BILBOKO

INGENIARITZA
ESKOLA
ESCUELA

niversida Euskal Herriko DE INGENIERIA
del Pais Vasco  Unibertsitatea DE BILBAO

BACHELOR'S DEGREE IN TELECOMMUNICATIONS
ENGINEERING

BACHELOR'S FINAL DEGREE
PROJECT

AN ALGORITHM TO CLASSIFY
HEARTBEATS USING THE
ELECTROCARDIOGRAM

Student: Zubia, Garea, Gorka

Manager: Irusta, Zarandona, Unai

Academic year: 2018-2019

Date: Barakaldo, 27" of June 2019




eman ta zabal zazu

Universidad
del Pais Vasco

Euskal Herriko
Unibertsitatea

BILBOKO
INGENIARITZA
ESKOLA
ESCUELA
DE INGENIERIA
DE BILBAO



BFDP: Heartbeat classification algorithm. University of the Basque Country.

SUMMARY

Cardiovascular diseases (CVD) are the leading cause of death in the world. Therefore,
their early detection and prevention is an urgent task with important consequences for public
health and quality of live. Low cost non-invasive monitoring techniques to assess the state of the
heart like the electrocardiogram (EKG) are an essential tool for the prevention of CVDs, and the
early detection of arrhythmia. Many arrhythmia are associated to disfunctions in heart rate and
the nature or origin of the heartbeats. Consequently, an automatic algorithm to identify
heartbeats and classify them using the EKG would be an important tool for the early detection
of CVDs.

The aim of this project has been to develop and implement an EKG based supervised
algorithm to discriminate normal heartbeats from heartbeats originating in the ventricles, or
ventricular heartbeats. To accomplish this goal several intermediate goals have been defined
and achieved; first, the adaptation of an openly available EKG database following the
international standards, and the development of an easy to use graphical user interface (GUI) for
the visualisation and handling of those EKG signals and their annotations. Then, two algorithms
were used to detect and delineate the heartbeats from the database, namely the Hamilton
Tompkins heartbeat detector and the Wavedec heartbeat delineator.

From each heartbeat fifteen characteristics were calculated, including morphological
and interval features. Afterwards, these features were statistically characterised for normal and
ventricular heartbeats to identify distinctive patterns that will help differentiate normal from
ventricular beats. Finally, the best feature combination was determined and it included only four
features. These features were used to train a machine learning logistic regression classifier to
discriminate normal from ventricular beats, and a separate set of heartbeats was used to test the
algorithm. The classifier correctly classified 90.98% of the ventricular beats and 85.98% of normal
beats in the test set. These results are comparable or even better than some of the algorithms
proposed in the literature for heartbeat classification.

In conclusion an accurate algorithm for the discrimination of normal and ventricular
heartbeats was developed. Furthermore, the best EKG delineation features for the
discrimination of normal and ventricular heartbeats were identified, and we showed that a
classifier based only on four features achieved the best results.

Key words: signal processing, telecommunications engineering, bioengineering,
statistical learning, Machine Learning, Logistic Regression, EKG, MATLAB.
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LABURPENA

Gaixotasun kardiobaskularrak (GKB) dira mundu mailan hilkortasun kausa nagusia.
Beraz, GKBak garaiz detektatzea eta hauen prebentzioa premiazko zereginak dira, biek ere
osasun  publikcan zein  bizi-kalitatean  ondorio  garrantzitsuak  baitituzte.
Elektrokardiograma (EKG) bihotzaren egoera monitorizatzeko kostu baxuko modu ez-
inbaditzailea da, eta funtsezko tresna da GKBak sahiesteko eta arritmiak garaiz
detektatzeko. Arritmia asko bihotz-maiztasunaren edota bihotz taupaden izaera edo
jatorriaren disfuntzioekin lotzen dira. Horrengatik, bihotz-taupadak identifikatzeko eta
EKGa erabiliz bihotz-taupadak sailkatzeko algoritmo automatikoa tresna garrantzitsua
izango litzateke GKBn detekzio goiztiarrerako.

Proiektu honen helburua izan da ERGn oinarritutako algoritmo bat garatu eta
inplementatzea bentrikuletan sortzen diren taupadak taupada arruntetatik bereizteko.
Helburu hori lortzeko, bitarteko helburuak zehaztu eta bete izan dira. Lehenik eta behin,
sarbide libreko elektrokardiogramen datu-base bat nazioarteko estandarrak jarraituz
egokitu da eta erabiltzaile-interfaze grafiko bat garatu da, elektrokardiograma seinaleak eta
taupada anotazioak bistaratzeko eta erabiltzeko. Ondoren, bi algoritmo erabili dira datu-
baseko bihotz-taupadak detektatzeko eta delineatzeko, Hamilton Tompkins taupada-
detektagailua eta Wavedec taupada delineatzailea, alegia.

Taupada bakoitzeko hamabost ezaugarri kalkulatu dira, horien artean ezaugarri
morfologikoak eta denborazkoan barne. Ondoren, ezaugarri horiek estatistikoki
karakterizatu dira taupada normal eta Dbentrikularrentzako. Horrela, taupada
bentrikularrak arruntetatik bereizten laguntzen duten patroi bereizgarriak identifikatu dira.
Azkenik, ezaugarrien konbinaziorik onena identifikatu da, lau ezaugarriz bakarrik osatuta
dagoela ondorioztatu delarik. Ezaugarri horiek ikasketa automatikoko erregresio logistiko
sailkatzaile bat entrenatzeko erabili dira, taupada bentrikularrak arruntetatik bereizteko.
Algoritmoa entrenatzeko eta emaitzak lortzeko taupada multzo desberdinak erabili dira.
Sailkatzaileak behar bezala sailkatzen ditu taupada bentrikularren %90.98 eta taupada
arrunten %85.98. Emaitza horiek, halaber, bihotz-taupadak sailkatzeko literaturan
proposatutako algoritmoetako batzuen antzekoak edota hobeagoak dira.

Ondorioz, bihotz-taupada normalak eta bentrikularrak bereizteko algoritmo zehatza
garatu da. Gainera, bihotz-taupadak eta bentrikularrak bereizteko elektrokardiogramaren
delineazioaren ezaugarri onenak identifikatu dira, eta lau ezaugarritan oinarritutako
sailkatzaileak emaitzarik onenak ematen dituela frogatu da.

Hitz gakoak: seinaleen prozesaketa, telekomunikazio ingeniaritza, bioingeniaritza,
ikasketa estatistikoa, ikasketa automatikoa, erregresio logistikoa, EKG, MATLAB.
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RESUMEN

Las enfermedades cardiovasculares (ECV) son la principal causa de muerte en el mundo.
Por lo tanto, su deteccidn precoz y prevencidn es una tarea urgente con importantes
consecuencias para la salud publica y la calidad de vida. Las técnicas de monitorizacion no
invasiva de bajo coste para evaluar el estado del corazén como el electrocardiograma (ECG)
son una herramienta esencial para la prevencion de las ECVs y la deteccion precoz de
arritmias. Muchas arritmias se asocian a disfunciones en la frecuencia cardiaca y la naturaleza
y origen de los latidos. Por consiguiente, un algoritmo automatico para identificar los latidos
del corazdn y clasificarlos utilizando el electrocardiograma seria una herramienta importante
para la deteccion precoz de las ECV.

El objetivo de este proyecto ha sido desarrollar e implementar un algoritmo supervisado
basado en ECG para discriminar entre los latidos cardiacos normales de los latidos que se
originan en los ventriculos o latidos cardiacos ventriculares. Para lograr este objetivo se han
definido y cumplido varios objetivos intermedios. En primer lugar, la adaptacion de una base
de datos de electrocardiogramas de libre acceso siguiendo los estandares internacionales, y
el desarrollo de una interfaz grafica de usuario facil de usar para la visualizacion y manejo de
dichas senales de electrocardiograma y sus anotaciones. Luego, se utilizaron dos algoritmos
para detectar y delinear los latidos cardiacos de la base de datos, concretamente, el detector
de latidos de Hamilton Tompkins y el delineador de latidos cardiacos Wavedec.

De cada latido se calcularon quince caracteristicas, incluyendo caracteristicas
morfologicas y de intervalo. Posteriormente, estas caracteristicas se caracterizaron
estadisticamente para los latidos cardiacos normales y ventriculares con el fin de identificar
patrones distintivos que ayuden a diferenciar los latidos normales de los ventriculares.
Finalmente, se determind la mejor combinacion de caracteristicas y se incluyeron sélo cuatro
caracteristicas. Estas caracteristicas se utilizaron para entrenar un clasificador de regresion
logistica de aprendizaje automatico para discriminar los latidos normales de los ventriculares,
y se utilizd un conjunto separado de latidos cardiacos para probar el algoritmo. El clasificador
clasificd correctamente el 90,98% de los latidos ventriculares y el 85,98% de los latidos
normales en el conjunto de prueba. Estos resultados son comparables o incluso mejores que
algunos de los algoritmos propuestos en la literatura para la clasificacion de los latidos
cardiacos.

En conclusion, se ha desarrollado un algoritmo preciso para la discriminacion de los
latidos cardiacos normales y ventriculares. Ademas, se identificaron las mejores
caracteristicas de delineacion del electrocardiograma para la discriminacion de los latidos
cardiacos normales y ventriculares, y se demostrd que un clasificador basado sélo en cuatro
caracteristicas logro los mejores resultados.

Palabras clave: procesado de senales, ingenieria de telecomunicaciones,
bioingenieria, aprendizaje estadistico, aprendizaje automatico, regresion logistica,
EKG, MATLAB.
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Introduction

1 INTRODUCTION

This bachelor's final degree project has been developed within the Bioengineering and
Resuscitation (BioRes) research group of the University of the Basque Country (UPV/EHU) at the
Faculty of Engineering in Bilbao. The research group’s work is focused towards the application of
Digital Signal Processing and Machine Learning techniques to biomedical signals recorded by
monitors and defibrillators during cardiac arrest.

Nowadays, cardiovascular diseases (CVD) are the main cause of death on planet Earth,
accounting for 32.26% of deaths worldwide [1]. CVDs are often left untreated because they
usually occur without pain or obvious symptoms. Untreated CVDs may lead to more serious
health problems, or even death in the mid to long term. One of biggest dangers associated to
CVDs is they are frequently silent, that is they can be suffered without clear symptoms but with
fatal consequences [2]. Fortunately, the most prevalent forms of CVD are chronic and unfatal,
and are therefore entirely preventable: firstly, with a healthy lifestyle and secondly, with early and
accurate detection [3].

The electrocardiogram (EKG) is a non-invasive, general purpose and low-cost powerful
tool for the premature diagnosis of cardiac dysfunctions. Cardiac disfunctions can be grossly
classified into two groups. On the one hand, there are the so-called lethal ventricular arrhythmia,
such as ventricular tachycardia or ventricular fibrillation. These life-threatening arrhythmia
require an immediate intervention, for instance with a defibrillator. Today, this is a highly
developed area which already has increasingly reliable detectors that save the lives of thousands
of people every year [4, 5]. On the other hand, there are chronic non-lethal arrhythmia that may
not require immediate intervention, but can be deleterious for the health of the patient in the
mid to long term. Arrhythmia can be caused by a wide number of reasons, a general cause being
the aging of the heart. Arrhythmia are not usually life-threatening, but should be diagnosed and
treated in their early stage to prevent future problems [3]. This project focuses on the early
detection of arrhythmia.

An initial stage in the detection of arrhythmia is the identification of heartbeats and their
classification using the EKG. From this information, it is possible to determine when the patient
suffers abnormal heartbeats, which frequently preclude arrhythmia. A posterior analysis will
determine whether the patient has an arrhythmia or not. At present, there are multiple studies
that have proposed algorithms for ERG heartbeat detection [6] and classification [7-10].

Given the importance of early detection, it would be extremely helpful to have an
accurate method for the detection and classification of heartbeats using non-invasive
techniques like the EKG. In addition, the heartbeats detected and classified by this method could
be used as input by more complex algorithms to diagnose arrhythmia in a simple, automatic and
cheap way.

16



Background

2 BACKRGROUND

2.1 Cardiovascular diseases in figures

CVDs are a major health problem, and are the underlying cause of about a third of the
deaths worldwide, as shown in Figure 1. They affect the heart by constricting the arteries and
reducing the amount of blood the heart receives, which makes the heart work harder. Currently,
more than 17.56 million people die annually as a consequence of these pathologies [11]. As an
illustration, deaths caused by CVD double those caused by all types of cancer together (see

Figure 1). CVDs are therefore a major global health problem.

Cardiovascular diseases I, 3 1.8%
Cancers I 1 7.08%
Respiratory diseases I 70
Lower respiratory infections 4.57%
Dementia N 4.49%
Digestive diseases [N 4.25%
Neonatal deaths | 3.19%

Diarrheal diseases 2.81%
Diabetes mellitus 2.45%
Liver disease 2.36%
Road incidents 2.22%
Kidney disease |l 2.2%
Tuberculosis 2.12%

HIV/AIDS 1.71%
Suicide 1.42%
Malaria 1.11%
Homicide | 0.72%
Parkinson disease  0.61%
Drowning @ 0.53%
Meningitis i 0.51%
Nutritional deficiencies | 0.48%
Protein-energy malnutrition i 0.41%
Maternal deaths JJ 0.35%
Alcohol disorders || 0.33%
Drug disorders | 0.3%
Hepatitis | 0.23%
Fire | 0.22%
Conflict | 0.21% (in 2016)
Heat-related (hot and cold exposure) | 0.1%
Terrorism | 0.06% (in 2016)
Natural disasters | 0.02%

Figure 1: Share of deaths by cause in the world, 2017 [1].
In the European Union, 37% of people die of CVD related problems [12]. A detailed
proportion by country is shown in jError! No se encuentra el origen de la referencia.. Similarly, in

the Basque Country, approximately 27% of the population passes away due to CVDs [13]. This
means that every year more than 5,800 people die in the Basque Country of CVDs [14].

EU=37%
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Figure 2: Proportion of deaths due to CVD in the EU member states in 2014

17



Background

Prevention and treatment of CVDs is of great importance for health systems, since more
than 90% of cardiovascular accidents are preventable [15]. Currently the annual cost of
treatment of cardiovascular diseases in Spain is of over 9000M € [16], a burden that keeps
increasing as population grows older. Hence, measures to prevent and/or more efficiently treat
CVDs would be of great value.

One important step in that direction is the early detection of CVDs, not only to reduce
the cost generated by treatment and hospitalization, but primarily to save lives. Probably the
most popular approach to the early detection of CVDs is the electrocardiogram (EKG), because
it provides a precise but low cost and non-invasive measure of the state of the heart.

2.2 The heart. From mechanics to electrical signals

The heart is the muscle responsible to pump blood into the body. The heart produces
electrical impulses at regular intervals that trigger a sequence of associated mechanical
movements, as can be seenin the Figure 3. These impulses originate in the sinoatrial (SA) node,
the natural pacemaker of the heart, approximately once a second. They propagate through the
atria (upper chambers) and ventricles (lower pumping chambers) originating blood flow. The
electric impulses in the heart represent the different stages of a heartbeat: rest (1), stimulation
(2,3.4) and recovery (5, 6). The generation and conduction of the electrical impulse of a heartbeat
gives rich information on the state of the heart muscle, so the analysis of the electrical activity of
the heart can be used to detect abnormal heartbeats.

Figure 3. Physiological heartbeat sequence: (1) rest, (2) sinoatrial node (SA node) starts the electric
impulse, (3) atrial contraction or diastole, (4) atrial relaxation or systole, (5) ventricular systole and (6)
ventricular diastole [17].

