Advanced IoT cybersecurity for human beings

Ane Sanz(!), Jasone Astorga’), Maider Huarte!), Eduardo Jacob"), Mikel Uriarte(?)
asanz060 @ikasle.ehu.eus, jasone.astorga@ehu.eus, maider.huarte @ehu.eus, eduardo.jacob@ehu.eus, muriarte @nextel.es
(U Department of Communications Engineering. University of the Basque Country UPV/EHU, 48013 Bilbao, Spain
(?)Nextel S. A., 48170 Zamudio, Spain

Abstract—Security, and access control in particular, is one
of the main drawbacks to the broad adoption of IoT solu-
tions, as traditional solutions cannot be directly used in IoT
environments due to the significant resource constraints of the
targeted devices. Among security solutions specifically tailored
to IoT, the Hidra access control mechanism stands out as an
efficient approach to bring to the IoT world the flexibility and
expressiveness achieved in traditional computing environments.
This is fulfilled by the definition of complex security policies and
their codification using a specific policy language. Unfortunately,
the resulting system becomes complex and difficult to use by non-
security experts, hindering its broad adoption. Therefore, this
paper presents some enhancements to make powerful security
mechanisms usable by human beings whatever their expertise: a
user-friendly mechanism to create and manage security policies,
and an encoder/decoder module to convert security policies from
human-friendly to machine-friendly format and vice versa.

I. INTRODUCTION

The Internet of Things (IoT) is a system of interconnected
devices which have the ability to receive, collect and send
data in an ubiquitious way. For this aim a large number of
Constrained Device Sensors (CDSs) are deployed.

Although traditional IoT scenarios comprise sensors that
gather data and transmit it to a centralized well-known server,
the next generation of IoT envisions more powerful scenar-
ios, involving smart CDSs which behave as small servers.
In such scenarios, the CDSs have the ability to receive
and process client queries directly with a secure end-to-end
(E2E) communication establishment. Therefore, in this kind
of applications it is necessary to guarantee security properties
such as confidentiality, availability, integrity, authenticity and
authorization of the access requests received by the CDSs.

However, in the last years there has been a large increase
in cybercrime, generating in 2018 a loss of USD 1.5 trillion
according to S21sec [1]. Although companies have enforced
and developed their security mechanisms to prevent from
attacks, criminals have also consolidated and improved their
attack techniques, and this increases the vulnerability of the
systems. In this context, IoT remains as a specially vulnerable
scenario, since traditional security mechanisms designed for
non constrained devices are not directly applicable to CDSs
where processing capacity and memory are highly limited.

In order to deal with these attacks and prevent them,
different alternatives have been implemented, mainly based on
encrypting communications at the link layer. However, access
control remains insufficiently resolved, with static approaches
that do not take into consideration the dynamic and flexible
nature of the targeted applications, and alternatives that lack
expressiveness.

As it will be explained in more detail below, Hidra is
an access control mechanism that implements very powerful
mechanisms in order to enable the expressiveness of policies.

However, this may go against usability when the policies
to be defined increase their complexity. Therefore, to ensure
usability, some new mechanisms are needed, namely, a user-
friendly software to create and represent policies, and an en-
coder/decoder to convert the policies from human-friendly to
machine-friendly format. These mechanisms will be explained
and presented in this paper.

The rest of the paper is structured as follows. Section II
analyses related works, while Section III presents building
technologies such as Hidra and the conveyed policy lan-
guage. The proposed graphic interface and encoder/decoder
are described in Section IV. Section V presents the validation
scenario and Section VI summarises the main conclusions of
the paper.

II. STATE OF THE ART

Currently, one of the main issues that is hindering the broad
adoption of IoT architectures is the lack of suitable security
solutions, specially in the field of strong, expressive and us-
able access control solutions. Traditional security mechanisms
are not directly applicable to IoT environments due to the
heavy limitations of the devices involved. Although there have
been efforts to adapt traditional policy-driven solutions to IoT,
such as the Authorization Framework for the IoT [2] and the
Usage based access control (Ucon) adapted to IoT [3], these
solutions rely on a centralized approach and do not consider
local context conditions in the CDSs.

Among the architectures based on a distributed approach,
CapBAC for IoT [4] defines a capability-based access control
solution based on XML and developed in Java. Therefore,
it is not suitable for very constrained devices. An alternative
approach is DCapBAC [5], which proposes a capability-based
fully distributed architecture. However, the flexibility and
dynamism of this solution is limited since permissions are
included in the capabilities, which are obtained before the
first access attempt and cannot be refreshed.

