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Low- and high-frequency cortical oscillations play an important role in speech processing. Low-frequency neural
oscillations in the delta (<4 Hz) and theta (4-8 Hz) bands entrain to the prosodic and syllabic rates of speech, respec-
tively. Theta band neural oscillations modulate high-frequency neural oscillations in the gamma band (28—40 Hz),
which have been hypothesized to be crucial for processing phonemes in natural speech. Since speech rate is known
to vary considerably, both between and within talkers, it has yet to be determined whether this nested gamma
response reflects an externally induced rhythm sensitive to the rate of the fine-grained structure of the input or a
speech rate—independent endogenous response. Here, we recorded magnetoencephalography responses from par-
ticipants listening to a speech delivered at different rates: decelerated, normal, and accelerated. We found that the
phase of theta band oscillations in left and right auditory regions adjusts to speech rate variations. Importantly, we
showed that the peak of the gamma response—coupled to the phase of theta—follows the speech rate. This indicates
that gamma activity in auditory regions synchronizes with the fine-grain properties of speech, possibly reflecting
detailed acoustic analysis of the input.
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Introduction band component reflects acoustic tracking of the
speech input, the delta band appears to be sensitive
to language-related processes related to syntactic
properties of the speech input.!’ Furthermore, theta
band oscillations impose periods of excitation and
inhibition on high-frequency oscillations (gamma
band: 25—40 Hz), a mechanism proposed to con-
tribute to rapid decoding of high-frequency infor-
mation needed to process phonemes in the speech
signal >!12  Cross-frequency ~phase—amplitude
coupling (PAC) functions as an integrating mecha-
nism in which the phase dynamics of low-frequency
oscillations temporally organize the amplitude of
high-frequency oscillations.”>  Cross-frequency
PAC provides a plausible mechanism through
which fine-grain phonemic information could be
grouped into syllabic units that build up words
and phrases.>'* Supporting evidence for this

Recent experimental and theoretical advances in
neuroscience support the idea that cortical temporal
sampling plays a key role in speech processing.'~®
Specifically, it is proposed that oscillatory activity in
the auditory cortex (AC) aligns with the temporal
structure of an external rhythmic auditory input
thus optimizing sensory processing. When the audi-
tory input is a speech signal, this alignment supports
the extraction of discrete linguistic units from a
continuous stream of speech information. Tempo-
ral sampling is achieved in part via the entrainment
of low-frequency neural oscillations (<10 Hz) to
the slow temporal modulations of speech.*® More
specifically, the phase of delta (<4 Hz) and theta
(4—8 Hz) oscillations in auditory regions, respec-
tively, tracks prosodic and syllabic rhythms during
speech processing.””” Interestingly, while the theta
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model in humans comes from studies on natural
speech processing: Gross and colleagues® report
the existence of “a nested hierarchy of auditory
oscillations at multiple frequencies that match the
frequency of relevant linguistic components in con-
tinuous speech.” These authors observed stronger
theta—gamma coupling when participants lis-
tened to forward compared with backward speech,
thereby directly linking coupling to speech process-
ing. If cross-frequency PAC is indeed functionally
relevant for speech perception, it should not be
constant over time and frequency, but dynamically
adapt to the spectrotemporal features of the input.
For this reason, in the present study, we focus on the
frequency-domain sensitivity of cross-frequency
PAC to speech rhythms.

Speech rate varies considerably within as well
as between speakers,'>!® and these rate changes
should have a dramatic impact on the tempo of
occurrences of acoustic cues within the speech
envelope.!” Evidence for the influence of speech
rate on speech comprehension accuracy has been
mixed. On the one hand, some previous studies have
demonstrated that the speech signal can be com-
pressed to half of its original duration before com-
prehension is significantly affected.'®!” In the same
vein, Nourski et al.?® reported that speech rate is
not a limiting factor in accurate speech comprehen-
sion. Overall, the aforementioned studies suggest
that speech comprehension is not necessarily speech
rate—dependent. On the other hand, given that lis-
teners have limited auditory (echoic) memory for
previously heard speech, it is likely that process-
ing higher level content must proceed more quickly
when speech is time-compressed and slow down
when it is expanded.?!~2* Yet, whether and how
neural processes required for speech comprehen-
sion are modulated when listeners attend faster or
slower speech rates remains unclear. Low-frequency
auditory cortical entrainment has been shown to
track the tempo of the speech input in a number of
studies.?*=%” For instance, Pefkou et al.?’ observed
that the phase patterns of theta band oscillations
consistently follow the syllabic rate for compressed
speech. They also found that gamma power was
sensitive to the tempo of perceived speech, show-
ing power decreases at higher compression rates.
Importantly, optimal cortical entrainment to differ-
ent speech rates affects word recognition: Kosem
et al.*® found that listening to sentences with altered
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speech rates modulated low-frequency auditory
entrainment in the theta band and this, in turn,
influenced how a final word—that was lexically
ambiguous due to a sound with an intermedi-
ate duration between a minimal phonetic pair—
was semantically interpreted. Dilley and Pitt*® pro-
vided behavioral evidence that lexical identification
depends on the speech rate of the overall context
of an utterance. This means that comprehension of
the speech signal is somehow affected by speech rate
and more specifically by neural entrainment to that
specific rate.