2.3 The EKG: a key tool for the early diagnosis of CVDs

The EKG provides useful information about the heart's function, and its signal is
registered by placing two electrodes in the body of the subject. The EKG is the time evolution of
the electric impulses that stimulate the heart and produce its contraction, but recorded on the
body's surface. A typical example of 10 s normal EKG activity is shown in Figure 4, in which the
sequence described in Figure 3 repeats at an approximate rate of 60 heartbeats per minute.
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Figure 4: a 10 sinterval of a normal/healthy 30 min EKG record, in which all beats are normal (N).

The EKG is a low-cost, non-invasive tool very well suited for either diagnosis or
continuous monitoring of the patient. The waveform or signal shape of the EKG depends on
where the electrodes are placed, and these different placements are called leads. Each lead picks
up the same electrical activity of the heart, but from a different position. This permits to see the
heart’s electrical conduction system from many distinct angles.

As shown in Figure 5, different equipment is used for EKG acquisition such as 12-lead
electrocardiograph (left), Holters (center) or defibrillators (right). The Holter monitor is a small
outpatient electronic device that records and stores the patient's electrocardiogram for at least
24 hours. It is often used in patients with suspected cardiac arrhythmia [18]. A defibrillator is a
medical device designed to analyse the heart rhythm, identify deadly arrhythmias and
administer an electric shock in order to restore a healthy heart rhythm [19]. Holters are designed
for the early detection of arrhythmia, while defibrillators are designed to prevent death in an
emergency situation.
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Figure 5: a 12-lead electrocardiograph (left) [20], a Holter (centre) [21], and a defibrillator (right).

2.4 Arrhythmia detection

In most cases cardiac arrhythmia are not lethal, but an early diagnosis of arrhythmia is
convenient, either to remove the arrhythmia through surgery (ablation for instance) or to
establish preventive measures to avoid side effects, like medication to avoid strokes. Abnormal
beats are associated to arrhythmia or can trigger arrhythmia in the future, so a system based on
the analysis of the EKG to classify heart beats would provide a very useful non-invasive diagnostic
tool.

A typical example of abnormal beats are the ventricular ectopic beats (VEB) shown in
Figure 6. These beats are spontaneously generated by active foci in the ventricles, and produce

19



Background

an inefficient ventricular contraction, in which the heart cannot properly pump blood through
the body. A succession of rapid VEB produces a ventricular tachycardia (VT) as shown in Figure
7. VT is a sign of heart dysfunction and is associated with a 38% of mortality within a year from
its first appearance. Moreover, VT frequently degenerates into ventricular fibrillation (VF) which
produces cardiac arrest [22]. VF is deadly if not treated with a defibrillator within minutes. VF
triggers 85% of cardiac arrests [23], and roughly 10% of cardiac arrest patients survive [24]. As
shown in Figure 8, during VF there is no effective ventricular contraction, the ventricles are
fibrillating or quivering without order.
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Figure 6: example of ventricular ectopic beat, labelled with V.
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Figure 7: example of a burst of VEB, leading to ventricular tachycardia.
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Figure 8: example of ventricular fibrillation. The EKG form is irregular, every beat is different.
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Low cost and non-invasive methods or algorithms for the detection of ventricular beats
would be of great value for the identification of subjects at risks of suffering a cardiac arrest. The
EKG obtained from Holter devices provide a platform for the development of such algorithms.
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3 OBJECTIVES AND SCOPE OF THE STUDY

The main objective of this bachelor's final degree project is to develop an algorithm to
discriminate between normal and ventricular heartbeats using the electrocardiogram.
In order to achieve this goal, the following secondary objectives have been defined:

1.

To obtain and annotate/revise an EKG database, the database should be rich
enough to contain a varied number of pre-annotated heartbeats. Pre-annotation is a
requisite since these annotations are made by consensus among clinicians. Enrolling
clinicians for annotation, and the time they would needed to annotate thousands of
heartbeats is beyond the scope of this project.

As a side objective, the revision of the data requires the creation of a graphical user
interface (GUI) for the visualisation and handling of the EKG signals and their
annotations.

The algorithm will be based on automatic tools to detect heartbeats and characterise
their physiological variables of interest like durations or waveform amplitudes. So,
another objective will be the integration of standard EKG tools for the detection
and delineation of heartbeats into the project and the data revision GUI.

Once heartbeat variables of interest (features) are available, the third objective will be
the statistical characterisation of the features, with the purpose of identifying
distinctive patterns that will help differentiate normal from ventricular beats.

The next step will then be to apply statistical learning techniques to generate models
for the classification of the heartbeats. These models will be based on basic
machine learning techniques.

The final objective will be the evaluation of the models, and the generation of the final
estimates of how the algorithm will classify heartbeats.
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4 BENEFITS

The main outcome of this project will be a heartbeat classification algorithm using the EKG.
And a secondary, but also important, deliverable will be a GUI. This will be used for the
visualization and revision of the EKG signals; also, for the heartbeat annotations and features (like
QRS duration for instance). The successful completion of these objectives will have the following
main benefits:

e Thealgorithmis a first step towards the automatic classification of heartbeats, and tackles
the discrimination of the two most important types of beats, namely normal and
ventricular beats. Its potential lies in that it will set the framework for future developments
of more complete heartbeat classification systems, and of algorithms and procedures to
diagnose complex arrhythmia.

e The development of easy to use GUI for the semi-automatic annotation/revision of EKG
data can be deployed in the future in the generation of larger datasets. Such datasets
could then be enhanced to boost the accuracy of future heartbeat detection and
classification algorithms, and of the arrhythmia detection algorithms based on them.

4.1 Technical benefits

The completion of the objectives of the project will produce several technical benefits
related to the research conducted by the BioRes group. First, it will consolidate the use of
standard EKG tools like heartbeat detection and delineation algorithms. These tools can then be
used and adapted for the databases used by the BioRes group, which contain cardiac arrest cases
monitored with defibrillators. The EKGs obtained during cardiac arrest are substantially different
from those seen in Holter recordings, because this equipment have different acquisition
characteristics (bandwidth, resolutions, ...) but mainly because the conditions of the patients are
different.

However, a through characterisation of how these tools work on non-cardiac arrest
patients will be a first step towards understanding how these tools should be used for the EKG
seen during cardiac arrest. This will produce important technical advances for BioRes, that will
use those tools in the future in their research projects.

4.2 Social benefits

As shown in 2.4, CVDs are the most important cause of mortality. The developments of
low cost, non-invasive and general-purpose tools for the early detection and prevention of CVDs
would yield important benefits for the population. It can contribute to prevent potentially lethal
complications derived from untreated or unmonitored heart dysfunctions.

In this project we will develop an algorithm to distinguish normal from ventricular
heartbeats. This algorithm can therefore contribute to identify ventricular dysfunctions in the
heart, and to early detection of CVDs derived thereof. This could contribute to advance effective
treatments and prevent future fatalities.

4.3 Economic benefits

As mentioned in 2.1, the cost of late detection of CVDs is extremely high. With this
method, it may be possible to detect ventricular dysfunctions earlier. This could lead to low cost
interventions in the patient that avoid costly hospitalisations or even surgery, which may be
inevitable when an untreated and unmonitored CVD produces a life-threatening event like a
stroke or heart failure. Moreover, since the presented algorithm works with EKG signals, it is a
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very cheap solution when compared to more advanced and costly techniques like cardiac
imaging based on echocardiography, for instance.

In addition, the development of user-friendly tools like the ERG visualisation and
annotation GUI will speed up the time needed to construct annotated datasets in the future.
These datasets can be used to improve these types of solutions, since the algorithms improve as
more data are available, to infer the statistical patterns to differentiate the targeted conditions
(ventricular and normal beats). Also, thanks to the heartbeat detector algorithm, diagnostic
errors will be avoided in noisy EKG scenarios. Both reducing errors and shortening analysis times
will result in improved productivity.

In summary, using this method will help on the early detection of CVDs. Consequently, it will
be possible to design interventions or preventive measures earlier, minimising their effects on
the patient's health and reducing the associated costs.
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5 State of the Art

This section contains a summary of the most important topics relevant for the development
of this project. It starts by reviewing the typical EKG morphology of a heartbeat and its most
influential changes, which result in the different types of heartbeats. Then we review the main
signal processing algorithms that allow the automatic detection and characterisation of those
heartbeats, with the objective of the creation of an automatic algorithm to classify the heartbeat
types based on the EKG morphology.

5.1 Normal heartbeat in the EKG

Each normal heartbeat is reflected as a new cycle on the patient’s ERG signal. One typical
cycle and its constituent waves and intervals is shown in Figure 9. The cycle represents the
succession of two different processes: the atrial depolarisation/repolarisation and the posterior
ventricular depolarisation/repolarisation. Therefore, the EKG of a normal heartbeat has the
following characteristics [25][26]:

e P-wave: represents the depolarisation and contraction of the atria.
e PQ segment: ~0.1 s pause in the atrioventricular (AV) node to let the blood flow from
the atria to the ventricles.
e PQ interval: time interval for the depolarisation/repolarisation of the atria. Atrial
repolarisation is not visible as is masked by ventricular depolarisation.
¢ QRS complex: ventricular depolarisation, formed by three waves:
o Q-wave. The beginning of the QRS complex and its first inferior deflection.
o R-wave. First superior deflection, which is larger than the P-wave because
ventricular activity is predominant over atrial activity.
o S-wave. The inferior deflection during ventricular depolarisation.
e ST segment: the pause after the QRS complex. There is no mechanical activity here.
e T-wave: the repolarisation of the ventricles so they can be stimulated in the following
heartbeat.
e QT interval: refers to the time interval for the depolarisation/repolarisation of the
ventricles. This happens simultaneously for both ventricles.
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Figure 9: a normal heartbeat's ERG [27], and its most important waves and intervals.
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5.2 Types of heartbeats

Heartbeats may be very different from the normal/typical example of Figure 9. These
differences are the result of abnormalities in the electrical conduction system of the heart;
therefore, their identification is important for the early detection of CVDs. These differences can
be of many types, but the most clinically important ones are:

e P-wave existence: sometimes the heartbeats instead of starting in the SA node, start
directly from the ventricles, so there is no auricular depolarisation (no P-wave).

e QRS morphology: when a heartbeat starts in one ventricle rather in the SA node, that
ventricle depolarises before the other; thus, the QRS deflections are bigger than the ones
from a normal heartbeat, and have longer durations since both ventricles do not
depolarise simultaneously.

e T-wave existence: at times, the QRS complex overlaps the precedent T-wave. This may
unchain serious arrhythmias.

These changes produce different types of heartbeats that differ greatly in morphology
from normal heartbeats. Broadly speaking, the main heartbeat types can be classified into the 5
classes shown in Figure 10. These classes are normal beats (N), supraventricular ectopic beats
(S) with no P wave, ventricular ectopic beats (V) originated in the ventricles, fusion beats (F)
originated from several sources ventricular or atrial, and unknown beats (Q), which comprise a
wide category of beats of unknown sources such as beats originated from a pacemaker.

N S F

bl) A

650 ms

1mV
|

Figure 10: from left to right, normal (N), supraventricular ectopic beat (S), ventricular ectopic beat(V),
fusion beat (F) and unknown beat (Q).

From a medical perspective the heartbeat class grouping shown in Figure 10
corresponds to many conduction abnormalities. It is not the objective of the project to review
all the possible abnormalities. The Association for the Advancement of Medical
Instrumentation (AAMI) is a non-profit organisation founded in 1967 and is the main source
of international standards for the healthcare devices industry [28]. AAMI defined the grouping
shown in Figure 10 starting from a more detailed classification of conduction abnormalities.
The exact mapping proposed by the AAMI is shown in Table 1 as reference.
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Table 1: AAMI heartbeat classification, detailed conduction abnormalities for the five main types of

heartbeats.
N S \ F Q
Any heartbeat notinthe  Supraventricular ectopic  Ventricular ectopic Fusion beat Unknown beat
S, V., ForQclasses beat beat

Normal beat
(NOR)

Left bundle branch
block beat (LBBB)

Right bundle branch
block beat (RBBB)

Atrial premature beat
(AP)

Aberrated atrial
premature beat (aAp)

Nodal (junctional)
premature beat (NP)

Premature ventricular
contraction (PV()

Ventricular escape beat
(VE)

Fusion of ventricular and

normal beat (fVN)

Paced beat

(P)

Fusion of paced and
normal beat (fPN)

Unclassified beat (U)

Supraventricular

Atrial escape beats (AE) premature beat (SP)

Nodal (junctional)
escape beat (NE)

From an algorithmic point of view, the AAMI standard simplifies the classification of
heartbeats, since multiple types of abnormalities are now grouped into five broad categories.
This is important in applications in which there is a limited number of EKG leads (one or two) like
in this project. Some of the very detailed abnormalities can only be identified using 12-lead EKGs.

5.3 Automatic EKG algorithms for heartbeat classification

Given the importance of having well-characterised EKG signals to facilitate the further
identification of CVDs, numerous studies have been conducted for the classification of
heartbeats in recent years. Each of these studies has tried to bring its own approach to the
problem.

One of the most commonly accepted approachesis the three-stage approach described
in Figure 11, which is comprised of: a heartbeat detection stage, heartbeat waveform
delineation to obtain the beat's characteristics, and classification based on heartbeat
characteristics. The following sections introduce these three topics.

Heartbeat
classification

QRS
DETECTOR

Waveform
delineator

Classified
EKG

Raw
EKG

Y

Figure 11: general scheme for the classification of heartbeat. The approach is based on three types of
algorithms. First the detection of the heartbeats (QRS detector), then the characterisation of the
heartbeat (waveform delineator), and finally the classification of the heartbeat.

The following sections introduce these three topics.
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5.3.1 QRS detection algorithms

The automatic detection of heartbeats in the EKG is known as QRS detection, since the
QRS complex is the most salient waveform in the heartbeat The QRS complex is therefore the
easiest to detect wave or complex (see Figure 9). QRS detection is the first step towards the
heartbeat classification, since any heartbeat classification algorithm must first identify when a
heartbeat occurs.

Many signal processing algorithms have been proposed for QRS detection, Kohler et al
[29] provide an excellent review and introduction to the topic. Some of those approaches include
the derivative of the signal (QRS is the EKG interval with largest slopes), wavelet-based
algorithms, adaptive filters or methods based on the Hilbert transform. However, all of them
follow a common structure, which is shown in Figure 12.

T T ! C o P T T !
i ! ; ! Peak L !
EKGx(n) | | Linear , ! Nonlinear , : ) P - i .
— || filtering | 1 filtering ! »| QRSS! Decision 1 | QRS times
s L L : RUSEIREE SR O
Preprocessing stage Decision stage

Figure 12: common structure of the QRS detectors, adapted from [29].

The algorithms first preprocess the ERG to remove sources of noise like movement,
respiration or power-line interferences. Then, a peak enhancement and detection algorithm is
used, and a decision logic (adaptive or fixed) is applied to identify peaks corresponding to actual
heartbeats. The accuracy of the algorithms is measured by comparing the QRS detections of the
algorithm to the real positions of heartbeats (marked by specialists) on well-defined EKG
databases. In that way, it is possible to determine the following occurrences:

e TP, true positives. These are detected QRS that really are QRS.
e FN, false negatives. These are undetected QRS that actually are QRS.
e FP, false positives. These are detected QRS that are not QRS.

The standard performance metrics to measure the goodness of the QRS detector are
then the sensitivity {(Se) and positive predictive value (PPV) defined as:

TP

Se= TP FN M
TP

PPV = TP TP (2)

The sensitivity measures to what existing present heartbeats are detected [30], while the
PPV measures how confident we can be on the detection done by the algorithm [31]. Hence
higher Se and PPV will mean a better QRS detection algorithm. Nevertheless, to know if the
obtained results are reliable, the algorithm has to be tested and compared to other algorithms
using standard databases for QRS detection. The Physionet platform provides several open and
reliably annotated databases for this purpose [32].

