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 Cuando un científico eminente pero anciano afirma que algo es 

 posible, es casi seguro que tiene razón. Cuandoafirma que algo es imposible, 
muy probablemente está equivocado. 

 

  La única manera de descubrir los límites de lo posible es aventurarse 
un poco más allá, hacia lo imposible. 

 

   Cualquier tecnología lo suficientemente avanzada es 
indistinguible de la magia. 

 

Arthur C. Clarke 
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Abstract 
The human activity and, more specifically, industry, agriculture, fossil fuels 

consumption, deforestation, vegetable litter burning and livestock farming have 

caused a rapid increase in greenhouse gases (GHG) in the last century. The 

Intergovernmental Panel on Climate Change (IPCC) is promoting strategies to reduce 

these GHGs, as well as promoting the use of new crop varieties well adapted to future 

atmospheric conditions. 

In this work, both strategies have been studied trough different approaches: a) use of 

nitrification inhibitors associated with ammonium-based fertilisers to reduce N2O 

emissions derived from fertilization and b) study the impact of nitrogen on the C 

source-sink balance and the adaptation capacity of cereal varieties to the CO2 increase. 

The obtained results confirm that the use of the analysed inhibitors (DMPP and 

DMPSA) is an effective strategy to reduce N2O emission due to the inhibition of 

nitrifying bacteria. In addition, it was possible to describe how these compounds 

stimulate a complete denitrification, mitigating the emission of N2O by means of a 

greater reduction to N2. At plant level, in was studied the response of wheat to 

different sources of nitrogen (nitrate, ammonium and ammonium nitrate) under 

ambient (400 ppm) and elevated (700 ppm) CO2 conditions. At elevated CO2 

conditions, ammonium nitrate or ammonium nutrition permitted better foliar 

carbohydrates adjustment, opposite to nitrate nutrition. Finally, the importance of 

developing C sinks under elevated CO2 conditions and the C source-sink balance 

adjustment in leaves was studied in barley plants with different peduncle-storage 

capacity for carbon and nitrogen compounds. The results confirm the necessity to 

identify varieties with greater C sink capacity in order to allow a greater adjustment of 

carbon leaf, with the consequent improvement of photosynthetic activity under 

elevated CO2 conditions.
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Resumen 

La actividad humana y más concretamente, la industria, la agricultura, el consumo de 

combustibles fósiles, la deforestación, la quema de restos vegetales y la ganadería han 

provocado un rápido aumento de gases de efecto invernadero (GEI) en el último siglo. 

El Panel intergubernamental para el cambio climático (IPCC) está impulsando 

estrategias centradas en la reducción de estos GEI, así como promoviendo el empleo 

de nuevas variedades (de los principales cultivos) que mejor se puedan adaptar a las 

futuras condiciones atmosféricas. 

En ese trabajo se han abordado ambas estrategias mediante diferentes 

aproximaciones: a) empleo de inhibidores de la nitrificación asociados a fertilizantes 

de base amoniacal para reducir las emisiones de N2O derivadas de la fertilización y b) 

identificar el impacto del nitrógeno en las relaciones fuente-sumidero de C y en la 

capacidad de adaptación de variedades de cereales al incremento de CO2.  

Los resultados obtenidos permiten confirmar que el uso de los inhibidores analizados 

(DMPP y DMPSA) es una estrategia efectiva para reducir la emisión de N2O debido a la 

inhibición de las bacterias nitrificantes. Además, se pudo describir cómo estos 

compuestos estimulan una completa desnitrificación, mitigando la emisión de N2O por 

medio de una mayor reducción a N2. Por otro lado, se ha estudiado la respuesta de 

trigo frente a diferentes fuentes de nitrógeno (nitrato, amonio y nitrato amónico) en 

condiciones de CO2 ambiental (400 ppm) y elevado (700 ppm). Bajo condiciones de 

elevado CO2, la fertilización mixta o amoniacal permitió un mejor ajuste de 

carbohidratos foliares, al contrario que la fertilización nítrica. Por último, la 

importancia del desarrollo de sumideros de C en condiciones de elevado CO2 y el ajuste 

de la relación fuente-sumidero de C en hoja se estudió en plantas de cebada con 

diferente capacidad de almacenar compuestos carbonados y nitrogenados en el 

pedúnculo. Los resultados descritos confirman la necesidad identificar variedades con 

mayor capacidad de sumidero de C para así permitir un mayor ajuste del C foliar con 

la consiguiente mejora en la actividad fotosintética bajo condiciones de elevado CO2. 
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Laburpena 

Giza jarduerak, eta zehatzago, industriak, nekazaritzak, erregai fosilen 
kontsumoak, deforestazioak, landare hondakinen erretzeak eta abeltzaintzak 
berotegi-efektuko gasen areagotze azkarra eragin dute azken mende honetan. 
Klima aldaketarako gobernu-arteko taldea (IPCC) berotegi-efektuko gasak 
murriztea ardatz duten hainbat estrategia sustatzen dabil, etorkizuneko 
atmosferako baldintzetara egokituta dauden kultibo barietate berrien erabilera 
bultzatzearekin batera. 
Lan honetan aipatutako estrategia horiek ikuspuntu ezberdinetatik aztertu dira: 
a) amonio-oinarridun ongarrietara lotutako nitrifikazioaren inhibitzaileen 
erabilera ongarriketatik datozen N2O izurpenak murrizteko eta b) nitrogenoak 
karbonoaren iturri-isurbide erlazioengan eta CO2-aren areagotzearekiko zereal 
barietateek duten egokitzapen gaitasunarengan duen eragina aztertzea. 
Eskuratutako emaitzek aztertutako nitrifikazioaren inhibitzaileen (DMPP and 
DMPSA) erabilera N2O izurpen-murrizketarako estrategia egokia dela 
egiaztatzen dute bakteria nitrifikatzailearen inhibizioa dela eta. Gainera, 
konposatu hauek desnitrifikazio osoa suspertzen dutela deskribatu ahal izan da, 
N2O izurpena murriztuz N2-rako erredukzioaren areagotzearen bitartez. 
Bestalde, gariak nitrogeno iturri ezberdinekiko (nitratoa, amonioa eta nitrato-
amonikoa) duen erantzuna aztertu da inguruneko CO2 (400 ppm) zein CO2 
altuko (800 ppm) baldintzatan. CO2 altuko baldintzatan, ongarritze mistoak zein 
amoniozkoak hostoko karbohidratoen doikuntza hobea baimentzen dute, 
nitrato ongarritzeak ez bezala. Azkenik, CO2 altuko baldintzatan karbono-
isurbideak garatzearen garrantzia eta hostoetako karbono iturri-isurbide 
erlazioaren doikuntza aztertu dira pedunkuluan karbono eta nitrogeno 
konposatuak metatzeko gaitasun ezberdina aurkezten duten hainbat garagar 
landareetan. Lortutako emaitzek karbono isurbide gaitasun handiagoko 
barietateak identifikatzearen beharra berresten dute, horren bitartez 
hostoetako karbonoaren doikuntza hobea lortu eta CO2 altuko baldintzatan 
fotosintesi aktibitatea areagotzea baimenduz.  
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1.1. Climate change 

 Climate change and its implications for Earth’s environmental processes 

have been of particular relevance in the last few decades. According to the 

Intergovernmental Panel on Climate Change (IPCC, 2014), climate change refers 

to alterations in the state of the climate that can be identified (e.g., by using 

statistical tests) by changes in the mean and/or variability of its properties and 

that persist for an extended period, typically decades or longer.  

 The main consequence (although not the only one) of anthropogenic 

climate change is stimulation of the "Greenhouse Effect". It is important to 

highlight the word "stimulation" because there is also a natural greenhouse 

effect that is due to greenhouse gases of natural form and concentration 

present in the atmosphere. In the absence of any atmosphere, the surface 

temperature of the earth would be approximately -18 °C, better known as the 

effective temperature of terrestrial radiation. However, the average 

temperature of the earth's surface is 15 °C. The terrestrial temperature is the 

result of the balance maintained by the earth and the atmosphere in terms of 

the absorption of solar radiation that reaches the earth and the emissions of 

longwave (infrared) radiation emitted into space. Part of the shortwave 

radiation from the sun is reflected by clouds and aerosols from the atmosphere, 

some of it is retained by the atmosphere, and the rest reaches the earth's 

surface where it is absorbed. The earth radiates shortwave radiation in the form 

of infrared radiation, which is retained by the greenhouse gases present in the 

atmosphere and causing the atmosphere’s warming, a phenomenon known as 

the "Greenhouse Effect". 

 The amount of longwave radiation retained, and therefore responsible 

for the temperature increase, will depend on the atmospheric constituents 

(mainly greenhouse gases). The atmospheric gas composition determines the 
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physical properties of absorbance, reflection and transmission of solar 

radiation to the earth’s surface, and influences emission of the Earth’s own 

radiation into space.  

 

 
Figure 1. (A) Observed changes in atmospheric greenhouse gas concentrations of CO2 (green), 

CH4 (orange) and N2O (red) since 1850. (B) Global anthropogenic CO2 emissions from forestry 

and other land use (green) and from burning of fossil  fuel, cement production and flaring. (IPCC, 

2014). 

 

 The main greenhouse gases are water (H2O), carbon dioxide (CO2), 

methane (CH4), nitrous oxide (N2O), ozone (O3), and halocarbons 

(chlorocarbons and fluorocarbons). Natural and anthropogenic processes alter 

the Earth’s atmosphere, being responsible for climate change. Although the 

atmospheric gas concentration has fluctuated across different geological 

periods, since the start of the Industrial Revolution around 1750 the 

atmospheric concentrations of CO2, CH4 and N2O have increased 40%, 150% 

and 20%, respectively (Figure 1A). Considering a time horizon of 100 years, N2O 
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and CH4 show a global warming potential 265 and 28 times higher than for CO2 

(IPCC, 2014). For CO2 emissions, about 40% of these emissions have remained 

in the atmosphere and the rest has been stored on land and in the oceans or 

removed from the atmosphere. In addition, it has been estimated that about 

half of the anthropogenic CO2 emissions have been emitted in the last 40 years 

(Figure 1B). 

 During the second half of the 20th century, a preoccupation about the 

impact of greenhouse gas accumulation in the atmosphere increased and 

following the growing scientific evidence many nations have accepted that 

climate change is a looming crisis. In response, the United Nations Environment 

Programme (UNEP) and the World Meteorological Organization (WMO) set up 

the Intergovernmental Panel on Climate Change in 1988 to bring together 

scientific data on the current state of knowledge of climate change and its 

potential environmental and socio-economic impacts. Based on IPCC 

information, the United Nations Framework Convention on Climate Change 

(UNFCCC) was created in 1992 to fight against the problem of climate change. 

A few years later 156 parties signed the Kyoto Protocol with the objective of 

addressing climate change and reducing carbon emissions. Currently, 197 

countries are members of the IPCC and 192 countries participate in the Kyoto 

Protocol. More recently, during the 21st Conference of the Parties celebrated 

in December 2015 in Paris, the UNFCCC reached an historic landmark 

agreement, taking ambitious efforts to combat climate change and adapt to its 

effects. For the first time in the history, through the Paris Agreement signed in 

2017, all nations have set the main objective of keeping the global temperature 

rise during this century to below 2°C with respect to pre-industrial levels.  
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1.2. Impact of human activity on atmospheric gas composition (CO2 and 

N2O) 

1.2.1. Carbon dioxide 

 Carbon dioxide is considered the major greenhouse gas produced by 

anthropogenic causes. The increase in the concentration of CO2 has been due, 

mainly, to the burning of fossil fuels and the massive felling of trees (Ussiri and 

Lal, 2013). Deforestation and the burning of large areas of the planet, represent 

a loss in global CO2 fixation capacity. Cereal crops, which are planted in these 

areas, retain the fixed carbon for only a short time whereas the trees 

accumulate and store it for substantial periods of time. Besides of the loss of 

forest mass causes the loss of an important carbon sink, it disappearance alters 

chemical, physical, and biological conditions related to these forest 

ecosystems, which consequently modulate the general greenhouse gas 

emissions (Barrena et al., 2013; Stange et al., 2013). Despite numerous climate 

change mitigation polices, anthropogenic greenhouse gas emissions have 

continued increasing. The relative contribution of anthropogenic practices 

differs from sector to sector, with energy production and agriculture, forestry 

and other land use (AFOLU) sectors being the most important drivers of 

increases in CO2 emissions (Figure 2).  

 

 

 

 

Figure 2.  Total anthropogenic 

greenhouse gas (GHG) emissions 

from economic sectors in 2010. 

Adapted from (IPCC, 2014). 
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 According to the IPCC (2014), agricultural practices are responsible for 

about 24% of CO2 gas emissions. Since the “Green Revolution” there have been 

increases in grain yields through the introduction of external inputs such as 

irrigation, herbicides, pesticides or fertilisers but also reductions in forestry 

areas for increases in agricultural area (FAO, 2015). For these yield increases to 

occur, modified land management strategies have been necessary and 

therefore soil biological and chemical processes such as nitrification, 

denitrification or leaching have been altered. 

1.2.2. Nitrogenous gas emissions 

Nitrogen cycle in soils  

 The use of fertilisers in agriculture represents a major source of 

greenhouse gas emission. The intensive use of N fertilisers by farmers leads to 

increase crop profits, but also enhances N losses in the form of NO3- leaching, 

ammonia volatilisation (NH3) or emission of nitric oxide (NO), N2O or 

atmospheric nitrogen (N2) gas.  

 Soil major N forms are ammonium (NH4+) and nitrate (NO3-). Although 

the main source of N input to agricultural soils is synthetic fertilizer, mineral 

nitrogen input comes from different sources. The plant-microbe symbiosis in 

legumes permit incorporate atmospheric N into ammonium by the N fixation 

though nitrogenase activity. Decomposition of microbial and plant biomass 

leads to the breakdown of complex organic matter into inorganic ammonium 

(mineralization) by soil microorganisms. Autotrophic nitrification is an aerobic 

process that consists of a two-step process where NH4+ is firstly oxidised under 

aerobic conditions to hydroxylamine (NH2OH) by the ammonia monoxygenase 

enzyme (AMO) of ammonia-oxidising bacteria (AOB) and archaea (AOA) (Arp 

and Stein, 2003). Hydroxylamine oxidoreductase (HAO) and nitrite 

oxidoreductase oxide NH2OH into nitrite (NO2-) and nitrate (Figure 3), 
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respectively. Nitrification and denitrification are produced at the same time in 

soils; however, it is in water-saturated soils where O2 availability is limited that 

optimal conditions are found for denitrifying microbes (Saggar et al., 2013). 

Denitrification consists of the sequential reduction of NO3-, NO2- nitric oxide 

(NO) and N2O ending in the formation of molecular nitrogen by the enzymatic 

activities of nitrate reductase (Nar, Nap), nitrite reductase (Nir), nitric oxide 

reductase (Nor) and nitrous oxide reductase (Nos) (Zumft, 1997; Philippot and 

Hallin, 2005).  

 
Figure 3. The soil  Nitrogen Cycle. Adapted from Coskun et al., (2017). 

 

 Although bacterial nitrification and denitrification are the main sources 

of NO and N2O emission from soils, there are other microbial processes with 

ecological importance in N soil cycling (Hallin et al., 2018). Nitrate can be 

reduced to NH4+ by dissimilatory nitrate reduction to ammonium (DNRA) by a 

specific group of bacteria and archaea, which reduce nitrate under strictly 

anaerobic conditions and compete directly with denitrification. Another 
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process that also occurs under anaerobic conditions is the anammox process, 

where the oxidation of NH4+ is coupled to nitrite reduction to release N2, with 

the consequent return of N2 back to the atmosphere (Figure 3). Bacterial 

denitrification has been extensively studied (Philippot and Hallin, 2005; 

Philippot et al., 2011; Jones et al., 2013); however, fungal denitrification has 

gained more attention due to the lack of nitrous oxide reductase gene that 

coding for the enzyme responsible for reducing N2O to N2 (Mothapo et al., 

2015). Thus, although knowledge about the composition and diversity of the 

denitrifying fungal community is still limited, the importance of the N2O-

producing activity of fungi is being evaluated under specific scenarios (Mothapo 

et al., 2013; Chen et al., 2014a). 

Use of N fertilisers in past, current and future agricultural practices 

 Agricultural practices have changed since the domestication of plants 

and animals 10000 years ago. Since the discovery of N as an essential nutrient 

for plants and the capacity of legumes for fixing atmospheric N by Jean-Baptiste 

Boussingault in 1836, many efforts have been driven to amplify our knowledge 

of the N cycle (Galloway et al., 2013). Farmers from the nineteenth century 

usually employed crop rotation with legumes, organic fertilisation with 

manures or mineral nitrate deposition to obtain the N necessary for crop 

production. However, it was not until one hundred years later that the Haber-

Bosch process permitted industrial quantities of ammonia production and 

enabled increasing N inputs in agriculture (Galloway et al., 2013). Nowadays it 

is estimated that the production of synthetic fertiliser by this process feeds 

about 50 per cent of the world´s population. The consumption of N-fertiliser in 

2014 reached 113147 thousand tonnes and it is estimated that in 2018 its 

consumption will be near to 120000 thousand tonnes (FAO, 2015; Timilsena et 

al., 2015).  
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Table 1. World demand for ferti l iser nutrient between 2014 and 2018 (FAO, 2015). 
Year 2014 2015 2016 2017 2018 

Nitrogen (N) 113147 115100 116514 117953 119418 

Phosphate (P2O5) 42706 43803 44740 45718 46648 

Potash (K2O) 31042 31829 32628 33519 34456 

Total (N + P2O5 + K2O) 186895 190732 193882 197190 200522 

  

 The N input in agricultural soils permits increased crop production, but 

its use is not equally distributed across the world’s surface. By far the largest N-

fertiliser consumption coincides with developing countries, being the poor 

countries with a severe famine where the use of N-fertiliser is lower. Many 

farmers do not have access to mineral fertiliser, requiring the use of other 

techniques such as biological nitrogen fixation or application of manure and 

slurries to increase N in soils, but these are not always enough to cover needs. 

 In addition, the estimated increase in the global population predicts that 

at the end of the 21st century the world’s population may surpass 11 billion 

(Unite Nations, 2015). Moreover, the projections estimate that more than 80% 

of the world’s population will live in Asia and Africa. Therefore, not only will it 

be necessary to increase food production but this will also require optimisation 

and adaption of crops and land use management to improve agricultural 

efficiency and ensure food security (Chien et al., 2009; Snyder et al., 2009; Sanz-

Cobena et al., 2016). Furthermore, the existing agricultural system makes 

supplementation with external N inputs indispensable, mainly in the form of 

manures, crop residues and synthetic fertilisers to maintain crop yields.  

Crop management and nitrogenous greenhouse gasses  

 In order to reduce the emission of nitrogenous greenhouse gases such 

as N2O and NH3, several strategies are focussed on controlling the N in soils to 

reduce the main environmental impacts of water eutrophication and N2O 
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emission. The IPCC (2014) has estimated that the gaseous emission factor in 

agricultural soils is about 1% of the applied N. Thus, the optimisation of fertiliser 

formulations and agronomic practises are essential to reduce N losses (Sanz-

Cobena et al., 2016). Moreover, reducing these losses would allow increased 

nitrogen use efficiency (NUE) by plants that it is estimated that only 47% of the 

nitrogen applied is recovered by cereal crops (Lassaletta et al., 2014). Among 

the mitigation strategies employed, those that stand out are modifying N 

application rates to match crop N needs, combining synthetic and organic 

fertilisers, and optimising water management with land and fertiliser uses 

(Sanz-Cobena et al., 2016). One of the objectives to better manger N fertilisers 

and reduce N losses from agricultural soils is to maintain N in the soil for longer 

periods. There are many strategies focussed towards this objective, one of 

them consisting of replacing (complete or partially) synthetic fertilisers with 

organic fertilisers. This provides not only N and other essential nutrients, but is 

also a source of organic C. However, it is usually difficult to provide adequate N 

application rates with this strategy (Rees et al., 2013; Sanz-Cobena et al., 2016).  

 In order to maintain N for longer periods, the use of urea or ammonium-

based fertilisers combined with urease inhibitors and/or nitrification inhibitors, 

respectively, is a strategy employed across the globe (Menéndez et al., 2008, 

2012; Pfab et al., 2012; Huérfano et al., 2015, 2016). These compounds  

deactivate the enzyme responsible for the first step of nitrification, reducing 

the oxidation of ammonium to nitrite, and subsequently the substrate for 

denitrification. The inactivation of these processes reduces N2O emissions and 

retains N in the soil for longer periods. There are many biological or synthetic 

nitrification inhibitors used for this purpose (Subbarao et al., 2006; Ruser and 

Schulz, 2015); however, among them the most widely used are synthetic, 

including dicyandiamide (DCD) and 3,4-Dimethylpyrazol-phosphate (DMPP) 
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(Figure 4A). The effectiveness of nitrification inhibitors depends on their 

physicochemical properties, which condition their solubility, volatility, mobility 

and persistence in soils (Zerulla et al., 2001; Marsden et al., 2016; Li et al., 

2017), and is subject to soil parameters such as pH, temperature or soil water 

content (Menéndez et al., 2012; Liu et al., 2015; Qiao et al., 2015). These 

chemical compounds should be chemically stable, efficient at low 

concentrations, innocuous for plants and competitive in cost. Several works 

have evaluated the effectiveness of these nitrification inhibitors in maintaining 

crop yields while keeping NH4+ in soils and mitigating N2O emissions (Menéndez 

et al., 2008; Huérfano et al., 2015, 2016; Guardia et al., 2017). Although both 

DCD and DMPP have shown similar efficiency, their use shows global variation 

(Di and Cameron, 2016; Yang et al., 2016). DCD applications are the most widely 

used around the world due to it being cheap, having low volatility and being 

relatively soluble in water. DMPP is mainly applied in China and Europe, and 

despite its higher economic cost DMPP has the advantage of lower application 

rates than DCD and minor eco-toxicological side effects for ecosystems 

(Marsden et al., 2015). More recently, 2,3-dimethylpyrazol-succini acid 

isomeric mixture (DMPSA) (Figure 4B) has been developed to confer more 

stability and reduce pyrazole ring volatility. Therefore, DMPSA can be combined 

with other fertilizers like calcium ammonium nitrate or diammonium 

phosphate, which were previously not compatible. 

 
Figure 4. Chemical structures of DMPP (A) and DMPSA (B). 

A) DMPP B) DMPSA
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1.3. Plant performance under elevate CO2 conditions 

 The effects of elevated CO2 on crops are well studied due to the strong 

concern for future food security (Long et al., 2004; Aranjuelo et al., 2011). In 

plants with C3 photosynthetic metabolism such as wheat, ambient CO2 

concentration is limiting; therefore, photosynthesis and growth in wheat is 

expected to be enhanced by elevated CO2 resulting in higher yields (Drake and 

Gonzàlez-Meler, 1997; Kimball et al., 2002; Ainsworth and Rogers, 2007; 

Schmid et al., 2016). Although the current CO2 in the atmosphere is generally 

limiting for C3 photosynthesis, the available information suggests that the 

predicted CO2 increase will enhance photosynthetic rates in plants (Long et al., 

2004). Despite an expected increase in cereal production from the projected 

increase in CO2, the interaction of CO2 with other limiting factors like nitrogen 

availability, temperature and/or low water availability might decrease or 

eliminate the positive effect of elevated CO2 on plant production (Kimball et al., 

2002; Aranjuelo et al., 2011, 2013b). 

