperature obtained by DSC after 

isothermal crystallization are represented linearly as a function of the inverse of the 

lamellar thickness (l), determined by SAXS, and the intersection with the ordinate axis 

will represent the melting temperature of a crystal of infinite thickness, which is the 

equilibrium melting temperature of the defect-free crystal (Figure 7.10b).  
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Figure 7.10. (a) Lorentz-corrected SAXS profiles, with I·q
2
 as a function of the scattering 

vector. (b) Representation of the Thomson−Gibbs plots to obtain Tmº for all PBS-ran-PBAz 
samples.  

For each composition, between 5 and 9 samples were prepared and isothermally 

crystallized at different temperatures. For that, they were firstly heated to above 30ºC of 

their melting point during 3 minutes and afterwards cooled down at 60ºC/min (in order 

to prevent crystallization during cooling) to a chosen crystallization temperature. The 

samples were left at those temperatures the time required to crystallize and finally 

quenched to room temperature. Figure 7.10a shows the SAXS measurements performed 

to BS58BAz42 samples after the thermal treatment explained above.  All samples exhibit 

a clear intense maximum that can be interpreted as the scattering caused by lamellar 
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stacks, and from those     , values the long periods (  ) were estimated by equation 

7.3 from Lorentz corrected plots (    versus  ):                    7.3 

The calculation of the lamellar thickness    , was performed employing the 

approximation        , where    is the crystalline fraction. For that, after the SAXS 

measurements, DSC heating scans were also performed to the same samples in order to 

obtain the experimental melting points, melting enthalpies and therefore crystalline 

fractions.
3
 Then applying the Thomson−Gibbs equation,17, 18

 the inverse of lamellar 

thickness values were plotted versus the experimental melting points of the isothermally 

crystallized samples (Figure 7.10b), and from the intercept the equilibrium melting 

temperatures (   ) were determined, (see Table 7.1).  

The second method used to estimate     values was the Hoffman-Weeks plot,
19

 

which involves the extrapolation of a linear region of melting temperatures (  ) 

observed experimentally at various crystallization temperatures (  ), to the 

thermodynamic equilibrium line    =   .
20, 21

 From the intercept     is calculated.  

Figure 7.11a shows an example of the DSC heating scans after the previous 

isothermal crystallization at different temperatures for BS82BAz18 copolymer. Despite 

the fact that two peaks were observed at low temperatures, only the peak which varies 

when the    increases was taken into account, since the second peak occurs after a 

recrystallization process during the heating scan and did not reflect the melting of the 

isothermally formed crystals. In addition, the extrapolation of melting temperatures 

(  ) to the thermodynamic equilibrium line       of all compositions is observed in 

Figure 7.11b, and     values of the intercept showed in Table 7.1.  
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Figure 7.11. (a) DSC heating scans after a previous isothermal crystallization at different 

temperatures in BS82BAz18 copolymer.  (b) Hoffman–Weeks plots for all compositions (the black 

line represents the thermodynamic equilibrium line Tm=Tc).  

Table 7.1 and Figure 7.12 reports the     obtained by both methods. For 

comparison purposes, we compare in both Table 7.1 and Figure 7.12 the end melting 

temperatures determined by DSC on non-isothermally crystallized samples (previously 

cooled from the melt at 20 ºC/min and then heated at the same rate). These are the 

temperatures where the endothermic signal of the DSC trace finally disappears and joins 

the DSC base line, i.e., when all traces of crystallinity disappear. These values represent 

the melting points of the thickest possible lamellae in the material, even if they had 

reorganized during the heating DSC scans.  

Table 7.1 and Figure 7.12 also show the end melting temperatures determined 

during the final heating DSC scans of samples submitted to Successive Self-nucleation 

and Annealing (SSA) thermal fractionation obtained from a previous work 
4
). The final 

melting temperature after SSA treatment
22

 represents the melting of even thicker 

lamellae as this method promotes successive annealing. 

Hoffman-Weeks and Gibbs-Thomson methods give extrapolated values that 

theoretically represent the fusion of infinite crystals, without surfaces or defects and 

with extended chains. Therefore they should always be greater than any experimental 

value.  In general terms, this expectation is corroborated in Table 7.1 and Figure 7.12.  
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Table 7.1. Experimentally obtained end melting temperatures ( Tm(end) ) and equilibrium melting 

temperatures,      (ºC), obtained by different techniques. 