5.3.2 Waveform segmentation algorithms

Once the beats are correctly located with the QRS detection algorithm, they can be
delineated to extract its main characteristics. The typical waveforms and intervals to be detected
are the ones shown in Figure 13. Delineation is the determination of peaks and limits of
individual QRS waves, P and T waves. In general, these algorithms start from a previous QRS
location and set a temporary search window to find the waves around the next QRS location
point, identifying the relevant points shown in Figure 13. After defining the search window,
several techniques can be used to identify the start and end of each of the relevant waves. Some
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approaches have made use of continuous and discrete wavelet transforms [33-35], signal
envelope techniques [36], second order derivatives [37], or low-pass differentiation [38-40].

R
QRSon QRSoff

Figure 13: a delineated normal heartbeat's EKG.

The waveform segmentation algorithms return an estimation of the time points and
values [41] listed in Table 2.

Table 2: characteristic time points of a heartbeat's EKG.

Time point Description
Pon indicates where the P-wave should start.

P indicates where the P-wave peak should be

Poff indicates where the P-wave should end.

QRSon indicates where the QRS signal should start

Q indicates where the Q-wave peak should be

R indicates where the R-wave peak should be

QRS indicates where the QRS signal should be centred. Coincides with R-wave peak position
S indicates where the S-wave should be centred
QRSoff indicates where the QRS signal should finish

Ton indicates where the T-wave should start

T indicates where the T-wave peak should be

Ttype classifies the heartbeat's T signal type

Toff indicates where the T-wave should finish

Once the characteristic timepoints are identified, the calculation of the standard EKG
time intervals or waveform characteristics like P, QRS, and T wave duration and amplitude is
straight forward. These characteristics are essential for heartbeat classification, because
different beat morphologies present statistically significant differences in the duration and
amplitude (even presence) of these waves.

5.4 Heartbeat classification

When heartbeats have been detected and its waveforms and characteristic values
calculated, the final step is to classify the heartbeat. Although the AAMI proposes five broad
categories, this project will focus on the two most important classes, normal beats (N) and
ventricular beats (V). Ventricular beats are particularly important because they can precede or
be an indication of future ventricular arrhythmia.
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So, for the purposes of this project, the classification problem is restricted to two-classes
or a binary classification problem. Classification problems and their evaluation are better
understood in terms of confusion matrices, which for binary problems take the form shown in
Figure 14. The confusion matrix compares the output of the binary classifier to the labels
assigned to the beats by expert cardiologists. In binary problems, there is a positive class
(presence of disease, V beats) and a negative class (absence of disease, N beats). This comparison
produces TP, FP and FN as defined for QRS detectors, and in this case also true negatives (TN),
since the absence of disease (N beats) can be identified. Contrary to QRS detectors, here a beat
is always either ventricular or normal (in a QRS detector there are no true negatives since
absence of beats is not detected).

Actual Value
(as confirmed by experiment)

positives negatives
o 7
S & TP FP
T o BB True False
> £ " L
- > o Positive Positive
Q e
= T W
S FN N
Q S False True
a s e Negative Negative

Figure 14: confusion matrix of a binary classification problem [42].

Based on this matrix the relevant performance metrics are now equations 28- 30.

oo TN -
P=TNTFP
NPV = TN TFN )

Since TNs are now present, two new performance metrics can be defined. On the one
hand, the specificity (Sp) measures the proportion of actual negatives that are correctly identified
as such [30], [43]. On the other hand, the negative predictive value (NPV) measures the
confidence that a negative detection actually corresponds to a negative [44].

Machine learning is a subfield of statistical learning that infers patterns from data that
can be used for instance in classification problems. In our case, machine learning can be used to
learn the characteristic values of the EKGs waves and intervals for ventricular and normal beats,
and then use that information to automatically classify those beats. There are many classification
algorithms that range from simple linear techniques like logistic regression, to complex
algorithms like support vector machines (SVM), random forest (RF) or neural networks (NN) [45-
46.

Given a set of n characteristics (X;,X,, ..., Xy,) for an instance Y, the objective of the
classification algorithm is to produce ¥ = f(X;, X,, ..., X,,), an accurate estimate of the value of
that instance. In our case Y ={0,1} has two possible values, 0 =N and 1=V, and the
characteristics X; are the beat's characteristics obtained using a delineator. The objective is to
obtain the function f(-) that will produce the best estimates of Y. A visual representation of the
function f(-) for a problem with two characteristics is shown in Figure 15, in which a linear
decision boundary was obtained.
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Figure 15: an example of a classifier with a linear decision boundary.
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6 Analysis of alternatives

In order to achieve the objectives mentioned in Section 3 in the most efficient way, this
chapter examines the different alternatives that have been considered in the development of
the project.

In the first place, the most suitable software suite was chosen for the programming of
the different algorithms and the development of tools to view the EKG and the heartbeat
annotations. Secondly, the existing alternatives for the automatic QRS detector were analysed.
Thirdly, we reviewed the different waveform delineators. Finally, the alternatives for the machine
learning techniques for the classification of beats from the electrocardiogram are analysed.

6.1 Software suite

For the software suite, four possible options for the development of the project were
considered: MATLAB, Octave, C programming language and Python. The characteristics and
distinctions of each will be explained below.

6.1.1 MATLAB

The MATLAB software suite is a mathematical software tool integrated in an integrated
development environment (IDE). MATLAB has its own programming language (M language).

As an interpreted language, it offers a wide range of facilities to the user, even if the user
is not an expert. However, this also affects execution speed, because execution times are slower
for interpreted languages than for compiled languages.

MATLAB offers very useful tools for the user, such as toolboxes, in which the developed
applications and functions can be found for tools ranging from signal processing to machine
learning. It also has a comprehensive help guide [47] and a technical support website [48].
Another advantage of the MATLAB software suite is its high-quality graphics. In addition, the
development of Graphical User Interfaces (GUI) will play an important role in this project.
MATLAB offers an advanced and efficient environment for developing GUIs, called GUIDE.

The major disadvantage of MATLAB is its price. The license price for a single user is about
700 € and the price of each toolbox is 200 € [49]. Bearing in mind that it is necessary to use of at
least three toolboxes, the total price for the user of the MATLAB platform could reach 1300 €.

6.1.2 OCTAVE

GNU Octave is a high-level language, similar to MATLAB and compatible with it but also
independent. Despite the many similarities, there are many differences that should be
considered [50]. The main advantage of this software suite is that is free open source [51].

Besides the differences in programming language, there are also disparities in the
available resources, i.e. the essential tools needed for the development of GUIs are quite limited
in Octave.

Also, the help guide is not as specific and easy to use and the technical support is not as
comprehensive, so that problem solving can be made more difficult.
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6.1.3 CProgramming language
The C programming language is aimed to the implementation of operating systems and
is widely used to create applications and software systems.

The main advantage of the C language is its fast runtime. Compared to the interpreted
languages, MATLAB and Octave, it is more effective. However, it does not offer facilities for
handling matrixes and consequently, it's not as easy to work with large signal databases as in
MATLAB and Octave.

6.1.4 Python

Python is the language of choice in machine learning projects, with many available
libraries. In addition, it is free, easier than C programming language and allows the creation of
GUls.

Although Python is very extended and provides all the tools necessary for the
development of the project, one of its main disadvantages is the learning curve for the
development of the project. In fact, Python is not taught along the bachelor's degree in
telecommunications engineering.

6.1.5 Software suite selection criteria

6.1.5.1 Ease of use
The complexity of the software is identified as an important feature.
6.1.5.2 Algorithm development time

Itisimportant to develop and implement algorithms in an easy and effective way, so that
the development of the algorithms does not delay the project.

6.1.5.3 Organisation and data visualisation

This project will work with large amounts EKG data and heartbeat annotations to
produce statistically reliable algorithms. Consequently, the programming language must allow
and easy and flexible management of large sets of data, and the possibility to easily and
dynamically visualise the data.

6.1.5.4 Learning curve

This project is a Bachelor's Final Degree Project. In consequence, the hours available for
learning new tools as programming languages are very limited.

6.1.5.5 Computation time

The runtime of the algorithms is important in real-time applications; however, the
objective of this project is to propose working solutions that can be implemented in efficient
programming languages in the future.

6.1.5.6 Price
The price of the program is another factor to consider.
6.1.5.7 Final decision

From a weighted assessment of the above parameters, we concluded that the software
suite best fitted our needs was MATLAB. A detailed disaggregation of the ponderations is
presented in Table 3.
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Table 3: software suite selection criteria breakdown.

Criteria Weight MATLA | Octave C Pytho
B n
Ease of use 2/10 2/10 2/10 0.5/10 2/10
Algorithm development time 2/10 2/10 1.5/10 | 0.5/10 2/10
Organisation and data visualisation 2/10 2/10 1.5/10 | 0.5/10 2/10
Learning curve 2/10 2/10 1.5/10 2/10 0.5/10
Computation time 1/10 1/10 1/10 2/10 1/10
Price 1/10 0/10 1/10 1/10 1/10
Total 10/10 9/10 8.5/10 | 6.5/10 | 8.5/10

6.2 EKG database

6.2.1 MIT-BIH Arrhythmia database

The MIT-BIH (Massachusetts Institute of Technology-Beth Israel Hospital) arrhythmia
database consists of 48 two-channel EKG recordings of an approximate duration of 30 minutes
each. The signals were digitalised at 360 samples per second per channel and the resolution for
digitisation is 11-bit over a 10-mV range [52].

One of the major advantages of the MIT-BIH database is that it is the most spread
database for EKG signal analysis, and that it comes with annotated heartbeats which contain
beat labels in the format of the AAMI standard.

6.2.2 CU Ventricular Tachyarrhythmia database

The Creighton University (CU) Ventricular Tachyarrhythmia database is compounded of
35 single-channel EKG recordings of about eight-minutes each. Its sampling frequency is 250 Hz
and the resolution for digitisation is 12-bit over a 10-V range (10mV nominal) [53].

Its advantages are that it contains recording from patients suffering from ventricular
tachycardia, ventricular flutter, and ventricular fibrillation, so it could be useful for ventricular
heartbeat classification. However, heartbeats are not identified or annotated.

6.2.3 AHA database

The American Heart Association (AHA) database comprises 80 two-channel EKG
recordings. The sampling frequency used for this database was 250 Hz per channel and the
resolution for digitisation is 12-bit over a 10-mV range.

The greatest advantage of the AHA database is that contains EKG recordings for
ventricular arrhythmia and that, each record of AHA's long version, has a duration of 2.5 h.

However, its major disadvantage is that it is not available for the public, and its cost is
high. Furthermore, the heartbeat annotations for each recording are incomplete.

6.2.4 Database selection criteria

6.2.4.1 Accessibility

This is the most important point, because we need a widely spread and reliable database
to work with.
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0.2.4.2 Annotations

The annotations from the cardiologists are essential to use them as ground truth marks
to train our classifier. Annotating beats is a costly process and requires involving external
specialists in the project.

6.2.4.3 Number of recordings

With a bigger database, the better results we will get, because our classifier will have
more different data to train with.

6.2.4.4 Final decision

From a weighted assessment of the above parameters, we concluded that the database
that best fitted our needs was the MIT-BIH Arrhythmia database. A detailed disaggregation of
the ponderations is presented in Table 4.

Table 4: database selection criteria breakdown.

Criteria Weight | MIT-BIH CuU AHA
Accessibility 4/10 4/10 4/10 1/10
Annotations 4/10 3/10 1/10 1/10

Number of recordings 2/10 1/10 1/10 2/10
Total 10/10 8/10 6/10 4/10

6.3 QRS detection algorithm

Regarding QRS detection algorithms, several alternatives are proposed: combined
methods (Hamilton-Tompkins), open algorithms available from the Physionet platform (SQRS,
WAQRS), and methods based on advanced signal processing.

6.3.1 Hamilton-Tompkins algorithm

One widely used QRS detection algorithm is the Hamilton-Tompkins (HT) algorithm,
which is a combined method based on the EKG slope, squared and averaged by an integrator,
with adaptive amplitude and noise thresholds. Figure 16 shows the block diagram of the HT QRS
detector.
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Figure 16: diagram of HT QRS detector algorithm, adapted from [6].

When Hamilton and Tompkins applied their QRS detector to the MIT-BIH database, the
Se and PPV of the algorithm were 99.69% and 99.77%, respectively [6].

In terms of programming time, this algorithm is implemented in MATLAB by the BioRes
Research group, which saves a lot of time and could be therefore deployed as a tool directly.
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6.3.2 Physionet algorithms (SQRS and WQRS)

The PhysioToolkit suite contains numerous tools and algorithms for physiological signal
processing, including two free QRS detectors: SQRS and WQRS.

The SQRS method uses the characteristic steep slope of the QRS complex for its detection
[54-57]. The EKG signal is sampled at the configurable value of 250 Hz, then low pass filtered and
finally its derivative is calculated by applying the first difference. After this, using the slope of that
signal, the QRS complex is detected.

On the other hand, the WQRS method (based on the length of the signal) is divided into
three different parts, as can be seen in the Figure 17.

ERG Low-pass y(n) Curve length L(n) bBecisionrile t, t..
x(n) filter transformation d,, da...

Figure 17: common structure of WQRS algorithm.

The WQRS algorithm has been applied to the EKG signals of the MIT-BIH database,
achieving a Se and PPV values of 99.65% and 99.77%, respectively [58]. This means that this
algorithm has a very high accuracy. In addition, it is a widely tested algorithm.

The main disadvantage of the WQRS algorithm is that, as it is developed in Java and the
code is not open, wrappers must be used to make calls to the algorithm from MATLAB, which
makes it difficult to use the algorithm. There are currently no versions of WQRS in MATLAB.

6.3.3 Methods based on the advanced signal processing

There are also methods based on advanced signal processing, for example wavelets and
rules for determining QRS. In Kdhler [29] a detailed review of QRS can be found. In this section,
arobust QRS algorithm is analysed against noise [59]. This is a technique for the detection of QRS
complexes in electrocardiographic signals that are is based on a characteristic obtained by
counting the number of zero crosses per segment.

It is well known that zero crossing methods are robust against noise and are particularly
useful for finite precision arithmetic. This detection method includes this robustness and
provides a high accuracy evenin cases of signals of very noisy electrocardiogram. In addition, due
to the simplicity of detecting and counting zero crosses, it provides a computationally efficient
solution to the problem of QRS detection. The excellent performance of the algorithm is
confirmed by a Se of 99.70 % and a PPV of 99.57% against the MIT-BIH database.

6.3.4 QRS detection algorithm selection criteria

6.3.4.1 Precision

The accuracy of the algorithm is a very important criteria to be taken into account,
because the methods of automatic heartbeat classification using the EKG are based on the
correct detection of QRS complexes.

36



Analysis of alternatives

6.3.4.2 Developmenttime

The time stamps returned by the algorithms do not occur at the peak of the R wave, but
a little after. However, for this project we are interested in marking the precise instant of the R
wave. Hence, we will have to develop patches to correct the marks.

6.3.4.3 Accessibility

It is also very important to have MATLAB versions of the algorithm, to reduce the time
needed to implement it in the tools developed in this project.

6.3.4.4 Final decision

From a weighted assessment of the above parameters, we concluded that the QRS
detection algorithm that best fitted our needs was the one developed by HT algorithm [6]. A
detailed disaggregation of the ponderations is presented in Table 5.

Table 5: QRS detection algorithm selection criteria breakdown.