1.3.1. Carbon fixation 

 It has been noted that while exposure to elevated CO2 might induce 

photosynthetic activity at first, the initial stimulation of photosynthetic capacity 

in C3 plants is often reduced when exposure to elevated CO2 is prolonged 

(Ainsworth and Rogers, 2007; Xu et al., 2016). According to the predicted 

increase in atmospheric CO2 (IPCC, 2014), the carboxylation reaction of Rubisco 

should be enhanced by the greater availability of substrate thus augmenting 

photosynthetic capacity and then leading to increased crop yield (Drake and 

Gonzàlez-Meler, 1997; Sharkey et al., 2007; White et al., 2015). As mentioned 

above, a number of studies have shown that prolonged exposures to elevated 

CO2 causes stomata or Rubisco limitations, which impedes increase 

photosynthetic capacity and provokes the well-known photosynthetic 
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acclimation. Plants adjust their carbon fixation and photoassimilates utilisation 

capacity, and the coordination between these two parameters has been 

described as being key to regulation of photosynthesis under elevated CO2. The 

most popular hypothesis to explain acclimation to elevated CO2 is known as the 

"source-sink hypothesis", and it states that photosynthetic rates are limited by 

an insufficient plant sink strength (Arp, 1991). The accumulation of non-

structural carbohydrates is sensed by hexokinase, and this represses expression 

of genes coding the photosynthetic apparatus and finally, induces acclimation 

(Long et al., 2004; Moore et al., 1999). At the whole plant level, photosynthetic 

rates are tightly coordinated with the ability to maintain and develop new non-

photosynthetic plant tissues.  

 A wide range of physiological and developmental mechanisms control 

plant growth. Internally, plant C source-sink interactions are modulated at the 

molecular, physiological, and developmental levels. The plant developmental 

transition from vegetative to reproductive growth has important implications 

for the sink-source balance. The relationship between sink and source organs 

is conditioned by the rate at which external nutrients are taken up and 

transformed internally into organic compounds and the remobilisation of these 

resources to others organs. 

 Source organs are generally tissues that provide C and N resources to 

other developing organs where nutrients are required (Coskun et al., 2016; 

Tegeder and Masclaux-Daubresse, 2017). Regarding carbon sink-source, it is 

well known that the C fixed by photosynthesis is usually stored/translocated 

from leaf (source) to other sink organs such as roots and stems. As mentioned 

before, sink strength is considered a key parameter conditioning crop 

responsiveness to elevated CO2 (Ainsworth et al., 2004; Aranjuelo et al., 2009). 

Under elevated CO2 conditions, the greater availability of C can increases leaf 
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photoassimilates such as sucrose. When leaf carbohydrate content exceeds leaf 

C demand, usually linked to the impossibility of remobilising these 

photoassimilates to sink organs, plants suffer sink-source imbalance. 

Therefore, plants with a large sink size (i.e. large ears in the case of cereals) 

should be capable of overcoming leaf carbohydrate build-up and consequently 

benefit from CO2 enrichment. On the other hand, plants with a small sink size 

would be more susceptible to leaf C sink-source imbalance and consequently 

photosynthetic acclimation(Aranjuelo et al., 2009; White et al., 2015).  

 Since the Green Revolution, agricultural practices have increased the 

yield potential of many crops. Furthermore, wheat and rice yields the actual 

rate of crop profits through traditional plant breeding programs is not enough 

for provide food for the current estimates of the growth in the human 

population. This world population increase together with the projections for 

climate change indicate that a special effort will be required to search for more 

productive and well-adapted cultivars for the future. In addition, current plant 

breeding programs use elite crop cultivars with selected agronomic 

characteristics that may lack some alleles that were not previously considered 

interesting but in the future may be important adaptations to climate change 

(Maydup et al., 2012; Serrago et al., 2013; Dawson et al., 2015). For that, it is 

necessary to integrate others ecotypes such as wild cultivars that might provide 

with these alleles lacked (Ellis et al., 2000). 

1.3.2. Role of nitrogen metabolism  

 Nitrogen is an essential component for plant growth and crop 

productivity, being a component of nucleic acids, amino acids, chlorophylls, 

proteins, and secondary metabolites among others (Hawkesford et al., 2012). 

Both nitrate and ammonium are the main N-mineral forms taken up by plants 
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(Masclaux-Daubresse et al., 2010) but also, plants can take up N-organic forms 

or even fix N2 via symbiosis with rhizobium. 

 Nitrogen availability and management determines photosynthetic 

performance under raised CO2 (Langley & Megonigal, 2010; Stitt & Krapp, 

1999). It has been reported that photosynthesis acclimation is tightly 

dependent on N dosage: the effect is evident when plants are N-limited, but 

not observed in well-fertilised conditions (Reich & Hobbie, 2012; Geiger et al., 

1999). Under elevated CO2 it has been documented that N content is reduced 

(in varying degrees) in all plant tissues (Cotrufo et al. 1998) under all culture 

conditions (Poorter et al. 1997) and has been corroborated as a conserved 

response across many plant species (Loladze, 2014). The reduction in nitrogen 

content in plants exposed to elevated CO2 has been the subject of an intense 

debate. Different studies published during the last decade have highlighted 

that the form of N applied plays a crucial role in the responsiveness of plants to 

elevated CO2 (Vega-Mas et al., 2015; Coskun et al., 2016; Rubio-Asensio and 

Bloom, 2017). When both N inorganic sources (nitrate and ammonium) are 

available for plant uptake, ammonium, which is the reduced form, would be 

preferred for assimilation due avoidance of the cost of reduction (Bloom et al., 

1992; Andrews et al., 2013). Nevertheless, in many plants species when 

ammonium is supplied as the sole N source, “ammonium toxicity” may appear 

(Britto and Kronzucker, 2002; Ariz et al., 2011).  

 Most plant species cannot grow or develop adequately when NH4+ is 

present at high concentrations in the soil and especially when it is the sole N 

source (Britto and Kronzucker, 2002; Bittsánszky et al., 2015). So, a substantial 

effort has been made to elucidate the mechanisms determining plant 

ammonium tolerance/sensitivity. However, the physiological and molecular 

mechanisms involved are still not completely clear (Esteban et al., 2016; Liu and 
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Wirén, 2017). The adverse effects of NH4+ range from visible symptoms such as 

leaf chlorosis, early flowering and a general loss of plant biomass, to 

physiological disorders, which include disruption of hormonal homeostasis, 

decreases in photosynthesis, oxidative stress, alterations in intracellular pH, 

osmotic imbalance and mineral nutrient deficiency among others (Britto and 

Kronzucker, 2002; Esteban et al., 2016). Roots most likely play a “barrier” role 

in preventing ammonium translocation to photosynthetic organs. In fact, the 

main strategies plants have evolved to avoid ammonium toxicity are to increase 

NH4+ efflux from the cell, to enhance NH4+ assimilation (mainly in roots), and to 

store NH4+ inside the vacuole. The energetic cost of these processes is 

considered a cause of the growth impairment often observed under 

ammonium nutrition. At the same time, increases in the activity of TCA 

anaplerotic enzymes have been related to a better adaptation to using NH4+ as 

an N source (Setién et al., 2013, 2014; Vega-Mas et al., 2015; Sarasketa et al., 

2016). Moreover, the external provision of succinate and 2-oxoglutarate, key 

carbon sources for NH4+ incorporation into amino acids, enhances its 

assimilation and alleviates toxicity symptoms (Magalhaes et al., 1992). In the 

context of increasing concentrations of atmospheric CO2, an understanding of 

the complexity of plant responses to ammonium nutrition and mixed 

ammonium nutrition will help translate our knowledge of plant physiological 

responses to elevated CO2 (Vega-Mas et al., 2015; Jauregui et al., 2017; 

Nimesha et al., 2017) into approaches that will benefit crop production.  
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Objectives 
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 The Intergovernmental Panel on Climate Change (IPCC) highlights 

different strategies to evaluate and mitigate the effects of Climate Change. 

More specifically, the IPCC has developed two Working Groups (II and III) 

focused on studying the impacts, adaptation and vulnerability to climate 

change and evaluating different strategies of mitigation to Climate Change. 

Within this context, the IPCC has proposed, among other actions, the use of 

nitrification inhibitors jointly with ammonium-based fertiliser to reduce 

greenhouse gas emission (such as N2O) from agricultural soil. On the other 

hand, IPCC urges to deepen the knowledge of the atmospheric CO2 increase 

effect in the crop development. Therefore, within this context, a deeper 

understanding on the use ammonium-based fertilizer under elevated CO2 

concentration conditions could be a goal of great relevance for crop 

performance during the next decades. 

 After all this, the general purpose of the current PhD. project was to 

evaluate the impact of nitrification inhibitors (contextualized in a strategy to 

mitigate the N2O gas emission derived from N-fertilisation), the N fertilization 

form and C sink/source balance in crops exposed to elevate CO2 conditions.  

 

The specific objectives of this study have been: 

• To study the effectiveness of nitrification inhibitors (DMPSA and DMPP) in 

mitigating N2O emissions together with the behaviour of nitrifying and 

denitrifying microbial populations under two contrasting soil water-content 

conditions (40% and 80% WFPS). This objective is addressed in chapter 3. 

• To evaluate the physiological and molecular response of wheat plants to 

elevated CO2 in relation to nitrogen source in order to clarify the connection 

between the photosynthetic apparatus and the assimilation of nitrogen in 

leaves. This objective is addressed in chapter 4. 
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• To determine the relevance of the C sink-source balance in response to 

elevated CO2 in two barley cultivars with different capacity to store C/N 

compounds in the internodes. This objective is addressed in chapter 5. 

• To evaluate the importance of elevated CO2 on the remobilisation of leaf 

metabolite compounds of wheat at vegetative stages and grain filling 

periods. This objective is addressed in chapter 6. 
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3 

Dimethyl pyrazol-based nitrification inhibitors effect on 

nitrifying and denitrifying bacteria to mitigate N2O 

emission 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCIENTIFIC REPORTS | 7: 13810 | 

  



 

56 
 

  



 

57 
 

3.1. Introduction 

 Nitrous oxide (N2O) represents an important environmental threat due 

to its high global warming potential (298 times that of CO2 for a 100-year time 

horizon), together with its involvement in the destruction of the ozone layer. 

Moreover, its total global emissions to the atmosphere have increased 6% since 

2005 (IPCC, 2014). Soil, both natural and managed, is considered the primary 

source of N2O in global greenhouse gas budgets (Syakila et al., 2010). 

Furthermore, it has been estimated that the agricultural contribution to 

anthropogenic N2O emissions represents around 70-80% (Ussiri et al., 2009; 

IPCC, 2014). Autotrophic nitrification and heterotrophic denitrification are 

responsible for most of these emissions (Braker and Conrad, 2011). Under 

aerobic conditions, nitrification is driven by ammonia-oxidising bacteria (AOB) 

and archaea (AOA), which oxidise NH3 into hydroxylamine (NH2OH) through the 

ammonia monoxygenase enzyme (AMO) encoded by the amoA gene (Arp and 

Stein, 2003). During the nitrification process, N2O can be produced as a 

secondary product. N2O can be also emitted by the nitrifiers denitrification, 

which reduces nitrite (NO2-) directly to nitric oxide (NO), N2O or N2 (Wrage et 

al., 2001). However, although both nitrification and denitrification processes 

can occur in wet soils where there is limited O2 availability, the main source of 

N2O is usually the denitrification of NO3- by denitrifying microbes (Li et al., 

2016). The denitrification pathway consists of four sequential reactions 

initiated by NO3- reduction and carried out by nitrate reductase (Nar, Nap), 

followed by nitrite reductase (Nir), nitric oxide reductase (Nor), and nitrous  

oxide reductase (Nos), leading to the generation of N2 as an end-product 

(Zumft, 1997; Philippot and Hallin, 2005). 

 In agriculture, the magnitude of N2O emissions depends greatly on both 

the application of nitrogen fertilisers and the effect of edaphoclimatic 
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conditions on microbial activity, including O2 levels as well as temperature, pH, 

and the soil carbon:nitrogen ratio (Ussiri and Lal, 2013; Benckiser et al., 2015). 

Nitrification inhibitors (NIs) have been extensively applied to keep N available, 

in the form of ammonium, in the soil for longer periods while lessening NO3- 

leaching and mitigating N2O gas emission. In this sense, the use of NIs in 

conjunction with ammonium-based fertilisers has been proposed as an 

excellent strategy for reducing N2O emissions (Menéndez et al., 2006; Pfab et 

al., 2012; Huérfano et al., 2015). A great number of molecules with the capacity 

to inhibit nitrification have been identified (Subbarao et al., 2013; Ruser and 

Schulz, 2015). At present, the commercialised dicyandiamide (DCD) and 3,4-

dimethylpyrazole phosphate (DMPP) are the most widely used NIs. The mode 

of action of DCD and DMPP has not been completely elucidated, but both of 

them are supposed Cu-selective metal chelators that may remove this AMO co-

factor, therefore avoiding the oxidation of NH4+ to NO2- (Ruser and Schulz, 

2015). Several studies have demonstrated similar efficacy for DMPP and DCD in 

mitigating N2O emissions (Yang et al., 2016). However, DMPP reduces the 

ecotoxicological and leaching problems related to DCD, as it is applied at 

approximately one-tenth lower concentration than DCD and is less mobile in 

the soil (Pasda et al., 2001; Zerulla et al., 2001; Macadam et al., 2003; Liu et al., 

2013). The persistence of NIs and their capacity to reduce the microbial 

oxidation of NH4+ to NO2-, thus mitigating N2O emissions, have been shown to 

be affected by soil conditions including soil temperature, moisture (Menéndez 

et al., 2012; Di et al., 2014; Barrena et al., 2017), and pH (Shi et al., 2016a,b). A 

very recent development is the new DMP-based inhibitor 2-(N-3,4-dimethyl-

1H-pyrazol-1-yl) succinic acid isomeric mixture (DMPSA). The use of pyrazole 

compounds as nitrification inhibitors have the disadvantage of the highly 

volatility of the pyrazole rings. Instead of the phosphate from DMPP, the 
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succinic residue holds to the pyrazole ring from the DMPSA form a salt that 

confer stability and reduces its volatility. Therefore, DMPSA is stable with other 

fertilizers such as calcium ammonium nitrate or diammonium phosphate that 

would not be able to use with nitrification inhibitors such as DMPP. Both DMPP 

and DMPSA are structurally very similar but it is not still clear if these inhibitors 

have the same mode of action and efficiency when targeting soil nitrifying 

organisms. In fact, there are almost no studies on DMPSA (Huérfano et al., 

2016; Guardia et al., 2017). To our knowledge, only Huérfano et al.(2016) have 

compared DMPSA and DMPP in a wheat-field. These authors found that both 

inhibitors exhibited a similar N2O-emissions-reducing capacity while 

maintaining crop yield and quality. 

 It is accepted that the nitrification inhibition action of DCD and DMPP 

reduces nitrifying bacterial populations. This is generally observed as a 

reduction in amoA gene copy number in AOB, although the effect on AOA amoA 

is less evident (Ruser and Schulz, 2015). It is also probable that NIs mitigate N2O 

emissions through indirectly limiting denitrification processes by decreasing 

the availability of NO3- (Menéndez et al., 2012; Florio et al., 2014; Kou et al., 

2015). Finally, in the framework of reducing N2O emissions from agriculture, 

the last denitrification step by Nos (encoded by nosZ) becomes crucially 

important since this is the only enzyme capable of reducing N2O to N2. Most 

studies describing the nosZ gene copy number after the application of NIs are 

related to organic fertilisation, and there is no consensus on how the nosZ gene 

abundance is affected (Di et al., 2014; Florio et al., 2014; Domeignoz-Horta et 

al., 2015). Additionally, until now, no-one has looked at how DMPSA affects 

populations of soil nitrifying and denitrifying microbes. Therefore, a greater 

understanding of how these molecules reduce the negative effect associated 

with nitrogen fertilisation is crucial to optimising land managements. 



 

60 
 

Moreover, the determination of where NIs are actuating is interesting to 

comprehend their effect over ground microbial populations. 

 In this context, the main objectives of this work were to study how the 

effectiveness of DMPSA compared to DMPP in mitigating N2O emissions, and 

quantify the behaviour of nitrifying and denitrifying microbial populations  

under two contrasting soil water-content conditions (40% and 80% water-filled 

pore space; WFPS). Moreover, since NIs are highly efficient at reducing N2O 

emissions in soils under low oxygen availability; in this work, we also explored 

the hypothesis that denitrification could be directly affected by DMP-based 

inhibitors. 
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3.2. Materials and methods 

Soil sampling and experiment setup 

 Soil was collected in June 2014, from a 0-30 cm layer of clay loam soil in 

a wheat field (Table 1), in the Basque Country (Spain). In the laboratory, any 

roots and stones were removed and the soil was passed through a 2 mm sieve. 

After this, it was air-dried, homogenised and kept at 4°C until the start of the 

experiment.  

 

Table 1. Physical and chemical properties of the soil (0–30cm depth). OM means organic 

matter. 

Soi l texture  
Sand  (%) 36 

Si l t (%) 28 
Clay (%) 36 

Soi l chemical 
properties  

pH  8.4 
OM (%) 2,9 

N (%) 0.23 
C:N  7.31 

Carbonate (%)  2.01 
P (ppm) 106 

Ca  (ppm)  1295 
Mg (ppm)  171.4 
K (ppm) 516 

 

 In order to reactivate the soil microorganisms, fourteen days prior to 

the onset of treatments, the soil was rehydrated with deionised water up to 

10% below the final water filled pore space (WFPS) and activated by adding 500 

mg of carbon in the form of glucose, and 3 mg of NH4NO3 per kg of dry soil 

(equivalent to 10 kg N ha-1) (Singh et al., 2010; Menéndez et al., 2012). The 

experiment was set up as a soil microcosm incubation study. 272 1 litre glass 

flasks were prepared with 300 g of dried soil per flask; 3 technical replicates per 

treatment and time point were sampled destructively for mineral N and pH 

determinations (a total of 240 bottles), and the remaining 32 flasks were used 

for N2O emissions and soil nitrifying and denitrifying bacterial population 
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analyses (4 technical replicates per treatment). The trial was designed as a split 

plot arrangement in which eight treatments were established as a result of 

combining the different soil water content and fertilisers. The treatments were: 

unfertilised control (C); ammonium sulphate (AS); AS+DMPP (DMPP); and 

AS+DMPSA (DMPSA). Ammonium sulphate [(NH4)2SO4] was applied at a rate of 

42.8 mg N kg-1 dry soil (equivalent to 140 kg N ha-1); DMPP and DMPSA 

(EuroChem Agro Iberia S.L.) were both added at 1% N. In order to achieve a 

homogeneous distribution of the fertilisers in the soil, the AS (with or without 

inhibitor) was dissolved in deionised water, and subsequently 5 ml were added 

to the corresponding treatments. For unfertilised treatments, 5 ml of deionised 

water were added. Each treatment was then subdivided into two sub-

treatments with different moisture conditions expressed as water filled pore 

space (WFPS 40% and 80%). Water was added to every flask in order to reach 

the humidity defined for each soil water content according to the equation by 

Aulakh et al. (1991): [(gravimetric water content X soil bulk density)/total soil 

porosity], where soil porosity = [1 — (soil bulk density/particle density)], soil 

bulk density =1.14 g cm-3, and particle density is assumed to be 2.65 g cm-3. In 

order to maintain the humidity while allowing gas diffusion, the flasks were 

covered with Parafilm (Oshkosh, WI, USA) throughout the entire study. Twice 

per week each flask was weighed to check the soil water content, deionised 

water being added whenever necessary. The microcosms were incubated in the 

dark at 20°C throughout the 51 days of the experimental period. 

N2O emissions measurement 

 Daily N2O emissions were determined every two days for the first 16 

days, as well as on days 31 and 51. To do this, four independent flasks for each 

microcosm treatment were closed hermetically and 20 ml of gas from the 

atmosphere of the hermetic flasks were sampled after 30, 60 and 90 minutes, 
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and stored at pressure in 12 ml vials for later N2O analysis. Emission rates were 

calculated taking into account the increased concentration of N2O during the 

90 minutes of incubation. The gas samples were analysed an Agilent 7890A gas 

chromatograph (GC; Agilent Technologies, Santa Clara, CA, USA) equipped with 

an electron-capture detector (ECD). The gas samples were injected into a 

capillary column (IA KRCIAES 6017: 240 °C, 30 m x 320 µm) by means of a 

headspace auto-sampler (Teledyne Tekmar HT3, Mason, OH, USA) connected 

to the GC. On every measurement day, N2O standards were analysed as internal 

controls. Cumulative N2O production throughout the entire experiment was 

calculated by multiplying the length of time between two measurements by the 

average emissions rate for that period, and adding that amount to the 

previously accumulated N2O. 

Geochemical analyses 

 In order to monitor soil pH and mineral nitrogen (NH4+ and NO3-), three 

samples per treatment and time point were sampled, each from an 

independent flask. Soil pH is a key factor affecting biological processes as well 

as the diversity and structure of bacterial populations (Šimek and Cooper, 

2002), and the addition of DMPP may affect this pH (Liu et al., 2015). For this 

reason, we monitored the evolution of soil pH throughout the entire incubation 

period. To determine soil pH, 10 g of dry soil were suspended in deionised water 

(1:2, w:v) and shaken for an hour at 165 rpm (KS501D, IKA, Staufen, Germany) 

to properly homogenise the mixture. Soil suspensions were left to settle for 30 

min, to decant the particles, and the pH was determined from the solution. No 

significant differences were observed between the fertilised treatments  

(Supplementary Figure 1). 

 To analyse soil mineral nitrogen, 100 g of dry soil were mixed with 1 M 

KCl (1:2, w:v) and shaken for an hour at 165 rpm to properly homogenise the 
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mixture. This soil solution was filtered twice; first through Whatman no. 1 filter 

paper (GE Healthcare, Little Chalfont, Buckinghamshire, UK), and then through 

Sep-Pak Classic C18 Cartridges 125 Å pore size (Waters, Milford, MA, USA) to 

eliminate organic carbon. The filtered soil solution was used to determine the 

NO3- content, as described by Cawse (1967), and NH4+ content using the 

Berthelot method (Patton and Crouch, 1977). 

Nucleic acid isolation 

 Ten grams of soil were collected from the same flasks as used for N2O 

determination on each measurement day, immediately frozen in liquid 

nitrogen and stored at -80 °C until use. To quantify bacterial populations, DNA 

was extracted from 0.25 g of soil using the PowerSoil DNA Isolation Kit (MO BIO 

Laboratories, Carlsbad, USA) following the manufacturer’s recommendations . 

DNA was quantified spectophotometrically (Nanodrop, Thermo Scientific, 

Walthan, MA, USA). For total RNA isolation, 1.5 g of frozen soil was extracted 

with a RNA PowerSoil Total RNA Isolation Kit following the manufacturer’s  

protocol (MO BIO Laboratories, Carlsbad, USA). The quantity of RNA was 

determined spectrophotometrically using a NanoDrop (Thermo Scientific), and 

the RNA was quality checked with a Bioanalyzer 2100 (Agilent Technologies). 

For each sample, 100 ng of RNA were retrotranscribed into complementary 

DNA using the PrimeScript™ RT reagent Kit (Takara-Bio Inc., Otsu, Shiga, Japan). 

The absence of contamination with genomic DNA was tested in all RNA samples 

by PCR using 16S rRNA gene primers. 

Quantification of nitrifying and denitrifying gene abundance and expression 

analysis using qPCR 

 Total bacterial and archaeal abundances (16S rRNA), and genes involved 

in nitrification (amoA) and denitrification (narG, nirK, nirS, nosZI and nosZII), 

were amplified by qPCR using SYBR® Premix Ex Taq™ II (Takara-Bio Inc.) using 
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StepOnePlus™ Real-Time PCR System and StepOnePlus™ Software v2.3 

(Thermo Scientific). Detailed information about gene-specific qPCR primers, 

thermal programs and plasmid standard efficiencies are refereed in 

Supplementary Table 1. Standard curves were prepared from serial dilutions of 

107 to 102 gene copies µl-1 linearised p-GEMT plasmids with insertions of target 

gene fragments (Promega Corporation, Madison, WI, USA), following the 

equations detailed in Correa-Galeote et al. (2013). The copy number of target 

genes per gram of dry soil was calculated from the equation: [(number of target 

gene copies per reaction X volume of DNA extracted) / (volume of DNA used 

per reaction X gram of dry soil extracted)] described in Behrens et al. (2008). To 

determine gene expression levels, the same primers and PCR programs were 

used (Supplementary Table 1). Target gene expression was quantified relative 

to 16S rRNA gene expression calculated with the 2-∆∆Ct method, using the 

unfertilised soil as calibrator. 

