GRADO INGENIERÍA MECÁNICA

TRABAJO FIN DE GRADO

NAVE INDUSTRIAL PARA TUBERÍA AERONAÚTICA

DOCUMENTO 3- ANEXOS

Alumno/Alumna: Herrero Martín, Raúl

Director/Directora: Marcos Rodríguez, Ignacio

Curso: 2018-2019

Fecha: Lunes, 24 de Junio de 2019

3. ANEXOS	
3.1. INTRODUCCIÓN	
3.2. DATOS DE PARTIDA	
3.3. CARGAS PERMANENTES Y VARIABLES EN CUBIERTA	6
3.3.1. Peso propio	6
3.3.2. Sobrecarga de uso	6
3.3.3. Sobrecarga de nieve	
3.3.4. Sobrecarga de viento	9
3.3.4.1. Viento exterior	11
3.3.4.2. Viento interior	14
3.3.4.3. Combinaciones de viento	16
3.4. COMBINACIONES DE HIPOTESIS DE CARGA EN CUBIERTA	18
3.5. CARGAS PERMANENTES Y VARIABLES EN FACHADAS	22
3.5.1. Peso propio	22
3.5.2. Sobrecarga de viento	22
3.5.2.1. Viento exterior	22
3.5.2.2. Viento interior	27
3.5.2.3. Combinaciones de viento	27
3.5.3. Combinaciones de carga	30
3.6. CÁLCULO DE CORREAS	31
3.6.1. Correas de cubierta	31
3.6.1.1. Distancia entre correas	31
3.6.1.2. Elección de correas	32
3.6.2. Correas de fachada	38
3.6.2.1. Distancia entre correas	38
3.6.2.2. Elección de correas	
3.7. ENTREPLANTA	44
3.7.1. Selección de placa alveolar	45
3.8. ESTUDIO DE LOS PÓRTICOS	
3.8.1. Pandeo	52
3.8.2. Pandeo lateral	55
3.8.3. Flecha límite	
3.8.4. Cargas	
3.8.5. Estado límite último (E.L.U.)	

3.8.5.1. Resumen E.L.U	58
3.8.5.2. E.L.U. de las barras más desfavorables de cada grupo	63
3.9. UNIONES	166
3.9.1. Unión pilar-dintel	169
3.9.2. Unión pilar-dintel hastial	177
3.9.3. Unión pilar-viga entreplanta	186
3.9.4. Unión pilarillo-dintel	204
3.9.5. Unión pilar entreplanta-viga entreplanta	212
3.9.6. Unión viga del hueco de escaleras- viga de entreplanta	214
3.9.7. Unión dintel-dintel	219
3.9.8. Unión arriostramientos	221
3.9.9. Unión atornillada dintel-dintel	223
3.10. CIMENTACIÓN	232
3.10.1. Zapatas	232
3.10.2. Vigas de atado	257
3.10.3. Placas de anclaje	258
3.10.3.1. Placas de anclaje pilares	260
3.10.3.2. Placas de anclaje pilares de hastiales	265
3.10.3.3. Placas de anclaje pilarillos	270
3.10.3.4. Placas de anclaje pilares de entreplanta	275
3.11. SOLERA	279
3.12. ESCALERA	279
3.13. ALBAÑILERÍA	314
3.13.1. Tabiquería	314
3.13.2. Falso techo	316
3.14. RED DE EVACUACIÓN DE AGUAS PLUVIALES	318
3.14.1. Canalones	318
3.14.2. Bajantes	319
3.14.3. Colectores	319
3.14.4. Arquetas	320
3.15. RED DE EVACUACIÓN DE AGUAS FECALES	320
3.15.1. Ramales para los colectores	321
3.15.2. Bajante	322
3 15 3 Colectores	222

NAVE INDUSTRIAL PARA TUBERÍA
AERONÁUTICA

3.15.4.	Arquetas	32 3
3.16. SUN	INISTRO DE AGUAS	32 3

3. ANEXOS

3.1. INTRODUCCIÓN

Este anexo sirve como justificación de las soluciones adoptadas, conteniendo las hipótesis de partida, los criterios y procedimientos de cálculo, así como los resultados finales, base de dimensionamiento o comprobación de los distintos elementos que constituyen el objeto del proyecto.