Based on this recent evidence, we reasoned that
if cortical entrainment constrains speech percep-
tion, then not only low-frequency entrainment but,
more generally, the whole hierarchy of nested oscil-
latory patterns should flexibly adapt to the rate of
the input.'* Word recognition is based on decoding
fine-grain temporal speech information that con-
veys acoustic cues necessary for the identification
of individual phonemes. However, it is not clear
whether high-frequency oscillatory gamma activ-
ity (modulated by low-frequency oscillators) adapts
to the speech rate of the input or not. On the one
hand, it is possible that the frequency peak of nested
gamma band activity does not change its frequency
peak depending on the speech rate. In fact, gamma-
band activity in auditory regions during speech
processing has been associated with postperceptual
processing of higher level linguistic properties.?*
This would imply that gamma oscillations should
not necessarily support a processing mechanism
that directly depends on the acoustic spectrotem-
poral properties of the external input. On the other
hand, if gamma peak changes do depend on the
speech rate of the external input, this would support
the hypothesis of a speech rate—dependent gamma
response directly involved in phonemic sampling.
Evidence for dynamic adaptation of this gamma
neural mechanism via cross-frequency PAC is still
lacking.'* Note that the finding that EEG gamma
power reduces with increasing compression rates is
not conclusive since this could also be explained
by the limited spectral sensitivity of the EEG sig-
nal at such high frequencies.”’” However, if speech
rate—dependent gamma sampling could be con-
firmed, this would provide the strongest evidence
to date for the role of hierarchical neural mech-
anisms in the decomposition of acoustic cues in
the speech signal. More generally, it would support
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models proposing that high-frequency oscillations
are involved in sampling the acoustics of speech
while being modulated by low-frequency oscillatory
components.>>14

To address this issue, we recorded magnetoen-
cephalography (MEG) signals from participants lis-
tening to a speech at various rates: decelerated, nor-
mal, and accelerated. First, we analyzed how the
neural entrainment mechanism adjusted to speech
rate variations. With this aim in mind, we mea-
sured coherence between low-frequency oscilla-
tions and speech signals for each condition. Second,
we analyzed whether the coupling between low-
and high-frequency neural oscillations was tuned
to speech rate variations. We used mutual informa-
tion (MI) analysis to estimate the linear and nonlin-
ear dependencies between low- and high-frequency
oscillations during the processing of each speech
condition. If nested gamma oscillations reflect a
fine-grain sampling of the speech input, we expect
the frequency peak of this high-frequency com-
ponent to be modulated by speech rate. However,
the absence of such gamma response modulation
(i.e., the gamma peak is not affected by speech rate)
would call for a revision of current models of the
hierarchical oscillatory sampling of speech.

Methods

Subjects

Seventeen (nine females) participants took part
in the present study (age range: 17.1—44.1 years;
M =30.8; SD = 9.7). All participants were Spanish
monolinguals, reported no hearing impairments,
and were right-handed. The present experiment
was undertaken with the understanding and written
consent of each participant (or the legal tutor of each
child below 18 years of age). The ethical committee
of the Basque Center on Cognition, Brain and Lan-
guage (BCBL) approved the experiment (following
the principles of the Declaration of Helsinki) and
each participant signed an informed consent form.

Stimuli and procedure

Three types of speech stimuli were used: (1) nor-
mal speech, (2) accelerated speech, and (3) deceler-
ated speech. Forty meaningful sentences produced
by a Spanish native female comprised the normal
speech sample. The speakers were instructed to read
each sentence as clearly and naturally as possible.
The original speech was digitized at 44.1 kHz using
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a digital recorder (Marantz® PMD670) and audio
files (*.wav) were segmented using Praat. The dura-
tion of the normal sentences ranged from 7.42 to
12.65 s (M = 9.9; SD = 1.13). The total duration
of the normal speech was 6.6 min and the num-
ber of words per minute (wpm) was 173.94. This
rate is within the optimal wpm range (170—190
wpm) for speech comprehension in Spanish.*! This
normal speech was then accelerated or deceler-
ated by changing the tempo of the audio signal
using Audacity (SoundTouch Audio Processing
Library by Olli Parviainen, https://www.surina.net/
soundtouch/), and ensuring that the pitch of the
stimulus remained unaltered. We applied a speedup
factor of 1.25 and a slowdown factor of 0.75
to obtain accelerated and decelerated sentences,
respectively. The total duration of the accelerated
speech was 5.51 min and the number of wpm was
208.35. The total duration of the decelerated speech
was 8.25 min and the number of wpm minute was
139.15.