 

 

 

 

  

 

 

The     determined by Hoffman-Weeks for pure PBS (136 ºC) is similar to 

previously reported values (125-134ºC)
14, 23-25

, and the     measured by Gibbs-Thomson 

(148ºC) is also similar to reported values in the literature that have employed the same 

method (146.5 ºC).
14, 24

 In the case of PBAz, only values obtained from Hoffman-

Weeks extrapolation were found in literature,
13, 26

 53ºC and 67ºC respectively which 

agree very well with the calculated in this work.  

In the case of the extrapolated            for the copolymers, determined by both 

GT and HW methods, a significant scattering of the data as a function of composition 

can be seen in Figure 7.12, which is a consequence of both experimental errors and 

extrapolation errors.  

In order to get a smoother trend with composition, we have performed a 

reasonable approximation which is also reported in Figure 7.12. In the case of 

homopolymers, the Tmº data is usually considered more reliable than in the case of 

copolymers.
11

 If the data related to PBS in Table 7.1 is examined, the differences 

between SSA experimental melting point and the highest Tmº values obtained by GT is 

 

Tm(end) 

from 

DSC scans 

Tm(end) 

from 

SSA 

    

Hoffman-

Weeks 

(HW) 

    

Gibbs-

Thomson 

(GT) 

   (SSA/GT) 

BS 118 119 136 148 148 

BS82BAz18 100 102 126 139 129 

BS61Baz39 79 82 100 114 107 

BS58BAz42 68 68 93 102 104 

BS45BAz55 58 61 88 92 92 

BS25BAz75 41 43 42 50 57 

BAz 46 48 56 68 68 
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29 ºC. In other words, the ideal crystals have an equilibrium melting temperature which 

is 29 ºC higher than the apparent or experimentally determined melting temperature of 

the thickest possible crystals that can be prepared by SSA. Therefore, we have assumed 

that the 29 ºC difference can also hold for the PBS rich copolymers phase and we have 

added this constant value to the experimentally determined SSA value in order to 

estimate Tmº(SSA/GT) values that have a smoother trend with copolymer composition 

and are in fact not far from the values determined by GT method as reported in Table 

7.1. For PBAz-rich phases, the added factor was 20 ºC in correspondence with the 

difference between SSA experimental melting point and the highest Tmº values 

obtained by GT.  
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Figure 7.12. Experimentally obtained end melting temperatures Tm(end) and equilibrium melting 

temperatures, Tmº(ºC), versus BAz molar content. 

 

7.2.7 Study of co-units cocrystallization by comparing the equilibrium melting 

point with theoretical exclusion-inclusion models 

Several theories have been developed in order to explain copolymer crystallization 

and the partitioning of co-units between the crystalline and amorphous phase in random 

copolymers by using the experimental estimations of the equilibrium melting points. 

Those models account for the effect of exclusion and inclusion in copolymer crystals, or 

the effect of composition on competition for cocrystallization when inclusion occurs. 
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Those which assume comonomer exclusion from the crystal into the amorphous 

phase, are Flory
27

 and Baur
28

  exclusion theories. The Flory theory was the first to treat 

the issue of crystallization of random copolymers. Neglecting the enthalpy of mixing for 

the two comonomer units, the equilibrium melting point of a copolymer containing a 

concentration    of non-crystallizable comonomer can be expressed as: 

                                       7.4 

where     and       are the homopolymer equilibrium melting temperature and heat of 

fusion, and R is the universal gas constant. 

Baur improved the Flory expression on the basis of the concept of “hindered 

equilibrium” introduced by Kilian:29 

                                           7.5 

Where,                    is the average length of crystallizable 

homopolymer sequences in the melt.  

Subsequent theoretical works accounted for the inclusion of the comonomer B in 

crystals of the A repeating unit. Sanchez and Eby
30

 suggested that when the B 

comonomer was partially included into the crystal of A, it could act as a defect and 

modify the equilibrium melting point according to: 

                                              7.6 

where           is the equilibrium fraction of B repeat units that are able to crystallize, 

and ε is the excess free energy of a defect created by the incorporation of one B unit into 

the crystal. 