Another solution is the delegated CoAP authentication and
authorization framework (DCAF) [6], which is based on pre-
shared keys and the establishment of a DTLS channel. In this
case, authorization policies are defined as local conditions
and CBOR serialization is used to compress the policies.
However, this solution implies the overhead of a DTLS
channel establishment and CBOR [7] serialization, which
being a general purpose mechanism, does not achieved the
needed compression levels. Similarly, OSCAR [8] proposes an
object security architecture for IoT which allows E2E access
control based on PKC schemes. However, OSCAR suffers also
from the overhead of the DTLS channel establishment.

In order to tackle the resource scarcity in the targeted de-
vices, Ladon [9] protocol was proposed as a very lightweight

Less Constrained Level

Q

Subject

!

Policy Activity

(A
Credentials Identity
Tegend
Out of band setup

Constrained

Hidra - runtime
TGT

Ksom
Resource ticke|
K

sk
Security policy
SubK

(1) HID_ANS_REQ————»|
o™ Phase 1: Delegated authentication

(2) HID_ANS_RER

(3) HID_CM_REQ

(4)HID_CM_IND —=» 1 phase 2: Preliminary authorization

k- (4.1) HID_CM_IND_REQ- o
k- (4.2) HID_CM_IND_REP —»{

(5) HID_CM_§

Phase 3: Locally authorized security

(6) HID_S_R_REG————————————»

(7)HID_S_R_REP-

(8) HID_R_IND
(9) HID_R_ACK . 1 Phase 4: Access notification

Fig. 1. Hidra protocol

access control solution for CDSs. However, the security
policies used by Ladon are rather static and therefore, the
Hidra protocol was designed as a mechanism to define very
expressive policies, which implies a rather complex policy
language. For this reason, and in order to facilitate the adop-
tion of powerful and expressive access control mechanisms
for IoT, some mechanisms are needed to hide the complexity
of the security mechanisms from final users and make security
for IoT usable for non-expert human beings.

III. BUILDING TECHNOLOGIES: THE HIDRA ACCESS
CONTROL MECHANISM

In this paper, some mechanisms to enhance the usability of
access control models for IoT are presented. Although these
mechanisms can be extended to a wider scope, currently they
have been specifically designed and implemented to fit the
Hidra access control model. For this reason, in this section
Hidra is briefly summarized. Readers wanting a more detailed
explanation about the operation of the Hidra access control
model, please refer to [10].

Hidra is a security protocol that guarantees both the au-
thentication and authorization of a remote subject wanting
to access a service in a CDS. Besides, in order to provide
expressiveness to the access control procedure, it combines a
very expressive policy language with a distributed architecture
which makes the authorization in two steps.

As shown in Figure 1, the centralized Access Control Server
(ACS) performs authentication and preliminary authorization
(phases 1 and 2) of remote requesting subjects. This pre-
liminary authorization allows discarding most unauthorized
service requests before they even reach the CDS. However,
in order to enable a rich and context-based access control
decision, a second authorization phase is performed locally
in the CDSs (phase 3).The access control enforcement in
the CDSs is mandatory to enable access control policies
aware of local or context parameters such as the battery
level in the CDS, environmental temperature, etc. The access
control policy to be applied by the CDS is created by the

POLICY

D
EFFECT RULE
RULESET [ID
EFFECT CONDITION
INPUT
PERIODICITY D
TYPE
ITERATION INPUTSET
VALUE
RESURCE ID
e — OBLIGATION TASK
D D
CONDITIONSET
FULFILLON INPUTSET
OBLIGATIONSET

Fig. 2. Policy language

centralized authorization server and conveyed to the CDS by
means of a specific message (message 4, HID_CM_IND),
enabling this way dynamism and avoiding the necessity of
storing large access control policies permanently in the CDS.
Finally, in phase 4 (Access Notification), the CDS sends to
the central architecture the details about the access attempts,
both successful or not, enabling centralized logging and ac-
counting suitable to detect anomalies, for example. The results
presented in [10] show that this access control mechanism is
adequated for the targeted sensors in terms of processing time,
storage needs and energy consumption.

As explained in the previous paragraph, the CDS performs
a local-context based authorization according to an access
control policy previously received. In order to guarantee the
proper operation and the expressiveness of this process, it is
necessary to define a policy language, which is going to be
described in the next subsection.

A. Policy language

The defined policy language consists of different constructs,
which can be mandatory or optional, and that go nested in
other constructs so that the whole policy has the appropriate
meaning. In order to understand the policy correctly, it is
very important to maintain the order of the constructs. The
constructs that have been defined are policy, ruleset, con-
ditionset, obligationset, task and inputset. In Figure 2, the
relation between the different constructs is shown, which will
be described in more detail below.

The first construct of the language is the policy construct,
which is mandatory and contains an id and a granting effect.
Then, it is optional to add to this construct some rule con-
structs. Each rule construct will have the following mandatory
information: id, effect and at least one condition construct.
Moreover, it can also have more optional information to detail
the application of the rule: periodicity, iteration, resource,
action, and some obligation constructs.