Denitrification assay 

 In order to determine the effect of both NIs on the nitrous oxide 

reductase activity (Nos activity), 100 g of dried soil were loaded into 500 ml 

bottles. The treatments applied were: potassium nitrate (KNO3), KNO3 + DMPP, 

and KNO3 + DMPSA. In order to favour the denitrification, KNO3 was applied at 

a high rate of 300 mg N kg-1 dry soil, NIs were added at 1% of N applied, glucose 

was added at a rate of 180 mg Kg-1 dry soil and the humidity was adjusted to 

80% WFPS. The bottles were maintained in the dark at 20°C and measurements  

were made 0, 24, and 48 hours after fertilisation. At each time point, 8 bottles 

per treatment were closed hermetically with rubber septa (Sigma-Aldrich, Inc, 

USA) and the inner atmospheric headspace was evacuated and fluxed with N2 

three consecutive times to create an anoxic environment and thus, impel 

denitrification. To inhibit Nos activity, in four bottles per treatment 10% of the 
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atmosphere was replaced with acetylene (C2H2) (Yoshinari et al., 1977). Then, 

5 ml of gas from the headspace of each bottle, either with or without added 

C2H2, were sampled 30, 60 and 90 min after the C2H2 had been added. Finally, 

the samples were measured by GC, as detailed previously. The N2O production 

throughout the entire experiment was represented as cumulative emission of 

N2O.  

Statistical analyses 

 The data was analysed using the IBM SPSS statistics 22 software 

(Armonk, NY, USA). Normality and homogeneity of variance were analysed 

using the Kolmogorov-Smirnov and Levene tests. Analysis of significant 

differences in daily N2O emissions, mineral nitrogen, and gene expression levels 

was carried out by comparison of means (t-test). For bacterial gene copy 

number, N2O cumulative emissions and denitrification assay, significant 

differences between treatments were analysed using one-way ANOVA with a 

Duncan post hoc test. Additional details and significance levels are described in 

the figure captions. 
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3.3. Results 

DMPP and DMPSA reduced nitrous oxide emissions and ammonium oxidation 

under both WFPS conditions. 

 Fertilisation with ammonium sulphate (AS) generated a clear N2O 

emissions peak during the first 12 days of incubation (Figure 1). The magnitude 

of the N2O emitted was dependent on soil water content, since under 80% 

WFPS greater than ten times more N2O was emitted than at 40% WFPS (Figure 

1A, C). When NIs were applied together with AS, almost no N2O was emitted 

under either soil water content (Figure 1). However, under 80% WFPS 

conditions, although both NIs reduced N2O emissions, in DMPSA-treated soils 

the cumulative N2O emission was significantly higher than both the control and 

DMPP treatment; therefore, DMPP was more efficient at 80% WFPS (Figures 

1C, D). The unfertilised control treatments maintained low and constant values 

of both NH4+ and NO3- regardless of soil WFPS. The higher nitrification rates 

expected under the more aerobic conditions (40% WFPS) provoked rapid 

oxidation of NH4+, which in AS-treated soils dropped to the level of the 

unfertilised-soil after six days of incubation (Figure 2A). In contrast, the 

application of NIs led to a higher NH4+ content being maintained until day 16 

(Figure 2A). In agreement with the dynamics of NH4+ content, the level of NO3- 

at 40% WFPS in AS-treated soils underwent a faster and more pronounced 

increase than in those with DMPP and DMPSA (Figure 2B). At 80% WFPS, due 

to the limited oxygen availability that impairs nitrification, the NH4+ content 

stayed at relatively high levels until day 14 in all fertilised treatments; however, 

in the presence of NIs the higher NH4+ content was evident from day 10, and 

this was maintained until the end of the incubation period (Figure 2C). Nitrate 

contents remained low throughout the entire experiment in all soils under 80% 

WFPS conditions (Figure 2D). 
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Figure 1. Daily (A, C) and cumulative (B, D) N2O emissions at 40% WFPS (A, B) and 80% WFPS 

(C, D) soil microcosms during the experiment. The inset graphs in sub-figures A and C show an 

amplified view of the daily N2O emissions for the first 12 days. For daily emissions, significant 

differences (p<0.05) between DMPP and DMPSA with respect to AS are represented by * and 

#, respectively, and significant differences (p<0.05) between DMPP with respect to DMPSA are 

represented by £. For cumulative emissions, significant differences (p<0.05) are represented by 

different letters. Values represent the mean ± SE (n=4). C = unfertil ised control; AS = ammonium 

sulphate; DMPP = ammonium sulphate + DMPP; and DMPSA = ammonium sulphate + DMPSA 
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Figure 2. Evolution of soil ammonium (A, C) and nitrate content (B, D) at 40% WFPS (A, B) and 

80% WFPS (C, D). Significant differences (p<0.05) between DMPP and DMPSA with respect to 

AS are represented by * and #, respectively. Values represent mean ± SE (n=3). Ammonium 

content for day 0 represents the total amount of NH4+ added to the samples. 
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Figure 3. Relative expression of bacteria amoA (A, B) and nosZI (C, D) at 40% WFPS (A, C) and 

80% WFPS (B, D) for the first 8 days. Significant differences (p<0.05) between DMPP and 

DMPSA with respect to AS are represented by * and #, respectively. Values represent mean ± 

SE (n=3). 
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 The expression of the denitrifying genes narG, nirK and nirS did not vary 

substantially, regardless of the fertilisation type (Figure 4). Only nirK expression 

increased on day 4 after AS fertilisation at 40% WFPS (Supplementary Figure 

2C). Interestingly, nosZI gene expression was induced 2 days from the onset of 

the incubation, when nitrification inhibitors were applied; this induction was 

exclusive to the 80% WFPS conditions, where denitrification is favoured due to 

low levels of O2 availability (Figure 3D). The low intensity of the nosZII 

amplification signal meant we were unable to quantify its expression in any of 

the fertilisation regimes. 

 To confirm the results obtained through gene expression analysis, we 

also quantified the nitrifying and denitrifying abundances 16 and 51 days after 

fertilisation. The abundance of bacteria, quantified as 16S rRNA gene copy 

number per gram of dry soil, did not vary among the fertilised treatments at 

any of the incubation times (Supplementary Figure 3). The abundance of 

archaea did not vary between treatments at day 16 (Supplementary Figure 3C); 

however, at day 51 under 40% WFPS conditions, archaea abundance in AS-

treated soils was lower than in the unfertilised control (Supplementary Figure 

3D). Nitrifying microbial abundances (AOB and AOA) were quantified by 

determining bacterial and archaeal amoA gene copy number per gram of dry 

soil. As shown in Figure 4A, 16 days after fertilisation and regardless of soil 

WFPS, AS treatment stimulated the AOB population, which was around five 

times more abundant than in the unfertilised control. This stimulation was 

completely abolished when NIs were applied together with the fertiliser. 

Interestingly, the effect of AS on AOB dropped 51 days after fertilisation and 

was only evident at 40% WFPS (Figure 4B). No differences were detected in 

AOA abundance among the fertilised treatments, regardless of WFPS and 
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incubation time (Figure 4C, D). The ratio of AOA gene copies over AOB gene 

copies (AOA / AOB) gives us an idea of the response of the community in the 

microcosm. AOA gene copies was not affected by the addition of AS. 

Nevertheless, NI-treated soils reduced AOB gene copies number and thus, 

which resulted in a higher ratio AOA/AOB than in the soil treated only with AS 

(Supplementary Figure 4). 

 

 
Figure 4. Abundance of AOB (A,B) and AOA (C,D) expressed respectively as bacteria and 

archaea amoA gene copy number per gram of dry soil at 40% WFPS (grey bars) and 80% WFPS 

(black bars), 16 (A, C) and 51 days (B, D) after treatment application. Significant differences 

(p<0.05) between treatments within each WFPS condition are indicated with different letters. 

Asterisk (*) indicates significant WFPS effect for each ferti l ised treatment (p<0.05). Values 

represent the mean ± SE (n=4). C = unfertil ised control; AS = ammonium sulphate; DMPP = 

ammonium sulphate + DMPP; and DMPSA = ammonium sulphate + DMPSA. 
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(Supplementary Figure 5A-F). The abundance of nitrous oxide-reducing 

bacteria was determined by quantifying the nosZI and nosZII gene copy number 

per gram of dry soil. As shown in Figure 5, the nosZ gene copy numbers did not 

differ between the fertilised treatments at 40% WFPS. However, 51 days from 

the onset of the incubation at 80% WFPS, the abundance of both genes 

increased when DMPP or DMPSA were applied together with AS (Figure 5B, D). 

 
Figure 5. Abundance of nosZI (A, B), nosZII (C, D) expressed as gene copy number per gram of 

dry soil, and the ((nosZI + nosZII) / (nirK + nirS)) ratio (E, F) at 40% WFPS (grey bars) and 80% 

WFPS (black bars), 16 (A, C, E) and 51 days (B, D, F) after treatment application. Significant 

differences (p<0.05) between treatments within each WFPS condition are indicated with 

different letters. Asterisk (*) indicates significant WFPS effect for each ferti l ised treatment 

(p<0.05). Values represent the mean ± SE (n=4). C = unfertil ised control; AS = ammonium 

sulphate; DMPP = ammonium sulphate + DMPP; and DMPSA = ammonium sulphate + DMPSA. 
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 The ratio of the sum of nosZI and nosZII gene copies over the sum of nirK 

and nirS gene copies ((nosZI + nosZII) / (nirK + nirS)) gives us an idea of potential 

N2 versus N2O production; a higher ratio means a greater potential for N2O 

reduction. At 80% WFPS, the ratio was higher with DMPP application compared 

to AS treatment, this difference being emphasised at day 51 (Figure 5E-F). This 

fact suggests that although the potential for completing the denitrification 

pathway to N2 is enhanced in the presence of both NIs, DMPP is more effective 

than DMPSA at promoting the N2O reduction. 

DMPP and DMPSA induce nitrous oxide reductase activity under denitrifying 

conditions. 

 In order to confirm the effect of DMPP and DMPSA as potential inducers 

of N2O to N2 reduction under 80% WFPS conditions, we aimed to determine the 

activity of the denitrifying enzymes through a soil incubation experiment in 

denitrifying conditions after nitrate was added in a high concentration to 

induce the denitrification process. As shown in Figure 6, Nos activity was 

inhibited in acetylene-treated bottles; thus, higher N2O emissions were 

detected compared to non-acetylene-treated bottles. Moreover, in non-

acetylene-treated bottles, where Nos activity was active, DMP-inhibitors 

stimulated this activity reducing significantly N2O emissions (Figure 6B). The 

ratio of acetylene-treated bottles over non-treated ones ((N2O + N2) / N2O) ratio 

was higher when DMPP or DMPSA were applied jointly with KNO3, supporting 

the hypothesis that these NIs induced the reduction of N2O to N2 (Figure 6C). 
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Figure 6. Denitrification activity up to N2O+N2 

(A) (acetylene) or up to N2O (B) (non-acetylene) 

and nitrous oxide reductase activity (Nos 

activity) (C) expressed by the ratio of acetylene  

incubation over non-acetylene incubation 

((N2O + N2)/N2O) in KNO3, KNO3 + DMPP, and 

KNO3 + DMPSA treatments. Significant 

differences (p>0.05) are indicated with different 

letters. Values represent the mean ± SE (n=4). 
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3.4. Discussion 

 NI mode of action is not completely understood; however, it is generally 

accepted that their function is related to the inhibition of the AMO enzyme 

(Subbarao et al., 2013; Ruser and Schulz, 2015). The effectiveness of NIs in 

reducing N2O emissions varies with land use, soil type, environmental 

conditions, and the type of fertiliser employed (Gilsanz et al., 2016; Yang et al., 

2016). Indeed, NIs are also able to decrease N2O emissions under low O2 

conditions, where the activity of nitrifying bacteria is limited and the main 

source of N2O is denitrification (Menéndez et al., 2012; Di et al., 2014). 

 Several studies have reported that the efficiency of DMPP in reducing 

N2O emissions is related to the inhibition of ammonium oxidation associated 

with AOB control (Di and Cameron, 2011; Chen et al., 2014b; Kou et al., 2015). 

In this work we also observed that DMPP reduced N2O emissions to the 

unfertilised control level (Figure 1) concomitantly with ammonium oxidation 

inhibition (Figure 2). This was further evidenced by the inhibition of AOB 

proliferation on day 16 (Figure 4), and correlation analysis indicated that the 

cumulative N2O emissions (Figure 1B) were positively correlated with the AOB 

abundance (r=0.526, p<0.05). Huerfano et al. (2016) observed the same N2O-

emission-reducing behaviour of DMPP and DMPSA in a wheat field. Here we 

report a similar effect of both DMPP and DMPSA, observed under 40% WFPS 

conditions. Besides the commonly reported lower AOB population after NI 

application (Di and Cameron, 2011; Di et al., 2014; Kou et al., 2015), in this work 

we also found that both DMPP and DMPSA completely blocked the rapid 

induction of bacterial amoA gene expression provoked after fertilisation with 

AS (Figure 3A, B). Similar results were also obtained recently when DMPP was 

added to soils amended with cattle effluent (Florio et al., 2014), and plant 

residues (Duan et al., 2017). This evidences the fact that NIs affect AOB, not 
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only by inhibiting AMO activity (Ruser and Schulz, 2015), but also by regulating 

amoA transcription. However, NIs were not observed to affect amoA from AOA 

as reported in previous studies (Di and Cameron, 2011; Shen et al., 2013; Di et 

al., 2014). Indeed, it has been suggested that the substantial cellular and 

genetic differences between AOB and AOA could explain the minor efficiency 

of Nis in targeting AOA (Shen et al., 2013; Shi et al., 2016a). Finally, as expected, 

gene expression levels and the gene copy number of denitrification pathway 

marker genes showed no significant variation caused by the use of NIs under 

40% WFPS (Supplementary Figures 2, 5), in accordance with the specificity of 

nitrification inhibitors targeting AOB described by Kong et al. (2016a). 

When the available oxygen is limited, denitrification is the dominant force 

responsible for N2O production (Khalil et al., 2004; Butterbach-Bahl et al., 2013; 

Gilsanz et al., 2016). In our study, at 80% WFPS, the near lack of nitrate (Figure 

2D), accompanied by the huge increase in N2O emissions with respect to 40% 

WFPS conditions (Figure 1), evidences that NO3- consumption by denitrifiers is 

principally responsible for N2O emission. Nevertheless, nitrification does take 

place under low oxygen conditions, although at much lower rates (McTaggart 

and Tsuruta, 2003; Menéndez et al., 2008; Harter et al., 2013). In addition, 

although not completely understood, NIs have also been shown to efficiently 

mitigate N2O emissions under denitrifying conditions (Hatch et al., 2005; 

Menéndez et al., 2012; Barrena et al., 2017; Wu et al., 2017). In our study, the 

stimulation of AOB abundance after AS application (Figure 4A), together with 

amoA gene expression induction (Figure 3B) and NH4+ content depletion 

through time (Figure 2C), corroborates the presence of nitrifying activity at 80% 

WFPS, which provides the substrate for denitrification. However, it must be 

noticed that the decrease in NH4+ takes place much more slowly than at 40% 

WFPS (Figure 2); moreover, amoA induction by AS fertilisation was around 6 



 

78 
 

times lower than at 40% WFPS, evidencing the expected lower nitrification rate 

under 80% WFPS conditions, where O2 availability is restricted. At 80% WFPS, 

both NIs reduced N2O emissions and inhibited nitrification, evidenced by the 

persistence of NH4+ in the soil (Figure 2C), together with the decrease in the 

AOB population (Figure 4A). Surprisingly, DMPSA proved to be less efficient 

than DMPP at reducing N2O emissions (Figure 1D). Indeed, no significant amoA 

expression inhibition was observed with DMPSA (Fig 3B). In view of the low 

level of nitrification induction observed after the application of AS at 80% 

WFPS, together with the significant efficiency of NIs in reducing N2O emissions, 

the effect of NIs on the denitrification process was analysed in order to 

corroborate our hypothesis that NIs could also be acting on denitrification. 

We found that both DMPP and DMPSA stimulated the expression of the nosZI 

gene at 80% WFPS (Figure 3D), and provoked an increase in the bacterial 

abundance of both clades of nosZ at the end of the experiment (Figure 5B, D). 

This induction was not observed in other denitrification pathway genes, since 

the gene expression and gene copy number of narG, nirK and nirS did not vary 

with the addition of NIs (Supplementary Figures 2, 5). Recent studies have 

concluded that one-third of all denitrifiers lack nosZ and their abundance is 

affected by different soil properties (Philippot et al., 2011; Domeignoz-Horta et 

al., 2015). Moreover, the increase in the ((nosZI + nosZII) / (nirK + nirS)) ratio 

(Figure 5E, F) suggests specific induction of N2O reduction to N2 in soils treated 

with DMPP or DMPSA, which must contribute to the reduction in N2O emissions 

observed after the application of both NIs (Figure 1). Indeed, we found that 

nosZI and gene abundance were negatively correlated with N2O emissions (r=-

0.373, p<0.05). This specificity in promoting N2O reduction to N2 after adding 

DMPP or DMPSA at 80% WFPS was confirmed by means of a complementary 

denitrification assay (Figure 6). Several studies have proposed that elevated 
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NO3- content increases the N2O:N2 ratio (Saggar et al., 2013) and the effect of 

NIs on denitrification is indirect, probably due to the shortage of NO3- (Müller 

et al., 2002; Di et al., 2014; Florio et al., 2014). In contrast, Barrena et al. (2017) 

speculated that DMPP may reduce N2O emissions by inducing either gene 

expression or Nos activity. In agreement with that, in our denitrification assay, 

which provided the same NO3- rate in all treatments, the reason for the 

increased N2O reduction to N2 must have been a direct effect of the NIs. 

Therefore seems to be an alternative NI effect on denitrification that provokes  

a transient induction of nosZ expression (Figure 3D), which finally stimulates 

the complete reduction of N2O to N2 through the action of Nos (Figure 6). 

Interestingly, the increase in the ((nosZI + nosZII) / (nirK + nirS)) ratio was lower 

with DMPSA than with DMPP (Figure 5) and this was in complete agreement 

with the lower efficiency of DMPSA compared to DMPP in mitigating N2O 

emissions at 80% WFPS (Figure 1D). In line with our results, Hatch et al. (2005) 

observed that N2O production decreased during anaerobic soil incubation with 

DMPP, concomitant with an increase in N2 production, compared to non-

DMPP-treated soils.  

Interestingly, the action of other types of soil amendments with the capacity to 

reduce N2O emissions, such as biochar, has also been related to a rapid and 

transient induction of nosZ gene expression (Harter et al., 2013). Overall, our 

results evidence the fact that the decrease in N2O emissions from NI-treated 

soils at 80% WFPS is not only caused by nitrification inhibition but also by the 

stimulation of N2O reduction to N2 by nitrous oxide reductase during the 

denitrification process. Our results therefore lead the way towards future 

studies on the mechanisms underlying the direct effect of DMP-based NIs over 

nitrous oxide reductase enzymes and nosZ gene induction. 
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To our knowledge, this work is the first microcosm study using DMPSA and the 

first description of the effect of DMPSA on populations of soil microbes. As 

stated above, we observed that DMPSA and DMPP behaved differently under 

80% WFPS conditions. Both molecules are structurally similar and it is difficult 

to comprehend why the presence of a phosphate compared to a succinic group 

should have this kind of impact on inhibitor efficiency. In this sense, further 

work focusing on the mechanism of action of the NIs is essential to elucidate 

how DMPSA and DMPP behave in the soil. 
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4 

Elevated CO2 and nitrate supply overcomes the 

ammonium toxicity and improves photosynthetic 

parameters in wheat plants  
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4.1. Introduction 

 The increase in the world’s population predicted for the end of the 21st 

century (http://www.fao.org) requires that intensive agriculture employ large 

amounts of nitrogen (N) to increase maximum cereal yield. Furthermore, the 

worldwide nitrogen fertilizer consumption reached 109 million tonnes in 2014 

(Timilsena et al., 2015). Despite the larger N inputs, the nitrogen use efficiency 

(NUE) is low with less than 47% of the nitrogen applied recovered by crops 

(Lassaletta et al., 2014). The remaining soil N resulting from the intensive 

agriculture may cause environmental problems, which include the 

contamination of aquatic systems though nitrate leaching or the emission of 

nitrous oxide gas by nitrification and denitrification processes (Fowler et al., 

2013). In order to reduce these pollutant problems and increase NUE, 

nowadays several strategies are focused on minimizing N losses and optimizing 

fertiliser formulation. Between others, to replace the use of ammonium-based 

fertilizers instead of nitrate-based fertilizers (Sanz-Cobena et al., 2016) and to 

understand the biochemical and physiological mechanisms employed by plants 

for use external N (Tegeder and Masclaux-Daubresse, 2017) are propose as 

strategies to reduce the environmental problems associated with agricultural 

N inputs and improving NUE by plants, respectively. 

Both nitrate and ammonium are the major N-forms available in soils for 

plants uptake (Andrews et al., 2013; Tegeder and Masclaux-Daubresse, 2017). 

Nitrogen absorbed by root require to be assimilated into amino acids in either 

roots or shoot, with the subsequent energetic cost (Masclaux-Daubresse et al., 

2010; Andrews et al., 2013). Nitrate assimilation in plants requires the 

reduction of nitrate to ammonium by the enzymes nitrate reductase (NR) and 

nitrite reductase (NiR) to ammonium. The ammonium, either coming from 

primary nitrate reduction or taken-up by the plant directly from the soil is 
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incorporated into amino acids by glutamine synthetase (GS) and 

glutamine:oxoglutarate aminotransferase (GOGAT), in the so-called GS/GOGAT 

cycle (Lea and Miflin, 1974). Although agriculture practises tend to apply a sole 

N source (ammonium, nitrate or urea), under natural conditions microbial 

processes in soils favoured a mixed nutrition. In addition, when both inorganic-

N sources are available for plant uptake, ammonium is preferred for 

incorporation due to its more reduced status than nitrate and thus, requiring 

less energy for its assimilation (Andrews et al., 2013). Nevertheless, the 

application of ammonium as the sole N source generally provokes ammonium 

toxicity symptoms in many plants species (Britto and Kronzucker, 2002). 

Besides the visual symptoms observed as a reduced plant growth or leaf 

chlorosis, the toxic action of ammonium provokes alteration on expression and 

activity of N assimilating enzymes, disruptions in photosynthesis and hormonal 

homeostasis, deficiency in ion balance or induces higher photorespiration rates 

(Guo et al., 2007; Esteban et al., 2016). The ammonium effects over 

photosynthesis are typically related with declines in Rubisco and NADP-

dependent glyceraldehyde-3-phosphate dehydrogenase or changes in 

chloroplast ultrastructure; however, these effects are depending on plant 

species and ammonium concentration (Britto and Kronzucker, 2002; Esteban et 

al., 2016). In addition, environmental factors such as light intensity (Ariz et al., 

2011; Setién et al., 2013), pH conditions (Sarasketa et al., 2016), the external N 

concentration (Vega-Mas et al., 2015) and atmospheric CO2 concentration 

(Nimesha et al., 2017; Rubio-Asensio and Bloom, 2017; Vega-Mas et al., 2017) 

determine the threshold for ammonium toxicity. According to these studies, an 

adequate availability of carbon skeletons, coming lately from photosynthates  

and derived through Krebs cycle, is essential to maintain the internal 
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ammonium homeostasis in the plant cell, thus avoiding toxic effects associated 

to ammonium nutrition.  