During MEG recording, sentences were pre-
sented auditorily to the participants at 75—80-
decibel (dB) sound pressure level. Each trial began
with a 1-s auditory tone (at 500 Hz tone) followed by
a 2-s silence, and then the sentence was presented.
A comprehension question about the content of the
most recent sentence stimulus was presented audi-
torily 2 s after the end of each sentence. These yes/no
questions mainly referred to the overall semantic
meaning of the last sentence and avoided the rep-
etition of lexical items used in the sentence so as to
ensure that the response reflected participants’ over-
all semantic interpretation of the message. While
listening to the sentence, participants were asked
to fixate a white-color sticker on the switched-off
screen. Participants answered the question by press-
ing the corresponding button (yes/no). After their
response, the next trial was presented. Response
hands (right/left) for yes/no responses were coun-
terbalanced across participants and the presenta-
tion order of the sentences was randomized. Partic-
ipants were asked to avoid head movements and to
try to blink only during time periods between sen-
tences. Stimuli were delivered using Presentation®
software (http://www.neurobs.com/).

After the presentation of the stimuli, subjects
were asked to sit as still as possible with their eyes
closed. Approximately 5 min of resting state, MEG
activity was recorded from each participant.
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Data acquisition

MEG data were acquired in a magnetically
shielded room using the whole-scalp MEG system
(Elekta Neuromag®, Helsinki, Finland) installed
at the BCBL (http://www.bcbl.eu/bcbl-facilities
resources/meg/). The system is equipped with
102 sensor triplets (each comprising a magne-
tometer and two orthogonal planar gradiometers)
uniformly distributed around the head of the
participant. Head position inside the helmet was
continuously monitored using four head position
indicator coils. The location of each coil relative to
the anatomical fiducials (nasion, and left and right
preauricular points) was defined with a 3D digitizer
(Polhemus Fastrak, Colchester, VA). This proce-
dure is critical for head movement compensation
during the data recording session. Digitalization of
the fiducials plus ~100 additional points evenly dis-
tributed over the scalp of the participant were used
during subsequent data analysis to spatially align
the MEG sensor coordinates with each participant’s
T1 magnetic resonance brain images acquired on a
3T MRI scan (Siemens Medical System, Erlangen,
Germany). MEG recordings were acquired contin-
uously with a bandpass filter at 0.01—330 Hz and a
sampling rate of 1 kilohertz. Eye movements were
monitored with two pairs of electrodes in a bipolar
montage placed on the outer cantus of each eye
(horizontal electrooculography (EOG)) and above
and below the right eye (vertical EOG).

Data preprocessing

To remove external magnetic noise from the MEG
recordings, data were preprocessed offline using
the signal-space-separation method implemented
in Maxfilter 2.1 (Elekta Neuromag).”> MEG data
were also corrected for head movements, and sub-
stitutions were made for bad channels using inter-
polation algorithms implemented in the software.
Subsequent analyses were performed using Mat-
lab R2010 (Mathworks®, Natick, MA). Heartbeat
and EOG artifacts were detected using independent
component analysis (ICA) and linearly subtracted
from recordings. The ICA decomposition was per-
formed using the Infomax algorithm implemented
in the Fieldtrip toolbox.**

Source activity estimation

Using the minimum-norm estimate (MNE) suite,
the digitized points from the Polhemus were coreg-
istered to the skin surface. Individual T1-weighted
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MRI images were segmented into scalp, skull,
and brain components using the segmentation
algorithms implemented in FreeSurfer (Martinos
Center of Biomedical Imaging, MQ). Leadfield
computation was based on a three-shell volume
conductor model using a 5-mm grid defined on the
template (MNI) brain. The template grid was trans-
formed into individual headspace using the linear
space transformation algorithm implemented in
Statistical Parametric Mapping (SPM8, Wellcome
Department of Cognitive Neurology, London, UK).
The noise covariance matrix was estimated from
the empty room data acquired right before bringing
the subject into the MEG room. We used the noise
covariance matrix to whiten the forward matrix
and the data.’*% The cortical sources of the MEG
signals were estimated using L2 MNE.®

For further analysis, brain signals from prede-
fined regions of interest (ROIs) were selected. The
ROIs included the left and right auditory cortex
(LAC and RAC; Brodmann areas (BA) 41 and
BA 42). These regions were selected from the 3D
Brodmann Atlas provided with MRIcron software
(available at http://www.mccauslandcenter.sc.edu/
mricro/mricron). Figure S1 (online only) shows the
location of the ROIs in MNI space. The focus of the
present paper was on the role of gamma band activ-
ity in speech processing and for this reason, we con-
fined our analysis to these regions.?