Para llevar a cabo el dimensionamiento de los elementos estructurales, inicialmente se presentan los datos de partida, las acciones que actuaran sobre los elementos de la estructura. En segundo lugar, se realizará el estudio de dichos elementos, mediante el programa de software CYPE 3D.

3.2. DATOS DE PARTIDA

La nave a diseñar será de planta rectangular, con pórticos a dos aguas y estará constituida por 8 pórticos metálicos de sección constante unidos entre si por correas. La nave contará con una abertura en uno de sus hastiales para la entrada y salida de material. Las dimensiones principales de la nave son las siguientes:

- Longitud de la nave: 40 m.
- Anchura de la nave: 20 m.
- Altura hasta la cumbrera: 10,68 m.
- Altura de los pilares: 8 m.
- Altura de la entreplanta: 5,5 m.
- Pendiente de la cubierta: 15º.
- Número de pórticos: 9.
- Distancia entre pórticos: 5 m.
- Dimensiones de la entrada: 6x3 m.

La nave es de estructura metálica. Para el cálculo y construcción de los diferentes elementos que conforman la nave, se ha empleado como material el acero, siendo éste considerado en régimen elástico-lineal según la ley de Hooke y homogéneo, isótropo y libre de tensiones residuales.

Se ha elegido acero S-275 JR, para perfiles, anclaje de los pilares compuestos por placas base, cartelas de rigidez y pernos de anclaje, elementos de cubrición tanto lateral como frontal y elementos de arriostramiento, ya que es un acero de buena resistencia y soldable.

Propiedades del acero S-275 JR

• Límite elástico: 280,6 N/mm²

• Módulo de elasticidad: 2,1·10⁶ N/mm²

• Resistencia a la tracción: 4387 N/mm²

3.3. CARGAS PERMANENTES Y VARIABLES EN CUBIERTA

3.3.1. Peso propio

El peso propio constituye la única carga permanente a tener en cuenta. Para los paneles de cubierta escogidos, de la empresa GRUPOPANEL y de 100 mm de espesor, las características son las siguientes:

Dimensiones, pesos y características térmicas

Espesor	Ancho mm	Long. máx. recomendada m	Tipo de núcleo	Peso kg/m²	Coef. Trans. Térmica W/m³K
120	1.000	10,00	L	19,2	0,300

Figura 1: Características de los paneles de cubierta.

Para el espesor de 120mm escogido, el peso propio del cerramiento será de:

$$19.2^{kg}/_{m^2} \cdot 9.81^{N}/_{kg} \cdot {^{kN}}/_{1000 N} = 0.188^{kN}/_{m^2}$$

$$0.188 \, {^{kN}}/_{m^2} < 1 \, {^{kN}}/_{m^2}$$

Como el peso propio es inferior a 1 $^{kN}/_{m^2}$, se considera una cubierta ligera.

3.3.2. Sobrecarga de uso

La sobrecarga de uso es el peso de todo lo que puede gravitar sobre el edificio por razón de su uso. Por lo general se puede simular los efectos de la sobrecarga de uso por la aplicación de una carga distribuida uniformemente.

Para la estructura que se está analizando, se aplica la categoría G; cubiertas accesibles únicamente para conservación, y subcategoría G1, dentro de la que se escoge cubiertas ligeras sobre correas (sin forjado), dado que no excede el valor de 1kN/m². Además, la nota (7) de dicha tabla, indica que la sobrecarga de uso no se considera concomitante con el resto de las acciones variables, dato importante a tener en cuenta a la hora de realizar las combinaciones de carga.