Plant growth stimulation by elevated atmospheric CO2 has been 

previously described to enhanced CO2 fixation (Evans, 1983; Drake and 

González-Meler, 1997; Coskun et al., 2016). Among others, limitations in N 

assimilation and the consequent lower N availability have been pointed out as 

a target factor conditioning crop responsiveness to elevated CO2. During the 

last decade, several authors have studied the plant responsiveness to elevated 

CO2 in function of the N-form (nitrate, ammonium and ammonium nitrate) 

(Bloom et al., 2014; Jauregui et al., 2015, 2017; Vega-Mas et al., 2015). In case 

of nitrate-fertilised plants, previous studies show that as a consequence of the 

increase in CO2 fixation rates, leaf carbohydrate sink/source balance is altered 

(Stitt et al., 2002). The accumulation of non-structural carbohydrates such as 

starch induces the down-regulation of the gene expression, specifically of those 

coding the photosynthetic apparatus, with the consequent decrease in the 

photosynthetic carboxylation capacity (Long et al., 2004; Moore et al., 1999). 

The inhibition of leaf nitrate assimilation in wheat and Arabidopsis thaliana 

plants grown under elevated CO2 has been related with a depletion in 

photorespiratory rates (Rachmilevitch et al., 2004). Therefore, Bloom et al. 

(2010) hypothesized the depletion of nitrate assimilation under elevated CO2 

would be produced by lower photorespiration rates, by the increase in CO2 

fixation that produces stromal acidification or by a higher competition between 

C and N metabolism enzymatic activities for ATP and ferredoxin/NAD(PH) 

reductant equivalents. According to these authors, under low photorespiratory 

conditions, the decrease of NO3- assimilation diminishes plant organic N 

compounds and reduces the energy provision to photosynthesis and N 

assimilation, which comprises plant growth. 
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According to previous studies, it could be expected that plants might 

vary the strategy of N assimilation into organic compounds under elevated CO2. 

In addition, the predicted raise of atmospheric CO2 would favour plant 

developments under nutrition based on ammonium-fertilisation by a larger C-

skeletons availability  supported for permit ammonium assimilation (Vega-Mas 

et al., 2015) and overcome the associated ammonium toxicity. In this study, we 

have grown durum wheat plants (Triticum durum Def. cv. Amilcar) at two 

different concentrations of atmospheric CO2 (400 and 700 ppm) and under 

different N nutrition (NO3, NH4 and NH4NO3) in order to evaluate the relevance 

of N fertilization form in plant responsiveness to elevate CO2. For that, we grew 

wheat plants during 5 weeks under nitrate as N-source (10 mM). Afterwards, 

the following 2 weeks N-source was supplied in form of ammonium or nitrate 

ammonium, whereas plant subgroups were kept growing under nitrate, as 

control. The present work has been conceived with the objective of evaluate 

the effect of elevated CO2 conditions on wheat plants fertilised under the mixed 

ammonium nitrate fertilisation for improving photosynthesis, metabolism and 

biomass, without present the N-limitations associated to individual N-nutrition 

forms. 
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4.2. Materials and Methods 

Plant material and experimental design 

 Seeds of wheat plants (Triticum durum L. cv. Amilcar) were germinated 

on trays filled with perlite-vermiculite 1:1 (v/v) and watered with deionised 

water. In order to synchronize the germination, seeds were maintained for 10 

days in darkness and at 4 °C. After thus, seedlings were transferred to 5 litres 

hydroponic pots in two independent controlled environmental chambers 

(Phytotron Service, SGIker, UPV/EHU), under 550 µmol m-2 s-1 of light intensity, 

25/17 °C of temperature, 50-60% of relative humidity during the light and dark 

periods, respectively, with a 14 h photoperiod. Plants grown under two 

different controlled atmosphere CO2 of 400 ppm and 700 ppm CO2 levels and 

Hoagland solution (Arnon and Hoagland, 1940) were replaced three times by 

week. Wheat plants grown for 5 weeks under nitric nutrition based on calcium 

nitrate. Afterwards, for the following 2 weeks the N source was modified by 

ammonium sulphate (NH4+) or ammonium nitrate (NH4NO3), keeping control 

plants under nitrate nutrition (NO3-). The N source was supplied at a rate of 10 

mM total N. After measuring photosynthesis in flag leaves of four plants from 

each CO2 condition, wheat plants were harvested and dried in an oven at 80 °C 

for 72 h for biomass determination. For metabolic analysis, totally expanded 

flag leaves of at least three plants were harvested and stored at −80 °C until 

further measurements. 

Gas exchange determinations 

 Gas-exchange measurements were conducted in totally expanded flag 

leaves using a Li-COR 6400XP portable photosynthesis system (LI-COR Inc., 

Lincoln, NE, USA). The rate of CO2 assimilation (AN), stomata conductance (gs) 

and intercellular CO2 (Ci) parameters were determined at both 400 and 700 

ppm CO2 in light-saturated conditions with a photosynthetic photon flux 
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density (PPFD) of 1200 µmol m-2 s-1 at 25°C. For the estimation of thee 

maximum carboxylation velocity of Rubisco (Vcmax), the CO2 in the leaf chamber 

was decreased in three steps from 400 to 100 ppm of CO2, followed by an 

increase from 400 to 1200 ppm of CO2 in five steps. The estimation of Vcmax was 

done using the equation developed by Sharkey et al., (2007). The dark 

respiration measurements were conducted after 45 min the dark period started 

and simultaneously, the thylakoid electron transport rate (JT) and the maximal 

PSII photochemical yield (Fv/Fm) were measured using a Leaf Chamber 

Fluorometer (LFC 6400–40; Li-COR) coupled to the Li-COR 6400XT portable 

photosynthesis system. Photorespiratory CO2 release (Rl) was estimated 

according the equation: Vo/2=1/12[JT – 4 (AN + Rd)] provided by (Valentini et al., 

1995). 

Metabolites determination 

 Soluble sugars were measured from 10 mg of lyophilised powdered 

samples by modified hydroalcoholic extraction described in Fuertes-

Mendizábal et al., (2010). Soluble carbohydrates (glucose, fructose, and 

sucrose) were measured by using a test kit (Boehringer Mannheim, Germany) 

from the hydrated extract resultant from evaporating the ethanol fraction 

(Speed Vac, Thermo Savant). For starch determination, the dry residue 

obtained in the hydroalcoholic extraction was resuspended and starch was 

determined as glucose equivalents by using the test kit (Boehringer Mannheim, 

Germany) after α-amylase and amyloglucosidase digestion. For maltose 

determination, 0.1 g of plant-frozen powder was resuspended in 1 mL of 90% 

ethanol and incubated for 90 min at 70°C. After thus, the extract were 

centrifuged at 13000 g for 10 min. For glucose-6-phosphate, glucose-1-

phosphate, fructose-6-phosphate determinations, 0.5 g plant-frozen powdered 

was resuspended in 0.4 ml of 1 M HClO4, incubated for 2 h at 4°C and 
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centrifuged at 10000 g for 5 min. The supernatants were neutralized with K2CO3 

and maltose, glucose-6-phosphate, glucose-1-phosphate and fructose-6-

phosphate were determined by HPLC with pulsed amperometric detection on 

a DX-500 Dionex system. N-inorganic forms of nitrate and ammonium were 

determined according to materials described by Patton and Crouch, (1977) and 

Cataldo et al., (1974), respectively. 

 Single amino acid profile was quantified at the Scientific and 

Technological Center of the University of Barcelona (CCiT UB). Amino acids 

were extracted from flag leaves homogenized with 1:20 (w/v) of 1M HCl. After 

16 hours of incubation at -20 °C, the extracts were centrifuged at 10000 g for 

15 min and filtered. 2.5 mM Norleucine were added as internal standard to the 

five times diluted amino acid extraction. Afterwards, 20 µl of derivatized 

sample were injected for amino acids determination by HPLC using Waters 

Delta 600 chromatographic system with a column (Nova-Pak C18 4 µm, 3.9 x 

150 mm) and an absorbance detector (Waters 2487 Dual λ) coupled to an auto 

sampler (Waters 717plus) using the AccQTag pre-column derivatization 

method. The reaction of amino acids with 6-aminoquinolyl-N-

hydroxysuccinimidyl carbamate yields derivatives were detected at 254 nm and 

its concentration was calculated according to internal standard (Cohen and 

Michaud, 1993; Cohen and De Antonis, 1994). 

C cycle enzymatic activities 

 Leaves powder were homogenised with in a extraction buffer consisting 

[100 mM HEPES pH 7.5, 2 mM EDTA and 2 mM dithiothreitol, 1 mM PMSF, 10 

µl ml-1 protease inhibitor cocktail (Sigma P9599)], and centrifuged at 14000 g 

for 20 min. The supernatant was desalted by ultrafiltration on Vivaspin 500 

centrifugal concentrator (Sartorius) and the protein extract thus obtained was 

assayed for enzymatic activities. ADP-Glucose pyrophosphorylase (AGPase) 
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activity was measured following the two-step assay method described by Li et 

al., (2012). Phosphoglucose isomerase (PGI) and phosphoglucomutase (PGM) 

were measured as described by Bahaji et al., (2015). Starch phosphorylase and 

amylolytic activities were assayed as described by Sweetlove et al., (1996). 

Starch synthase activity was measured in two steps: (1)  in a buffer reaction [50 

mM HEPES pH 7.5, 6 mM MgCl2, 3 mM dithiothreitol, 1 mM ADPG, 3% glycogen] 

for 5 min at 37°C. After stop the reaction by boiling for 2 min, (2) the ADP 

produced was measured by HPLC on a Waters Associate’s system fitted with a 

Partisil-10-SAX column. One unit (U) is defined as the amount of enzyme that 

catalyzes the production of 1 μmol of product per min. 

N cycle enzymatic activities 

 Soluble protein was extracted from powdered frozen flag leaves 

homogenised with 1:20 (w/v) extraction buffer based on Sarasketa et al., 

(2014). Soluble protein was measured according to Bradford, (1976) from 

extract recovered after centrifugation at 4000 g for 30 min at 4 °C. Nitrate 

reductase (NR) maxim activity was determined incubating 50 µl of protein 

extract for 30 min at 30 °C according to Baki et al., (2000). Glutamine synthetase 

(GS) and aminating-Glutamate dehydrogenase activity (NADH-GDH) were 

determined as described by Sarasketa et al., (2016). 

RNA extraction and Quantitative real-time PCR 

 Total RNA was isolated from pulverized leaves using the Nucleospin RNA 

plant kit (Macherey-Nagel) according to the manufacturer’s recommendations . 

RNA integrity and purity were checked on a 1.5% (v/v) agarose gel and 1 µg of 

RNA was retrotranscribed into cDNA using the PrimeScript™ RT reagent Kit 

(Takara Bio Inc.). Gene expression was determined using a StepOne Plus Real 

Time PCR System (Applied Biosystems) in a 15 µL reaction using the SYBR 

Premix ExTaq™ (Takara Bio Inc.), 200 nM of each-gene specific primer and 2 µL 



 

93 
 

of cDNA diluted 1:10. The PCR thermal profile was: 95°C for 10 min, 40 cycles 

(95°C for 15 s and 60°C for 1 min) and a final step to obtain the melting curve. 

The data was expressed as the log2-fold change after the quantification of the 

relative gene expression using the comparative Ct method 2−ΔΔCt (Schmittgen 

and Livak, 2008). 

Statistical analysis 

 Data were analysed using IBM SPSS statistic 22 software (Armonk, NY, 

USA). Normality and homogeneity of variance were analysed by Kolmogorov-

Smirnov and Levene test. Analysis of significant differences between N 

treatments on both CO2 condition were analysed by one-way ANOVA with a 

Duncan post hoc-test. For both analyses, differences were considered 

significant at p<0.05. Differences between N treatments under both CO2 

conditions were analysed by t-test.  
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4.3. Results 

 Growth of durum wheat cv. Amilcar showed different behaviour 

depending on the N-form supplied in the nutrient solution and CO2 

environmental conditions. Both nitrate and ammonium nitrate nutrition 

showed the highest biomass production, whereas plant biomass did not 

increased under exclusive ammonium nutrition . Moreover, under elevated CO2 

condition, the mixed ammonium nitrate nutrition allowed increasing the shoot 

biomass in the same extent as nitrate nutrition when they were compared with 

their respective controls at ambient CO2 (Table 1); but no effect was observed 

for ammonium nutrition due to elevated CO2 concentrations in terms of shoot 

biomass. In addition, ammonium-fed plants biomass was reduced about 40% 

with respect to treatment fertilised with nitrate (Table 1).  

 

Table 1. Nitrogen source effect on shoot biomass of wheat plants grown under ambient and 

elevated CO2 conditions (400 and 700 ppm CO2). Data represent mean values (g DW) ± SE (n=5). 

Significant differences (p<0.05) between N treatments are indicated with different letters. 

Asterisk (*) indicates significant CO2 differences (p<0.05). Values represent mean ± SEM (n=5). 

 
  

 Gas-exchange parameters measured on flag leaves of 7-week-old wheat 

plants showed that ammonium- and ammonium nitrate-fertilised plants grown 

under ambient CO2 conditions presented a strong stomata closure, that 

reduced the intercellular CO2 concentration (Ci) and thus, the CO2 assimilation 

rate (Fig 1A, C, D). Under nitrate nutrition, the exposure to elevated CO2 

reduced the stomata conductance (gs), but it did not affect the photosynthetic 

  400 ppm CO2 700 ppm CO2 
NO3

- 21.77 ±  2.73 a 26.26 ±  1.10 A 
NH4

+ 14.64 ±  1.23 b 15.14 ±  2.32 B 
NH4NO3 20.80 ±  0.53 a 26.56 ±  1.90 A* 
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rate (AN). On the contrary, the exposure to elevated CO2 stimulated the stomata 

conductance in ammonium nutrition with a reflect on the assimilation rate; and 

interestingly, ammonium nitrate-fertilised plants avoided the stomatal closure 

observed under nitrate, stimulating the AN rate to be on a par with that of 

nitrate-fertilised plants (Figure 1C).  Ammonium–fertilised at ambient CO2 

plants showed the lowest values for maximum carboxylation velocity of 

Rubisco (Vcmax); and regardless the nitrogen nutrition, the exposure to elevated 

CO2 maintained or even increased the maximum carboxylation velocity of 

Rubisco (Vcmax) respect to their controls grown at ambient CO2 (Figure 1B).  

 
Figure 1. Nitrogen source (NO3-, NH4+ and NH4NO3) effect on net photosynthesis rate (A), 

maximum velocity of RuBP carboxylation (B), stomatal conductance (C), intercellular CO2 mole 

fraction (D), under ambient (grey bars) and elevated (black bars) CO2 conditions. Data represent 

mean values ± SE (n=3). Letters represent significant differences between treatments analysed 

by Duncan’s test (p<0.05). Asterisk (*) indicates significant CO2 differences (p<0.05). 
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 Both ammonium and ammonium nitrate nutrition reduced thylakoid 

electron transport rate (JT), but only ammonium nutrition depleted the 

maximum  photochemical yield of PSII (Fv/Fm) (Figure 2A, C). The exposition of 

elevated CO2 allowed ammonium-fed plants to recover Fv/Fm to normal values; 

and the electron transport rate (JT), at the same time the photorespiratory CO2 

release, increased (Figure 2) for both ammonium nutrition treatments, either 

exclusive ammonium or mixed nutrition. 

 

 

 

 

 

 

 

Figure 2. Nitrogen source (NO3-, NH4+ and 

NH4NO3) effect on net total electron 

transport through PSII (A), 

photorespiratory CO2 release (B) and 

maximal photochemical yield of PSII (C), 

under ambient (grey bars) and elevated 

(black bars) CO2 conditions. Data 

represent mean values ± SE (n=3). Letters  

represent significant differences between 

treatments analysed by Duncan’s test 

(p<0.05). Asterisk (*) indicates significant 

CO2 differences (p<0.05). 
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nitrate-fertilised plants while increased the starch content (Figure 3). However, 

the enzymatic activities of (PGI), (PGM) and (AGPase), involved in the 

conversion of fructose-6-phosphate into ADP-glucose, did not vary when they 

were compared with their nitrate controls at ambient CO2 conditions. 

Concomitantly with the starch accumulation, these plants showed a higher 

starch synthase activity and a lower amylase activity (Figure 3). Ammonium 

nutrition under ambient CO2 condition also showed a higher starch synthase 

activity, but also an elevated amylase activity (Figure 3) that might prevent the 

starch accumulation in leaves. Moreover, in ammonium-fertilised plants grown 

under ambient CO2 condition the maltose content was higher (Figure 3). 

Ammonium nitrate-fertilised plants grown at ambient CO2 showed lower 

sucrose, Fructose-6-phosphate and glucose-6-phosphate content than nitrate-

fertilised plants.  At elevated CO2 conditions, ammonium nitrate-fed plants 

increased PGI, PGM, AGPase, Starch synthase and total amylase activities 

compared with nitrate-fed plants, favouring the synthesis and degradation of 

starch and avoiding its accumulation (Figure 3). The single amino acids profile 

showed that predominant amino acids were asparagine + serine (asn+ser), 

glutamate (glu) and glutamine + histidine (gln+his) (Figure 4 and Supplementary 

Table 2). Wheat plants exposed to elevated CO2 conditions reduced the amino 

acids content under exclusive ammonium in wheat leaves (Figure 4A). More 

concretely, the amino acids more depleted under elevated CO2 were Asn+Ser, 

Glu, His+Gln and Pro. Moreover, proline was also presented in high levels in 

ammonium and ammonium nitrate-fertilised plants grown at ambient CO2, 

however, it was not accumulated under elevated CO2 conditions in these 

treatments (Figure 4E). Exposure to elevated CO2 increased total soluble 

proteins, being statistically significant when N-source was in form of exclusive 

nitrate or ammonium (Figure 4F).  
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Figure 3. Nitrogen source (NO3-, NH4+ and NH4NO3) effect on phosphoglucose isomerase (A), 

phosphoglucomutase (B), ADPGlc pyrophosphorylase (C), starch synthase (D), total amylase (E) 

and starch pyrophosphorylase (F) activities and on the carbohydrates sucrose, fructose-6-

phosphate, glucose-6-phosphate, glucose-1-phosphate, maltose and starch content under 

ambient (grey bars) and elevated (black bars) CO2 conditions. Data represent mean values ± SE 

(n=4). Letters represent significant differences between treatments analysed by Duncan’s test 

(P<0.05). Asterisk (*) indicates significant CO2 differences (p<0.05). 
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Figure 4. Nitrogen source (NO3-, NH4+ and NH4NO3) effect on total amino acids (A), total soluble 

protein (B), proline (C), glycine (D), aspartate and serine (E) and glutamine (F) under ambient 

(grey bars) and elevated (black bars) CO2 conditions. Data represent mean values ± SE (n=3-4). 

Letters represent significant differences between treatments analysed by Duncan’s test 

(p<0.05). Asterisk (*) indicates significant CO2 differences (p<0.05).  
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Figure 5. Nitrogen source (NO3-, NH4+ 

and NH4NO3) effect on nitrate reductase 

(A), glutamine synthethase (B) and 

glutamate dehydrogenase aminating (C) 

activities under ambient (grey bars) and 

elevated (black bars) CO2 conditions. 

Data represent mean values ± SE (n=4). 

Letters represent significant differences 

between treatments analysed by 

Duncan’s test (p<0.05). Asterisk (*) 

indicates significant CO2 differences 

(p<0.05). 

 

 Together with nitrogen metabolites content in wheat leaves, the activity 

of N-cycle enzymes changed depending CO2 conditions and N nutrition (Figure 

5). Comparing the effect of N-source, ammonium-fertilised plants only showed 

less GS activity under ambient CO2 condition respect to nitrate-fertilised plants; 

whereas ammonium nitrate nutrition reduced GS activity regardless the CO2 

conditions (Figure 5B). The exposure to elevated CO2 stimulated NR and GS 

activities of nitrate-grown plants, without disturb GDH activity (Figure 5A-C). 
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For ammonium-fertilised plants, exposure to elevated CO2 stimulated GS 

activity; at the same time that these plants presented the maximum activities 

for aminating GDH (Figure 5B-C).  

 Exposure to elevated CO2 and N nutrition modulated the gene 

expression (Table 2). Under ambient CO2 conditions, ammonium- and 

ammonium nitrate-fertilised plants down-regulated the gene expression of 

carbonic anhydrase, CA1, CA2 y CA3, but up-regulated that of CA4 (only for 

ammonium nitrate-nutrition). However, under elevated CO2 this down-

regulation in carbonic anhydrase was detected only under ammonium 

nutrition. Under elevated CO2, ammonium nitrate-fertilised plants up-

regulated the expression of carbonic anhydrases compared with plants grown 

under ambient conditions. Ammonium fertilisation stimulated the expression 

of aquaporins (PIP1.1 and PIP2.3), but decreased the expression of TIP1 under 

ambient CO2 conditions. Moreover, the expression of ammonium transporter 

was down-regulated under elevated CO2 conditions (Table 3) for nitrate and 

mixed ammonium nitrate nutrition. 

Table 2. Heat map of transcript abundance in flag leaves of wheat grown under different 

nitrogen source (NO3-, NH4+ and NH4NO3) and under ambient and elevated CO2 conditions (400 

and 700 ppm CO2). Data represent mean values ± SE (n=3). Letters represent significant 

differences between treatments analysed by non-parametric test (p<0.05).  

 
-4    +4 

  400 ppm CO2 700 ppm CO2 
  NO3- NH4+ NH4NO3 NO3- NH4+ NH4NO3 

BE213258 Putative carbonic anhydrase, plastidial, CA1 a a b B* C A* 
TC389217 Putative carbonic anhydrase, plastidial, CA2 a b b A B A* 
TC393400 Putative carbonic anhydrase, plastidial, CA3 a b b A B A* 
TC442386 Putative carbonic anhydrase, plastidial, CA4 b b* a* A A A 
AY428038 Ammonium transporter, AMT2;1 a a a A* B B* 
HF544985 Low affinity nitrate transporter, NRT1.1A a* a a A A A 
AY587264 Low affinity nitrate transporter, NRT1.2 a a b A A A 
HF544995 Low affinity nitrate transporter, NRT1.7B a b ab A A A 
DQ345446 Aquaporin, PIP 1.1 b a* b A A A 
AY525641 Aquaporin, PIP 2.3 b a* ab A A A 
EU177566 Aquaporin, TIP 1 a b a A A A 
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4.4. Discussion 

 Previous studies revealed that the N forms provided to plants have a 

differential effect on plant photosynthesis, C and N metabolism (Stitt et al., 

2002; Masclaux-Daubresse et al., 2010; Coskun et al., 2016; Rubio-Asensio and 

Bloom, 2017), with the consequent impact on the plant growth. As it is 

highlighted in the current study, the type of N fertilization has a target impact 

on gas exchange parameters, expression of proteins linked with CO2 and H2O 

diffusion together with C and N metabolism.  

 Exposure to elevated CO2 usually increase the plant growth due to an 

enhanced CO2 fixation, but also it has been documented that prolonged 

exposure to elevated CO2 causes stomata closure affecting the initial 

photosynthetic stimulation, with the consequent plant growth acclimation 

(Ainsworth and Rogers, 2007; Xu et al., 2016). In accordance with this, nitrate-

fertilised plants grown under elevated CO2 suffered a strong stomata limitation 

that avoided a stimulation of the photosynthetic rate over ambient CO2 rates. 

Moreover, the exposure to elevated CO2 did not enhance the Rubisco 

carboxylation despite the higher intercellular CO2 concentration detected. In 

accordance with Zhu et al. (2012), both Vcmax activity and gs indicated that 

nitrate-fertilised plants would suffer from photosynthetic acclimation under 

elevated CO2. Opposite to earlier studies that described a decrease of NR 

activity under elevated CO2 in nitrate-fertilised plants (Bloom et al., 2002, 2010; 

Vicente et al., 2015), data obtained for wheat var. Amylcar indicated that CO2 

enrichment far from reducing leaf nitrate pool, increased the nitrate uptake 

and its assimilation into proteins, through an activation of NR and  GS activities. 

