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ABSTRACT 

 

In the search of biomaterials that promote cell adhesion, it is crucial to explore the integrin-

substrate dynamic interactions given in a certain cell type to design successful 

biofunctionalization strategies. Here, we use a microarray platform for a thorough characterization 

of cell adhesion to a particular substrate. A biosensor based on an array of 20 µm fibronectin 

circular isles was adapted to tissue culture treated plates to facilitate the performance of cell 

adhesion assays and the posterior affinity analyses. This sensitive analytical tool enables not only 

the evaluation of the cell adhesion kinetics, but also the integrin profiling and their contribution to 

cell attachment and adhesion strengthening via clustering. In particular, the biosensor was able 

to detect a significantly slower adhesion kinetics in fibroblasts, namely Baby Hamster Kidney 

Fibroblasts (BHK) and Human Dermal Fibroblasts (hDF), in comparison to other cell types such 

as C2C12 Mouse Myoblasts (C2C12) or Human Mesenchymal Stem Cells (hMSCa). When directly 

comparing hDF and hMSCa, the analysis determined that the differing kinetics were caused by a 

distinct integrin expression profile. Whereas β1-presenting integrins were the major responsible 

for hDF attachment, hMSCa adherence was importantly dependent on β1 but also on other 

integrin classes. Additionally, results revealed that concerning cell adhesion consolidation, in 

hMSCa, both αvβ3 and β1-subunit-presenting integrins contributed similarly; whereas in hDF, the 

latter played a more important role. Hence, our biosensor provided crucial information for the 

development of new cell-adhesive biomaterials, which are key in multiple biomedical fields 

including cell therapy or tissue engineering. 
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1. INTRODUCTION 

In their natural niche, cells are surrounded by the extracellular matrix (ECM), a complex three-

dimensional (3D) network consisting of proteoglycans, glycosaminoglycans, glycoproteins and 

fibrous-forming proteins such as fibronectin, collagen or elastin [1]. Cells interact with their 

microenvironment through integrins, cell adhesion receptors that recognize ECM ligands. 

Integrins are heterodimers composed of an α-subunit and a β-subunit. At least eighteen α and 

eight β subunits have been identified in humans, and the different combinations give rise to 24 

different integrin classes [2]. Their role is vital, since cell adhesion is a paramount feature for a 

correct cell function. Indeed, integrin-ECM binding results in the transduction of mechanical and 

biochemical signals that regulate diverse cellular processes such as cell adhesion, migration, 

proliferation and differentiation [3].  

For that reason, over the last decades, special interest has been paid to engineering 3D matrices 

that mimic the physical, mechanical and biological properties of the ECM. Numerous biomaterials 

have demonstrated suitability for 3D culture of cells with multiple applications, including 

regenerative medicine [4], controlled drug delivery [5] or stem cell differentiation [6]. For instance, 

hydrogels made of natural polymers such as alginate [7] have been widely explored because of 

their versatility, enabling the modification of mechanical and degradation properties [8,9]. 

Moreover, these matrices offer the possibility to attach peptides naturally present in the ECM, 

thereby allowing immobilized cells to interact with otherwise inert biomaterials. This 

biofunctionalization, key for cell adhesion, has also been employed in other materials, such as 

titanium medical implants, promoting their interaction with host cells and accelerating the bone 

healing process [10].  

Therefore, in the search of adequate materials for different biomedical applications, the focus is 

on surface modification [11]. It is possible to incorporate full-length ECM proteins, such as 

collagen, fibronectin, or gelatin. However, their use may be limited due to their heterogeneity, low 

protein stability and immunogenicity [12]. Moreover, the conformation and orientation of the 

protein hinder its correct presentation to the cells. An alternative that overcomes these limitations 

is the use of minimal cell recognizable sequences (short peptides responsible for cell adhesion) 

instead of the whole protein. Additional advantages comprise the more cost-effective synthesis 
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and the easier characterization of peptides. Furthermore, because of their smaller size, it is 

possible to decorate the material surface with a higher density of cell binding domains [13]. The 

most widely employed short-peptide motif is Arginine–Glycine–Aspartate (RGD), a tri-peptide 

present in multiple ECM proteins such as fibronectin, vitronectin or laminin [14,15]. Its broad use 

is, in part, due to the fact that approximately half of the 24 integrins bind to ECM molecules in a 

RGD dependent manner. In fact, RGD peptides have been proven to stimulate cell adhesion on 

various materials, comprising polymers (synthetic or natural) and inorganic materials [16]. Some 

other relevant ECM moieties have also demonstrated cell attachment properties, either in 

combination with RGD or independently. Some examples are the sequences PHSRN, PRARI, 

YIGSR or IKVAV [16,17] (Abbreviations are described in Table S1).  