Then Wendling and Suter
31 

proposed a more thorough treatment of the problem 

to account for isodimorphic behavior, employing the new parameter to calculate the 

https://www.sciencedirect.com/topics/chemistry/enthalpy-of-mixing
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defect Gibbs free ( ). This model takes into account the energy required by minor 

comonomer repeating units to introduce in the crystal lattice and also assumes that the 

free energy penalty paid to accommodate a defect in the crystal decreases while the 

amount of included comonomer increases:  

                                                                       7.7 

where     is the concentration of the B unit in the crystal. If there is an equilibrium 

comonomer inclusion, the concentration of comonomer B unit in the crystal is given by: 

                                 7.8 

And when     in equation 7.7 is substituted by equation 7.8 gives a simplified 

equation following equilibrium inclusion model, equation 7.9: 

                                               7.9 

where: 

                                           7.10 

The case of complete exclusion and of uniform inclusion can be obtained as 

particular solutions to this equation. 

Figure 7.13a shows the results after employing Flory, Baur, Sanchez-Eby and 

Wendling-Suter models to determine the equilibrium melting temperatures of PBS-ran-

PBAz polyesters in comparison to the Tmº (SSA/GT) previously described. As can be 

seen, the Flory and Sanchez-Eby models did not fit the experimental values since they 

lead to an overestimation of the equilibrium melting points. Regarding Baur, its 

prediction seems to be more realistic for PBS rich compositions. Previous works in 

Chapter 6 showed that in these copolymers the amount of comonomer exclusion was 

much larger than the amount of comonomer inclusion during crystallization, and 
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therefore good agreement should be found between experimental and Baur calculated 

data. However, a good fit for the PBAz-rich compositions was not found.  
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Figure 7.13. (a) Comparison of the experimental equilibrium melting temperatures with the 

theoretical melting temperatures predicted by the different equations; ε = 5.25 for PBS-rich 

phase and ε =1.7 for PBAz-rich phase.  (b) Equilibrium concentrations of the minor 

comonomer units in the crystal of the homopolymer corresponding to the major comonomer, as 

a function of copolymer composition. 

The Wendling-Suter model showed the best fit to the experimental data for 

lower comonomer content and allowed to calculate the defect Gibbs free ( ) energy.   

was calculated from the function      which was determined as an adjustable 

parameter and was constant regardless of the comonomer composition. In case of 

including BAz comonomer units in PBS-rich crystals, the best fit was found for   5.25 
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kJ/mol, in the limiting case where       . On the other hand, when the average defect 

free energy in the case of incorporation of BS repeating units into the PBAz-rich crystal, 

the best fit was found for    1.7 kJ/mol.  The low value of   in the case of 

incorporation of BS units in the PBAz crystal indicates that BS units are much easier to 

include within PBAz crystal unit cells. This result together with the Baur´s failed fit, 

would lead to the conclusion that the comonomer inclusion in PBAz-rich phase would 

be larger than expected, and therefore it would be in good agreement with the results 

obtained from the isothermal crystallization in PBAz-rich compositions (Figure 7.5b), 

which showed that when (         values are plotted against supercooling (  ), the 

curves in the x-axis and vertical axis are superimposed.  

The Wendling-Suter model results were further used in order to estimate the 

percentage of the minor comonomer units which were practically incorporated in both 

cases PBS and PBAz the crystals. Using Eq. 7.8 the equilibrium concentration of minor 

comonomer repeat units in the crystal was calculated and plotted as a function of minor 

comonomer fraction in Figure 7.13b. On the one side, in case of PBS-rich compositions, 

despite the comonomer concentration in crystals increases with increasing the 

comonomer composition, it continues being small and much lower than the copolymer 

concentration corresponding to uniform inclusion, i.e.    =  . And in the other side, for 

PBAz-rich compositions, a large amount of comonomer inclusions was predicted.  
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7.3 Conclusions 

Two very different behaviors were found when analyzing the isothermal 

crystallization of PBS-ran-PBAz random copolymers. On the one hand, the 

incorporation of BAz-units greatly affected the crystallization of the PBS-rich 

compositions, increasing the density of nuclei and slowing down the crystallization rate 

due to the difficulty of incorporating units of this minor comonomer. On the other hand, 

a totally different behavior was found in PBAz-rich compositions, where the 

incorporation of BS-units not only did not affect the crystallization of this copolymer a 

lot, but also an antinucleating effect could be appreciated. The thermodynamic analysis 

of the equilibrium melting point depression corroborated both effects, concluding that in 

the case of PBS-rich compositions only a small portion of BAz comonomer units were 

able to introduce into the PBS crystals, and in the case of PBAz-rich compositions great 

inclusion of BS-units was observed. The extent of comonomer inclusion in the crystal 

lattice controls the crystallization behavior of isodimorphic copolymers, affecting for 

instance the shape of the pseudo-eutectic curves, the degree of crystallinity and the rate 

of crystal formation. 