Neural entrainment analysis

We used coherence to estimate auditory entrain-
ment to the speech stimuli.*” Coherence measures
the degree of phase synchronization between two
signals (the speech envelope and neural oscillations
in the AC) in the frequency domain. The enve-
lope of the audio signals was estimated by using
a filter bank that models the passage of the signal
through the cochlea.’®~* Coherence between the
speech envelope and neural activity in each voxel of
both ROIs was obtained in the 0.5—10 Hz frequency
band with 0.5 Hz frequency resolution.”” The aver-
age coherence value of all voxels in LAC and RAC
was calculated for each participant, condition, and
frequency bin.

We performed group-level statistics on the
mean coherence values to identify frequency bands
that showed significant speech-brain entrain-
ment. For each condition, ROI (LAC and RAC),
and frequency bin, speech coherence values were
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compared with surrogate coherence values using a
two-tailed permutation test (1000 permutations).*!
Surrogate coherence values were obtained by com-
puting coherence between the brain activity from
the speech signals and the reversed speech signals.?
This provides an estimate of the coherence values
expected by chance. For all these tests, we used
a cluster-based procedure to correct for multiple
comparisons.*” Frequency bins within the sig-
nificant cluster defined the frequency bands of
interest.

Furthermore, we identified the maximum coher-
ence (Cohy,yx) value and the frequency (f.) value
of the Cohp,y for the frequency bands of interest,
for each participant, condition, and ROI. For each
frequency band of interest, separate ANOVAs were
computed on the Cohp,y and f: values, with condi-
tion (decelerated, normal, and accelerated speech)
and ROI (LAC versus RAC) as within-subject fac-
tors. Before running the ANOVAs, we checked data
normality using the Shapiro—Wilk test of normality.

Cross-frequency PAC analysis

We evaluated the coupling between the phase of
the speech and the amplitude of neural oscillations
in the AC.> The speech envelope was bandpass
filtered in 0.5 Hz steps between 0.5 and 10 Hz
(fourth-order Butterworth filter, forward and
reverse, center frequency £0.5 Hz). For each voxel
in the ROIs (LAC and RAC), the activity was band-
pass filtered in 0.5 Hz steps between 10 and 50 Hz
(fourth-order Butterworth filter, forward and
reverse, center frequency £0.5 Hz). The Hilbert
transform was applied to the bandpass-filtered sig-
nals to compute the phase dynamics of the speech
and the amplitude dynamics of the activity in vox-
els within the ROIs. We computed MI between all
combinations of phase (0.5-10 Hz) and amplitude
(10-50 Hz) dynamics. MI was quantified using
the direct method with quadratic extrapolation
for bias correction, as described in the Informa-
tion Breakdown Toolbox (see Ref. 43). Phase and
amplitude signal dynamics were quantized into
10 equipopulated bins to build marginal and joint
probability distributions. The average MI value of
all the voxels in the LAC and RAC was calculated for
each participant, condition, and phase/amplitude
combination.

We performed group-level statistics on the MI
values to identify which frequency band combina-
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tion showed significant PAC during speech process-
ing. For each condition, ROI, and phase/amplitude
combination frequency, speech MI values were
compared with surrogate MI values using a two-
tailed permutation test (1000 permutations).*! Sur-
rogate MI values were obtained by computing MI
between brain activity from the speech and reversed
speech signals.’ This provides an estimate of the MI
values expected by chance. For all these tests, we
used a cluster-based procedure to correct for multi-
ple comparisons.*? All frequency bins were included
in the test.

Furthermore, we identified the maximum MI
(Ml hax) value and the phase (fyhase) and amplitude
(famp) frequency values of the Ml for the MI clus-
ters, for each participant, condition, and ROI. For
each cluster, separate ANOVAs were computed on
the Mlnaxs fohases and famp values, with condition
(decelerated, normal, and accelerated speech), fre-
quency band (delta and theta), and ROI (LAC ver-
sus RAC) as within-subject factors. We checked data
normality using the Shapiro—Wilk test of normality
before running the ANOVAs.