Thus under these conditions, free amino acids contents were lower since they 

were destined to synthesis of total soluble protein. These results would indicate 
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that nitrate-fertilised plants were able to coordinate both C fixation and N 

assimilation at high rates due to an efficient energy balance. 

 C fixed during the photosynthesis is commonly assimilated in form of 

starch or sucrose. The starch accumulation observed in nitrate-fertilised leaves 

at elevated CO2  suggest a C imbalance (MacNeill et al., 2017), and has been 

commonly correlated with the photosynthetic acclimation (Drake and 

Gonzàlez-Meler, 1997). In our case, the starch accumulation in photosynthetic 

tissues could be considered as a symptom of C overflow generated when the 

rate of photosynthesis exceeds the rate of leaf C demand (Stitt et al., 2010). The 

data underline the fact that the excess of atmospheric C stimulated the starch 

synthase activity, and as consequence of a lower sink demand, the starch 

degradation was reduced. Thus, the excess of C was stored as starch in leaves 

(Ainsworth et al., 2004; Aranjuelo et al., 2011, 2013b; White et al., 2015) would 

suggest a slight C imbalance although apparently no photosynthetic acclimation 

was observed, contrasting our results with those reported by Bloom et al. 

(2010). Overall, elevated CO2 exerted a positive effect on wheat plant growth 

and this variety could gain benefit from an increasing CO2 atmospheric 

concentrations. 

 Ammonium fertilisation often causes many toxicity symptoms when it 

is supplied as the sole N source. These effects are reflected in overall in biomass 

terms, as it is shown by lower photosynthetic performance and growth of 

wheat plants. The alteration of hormonal and ion homeostasis, the stimulation 

of photorespiration or oxidative stress, are among others effects of ammonium 

toxicity (Britto and Kronzucker, 2002; Ariz et al., 2011; Esteban et al., 2016). 

Those symptoms have been linked with oxidative stress that cause an 

intracellular redox imbalance, affecting over the mitochondrial electron 

transport chain (Jauregui et al., 2017; Liu and Wirén, 2017). In agreement with 
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other studies, our data showed that under ambient CO2 conditions, ammonium 

contents was accumulated in leaf tissue under ammonium, reflecting an 

imbalance between its uptake and its assimilation (Setién et al., 2013; Sarasketa 

et al., 2016). Besides, it is shown that ammonium nutrition strongly impaired 

the photochemical processes, since the depletion of maximal photochemical 

yield electron (Fv/Fm) is an indicator of photoinhibition of photosynthetic 

apparatus; and accordingly a lower photosynthetic electron transport rate (JT) 

occurs. Besides, ammonium nutrition also limited photosynthetic CO2 

assimilation as consequence of the strong stomatal limitation (stomatal 

opening depleted 88% respect to nitrate-fertilised plants), with the 

concomitant depletion in the intercellular CO2 concentration. The limited 

diffusion of CO2 to carboxylation place depletes the maximum velocity of 

Rubisco carboxylation. Thus, at ambient CO2 grown conditions, the CO2 

assimilation was limited as the electron sink, which might cause the over-

excitation of photosystem II, favouring the appearance of reactive oxygen 

species (ROS) and the onset of oxidative stress. The strong increase in proline 

content was concordant with the fact that ammonium plants were subjected 

to a severe stress under ambient CO2 conditions. Enhanced proline contents in 

leaves may reduce the damaging effects of ROS produced by an inadequate 

electron flow between both photosystems, thus protecting cell homeostasis 

(Szabados and Savouré, 2009). Proline can act as osmolyte required for 

protecting proteins, membranes and the photosynthetic electron transport in 

the plant cell under certain abiotic stresses, such as temperature stress or 

osmotic stress (Szabados and Savouré, 2009). The synthesis of proline is mainly 

derived from glutamate, however under stress conditions, the degradation of 

transitory starch in maltose with would be connected with the biosynthesis of 

proline (Zanella et al., 2016). In this sense, the high contents of maltose 
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observed in ammonium fertilised plants could be linked with its role in 

supporting the biosynthesis of proline (Baslam et al., 2017). Besides, wheat 

leaves are able to derive part of carbohydrates to increase the ammonium 

assimilation into other amino acids, as Asn+Ser, Gln+His. 

 The fact that ammonium-fertilised plants showed lower 

evapotranspiration rates, than nitrate-fertilised plants, might be explained by 

the drastic stomata closured, but also over absorption and translocation of 

ammonium. Aquaporins (AQP) that coordinates the plant–water relations at all 

levels of organization also are implicated in the transport of other molecules, 

such as ammonium (Coskun et al., 2013; Bittsánszky et al., 2015; Esteban et al., 

2016) or CO2 (Flexas et al., 2006; Maurel et al., 2008). In this context, other 

functions are attributable to AQP members that facilitate CO2 transport, 

affecting directly over photosynthesis and stomatal opening. The higher 

expression values detected in PIP 1.1 and 2.3 of ammonium treated plants at 

ambient CO2, would reflect the necessity to overcome potential limitations on 

chloroplast CO2 availability associated with the stomatal and mesophyll 

conductance (Flexas et al., 2006).  

 Interestingly, contrasting with the stomata closure under exposure to 

elevated CO2 observed for nitrate-fertilised wheat plants, elevated CO2 induces 

the opening of stomata at elevated CO2. The enhancement of ammonium 

tolerance has been reported under different changing condition such as high 

irradiance (Setién et al., 2013), higher external pH in the growth medium 

(Sarasketa et al., 2016), increasing atmospheric CO2 (Rubio-Asensio et al., 2015; 

Vega-Mas et al., 2017) or fertilising with a mixed ammonium nitrate-nutrition 

(Zaghdoud et al., 2016). This is apparently the case for ammonium-fertilized 

plants growing under elevated CO2. The exposition to non-limiting C 

atmosphere would ameliorate the oxidative stress derived from ammonium 
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toxicity, since plants do not present photoinhibition, as they show similar Fv/Fm 

to nitrate-fed plants. The recovery of a high electron transport rates and low 

proline contents would discard the appearance of stress oxidative conditions. 

Thus, due to the higher electron transport efficiency we would have expected 

an improvement of maximum carboxylation velocity of Rubisco under elevated 

CO2 condition, but no stimulation of CO2 assimilation took place, and 

consequently the biomass growth remained low. Besides, higher flux of carbon 

skeletons would be destined via Krebs cycle (Setién et al., 2013) in order to 

maintain ammonium assimilation. Due to the higher ammonium assimilation 

rates, C was accumulated in form of proteins and not as carbohydrates (sucrose 

or starch).   

 Under normal conditions, the commonly described incorporation of 

ammonium into amino acids via GS and GOGAT activities provides glutamine 

and glutamate, respectively. In addition, an alternative pathway to reduce 

ammonium excess is the aminanting GDH activity, which catalyses the 

amination of α-ketoglutarate into glutamate (Setién et al., 2013; Vega-Mas et 

al., 2015). The photoinhibition and the lower electron transport efficiency 

observed for ammonium-fed plants when they grow under ambient CO2 

indicates that these plants were not able to balance C and N assimilation. 

However, the disappearance of oxidative stress observed at elevated CO2 

conditions would stimulate a higher ammonium detoxification. The increased 

GS and GDH activities would be contributing to assimilate ammonium levels 

finally in form of proteins, at the same time no excess free amino acids were 

detected. In addition, the absence of significant differences on AQPs and N-

transporter expressions would remark that in absence of a stressing context, 

ammonium fertilized plants grown at elevated CO2 conditions did not require 

an adjustment of CO2 and H2O diffusion. 
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 Ammonium toxicity can be modulated by different environmental 

conditions such as CO2, nitrate supplementation or pH regulation (Britto and 

Kronzucker, 2002; Vega-Mas et al., 2015, 2017; Esteban et al., 2016; Sarasketa 

et al., 2016) . The presence of reduced forms of nitrogen limits the nitrate 

uptake by the plant, because of the decreased requirements of reductant 

equivalents for primary nitrogen assimilation and thus, photosynthesis does 

not suffer energetic-limitations (Hachiya and Sakakibara, 2017). In the case of 

ammonium nitrate nutrition interesting differences were observed: regarding 

photochemical, gas exchange parameters and metabolism, they were more 

similar to ammonium-fed plants, especially at ambient CO2. Under these CO2 

conditions, photosynthetic parameters and the electron transport flux followed 

the same pattern, reaching intermediate values, a bit higher than in 

ammonium-fed plants but lower than in nitrate-fed plants. Thus, ammonium 

nitrate-fed plants are more effective in the efficiency of carboxylation, since 

they shows high Vcmax. Indeed, ammonium nitrate-fed plants showed similar 

growth pattern than under nitrate, even having lower photosynthesis.  

However, under non-limiting C availability at elevated CO2, ammonium nitrate-

fed plants are able to equalise their photosynthetic parameters to respond as 

nitrate-fed plants. Under these conditions, ammonium nitrate-fed plants 

presented a high electron transport rates recovery that permitted increase 

photosynthetic parameters. Moreover, the coexistence of ammonium together 

with nitrate permitted adapt C/N metabolisms in wheat plants. Despite a 

decrease in carbonic anhydrase expression is often described in plants exposed 

to elevated CO2 (Fukayama et al., 2011; Vicente et al., 2015), our data suggest 

that the overexpression of carbonic anhydrase genes together with the 

maintenance of nitrate transporters in ammonium nitrate-fertilised plants 

grown under elevated CO2 allowed increasing the  photosynthetic assimilation 
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and the nitrate uptake. These plants stimulated the synthesis of starch, at 

expense of sucrose and others monosaccharides (fructose-6-phosphate and 

glucose-6-phosphate), but the higher demand of carbohydrates prevented the 

starch accumulation in flag leaves. The results suggest that mixed ammonium 

nitrate nutrition could prevent photosynthetic acclimation in plants (Stitt et al., 

2010) in comparison to nitrate nutrition, making a more efficient use of 

carbohydrates and nitrogen in shoot biomass. 

 Ammonium nitrate-fed plants showed similar photochemical response 

than ammonium-plants. In this sense, both ammonium- and ammonium 

nitrate-nutrition reduced the efficiency in electron transport, but only under 

ammonium-nutrition were observed stress symptoms. Both ammonium- and 

ammonium nitrate-nutrition presented higher photorespiratory rates under 

elevated CO2 conditions. The higher C and N assimilation provide with more 

amino acids as alanine that permitted to enhance photorespiration. This was 

consistent with the fact that these plants did not increase carboxilatory activity 

under elevated CO2 despite larger C availability. Furthermore, high 

photorespiratory rates detected in ammonium- and ammonium nitrate-fed 

plants would be related with an energy dissipation strategy in order to reduce 

oxidative stresses. Ammonium nitrate-fed plant presented similar growth 

parameters than nitrate-fed plants despite they showed lower C assimilation 

by photosynthesis. In addition, ammonium nitrate-fed plants grown under 

elevated CO2 conditions were able to increase CO2 assimilation while no starch 

accumulation was detected in photosynthetic tissues, which suggests that 

these plants had a better nutrient utilisation for synthetize amino acids and 

proteins. Moreover, the fact that did not show ammonium toxicity and 

permitted to those plants had a growth parameters similar than nitrate-fed 

plants.  
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5 

C/N metabolism in leaves and last stem internodes 

modulates the responsiveness of barley to changing CO2 

conditions 
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5.1. Introduction 

Atmospheric carbon dioxide (CO2) has increased from around 280 ppm 

recorded at the beginning of the Industrial Revolution (1780) to approximately 

400 ppm at present, and depending on the climate change emissions scenario, 

is expected to increase to over 900 ppm by the end of the 21st century (IPCC, 

2014). While it would be logical to assume an enhanced photosynthetic 

assimilation in C3 plants due to the increase in Rubisco´s substrate, CO2, several 

studies have shown that leaf carbohydrate build-up linked to higher CO2 

availability might induce a reduction in carboxylation efficiency (Ainsworth et 

al., 2006; Bloom et al., 2010; Aranjuelo et al., 2015). Processes that induce 

stomatal closure with a consequent impact on CO2 diffusion into the 

chloroplast would partly explain the diminishment of photosynthetic 

carboxylation capacity derived from exposure to elevated CO2 (Xu et al., 2016). 

Regarding the non-stomatal processes involved in photosynthetic down-

regulation, previous studies have shown that this phenomenon is accompanied 

by a reduction in Rubisco activity and content (Pérez et al., 2005; Córdoba et 

al., 2017). Enhanced leaf C content caused by greater photosynthetic rates in 

plants exposed to elevated CO2 could lead to repression of photosynthetic 

related genes and for a down-regulation of photosynthetic capacity (Ainsworth 

et al., 2004; Aranjuelo et al., 2009, 2011). The leaf carbohydrate build-up has 

been associated with a high/low capacity to develop strong C sinks, such as 

developing organs (Lewis et al., 2002; Aranjuelo et al., 2013b). Therefore, 

higher C sink strength could contribute to preventing photosynthetic down-

regulation via a better redistribution and allocation of carbohydrates from 

leaves to sinks under elevated CO2 conditions (Ainsworth et al., 2004; Aranjuelo 

et al., 2013b). Indeed, plants with higher capacity to remobilise the “extra” 

photoassimilates to organs with a higher demand for C could overcome the 
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photosynthetic down-regulation that would result from exposure to elevated 

CO2.  

Nitrogen (N) assimilation limitations have also been identified as being 

central to photosynthetic performance under elevated CO2. Photosynthesis 

provides C skeletons for assimilating N into amino acids to form proteins and 

other nitrogenous compounds. An imbalance between C fixation and N 

assimilation has been claimed as being responsible for photosynthetic down-

regulation under elevated CO2 (Ainsworth and Long, 2005; Bloom et al., 2010). 

Moreover, limitations to N reduction and assimilation observed in plants grown 

under elevated CO2 have been associated with a reduction in energy availability 

in such plants, which would have effects on C and N assimilation (Rachmilevitch 

et al., 2004; Bloom et al., 2010; Aranjuelo et al., 2013b). Under this context of 

energy availability limitations, prolonged exposure to elevated CO2 would 

modify the C/N ratio by increasing the carbohydrate content and decreasing 

the N pool due to competition for reductant (Rachmilevitch et al., 2004; Bloom 

et al., 2010). 

The assimilation and remobilization of C compounds during grain filling 

condition the development of grains. Photoassimilates required to sustain grain 

filling are mainly provided by flag leaf photosynthesis (Evans, 1983), 

remobilization of C stored in leaves and stem internodes assimilated before 

anthesis (Gebbing and Schnyder, 1999) and ear photosynthesis (Tambussi et 

al., 2007; Zhou et al., 2016). Sucrose, fructans and starch, among others, are 

target carbohydrates that condition crop performance during the grain-filling 

period in barley. Sucrose is the major carbohydrate transport form that 

provides most of the energy and C necessary for the growth and development 

of non-photosynthetic organs. Together with starch, fructans have been 

described as the major C storage compounds in different cereal organs such as 
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the grains, leaves, stems and roots (Morcuende et al., 2004). In addition to their 

role as reserve carbohydrates, fructans also provide C and energy to non-

photosynthetic tissues (Xue et al., 2011; Van den Ende, 2013). Moreover, 

carbohydrates can also act as signal molecules regulating the expression of a 

wide variety of genes involved in different metabolic pathways and cellular 

functions (Osuna et al., 2007; Van den Ende, 2013; Valluru, 2015). Fructan 

synthesis is regulated by the sucrose content, being necessary that sucrose 

overpass a threshold concentration (Pollock and Cairns, 1991; Koroleva et al., 

1998). In addition, the sucrose concentration increases fructosyltransferases 

gene expression, whereas nitrate inhibits the content of this protein 

(Morcuende et al., 2004). Indeed, a close correlation between carbohydrate 

content and expression of carbon metabolism related genes has been reported 

recently (Vicente et al., 2018).  

Searching for more productive varieties, conventional plant-breeding 

programs have reduced the genetic diversity of crops by the use of elite crop 

varieties that have lost specific alleles relevant to specific environmental 

conditions (Ellis et al., 2000; Dawson et al., 2015). This searching of elite 

varieties has resulting in some sink-source limitations in comparison with 

ancient cultivars (Maydup et al., 2012; Serrago et al., 2013). To recover some 

of the favourable alleles lost during plant-breeding programs, Matus et al. 

(2003) developed a recombinant chromosome substitution line (RCSL) 

population of 140 lines using the wild ancestor of barley (Hordeum vulgare 

subsp. spontaneum) as a source of genes for Harrington (Hordeum vulgare 

subsp. vulgare ‘Harrington’), which is commonly used as a malting quality 

standard in North America. The recovered genes in the barley line RCSL-89 

showed higher tolerance to abiotic stress by accumulating more carbohydrates 

under drought conditions (Méndez et al., 2011). 
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In order to adapt crop to future atmospheric condtions, a further 

understanding of the factors contributing to increases in C sinks will enable 

adjustment of leaf carbohydrate demand under elevated CO2. In this work we 

performed two approaches with the purpose of evaluate the importance of C 

sink-source balance in the responsiveness of plants to different CO2 conditions. 

The first goal was to determine the relevance of plant C sink-source balance in 

barley responsiveness to elevated CO2. For that, barley cultivars with high 

(RCLS-89) and low (cv. Harrington) capacity to store C/N compounds in the 

internodes were exposed to elevated CO2 for 11 weeks. Secondly, plants 

growing for 5 weeks under ambient CO2 conditions (400 ppm) were exposed to 

elevated CO2 for the following 6 weeks at the ear emergence growth stage, and 

vice versa, plants growing for 5 weeks under elevated CO2 (700 ppm) were 

exposed to ambient CO2 (400 ppm). The current experiments enabled us to 

identify mechanisms developed by plants to adapt their C sink/source balance 

under changing CO2. 
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5.2. Materials and Methods 

Plant material and experimental design 

Seeds of both barley plants, Harrington and RCLS-89, were stored at 4°C 

for 10 days to synchronize germination. Once germinated, 64 plants were 

grown in 32 pots filled with a mixture of vermiculite:perlite (2:1; v:v). Plants 

were grown in two controlled environment chambers (Phytotron Service, 

SGIker, UPV/EHU). The environmental conditions inside the chambers were 550 

µmol m-2 s-1 photosynthetic photon flux density (PPFD); 14-light/10h-darkness 

photoperiod; 25/17 °C and 50/60% relative humidity, respectively. Barley 

plants were watered twice a week with Hoagland´s solution (Arnon and 

Hoagland, 1940) and once a week with deionized water to avoid salt 

accumulation. The experimental set up was designed as two sub-experiments 

in parallel. For the first goal barley plants were grown at different atmospheric 

CO2 (400 vs. 700 ppm) and environmental conditions as described above for 11 

weeks. The second goal was to characterize the plasticity of plants exposed to 

changing environmental CO2 to explore the adaptive mechanisms performed 

by plants for balancing the sink-source. For that, in the second experiment a set 

of 32 plants that were grown for 5 weeks at ambient CO2 were exposed during 

the following 6 weeks to elevated CO2 conditions (400-700), and vice versa, 

plants that were grown elevated CO2 were exposed to ambient CO2 conditions 

(700-400). In parallel, reference plants were kept growing continuously at 400 

and 700 ppm CO2 during the 11 weeks.   

Biomass and gas exchange determinations  

At the end of the experiment on week 11, plant sampling and gas 

exchange determinations were done between 2 and 4 hours after onset the 

photoperiod. Gas-exchange parameters were measured in the flag leaf. The net 

photosynthetic rate (AN) was measured at 500 μmol m−2 s−1 PPFD with a LI-COR 
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6400-XT portable gas exchange system (LI-COR Inc., Lincoln, NE, USA). 

Simultaneously, the stomatal conductance (gs) and intercellular CO2 (Ci) were 

obtained. The curves of net CO2 assimilation rate (An) versus intercellular CO2 

concentration (Ci) (A–Ci) were recorded under saturated light conditions (1000 

μmol m−2 s−1 PPFD). In order to estimate the maximum carboxylation velocity 

of Rubisco (Vcmax), the CO2 concentration was decreased in three steps from 

400 to 100 ppm CO2, followed by an increase from 400 to 1800 ppm CO2 in five 

steps. For the estimation of the maximum carboxylation velocity of Rubisco 

(Vcmax) we used the equation developed by Sharkey et al. (2007). 

After measuring photosynthesis in flag leaves, plant material was 

harvested for biochemical analysis. Flag leaves and last stem internodes of four 

plants for each treatment were immediately plunged into liquid nitrogen and 

stored at -80 °C until further analysis. For biomass determination, four plants 

per treatment were dried in an oven at 80 °C for 72 h. Harvest index (HI) was 

calculated by the equation: HI = Ear Biomass / Total biomass. 

Carbon and nitrogen content 

Flag leaves and last stem internodes dried at 80 °C for 72 h were ground 

for carbon and nitrogen content (%) determination. For each sample, 1 mg of 

dry material in small tin capsules was analysed using a Flash 1112 Elemental 

Analyzer (Carbo Erba, Milan). 

Metabolite determinations 

Frozen flag leaf and last stem internode plant material was used for 

ethanol/water extraction for carbohydrate determination according to 

Morcuende et al. (2004). Sucrose, starch and fructan contents were 

subsequently determined spectrophotometrically following the protocol 

described by Morcuende et al. (2004). In the flag leaf, total amino acids were 

determined by the ninhydrin method (Hare and Cress, 1997), ammonium 
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quantification was carried out with the Berthelot method (Patton and Crouch, 

1977) based on the phenol hypochlorite assay, and nitrate quantification was 

done according to nitration of salicylic acid as described by Cataldo et al. (1974). 

Soluble Protein extraction and Rubisco quantification 

Protein extraction from flag leaves was carried out according to Sarasketa 

et al. (2014). Total soluble proteins were quantified spectrophotometrically 

using the Bradford dye-binding assay (Bio-Rad, Hercules, CA, USA) with BSA as 

standard for the calibration curve. For relative Rubisco content (%) 

determination, protein extracts were denatured at 95 °C for 5 min after adding 

one volume of loading buffer (Laemmli, 1970). Ten µg of denatured proteins  

were separated by a sodium dodecyl sulfate–polyacrylamide gel 

electrophoresis (SDS-PAGE) system using a 1.5 mm thick gel (10% separating, 

4.6% stacking). Electrophoresis was carried out in a vertical electrophoresis cell 

(Mini-Protean III; Bio-Rad) at room temperature and at a constant current of 

120 V for 2 hours. The gels were stained with 1% Coomassie blue solution for 1 

h and subsequently destained, washing 4 times in water:methanol:acetic acid 

(4:4:2, v:v:v) for 20 min. Finally, the gels were scanned and the densitometry of 

the Rubisco subunit band was estimated using Image J software. 

N assimilation enzyme activities 

Maximum nitrate reductase (NR) activity was determined as described 

by Baki et al. (2000). The reaction was incubated for 30 min at 30 °C after the 

addition of 50 µl of protein extract to 250 µl of reaction buffer. Afterwards the 

reaction was stopped by adding 0.5 M zinc acetate and was centrifuged at 4000 

g for 30 min at 4 °C. For nitrite detection, 1% sulfanilamide in 3 M HCl and 0.02% 

N-naphthyl-ethylenediamine hydrochloride (NEDA) were added and the 

reaction formed was measured colorimetrically at 540 nm and using KNO2 as 

the standard for the calibration curve. Glutamine synthetase (GS) activity was 
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determined by incubating 50 µl of protein extract for 30 min at 30 °C with 100 

µl reaction buffer (Vega-Mas et al., 2015). The reaction was stopped by adding 

150 µl of 0.122 M FeCl3, 0.5 M TCA and 2 N HCl. Then, samples were centrifuged 

at 2000 g for 5 min and the absorbance of ɣ-glutamylmonohydroxamate (ɣ-

GHM) in the supernatant was measured at 540 nm using ɣ-GHM as the standard 

for the calibration curve. Glutamate dehydrogenase (GDH) and glutamate 

synthase (GOGAT) activities were determined as described in Vega-Mas et al. 