Techniques such as WAXS, SAXS and DSC were successfully used in order to 

calculate the equilibrium melting temperature of this random copolymers and the less 

known heat of fusion of 100 % crystalline polymer value. 
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8.1 Conclusions 

A summary of the main conclusions is present below: 

i. Isodimorphic behavior of copolymers was corroborated since despite being 

random all compositions are able to crystallize, their melting temperature goes 

through a eutectic point when plotted as a function of composition and WAXS 

results showed that small but reproducible changes are produced in the 

crystalline unit cell of the dominant crystalline phase upon inclusion of 

comonomer units.  

ii. Regulating the composition of isodimorphic random copolymers is a valuable 

tool to tailor their properties in an unusually wide temperature ranges such us 

melting temperature, crystallization degree, crystallization rate and nucleation 

density.  

iii. In the case of the double crystalline BS45BAz55 copolymer, the self-nucleation 

process of the PBS-rich phase separated the crystallization of both phases, 

corroborating the double crystalline behavior which was also studied by WAXS, 

SAXS, PLOM, and AFM.  

iv. SSA (successive self-nucleation and annealing), a thermal fractionation 

technique that promotes segregation of molecular defects that interrupt 

crystallizable sequences, was successfully used to fractionate PBS-ran-PBAz. 

This thermal treatment allows a more thorough examination of the isodimorphic 

nature of the copolymers, and small-angle X-ray scattering (SAXS) and WAXS 

analysis of the samples before and after SSA fractionation concluded that the 

degree of comonomer exclusion remained almost unchanged, corroborating the 

isodimorphic behavior of the copolymers. 

v. The study of the dielectric relaxation of PBS-ran-PBAz random copolymers 

provided detailed information on the dynamics of the comonomers remaining in 

the amorphous phase. And the results of these measurements led us to quantify 
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both the comonomer fraction involved in the crystalline phase as well as the 

amorphous phase. 

vi. Regarding to the isothermal crystallization of this copolymers, the incorporation 

of BAz-units greatly affected the crystallization of the PBS-rich compositions, 

increasing the density of nuclei and slowing down the crystallization rate. 

Opposite effect occurs in the case of incorporating BS-units in PBAz-rich 

crystalline phases, where apart from the crystallinity rate is not affected an 

antinucleating effect is also appreciated.  

vii. In this isodimorphic copolymers, when the percentage of comonomer inclusion 

was calculated, results concluded that only a small portion of BAz comonomer 

units were able to introduce into the PBS crystals, while a great inclusion of BS-

units in PBAz-crystals was observed. 
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Resumen 

Con el objetivo de reducir la dependencia del petróleo y evitar la acumulación de resi-

duos plásticos, teniendo en cuenta el gran aumento del uso de los plásticos de un solo uso 

en muchas áreas como el envasado, el desarrollo de nuevas alternativas más ecológicas se 

ha intensificado. El objetivo de estas alternativas es utilizar materiales que cubran todas 

las necesidades de acuerdo con la aplicación requerida, y al mismo tiempo puedan sufrir 

degradación por estímulos ambientales después de su vida útil, como es el caso de los 

bioplásticos. 

Entre estos bioplasticos, la familia de poliésteres alifáticos es una de las más atractivas 

debido a su biodegradabilidad y biocompatibilidad. Debido al interés que han generado, 

se han publicado numerosos trabajos de investigación relacionados con poliésteres alifáti-

cos biodegradables. Desafortunadamente, este tipo de biopolímeros no suelen cumplir 

todos los requisitos mecánicos necesarios y además se caracterizan por una alta cristalini-

dad que limita su velocidad de biodegradación. Por lo tanto, para adaptar estas propieda-

des, se ha realizado la síntesis de copoliésteres aleatorios con comonómeros biobasados 

para obtener copolímeros al azar versátiles. La copolimerización se ha utilizado para limi-

tar su grado de cristalización y mejorar sus propiedades físicas, y así poder extender sus 