Results

The power spectrum of the normal speech enve-
lope showed two main peaks within the delta (<3
Hz) and theta (4—7 Hz) frequency bands (Fig. 1A).
The power spectrum of the normal speech envelope
shifted to a lower frequency band for decelerated
speech, and to a higher frequency band for accel-
erated speech (Fig. 1A).

Neural entrainment analysis

In all conditions, we observed significantly higher
coherence values for the speech compared with the
surrogate data in the LAC and the RAC (Fig. 1B).
Normal speech signals elicited significantly higher
coherence values than did surrogate data in the
0.5—2 Hz (delta) band and the 4.5—7.5 Hz (theta)
band (P < 0.05, two-sided permutation test, clus-
ter corrected). For decelerated speech, significantly
higher coherence values (compared with surrogate
data) were found in the 0.5—2 Hz (delta) band and
the 4—6.5 Hz (theta) band (P < 0.05, two-sided
permutation test, cluster corrected). For accelerated
speech, effects emerged in the 0.5—2.5 Hz (delta)
band and in the 5.5—8.5 Hz (theta) band (P < 0.05,
two-sided permutation test, cluster corrected).
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Figure 1. Neural entrainment analysis. (A) Power spectra of the decelerated (blue), normal (green), and accelerated (red) speech
signals. (B) Coherence spectra for each condition in the right auditory cortex (RAC). We observed significantly higher coherence
values for speech compared with surrogate data (P < 0.05, two-sided permutation test, cluster corrected) in the 0.5—2 Hz and the
4—6.5 Hz bands for the decelerated speech, in the 0.5—2 Hz and the 4.5—7.5 Hz bands for the normal speech, and in the 0.5—2.5

Hz and 5.5—8.5 Hz for the accelerated speech.

We identified the frequency of the maximum
coherence (Cohp,y) value and the frequency (f.)
value of Cohyx for the frequency bands of inter-
est (delta and theta), for each condition and ROI
(Table 1).

In the delta band, the ANOVA on the Coh,,, val-
ues showed a main effect of ROI (F(1,16) = 41.9,
P < 0.01, né = 0.72). A post hoc test (Bonferroni)
showed that Coh,,,x values in the delta band were
significantly higher in RAC than in LAC (¢t = 6.47,
Pgonferroni < 0.01, Cohen’s d = 1.57). Results of the
ANOVA for the f. values in the delta band showed
no main effect of condition (F(2,32) =2.52,P=0.1,
n}% = 0.14) nor ROI (F(1,16) = 2.13, P = 0.16, nf, =
0.12).

In the theta band, the ANOVA of the Coh,,,, val-
ues showed a main effect of ROI (F(1,16) = 6.43,
P = 0.02, nf, = 0.27) (Fig. 2A). A post hoc test

Table 1. Neural entrainment analysis

showed that Coh,,,, values in the theta band were
significantly higher in RAC than in LAC (t = 2.54,
Pponferroni = 0.02, d = 0.59). Results of the ANOVA
for f. values in the theta band showed a main effect
of condition (F(2,32) = 14.96, P < 0.01, nf, =0.48)
(Fig. 2B). Post hoc tests showed that f; values in the
theta band were significantly higher in the normal
compared with the decelerated speech condition (¢
= 3.25, Pponferroni = 0.02, d = 0.79), in the acceler-
ated compared with the normal condition (t = 2.74,
Pgonferroni = 0.04, d = 0.066), and in the accelerated
compared with the decelerated condition (f = 4.92,
Pponferroni < 0.01, d = 1.19).

Cross-frequency PAC analysis
In all conditions, MI values were significantly higher
for the speech compared with the surrogate data

Decelerated speech

Normal speech Accelerated speech

LAC RAC LAC RAC LAC RAC
Delta
Cohpay 0.18(0.09) 0.24(0.08) 0.18(0.07) 0.24(0.07) 0.17(0.08) 0.23(0.07)
fe 0.56(0.17) 0.53(0.12) 0.56(0.17) 0.59(0.2) 0.65(0.23) 0.71(0.36)
Theta
@CT— 0.08(0.06) 0.11(0.06) 0.08(0.05) 0.1(0.04) 0.08(0.05) 0.11(0.04)
f 4.79(0.25) 4.68(0.29) 5.62(0.26) 5.59(0.28) 6.65(0.27) 6.62(0.31)

NoTE: Mean and standard error of the maximum coherence (Cohpay) and frequency (fc) values for each condition (decelerated,
normal, and accelerated speech), region (left auditory cortex (LAC) and right auditory cortex (RAC)), and frequency bands of interest