Despite the fact that numerous studies highlight the potential of matrices with mechano-adhesive 

properties, the affinity of each integrin class for these ECM cues is different. Therefore, for the 

design of effective functionalization strategies, it is necessary to determine the integrin classes 

that contribute to cell adhesion in the particular cell type employed. To date, it is possible to study 

the integrin expression via complex techniques such as flow cytometry; however, simple methods 

that evaluate not only the expression, but also the contribution of integrins to the whole adhesion 

process, from the initiation of cell attachment to the adhesion consolidation via integrin clustering, 

are still required. 

In this regard, electrical impedance spectroscopy has been used to develop instruments to 

measure cell-substrate interactions and several equipment are commercially available [18]. 

However, these systems require complex fabrication techniques and they give an indirect 

measurement of cell adhesion and detachment based on electrical impedance, which can cause 

many artifacts [19]. Other optical [20,21] and piezoelectric [22] sensors have also successfully 

measured cell attachment and adhesion kinetics, but mainly for drug screening applications and 

not focused on integrin profiling. 

 On the other hand, sensor arrays represent an attractive analytical tool for exploring cell-ECM 

interactions [23] by optical means. Protein dot microarrays are fabricated by immobilizing the 

protein of interest onto a surface, commonly glass or silicon [24].  The rest of the surface is 

blocked with molecules that do not promote cell adhesion, such as bovine serum albumin (BSA) 
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or nonfat milk blocking buffers, making every printed spot an independent experimental replicate. 

Numerous studies have taken advantage of these arrays to investigate how cell adhesion to 

printed ECM proteins regulate different cellular processes. These include the influence of cell 

spreading and shape in cell migration [25], cell-cell adhesion [26] or cell differentiation [27,28]. 

Additionally, arrays designed to hold a single cell per dot have been used to monitor adhesion 

kinetics of blood platelets to biofunctionalized substrates [29] as well as to measure platelet affinity 

to different ECM proteins [30] or to monitor the effect of antiplatelet drugs [31] by optical means. 

This platform enables a simple and accurate quantification of cell adhesion using a binary 

counting system of occupied and empty adhesion dots. The measurement is expressed by means 

of the Dot Array Occupancy (DAO, percentage of occupied dots). 

Following this path, and focused on gathering fundamental information directly applicable to the 

development of new materials suited to the specific requirements of multiple biomedical 

applications, we developed a sensitive FN dot array biosensor, with single cell resolution, to 

explore the integrin profile and characterize the cell-biomaterial dynamic interactions. 

2. MATERIALS AND METHODS 

2.1. Polydimethylsiloxane (PDMS) stamp fabrication 

A patterned stamp master wafer was fabricated by means of photolithography. The pattern design 

consisted of different regions. Each of these areas presented circular spots of a determined size 

(20, 50 or 100 µm) separated from each other by 50 µm. To obtain PDMS stamps, a 10:1 (v/v) 

mixture of Sylgard 184 Silicon Elastomer and curing agent (Sigma Aldrich, Cat. No.: 761036-5EA) 

was poured over the stamp master and was degassed under vacuum for 30 min. The mixture 

was cured 1 h at 70  ºC, carefully demolded and left in the oven for an additional hour to ensure 

complete curing. 

2.2. Preparation of FN-patterned surfaces 

The process was conducted at room temperature and 50-60 % of humidity. Tissue culture plates 

(TCP) (Sigma-Aldrich, Cat. No.: CLS3513-50EA) were employed as substrates. To improve the 

protein transference to the surface, the plates were treated with oxygen plasma by being 

introduced in a plasma reactor (Harrick Plasma cleaner, PDC-002) for 40 s at an oxygen pressure 
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of 0.7 bar and a high power. PDMS stamps were washed with 70 % ethanol and dried prior to 

use. Subsequently, they were inked with 50 µL of a phosphate buffered saline (PBS) solution 

containing a mixture of 50 µg mL-1 of bovine plasma FN (Thermo Fisher Scientific, Cat. No.: 

33010-018,) and 6.25 µg mL-1 of carboxytetramethylrhodamine (TAMRA) (Thermo Fisher, Cat. 