aplicaciones en el mercado de polímeros biodegradables. Adicionalmente, algunos traba-

jos han mostrado que a través de la variación de la composición del copolímero, las pro-

piedades térmicas pueden controlarse sin una pérdida significativa de las propiedades 

cristalinas. 
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Entre los polímeros más estudiados están los poliésteres termoplásticos alifáticos. Con 

el fin de controlar la hidrofobicidad, la cristalinidad y la degradación actualmente se in-

vestigan la formación de copolímeros al azar que puedan ser fácilmente sintetizados, ya 

que la copolimerización y las mezclas son maneras versátiles de aumentar la cantidad de 

polímeros biodegradables. Por ello la preparación de nuevos poliésteres ofrece una gran 

oportunidad para aumentar la gama de materiales degradables e incluso para generar un 

conjunto de productos con propiedades fácilmente ajustables. Recientemente se han des-

arrollado diferentes tipos de copolímeros de poli(butilén succinato) (PBS)  para aumentar 

la biodegradabilidad, disminuir los costes, aumentar la oferta comercial e incluso modifi-

car las propiedades finales. Este es el caso de los copolímeros poli(butilénsuccinato-ran-

butilénazelato), PBS-ran-PBAz,  utilizados para este trabajo y cuya estructura química se 

muestra a continuación, la figura 1: 

 

Fig.  1. Estructura química del poli(butilénsuccinato-ran-butilénazelato), PBS-ran-PBAz. 

El poli(butilén succinato) (PBS) utilizado en este proyecto, es un material de interés 

debido a su relativo bajo coste de producción, buenas propiedades térmicas,  mecánicas y 

fácil procesabilidad. De hecho, el PBS junto con la polilactida y los polihidroxialcanoatos 

son algunos de los poliésteres más relevantes utilizados como polímeros verdes. Además, 

es significativo que el PBS es un derivado del  ácido succínico, que normalmente se pro-

duce mediante acción microbiana en el ciclo del ácido tricarboxílico metabólico utilizado 

para la producción de energía.  
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El ácido azelaíco, copolimerizado con el poli(butilen succinato) para este trabajo, se 

diferencia del PBS en que tiene siete metilenos en el grupo ácido mientras que el ácido 

succínico sólo dos, por lo tanto es un comonómero ideal para el presente estudio. 

Además, se puede conseguir por ozonólisis del doble enlace alqueno del ácido oléico y la 

posterior oxidación y reducción. Por lo tanto, estos copolímeros se pueden derivar a partir 

de fuentes renovables. 

El estudio del comportamiento de cristalización de los copolímeros al azar es muy im-

portante debido a su fuerte correlación con la velocidad de biodegradación, propiedades 

mecánicas y aplicaciones. Para este propósito, el proyecto de investigación titulado: Crys-

tallization and Morphology of Poly(butylene succinate-ran-butylene azelate) Random 

Isodimorphic Copolymers, se ha desarrollado en la Universidad del País Vasco 

(UPV/EHU) en el departamento de Ciencia y Tecnología de Polímeros de la Facultad de 

Química. 

Para poder estudiar la estructura, morfología y cristalización de estos copolímeros 

primeramente debemos saber cómo pueden cristalizar los copolímeros al azar constituidos 

por dos unidades cristalizables, ya que pueden mostrar un comportamiento de cristaliza-

ción diferente dependiendo de la compatibilidad de los dos componentes en las redes cris-

talinas. Las unidades de comonómero pueden ser excluidas totalmente y permanecer en la 

fase amorfa o se puede observar la cocristalización si las unidades de comonómero son 

similares en estructura química, longitud de unidad de repetición y / o conformación de la 

cadena de cristal. Se han reportado dos casos de comportamiento de cocristalización: 

isomorfismo o isodimorfismo. 
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En el caso de los polímeros isomórficos,  se caracterizan por  la formación de solo una 

fase cristalina que contiene ambas unidades cristalinas. En este caso, estas unidades deben 

cumplir requisitos estrictos moleculares como tener una estructura similar e incluso una 

conformación molecular que permita su inserción en la estructura cristalina resultante con 

una distorsión mínima. En el caso de los polímeros isodimórficos, se observan dos fases 

cristalinas. En cada una de las fases predomina la estructura cristalina de un tipo de uni-

dad repetitiva pero con inclusión de un cierto porcentaje de unidades repetitivas del se-

gundo componente. El aumento de la concentración del comonómero minoritario en cada 

fase cristalina reduce la temperatura de fusión y la cristalinidad de los copolímeros. El 

isodimorfismo implica que al menos una de las dos fases cristalinas incorpore el compo-

nente minoritario correspondiente en su red cristalina. Los requisitos en este caso son 

menos estrictos, y en consecuencia el isodimorfismo se observa con más frecuencia en la 

cristalización de copolímeros al azar que el isomorfismo.  