Criteria Weight | Physionet HT Advanced signal
processing
Precision 4/10 3.7/10 3.75/10 3.65/10
Development time 3/10 1/10 2/10 1/10
Accessibility 3/10 1/10 3/10 1/10
Total 10/10 5.7/10 8.75/10 5.65/10

6.4 EKG delineation algorithm

6.4.1 Wavedec algorithm

The Wavedec algorithm is an EKG delineation algorithm base on the wavelet
decomposition of the EKG introduced by Martinez et al [41]. The wavelet decomposition
analyses the signal in time and frequency by decomposing the signal in non-overlapping
frequency sub-bands. The characteristic waves of the EKG occupy different frequency bands,
and this property is used by wavelet-based algorithms to identify the waves and its characteristic
time-points.

6.4.2 Low-pass differentiation

Low-pass differentiation (LPD) algorithms are widely used for noisy EKG signals
segmentation, such as the ones recorded by the Holters. The EKGs obtained by Holters generally
present a low signal-to-noise ratio (SNR), related to muscular activity and variations in the
electrode to skin contact.

This kind of algorithms is used to return the Q-T interval [40], instead of all the
characteristic points of a heartbeat's EKG, so their functionality is limited when compared to the
Wavedec algorithm.

6.4.3 Second order derivatives
Algorithms based on second order derivatives (2" derivatives) are often used to map
ventricular arrhythmias. As seen in Figure 7, the beats of ventricular arrhythmias usually consist

of just abnormal QRS complexes. Therefore, these algorithms do not return the points described
in section 5.3.2, but the points where the QRS begins (onset) and ends (offset).
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6.4.4 EKG delineation algorithm selection criteria

6.4.4.1 Accessibility

One important point is to be able to get the algorithm easily so that it can be
implemented as soon as possible.

6.4.4.2 Accuracy

It is essential for this work to accurately measure the characteristic points of the EKG
signal. These characteristics and others derived from them will be used to classify the beats, so
they must be accurate estimates of the characteristics of the heartbeat.

6.4.4.3 Computation time

We are also interested in a fast operation time of the algorithm. However, as this project
is not conceived to develop a real time application, this is not the most determining factor.

6.4.4.4 Final decision

From a weighted assessment of the above parameters, we concluded that the
waveform segmentation algorithm that best fitted our needs was the Wavedec algorithm. A
detailed disaggregation of the ponderations is presented in Table 6.

Table 6: EKG delineation algorithm selection criteria breakdown.

Criteria Weight WC LPD 2" derivatives
Accessibility 4/10 4/10 2/10 2/10
Accuracy 4/10 3/10 1/10 1/10
Computation time 2/10 1/10 2/10 2/10
Total 10/10 8/10 5/10 5/10

6.5 Machine Learning classifier

The objective of the project is to develop a heartbeat classification algorithm to
differentiate normal and ventricular heartbeats. Heartbeats will be mapped to a set of
characteristics (features) fed to a classification algorithm. Several classification algorithms are
available, including Logistic Regression (LE), Support Vector Machine (SVM) or Random Forest
(RF) classifiers.

6.5.1 Logistic Regression

Logistic regression models produce a linear decision boundary, which is simply a linear
combination of the characteristics that optimally separates the two groups. The algorithm
estimates the coefficients of the linear combination. Linear combinations are reasonably easy to
train (learn from data), and easily interpretable. The contribution of each characteristic to the
decisions of the algorithm is related to the coefficient of each characteristic.

6.5.2 Support Vector Machine

SVMs are advanced classification algorithms in which a non-linear decision boundary is
determined. SVMs are therefore very flexible and can accurately represent complex decision
boundaries. Nonlinear decision boundaries are obtained using non-linear transformations of the
data (for instance gaussian or radial basis functions) to go from complex representations to linear
representations in higher dimensional spaces. A set of vectors is then determined to obtain a
decision boundary with a decision margin, a maximum margin separation [60]. One of the
disadvantages of SVMs is interpretability since the non-linear transformation disguises the
contribution of each characteristic to the decision of the classifier.
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6.5.3 Random Tree Forest

These algorithms are based on the idea that is possible to fit many weak (inaccurate)
classifiers that independently decide. When the decisions of these classifiers are aggregated, by
a majority vote, the classifier becormes robust and very accurate. In particular, random forest (RF)
classifiers are based on the aggregation of hundreds to thousands of decision trees. These trees
are trained using random selections of data and characteristics during training, producing
uncorrelated trees.

RF classifiers are one of the most accurate machine learning algorithms. RF algorithms
are hard to train because they have several configurable parameters, they are also hard to
interpret because the contribution of each variable to the decision is hidden among many trees.

6.5.4 Machine Learning classifier selection criteria

The model that we choose will have to be one that is accurate but interpretable, since
one of the important characteristics of the proposed solution is that is based on physiologically
meaningful characteristics of the EKG.

6.5.4.1 Ease of training

Considering that we are new to this topic (ML classifiers) and the bachelor's final degree
project has an established deadline, we have to look for easy to train models. In
addition, the used MIT-BIH Arrhythmia database is limited.

6.5.4.2 Interpretability

Another important aspect is the interpretability of the solution, so that decisions can
be traced back to meaningful EKG characteristics.

6.5.4.3 Accuracy
It is important to that the classifier is accurate in order to achieve reliable results.
6.5.4.4 Final decision

From a weighted assessment of the above parameters, we concluded that the ML
classification algorithm that best fitted our needs was the Logistic Regression. A detailed
disaggregation of the ponderations is presented in Table 7.

Table 7: ML classifier selection criteria breakdown.

Criteria Weight LR SVM RTF
Ease of training 4/10 4/10 3/10 2/10
Interpretability 4/10 3/10 2/10 1/10

Accuracy 2/10 1/10 1.5/10 2/10
Total 10/10 8/10 6.5/10 5/10
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7 Description of the solution

In order to effectively carry out and manage this project, its development has been divided
in several stages. First, we adapted the MIT-BIH Arrhythmia database to a compatible MATLAB
format and the AAMI standards. Second, we detected the QRS complexes and delineated the
heartbeats to obtain their features. Third, the most significant features were selected and used
to classify the beats into normal and ventricular beats, using a logistic regression classifier. Finally,
we evaluated and interpreted the results.

7.1 General architecture

The overall scheme with the main stages of the development of the project is shown in
Figure 18. The following sections describe the details of the building blocks shown in Figure
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Figure 18: Block diagram of the main stages of the project.
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7.2 EKG signals database

7.2.1 Conversion of the MIT-BIH Arrhythmia Database to MATLAB

The database chosen in this project is Physionet's open access MIT-BIH Arrhythmia
Database. Its main characteristics have been described in section 6.2.1. This database was
downloaded from Physionet's webpage [52]. The MIT-BIH Arrhythmia database contains 48
recordings (see Table 35 of Appendix I). Each of these recordings is composed of 3 files, which
are explained in Table 8.

Table 8: breakdown of the file types, format and their description. Adapted from [61].

File type File format Description
MIT Signal dat These are binary ﬂle; which conta.m the digitalised signals" samples. However, these
cannot be correctly interpreted without their corresponding header files.
MIT Header hea These are short text files that describe the contents of associated signal files
These are binary files containing annotations (labels that generally refer to specific
MIT Annotation atr samples in associated signal files). Annotation files should be read with their

associated header files.

However, these files are not directly readable in MATLAB. Hence the first step is to adapt
the MIT-BIH Arrhythmia Database to MATLAB's file format. We have done this using the
Physionet's Physiobank ATM toolkit, which is shown in Figure 19.

PHYSIOBANK ATM
Input Database: MIT-BIH Arrnythmia Datagase (mitdb) B
Record: 100 B
Signals: ET - |
Annotations: reference beat, rhythm, and signal quality annotations (atr) [
Output Length: 10sec imin 1hour (12hours @toend
Time format: time/date elapsed time hours minutes seconds (@ samples
Data form-~* “standard high precision raw ADC units
Toolbox Export signals as .mat [
Navigation |<<
Previous racord ¢ Next record
Help ADout ATM

Figure 19: Physionet’s Physiobank ATM tool.

As can be appreciated in Figure 19, after doing this, we get an "“mat’ (which can be
perfectly opened with MATLAB) file per recording. Another adaptations have been made in
MATLAB to add the annotations to the "mat’ file of each recording. Finally, we obtain 48 ready-
to-use "“mat’ file recordings. Each of the generated "mat’ files is a variable of type double
described in Table 9.

Table 9: description of the generated 100’ recording's content. The same applies to remaining 47.

File name File type File content | File content’s channels (leads)
100.mat Double s_ecg Le\?? L

Moreover, in order to ease the management of the 48 recordings, another .mat’ file was
created, containing additional relevant data for all 48 recordings. This is shown in Table 10.
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Table 10: analysis of the 'metadata.mat’ file.

. . File File .
File name File type content | content Description
name | The name of the recording
The time-stamps (s) for the annotations of the
1x48 t_.ann |recording. These coincide with the R-peaks
metadata.mat Structure data occurrence times.
The annotations that indicate the types of beats of
ann ;
the recording
fs Sample frequency of the recording

7.2.2 Database creation

Once we had MATLAB ready-to-use signals, the next task was to create the database
with heartbeat annotations adjusted to the AAMI standard. These annotations are very
important because they will be used as ground truth marks. The reason for doing this adjustment
is that the database contains 109,494 beats, annotated by cardiologists into 15 different classes.
Using the AAMI standard simplifies the classification of heartbeats; we pass from having 15 to
just 5 heartbeat types. In addition, using this standard allows us to compare the results of this
project with the available literature and therefore assess the goodness of the results. The
mapping of the MIT-BIH Arrhythmia Database heartbeat types [62] to the AAMI heartbeat
classes is shown in Table 11.

Table 11: AAMI heartbeat classification for the MIT-BIH database.

AAMI heartbeat
class

Description

Any heartbeat not in

Supraventricular

Ventricular

Fusion beat

the S,V,F or Q classes ectopic beat ectopic beat
Normal beat Atrial premature beat Premature ventricular Fusion of ventricular
(NOR) (AP) contraction (PVC) and normal beat (fVN)
Left bundle branch Aberrated atrial Ventricular escape beat Fusion of paced and
block beat (LBBB) premature beat (aAp) (VE) normal beat (fPN)
MIT-BIH
heartbeat types

Right bundle branch
block beat (RBBB)

Atrial escape beats
(AE)

Nodal (junctional)
premature beat (NP)

Supraventricular
premature beat (SP)

Unclassified beat (U)

Nodal (junctional)
escape beat (NE)

The general overview of the number of heartbeats per type is shownin Table 12. Amore
detailed review is attached in Table 38 of Appendix Il). As shown in the table, the normal beats
are by far the most numerous ones, followed by the unknown and the ventricular beats. This
implies that in the design of the classifier we will have to address the class imbalance between
normal and ventricular heartbeats.

Table 12: general overview MIT-BIH Arrhythmia Database after AAMI classification.

AAMI heartbeat
class
Full MIT-BIH
database

N S Vv F Q

90402 3010 7236 803 8043
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7.3 Signal and annotation visualisation tool

The second stage of the project was the development of a software tool to visualise the
recordings and annotations in the database. This has been done using MATLARB's Guide (GUI
design environment). The tool had to be user-friendly to be used by non-technical operators such
as physicians while providing a fast and clear interface to display the EKG and their annotations.
A general overview of the GUl is shown in Figure 20.

o
REG 103 N208252VOFO0QO
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Options
Span 1
@ View Annatations
Detect QRS s’

Preprocesing

Figure 20: general overview of the GUI.

The GUI's interface is divided in three parts. The first one is the “Select Episode” area. As
shown in Figure 21, clicking the central button opens a pop-up menu. Here, we can select the
desired recording of the database. To improve the user experience, we have added two buttons,
“Prev." and "Next", to shift between the previous and next recordings.
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Figure 21: the GUI's "Select episode” area (left). The pop-up displayed (right).

The second set of tools was designed to control the GUI, and it is called "Options”. With
the "Span” textbox, we can modify the span of the recording’s time-interval between 10 and 120s.
The "View annotations” checkbox changes the annotation’s visibility. The annotations are
displayed in their time stamps over the first channel's plot. They follow the colour palette shown
in Table 13. At those points, red vertical dashed lines are also drawn. When this checkbox is
unclicked, the annotations and the vertical lines disappear, as shown in Figure 22.
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Table 13: annotation colour distribution.

Annotation Colour

N Blue
S Red
\Y Orange
F Violet
Q Green
Sl R
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Figure 22: the GUI's general overview with the “View annotations” checkbox unclicked.

Finally, the GUlintegrates the Hamilton Tompkins QRS detection algorithm (see Section
7.4.1). When the "Detect QRS" button is clicked, the HT algorithm automatically locates the QRS
complexes using the EKG signal from channel 1 (Lead ll). This helps not only for heartbeats
classification, but also to locate them when they are not clear.

The third part of the GUI is the display section shown in Figure 23. Here, the GUI plots
the selected episode’s channels (Lead Il and V1) at the same time. On the top, there is a label that
displays the number of the register and heartbeat classification according to the annotations of
the cardiologists. A key element is the slider at the bottom of the plots, which allows moving
forward and backward along the time range of the recording.

REG 103N 208252VOF0QO

Leadl (m¥)

&
T
P |

T
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Figure 23: visualisation area of the GUI.

44



Description of the solution

A key characteristic of the GUI is its rapid response to the user's commands. Some
elements or programming styles result in long execution times in GUIs, so we used MATLAB's
profiler toolto correct inefficient and slow code. Some functions related to signal and annotation
display slowed down the GUI's performance. These delays could be of some milliseconds (see an
example in Figure 24) or of some seconds (see an example in Figure 25), and were mostly
related to inefficient coding for the display of the annotations.

Lines where the most time was spent Lines where the most time was spent

Line Numnber | Code C: s Toral Tin, - % Time Time PIOt  Line Number | Code Co et FTEE M- | % Time | Time Plot
171 plotann(handles); 01845  57.6% EEEEEE 170 plotannhandles); 5001735 ) 842% | ne—
157 axesihandles. axes_lead); 5 0.097 5 30.2% - 159 setlhandles.axes_lead, 'xlim', [... & 0013 s [ |

160 setlgea, 'Xlim', [xmin, xmax]]; 3 0.018s 5.5% 1 139 zatiki_kop = max(handles.t_ecg... S 0.004 s 21 1

158 xmin = max(handles.t_ecgl+sl ... 5 0.006 s L3% 1 157 xmin = max(handles.t_ecglsl_... & 0.004 s L9% 1

138 zatiki_kop = max(handles.t_ecg... § 0.004s 1L3% 158 xmax = (max(handles.t ecgl#sl ... 5 00035  L6% I

All other lines 00125 36% 1 All other lines 0.008s | 38% I

Totals 0.320 s 100% Torals 02055 100%

Figure 24: Example of improvement of tens of millisecond in execution time from left to right.

Lines where the most time was spent

Line Number  Code Cz' s Total Time % Time  Time Plot

ine Nu T T Ti me | Time Plot
327 textAnn = textlhandles.axes_sn... & 0.134 s 2.8%
s —
338 textAnn(k).Color = colors(1+1,.,., 235 " N16- 101% m
- = 308 deleteihandles. textann]; %% A... 4 0.017 s 91% m
u 337 if handles.datalhandles.pos).a., 1410 0.004s  21% |
1 343 guidatalgef handles) 5 00025 L0% I
All other lines 00085  4%% 1
Terals 0.183 s 100%

Figure 25. Example of improvement of a few seconds in execution time from left to right.

7.4 Heartbeat detection and delineation tools

For the QRS detection and heartbeat delineation we used two algorithms, the
Hamilton-Tompinks and the Wavedec. The following two sections explain the implementation
details of these two EKG processing tools.