(delta and theta bands).
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Figure 2. Neural entrainment in the theta band. (A) Maximum coherence value (Cohyay) in the theta band for each condition
(decelerated (blue), normal (green), and accelerate (red)) in the LAC and RAC. (B) The frequency of the Coh,ax obtained for each
condition in the LAC and RAC. Each dot represents the data of one participant and the shaded area shows the data distribution.

in both LAC and RAC (Fig. 3). For the normal
speech condition, we observed that the phase of
neural oscillations in the ~4—7.5 Hz (theta) band
modulated the amplitude of neural oscillations in
the ~20—37 Hz (beta/gamma) band in LAC and
RAC (P < 0.05, two-sided permutation test, clus-
ter corrected). For the decelerated speech condi-
tion, the phase of neural oscillations in the ~3—6.5
Hz (theta) band modulated the amplitude of neu-
ral oscillations in the ~18—34 Hz band in LAC and
RAC (P < 0.05, two-sided permutation test, clus-
ter corrected). For the accelerated speech condi-
tion, the phase of neural oscillations in the ~4—8
Hz (theta) band modulated the amplitude of neural
oscillations in the ~33—43 Hz (beta/gamma) band
in LAC and RAC (P < 0.05, two-sided permutation
test, cluster corrected).

Furthermore, we measured the maximum MI
value (MI,x) and the phase (fyhase) and amplitude
(famp) frequency values of Ml for the MI clus-
ter (theta-beta/gamma), for each condition and ROI
(Table 2).

146

The ANOVA of the M1, values showed no main
effect of condition (F(2,32) = 0.01, P = 0.99, n,
< 0.01) nor ROI (F(1,16) < 0.01, P = 0.93, n}, <
0.01). Results of the ANOVA for the fpase values
showed a main effect of condition (F(2,32) = 3.04,
P<0.01, nz =0.71) (Fig. 4A). Post hoc tests showed
that fypase values were significantly higher in the nor-
mal than the decelerated speech condition (t = 2.5,
Pgonferroni = 0.05, d = 0.62), in the accelerated than
the normal speech condition (f = 3.14, Pponferroni
= 0.02, d = 0.76), and in the accelerated than the
decelerated speech condition (f = 4.44, Pponferroni <
0.01, d = 1.08). Results of the ANOVA for the fyn,
values showed a main effect of condition (F(2,32) =
15.77, P < 0.01, 13 = 0.49) (Fig. 4B). Post hoc tests
showed that f,, values were significantly higher in
the normal than the decelerated speech condition
(t = 2.8, Pgonferroni = 0.05, d = 0.62), in the accel-
erated than the normal speech condition (t = 3.84,
Pgonferroni < 0.01, d = 0.93), and in the accelerated
than the decelerated speech condition (t = 5.27,
Ponferroni < 0.01, d = 1.28).
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Figure 3. Cross-frequency phase—amplitude coupling analysis. The spectral distribution of PAC for the decelerated (left), nor-
mal (middle), and accelerated (right) conditions in the LAC. Cross-frequency PAC was quantified using mutual information (MI).
For each condition, the black contour line encircles clusters showing significantly higher MI values for speech compared with sur-
rogate data (P < 0.05, two-sided permutation test, cluster corrected). The white dot represents the maximum MI value (MIn,x),
and the white lines represent the phase (fyhase) and amplitude (fump) frequency values for MIax within MI clusters.

Discussion

While listening to the natural speech, oscillatory
neural activity in low-frequency bands synchro-
nizes with the syllabic and phrasal patterns of the
input (respectively, theta: 6—8 Hz, and delta: <2
Hz). This synchronization accurately adapts to the
speech rate, as reported in the present study and
in the previous studies.”*~%” Indeed, we observed
that the frequency of the maximum coherence
peaks in the theta frequency band aligns to the
speech rate in bilateral auditory cortices. Impor-
tantly, such low-frequency synchronization impacts
the way lexically ambiguous words, including
sounds with an intermediate duration between a
minimal phonetic pair, are interpreted.”* Why does
low-frequency entrainment impact the “phonemic
disambiguation” effect observed by these authors?
Our data suggest that theta band oscillatory activity

has a direct influence on high-frequency phonemic
processing, through hierarchical cross-frequency
PAC. Here, we evaluated the sensitivity of this hier-
archical cross-frequency PAC to the temporal enve-
lope pattern of the auditory speech input. This
neural phenomenon has been interpreted as a key
mechanism by which high-frequency neural oscilla-
tory activity (gamma: ~30—40 Hz) related to acous-
tic sampling can be modulated by slower oscillatory
mechanisms sensitive to the coarse-grain syllabic
structure of the stimulus.>'* This cross-frequency
interaction is stronger for forward than for back-
ward speech, revealing its tight relationship to intel-
ligible speech processing.’?