	Tabl	a 3.1. Va	alores característicos de las sobrecargas de ι	ISO	
			ategorías de uso	Carga uniforme	Carga concentrada
				[kN/m²]	[kN]
Α	Zonas residenciales	A1	Viviendas y zonas de habitaciones en, hospi- tales y hoteles	2	2
		A2	Trasteros	3	2
В	Zonas administrativas			2	2
		C1	Zonas con mesas y sillas	3	4
		C2	Zonas con asientos fijos	4	4
С	Zonas de acceso al público (con la excep- ción de las superficies pertenecientes a las categorías A, B, y D)	СЗ	Zonas sin obstáculos que impidan el libre movimiento de las personas como vestíbulos de edificios públicos, administrativos, hoteles; salas de exposición en museos; etc.	5	4
		C4	Zonas destinadas a gimnasio u actividades físicas	5	7
		C5	Zonas de aglomeración (salas de conciertos, estadios, etc)	5	4
		D1	Locales comerciales	5	4
D	Zonas comerciales	D2	Supermercados, hipermercados o grandes superficies	5	7
E	Zonas de tráfico y de apa	rcamien	to para vehículos ligeros (peso total < 30 kN)	2	20 (1)
F	Cubiertas transitables ac	cesibles	sólo privadamente (2)	1	2
	Cubiertas accesibles	G1 ⁽⁷⁾	Cubiertas con inclinación inferior a 20°	1(4)(6)	2
G	únicamente para con-	<u> </u>	Cubiertas ligeras sobre correas (sin forjado) (5)	0,4(4)	1
	servación (3)	G2	Cubiertas con inclinación superior a 40°	0	2

Figura 2: Tabla de valores característicos de la sobrecarga de uso.

La carga de uso sobre la cubierta será:

$$q_U = 0.4 \ ^{kN}/_{m^2}$$

3.3.3. Sobrecarga de nieve

El código técnico define la sobrecarga de nieve como:

• La distribución y la intensidad de la carga de nieve sobre un edificio, o en particular sobre una cubierta depende del clima del lugar, del tipo de

precipitación, del relieve del entorno, de la forma del edificio o cubierta, de los efectos del viento y de los intercambios térmicos en los paramentos exteriores.

 Los modelos de carga de este apartado solo cubren los casos del depósito natural de la nieve.

Para la determinación de cara, aunque para altitudes inferiores a 1.000 metros, es suficiente considerara una carga de nieve de 1,0 kN/m², se obtendrá mediante la fórmula:

$$q_N = \mu \cdot S_k$$

Donde:

• μ es el coeficiente de forma, para el caso a estudio se trata de un faldón con limatesas, y en el que no hay impedimento al deslizamiento de la nieve, el coeficiente de forma tiene el valor de 1 para cubiertas con inclinación igual o menor que 30°

 S_k es el valor característico de la carga de nieve sobre un terreno horizontal según 3.5.2. El valor de la sobrecarga de nieve sobre un terreno horizontal, en las capitales de provincia y ciudades autónomas se puede tomar de la tabla 3.8.

Capital	Altitud	Sk	Capital	Altitud	Sk	Capital	Altitud	Sk
Capitai	m	kN/m ²	Capitai	m	kN/m ²	Capital	m	kN/m ²
Albacete Alicante / Alacant	690 0 0 1.130 0 0 860 440 0 640 100 0 1.010 70 690	0.6 0.2 0.2 1.0 0.2 0.4 0.3 0.6 0.2 0.2 0.6 0.2 0.3 1.0 0.4 0.5	Guadalajara Huelva Huesca Jaén León Lérida / Lleida Logroño Lugo Madrid Málaga Murcia Orense / Ourense Oviedo Palencia Palmas, Las Pamplona/Iruña	680 0 470 570 820 150 380 470 660 0 40 130 230 740 0 0	0.6 0.2 0.7 0.4 1.2 0.5 0.6 0.7 0.6 0.2 0.2 0.4 0.5 0.4 0.2 0.4 0.2	Pontevedra Salamanca SanSebas- tián/Donostia Santander Segovia Sevilla Soria Tarragona Tenerife Teruel Toledo Valencia/València Valladolid Vitoria / Gasteiz Zamora Zaragoza Ceuta y Melilla	0 780 0 0 1.000 10 1.090 0 950 550 0 690 520 650 210	0.3 0.5 0.3 0.7 0.2 0.9 0.4 0.2 0.9 0.5 0.2 0.4 0.7 0.4 0.7