(2015). Initial kinetics of changes in the NADH concentration were monitored 

by absorbance at 340 nm in a reaction consisting of 20 µl protein extract and 

280 µl of reaction buffer NADH-dependent GDH or NADH-dependent GOGAT, 

respectively.  

RNA extraction and synthesis of cDNA 

RNA was isolated from pulverized frozen flag leaves using the 

phenol:chloroform method described by Morcuende et al. (1998). Ten µg of 

RNA for each sample were treated with DNase Turbo (Ambion) according to the 

manufacturer´s instructions. RNA integrity was checked on a 1.5% (v/v) agarose 

gel and the absence of genomic DNA contamination was confirmed by PCR 

using a primer pair for the gene encoding glyceraldehyde-3-phosphate 

dehydrogenase (GenBank ID: EF409633) designed to amplify exon-intron-exon 

sequence with a product size of 120 bases for RNA and 360 bases for genomic 

DNA. cDNA was synthesized using SuperScript III reverse transcriptase 

(Invitrogen GmbH) according to the manufacturer´s instructions.  

Quantitative real-time PCR 

Gene expression was measured as described in Vicente et al. (2015). 

Quantitative PCR was performed in an optical 384-well plate with an ABI PRISM 

7900 HT Sequence Detection System (Applied Biosystems) in a 10 µl reaction 

volume using the SYBR Green Maxter Mix reagent (Applied Biosystems), 1 µl of 
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diluted cDNA (1:40) and 200 nM of each-gene specific primer. The PCR thermal 

profile was as follows: polymerase activation (50°C for 2 min, 95°C for 10 min) 

amplification and quantification cycles repeated 40 cycles (95°C for 15 s and 

60°C for 1 min) and a final step of 95°C for 15 s and 60°C for 15 s to obtain the 

dissociation curve. Three biological replicates were used for quantification 

analysis with two technical replicates for each biological sample.  

Transcript levels for genes associated with photosynthesis, carbohydrate 

metabolism and nitrogen assimilation in flag leaves were determined using the 

primers described in Méndez (2014) and Córdoba et al. (2016) (Table S1). The 

data was presented as the log2-fold change after the quantification of the 

relative gene expression using the comparative Ct method 2−ΔΔCt (Schmittgen 

and Livak, 2008), and using the actin gene as a reference gene for normalizing 

gene expression results (Córdoba et al., 2016). 

Statistical analysis 

Data were analysed using IBM SPSS statistic 22 software (Armonk, NY, 

USA). Normality and homogeneity of variance were analysed by Kolmogorov-

Smirnov and Levene tests. Analysis of significant differences for the effect of 

CO2 on both barley cultivars was analysed by one-way ANOVA with a Duncan 

post-hoc test. Differences between both cultivars in the same CO2 condition 

were analysed by a t-test. For both analyses, differences were considered 

significant at p<0.05. 
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5.3. Results 

Experiment 1: Evaluation of the relevance of plant C sink-source balance in 

response to elevated CO2 

Exposure to elevated CO2 did not alter the total biomass in either barley 

cultivar, but increased the HI as a consequence of the higher ear biomass (Table 

1). The net photosynthetic rate (AN) with respect to 400 ppm CO2 was not 

increased in Harrington plants exposed to elevated CO2 (Figure 1A), but the 

Vcmax activity was decreased respect to 400 ppm CO2 (Figure 1B). Harrington 

plants showed a similar stomatal conductance under both CO2 conditions 

(Figure 1C). In RCSL-89 plants exposed to elevated CO2, the Vcmax activity was 

higher than those grown at 400 ppm CO2 (Figure 1B, C). Therefore, the AN was 

increased in RCSL-89 plants under elevated CO2 conditions (Figure 1A). 

Comparing both barley Harrington and RCSL-89 plants, the results indicated 

that despite there was no difference in the internal CO2 (Ci) of Harrington leaves 

relative to RCSL-89, the lower Vcmax of Rubisco observed at 700 ppm indicates 

that elevated CO2 induced the down-regulation of its activity (Figure 1B, D). 

 

Table 1. Total biomass, ear biomass and harvest index of Harrington and RCSL-89 barley 

cultivars. Growth conditions were 400 ppm, 700 ppm, 400-700 (from 400 to 700 ppm) and 700-

400 (from 700 to 400 ppm) CO2. Significant differences (p<0.05) between each CO2 condition 

are indicated with different letters. Asterisk (*) indicates significant cultivar differences 

(p<0.05). Values represent mean ± SEM (n=4). 

 
 

400 12.88 ± 1.38 a 2.18 ± 0.40 b* 0.17 ± 0.02 b*
700 13.15 ± 1.76 a 3.77 ± 0.36 a 0.33 ± 0.03 a

400-700 9.68 ± 0.81 ab* 2.09 ± 0.27 b 0.22 ± 0.02 b
700-400 8.52 ± 0.53 b 1.98 ± 0.32 b* 0.23 ± 0.04 b

400 11.40 ± 1.07 A 1.05 ± 0.13 C* 0.10 ± 0.01 C*
700 14.48 ± 1.39 A 4.59 ± 0.19 A 0.30 ± 0.02 A

400-700 12.72 ± 1.24 A* 2.73 ± 0.21 B 0.22 ± 0.02 B
700-400 13.62 ± 1.23 A 3.81 ± 0.36 B* 0.25 ± 0.03 AB

Harrington 

RCLS-89 

Total Biomass (g) Harvest Index Ear (g) 
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Figure 1. Effect of CO2 on flag leaf gas 

exchange and photosynthesis 

parameters. A, net photosynthetic 

rate; B, maximum velocity of RuBP 

carboxylation by Rubisco (Vcmax); C, 

stomatal conductance (gs) and D, 

intercellular CO2 mole fraction (Ci) of 

Harrington (grey bars) and RCSL-89 

(black bars) barley plants. Growth 

conditions were 400 ppm), 700 ppm, 

400-700 (from 400 to 700 ppm) and 

700-400 (from 700 to 400 ppm) CO2. 

Significant differences (p<0.05) 

between each CO2 condition are 

indicated with different letters. 

Asterisk (*) indicates significant 

cultivar differences (p<0.05). Values 

represent mean ± SEM (n=4). 

 

In order to determine the photo-assimilates and their mobilisation to 

sink organs, the sucrose, starch and fructan contents were determined in flag 

leaves and the last stem internodes of both barley cultivars (Figure 2). Flag 
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leaves of Harrington plants grown under elevated CO2 showed lower sucrose 

levels (Figure 2A) and maintained starch and fructan contents (Figure 2C, E). 

Elevated CO2 did not significantly alter the sucrose and starch contents in the 

flag leaves and last stem internodes of RCSL-89 plants (Figure 2A-D), but 

decreased the fructan contents in the flag leaves (Figure 2E). However, the 

fructan contents of the last stem internodes in RCSL-89 were not significantly 

changed compared to plants grown at 400 ppm CO2 (Figure 2F).  

Figure 2. Effect of CO2 in carbohydrates content in the flag leaf and last stem 

internode. A-B, sucrose; C-D, starch and E-F fructans of Harrington (grey bars) and RCSL-89 

(black bars) barley plants. Growth conditions and significant differences are described in Figure 

1.  
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The C and N (%) contents in the flag leaves and internodes of the two 

barley cultivars were not affected by the CO2 conditions (Table 2). Interestingly, 

the leaf C/N ratio was higher in RCSL-89 under elevated CO2 (13.82), this value 

being similar to the Harrington leaves (14.91). The nitrogen available for protein 

synthesis was quantified by the analysis of N forms (NO3- and NH4+), amino acids 

and protein content in leaves (Figure 3). Although elevated CO2 did not reduce 

the amount of NO3- in leaves of both cultivars, the NH4+ content was lower in 

both cultivars grown under elevated CO2 (Figure 3A-B). Interestingly, the amino 

acid content and relative Rubisco content in Harrington was also lower 

compared to 400 ppm CO2, but no differences were observed in RCSL-89 (Figure 

3C, E). In addition, elevated CO2 increased the foliar soluble protein content in 

RCSL-89 but not in Harrington (Figure 3D).  

 

Table 2. N and C content in flag leaf and last stem internode of barley Harrington and RCLS-

89 cultivars grown under different CO2. Growth conditions and significant differences 

indications are described in Table 1.  

 
 

Determinations of N assimilation enzyme activities revealed that the 

exposure to elevated CO2 did not significantly affect the NR and GOGAT 

activities in either of the barley cultivars (Figure 4A, C). Moreover, exposure to 

elevated CO2 decreased GS and GDH activities in Harrington but not in RCSL-89, 

400 3.47 ± 0.26 a 45.19 ± 0.16 a 1.37 ± 0.99 a 42.36 ± 0.23 a*
700 3.00 ± 0.14 a 44.57 ± 0.24 a 0.95 ± 0.67 ab 42.39 ± 0.35 a*

400-700 3.16 ± 0.49 a 43.47 ± 0.36 b 0.90 ± 2.49 b 44.60 ± 2.03 a
700-400 3.14 ± 0.25 a 44.46 ± 0.36 a 1.17 ± 1.33 ab 41.53 ± 0.10 a*

400 4.08 ± 0.47 A 45.22 ± 0.71 A 1.34 ± 0.22 A 43.34 ± 0.05 A*
700 3.25 ± 0.12 AB 44.93 ± 0.29 A 1.01 ± 0.11 A 43.52 ± 0.07 A*

400-700 4.08 ± 0.09 A 43.53 ± 0.16 B 1.36 ± 0.20 A 42.95 ± 0.31 A
700-400 3.00 ± 0.20 B 43.23 ± 0.31 B 1.46 ± 0.30 A 42.79 ± 0.51 A*

RCLS-89 

Internode C (%)Leaf N (%) Leaf C (%) Internode N (%)

Harrington 
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which maintained similar activities to plants grown at 400 ppm CO2 (Figure 4B, 

D).  

 
 

Figure. 3. Effect of CO2 on N forms (nitrate and ammonium), amino acids and soluble proteins 

of flag leaves. A, nitrate; B, ammonium; C, amino acids; D, Soluble protein and D, Rubisco 

relative content of Harrington (grey bars) and RCSL-89 (black bars) barley plants. Growth 

conditions and significant differences are described in Figure 1. 
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Figure. 4. Effect of CO2 on flag leaf N 

enzyme activities. A, nitrate reductase; B, 

glutamine synthetase C, glutamate 

dehydrogenase and D, glutamate synthase 

of Harrington (grey bars) and RCSL-89 (black 

bars) barley plants. Growth conditions and 

significant differences are described in 

Figure 1. 

  

 Finally, evaluation of the abundance of transcripts for genes linked to 

photosynthesis and carbohydrate and nitrogen metabolism (Table 3) showed 

that elevated CO2 decreased the transcripts for photosynthetic proteins, 
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including photosystem II light-harvesting chlorophyll a/b binding protein and 

Rubisco large subunit in both cultivars, but it did not affect the transcripts for 

photosystem I related-genes. Exposure to elevated CO2 also decreased 

significantly the transcripts for the Rubisco small subunit in RCSL-89 but not in 

Harrington. Moreover, elevated CO2 decreased the expression of fructan 

related-genes 1-SST and 1-FFT in Harrington plants, while these were not 

changed in RCSL-89. Following the lack of changes in NR activity (Figure 4), the 

gene expression for NR was not altered by elevated CO2, regardless of the 

barley cultivar. 

 

Table 3. Heat map of transcript abundance in leaves of barley cultivars Harrington and RCLS-

89 cultivars grown under different CO2. Growth conditions and significant differences 

indications are described in Table 1. 

                

              

 

Acc. No. Description 400 700 400-700 700-400 P
Harrington
AK356022 Photosystem II light harvesting chlorophyll a/b binding protein b c a bc 0.003
AK361860 Photosystem II light harvesting chlorophyll a/b binding protein a b a b 0.009
AK365564 Photosystem II subunit R c b a d <0.001
AK360942 Oxygen evolving enhancer protein 3, PsbQ a a a a 0.055
AK252670 Photosystem II reaction center, PsbP a a a a 0.757
KC912689 Photosystem I P700 apoprotein A1, PsaA ab a a b 0.029
AGP50910 Photosystem I P700 apoprotein A2 a a a a 0.151
X15869 Protochlorophyllide oxidoreductase, POR b b a b 0.004
AGP50919 Rubisco large subunit, RbcL a b a b 0.022
U43493 Rubisco small subunit, RbcS a a a a 0.13
AK366020 Sucrose:sucrose 1-fructosyltransferase, 1-SST a b b b 0.004
X83233 Sucrose:fructan 6-fructosyltransferase, 6-SFT a a a a 0.101
JQ411253 Fructan:fructan 1-fructosyltransferase, 1-FFT a b b b 0.011
AJ605333 Fructan 1-exohydrolase, 1-FEH a a a b 0.012
AK357958 Fructan 6-exohydrolase, 6-FEH a a a b 0.022
AJ534444 Cell wall invertase, cwinv2 a ab b c 0.001
AK359654 Structural constituent of cell wall a a a a 0.082
X57845 Nitrate reductase, NR b b a a 0.013
RCSL-89
AK356022 Photosystem II light harvesting chlorophyll a/b binding protein A B A A 0.015
AK361860 Photosystem II light harvesting chlorophyll a/b binding protein A B A B <0.001
AK365564 Photosystem II subunit R B C A C <0.001
AK360942 Oxygen evolving enhancer protein 3, PsbQ A A B C <0.001
AK252670 Photosystem II reaction center, PsbP A B A B 0.003
KC912689 Photosystem I P700 apoprotein A1, PsaA A A A B 0.023
AGP50910 Photosystem I P700 apoprotein A2 A A A B 0.018
X15869 Protochlorophyllide oxidoreductase, POR A B A B 0.002
AGP50919 Rubisco large subunit, RbcL A B AB AB 0.02
U43493 Rubisco small subunit, RbcS A B A B <0.001
AK366020 Sucrose:sucrose 1-fructosyltransferase, 1-SST A A A A 0.299
X83233 Sucrose:fructan 6-fructosyltransferase, 6-SFT A A A A 0.528
JQ411253 Fructan:fructan 1-fructosyltransferase, 1-FFT A A AB B 0.034
AJ605333 Fructan 1-exohydrolase, 1-FEH A A B B 0.01
AK357958 Fructan 6-exohydrolase, 6-FEH A A A B 0.003
AJ534444 Cell wall invertase, cwinv2 A B B C 0.002
AK359654 Structural constituent of cell wall A A A A 0.115
X57845 Nitrate reductase, NR B B A A 0.016  

 



 

129 
 

Experiment 2: testing the mechanisms adopted by the plants in response to 

changing CO2  

The total biomass of Harrington plants decreased when the CO2 was 

increased after initial growth at ambient CO2 (400-700; Table1). However, the 

ear biomass and HI of Harrington plants were similar to plants adapted to 

grown continuously at 400 ppm CO2. On the other hand, although the total 

biomass of RCSL-89 was not affected when the CO2 increased (400-700; Table 

1), the ear biomass of these plants was in between the biomass of 400 and 700 

ppm-adapted plants, and a similar intermediate HI was observed (Table 1). The 

photosynthetic parameters of Harrington plants exposed to 400-700 ppm CO2 

were similar to those in 700 ppm-adapted plants, but the Vcmax was lower in 

RCSL-89 plants exposed to elevated CO2 after growth at 400 ppm (400-700) 

than those grown at 700 ppm CO2 (Figure 1A, B).   

Increasing the CO2 of the growth chamber for 6 weeks (400-700) 

reduced the sucrose content in leaves of both cultivars compared to those 

grown at 700 ppm CO2 (Figure 2A). The starch content was decreased in 

Harrington leaves compared to those grown at 700 ppm CO2 continuously 

(Figure 2C). The internode fructan contents were decreased in Harrington 

compared to 700 ppm-adapted plants (Figure 2F). In addition, RCSL-89 

maintained higher fructan contents in leaves and internodes than Harrington 

(Figure 2E, 2F). Thus, the fructan contents showed substantial differences 

depending on the cultivar and tissue analysed. The increase in CO2 (400-700) 

reduced C content in leaves of both barley cultivars with respect to plants that 

grown continuously at 700 ppm CO2, but this did not occur in the last stem 

internode (Table 2). While Harrington leaves did not show substantial changes 

in N content when CO2 increasing (400-700), the internode N content 

decreased (Table 2). Raising the CO2 in the growth chamber from 400 to 700 
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increased the ammonium and amino acid contents in Harrington plants (Figure 

3B-C), whereas, in RCSL-89 the nitrate and ammonium content increased 

(Figure 3A-B) and the protein content decreased relative to 700 ppm-adapted 

plants (Figure 3D). Regarding N-metabolism enzyme activities, both barley 

cultivars showed higher NR activity when the CO2 increased from 400 to 700 

ppm (Figure 4A). In addition, the increased CO2 (400-700) did not affect the GS 

and GOGAT activities, regardless of the studied cultivars, but increased the GDH 

activity in Harrington while the activity in RCSL-89 was unaltered (Figure 4B-D). 

The main differences in the transcriptional response to the increased CO2 (400-

700) over 6 weeks were that several photosynthetic genes were induced in both 

cultivars, such as photosystem II light-harvesting-related genes, the Rubisco 

large subunit and protochlorophyllide oxidoreductase, and most of them were 

induced more strongly in Harrington compared to 700 ppm-adapted plants 

(Table 3). The gene encoding NR was also induced in both cultivars, whereas 

the gene encoding fructan 1-exohydrolase was repressed in RCSL-89 plants 

(Table 3).  

Considering the response of barley plants to the decrease from 700 to 

400 ppm CO2 over 6 weeks, Harrington plants showed lower biomass than 400 

ppm-adapted plants. However, both ear biomass and HI were similar to the 400 

ppm-adapted plants (Table 1). Decreasing the CO2 of the growth chamber (700-

400) during the 6 weeks did not significantly affect RCSL-89’s total biomass. 

Nevertheless, these plants showed higher ear biomass and HI relative to 400 

ppm-adapted plants (Table 1). In both cultivars, the reduction in CO2 decreased 

the AN by a strong stomatal closure (Figure 1A, C) compared to plants grown at 

400 ppm CO2. In addition, the Vcmax was significantly decreased in Harrington 

but not in RCSL-89 (Figure 1B). 
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Reducing the atmospheric CO2 conditions (400-700) decreased sucrose 

content in the leaves of both cultivars compared to the references at 400 ppm 

CO2 (Figure 2A), but did not significantly change the sucrose content in 

internodes (Figure 2B). The starch content in Harrington leaves and internodes  

was reduced, whereas the starch content in RCSL-89 leaves did not changed, 

but increased in the last stem internodes in comparison to 400 ppm-adapted 

plants (Figure 2C-D). Concerning fructan content, in both Harrington and RCSL-

89 cultivars there were no significant differences relative to their references at 

400 ppm CO2 and regardless of the plant tissue (Figure 2E-F). Accordingly, with 

the decline in the AN, the C (%) content was lower in leaves of both cultivars 

than in the 400 ppm-adapted plants (Table 2). Decreasing the CO2 of the growth 

chamber (700-400) increased nitrate and ammonium contents but reduced 

protein content in Harrington (Figure 3A-B, D). However, in RCSL-89 there was 

increased nitrate content but decreased amino acid contents that did not affect 

the protein content relative to 400 ppm-adapted plants (Figure 3A, C-D). In the 

case of N assimilation enzyme activities, the reduction in CO2 led to an increase 

in NR activity in both cultivars (Figure 4A) and this did not affect the rest of the 

studied enzyme activities (Figure 4B-D). Reducing the CO2 of the growth 

chamber during the 6 weeks showed that, comparing both cultivars to plants 

that were grown continuously at 400 ppm CO2,  several genes that encode 

photosynthetic proteins as well as genes involved in fructan metabolism (1-FFT, 

1-FEH and 6-FEH) and cell wall synthesis were repressed (Table 3). Similar to 

the increase in NR activity reported above, decreasing the CO2 of the growth 

chamber also induced genes for NR.  
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5.4. Discussion  

Sink-source balance has been postulated as being key to conditioning 

the responsiveness of photosynthetic capacity to increasing CO2 (Ainsworth 

and Long, 2005; Aranjuelo et al., 2011, 2013b). In the present study two 

approaches have been carried out to test the relevance of 1) internode capacity 

to accumulate carbohydrates and 2) the “plasticity” of leaf C/N metabolism 

following modification in growth CO2 conditions.  

Experiment 1: a higher internode C-storage capacity contributes to 

overcoming photosynthetic down-regulation under elevated CO2 

Carbon sink-source imbalance has been claimed as being responsible for 

the photosynthetic down-regulation frequently observed when plants are 

exposed to elevated CO2 (Aranjuelo et al., 2011, 2013b; White et al., 2015). 

Indeed, an insufficient demand for carbohydrates from developing C-sinks has 

been observed to induce leaf C imbalances (White et al., 2015). The last stem 

internode acquires a special importance in the C storage capacity for 

maintaining leaf C balance during the vegetative stage (Tambussi et al., 2007). 

Later on during the grain filling period the C stored in the internode is 

remobilized towards the grain. Within this context, our study noted that in both 

barley cultivars, higher fructan contents were detected in internodes than in 

leaves showing the importance of these organs for the subsequent grain filling-

stage. 

Inadequate C sink strength can lead to a decrease in photosynthetic 

activity so that C source activity and sink capacity are balanced (White et al., 

2015). The data obtained also revealed that there was a differential response 

to the elevated CO2 over the Vcmax and relative Rubisco content for each barley 

cultivar. Exposure to elevated CO2 decreased the Vcmax and relative Rubisco 

content in Harrington, while RCSL-89 showed an increase in the Vcmax. The 
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decline observed in Harrington is consistent with the photosynthetic down-

regulation response widely studied under elevated CO2 (Pérez et al., 2005; 

Aranjuelo et al., 2011, 2013b; Vicente et al., 2015). In addition, the depletion in 

Rubisco content in these plants, alongside the decrease in amino acid and 

soluble protein contents, reduced the levels of leaf organic N compounds  

(Bloom et al., 2002; Pérez et al., 2005; Aranjuelo et al., 2011; Vicente et al., 

2015). By contrast, elevated CO2 led to an increase in the soluble protein 

content in RCSL-89. These results suggest an improvement in leaf organic N 

compounds that could help to maximize photosynthetic capacity in RCSL-89, 

which is consistent with the higher Vcmax observed under elevated CO2. 

Moreover, the drastic increase in ear biomass under elevated CO2 in RCSL-89 

indicates that the strong sink capacity of this organ was especially important in 

the photosynthetic performance under elevated CO2 (Ziska et al., 2004). The 

distribution of photo-assimilates from leaves to the last stem internodes may 

have contributed to avoidance of carbohydrate build-up under elevated CO2. 

Moreover, the experimental data suggested that the improved leaf C balance 

in RCSL-89 may have helped to maintain N status and consequently avoid 

photosynthetic down-regulation of elevated CO2. On the other hand, in the 

case of Harrington, the down-regulation of genes encoding the Rubisco large 

subunit, together with the decreased transcripts for proteins involved in light 

harvesting and the lower Rubisco content under elevated CO2 (Vicente et al., 

2015), may have contributed to the photosynthetic acclimation found in this 

barley cultivar. The fact that at 700 ppm CO2 Harrington showed higher starch 

content than RCSL-89 may indicate that leaves of Harrington plants were 

subjected to C sink-source imbalance. It should be noted that starch has been 

proposed as a way to store the excess C in plants, while the leaf sucrose content 

is suggested to represent the main form of C translocated towards developing 
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sinks (Stitt et al., 2010). This data highlights the fact that impaired N 

assimilation, and consequently Rubisco protein availability, could be linked to 

the leaf C sink-source imbalance (Ainsworth et al., 2004; Aranjuelo et al., 2011, 

2013b; White et al., 2015).  