7.4.1 Hamilton Tompkins QRS detector

The Hamilton Tompkins algorithm was applied to the EKG database to detect the QRS
complexes. We have used an improved version of the Hamilton Tompkins algorithm that uses
lIR filters instead of FIR filters with similar amplitude frequency responses. The HT algorithm
package was provided by BioRes Research group.

On the other hand, the HT algorithm returns the time stamps where the R-peaks
should occur, although the heartbeat detections are not normally placed at the R-peak, as shown
in Figure 26. Therefore, the values had to be corrected and the detections of the algorithm had
to be placed at the R-peaks by doing a local maximum search around the returned heartbeat
detection.

imv

650 ms

Figure 26: the blue dashed vertical line represents the time instant of the R-peak and the red one the
detection of the HT algorithm. The red dot indicates the R-peak of the QRS complex.
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In addition, sometimes the HT algorithm fails to detect some QRS complexes (False
Negatives), while in other times it returns the time stamps for non-existent QRS complexes (False
Positives). As a consequence, we had to assess the algorithm’s detections to the actual
annotations in the database, assuming that detections within 200ms of the annotated beats
correspond to True Positives.

7.4.2 Wavedec heartbeat delineator

We have used this algorithm to extract the basic characteristics of the heartbeats, by
delineating the heartbeats associated to the QRS complexes detected by the HT algorithm. The
Wavedec algorithm was developed by BSiCoS Research Group from the University of Zaragoza
[63]. However, in this work we have modified the MATLAB version of the Wavedec code for the
BioRes Research Group to make it compatible to the data structure created for the MIT-BIH
database.

The Wavedec algorithm takes as input a single channel EKG, its sampling frequency and
the samples corresponding to the R-peak locations. And for each heartbeat, the software returns
the different interval features described in Table 14.

Table 14: Wavedec's return parameters and its contents for each detected heartbeat.

Characteristic Description
Pon indicates where the P-wave should start.
P indicates where the P-wave peak should be
Poff indicates where the P-wave should end.
QRSon indicates where the QRS signal should start
Q indicates where the Q-wave peak should be
R indicates where the R-wave peak should be
Rprima Indicates the position, if exists, of an additional R peak.
indicates where the QRS signal should be centred. Coincides with R-wave peak
QRS position
S indicates where the S-wave should be centred
QRSoff indicates where the QRS signal should finish
Ton indicates where the T-wave should start
T indicates where the T-wave peak should be
Ttipo Indigates theT signa.l type pased on the number ahd polarity of the found
maxima. There are six possible T wave morphologies (see Figure 31).
Toff indicates where the T-wave should finish
QRSmainpos | Indicates if the QRS is positive (normal).
QRSmaininv | Indicates if the QRS is negative (inverted).
Pprima Indicates the position, if exists, of an additional P-peak.

Asshowninthe table, Wavedec does not only return the basic characteristic information
of each heartbeat described in 5.3.2, but also additional information, such as the type of the T-
wave (see Figure 31) or if the QRS complex is inverted or not.
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All these basic characteristics will be used in the next stage to calculate more significant
features intended for the later heartbeat classification between N and V.

7.5 Heartbeat classification features

At this stage of the project, heartbeat's significant features have been calculated for all
the records in the MIT-BIH database using the HT algorithm followed by the Wavedec algorithm.
The heartbeat’s features can be grouped into different categories as described in the following
sections.

7.5.1 Heartbeat time-interval features

First, the features related to the time-intervals have been computed. Figure 27 shows
the three essential time-intervals features, their definition is given in Table 15.

Heartbeat time-interval features

Figure 27: the calculated heartbeat time-interval features.

These features were determined from the time differences shown in Table 15.

Table 15: definition of the time-interval features.

Heartbeat time-

. Calculations
interval features

AP Poff-Pon
AQRS QRSoffset- QRSonset
AT Toff-Ton

7.5.2 EKG morphology features

Secondly, we obtained the ERG morphology-features, namely the amplitude of the
EKG at the peak points of its characteristic waveforms. These are listed in Figure 28.

EKG morphology features
To estimate these features, we followed the procedures described in Table 16. The

Figure 28: the calculated ERG morphology features.
amplitude of the S waves was not calculated because S waves are most of the times not detected
by Wavedec.
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Table 16: the EKG morphology features and how we calculated them.

EKG morphology features Calculations
P_amp The value of the ERG signal's first channel at P time instant
R_amp The value of the EKG signal's first channel at R time instant
Q_amp The value of the EKG signal's first channel at Q time instant
T_amp The value of the ERG signal's first channel at T time instant

The absolute value of the difference of the signals maximum and
minimum absolute values between the Pon and Poff time instants
The absolute value of the difference of the signals maximum and
R_ampMod minimum absolute values between the QRSon and QRSoff time instants
The absolute value of the difference of the signals maximum and
minimum absolute values between the Ton and Toff time instants

P_ampMod

T_ampMod

One important addition to the features obtained from Wavedec was the definition of modified
EKG wave amplitudes. The difference between the amplitude definition (with respect to 0) and
the modified amplitude for the R-wave is illustrated in Figure 29.

[

R-amp (mV)

:

Figure 29: an example of the R_amp (green) and R_ampMod (red), with orange dots marking the
maximum and minimum of the QRS complex.

7.5.3 Wave existence features

Since the ventricular beats usually do not have P waves, another significant feature is
the existence or not of the P and T waves, as shown in Table 17.

Table 17: the P- and T-wave features and how we calculated them.

Wave existence Calculations
P_pr If a heartbeat has its Poff instant before its QRSon value, it indicates that there
is a P-wave in that heartbeat
T_pr If a heartbeat has its Ton instant after its QRSoff value, it indicates that there is
a T-wave in that heartbeat

7.5.4 QRS inversion feature

As mentioned above, the Wavedec algorithm returns a value to indicate if the QRS of
the delineated heartbeat is inverted or not. However, this is not very accurate, so we tried to
make our own QRS inverted detector, based on the percentile values. We analysed the 20 %
percentile of the R-peak in all the episodes. The results are shown in Figure 30.
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Figure 30: 20 % percentile of the R-peaks amplitude of the whole database.

The 20% percentile is significantly negative in those recording with high number of
inverted QRS complexes. For that reason, we developed a self-made algorithm to correlate the
amplitude of the R-peaks with the optimum percentile value of the whole episode. We applied
this algorithm to the database to determine if the QRS were inverted or not.

7.5.5 Type of T wave feature

One of the output parameters of Wavedec for each heartbeat is the type of T wave.
The different types of T waves are shown in Figure 31. The differences between the types of T
wave are so pronounced that we can use this feature to distinguish normal and ventricular beats.
A close look at Figure 31 b/d and e/freveal that normal and ventricular beats have different T

wave morphology.
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Figure 31: six different types of T-wave returned by Wavedec. Extracted from Martinez et al [41].
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7.6 Data preparation for the classifier

All the heartbeat related data must be grouped in proper data types to be used to train
and test the classifiers. For that purpose, we created a feature matrix X that contained all the
features of the heartbeats in the database, and a ground truth class label vector y with the type
of heartbeats. The two data variables X and y will be used later for the development of the
Logistic Regression classifier.

The feature matrix X is organised as follows. Each row corresponds to a heartbeat, and
each column to a feature, as shown in Table 18. So, the element X;; corresponds to feature j of

heartbeat i. Since the MIT-BIH database contains109,494 heartbeats, and each heartbeat was
characterised using 15 features, matrix X is a 109494x15 matrix.

Table 18: general overview of the X matrix. N = 109,494.

P_pr T_pn T_tp QRS_invi APy AQRS, ATh P_amp: R_amp: Q_amp P_ampMod: R_ampMod, T_ampMod:
P_pr2 T_pr2 T_tp QRS_inv, AP, | AQRS; AT P_ampz R_ampz Q_ampz P_ampMod: R_ampMod: T_ampMod:
P_prs T_prs T_tp QRS_invs AP3; | AQRS; ATs P_amps R_amps Q_amps P_ampMods R_ampMods T_ampMods

P_prn T_prn T_tpn QRS_inwn APn | AQRSyn | ATn P_ampn R_ampn Q_ampn | P_ampModn R_ampModn T_ampModn

The ground truth heartbeat label vector v is organised similarly, as a column vector in
which row i represents the true heartbeat annotation for beat i. In addition, we also created a
pat_ID vector to give each heartbeat a label between 1-48 that identifies the original register
from the MIT-BIH database.

7.7 Statistical analysis

Before introducing the data into the classifier, it is important to visually and analytically
assess the statistical differences in the distributions of the values of the features for normal and
ventricular heartbeats. The basic approach is to compute central measures of tendency
(mean/median) and dispersion (standard deviation/percentile ranges). In the case of binary
features like T/P wave existence this will be done using bar plots. For continuous variables we
used boxplots and scatterplots.

A boxplot is a standardised method to graphically represent a series of numerical data
across its quartiles. Thus, the main reason to use the boxplot, is that it shows at a glance the
median and quartiles values of the data. A detailed visual explanation of the boxplot is displayed
on Figure 32.

- x Outlier «—— Maximum value of the data set

Upper fence=Q, + 1.5 xIQR

25% of values Maximum value before the upper fence

Whisker

<«
<«
<
Iterquartie range, IQR :I: S5 values—_ 4—— 75" percentile, third quartile or Qy
(the box) 4—— Median, 50" percentie, second quartile or Q,
P a—
P —
4+—
<«

IQR=Q, -Q,

25% of values
— 25 percentile, first quartile or Q,
Whisker

25% of values Minimum value before the lower fence

Lower fence =Q, - 1.5 X IQR
x OQutlier
—— x Outlier <—— Minimum value of the data set

Figure 32: boxplot visual explanation extracted from [64].
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As shown in the figure, on each box the central mark indicates the median, and the
bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The
whiskers extend to the most extreme data points not considered outliers, and the outliers are
plotted individually using the "+ or 'x" symbol.

To compare the statistical distributions of a variable between the two classes we used
the Mann-Whitney test. This is a nonparametric test applied to two independent samples and
returns a measure of the probability that two sets of samples of different sizes have the same
median [65]; this is the p value. When the p-value is low we can be confident that the medians
are different. In this work we assumed that p < 0.05 represented statistically significant
differences in medians between N and V heartbeats [66]. An example of the comparison of the
distributions (in terms of boxplots) and their statistical differences for the R-peak amplitude of N
and V heartbeats is presented in Figure 33.

R amplitude (mV) comparison between N and V
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Figure 33: example of boxplot for R_amp feature.

The visual assessment of the boxplots already indicates the statistical differences will
be significant, since the medians and ranges are well separated. This is confirmed by the Mann-
Whitney test that in this case returns a value p < 0.05.
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7.8 The logistic regression classifier

7.8.1 Preparation of the data

Before the classifier is trained and tested the data has to be first separated into two
sets, one for training (to learn from data) and a separate one for testing (to evaluate its
performance on unseen data). The objective is to design a classifier that is accurate on new data,
not on data it has already tested. In addition, there is a strong class imbalance between N and V
beats, and has been addressed by assigning different weights (importance) to each class, in order
to penalise the misclassifications of the least frequent class (V). The whole phase of the
preparation of the data is illustrated in Figure 34.

N Training data Training data Xer
- y ,
- AAMI nEKG features
- T e
AAMI
48 EKGs recomendations - Testdata Test data Xis
22 EKG features
Database Remove 4 paced EKG
Imbalance Wy Wy
correction

Figure 34: general block diagram of the preparation data stage.

Moreover, to compare the results of the classifier that we obtained with the available
literature, we had to follow the AAMI standard, which recommends to remove the recordings
containing paced beats. In our case, we had to remove 4 recordings ('102',104,/107 and '217').

Once we did that, we proceeded to split the remaining recordings into two datasets,
one for the training and the other for testing the classifier. Both datasets contained
approximately 50,500 beats. However, the database was highly imbalanced (see Figure 35),
almost the 90% of the beats belong to the N class whilst just the 6%, fallinto V class (the remaining
4% corresponded to the SVEB, and F classes, which were not considered in this project). So, with
this class distribution an algorithm that gave always an N classification would have an accuracy
of over 90%, while being completely useless.

NUMBER OF BEATS FOR N AND V CLASSES
100000
90000
80000
70000
60000

50000
40000
30000
20000
10000

Figure 35: the number of N and V type beats for both datasets.

To minimise the impact of class imbalance we weighted the beats using the probabilistic
frequencies:

ny _ ﬂ
o - (5)
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The ny stands for the total number of beats, while ny and n, indicate the number of N
and V beats, respectively. This way, we got the weights for the N (wy) and V (wy) classes that we
passed to the learning algorithm in the training process.

7.8.1.1 Training process and classification

Firstly, we used all the extracted features and the ground truth marks as the inputs for
the logistic regression machine learning, together with the weights. The output of this learner is
the model of the classifier. This process is illustrated in Figure 36.

X
V" Logistic
tr it -
Logistic Logistic model " Classified
Wn regression model Xis Predictor beats Y
Wy
Machine learning Classification

Figure 36: machine learning step (left) and classification step (right). At the output from the classification
stage we have the classified beats (yfit).

Secondly, we decided not to use all the extracted features but their best combination.
The number of k-element combinations of n features (n=15), without repetition is obtained
through the equation 6.

!
CTL,k = (1]:) = k!(:—k)! (6)

So, the total number of possible combinations will be:

n _ 15 n!
2 k=1 Cnie = Zk:l k!(n—k)! 7)

For each of the obtained combinations we repeated the procedure described in Figure
36.

Finally, we evaluated the results against the ground truth annotations, y, using the
confusion matrix (see Figure 14) and its derived parameters (Se, Sp, PPV and NPV). This phase is
represented in Figure 37.

Yrit Se
Confusion Sp
Yis matrix PPV,
NPV,
Evaluation

Figure 37: evaluation phase of the training and classification stage.

This process was also done by using the test data to train the classifier and the train
data to test the classifier.

53



Description of the solution

7.9 Summary of results

In this section we summarise the most relevant results

7.9.1 QRS detector

The HT QRS detector evaluated on the MIT-BIH database presented a Se of 99.80% and
a PPV of 99.40%. The detailed performance for each of the records in the database is given in
Appendix Il. Although the HT algorithm is very accurate it failed in some instances. When the R-
peaks from the HT were plotted in the GUI, we noticed that the HT algorithm failed when big
slopes were presented in the EKG, as can be seen in Figure 38.In the figure there are false
positive detections (FP) that appear just before and after the great depression of the EKG. This
usually correspond to abrupt movement artefacts in the EKG.
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Figure 38: [171-178] s time interval of the 101 recording with the detected and corrected QRS time
stamps in blue vertical lines. The test's results are in black next to each annotation.

Besides, we also observed that the HT algorithm failed to detect QRS complexes when
when large changes in QRS slopes occurred between consecutive beats. An example of this is
shown in Figure 39. We can see that the 4" —9™" QRS complexes are not detected by the HT
algorithm, so they are FN (false negatives).
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Figure 39: [255-270] s time interval of the 104 recording with the detected and corrected QRS time
stamps in blue vertical lines. The test's results are in black next to each annotation.

To finish with this stage, we set the corrected values of the time stamps as the fiducial
points for the next step of the processing.
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7.9.2 EKG delineation and statistical evaluation

The analysis of the different features gave us information about their individual capacity
of prediction. In Figure 40 and Figure 41. We can see different features comparations for the N

and V classes.
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Figure 40: an example of the analysed boxplots for three representative continuous features.
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Figure 41: an example of the generated bar plots for binary features.

In Figure 41 we observed that although in normal beats there is more relative presence
of T waves than in ventricular ones, the difference is not significant, and these features will most
likely not be relevant to discriminate N and V heartbeats.