No.: A23016) labeled BSA. After 30 min, the excess ink solution was removed from the PDMS 

surface with a pipette. Subsequently, stamps were washed with ddH2O and dried under a stream 

of nitrogen. Stamps were then placed in a plate well and incubated in contact with the substrate 

for additional 30 min. After removing the PDMS stamps from the plate, 1 mL of a solution of 1 % 

BSA in PBS was added to each micro-patterned well. Plates were incubated for 1 h at 4  ºC with 

this solution to block any uncovered region of the surface. The plate wells were then rinsed with 

PBS and stored at 4  ºC in the dark. Typically, patterned surfaces were used within the next 24 h 

after fabrication. Verification of homogeneous printing was performed by fluorescence microscopy 

(Nikon TMS, Hampton, NH).  

2.3. Cell culture 

Four cell types with different characteristics were selected for testing the applicability of the 

platform. Cells were seeded in T-flasks and cultured in the corresponding medium for each cell 

type. Baby Hamster Kidney Fibroblasts (BHK) (ATCC®, Cat. No: CCL-10™) and C2C12 Mouse 

Myoblasts (C2C12) (ATCC®, Cat. No: CRL-1772™) were grown in Dulbecco's Modified Eagle's 

Medium (DMEM) (ATCC®, Cat. No: 30-2002™) supplemented with 10 % FBS and 1 % 

antibiotic/antimycotic solution. Adipose-Derived Human Mesenchymal Stem Cells (hMSCa) 

(ATCC®, Cat. No: PCS-500-011) were cultured in Mesenchymal Stem Cell Basal Medium 

(ATCC®, Cat. No: PCS-500-030™) supplemented with the Mesenchymal Stem Cell Growth Kit 

(ATCC®, Cat. No: PCS-500-040).  Primary Human Dermal Fibroblasts (hDF) (ATCC®, Cat. No: 

PCS-201-012) were grown in Fibroblast Basal Medium (ATCC®, Cat. No: PCS-201-030™) 

supplemented with the Fibroblast Growth kit (ATCC®, Cat. No: PCS-201-041). Cells were 

maintained at 37  ºC in a 5 % CO2 / 95 % air atmosphere and passaged according to the 

necessities of each cell type by means of using trypsin- ethylenediaminetetraacetic acid (EDTA) 

(ATCC®, Cat. No: PCS-999-003). 

2.4. Cell seeding and DAO determination 

https://www.lgcstandards-atcc.org/products/all/PCS-500-030.aspx
https://www.lgcstandards-atcc.org/products/all/PCS-500-030.aspx
https://www.lgcstandards-atcc.org/products/all/PCS-201-030.aspx
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For cell seeding in the substrate, 2 x 105 cells were suspended in 1 mL of the adequate fetal 

bovine serum (FBS)-free medium and added in each well. Plates were protected from light and 

placed in a rocker (Thermo Fisher, Cat. No.: M48720-33Q). Agitation was maintained in an 

incubator, at 37  ºC in a 5 % CO2 air atmosphere, for the time interval required for each experiment. 

Subsequently, the unattached cells were washed off and processed, following the requirements 

of the performed bioassay. 

For adhesion quantification, fluorescence microscopy images were obtained by means of an 

inverted microscope (Nikon TMS, Hampton, NH). The 4X objective field of view was used to 

capture approximately 1000 dots of 20 µm in each micrograph. For the same substrate zone, two 

images were acquired: one displaying the TAMRA-labeled pattern, and a brightfield image 

capturing the adhered cells. At least three different substrate areas were processed for each 

experimental point, gathering at least 3000 dots, by means of ImageJ software (Rasband, W.S., 

ImageJ, US National Institutes of Health, Bethesda, Rockville, MD, https://imagej. nih.gov/ij/, 

1997–2016). In particular, micrographs were analyzed using the cell counter tool and the DAO 

was expressed as the mean value of the percentage of FN dots occupied with adhered cells. 

2.5. Integrin profiling assay 

For determining the influence of blocking specific integrins in cell adhesion, cells were pretreated 

with the adequate anti-integrin antibodies (Abcam, anti-Integrin β1 antibody, Cat. No: ab24693, 

anti-Integrin αvβ3 antibody, Cat. No: ab78289) for 1 h at 37  ºC in 5 % CO2 and agitation. 