While auditory cortical entrainment in the
theta band has been shown to adapt to the tim-
ing of the input in a number of studies, =%
frequency-domain adaptation by the nested gamma

Table 2. Cross-frequency phase—amplitude coupling analysis

Decelerated speech

Normal speech Accelerated speech

LAC RAC LAC RAC LAC RAC
Theta-beta/gamma
Moy (x1072) 5.96(0.53) 6.06(0.54) 6.1(0.44) 6.07(0.54) 6.06(0.59) 5.94(0.54)
Sohase (Hz) 4.74(0.26) 4.65(0.25) 5.53(0.24) 5.68(0.25) 6.41(0.33) 6.44(0.31)
fump (Hz) 29.12(1.31) 28.94(1.22) 32.76(1.43) 32.65(1.62) 37.88(1.61) 38.12(1.82)

NorE: Mean and standard error of the maximum mutual information (MIpayx) and the phase (fypase) and amplitude (famp) frequency
values for each condition (decelerated, normal, and accelerated speech), region (left auditory cortex (LAC) and right auditory cortex

(RAQ)), and MI cluster (theta-beta/gamma).
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Figure 4. Theta/gamma phase—amplitude coupling. Phase (fyhase) and amplitude (fymp) frequency of the maximum mutual
information (Mlyay) value for the theta/gamma clusters obtained for each condition (decelerated (blue), normal (green), and
accelerated (red)) in the LAC and RAC. Mean and standard error of the fyhase and famp values are plotted. Each dot represents the
data of one participant and the shaded area shows the data distribution.

component to the speech rate had yet to be inves-
tigated. Theta—gamma coupling varies its strength
across time depending on the content of the speech
input. Gross et al.®> showed that theta—gamma PAC
is enhanced at speech edges (periods of increased
acoustic energy after segments of silence) during
natural speech listening. This finding suggests that
the timing of this high-frequency phenomenon is
tightly related to the presence/absence of relevant
information in the speech input. However, this
finding did not constitute conclusive evidence for
speech rate—dependent modulation in the fre-
quency domain of theta—gamma coupling. It could
be argued that gamma activity does not adapt to
the rate of the speech stimulus, but instead retains
a fixed response around 35 Hz at any speech rate
(based on proposals that consider the auditory
gamma response to be a high-level response not
directly related to sensory input*>*°). This interpre-
tation would suggest that theta—gamma coupling
is not directly involved in perceptual decoding of
acoustic input but could, among other possibilities,
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reflect activation of abstract phonemic representa-
tions. Alternatively, gamma activity might exhibit
varying peaks in the frequency domain, depending
on the rate of the speech input. This would support
the idea that this high-frequency component is
involved in tracking the acoustics of the speech
input.'* Our data support this second alternative.
We analyzed the whole set of nested oscilla-
tory patterns in response to different speech rates
and found that the amplitude envelope of gamma
shares maximum MI with the phase of theta at
various frequencies, which depend on the speech
rate. As discussed in Gross et al.,> the observed
theta—gamma PACs suggest a model for how the
brain takes advantage of the coarse-grain temporal
structure of the speech envelope to select “windows
of interest.” In these time windows, the neurocog-
nitive system can deploy gamma band resources for
optimally “processing” fine-grain temporal infor-
mation in speech, such as phonemes. If this neu-
ral correlate reflects a proper acoustic sampling
of such fast speech components, it should also
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adjust as speech input accelerates or decelerates. The
frequency-peak modulation of the nested gamma
band that we report here supports this latter view.
In particular, gamma band activity “released” in
the relevant (theta range) time intervals resonates
with the fine-grain acoustic properties of the input,
thus internally tracking phonetic speech properties.
This internal representation of an external stimu-
lus would provide the basis for higher level acti-
vation of related abstract phonemic information.!
This kind of higher level process could be identi-
fied in beta band oscillatory activity related to the
comprehension and not related to the acoustic prop-
erties of speech input.?’ In addition, our data sup-
port the idea that only gamma-related processing
of this fine-grain information is temporally coupled
in the auditory regions during processing of syl-
labic speech rhythms. The human auditory system
has to prioritize specific (low frequency) rhythms to
support a finer analysis of acoustic signals (faster
rhythms). Indeed, the demultiplexing idea could
explain how our auditory perceptual system copes
with many rhythms simultaneously in the same
time period (for a more detailed proposal on micro-
circuitry, see Ref. 14).