The p values for the corresponding Mann—Whitney test are listed in Table 19.

Table 19: p-values for the Mann-Whitney test to assess differences in median of the feature values for N

and V heartbeats.

Feature p-value
P_pr 41110711
T _pr 5.68 % 10~°
T tp 2.41%10722
QRS_inv 5.12 % 1011
AP 1.13 x1075
AQRS 2.97 x 107250
AT 2.47 x 107107
P_amp 9.82 % 10788
R_amp 6.22 x 107248
Q_amp 6.80 x 10797
T_amp 4,02 x 10722
P_ampMod 2.75 x 10746
R_ampMod 8.69 x 107297
T_ampMod 1.64 x 10797
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In terms of p values the most discriminative features (lowest p values) are R_ampMod,
AQRS, R_amp and AT. These results are in line with our intuitive perception because, as can be
seen in Figure 10, the main differences between N and V is their duration (V has longer QRS
duration) and their amplitude (V has greater QRS).

7.9.3 Baseline classifier

We started using the complete set of 15 features to get the first classification results.
However, we saw that they were not as good as expected with a Se of 79.99 % and an Sp of
57.94%. Therefore, we tried all the 32,767 possible combinations of features in order to get the
one that maximised the Se and Sp values. The Figure 42 presents an example of some of the
achieved Sp and Se values for a different number of features (predictors).

SE AND SP VS N° OF USED FEATURES

5 7 9 11
Number of used features

Figure 42: comparative graph for the obtained Se and Sp values in function of the used number of
features.

We analysed those results and we concluded that the better results are not related to
the number of the used features, but to the quality of the combination of the predictors. The
feature combination that maximised the obtained results was the one that used the features
displayed in Table 20.

Table 20: the feature combination that gets the best Se and Sp resullts.

Feature
AP
Best feature
combination AQRS
AT
RAmMp

This feature combination provided a Se of 90.98% and a Sp of 85.98%, a PPV of 0.05%
and a NPV 0f 99.92%. This means that the classifier detects the 90.98 % of the ventricular beats
and correctly classifies 85.98% of the detected beats. This combination provides animprovement
over the initial 15 feature combination of 13-points in Se and of 48.4-points in Sp.

The combination of features that offers us the best Se y Sp is formed mostly by the most
significant features that revealed the Mann-Whitney test (see Table 19).

56



Description of the solution

7.9.4 Examples of classified beats

As we have pointed out before, the classifier is not perfect. Sometimes the classifier
misclassifies the heartbeats, this usually happens when the morphology of ventricular
heartbeats is similar to that of normal ones, and vice versa. Some examples are shown in Figure
43.

a)

%_%V%ML

N N N

il

800 m: 800 ms

Figure 43: examples of correctly classified beats on top, and of misclassified beats below. Ventricular
beats are shown on the left (a,c) and normal beats on the right (b,d).
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8 METHODOLOGY

The project planning provides control technigues to manage the complexity, amount of
data and deadlines of the project. This is made prior to starting the development of any project,
and it is essential to define the tasks and responsibilities of all those who take part in that project.
It is essential to define the limits and duration of each participant's work packages for being able
to carry out the project in an efficient and controlled way. So in this section of the document, we
will introduce the work team and the work packages carried out by those teams.

The work packages in which the project is divided include:

e Tasksto be performed and their deliverables.
e Milestones, which should reflect the project's checkpoints or critical dates.

In the subsequent points, the members of the working group are listed, and the different
work packages are described in detail. Finally, the Gantt diagram of the project is also included.

8.1 Working group
Table 21: project's working group.

ID Position Name and surnames Function

Proposes the project, indicates the
necessary stages to follow and takes
care of the correction and supervision
of the work.

G1  Project manager Unailrusta Zarandona

Gorka Zubia Garea It is in charge of the development the

G2 nior engineer
Junior enginee project and of writing the document.

8.2 Work packages

The following tables show the work packages that have been defined for the project. In
each work package the description of that stage and the corresponding tasks are explained,
specifying the duration and the start and end dates of each of them.

First/overall stage of the project:

Table 22: first work package.

. . Duration
WP1 Starting data Ending data (days)
PROJECT MANAGEMENT: Monitoring and

administration carried out to verify the proper  05/07/2018 15/07/2019 375
development of the project.

T.1.1. Management, monitoring and
supervision of work: Coordination and
supervision work from the start to the end of

the project.

05/07/2018 15/07/2019 375
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Second stage of the project:

Table 23: second work package.

. . Duration
WP2 Starting date Ending date (days)
BASIC TRAINING: learning the basic skills to
be able to begin with the preparation of the  05/07/2018  07/09/2018 64
project
T.2.1. Acquiring MATLAB skills: following 05/07/2018 07/09/2018 64

online courses with practical tasks

T.2.2. Learning the importance of CVD:

reading scientific papers about the CVD and 05/07/2018 07/09/2018 64
sudden cardiac arrest

Third stage of the project:
Table 24: third work package.

. . Duration
WP3 Starting date Ending date (days)
PROJECT PREPARATION: acquisition of
knowledge necessary before specifying the  07/09/2018  30/09/2018 13
course of the project and its development
T.3.1. GUI design skills: MATLAB GUI design
train course delivered by BioRes
T.3.2. Project definition: Definition of the
project guidelines and the work plan.
T.3.3. State of art: Search for relevant
information and studies necessary for the 07/09/2018 30/09/2018 13

development of the project

07/09/2018 14/09/2018 7

07/09/2018 15/09/2018 8

Fourth stage of the project:
Table 25: fourth work package.

. . Duration
WP4 Starting date Ending date (days)
Project development: Different
sections that have been tackled for  30/09/2018 7/04/2018 189
the development of the project
T.4.1 Database creation: adapt the
MIT-BIH Arrhythmia database to 30/09/2018 16/10/2018 16
MATLAB and AAMI standards.
T.4.2 Development of the GUI: in
order to be able to work with the
signals of the database, which will also 16/10/2018 06/11/2018 21
serve to show the results from the
implemented algorithms.

T.4.3. Algorithms 06/11/2018 15/01/2019 70
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T.4.3.1 QRS detector: Detection of
QRS complexes using an automatic
QRS detector. In this case, the
Hamilton-Tompkins was used
together with two additional patches
to adjust the detections to the R-wave
peaks, given the importance of a
correct and precise detection of the
beats.

T.4.3.2 Heartbeat delineation:
delineation of the heartbeats
detected by the HT algorithm, using

06/11/2018 26/11/2018

the Wavedec algorithm. This way, 26/11/2018 15/01/2019

several features of the heartbeats
were extracted. These features were
fundamental for the later developed
classifier.

T.4.4 Feature extraction: analysis of
the results of the delineator and
obtaining new characteristics from
them. These together with the
previous features are the predictors
used in the classifier

T.4.5 LR classification: adaptation
of the features obtained in the

15/01/2019 26/02/2019

previous sections in order to use them 26/02/2019 07/04/2019

to train the ML LR classifier. Evaluation
of the obtained results.

Fifth stage of the project:
Table 26: fifth work package.

WP5 Starting date

DOCUMENTATION AND SUBMISSION OF

THE PROJECT: wording of the project and  07/04/2019
oral presentation.

T.5.1. Project documentation: drafting of

the document that summarises the context

of the project, the objectives, scope, benefits, 07/04/2019
the description of the solution, methodology
and conclusions.

T.5.2. Oral presentation of the project:
preparation of the presentation, rehearsal
and presentation in front of the evaluation
board.

27/06/2019

Ending date

15/07/2019

27/06/2019

15/09/2019

20

50

42

40

Duration
(days)

929

81

18
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The description of the working time schedule is shown in Table 27. Although the project
was completed in 41 weeks, there was a large variation in hours per week due to other activities
done by G1 and G2 during the development of the project.

Table 27: Working time schedule of the project.

Unit Duration
Project 41 weeks
Week 7 days

Day 3 hours*

*This is an average, there was wide variation in hours from 0 hour to 6-hour days.

This section defines the milestones and deliverables that must be met throughout the
development of the project. These are shown in Table 28 and Table 29.

Table 28: project milestones.

ID Milestone Date
M1 Beginning of the training 05/07/2018
M2 Project start-up 07/09/2018
M3 Completion of the database 16/10/2018
M4 Completion of the GUI 06/11/2018
M5 Completion of the automatic QRS detector implementation 26/11/2018
M6 Completion of the automatic heartbeat delineator implementation 15/01/2019
M7 Feature extraction 26/02/2019
M8 ML LR classification 7/04/2019
M9 Completion of the proje;t development 27/06/2019
documentation
M10 End of the oral presentation 15/07/2019
M11 End of the project 15/07/2019
Table 29: project deliverables.
ID Deliverable Date
D1 Database 05/07/2018
D2 Algorithms 07/09/2018
D3 Classifier 16/10/2018
M4 Documentation of the report of the project 06/11/2018
M5 Presentation 26/11/2018

61



62

Description of the solution

8.3 Ganttdiagram

Figure 44 shows the tasks and milestones together with the GANTT diagram of the

project planification.

Task Name Duration Start | Juty | September | November | January March May July
| 17/6 | os/7 | 297 | 198 | 099 | 309 | 21710 | 111 | 0212 | 2312 | 131 | 032 | 242 | 173 | owa | 284 | 195 | o9 | 3006 | 2177 |
4 BrpP 375 days 05/07/18 18/07/19 I 1
4 WP1. Project management 375 days 05/07/18 18/07/19 I 1
T.1.1 Management, monitoring and 375days 05/07/18 18/07/19 _ , ,,,,ssmss———— e ]
supervision of the work
4 Wp2. Basic training 64 days 05/07/18 07/09/18 1
M1 Beginning of the training 0 days 05/07/18 05/07/18 m1® 05/07
T.2.1 Acquiring MATLAB skills 64 days 05/07/18 07/09/18 EE==mm——] No
T.2.2 Learning the importance of CVD 64 days 05/07/18 07/09/18
4 Wp3. Project preparation 13days 07/09/18 20/09/18 |
M2 Project start-up 0 days 07/09/18 07/09/18 mZ® 07/09
T.3.1 GUI design skills 7 days 07/09/18 14/09/18
T.3.2 Project defi 8 days 07/09/18 15/09/18
T.3.3 State of art 13 days 07/09/18 20/09/18
4 WP4. Project development 189 days 16/10/18 07/04/19 I 1
T.4.1 Database creation 16 days 16/10/18 31/10/18
M3 Completion of the database 0 days 16/10/18 16/10/18 mM3® 16/10
T.4.2 Development of the GUI 21 days 16/10/18 05/11/18
M4 Completion of the GUI 0 days 06/11/18 06/11/18 M4® 06/11
4 7.4.3. Algorithms 70days 06/11/18 15/01/19 1
T.4.3.1 QRS detector 20 days 06/11/18 25/11/18
MS Completion of the automatic QRS 0 days 26/11/18 26/11/18 Ms® 26/11
detector implementation
T.4.3.2 Heartbeat delineation 50 days 26/11/18 14/01/19
M6 Completion of the automatic 0 days 15/01/19 15/01/19 me® 15/01
heartbeat delineator implementation
T.4.4 Feature extraction 42 days 15/01/19 25/02/19
M7 Feature extraction 0 days 26/02/19 26/02/19 m7® 26/02
T.4.5 ML LR classification 40 days 26/02/19 06/04/19
M8 ML LR classification 0 days 07/04/19  07/04/19 mg® 07/04
4 WPS D ion and of 99 days 07/04/19 15/07/19 I 1
the project
T.5.1. Project documentation 81 days 07/04/19 27/06/19
M9 Completion of the project 0 days 27/06/19  27/06/19 mg® 27/06
development
T.5.2. Oral presentation of the project 18 days 27/06/19 15/07/19
M10 End of the oral presentation 0 days 15/07/19 15/07/19 M1d® 15/07
M11 End of the project 0 days 15/07/19  15/07/19 M1f® 15/07

the GANTT diagram followed through the project.

Figure 44
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9 BUDGET OF THE PROJECT

This section presents the project's costs which are mainly the cost of human resources
and that of the material used in the project, having in mind both depreciable material and
consumables.

9.1 Human resources

This is the salary of each member of the team:

Table 30: hourly wage of the members of the project team.

ID Duration Salary (€/h)
G1 Project manager 60
G2 Junior engineer 30

Table 31 presents an economic balance sheet of the project's human resources, taking
into account the work hours spent in the project and the unit cost of each participant.

Table 31: cost of the human resources.

WP G2work G2cost G1work G1 cost Total work Total cost

task (h) (€) (h) (€ (h) (€

T.1.1 10 600 10 300 30 1200
T.2.1 10 600 10 300 20 900
T.2.2 15 900 10 300 25 1200
T.3.1 10 600 15 450 25 1050
T.3.2 10 600 25 750 35 1350
T.3.3 15 900 60 1800 75 2700
T.4.1 10 600 20 600 30 1200
T.4.2 10 600 25 750 35 1350
T.4.3 15 900 60 1800 75 2700
T.4.4 10 600 20 600 30 1200
T.4.5 15 900 60 1800 75 2700
T.5.1 30 1800 80 2400 110 4200
T.5.2 10 600 20 600 30 1200

TOTAL 595 22950
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9.2 Material resources

In this section we are presenting the tables of the costs of depreciable material and
consumables.

9.2.1 Depreciable material

These are the costs and expenses of the depreciable material.

Table 32: total cost of the depreciable material.

Material Units Initial cost Lifespan Use Cost
(€) (months) (months) (€)
Toshiba laptop 1 1000 36 6 166.66
Printer 1 50 36 0.5 6.94
MATLAB with 1 1300 24 10 500
toolboxes licence
Microsoft office 1 150 15 2 20
SUBTOTA 520
L

9.2.2 Consumables

The next table lists the cost associated with consumables.

Table 33: total cost of consumables.

ID Material Cost (€)
C1 Office supplies 50
C2 Energy bill 30
C3 Hard disk 50
SUBTOTAL 130

9.2.3 Summary of the budget of the project

In the following table we summarise the total costs and expenses: human resources
(work hours), depreciable material and consumabiles.

Table 34: summary of the total costs and expenses.

Concept Cost (€)
Work hours 22950
Depreciations 520
Consumables 130
TOTAL 23600

Adding up all the costs, the total cost of the project development amounts to twenty
three thousand six hundred euros. Most of the expenses correspond to work hours.
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10 Risks analysis

The objective of this section is to identify the possible risks throughout the development
of the project and to have a contingency plan to minimise their impact. As the project is finished,
it can be said that the risks have been avoided. However, from the beginning it has been essential
to foresee these risks, so an analysis has been made of the possible risks and the damage they
could cause.

Two concepts have been considered to carry out this risk analysis. On the one hand, the
chance of the risks to occur has been studied. On the other hand, the impact that these risks may
have on the project has been considered. Therefore, the risk analysis will take into account the
probability of occurrence and its possible incidence. These two parameters have been measured
as follows:

o  Probability: low, medium or high.
e Impact: low, medium or high.

The possible risks foreseen and the contingency measures that would have been
foreseen to combat them are listed below.

10.1 Risk of coding errors (A)

When developing an algorithm, it is very common to find coding errors that produce the
wrong execution of the program and hinder the normal progress of work. Coding errors are
frequent (high probability), and can have a medium impact on the project as it can leave the
project on standby for days. Also, in the worst case, it may involve rewriting the code we have
worked on.

To reduce the effect of this risk, we use MATLAB's debug tool, to locate bugs in the code.
Besides, itisrecommended to runthe program every few days to make sure everything is correct.
If the root of the problem is not found, members of BioRes research group can be consulted.