The condition construct defines the conditions that should
be evaluated by the CDS, and it has a mandatory expression
or function identified with an id as well as an optional inputset
construct for the attributes.

The obligation construct, which is optional and extendible
inside the rule, has a “fulfill on” variable and a fask construct
nested.

\4

CDS

\4
A

entralized architecture

Send policy inj

message 4 Decoder

Encoder

in database

in XML file Read policy from

E XML file

Fig. 3. Block diagram of the usability enhancements for access control

The task construct, which is mandatory in the obligationset,
enables the definition of a function to be executed as an
obligation. It has a task function identified with an id and
can have an optional inputset construct for the attributes.

The last construct is the inputset construct, which can be
used in both conditionset and task constructs. Each input
needs to have two variables to define the type and the value
of the attribute.

In order to implement the Hidra protocol with all the
functionalities it offers and make it usable in real industrial
environments, some parts are still missing: the possibility to
add and remove policies easily, an encoder module to encode
the policy and send it from the ACS to the CDS, and a
decoder to decode the policy in the CDS and make a decision
depending on the information it contains.

IV. USABILITY ENHANCEMENTS FOR ACCESS CONTROL
MECHANISMS

In this section, the mechanisms proposed to enhance the
usability of the access control system are explained. As
shown in Figure 3, the first step is a graphical interface that
enables the creation and saving of new policies to authorized
users. When the policy is saved, it is read from the CM
(Credential Manager)and it has to be encoded according to
the codification that will be described below. After encoding
the policy, it is included in message 4 of Hidra and sent to
the CDS. When the CDS receives the message, it processes
it and in order to make a decision, it has to decode back the
policy.

In the next subsections the enhancements made to Hidra to
improve its usability will be described, namely the graphical
user interface to easily define security policies, the encoder
and the decoder.

A. Graphical User Interface

As mentioned in the previous section, in order to make the
Hidra protocol usable, it is important to have a graphical inter-
face so that network administrators with proper authorization
can create and add new policies to the database to send them
to the CDS when necessary.

First of all, it is important to have an access control for
the service of this interface, as it can be used only by people
with proper authorization. Furthermore, as described in the
previous sections, the graphical interface consists of creating
new policies by adding data to them. The structure of the
policy can be different in terms of length and contents,
because most of the parts are optional and are nested in

other structures. Therefore, a dynamic web interface has been
programmed, where the user has the option to decide whether
she wants to add some structs or information to the policy or
not. During the creation process, it is possible for the user
to visualize the contents that have been already added to the
new policy. This way, she will be able to see all the nested
structures in different tables and understand the final policy
she is creating.

In Figure 4, an example of the policy creation is shown.
In this example, the user has created a policy with 2 rules,
and each of them has different information. Red columns are
mandatory in the corresponding struct, while green columns
represent optional information. Finally, empty columns mean
that the user has decided not to include any information in
them.

When the user has entered all the information in order to
create the policy, this has to be saved correctly. On the one
hand, the policy is saved in an XML file, which will be used to
read the information and encode it. On the other hand, all the
policy’s information is saved in a database in order to keep the
information of all the policies that have been created. Apart
from saving the different data structures the policy contains,
it is also important to save the information about who created
which policy and when. For this aim, a MySQL database has
been chosen.

B. Encoder and decoder

As mentioned in the previous sections, the CDS performs a
local context-based authorization based on a policy received
from the ACS. This policy, which has been created using
the graphical interface and saved in both a database and an
XML file, needs to be codified following the policy language
structure explained before.

Due to the constraints of the sensors in terms of capacity
and energy consumption, it is important to have a very
compressed representation of the policy in order to reduce
the impact on storage, transmission and processing. There are
different ways of representing the information of a policy,
such as JSON [11] and CBOR. However, being these two
alternatives generic, do not offer a good level of compression.
For this reason, a different policy codification is proposed in
Hidra: Authorization Policy Binary Representation (APBR).
This codification offers the best compression factor in compar-
ison with the other alternatives. For example, in a policy with
one rule containing both a condition and an obligation, JSON
representation needs 236 bytes, CBOR 123 bytes and APBR
just 9 bytes. Therefore, the compression and optimization
achieved with APBR meets the needs of the targeted devices.

The APBR codification creates a binary representation of
the policy information following the order of the different
structs of the policy language. Each field is codified to its
binary representation, with different amount of bits in each
case. Furthermore, as there are some structs that are optional,
some flags are introduced to the bitstream in order to depict
that the optional part that follows exists. If, on the contrary,
the flag is not activated, it means that there is not optional
construct in that part.