In our study, NR activity was not significantly affected by elevated CO2 

in the flag leaves of either Harrington or RCSL-89 plants. These data suggest 

that CO2 enrichment does not restrict leaf nitrate reduction, which is at 

variance with the decrease reported in other plant species (Bloom et al., 2002, 

2010; Vicente et al., 2015). In addition, the higher sucrose content in RCSL-89 

could contribute to the maintenance of NR expression and activity (Morcuende 

et al., 1998) and to sustaining the GS activity (Robredo et al., 2011), with the 

consequent impact on amino acid and protein availability under elevated CO2. 

On the other hand, GS has been described as a target enzyme involved in N and 

C metabolism (Vega-Mas et al., 2015). The decline in GS and GDH activities 

decreased the nitrate assimilation pathway in Harrington leaves and in turn 

altered amino acids and other organic N compounds under elevated CO2. On 

the other hand, the maintenance of these activities observed in RCSL-89 leaves 

would guarantee assimilation of inorganic nitrogen into amino acids. Indeed, 

total soluble protein increased in RCSL-89 leaves under exposure to elevated 

CO2. These findings suggest that a limitation in N assimilation could be involved 

in the decline in organic N compounds and the down-regulation of 

photosynthetic capacity found in Harrington plants under elevated CO2. The 

improved photosynthetic acclimation responses to elevated CO2 in the RCSL-89 

cultivar were associated with an enhanced flag N assimilation and a consequent 

increase in organic N compounds. Moreover, the higher sink capacity of the last 

stem internode and the ears would have facilitated the leaf C/N balance and 
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overcome the photosynthetic down-regulation due to elevated CO2, confirming 

the importance of C sink strength for increased crop yields under elevated CO2. 

Experiment 2: a balance in C and N metabolism modulates adaptability to CO2 

conditions 

 As reported in the previous experiment, photosynthesis in plants grown 

under elevated CO2 conditions is limited by the ability to adjust photosynthetic 

activity according to leaf C demand (Ziska et al., 2004). To evaluate the 

adaptation capacity of both barley cultivars to changing environmental CO2, 

plants were exposed to a different CO2 after an initial adaptive environmental 

CO2. 

 Increasing CO2 conditions (400-700) caused a similar response in the AN, 

gs and Ci and relative Rubisco content in both barley cultivars with respect to 

700 ppm-adapted plants. Harrington plants maintained their photosynthetic 

capacity compared to 700 ppm-adapted plants as shown by the similarity of the 

Vcmax to the 400 ppm-adapted plants, whereas no stimulation was detected in 

RCSL-89. The ability to overcome photosynthetic acclimation would be linked 

to the up-regulation of genes encoding proteins involved in light harvesting and 

the maintenance of Rubisco gene expression and protein content (Vicente et 

al., 2015). According to that, our findings suggest that Harrington plants did not 

suffer photosynthetic down-regulation or, at least, that it showed a better 

photosynthetic capacity than RCSL-89 under such growth conditions.  

 In agreement with Stitt et al. (2010), the higher starch content detected 

in Harrington plants (compared to RCSL-89) could be considered as a symptom 

of C overflow generated when the rate of photosynthesis exceeds the rate of 

leaf C demand. This imbalance may be associated with the down-regulation of 

amino acid storage, in agreement with previous studies (Yamakawa and 

Hakata, 2010; Midorikawa et al., 2014). Interestingly, the starch content did not 



 

136 
 

differ in either cultivar after increasing the initial CO2, but RCSL-89 showed 

higher storage-capacity of fructans in leaves and last stem internodes than 

Harrington cultivar.  

 In the second experiment, a late increase in CO2 improved the NR 

activity in flag leaves of both Harrington and RCSL-89 plants with respect to 700 

ppm-adapted plants. These data suggest that CO2 enrichment does not restrict 

leaf nitrate reduction, which is at variance with the reduction in the N pool 

reported in other plant species grown under elevated CO2 (Bloom et al., 2002, 

2010; Vicente et al., 2015). More notably than in the first experiment, CO2 

enrichment induced the expression of nitrate reductase genes and nitrate 

content (Stitt and Krapp, 1999; Vicente et al., 2016), while increasing the amino 

acid content and reducing the sucrose and starch contents relative to the 700 

ppm-adapted plants. The competition for reductants in the chloroplast stroma 

has been described as a factor that conditions C and N assimilation 

(Rachmilevitch et al., 2004; Vicente et al., 2016). For this reason, the leaf light-

harvesting complexes and proteins involved in electron transport may have 

special relevance in maintaining the energy necessary for balancing both N and 

C metabolism. In agreement with Vicente et al. (2017), we observed that the 

exposure to elevated CO2 induced the expression of photosystem II light-

harvesting complexes. In addition, more than 50% of the N that is assimilated 

by roots is allocated to leaves and comprises Rubisco, light-harvesting 

complexes and others proteins involved in electron transport (Kitaoka and 

Koike, 2004). Our results suggest that increasing CO2 from 400 to 700 ppm 

caused concomitant increases in the AN and nitrate content and reduction in 

carbohydrate content by increasing energy availability for coordinating C and N 

assimilation under elevated CO2. These findings suggest that this stimulation in 

N assimilation could be involved in the increase in the amino acid content and 
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the capacity to overcome the initial photosynthetic down-regulation found in 

Harrington under elevated CO2.   

Decreasing the CO2 from 700 to 400 ppm (700-400) after ear emergence 

caused a severe stomatal closure that reduced the photosynthetic rates 

associated with the lower biomass of Harington plants. Stomatal limitations 

are, among others, responsible for the photosynthetic down-regulation that 

reduces the photosynthetic rates (Xu et al., 2016). Bloom et al. (2002, 2010) 

reported that the reduction in AN would increase nitrate assimilation because 

NR had access to a higher NADH available for reducing nitrate to nitrite. 

Moreover, the results reported here suggest that plants exposed to decreasing 

CO2 suffered energy limitations due to a lower expression of light-harvesting 

complexes and reaction centres when compared to 400 ppm-adapted plants. 

The photosynthetic limitation of these plants was reflected by a decrease in the 

leaf carbohydrate content under these conditions. However, the last stem 

internodes of RCSL-89 plants showed a greater starch accumulation, which is 

associated with long-term carbohydrate storage. In concordance with the 

photosynthetic limitations, genes related to photosynthesis, such as light 

harvesting, Rubisco and chlorophyll synthesis, were down-regulated, or at least 

showed similar expression to 700 ppm-adapted plants. Comparing both 

Harrington and RCSL-89 plants, the higher fructan content in RCSL-89 

internodes could be linked to the repression of fructosyltransferases 

(particularly sucrose:sucrose 1-fructosyltransferase), which are involved in the 

fructans synthesis. Moreover, the lower sucrose and starch-storage capacity in 

leaves, or their accumulation as fructans in internodes, revealed that the lower 

photosynthetic capacity decreased the modified C/N balance. In this sense, the 

lower biomass, and specially the ear weight, along with the lower amino acid 
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and protein contents and the down-regulation of photosynthetic related-genes 

suggested that the plants attempted to adapt to the new environment. 

Concluding remarks 

 In summary, our study highlighted the relevance of internode sink 

capacity in leaf C assimilation and balance, and their implications in 

photosynthesis and N assimilation in two barley cultivars exposed to elevated 

CO2. The study showed that the larger internode carbohydrate storage capacity 

of RCSL-89 plants exposed to elevated CO2, mainly in the form of fructans, 

allowed the carbohydrate levels to be balanced and consequently 

photosynthetic down-regulation was overcome due the capacity for 

maintaining Rubisco protein in leaves. On the other hand, when growth CO2 

was modified it was observed that expression of the light-harvesting complex 

and the CO2 diffusion were significant to conditioning the responsiveness of 

plants to changing CO2. In cases where CO2 increased from 400 to 700 ppm, a 

diminishment in leaf carbohydrate content and an improvement in N 

assimilation was detected. Increased C/N was associated with the up-

regulation of photosynthetic genes and N assimilation. On the other hand, 

when decreasing the CO2 from 700 to 400 ppm our study revealed that both 

stomatal closure and the inhibited expression of light-harvesting proteins were 

major factors involved in the inhibition of photosynthetic machinery and crop 

development. 
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6 

Exposure to elevated CO2 delays the senescence and 

permits the extension of the vegetative stage and the 

later remobilisation of metabolites toward ears 
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6.1. Introduction 

 According to the Intergovernmental Panel on Climate Change, it is 

predicted that the global atmospheric concentration of carbon dioxide CO2 

reach 700 ppm, or even more (IPCC, 2014). On C3 plants, which photosynthetic 

metabolism is limited by ambient CO2 the primary effects of increased CO2 

include enhanced plant biomass, leaf net photosynthetic rates, and decreased 

stomatal conductance (Long et al., 2004; Ainsworth and Long, 2005). However, 

prolonged exposure to elevated CO2 usually depleted photosynthetic activity 

and plant development due to the carbohydrate accumulation in leaves that 

cannot be remobilised to sinks. Developing C demanding organs/processes has 

been described (Ainsworth and Rogers, 2007; Aranjuelo et al., 2009, 2013a) to 

be target aspects conditioning leaf carbohydrate sink/source balance. 

Therefore, plants with a large C demand (i.e. large ears in the case of cereals) 

will benefit more from CO2 enrichment than those with a small sink size 

(Aranjuelo et al., 2009, Manderscheid and Weigel., 1997). Such aspect is 

especially relevant in wheat where grains represent a major C sink during grain 

filling period (Uddling et al., 2008). 

 N availability has been identified as a second factor crop performance 

under elevated CO2 (Ainsworth and Long, 2005). The link between N content in 

plants performance under elevated CO2 has been the object of an intense. 

Furthermore, under elevated CO2 conditions, it has been noted mineral content 

reduction in different plant species (Cotrufo et al., 1998) and growth conditions 

(Poorter et al., 1997). Depleted N observed under elevated CO2 would constrain 

Rubisco availability, with the consequent effect on photosynthetic 

performance (Long et al., 2004; Taub and Wang, 2008). Although it has not 

been characterized in the past, when considering CO2 effect in photosynthetic 

performance, it should be considered that target factors conditioning leaf 
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carbohydrate build-up and protein availability will be also conditioned by the 

phenological stage. During grain filling period, ears represent a major C and N 

sink in wheat plants. As mentioned above, leaf C sink/source and therefore 

photosynthetic performance is also conditioned by the sink strength of other 

organs such as grains (Uddling et al., 2008; Aranjuelo et al., 2011). C required 

for grain filling is mostly provided by flag leaf photosynthesis (Evans, 1983), 

translocation of C assimilated before anthesis (mainly stored in the internodes) 

(Gebbing and Schnyder, 1999), and ear photosynthesis (Tambussi et al., 2007; 

Maydup et al., 2012). Therefore, compared to the vegetative stage period, the 

fact that during grain filling period a “new” C sink organ, such as ears, is 

developed implies that during the late phonologic period, wheat plants will be 

less susceptible to show leaf C accumulation. In addition, during this period, 

developing ears also demand N content. Nitrogen sources feeding grain filling 

include current N uptake, assimilation, translocation, recycling and 

remobilization (Masclaux-Daubresse et al., 2010). The proportion of 

remobilized N in the harvested grain is environment-dependent and can 

account for 60 to 92% of the total grain N in wheat (Austin et al., 1977; 

Masclaux-Daubresse et al., 2010). Rubisco might represent up to 50 % of the 

total soluble protein (TSP) and 25 % of the nitrogen (N) content in leaves 

(Aranjuelo et al., 2013a). Although it function is mostly related with CO2 

assimilation during the Calvin cycle, its larger amounts in leaves confers a role 

as a source of N for sustaining grain N demand (Masclaux-Daubresse et al., 

2008; Erice et al., 2014). 

 During senescence period, proteins are degraded and activity of 

proteins involved in N assimilation such as cytosolic glutamine synthetase (GS1) 

and glutamate dehydrogenase (GDH) have been described to be stimulated 

(Masclaux-Daubresse et al., 2001; Martin et al., 2006). Amino acids are the 
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major form of N remobilization from wheat leaves to grain during grain filling 

period. While aspartate (Asp) and glutamate (Glu) represent (approximately) 

50 % of total amino acids (Hayashi and Chino, 1986) at the vegetative stage, 

during leaf senescence, Asp and Glu content decreases and glutamine (Gln) 

availability increases (Simpson and Dalling, 1981). N assimilation and later 

remobilization have been studied through the ‘apparent remobilization’ 

method based on the determination of differences in N content during the 

pre/post-anthesis period in different plant organs, but is susceptible to commit 

large experimental errors. Moreover, this method does not enable the 

identification of N sources such as N uptake from soil and remobilization from 

senescent organs (Masclaux-Daubresse et al., 2008).  

 While wheat physiologic and agronomic performance under elevated 

CO2 has been extensively characterized on the past, the role of changing C and 

N sinks-sources in leaf N and C status has comparatively received minor 

attention. However, taking into account that leaf C/N ratio represents a target 

parameter conditioning physiologic performance under elevated CO2 it is 

crucial to characterize metabolite and protein profile of leaves at different 

phonologic stages. The progressive degradation of Rubisco during leaf 

senescence, together with the development of a C and N demanding to 

emerging organs causes major modifications in carbon and N assimilatory 

pathways that will affect crop responsiveness to elevated CO2. In order to 

better understand the relevancy of phenological stages on leaf C/N and crop 

responsiveness to elevated CO2, here a metabolomics study was carried out. 

For this purpose durum wheat plants (Triticum durum Def. cv. Amilcar) were 

exposed to two CO2 levels (ambient versus elevated; 400 -700 ppm) and leaf 

metabolite contents were compared at two phenological stages (vegetative 

and grain filling). 
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6.2. Material and methods 

Plant growth conditions 

 Wheat plants (Triticum durum Def. cv. Amilcar) were growth under the 

same controlled environmental conditions that plants of chapter 4. Plants 

grown under different atmospheric controlled CO2 of 400 ppm and 700 ppm 

CO2 levels and Hoagland solution (Arnon and Hoagland, 1940) were replaced 

three times by week. Wheat plants were watered with ammonium nitrate 

(NH4NO3) at a rate of 10mM of total N. For metabolic analysis, four flag leaves 

of two developmental stages (vegetative stage and grain filling), were 

harvested and stored at −80 °C until further measurements. 

Metabolite extraction 

 For metabolites extraction, 10mg of dry leaves were homogenized at 

4°C with 0.7ml of ice cold methanol:chloroform:water (MCW) extraction 

mixture (2.5:0.5:1, v/v/v), agitated vigorously for 10 sec and incubated at 4°C 

for 15 min. After the incubation period, samples were centrifuged at 14000 g 

for 4 min at 4°C and the supernatant were transferred to a new 2ml tube. The 

extraction procedure was repeated twice using the resultant pellet with 300 µl 

of MCW and the supernatants were combined. For separate both polar and 

unpolar phases, 300 µl of ultrapure water was added, the samples were 

agitated and centrifuged again at 14000 g for 2 min at 4°C. The upper polar 

phase was transferred to a new Eppendorf tube and samples were dry in a in a 

speed-vac concentrator (Scan Vac, LaboGene APS, Denmark) (Weckwerth et al., 

2004). After thus, dry samples were derivatized by adding 20 µl of a 

methoximation reagent consisting in 40 mg methoxyamine hydrochloride per 

1 ml of pyridine. Samples were incubated for 90 min at 30°C using a thermo 

shaker. Then, 80 µl of a silylation mixture (1ml of N-methyl-N-

trimethylsilyltrifluoroacetamid (MSTFA; Machery Nagel, Düren, Germany) 
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spiked with 30 µl of alkane mixture markers) was added and the samples were 

incubated for 30 min at 37°C using a thermo shaker. The derivatized samples 

were centrifuged and 70 µl were transferred to GC-microvials with microinserts 

and closed with crimp caps (Strehmel et al. 2008). 

GC−TOF/MS analysis:  

 Metabolites were identified using a Agilent 6890 gas chromatograph 

coupled to a LECO Pegasus 4D mass spectrometer (LECO Corporation, USA). GS-

MS components, temperatures ramps and other parameters were set up 

according to Doerfler et al., (2013). Data obtained from the analysis were 

performed with the software LECO CHROMATOF (http://de.leco-

europe.com/category/separation-science-mass-spectrometry/). Retention 

time (RT) of the peaks was converted into retention indices (RI) throughout the 

retention times of the spiked alkanes. RI and mass spectra from the different 

peaks were compared with those annotated in the GMD Golm database (Kopka 

et al., 2005) with a minimum match factor of 700. A reference list was created 

manually containing the information of all the annotated compounds to all the 

samples. Peak areas were used for relative quantification. 

Protein quantification 

  Powder flag leaves were homogenised with a protein extraction buffer 

described by Gibon et al. (2004): 50 mM Tris–HCl pH 7.5, 1 mM EDTA, 1mM 

EGTA, 10 mM DTT, 10 mM MgCl2, 0.1% Triton X-100, 10% glycerol, 0.5% PVPP 

in a proportion 1/20 (w:v). Protein extract were centrifuged at 4000 g for 30 

min at 4°C and the supernatants was transferred to a new tubes. Total soluble 

protein was quantified by the Bradford assay (Bradford, 1976). 

Statistics 

 Data were analysed using IBM SPSS statistic 22 software (Armonk, NY, 

USA). Analysis of significant differences between both CO2 conditions for each 
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developmental stage were analysed by one-way ANOVA with a Kruskal-Wallis 

post hoc-test. Significant differences of soluble protein contents were analysed 

by one-way ANOVA with a Duncan´s post hoc-test.  Phenological differences at 

the same CO2 were analysed by comparisons of means by t-test analysis. 

Significant differences were considered at p<0.05. 
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6.3. Results and Discussion 

 Metabolomics (GS-MS) analyses showed that, at both developmental 

stage, elevated CO2 condition affect the leaf metabolite profile (Table 1). In 

addition, elevated CO2 causes general changes in the relative content of amino 

acids, carbohydrates and tricarboxylic acids, regardless the developmental 

stage, which would conditioning grain yield. Our data highlighted that for both 

phenological periods (vegetative and grain filling), elevated CO2 conditions 

caused a general amino acid suppression (Aranjuelo et al., 2011). In this sense, 

exposure to elevated CO2 showed a clear effect over wheat leaves metabolites, 

reducing the relative content of asparagine and glutamine amino acids, that are 

the main N-form assimilated into amino acids (Table 1). In general, the effect 

of CO2 was more pronounced at vegetative stage than post-anthesis 

corresponding to grain filling period, except for asparagine content that it was 

so much repressed at grain filling period. The lower leaves amino acids contents 

detected during these periods were in accordance with the fact that leaves 

become in sources for new developing organs. N contents were by the far 

provided from the remobilization of amino acids product of the protein 

degradation (Patric and Offler, 2001; Triboi and Triboi-Blondel, 2002), but also 

a small proportion is usually assimilated before the anthesis period and 

translocated directly to developing ears (Masclaux-Daubresse et al., 2010). The 

C required for developing organs is provided from the remobilisation of C 

assimilated during the vegetative stage, but also from the posterior assimilation 

in flag leaves or ears by the photosynthetic process (Evans, 1983; Gebbing and 

Schnyder, 1999; Tambussi et al., 2007; Maydup et al., 2012). In this sense, the 

depletion of the tricarboxylic acid cycle organic acids (such as oxaloacetate, 

citrate and fumarate), would be contextualized in plants were energy 

availability might have been limited. Moreover, consequence of the lower 
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availability of organic acids provided lower carbon skeletons for amino acid 

synthesis. 

 

Table 1. Heat-map of elevate CO2 (700 versus 400 ppm) effect on metabolite profile of wheat 
leaves at vegetative and grain fi l l ing stages. The values are expressed as the ratio of each 
metabolite contents at 700 over 400 ppm CO2. Asterisk (*) indicates significant differences of 
elevate CO2 (700 versus 400 ppm). 

  

 When analyzing the impact of phenology, our data showed different 

responses on metabolites and protein content contents depending on CO2 

condition (Table 2, Figure 1). Regardless of CO2, the amino acid relative content 

Amino acids  

 

Vegetativ
e stage 

Grain 
fi l l ing 

 
(700 / 400 ppm 

CO2) 

Asparagine  -6.40 * -12.99 * 
Aspartic acid -2.05 * -1.86 * 
Glutamic 
acid -0.61  -0.89  
Glutamine  -3.97 * -4.18 * 
Glycine -2.63 * -2.63 * 
Isoleucine -1.33  0.52  
Leucine -0.97  -1.10  
Lysine -4.79 * -2.09 * 
Methionine  -5.25 * -3.06 * 
Ornithine -7.96 * -2.82 * 
Phenylalanin
e -2.38 * -1.90 * 
Proline -2.08 * -1.73 * 
Serine  -1.16 * -1.45 * 
Threonine  -1.00  -0.84  
Tryptophan  -7.67 * -2.21 * 
Tyrosine   -2.30 * -1.57 * 
Valine  -0.74  -1.46 * 

 

 Carbohydrates 

 
Vegetative 
stage  

Grain 
fi l l ing  

 (700 / 400 ppm CO2) 

Fructose  1.39  -0.07  
Galactose 3.28 * 1.96 * 
Glucose 0.81  -0.62  
Maltose  6.83 * 0.31  
Sucrose  0.05  -0.08  

 

 

Tricarboxilic acids  

 
Vegetative 
stage  

Grain 
fi l l ing  

 (700 / 400 ppm CO2)  

Citrate -1.77 * -1.82 * 
2-oxo-glutarate -0.03  3.38 * 
Oxaloacetate -5.61 * -1.11  
Fumarate -6.03 * -2.09 * 
Succinate -0.30  -0.89  
Malate -1.30  -1.63 * 

 



 

151 
 

asparagine was lower in leaves after the anthesis stage than during the 

vegetative period. According to Hayashi and Chino, (1986) during leaf 

senescence, Asp and Glu content were described to decrease and glutamine 

availability increases.  

 The proportion of remobilized N in the harvested grain is might 

represent up to 92% of the total grain N in (Austin et al., 1977; Masclaux-

Debresse et al., 2010). Moreover, the larger amounts of Rubisco protein 

contents (up to 50% in C3 plants) is the major source of N for remobilized for 

supporting grain filling. In this sense, leaf protein senescence during grain filling 

period has been linked with the presence of reactive oxygen species (ROS), 

which initiated the leaf proteolysis and nutrient remobilisation to developing 

sink organs (Kong et al., 2016b). In this sense, wheat plants grown at ambient 

CO2 showed lower leaf protein content after the anthesis period (Figure 1). 

 Regarding leaf soluble sugar availability, obtained data revealed that in 

plants grown under ambient CO2 conditions increased soluble sugar (fructose, 

galactose, glucose and maltose) contents increased during post-anthesis, but in 

plants exposed to elevated CO2 conditions did no phenological derived 

differences were detected. Although we did not determine the starch content 

in the current study, the higher availability of maltose (main product of starch 

breakdown) would suggest that the storage C compounds were degraded for 

being remobilised to developing organs in plants grown at ambient CO2. 

Therefore, the lower amino acid and soluble protein contents together the 

higher carbohydrate contents detected during post-anthesis period in plants 

grown at ambient CO2 conditions could be linked with a higher remobilization 

in these plants. Indeed, the fact that under elevated CO2 conditions 

tricarboxylic cycle showed higher 2-oxo-glutarate and fumarate contents 

suggest that CO2 delay the leaf senescence, favouring C assimilation by leaves 
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for longer period. Whereas the effect of elevated CO2 showed similar 

metabolite profile at both vegetative and grain-filling periods (Table 1). Leaves 

of plants grown at elevated CO2 conditions showed lower protein degradation 

and thus, the senescence was delayed. This permitted continue fixing C in 

leaves even during the grain filling period. 