10.2 Risk of delays (B)

It is very common to have delays in the different stages of the project, which can lead to
not fulfilling the deadlines established at the beginning. This is very likely, but it has a low impact
because the working group is very small and the working time is easily recoverable.

To minimise this risk, a prior planning of the work is done, well-structured and in which the
tasks have some margin for completion.

10.3 Risk of data loss (C)

This risk includes any loss of information that may occur during the project, whetherin the
documentation of the work, the latest versions of the code for the various algorithms and
software tools, and the databases and annotations created. This event has a low probability of
occurrence, but in case the impact would be high.

To avoid this risk, several systems are used to backup and store the data, like hard disks or
the cloud. In addition, we periodically save the files while working on them, so that, in case the
software fails, a recent version of them is available.
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10.4 Risk of staff leaving (D)

It is also necessary to consider the possible departures (for medical or personal reasons) of
the different members of the working group. This is a rare fact (low probability), and the impact
can be considered medium although it can vary depending on the responsibility that the
individual has in the project and the duration of his absence.

In this case, there is no action that can be taken. In the event of termination, the project
manager will decide whether it is necessary to postpone completion of the project or reassign
responsibilities.

10.5 Technological risks (E)

Not having knowledge in the use of the indispensable technologies for the development
of the project, having hardware/software problems or having problems in the integration of the
developed interfaces or scripts, are examples of risks that can appear within this set.

Nevertheless, measures have been taken to avoid these risks. To begin with, since it was
the first time that MATLAB was used in such depth by G2, a training programme was designed
before the project began. In addition, a proper use and maintenance of the equipment was
ensured. Therefore, in view of the above, the probability of technological risks is low and
marginally influential.

10.6 Risk of excessive costs (F)

Exceeding the planned development costs is a concept that is included in the cost risks. In
the case of this project, this would be possible if costs not taken into account, such as the need
for more material, or changes in prices, appeared. Therefore, to deal with these events, we added
a 5% margin to the budget at the start of the project for eventualities.

However, in order to develop our project, not much material has been purchased.
Therefore, the probability of this risk is very low, and its impact on the project would also be small.

10.7 Summary of the risk analysis

Below in Figure 45 is a matrix showing the probability relationship of the different
mentioned risks.

Categories

Severit;

Yok
Nat acceptable
ALARP
Acceptable

Extensive

e Probability
Figure 45: severity-probability matrix [67]. Green: acceptable risk. Yellow: as low as reasonably practicable

risk (ALARP). Red: unacceptable risk.
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11 CONCLUSIONS AND FUTURE WORK

The aim of this project has been to develop and implement a supervised algorithm to
discriminate between normal and ventricular heartbeats using the electrocardiogram. The
project has concluded by completing all the marked objectives and tasks. These were developed
according to the proposed methodology.

In particular, an EKG database has been created following the AAMI standards from the
MIT-BIH publicly available database. We have developed a user-friendly graphical user interface
for the visualisation and handling of the EKG signals and their annotations. We have also
implemented into this GUI, the Hamilton Tompkins QRS detector and the Wavedec delineator,
to detect and segment the heartbeats from the database. The main result of this
implementation has been the calculation of several features of the beats.

Afterwards, we have completed the statistical characterisation of the features, with the
purpose of identifying distinctive patterns that will help differentiate normal from ventricular
beats. We have concluded that the best individual predictors were the R_ampMod, AQRS,
R_amp and AT.

We have used all the extracted features to develop a machine learning logistic regression
classifier. The optimum feature combination included the AP, AQRS, R_amp and AT. The best
results of this classification were Se 0f 90.98% and a Sp of 85.98%, a PPV of 0.05% and a NPV
0f 99.92% for normal beats.

This implies that the classifier detects the 90.98% of the ventricular beats and correctly
classifies 85.98% of the normal beats. And that the confidence on the rightness of the
classification is of 99.93% for normal and of 83.89% for ventricular beats. These results are an
improvement on some of the previously reported results for automated heartbeat classification
systems; in particular to those obtained by Chazal et al [7], which reported a Se of 77.7%, a PPV
of 81.9% and a NPV of 1.2% for ventricular beats (we took the ventricular as the positives while
Chazal took the normal).

A final conclusion is that the adding all EKG features does not imply a better
performance of the algorithm. We have achieved the best results by taking 4 of the 15
features.

This method will help on the early detection of CVDs. Consequently, it will be possible to
design interventions or preventive measures earlier, minimising their effects on the patient's
health and reducing the associated costs.

We will finish pointing out the research lines opened by this project. The developed
method tackles the discrimination of the two most important types of beats, namely normal and
ventricular beats, and it is a first step towards the automatic classification of heartbeats.
Therefore, it sets the framework for future developments of more complete heartbeat
classification systems, and of algorithms and procedures to diagnose complex arrhythmia.

67



Bibliography

12 BIBLIOGRAPHY

[1]‘'Share  of  deaths by cause’, Our World in Data. [Online]. Available:
https://ourworldindata.org/grapher/share-of-deaths-by-cause-2016. [Accessed: 14-Apr-2019].

[2]Rioja  Salud, ‘Enfermedades  Cardiovasculares’,  riojasalud.es.  [Online].  Available:
https://www:.riojasalud.es/ciudadanos/problemas-de-salud/23-enfermedades-cardiovasculares. [Accessed:
30-May-2019].

[3]S. S. Menéndez, ‘Enfermedades Cardiovasculares’, Institut d” Estudis de la Salut, Barcelona.

[4]K. Minami, H. Nakajima, and T. Toyoshima, ‘Real-time discrimination of ventricular tachyarrhythmia
with Fourier-transform neural network’, IEEE Trans Biomed Eng, vol. 46, no. 2, pp. 179-185, Feb. 1999.

[5]S. Barro, R. Ruiz, D. Cabello, and J. Mira, ‘Algorithmic sequential decision-making in the frequency
domain for life threatening ventricular arrhythmias and imitative artefacts: a diagnostic system’, Journal of
Biomedical Engineering, vol. 11, no. 4, pp. 320-328, Jul. 1989.

[6]P. S. Hamilton and W. J. Tompkins, ‘Quantitative Investigation of QRS Detection Rules Using the
MIT/BIH Arrhythmia Database’, IEEE Transactions on biomedical engineering, vol. BME-33, no. 12, p.
8, Dec. 1986.

[7]P. deChazal, M. O’Dwyer, and R. B. Reilly, ‘Automatic Classification of Heartbeats Using ECG
Morphology and Heartbeat Interval Features’, IEEE Transactions on Biomedical Engineering, vol. 51, no.
7, pp. 1196-1206, Jul. 2004.

[8]V. Mondéjar-Guerra, J. Novo, J. Rouco, M. G. Penedo, and M. Ortega, ‘Heartbeat classification fusing
temporal and morphological information of ECGs via ensemble of classifiers’, Biomedical Signal
Processing and Control, vol. 47, pp. 41-48, Jan. 2019.

[9IK. N. V. P. S. Rajesh and R. Dhuli, ‘Classification of imbalanced ECG beats using re-sampling
techniques and AdaBoost ensemble classifier’, Biomedical Signal Processing and Control, vol. 41, pp.
242-254, Mar. 2018.

[10]M. Hammad, A. Maher, K. Wang, F. Jiang, and M. Amrani, ‘Detection of abnormal heart conditions
based on characteristics of ECG signals’, Measurement, vol. 125, pp. 634-644, Sep. 2018.

[11]°‘Annual number of deaths by cause’, Our World in Data. [Online]. Available:
https://ourworldindata.org/grapher/annual-number-of-deaths-by-cause. [Accessed: 14-Apr-2019].

[12]‘Heart diseases and strokes cause over 1.8 million deaths in the EU’. [Online]. Available:
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/EDN-20170928-1?inheritRedirect=true.
[Accessed: 14-Apr-2019].

[13]Sociedad espafiola de cardiologia, ‘Pais Vasco presenta el tercermejor indicede mortalidad
cardiovascular a nivel nacional’, www.secardiologia.es, Madrid, Espafia, 14-Apr-2015.

[14]Eusko Jaurlaritza, ‘Salud ptblica y adicciones’, Osasun saila, 2016.

[15]appleTREE, ‘La inmensa mayoria de enfermedades cardiovasculares son prevenibles’, Fundacion
Espafiola del Corazon. [Online]. Awvailable: https:/fundaciondelcorazon.com/prensa/notas-de-
prensa/2545-inmensa-mayoria-de-enfermedades-cardiovasculares-son-prevenibles.html. [Accessed: 14-
Apr-2019].

[16]L. Ontiveros, ‘;Cuanto cuesta un enfermo cardiovascular?’, Fundacién Espafiola del Corazon.
[Online].  Awvailable: https://fundaciondelcorazon.com/corazon-facil/blog-impulso-vital/2208-cuanto-
cuesta-enfermo-cardiovascular.html. [Accessed: 14-Apr-2019].

[17]OpenStax College, ‘ECG Tracing with Heart Contraction’. 19-Jun-2013.

[18]Fundacion Espaiiola del Corazon, ‘Holter’, Fundacion Espafiola del Corazon. [Online]. Available:
https://fundaciondelcorazon.com/informacion-para-pacientes/metodos-diagnosticos/holter.html.
[Accessed: 08-Jun-2019].

68



Bibliography

[19]GRUPO DE TRABAJO DE PREVENCION DE RIESGOS LABORALES, IMPLANTACION DE
DESFIBRILADORES EXTERNOS AUTOMATICOS Y SEMIAUTOMATICOS (DESAs) EN LA
UNIVERSIDAD.’, Conferencia de Rectores de las Universidades Espafiolas (CRUE), Girona, Oct. 2013.

[20]°‘Equipment for making electrocardiogram wires vector image on VectorStock’, VectorStock. [Online].
Available:  https://www.vectorstock.com/royalty-free-vector/equipment-for-making-electrocardiogram-
wires-vector-19965594. [Accessed: 08-Jun-2019].

[21]S. GROUP, ‘ECG 2.gif (Imagen GIF, 2304 x 1536 pixeles) - Escalado (38 %)’. [Online]. Available:
http://www.sosgroup.co/UserFiles/Image/ECG%202.gif. [Accessed: 07-Jun-2019].

[22]L. M. Girbau and J. B. Terradellas, ‘Capitulo 52 - Arritmias cardiacas’, in Farreras Rozman. Medicina
Interna., 18th ed., vol. 1, 2 vols, Barcelona: Elsevier, 2016, p. 28.

[23]N. Rodriguez de Viguri, J. Lépez Mesa, and M. Ruano Campos M, Manual de soporte vital avanzado.,
4th ed. Madrid, Espafia: Masson, 2007.

[24]J. J. M. de Vreede-Swagemakers et al., ‘Out-of-Hospital Cardiac Arrest in the 1990s: A Population-
Based Study in the Maastricht Area on Incidence, Characteristics and Survival’, Journal of the American
College of Cardiology, vol. 30, no. 6, pp. 1500-1505, Nov. 1997.

[25]W. Einthoven, ‘Ueber die Form des menschlichen Electrocardiogramms’, Pfluger, Arch., vol. 60, no.
3-4, pp. 101-123, Mar. 1895.

[26]Dale. Dubin, Electrocardiografia practica : lesion, trazado e interpretacion, 3rd ed. México, D.F.
[etc.] : Interamericana, 2007.

[27]°File:SinusRhythmLabels.svg’, Wikipedia. .

[28]‘Welcome to AAMI - Membership and Community - Association for the Advancement of Medical
Instrumentation’. [Online]. Available:
https://www.aami.org/membershipcommunity/content.aspx?ltemNumber=1292&navitemNumber=4603.
[Accessed: 15-Jun-2019].

[29]B.-U. Kohler, C. Hennig, and R. Orglmeister, ‘The principles of software QRS detection’, IEEE Eng.
Med. Biol. Mag., vol. 21, no. 1, pp. 42-57, Feb. 2002.

[30]E. Martin et al., ‘Sensitivity and Specificity’, in Encyclopedia of Machine Learning, C. Sammut and
G. |. Webb, Eds. Boston, MA: Springer US, 2011, pp. 901-902.

[31]G. L. Iverson, ‘Positive Predictive Power’, in Encyclopedia of Clinical Neuropsychology, J. S.
Kreutzer, J. DeLuca, and B. Caplan, Eds. New York, NY: Springer New York, 2011, pp. 1968-1970.

[32]‘PhysioNet’. [Online]. Available: https://physionet.org/. [Accessed: 16-Jun-2019].

[33]Cuiwei Li, Chongxun Zheng, and Changfeng Tai, ‘Detection of ECG characteristic points using
wavelet transforms’, IEEE Trans. Biomed. Eng., vol. 42, no. 1, pp. 21-28, Jan. 1995.

[34]J. S. Sahambi, S. N. Tandon, and R. K. P. Bhatt, ‘Using wavelet transforms for ECG characterization.
An on-line digital signal processing system’, IEEE Eng. Med. Biol. Mag., vol. 16, no. 1, pp. 77-83, Feb.
1997.

[35]M. Bahoura, M. Hassani, and M. Hubin, ‘DSP implementation of wavelet transform for real time ECG
wave forms detection and heart rate analysis’, Comput Methods Programs Biomed, vol. 52, no. 1, pp. 35—
44, Jan. 1997.

[36]M.-E. Nygérds and L. Sérnmo, ‘Delineation of the QRS complex using the envelope of the e.c.g.’,
Med. Biol. Eng. Comput., vol. 21, no. 5, pp. 538-547, Sep. 1983.

[37]J. G. Kemmelings, A. C. Linnenbank, S. L. Muilwijk, A. SippensGroenewegen, A. Peper, and C. A.
Grimbergen, ‘Automatic QRS onset and offset detection for body surface QRS integral mapping of
ventricular tachycardia’, IEEE Trans Biomed Eng, vol. 41, no. 9, pp. 830-836, Sep. 1994.

[38]P. Laguna, R. Jané, and P. Caminal, ‘Automatic detection of wave boundaries in multilead ECG
signals: validation with the CSE database’, Comput. Biomed. Res., vol. 27, no. 1, pp. 45-60, Feb. 1994.

69



Bibliography

[39]G. Speranza, G. Nollo, F. Ravelli, and R. Antolini, ‘Beat-to-beat measurement and analysis of the R-T
interval in 24 h ECG Holter recordings’, Med Biol Eng Comput, vol. 31, no. 5, pp. 487-494, Sep. 1993.

[40]S. H. Meij, P. Klootwijk, J. Arends, and J. R. T. C. Roelandt, ‘An algorithm for automatic beat-to-beat
measurement of the QT-interval’, in Computers in Cardiology 1994, Bethesda, MD, USA, 1995, pp. 597—
600.

[41]J. P. Martinez, R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna, ‘A Wavelet-Based ECG Delineator:
Evaluation on Standard Databases’, IEEE Transactions on Biomedical Engineering, vol. 51, no. 4, pp. 570—
581, Apr. 2004.

[42]‘screenshot.png (Imagen  PNG, 699 X 462  pixeles)’. [Online]. Available:
https://www.mathworks.com/matlabcentral/mlc-
downloads/downloads/submissions/60900/versions/13/screenshot.png. [Accessed: 16-Jun-2019].

[43]‘Sensitivity and specificity’, Wikipedia. 07-May-2019.
[44]W. Dubitzky, O. Wolkenhauer, K.-H. Cho, and H. Yokota, Eds., Encyclopedia of Systems Biology.
New York, NY: Springer New York, 2013.

[45]G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning, vol. 103.
New York, NY: Springer New York, 2013.

[46]T. Hastie, J. Friedman, and R. Tibshirani, The Elements of Statistical Learning. New York, NY:
Springer New York, 2001.

[471'MATLAB Documentation’. [Online]. Available: https://www.mathworks.com/help/matlab/.
[Accessed: 16-Jun-2019].