The present findings are in line with the asym-
metric sampling in time (AST) proposal advanced
by Giraud and Poeppel,> which identified cou-
pling between low- and high-frequency oscillations
as a fundamental processing mechanism for opti-
mal speech sampling. An important aspect of the
AST model concerns the division of labor between
the two hemispheres: while the RAC is consid-
ered to be mainly involved in tracking slow speech
rhythms, the homologous left region should be
mainly involved in sampling phonemic informa-
tion. These different computations would, respec-
tively, support paralinguistic processes (such as
speaker identification) tracked as low rhythms by
the right hemisphere and linguistic processes (such
as phoneme and syllable recognition) tracked by the
left hemisphere. Although this model accounts well
for the set of findings, we report here, we did not
observe any hemispheric specialization in gamma
activity. The nested gamma activity highlighted in
this study was not reliably different for the two audi-
tory cortices.** Consequently, it is not possible to
conclude that the two auditory cortices have such
a clear-cut frequency-dependent division of labor.*
While the low-frequency cortical tracking shows its

Neural mechanisms of speech processing

maximum peak in the right hemisphere (as pre-
dicted by the AST model), the opposite is not neces-
sarily true for the high-frequency speech processing
component, which is equally visible in both auditory
cortices.

We did not observe relevant effects in the delta
band response. Speech—brain coupling in delta did
not show any statistically robust modulation depen-
dent on the experimental manipulation. This could
be due to methodological factors since the fre-
quency resolution we could explore was limited to
0.5 Hz and this cannot exclude the possibility that
the delta entrainment peak showed lower frequency
variations across the three conditions. More impor-
tant for our claims, we did not find clear evidence of
PAC involving the delta band. This could indicate
that the delta band speech tracking component is
not as sensitive to the acoustic properties of speech
as other frequency bands (theta and gamma), and
possibly suggest it is more related to endogenous
language—related processes.’

The frequency-adaptive nested gamma response
to the fine-grain structure of the auditory sig-
nal could explain experimental evidence suggest-
ing that auditory cortical entrainment influences
word recognition.?®?8 If the nested high-frequency
gamma response adapts to the fine-grain structure
of the speech signal, it is possible that ongoing faster
(or slower) low-frequency entrainment to faster (or
slower) speech input directly affects the percep-
tion of words that have ambiguous meanings due
to the intermediate duration of a key phoneme.
If this phoneme is sampled at a higher frequency
(faster speech rates), it may be perceived as hav-
ing a longer duration, whereas if it is sampled at a
lower frequency (slower speech rates), it may be per-
ceived as having a shorter duration. This would bet-
ter explain how low-frequency cortical entrainment
affects word disambiguation, by pointing directly to
how coarse-grain speech—brain coupling can mod-
ulate fine-grained phonemic sampling.

Related to this point, it may be the case that
syllabic rates in speech play a significant role in
the development of phonemic identification and
categorization.*® Interestingly, participants suffer-
ing from phonological developmental dyslexia have
been shown to exhibit sluggish auditory attentional
shifting skills at speeds falling within the theta
rate.*” =% This could reflect a deficit in disengaging
attentional focus from one syllabic unit sufficiently
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rapidly to process the next unit in the speech
stream. Such impairments have been suggested to
generate noise in speech inputs entering the focus
of attention (and the perceptual integration win-
dow), hindering the extraction of precise phone-
mic information.”! The present results suggest that
slowing down speech when speaking to individuals
with atypical phonological development may allow
more time for their sluggish attentional systems to
engage and disengage from syllabic rhythms, and,
in turn, facilitate the extraction of precise and sta-
ble fine-grain phonemic information.

Conclusion

With the present data, we bring new evidence
concerning the nature of gamma auditory activ-
ity during natural speech listening and reveal its
fine-grained adaptive nature, by focusing on oscil-
latory patterns of neuronal activity reconstructed
in the AC. Relying on previous evidence that
low-frequency oscillations in the auditory regions
adapt to the rate of external speech,”® we made
a step forward by demonstrating that this effect
relies on nested gamma activity whose frequency
peak changes depending on speech rate. Overall,
the fact that high-frequency oscillations are mod-
ulated by the external speech rate supports the
role of this gamma mechanism in sampling the
fine-grain temporal information present in speech.
Theta—gamma coupling seems to be a crucial com-
ponent of the initial encoding process necessary
for speech comprehension. Recent proposals also
stress the importance of characterizing the inter-
nal mechanisms involved in internally reconstruct-
ing external input in order to better understand
higher level abstract processes.”? Oscillatory activ-
ity in the delta and beta band could be, respectively,
involved in syntactic structuring of the input and
the deployment of rapid online predictions regard-
ing incoming information.!®?” The functional rela-
tion of these latter endogenous components to
theta—gamma coupling has yet to be determined
but could explain the limited comprehension capac-
ity seen at compression rates higher than the ones
explored in the present study.
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