Afterwards, cells were seeded in the patterned plates and incubated an additional hour as 

previously described. Once the unattached cells were washed off, cells were fixed and the DAO 

was quantified as detailed above. 

2.6. Immunostaining 

Cells were pretreated with anti-integrin antibodies and incubated in the substrates for 1 h at 37  

ºC in 5 % CO2 and agitation. After washing off the non-attached excess, cells were fixed, 

permeabilized and incubated with anti-phosphorylated focal adhesion kinase (pFAK) primary 

antibody (Abcam, Anti-FAK phospho Y397, Cat. No: ab81298). Afterwards, samples were stained 

with the Alexa Fluor 488-labelled secondary antibody (Abcam, Cat. No: ab150077), Alexa Fluor 

https://imagej/
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594- labelled phalloidin for F-actin (Thermo Fisher Scientific, Cat. No: A12381) and DAPI for the 

nuclei (Thermo Fisher Scientific, Cat. No: D1306). Fluorescent micrographs were acquired by 

means of an inverted fluorescence microscope (Nikon TMS, Hampton, NH). 

2.7. Cell-substrate attachment strength determination 

After being pretreated with anti-integrin antibodies, cells were incubated in the substrates in 

agitation for 1 h at 37  ºC in 5 % CO2. Once the non-adhered cells were washed, the DAO was 

quantified as previously described to obtain the initial occupancy values. Afterwards, a 

detachment assay was performed. Specifically, each micro-patterned well was subjected to 5 

cycles of liquid rinse/aspiration, and the DAO was quantified again. The comparison between the 

pre-detachment and post-detachment DAO values determined the strength of the cell-FN binding. 

2.8. Flow cytometry 

The results obtained with our platform were validated by flow cytometry. A suspension of 106 cells 

was dyed for 10 min at 4  ºC in the dark with human CD29-PEVIO770 antibodies for β1 detection 

(Miltenyi Biotec, Cat. No: 130-101-281) and human CD51/CD61-APC antibodies for αvβ3 

determination (Miltenyi Biotec, Cat. No: 130-103-745) following the manufacturer’s instructions. 

IgG1-APC (Miltenyi Biotec, Cat. No: 130-113-758) and IgG1-PE-vio770 (Miltenyi Biotec, No: 130-

113-764) antibodies were used as isotype controls. Cells were then washed and re-suspended in 

a buffer containing 0.5  % BSA and 2 mM EDTA in PBS to be processed by flow cytometry 

(MACSQuant Analyzer, Miltenyi Biotec). 

2.9. Data analysis and statistics 

All samples were assayed at least in triplicate and results are shown as mean ± SD for line and 

bar graphs. The normal distribution of the data was checked by the Shapiro-Wilk test. One sample 

t-test was employed to determine if data differed significantly from a determined mean value. To 

detect statistical significances between two groups, a two-tailed t-test was performed, while one-

way ANOVA was used for multiple comparisons. For the latter, an additional test, the Levene test, 

was used to determine the homogeneity of variances. If homogeneous, the Bonferroni post-hoc 

was applied and if non-homogeneous, the Tamhane post-hoc was employed. In the case of non-
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normally distributed data, a Mann-Whitney non-parametric test was applied. All statistical 

computations were performed by means of SPSS 23 (IBM SPSS, Chicago, IL). 

3. RESULTS AND DISCUSSION 

3.1. Platform optimization for single cell studies in BHK, C2C12, hMSCa and hDF cells 

In the development of a platform to explore cell adhesive properties, micro-contact printing was 

adapted to print FN dot arrays on TCP wells (Fig. 1A). A patterned stamp master was obtained 

by photolithography and used to fabricate PDMS stamps presenting circular pillars of various 

sizes. Indeed, the versatility of the technique enables the printing of protein isles of different sizes 

and shapes (Fig. S1). The stamps were incubated with a PBS solution containing FN and TAMRA-

labeled BSA, to obtain a positive control for protein printing, and stamped in the TCP wells 

resulting in FN dot arrays. Fluorescence microscopy indicated a homogeneous printing of dots 

(Fig. 1B). To verify the uniformity of the pattern, we evaluated the CV of the dots’ fluorescence 

intensity (Fig. 1C), size (Fig. 1D) and circularity (Fig. 1E), and obtained CV values of 6.45, 11.26 

and 3.05 %, respectively (n = 300 dots per image field). The sample was therefore considered 

homogeneous, which permitted cells to adhere to the dots with equal probability, as observed 

throughout all the study. To confirm this observation, within the same sample, we calculated the 

CV of the dot array occupancy (DAO) of the replicates (n = 4). In particular, we evaluated samples 

from the different cell types employed in the study, and obtained low CV % values as observed 

in Table S2. 