Therefore, an encoder module that follows the APBR
codification has been created. This module reads the policy
from the XML file, and creates a binary representation,

Policy

Effect
PERMIT
Created rules
Effect |Periodicity|Iteration|Resource| Action Obligations Conditions
FulfillOn Task
Function Inputs Function |Inputs
PERMIT 4
DENY activate Type Value lowBattery
SYSTEM_REFERENCE |onMaintenance
Function Inputs
Type |Value
/
L LG Task STRING [admin
DENY DELETE Function |Inputs
PERMIT
- Type Value
contains BOOLEAN true
REQUEST_REFERENCE | roles

Fig. 4. Example of a policy in the graphical interface

which will be sent to the CDS in the message 4 of Hidra.
When creating the APBR representation of the policy, it is
crucial to follow the construct order described in the policy
language. This binary representation will be received and
decodified by the CDS later on, and in order to interpret the
information correctly, it is necessary for both the codification
and decodification processes to follow the same order.

After the policy has been codified and sent to the CDS, and
in order to make an authorization decision, the CDS has to
decode back the bitstream and interpret the information. For
this purpose, a decoder module has also been created.

V. VALIDATION SCENARIO

The system described above has been validated in an
Industry 4.0 scenario, specifically, in a centre that focuses on
research. This centre is the Aeronautics Advanced Manufac-
turing Centre (AAMC) [12], created by the University of the
Basque Country with the financial support of companies of the
aeronautics sector and the local and autonomous government
to develop advanced manufacturing technologies and promote
transference to the industrial sector. In order to become a
research reference at international level, the AAMC has a
manufacturing plant with cutting-edge equipment, where sev-
eral sensors are deployed in order to gather information about
the manufacturing processes taking place and the operation of
the machine tools.

As different companies, even competing ones, share re-
sources and machine tools in the AAMC, guaranteeing access
control to the information gathered by sensors is crucial.
Moreover, most of the people working there are industrial
engineers with very basic knowledge on networking and
security. Therefore, providing a human friendly user interface
to the definition of the access control policies is essential in
order to promote the usage of such IoT security systems.

VI. CONCLUSIONS

IoT applications are expected to be expanded and converted
into a very important part of the society. Furthermore, in order
to make the Industry 4.0 grow and work as expected, proper
IoT security mechanisms are essential, due to the high level of
sensitivity of the data used by these applications. However, not

only powerful and expressive security mechanisms are needed,
but also some user friendly interfaces in order to make them
usable by non-expert people.

Therefore, the main contribution of this paper is an intuitive
user interface to define and save different security policies
that are locally executed by the CDS. Moreover, as extra
modules, an encoder and a decoder, have been created in order
to compress the policy information as much as possible when
it is transmitted to the CDS, thus saving CDS’s resources. As
a validation scenario the AAMC, a research focused center,
has been used.

ACKNOWLEDGEMENTS

This work was supported by the Department of Economic
Development and Competitiveness of the Basque Government
through the CogNoms4.0 KK-2018/00049 research project.

REFERENCES

[1] S21sec, “Cyber predictions for 2019.”
https://www.s21sec.com/en/cyber-predictions-2019/, 2019.

L. Seitz, G. Selander, and C. Gehrmann, “Authorization framework for
the internet-of-things,” WoWMoM IEEE, pp. 1-6, 06 2013.

G. Zhang and W. Gong, “The research of access control based on ucon
in the internet of things,” JSW, vol. 6, pp. 724-731, 04 2011.

S. Gusmeroli, S. Piccione, and D. Rotondi, “Iot access control issues:
a capability based approach,” 07 2012.

J. Herndndez-Ramos, A. J. Jara, L. Marin, and A. Skarmeta, “Dcapbac:
Embedding authorization logic into smart things through ecc optimiza-
tions,” International Journal of Computer Mathematics, vol. 93, 05
2014.

V. Beltran and A. Skarmeta, “An overview on delegated authorization
for coap: Authentication and authorization for constrained environments
(ace),” pp. 706-710, 12 2016.

C. Bormann and P. Hoffman, “Concise binary object representation
(cbor),” RFC 7049, RFC Editor, October 2013.

M. Vucini¢, B. Tourancheau, F. Rousseau, A. Duda, L. Damon, and
R. Guizzetti, “Oscar: Object security architecture for the internet of
things,” pp. 1-10, June 2014.

J. Astorga, E. Jacob, M. Huarte, and M. Higuero, “Ladon: End-to-
end authorisation support for resource-deprived environments,” IET
Information Security, vol. 6, pp. 93—101, 06 2012.

M. Uriarte, J. Astorga, E. Jacob, M. Huarte, and M. Carnerero, “Ex-
pressive policy-based access control for resource-constrained devices,”
IEEE Access, vol. 6, pp. 15-46, 2018.

T. Bray, “The javascript object notation (json) data interchange format,”
STD 90, RFC Editor, December 2017.

“Aeronautics advanced manufacturing
https://www.ehu.eus/en/web/CFAA/home.

[2]
[3]
(4]
(51

(6]

(71
(8]

(91

[10]

[11]

[12] centre.”