Con el fin de estudiar la estructura y cristalización de los copolímeros isodimórficos 

PBS-ran-PBAz, se ha realizado este trabajo de tesis que se encuentra dividido en 8 capí-

tulos. El primero muestra una introducción general así como la revisión de los anteceden-

tes y el estado actual de las estrategias seguidas para el estudio de los copolímeros PBS-

ran-PBAz. En el segundo capítulo, a modo de introducción teórica, se exponen los prin-

cipales fundamentos teóricos en relación a la morfología y cinética de cristalización, con 

el fin de ayudar a un mejor entendimiento de la investigación que se ha realizado. Y en el 

tercer capítulo se presentan los materiales utilizados y sus principales propiedades. En 

este capítulo, además se incluyen las principales técnicas instrumentales y las condiciones 

empleadas en la experimentación. 
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Los capítulos 4, 5, 6 y 7 muestran los resultados de los diferentes experimentos reali-

zados a lo largo del trabajo.  Resumiendo, en el cuarto capítulo de este trabajo se ha estu-

diado la estructura, cristalización no isotérmica y morfología de los copolímeros PBS-

ran-PBAz sintetizados previamente por Mincheva et al. Para ello hemos utilizado las 

técnicas de Calorimetría Diferencial de Barrido (DSC), Difracción de Rayos X a Altos 

Ángulos (WAXS) y Difracción de Rayos-X de Ángulo Pequeño (SAXS), y los hemos 

correlacionado los resultados con los obtenidos de Microscopía Óptica de Luz Polarizada 

(PLOM) y Microscopía de Fuerza Atómica (AFM). Nuestros resultados muestran que los 

copolímeros pueden considerarse isodimórficos en tales condiciones debido a que aunque 

los copolímeros sintetizados son al azar, como se demuestra por RMN, todas las muestras 

son capaces de cristalizar y sus temperaturas de cristalización y fusión dependen mucho 

de la composición. Las medidas de WAXS demostraron que aparte de una composición 

alrededor del punto eutéctico, todos los otros copoliésteres al azar se caracterizaban por 

una única cristalización con reflexiones del componente más abundante, y que se produ-

cen cambios pequeños pero reproducibles en la celda unitaria de la fase cristalina domi-

nante tras la inclusión de unidades de comonómero. Este ligero aumento de volumen se 

da para acomodar las unidades repetitivas adicionales que coexisten con el componente 

principal como resultado del isodimorfismo. A su vez, los resultados de WAXS, SAXS, 

PLOM, AFM y SAXS para el copolímero doblemente cristalino BS45BAz55, sugieren que 

cuando el material se enfría desde el fundido, primeramente se forman esferulitas ricas en 

PBS creando una plantilla (o “template”) para la morfología del copolímero. Al enfriar 

más la muestra, la fase rica en PBAz cristaliza formando lamelas mucho más pequeñas 



   Resumen                                                                                                                            

216 

que se apilan dentro de las regiones interlamelares de las esferulitas ricas en PBS y los 

dos tipos de lamelas coexisten dentro de estas esferulitas mixtas inusuales.  

En el quinto capítulo de este trabajo se han utilizado las técnicas de Autonucleación y 

Autonucleacion y Recocido Sucesivo (SSA), llegando a la conclusión de que el isodimor-

fismo se debe a la similitud de las unidades repetitivas de PBS y PBAz y es independiente 

de los factores cinéticos. Esta conclusión se alcanza después de determinar que el grado 

de exclusión del comonómero permanece casi sin cambios incluso después de SSA, una 

técnica de fraccionamiento térmico que promueve la segregación de defectos moleculares 

que interrumpen las secuencias cristalizables. El estudio de autonucleación fue a su vez 

de gran ayuda para entender la cristalización del copolímero doble cristalino BS45BAz55, 

ya que cuando este material se enfría desde el fundido a una velocidad de 10 ºC/min, la 

cristalización de las dos fases se produce de manera coincidente, y después del proceso de 

autonucleación de la fase cristalina rica en PBS, se puede lograr la cristalización separada 

de ambas fases. 