Subsequently, we assayed the stability of the pattern by incubating a suspension of cells in both, 

a freshly fabricated substrate and an overnight 4 ºC stored substrate. We obtained no significant 

differences in the FN dot array occupancy (DAO), confirming the overnight stability of the platform 

(Fig. 1F). This represents a technical advantage, since it is possible to fabricate and store 

substrates on one day and perform the cell studies on the following. 

To demonstrate the real applicability of the biosensor to study different adhesion parameters, 

cells with differing characteristics were employed. Specifically, we chose established cell lines 

and primary cells with varying origin and morphology as shown in Fig. 2A. Moreover, because of 

their different sizes, it was necessary to determine the adequate dot diameter that resulted in a 
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single cell adhesion for each cell type. Therefore, cells were incubated in substrates presenting 

dots of 20, 50 and 100 µm (Fig. 2B). For the bigger isles, 50 and 100 µm dots, we did not obtain 

a single cell adhesion (p < 0.001) in any case. Multiple cells were attached to each of these dots, 

and interestingly, the number varied when using cell lines or primary cells. Specifically, the cell 

lines in this study, namely BHK and C2C12, presented a smaller size than primary hMSCa and 

hDF, and hence, a higher number of cells fitted each 50 or 100 µm dot. Despite these differences, 

FN isles of 20 µm provided a single cell adhesion pattern for all the four cells. Therefore, 20 µm 

circular dots were printed for the rest of the study to carry out single cell assays. 

3.2. Cell type determined cell adhesion kinetics 

First, we studied cell adhesion kinetics following the procedure shown in Fig. 3A. BHK, C2C12, 

hMSCa and hDF cells were incubated in a FN dot array substrate for two hours and the DAO was 

determined at different time points. For every cell, we observed how the DAO increased over time 

until reaching a plateau (Fig. 3B). The adhesion curves were fitted to a first order kinetics, 

providing values for the rate constant (k) and the t50, defined as the time point at which the 50 % 

of the dot arrays are occupied.  With these parameters, we were able to identify two different 

kinetics. Presenting significantly higher k and lower t50 values, C2C12 and hMSCa adhered 

significantly faster to the substrate than BHK and hDF (p < 0.001) (Fig. 3C). 

Although it was possible to hypothesize that the kinetics might be importantly influenced for being 

primary cells or a cell line, our results indicated that the cell type was the major determinant. We 

observed that the two fibroblasts included in the study, BHK and hDF, presented similar kinetics 

in spite of the fact that the former is a mouse cell line and the latter has a human primary origin. 

Since cell-matrix interactions are mainly mediated by integrins [2], we hypothesized that the 

differences observed in the adhesion kinetics may be given by a distinct integrin expression profile 

in each cell type. 

3.3. hMSCa and hDF presented a different integrin expression profile 

Our next goal was to study the integrin contribution to cell attachment. For the following sets of 

experiments, we continued with two of the four cells. In particular, we selected hMSCa and hDF 



11 
 

for presenting contrasting kinetics and for being the most attractive from a therapeutic standpoint 

because of their human and primary origin [32-34].  

With that aim, we followed the procedure described in Fig. 4A. We first incubated the cells with 

anti-integrin antibodies, specifically blocking either the αvβ3 integrin, or all the integrins presenting 

the β1 subunit. These integrins were selected for being primary FN binding receptors in both cell 

types [28,35]. Subsequently, cells were seeded in the FN dot array platform and the DAO was 

quantified. Regarding hMSCa (Fig. 4B), DAO was not significantly affected when blocking the 

αvβ3 integrin, but it was when blocking all the integrins presenting the β1 subunit (p < 0.001). 

Similar results were obtained for hDF (p < 0.001) (Fig. 4C). However, in this case, a significantly 

greater impact of β1 blocking was observed, as demonstrated when normalizing the data to 

directly compare the two cell types (p < 0.05) (Fig. 4D).  