 

Table 2. Heat-map of phenology effect (grain fi l l ing versus vegetative stages) on metabolite 
profile of wheat leaves at 400 and 700 ppm CO2.  The values are expressed as the ratio of each 
metabolite contents at Grain fi l l ing over vegetative stage. Asterisk (*) indicates significant 
differences of phenological stage (grain fi l ling versus vegetative stages). 

Amino acids  

 
400 
ppm  

700 
ppm  

 
(Grain fi l l ing / 

Vegetative stage) 

Asparagine  -1.94 * -8.52 * 
Aspartic acid -0.79  -0.60  
Glutamic acid -0.51  -0.80  
Glutamine  -0.56  -0.77  
Glycine 0.02  0.01  
Isoleucine -0.33  1.52 * 
Leucine 0.02  -0.11  
Lysine -1.45 * 1.25  
Methionine  -0.89  1.31  
Ornithine -3.27 * 1.86 * 
Phenylalanine 0.24  0.72  
Proline -0.36  -0.02  
Serine  -1.01 * -1.30  
Threonine  -0.84  -0.68  
Tryptophan  1.23 * 6.69 * 
Tyrosine   -0.12  0.62  
Valine  0.25  -0.47  

 

 Carbohydrates 

 400 ppm  700 ppm  

 
(Grain fi l l ing / Vegetative 

stage) 

Fructose  1.65 * 0.19  
Galactose 3.00 * 1.68  
Glucose 1.56  0.13  
Maltose  8.00 * 1.48  
Sucrose  0.16  0.04   

 
 

Tricarboxilic acids  

 400 ppm  700 ppm  

 
(Grain fi l l ing / Vegetative 

stage) 
Citrate 0.66  0.61  
2-oxo-glutarate 1.05  4.45 * 
Oxaloacetate -4.51 * -0.01  
Fumarate 1.05  4.99 * 
Succinate 1.48  0.90  
Malate 1.29  0.95  
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 Figure 1. Total soluble protein content of wheat leaves collected at vegetative and grain filling 
stages that were grown at 400 and 700 ppm CO2. Significant differences between phenological 
stage and CO2 conditions were indicated with letters. Asterisk (*) indicates significant 
differences of elevate CO2 condition (700 versus 400 ppm CO2). 

 

 In accordance with this, the principal component assay (PCA) remarked 

the fact that (regardless of harvest factor) the wheat plants grown at elevated 

CO2 conditions were very similar. In the other hand, in case of plants grown at 

ambient CO2, were clear differences were detected between samples collected 

during vegetative and grain filling period (Figure 2). 

 
Figure 2. Principal component analysis of leaves metabolites of wheat leaves collected at 
vegetative and grain fi l ling stages that were grown at 400 and 700 ppm CO2. The analysis was 
done using the Portable Unscrambler 9.7 software. 
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 Previous studies observe that, under elevated CO2, there might be an 

acceleration on leaf senescence. However, it should be noted that, usually, 

those assumptions are based on the use of physiological markers such as 

chlorophyll content (Ommen et al., 1999) or photosynthesis (Garcia et al., 

1998). Our data are in line with Buchner et al. (2015), who cannot confirm an 

acceleration of the senescence under elevated CO2. According to what 

described by those authors, elevated CO2 decreased the expression of 

carbohydrate-related genes as advance the phenology. In agreement with this 

finding, our study also remarked the higher carbohydrate contents detected 

(Table 1). More specifically, obtained data showed that during grain filling 

period, plants grown under ambient CO2 had higher maltose content (probably 

by a higher starch breakdown) and lower protein contents in leaves.  The fact 

that in leaves of plants grown at elevated CO2 levels protein degradation was 

lower would suggest that in these conditions the senescence was delayed. This 

permitted continue in a green stage for longer period, enabling the assimilation 

of more C for the later grain filling period. 

 Metabolite remobilisation from leaves to developing ears requires a 

highly synchronised regulation of cellular metabolite transports, thus further 

studies on metabolite transporters and the metabolite pattern in ears and, 

more especially in grains, are required to understand how C and N 

remobilisation are conditioned by elevated CO2. 
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7 

General conclusions 
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• Both nitrification inhibitors (NIs), DMPP and DMPSA, showed similar 

efficiency reducing N2O emissions under aerobic conditions (40% WFPS) by 

inhibiting bacterial ammonia oxidation (AOB). 

• Under anaerobic conditions (80% WFPS), both NIs reduced N2O emissions by 

inhibiting nitrification, evidenced by the persistence of NH4 in soil jointly 

with the decrease in the AOB population, but also by the stimulation of nosZ 

population. 

• The application of DMPP and DMPSA stimulated the reduction of N2O to N2 

by the nitrous oxide reductase activity under denitrifying conditions. 

• Durum wheat plants grown under nitrate nutrition presented C-assimilation 

imbalance that causes the accumulation of starch at elevated CO2. 

• Mixed ammonium nitrate nutrition allowed that wheat plants grown at 

elevated CO2 overcome the limitations derived to unique N-source nutrition 

of starch accumulation and photochemical imbalance associate to nitrate 

and ammonium nutrition, respectively. Exposure to elevated CO2 reduced 

ammonium toxicity by higher rates of photorespiration and enhanced GS 

and GDH activities. 

• The higher internode carbohydrate-storage capacity of RSCL-89 barley 

cultivar permitted improved photosynthetic machinery under elevated CO2, 

overcoming the photosynthetic down-regulation observed in Harrington.  

• Under changing growth CO2, the expression of the light-harvesting complex 

and the CO2 diffusion conditioning the responsiveness of plants to changing 

CO2.  

• Growth under elevated CO2 delayed the senescence and permitted extend 

the vegetative stage for assimilate longer amounts of C in leaves for 

posterior remobilisation to ear developing sinks. 
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• Obtained results remark the need to better understand the impact of N 

fertilization form and crop C sink increase strategies so to develop a more 

environmentally friendly crop production during the next decades. 
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Chapter 3 
Supplementary Table 1. Primers pairs and thermal conditions used for real-time qPCR. 

 

Target 
group 

Primer 
name Sequence  Thermal profile  bp 

length 
Efficiency 

(%) References 

16S rRNA 
Bacteria 

341F 5´-CCTACGGGAGGCAGCAG-3´  95ºC for 2 min – x 1 
cycle  

174 95 
Lopez-

Gutiérrez et 
al., (2004)  534R 5´-ATTACCGCGGCTGCTGGCA-3´ 

95ºC for 15 sec , 60 °C 
for 30 sec , 72 °C for 30 
sec , 80 °C for 30sec – x 
40 cycles  

16S rRNA 
Archaea 

771F 5´-ACGGTGAGGGATGAAAGCT-3´ 95 °C for 2 min – x 1 
cycle  

226 93 Ochsenreiter 
et al., (2003) 

957R 5´ -CGGCGTTGACTCCAATTG-3´ 

95 °C for 15 sec , 58 °C 
for 30 sec , 72 °C for 30 
sec , 80 °C for 30sec – x 
40 cycles  

Bacterial 
amoA  

amoA1F 5´-GGGGTTTCTACTGGTGGT-3´ 95 °C for 2 min – x 1 
cycle 

491 91 Rotthauwe 
et al., (1997)  amoA2R 5´-CCCTCKGSAAAGCCTTCTTC-3´ 

95 °C for 15 sec, 54 °C 
for 60 sec , 72 °C for 60 
sec – x 40 cycles  

Archaea 
amoA   

Arch-
amoAF 5´-STAATGGTCTGGCTTAGACG-3´ 95 °C for 2 min - x 1 

cycle 

635 86 Francis et 
al., (2005) Arch-

amoAR 5´-GCGGCCATCCATCTGTATGT-3´ 

95 °C for 45 sec, 54 °C 
for 45 sec, 72 °C for 45 
sec; 85 °C for 20 sec - x 
40 cycles  

narG  

    95 °C for 2 min – x 1 
cycle 

173 97 Bru et al., 
(2007)  

NarG-f 5′-TCGCCSATYCCGGCSATGTC-3′ 

NarG-r 5′-GAGTTGTACCAGTCRGCSGAYTCSG-3′ 

95 °C for 15 sec, 63 °C  
for 30 sec (-1 °C /cycle), 
72 °C for 30 sec, 80 °C 
for 30 sec – x 6 cycles  

95 °C for 15 sec, 58 °C 
for 30 sec, 72 °C for 30 
sec, 80 °C for 30sec – x 
40 cycles  

nirS  

cd3aF 5´-GTSAACGTSAAGGARACSGG-3 ´ 95 °C for 2 min - x 1 
cycle 

410 92 

Michotey et 
al., (2000)  

R3cd 5´-GASTTCGGRTGSGTCTTGA-3´ 

95 °C for 45 sec, 55 °C 
for 45 sec, 72 °C for 45 
sec; 85 °C for 20 sec - x 
40 cycles  

Throbäck et 
al., (2004) 

nirK  

NirK 876 5´-ATYGGCGGVCAYGGCGA-3´ 95 °C for 2 min – x 1 
cycle 

165 86 Henry et al., 
(2004)  

    

95 °C for 15 sec, 63 °C  
for 30 sec (-1 °C /cycle), 
72 °C for 30 sec, 80 °C 
for 15 sec – x 6 cycles  

NirK1040 5´-GCCTCGATCAGRTTRTGGTT-3´ 

95 °C for 15 sec, 58 °C 
for 30 sec, 72 °C for 30 
sec, 80 °C for 30sec – x 
40 cycles  

nosZI  

      

267 88 Henry et al., 
(2006)  

nosZ-F 5´-CGCRACGGCAASAAGGTSMSSGT-3´ 95 °C for 2 min – x 1 
cycle 

    

95 °C for 15 sec, 65 °C  
for 30 sec (-1 °C /cycle), 
72 °C for 30 sec, 80°C for 
30 sec – x 6 cycles  

nosZ-R 5´-CAKRTGCAKSGCRTGGCAGAA-3´ 

95 °C for 15 sec, 60 °C 
for 30 sec, 72 °C for 30 
sec, 80 °C for 30sec – x 
40 cycles  



 

192 
 

 

Supplementary Figure 1. Evolution of soil  pH at 40% WFPS (A) and 80% WFPS (B) during the 

whole experiment. 
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Supplementary Figure 2. Relative expression of denitrifying genes narG (A, B), nirK (C, D) and 

nirS (E, F) at 40% WFPS (A, C, E) and 80% WFPS (B, D, F) for the first 8 days. Significant 

differences (p<0.05) between DMPP and DMPSA with respect to AS are represented by * and 

#, respectively. Values represent mean ± SE (n=3). 
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Supplementary Figure 3. Bacteria (A, B) and archaea (C, D) abundances expressed as 16S rRNA 

gene copy number per gram of dry soil at 40% WFPS (grey bars) and 80% of WFPS (black bars) 

16 (A, C) and 51 days (B, D) after treatment application. Significant differences (p<0.05) 

between treatments within each WFPS condition are indicated with different letters. Asterisk 

(*) indicates significant WFPS effect for each ferti l ised treatment (p<0.05). Values represent the 

mean ± SE (n=4). C = unfertil ised control; AS = ammonium sulphate; DMPP = ammonium 

sulphate + DMPP; and DMPSA = ammonium sulphate + DMPSA. 
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Supplementary Figure 4. Ratio of AOA over AOB at 40% WFPS (grey bars) and 80% of WFPS 

(black bars) 16 (A, C) and 51 days (B, D) after treatment application. Significant differences 

(p<0.05) between treatments within each WFPS condition are indicated with different letters. 

Asterisk (*) indicates significant WFPS effect for each ferti l ised treatment (p<0.05). Values 

represent the mean ± SE (n=4). C = unfertil ised control; AS = ammonium sulphate; DMPP = 

ammonium sulphate + DMPP; and DMPSA = ammonium sulphate + DMPSA. 
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Supplementary Figure 5. Denitrifying abundances expressed as narG (A, B), nirK (C, D) and 

nirS (E, F) gene copy number per gram of dry soil at 40% WFPS (grey bars) and 80% of WFPS 

(black bars) 16 (A, C, E) and 51 days (B, D, F) after treatment application. Significant differences 

(P < 0.05) between treatments within each WFPS condition are indicated with different letters. 

Asterisk (*) indicates significant WFPS effect for each ferti l ization treatment (P < 0.05). Values 

represent mean ± SE (n=4). C means unfertil ized control, AS ammonium sulphate, DMPP 

ammonium sulphate + DMPP and DMPSA ammonium sulphate + DMPSA. 
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Chapter 4 

Supplementary Table 1. Primers pairs used for real-time qPCR. 

 

  

Acc. No. Description Foward and reverse primer (5´- 3´) Product 
(bp) 

Reference 

AK331207 Similar to A. thaliana 
RNase L inhibitor protein 

Fw  TTGAGCAACTCATGGACCAG  86 (Giménez et al., 
2010) 

Rv  GCTTTCCAAGGCACAAACAT  

Ta2291 ADP-ribosylation factor Fw  TCTCATGGTTGGTCTCGATG 81 (Giménez et al., 
2010) 

Rv  GGATGGTGGTGACGATCTCT  

AB181991 Actin Fw AGAGTCGGTGAAGGGGACTTA 97 (Jauregui et al., 
2017) 

Rv TCCTGTACCCCTTATTCCTCTGA 

BE213258 Putative carbonic 
anhydrase, plastidial, CA 

Fw CGACCGATGTGGATCCATTGCCA 65 (Vicente, R. et al., 
2015) 

Rv ATCCCGGCATCCAGTCGTGGAA 

TC389217 Putative carbonic 
anhydrase, plastidial, CA 

Fw GGTCGGCGGTCACTACGACTTC 173 (Vicente, R. et al., 
2015) 

Rv AAACAACGAGTACGCACTCCCATG 

TC393400 Putative carbonic 
anhydrase, plastidial, CA 

Fw GCAGAACCTCCTGACCTACCCGTTC 82 (Vicente, R. et al., 
2015) 

Rv GAAGTCGTAATGACCGCCGACCAG 

TC442386 Putative carbonic 
anhydrase, plastidial, CA 

Fw TGGAGTAAAGTTGGACACAGCGAAC 126 (Vicente, R. et al., 
2015) 

Rv CTGGCCGCCATTTCACGATTCTAG 

HF544985 Low affinity nitrate 
transporter, NRT1 
(NRT1.1A) 

Fw CCTTCACCTACATCGGCCAG 112 (Vicente, R. et al., 
2015) 

Rv CTGACGAAGAATCCGAGCGA 

AY587264 Low affinity nitrate 
transporter, NRT1 
(NRT1.2) 

Fw ATACCTGGGGAAGTACCGGACAGC 133 (Vicente, R. et al., 
2015) 

Rv AGGATCTGCCCAAAGAGTCCAAGCA 

HF544995 Low affinity nitrate 
transporter, NRT1 
(NRT1.7B) 

Fw ATCGTATGCTTCGTCGCGT 147 (Vicente, R. et al., 
2015) 

Rv CGGCAAGAATGCAGTTAGGG 

AY428038 Ammonium transporter, 
AMT (AMT2;1) 

Fw GAGCCGAACCTCTGCAATCT 123 (Vicente, R. et al., 
2015) 

Rv GTTCCACCCGATCACGAAGA 

DQ345446 Aquaporin (PIP 1.1) Fw CCGCCTCGCCTCCGCTACCA 127 (Jauregui et al., 
2017) 

Rv CTGGATTCAGTCAGGAGAGAACAT 

AY525641 Aquaporin (PIP 2.3) Fw TCTCATCCTCCCCAGCTCGGT 141 (Jauregui et al., 
2017) 

Rv ACGAAGATGAGGGTGGAGATGAA 

EU177566 Aquaporin (TIP 1) Fw CTCAGCGCAGCCAGCCTGCTT 132 (Jauregui et al., 
2017) 

Rv CCACAAACTGATCGACCCAGGAAG 
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Supplementary Table 2. Nitrogen source on individual amino acid content (μmol g DW−1) in flag 

leaves of wheat grown under ambient (400 ppm) and elevated (750 ppm) CO2 concentration 

ferti l ised with nitrate (NO3-), ammonium (NH4+) and ammonium nitrate (NH4NO3). Data 

represent mean values ± SE (n=3). Letters represent significant differences between treatments  

analysed by non-parametric test (p<0.05). Asterisk (*) indicates significant CO2 differences 

(p<0.05).  

 

  

  
 400 ppm CO2 700 ppm CO2 
 NO

3

-
 T1 NH

4

+
 T1 NH

4
NO

3
 T1 NO

3

-
 T0 NH

4

+
 T1 NH

4
NO

3
 T1 

asp 63.7 ± 8.1 a 76.0 ± 3.8 a* 67.0 ± 18.0 a 50.7 ± 2.6 A 42.3 ± 9.0 A 71.3 ± 11.9 A 
asn + ser 193.3 ± 59.1 a* 296.5 ± 29.7 a* 254.7 ± 83.4 a 73.0 ± 19.6 B 91.3 ± 18.7 B 178.7 ± 28.8 A 

glu 189.7 ± 11.3 a* 214.0 ± 12.0 a* 193.7 ± 30.1 a 143.7 ± 6.6 B 91.3 ± 6.9 B 213.7 ± 29.2 A 
gly 10.7 ± 0.7 a* 12.7 ± 2.7 a 7.3 ± 1.8 a 2.0 ± 0.0 A 4.5 ± 2.0 A 3.5 ± 0.3 A 

his + gln 127.3 ± 65.9 a* 585.7 ± 179.4 a* 242.0 ± 130.7 a 14.3 ± 2.7 B 120.0 ± 27.0 A 48.0 ± 9.1 AB 
arg 13.3 ± 9.8 a 76.7 ± 23.8 a 21.0 ± 5.8 a 10.0 ± 6.0 B 36.7 ± 5.2 A 16.0 ± 3.1 B 
thr 21.3 ± 4.3 a 30.3 ± 2.4 a* 32.0 ± 8.9 a 17.3 ± 3.8 AB 15.3 ± 2.9 B 28.3 ± 3.5 A 
ala 70.3 ± 8.8 a* 67.7 ± 5.6 a 49.7 ± 11.5 a 31.7 ± 2.0 B 51.3 ± 10.2 AB 66.7 ± 11.2 A 
pro 25.7 ± 7.1 b 333.0 ± 55.4 a* 331.7 ± 55.3 a* 8.3 ± 4.9 B 35.5 ± 2.6 A 16.7 ± 4.3 B 

gaba 15.3 ± 5.5 a* 19.0 ± 2.5 a* 23.0 ± 6.4 a 5.0 ± 0.6 A 9.3 ± 2.2 A 12.0 ± 3.0 A 
val 8.7 ± 4.7 b 68.7 ± 14.3 a 25.0 ± 8.5 b 7.0 ± 4.0 B 28.5 ± 3.5 A 20.0 ± 4.6 AB 
lys 4.7 ± 2.7 b 28.3 ± 8.1 a 13.0 ± 4.0 ab 8.0 ± 5.0 A 23.0 ± 5.5 A 14.0 ± 3.5 A 
ile 3.7 ± 1.7 a 20.7 ± 6.7 a 30.3 ± 14.1 a 5.0 ± 3.0 B 16.0 ± 0.6 A 12.3 ± 3.2 AB 
leu 2.0 ± 1.0 a 9.7 ± 3.7 a 25.3 ± 12.9 a 7.7 ± 4.7 A 13.7 ± 2.6 A 14.3 ± 3.7 A 
phe 2.0 ± 0.0 b 6.3 ± 1.7 ab 18.0 ± 5.7 a 3.7 ± 2.2 B 13.0 ± 2.3 A* 9.7 ± 2.8 AB 
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Chapter 5 
Supplementary Table 1. Primer pairs for barley sequences associated with photosynthesis, 

carbohydrate metabolism and nitrogen assimilation. 

 
  

Acc. No. Description Sequence Product 
(bp) Reference 

AY145451 Actin (reference gene) 
Fw GGCACACTGGTGTCATGG 

134 (Córdoba et 
al., 2016) Rv CTCCATGTCATCCCAGTT 

AK356022 Photosystem II light harvesting 
chlorophyll a/b binding protein 

Fw CATCCCCTCACGGCTTTCTT 
67 (Córdoba et 

al., 2016) Rv CGCCGCCATTGTAGAGCTAA 

AK361860 Photosystem II light harvesting 
chlorophyll a/b binding protein 

Fw CGCCACCAACTTTGTTCCTG 
147 (Córdoba et 

al., 2016) Rv ATCGAAGGCGGGCAAATCTT 

AK365564 Photosystem II subunit R 
Fw GCGGATTATAACCGTCAGGACA 

140 (Córdoba et 
al., 2016) Rv TGTGAGAGAGCTTAGCACTGAA 

AK360942 Oxygen evolving enhancer protein 3, 
PsbQ 

Fw AAAGGGGACTACGCAGAAGC 
73 (Córdoba et 

al., 2016) Rv AGCTCTTGATCCGGCAAACA 

AK252670 Photosystem II reaction center, PsbP 
Fw GACCTAGGCCCTCCTGAGAA 

141 (Córdoba et 
al., 2016) Rv ATAGAGCTTGCCATCGTCCG 

KC912689 Photosystem I P700 apoprotein A1, PsaA 
Fw CGCAAGGAAAGCGAAAACCT 

62 (Córdoba et 
al., 2016) Rv ATTTGCTCGGAGTTCCCGTT 

AGP5091
0 Photosystem I P700 apoprotein A2 

Fw CATTGAAAGCGGGGCCATTC 
68 (Córdoba et 

al., 2016) Rv TGCTCATGGCAAGACGACAT 

X15869 Protochlorophyllide oxidoreductase, POR 
Fw CGTGTACTGGAGCTGGAACA 

100 (Córdoba et 
al., 2016) Rv GGATTTGCGGTGGATCATGC 

AGP5091
9 Rubisco large subunit, RbcL 

Fw ACGTGCTCTACGTTTGGAGG 
65 (Córdoba et 

al., 2016) Rv GCGGGCCTTGGAAAGTTTTT 

U43493 Rubisco small subunit, RbcS 
Fw ACCAACATGCTCGAGAAAGCA 

141 (Córdoba et 
al., 2016) Rv GTGTGGGCGTGCAAAGATGT 

AK366020 Sucrose:sucrose 1-fructosyltransferase, 1-
SST 

Fw GGCCAGGAAACAATCTACCCA 
87 (Córdoba et 

al., 2016) Rv GGGATGAGAATGACGCGAGA 

X83233 Sucrose:fructan 6-fructosyltransferase, 6-
SFT 

Fw CGTATCAGGAGGCAAGAGTC 
98 (Méndez, 

2014) Rv GTTGTGTGCCGAGTCCAT 

JQ411253 Fructan:fructan 1-fructosyltransferase, 1-
FFT 

Fw GACCGGCGAGACTATTACGC 
110 (Méndez, 

2014) Rv CTGCCATAGTCGTAGCGCA 

AJ605333 Fructan 1-exohydrolase, 1-FEH 
Fw GGATTACGGCATTTCTACGC 

69 (Méndez, 
2014) Rv CCCCATACAATCCTCCTGCC 

AK357958 Fructan 6-exohydrolase, 6-FEH 
Fw GTCAGAGGAGGAACTACGCAC 

70 (Córdoba et 
al., 2016) Rv GGCGGTCGAGTCTGTCATAA 

AJ534444 Cell wall invertase, cwinv2 
Fw AGACGTTGAGGAGCAAACGA 

140 (Méndez, 
2014) Rv GGTTTCTGCCTCTTCCAGGG 

AK359654 Structural constituent of cell wall 
Fw CATAGATCGAGCGGTGGCTA 

75 (Córdoba et 
al., 2016) Rv AATCCGGGCCATCATGCTC 

X57845 Nitrate reductase, NR 
Fw ACCAACTGCGTCATCACCAC 

135 (Méndez, 
2014) Rv GGATGGATGGATGGAGGAGGA 

 



 

200 
 

 