En el sexto capítulo se muestran los resultados de las medidas dieléctricas realizadas a 

estos copolímeros. La cristalinidad de los materiales poliméricos afecta las propiedades 

de la fase amorfa remanente de una manera compleja. Las restricciones que la fase crista-

lina ejerce en la fase amorfa de los polímeros suele conducir a la dificultad de medición 

de la transición vítrea para materiales con cristalinidad de alrededor del 50% o más me-

diante DSC. Este resultado generalmente se atribuye a la presencia de segmentos amorfos 

que forman lo que se ha denominado la fracción amorfa rígida (RAF), cuyos movimientos 

están severamente restringidos por los cristales. En vista de esto, un polímero semicrista-

lino estaría compuesto por al menos 3 fracciones: la cristalina, el RAF y la fracción amor-
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fa móvil o MAF. Este último sería responsable de la transición vítrea medible por DSC, 

mientras que el proceso de fusión y las reflexiones de difracción de rayos X son manifes-

taciones de la fase cristalina. 

Al analizar la relajación dieléctrica de estos materiales, hemos tenido acceso tanto a la 

dinámica local como a la segmentaria. El análisis de datos proporcionó las distintas con-

tribuciones de los grupos succinato y azelato a la relajación del copolímero, permitiendo 

una cuantificación de la fracción de cada componente involucrado en la fase cristalina. La 

buena concordancia entre los valores determinados a partir de las medidas dieléctricas y 

la cristalinidad obtenida a partir de los experimentos con DSC demuestra que el grado de 

exclusión de comonómero en estos copolímeros al azar durante la cristalización es mucho 

mayor que la inclusión del comonómero. Además, el comportamiento de cristalización de 

estos copolímeros en diferentes protocolos de enfriamiento mostró que la relajación no 

solo depende de la fracción cristalina sino también de los detalles del proceso de cristali-

zación en estos copolímeros multifásicos complejos. 

En el séptimo capítulo y último de resultados hemos realizado estudios isotérmicos de-

tallados de la cinética de nucleación, velocidad crecimiento esferulítico y cinética de cris-

talización global de los copolímeros PBS-ran-PBAz en un amplio rango de composición 

para demostrar la influencia dramática de la composición sobre la cinética de cristaliza-

ción. Al medir la nucleación, el crecimiento y la cinética de cristalización global podemos 

determinar qué factores afectan a la cinética de solidificación final de los copolímeros y 

evaluar la influencia de la composición. Además, determinamos la entalpía de la fusión 

del PBS y PBAz 100% de cristalinos mediante un procedimiento novedoso y práctico: 

extrapolando datos de cristalización isotérmica de WAXS a tiempo real con los datos de 
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DSC isotérmicos. También se ha hecho uso de varias teorías de exclusión e inclusión para 

explicar la cristalización de copolímeros y la partición de counidades entre la fase crista-

lina y la fase amorfa en copolímeros al azar usando las estimaciones experimentales de 

las temperaturas de fusión en equilibrio (Tmº). Para ello se han calculado los valores de 

Tmº de todos los copolímeros mediante las ecuaciones de Gibbs-Thomson y Hoffman-

Weeks, e introducidos en la ecuaciones de las teorías mencionadas anteriormente. De 

dichas teorías se ha estimado el porcentaje de las unidades de comonómero minoritario 

que estaban incorporadas en las fases cristalinas ricas en PBS y PBAz, concluyendo que 

en el caso de composiciones ricas en PBS, a pesar de que la concentración de comonóme-

ro en los cristales aumenta al aumentar la composición de comonómero, continúa siendo 

pequeña y muy inferior a la concentración de comonómero correspondiente a la que sería 

la inclusión total, a diferencia de las composiciones ricas en PBAz, para las cuales se pre-

dijo una gran cantidad de inclusiones de comonómero de PBS. 

Finalmente, en el octavo capítulo se presentan las conclusiones generales a las que se 

ha llegado tras el desarrollo de la presente investigación. En este capítulo, además se in-

cluyen los artículos científicos a los que ha dado lugar el presente trabajo. 
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