When blocking β1 subunit presenting integrins, approximately a 40 % of the hMSCa cells were 

able to attach to the substrate, but only around a 2 % of hDF. This indicates a different integrin 

profile; while in hDF β1 integrin expression is major, in hMSCa, their influence is balanced up to 

a certain point by other integrins, including αv-class integrins, which also play a role in cell 

attachment.  

On the other hand, this assay proved the sensitivity of the platform, since the sensor was capable 

to discern differences in DAO when blocking a single integrin, αvβ3, versus blocking the β1 domain, 

which is present in a number of integrins [36].  

3.4. αvβ3-mediated crosstalk was crucial for integrin clustering and cell-substrate interaction 

strengthening 

In order to study the contribution of each integrin class to cell adhesion consolidation via focal 

adhesion formation, we first performed an immunocytochemistry assay for focal adhesion kinase 

(FAK) staining. FAK is a non-receptor protein-tyrosine kinase that transforms the cell-external 

biomechanical stimuli into biochemical signals, activating important intracellular signaling 

pathways [37]. This occurs preferentially by the specific phosphorylation of FAK-internal tyrosine 

residues, being two of the most relevant the tyrosine residues Y397 and Y861 [38]. Therefore, we 

once again blocked the αvβ3 integrin or all the integrins presenting the β1 subunit in hMSCa or 
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hDF cells, and subsequently seeded them in the FN dot array substrate for 1h. Cells were fixed 

and stained for pFAK-Y397 or pFAK-Y861. Micrographs showed FAK-Y397 phosphorylation in 

all of the groups for both cell types (Fig. 5A). Similar results were obtained when staining for the 

tyrosine residue Y861 (Fig. S2). Hence, this commonly used technique failed to determine the 

actual contribution of each integrin to the achievement of a functional adhesion, and did not 

discriminate among blocking the αvβ3 integrin, or all the β1 integrins.  

On the contrary, a detachment assay performed in our biosensor was able to provide a deeper 

insight into cell-substrate interaction. αvβ3 or β1-presenting integrins were blocked and cells 

incubated in the FN dot array. The DAO was quantified and subsequently, a detachment force 

was applied by liquid aspiration. After five cycles, the DAO was quantified again and compared 

to the initial determination. Micrographs showing adhered cells prior and after the application of 

the detachment force are shown in Fig. S3 and S4. Although we previously detected that αvβ3 

blocking did not alter the DAO, the adhered cells in this group presented less resistance to 

detachment forces than the control group in both, hMSCa and hDF (p < 0.001) (Fig. 5B). This 

phenomenon may be explained by the crosstalk that exists between αv and β1 integrins. It has 

been reported that once engaged, αv integrins induce α5β1 integrin clustering, strengthening cell 

adhesion [39]. Therefore, the absence of αv integrins would impede the crosstalk and as a result, 

weaken the cell-substrate interaction. Consequently, β1 blocking also debilitated the cell binding, 

because of the absence of β1-class integrin clusters which are responsible for providing a stronger 

attachment.   

Despite both cell types showed this behavior, the β1 blocking prevented cell adhesion 

strengthening more importantly than αvβ3 blocking in hDF (p < 0.05), but not in hMSCa (Fig. 5C). 

This suggests a greater impact of β1 integrins in hDF in comparison to hMSCa, confirming the 

results previously obtained (Fig. 4D). Moreover, this finding corroborates previous data 

highlighting the vital role of α4β1 and α5β1 integrins in hDF cells [35]. 

3.5. Validation of the method by means of flow cytometry 

To validate the potential of the platform as a simple and rapid tool to determine integrin 

contribution to the cell adhesion process, αvβ3 and β1 expression was determined by flow 

cytometry. Regarding αvβ3 integrin (Fig. 6A), whereas a 99.97 % of the hMSCa cells presented it, 
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only a 51.62 % of hDF expressed it above the detectable threshold (Fig. 6B). Consequently, when 

quantifying the mean fluorescence intensity (MFI), the expression of the integrin was significantly 

higher in hMSCa (p < 0.001) (Fig. 6B). Regarding β1, (Fig. 6C) although for both, hMSCa and 

hDF, all the cells presented it, the determination of the MFI showed an importantly higher 

expression in hDF (p < 0.001) (Fig. 6D). Altogether, these findings highlight the differences 

between the two cell types, showing that hDF cells present a lower αvβ3 and a higher β1 

expression than hMSCa.  