[48] MATLAB Documentation - MathWorks Espaiia’. [Online]. Available:
https://es.mathworks.com/help/. [Accessed: 16-Jun-2019].

[49]'New License for MATLAB Student R2019a - MathWorks Espaia’. [Online]. Available:
https://es.mathworks.com/store/link/products/student/new. [Accessed: 16-Jun-2019].

[50]'MATLAB Programming/Differences between Octave and MATLAB - Wikibooks, open books for an
open world’. [Online]. Available:
https://en.wikibooks.org/wiki/MATLAB_Programming/Differences_between_Octave_and_MATLAB.
[Accessed: 17-Jun-2019].

[51]‘About’. [Online]. Available: https://www.gnu.org/software/octave/about.html. [Accessed: 17-Jun-
2019].

[52]G. B. Moody and R. G. Mark, ‘MIT-BIH Arrhythmia Database’. physionet.org, 1992.

[53]F. M. Nolle and R. W. Bowser, ‘Creighton University Ventricular Tachyarrhythmia Database’.
physionet.org, 1992.

[54]W. P. Holsinger, K. M. Kempner, and M. H. Miller, ‘A QRS Preprocessor Based on Digital
Differentiation’, IEEE Transactions on Biomedical Engineering, vol. BME-18, no. 3, pp. 212-217, May
1971.

[55]J. Fraden and M. R. Neuman, ‘QRS wave detection’, Med. Biol. Eng. Comput., vol. 18, no. 2, pp. 125—
132, Mar. 1980.

[56]J. C. T. B. Moraes, M. M. Freitas, F. N. Vilani, and E. V. Costa, ‘A QRS complex detection algorithm
using electrocardiogram leads’, in Computers in Cardiology, Memphis, TN, USA, 2002, pp. 205-208.

[57]M. Okada, ‘A digital filter for the QRS complex detection’, IEEE Trans Biomed Eng, vol. 26, no. 12,
pp. 700-703, Dec. 1979.

[58]W. Zong, G. B. Moody, and D. Jiang, ‘A robust open-source algorithm to detect onset and duration of
QRS complexes’, in Computers in Cardiology, 2003, Thessaloniki Chalkidiki, Greece, 2003, pp. 737-740.

[59]Bert-Uwe Kohler, Hennig, C, and Orglmeister, Reinhold, ‘QRS detection using zero crossing counts.’,
Progress in Biomedical Research, no. 8, pp. 138-145, 2003.

70



Bibliography

[60]C. A. Gonzalez, ‘SVM: Maquinas de Vectores Soporte’, presented at the Escuela de Ingenieria
Informética de Valladolid.

[61]‘Frequently Asked Questions about PhysioNet’. [Online]. Available:
https://physionet.org/fag.shtml#downloading-databases. [Accessed: 19-Jun-2019].

[62]‘PhysioBank Annotations’. [Online]. Available: https://physionet.org/physiobank/annotations.shtml.
[Accessed: 25-Jun-2019].

[63]°ECG detector/delineator (Wavedet)’, BSICoS Group Website, 10-Apr-2015. .

[64]J. E. V. Ferreira et al., ‘Graphical representation of chemical periodicity of main elements through
boxplot’, Educacion quimica, vol. 27, no. 3, pp. 209-216, Jul. 2016.

[65]M. Neuhéuser, ‘Wilcoxon—Mann—Whitney Test’, in International Encyclopedia of Statistical Science,
M. Lovric, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1656—1658.

[66]W. Haynes, ‘Wilcoxon Rank Sum Test’, in Encyclopedia of Systems Biology, W. Dubitzky, O.
Wolkenhauer, K.-H. Cho, and H. Yokota, Eds. New York, NY: Springer New York, 2013, pp. 2354-2355.

[67]‘Risk matrices - CGE Barrier Based Risk Management Knowledge base’. [Online]. Available:
https://www.cgerisk.com/knowledgebase/Risk_matrices. [Accessed: 22-Jun-2019].

71



APPENDIX |



Appendix |

1 MIT-BIH Arrhythmia Database:

The free and publicly accessible MIT-BIH Arrhythmia Database was obtained from the
Physionet's website and contained the records of 48 different patients which are shown in the
Table 35. Each of these recordings was 30 minutes long and has been sampled at a frequency
of 360 Hz. In each recording there are two channels, one of EKG lead Il and the other of lead V1
[52]. For the development of this work we have used lead |I.

PhysioNet is supported by the National Institute of General Medical Sciences (NIGMS)
and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) under NIH grant
number 2ROTGM104987-09 [32].

Table 35: Recording's names of the MIT-Arrhythmia Database.

Names of the recordings

100 111 122 209 222
101 112 123 210 223
102 113 124 212 228
103 114 200 213 230
U=l 104 115 201 214 231
Arrhythmia
Database’s 105 116 202 215 232
recordings
106 117 203 217 233
107 118 205 219 234
108 119 207 220
109 121 208 221

Originally, the EKGs of the MIT-BIH Arrhythmia Database contain two types of
annotations. The first type indicates the type of beat, and the second is additional information
about the EKG.

Table 36: heartbeat type annotations. Extracted from [62].

Code Description

=z

Normal beat

Left bundle branch block beat

Right bundle branch block beat

Bundle branch block beat (unspecified)

Atrial premature beat

Aberrated atrial premature beat

Nodal (junctional) premature beat

Supraventricular premature or ectopic beat (atrial or nodal)

< N — v T W O

Premature ventricular contraction

=

R-on-T premature ventricular contraction

-n

Fusion of ventricular and normal beat
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(o]

N O -~ M S —

Code

S+ O~ —~ X —

* — un 4+

O

Atrial escape beat

Nodal (junctional) escape beat
Supraventricular escape beat (atrial or nodal)
Ventricular escape beat

Paced beat

Fusion of paced and normal beat
Unclassifiable beat

Beat not classified during learning

Table 37: non-heartbeat type annotations. Extracted from [62].

Description
Start of ventricular flutter/fibrillation
Ventricular flutter wave
End of ventricular flutter/fibrillation
Non-conducted P-wave (blocked APC)
Waveform onset
Waveform end
Peak of P-wave
Peak of T-wave
Peak of U-wave
PQ junction
J-point
(Non-captured) pacemaker artefact
Isolated QRS-like artefact
Change in signal quality
Rhythm change
ST segment change
T-wave change
Systole
Diastole
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As already explained, the database annotations had to be adapted to the AAMI standard
in order to be able to compare our results with other similar studies. After making this
adjustment, the heartbeat distribution of the database is shown in Table 38.

Table 38: detailed breakdown of the MIT-BIH Arrhythmia Database after AAMI classification.

AAMI heartbeat class N S V F Q
Full MIT-BIH database 90402 3010 7236 803 8043
100 2239 33 1 0 0
101 1860 3 0 0 2
102 99 0 4 0 2084
103 2082 2 0 0 0
104 163 0 2 0 2064
105 2526 0 41 0 5
106 1507 0 520 0 0
107 0 0 59 0 2078
108 1739 5 17 2 0
109 2492 0 38 2 0
111 2123 0 0 0
112 2537 2 0 0
113 1789 6 0 0
114 1820 12 43 4 0
115 1953 0 0 0 0
116 2302 1 109 0 0
117 1534 1 0 0 0
118 2166 96 16 0 0
119 1543 0 444 0 0
121 1861 1 0 0
122 2476 0 0 0 0
123 1515 0 0
124 1531 36 47 5 0
200 1743 30 826 2 0
201 1625 138 198 2 0
202 2061 55 19 1 0
203 2529 2 444 1 4
205 2571 3 71 11 0
207 1543 107 210 0 0
208 1586 2 992 373 2
209 2621 383 1 0 0
210 2423 22 195 10 0
212 2748 0 0 0 0
213 2641 28 220 362 0
214 2003 0 256 1 2
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215
217
219
220
221
222
223
228
230
231
232
233
234

3195

244
2082
1954
2031
2062
2045
1688
2255
1568

397
2230
2700

94

421
73

1383

50

164
162
64

396

473
362

—_

—
o - O O 0O oo O OO0 —= o —

1802

O O O O O O O o o o o
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2 QRS detection results

The Hamilton-Tompkins algorithm is a well-known QRS detector that was used to
identify the QRS complexes in the EKG signals. Although its good performance is already proven,
we decided to make an experimental test to assess the integrity and reliability of our results. The
QRS detectors performance is measured calculating the Se and PPV values for each record.
Table 39 shows the breakdown of the results for each recording.

Table 39: experimental results of the HT algorithm for the MIT-BIH database.

Recordin  Total . teqpeats TP FP FEN Se(%) PPV (%)
4 beats
100 273 2271 27 0 2 9991 100.00
101 1865 1871 1865 6 0 10000 9968
102 2187 2186 218 0 1 9995 10000
103 2084 2082 2082 0 2 9990 10000
104 2229 2282 20 62 5 9978 97.28
105 2572 2616 2563 53 8 9969 9797
106 2027 2023 2023 0 4 9980 10000
107 2137 2137 2136 1 1 9995 99.95
108 1763 1810 1752 58 5 9972 96.80
109 2532 2528 256 2 6 9976 99.92
m 2124 2125 223 2 1 9995 99.91
112 2539 2540 2538 2 1 9996 99.92
113 1795 1794 1794 0 1 9994 10000
114 1879 1882 1878 4 1 9995 99.79
115 1953 1952 1952 0 1 9995 10000
116 2412 2392 2300 2 22 9909 99.92
17 1535 1535 153 1 1 9993 99.93
118 2278 2281 2T 4 1 999 99.82
119 1987 1987 1986 1 1 9995 99.95
121 1863 1864 1861 3 2 9989 99.84
122 2476 2475 UTE 1 2 99: 99.96
123 1518 1517 1517 0 1 9993 10000
124 1619 1615 614 1 5 9969 99.94
200 2601 2616 2507 19 4 9985 99.27
201 1963 1937 1937 0 26 9868 10000
20 2136 2131 231 0 5 9977 10000
203 2980 3014 2966 48 10 9966 98.41
205 2656 2652 650 0 4 9985 10000
207 1860 2112 1852 260 7 9962 87.69
208 2955 2918 2912 6 43 9854 99.79
209 3005 3011 3006 7 1 9997 99.77
210 2650 2645 639 6 11 9958 99.77
m 2748 2749 W4T 2 1 9996 99.93
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213
214
215
217
219
220
221
222
223
228
230
231
232
233
234

3251
2262
3363
2208
2154
2048
2427
2483
2605
2053
2256
1571
1780
3079
2753

3247
2260
3361
2207
2153
2047
2421
2485
2606
2113
2257
1570
1791
3072
2749

Mean Positive Predictive value (PPV, %)

3247
2258
3360
2205
2153
2047
2421
2481
2603
2050
2255
1570
1780
3072
2749

Mean sensitivity (Se, %)

0
7
4

99.88
99.82
99.91
99.86
99.95
99.95
99.75
99.92
99.92
99.85
99.96
99.94
100.00
99.77
99.85

100.00
99.91
99.97
99.91
100.00
100.00
100.00
99.84
99.88
97.02
99.91
100.00
99.39
100.00
100.00
99'80

99'40
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3 Detailed distributions of heartbeat features

3.1 Individual features

In this section we present the boxplots that are left in the main document but we used for
the statistical characterisation of the extracted features together with the Mann-Whitney test.

3.1.1 Heartbeat time-interval features

a0 P signal duration (ms) comparison between N and V

P signal duration (ms)
W Y 14 o ~ -]
o o o o o o

n
=}

N v

Figure 46: boxplot for the AP feature.

In this boxplot we can infer that the AP is not a good induvial predictor because there is
a large overlap between the boxplots (distributions) for both classes.

3.1.2 EKRG morphological features
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Figure 47: boxplot for the P_amp (left) and P_amp_mod (right) features.
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Figure 48: boxplot for the Q_amp (left) and R_amp_maod (right) features.
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Figure 49: boxplot for the T_amp (left) and T_amp_mod (right) features.

The displayed EKG morphological features do not show significant differences between
the two different types of heartbeats. So, no one of these features it is a good individual predictor.

3.1.3 T-wave type feature

6 X 10" T types comparison between N and V
I 1st type

[ 2nd type
5 3rd type
I 4th type
I sth type
4 B6th type
0
g
3,3
i
2
1
0 [l— |1 -
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Figure 50: boxplot for the T_tp feature.

In this case, although the quantities of every type of signal are larger for the N type, it
seems like the N and V heartbeats follow the same proportions, so it is not a good individual
predictor.
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3.1.4 QRS inversion

As we already showed in Figure 10, the V type beats sometimes had their QRS inverted.
This is experimentally confirmed by the algorithm developed to detect QRS inversion, and its
results are displayed in Figure 51,

QRS inverted comparison between N and V

I QRS inverted
I QRS normal

7000
6000

5000

QRS inverted

N v

Figure 51: boxplot for the QRS_inv feature.

Even though QRS_inv seems to be a good individual predictor, training of the classifier
revealed that this is not included in the combination of features that returns the better results.

3.2 Pairs of features

Aside from the individual study of the features, we also performed an analysis based on
the pair aggrupation of the heartbeat interval and EKG morphology features. In particular, the
scatterplots of the following combinations that were studied:

J

= Amplitude (mV)

R_amp
_mod

J\

-l Duration (ms)

\

Figure 52: the studied different feature pair combinations.
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In most of the cases no conclusive results could be extracted from these comparations,
but there were cases, like the one shown in Figure 53, where interesting things could be
observed.

ignal duration (ms) vs tion (ms)
cmem .s
.

a0

60

P-wave duration {ms)

40

20

QRS signal duration (ms)

Figure 53. Left: AQRS vs AP. N heartbeats (blue) and V heartbeats (orange). Right: AQRS vs AP. N
heartbeats (blue) and V heartbeats (orange).

The figure shows that the values for the V heartbeats are concentrated in one circular
area. Therefore, if the value for both features coincides outside this area, it will most likely be a N
heartbeat. However, if the value is inside of that circle, it cannot be precisely determined whether
the heartbeatis N or V.
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4 Examples of classification errors

The developed classifier detects the 90.98% of ventricular heartbeats and 85.98% of
normal heartbets. Although these results are very good, the algorithm fails in the 14.02% of the
available heartbeats. Some examples of this classification errors are shown in the following
figures, in which the output of the algorithm is marked on top of each heartbeat. Correct
decisions are displayed in blue, and incorrect decisions in red.

N v N v N v N N N v N v N v N N

650 ms

20s

Figure 54: the first 20s from the recording '124". The algorithm incorrectly classifies 6 of 16 displayed
heartbeats.

N N N V N NNN NN NNNNUV NNNNN NNV V NN NNN

1imV

650 ms

20s

Figure 55: the last 20s from the recording '201". The algorithm incorrectly classifies 4 of 29 displayed
heartbeats.

wv vV VVV V V VV VVVVVVV V VVVVVYV V VV VVV VYV VV V V

—
650 ms

20s

Figure 56: the first 20s from the recording '203". The algorithm incorrectly classifies 29 of 37 displayed
heartbeats.
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N N NN N NNNJVNNINNNINNUWVNNNNUVNNNNNNNN

1mV

650 ms

20s

Figure 57: the first 20s from the recording '205'. The algorithm incorrectly classifies 3 of 28 displayed
heartbeats.

1mV

650 ms

20s

Figure 58: the first 20s from the recording '207". The algorithm incorrectly classifies 4 of 18 displayed
heartbeats.

We can appreciate that in large amplitude QRSs and durations (Figure 54 and Figure
57), and noisy environments (Figure 56), the classifier tends to classify the heartbeat as V,
although they are frequently N but with slight deviations from the standard N heartbeats.
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