This data support the three main conclusions provided by our method. First, considering that αv-

class integrins initiate cell attachment by binding FN quicker than β1-presenting integrins such as 

α5β1 [35], the faster kinetics indicated a higher density of αv-class integrins in C2C12 and hMSCa 

than in BHK and hDF. Second, the integrin expression profile was different in hMSCa and hDF, 

being major the role of β1-presenting integrins in hDF, and important but not unique in hMSCa. 

Third, αvβ3 and β1 contributed similarly to hMSCa adhesion strengthening, but for hDF, the role 

of β1 integrins was still greater.  

Although the integrins may be explored through flow cytometry, this technique is more complex 

and only provides information regarding the integrin expression, but not their actual contribution 

in the whole adhesion process. Moreover, it is important to note that for flow cytometry, cells are 

detached and studied in suspension. Hence, the biological processes dependent on cell 

adhesion, involving important phosphorylation pathways, are limited. Contrarily, our platform 

offered the possibility to study attached cells in an environment that mimics their natural niche 

and predict both, integrin expression profile and their role in functional adhesion formation via 

integrin crosstalk and clustering. This results in a valuable biosensor for the rapid determination 

of the adhesive properties of a specific cell type, generating crucial information directly applicable 

to the field of biomimetic material science.  

Multiple integrins bind the tri-peptide RGD, which has been recognized as the essential cell 

adhesion site in FN and other natural components of the ECM [14,40]. However, the affinity for 

this motif varies among the different integrins. For instance, while both αvβ3 and α5β1 integrins 

bind RGD, the latter also requires the PHSRN synergy site, present in natural FN in close 

proximity to RGD, to establish cell adhesion [35,41,42]. Likewise, α4β1 integrins also bind a 



14 
 

synergistic site, in this case the PRARI sequence [42]. Therefore, it is crucial to explore the 

contribution of integrins in a particular cell type in order to correctly design efficient 

biofunctionalization strategies [43]. 

By means of our biosensor, we were able to determine the contribution of αvβ3 and β1 integrins in 

hDF and hMSCa cells, gathering fundamental information to optimize material biomimetization. 

In particular, our data indicate that although the inclusion of synergy motifs such as PHSRN or 

PRARI may be beneficial in hMSCa, the presence of the sole RGD may promote an important 

cell response. Contrarily, the accompaniment of RGD with the synergistic peptides in hDF may 

be essential, considering the smaller contribution of αvβ3 and the potent effects of β1.  

Generally, the design of biofunctionalized matrices goes through an optimization stage in which 

the material is modified with different ECM-derived peptides at different densities. Once all the 

materials are functionalized, complex 3D matrices are fabricated with each of the biomimetization 

alternatives and cells are cultured within them to determine their behavior. A preliminary screening 

in our biosensor would rapidly predict the best strategies to follow, importantly limiting the number 

of groups to test. Here, FN dot arrays were employed; however, it is possible to pattern other 

peptides or proteins of interest or even mixtures of different moieties that a priori may seem 

interesting [44]. This would not only save time but would be significantly more cost-effective, since 

the amount of peptide to be used for the screening is significantly lower than the required to modify 

materials and manufacture matrices with them. Moreover, the platform allows the study of any 

receptor class by only selecting the most suitable anti-integrin antibodies and can be easily 

performed in multiple cell types in parallel, resulting in a powerful and high throughput analytical 

tool.  

4. CONCLUSION 

In this study, we developed an ECM protein dot microarray biosensor for the characterization of 

cell adhesion to a particular substrate with single cell resolution. By exploring cell adhesion 

kinetics, integrin profile and integrin contribution to adhesion formation and consolidation, we 

were able to detect differences in the adhesive properties of various cell types, including primary 

and established cell lines from different sources. The sensor enables to study in depth the affinity 

of cells for different substrates, it is not limited to FN. This results in a useful tool for the design of 
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biomimetic materials, which are key in multiple fields including cell therapy, tissue engineering or 

targeted drug delivery. The potential of this biosensor lies on its high sensitivity, accuracy, 

simplicity and low cost and will be of interest for the whole community of researchers interested 

in cell-substrate interactions. 
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