Tabla 3.8 Sobrecarga de nieve en capitales de provincia y ciudades autónomas

Figura 3: Valor de Sk para las capitales de provincia.

Zamudio se encuentra a una altura de 50 m. El valor de S_k en este caso será de 0,73kN/m², y el valor de μ será de 1, ya que la inclinación de la cubierta es de 15 grados.

Por lo que:

$$q_N = \mu \cdot S_k = 1 \cdot 0.3 = 0.3 \, \frac{kN}{m^2}$$

3.3.4. Sobrecarga de viento

Según el apartado 3.3.2 Acción del viento de la página 7 del código técnico de acciones en la edificación, la acción de viento se puede considerar como:

$$q_e = q_b \cdot C_e \cdot C_p$$

Donde q_b es la presión dinámica del viento, que depende de la zona donde esté ubicada la nave; C_e es el coeficiente de expansión, que depende de la altura de la estructura y del tipo de construcción; y C_p es el coeficiente de presión.

Presión dinámica

España está dividida en 3 zonas de viento: A, B y C, tal y como se muestra en la figura 5. Vitoria se encuentra en la zona C.

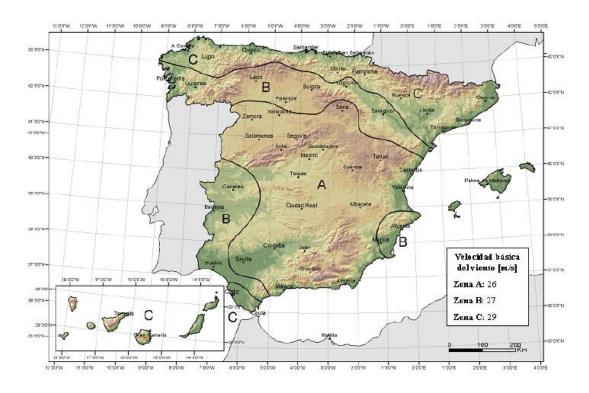


Figura 4: Zonas de viento en España.

Para la zona C, el valor de la presión dinámica es de 0,52 kN/m².

Coeficiente de exposición

El coeficiente de exposición por definición tiene en cuenta las turbulencias originadas por el relieve del terreno y la topografía del terreno. Para obtener este coeficiente se requieren dos parámetros: El grado de aspereza y la altura del punto considerado

La ubicación de la nave se encuentra en una zona industrial, por lo tanto, se tomará como grado de aspereza IV.

La altura del punto considerado, cualquiera de la cubierta, será de 10,68 metros.

Tabla 3.4. Valores del coeficiente de exposición c.

	Crade de concrete del autorno		Altura del punto considerado (m)							
	Grado de aspereza del entorno	3	6	9	12	15	18	24	30	
ī	Borde del mar o de un lago, con una superficie de agua en la dirección del viento de al menos 5 km de longitud	2,4	2,7	3,0	3,1	3,3	3,4	3,5	3,7	
Ш	Terreno rural llano sin obstáculos ni arbolado de importancia	2,1	2,5	2,7	2,9	3,0	3,1	3,3	3,5	
Ш	Zona rural accidentada o llana con algunos obstáculos aislados, como árboles o construcciones pequeñas	1,6	2,0	2,3	2,5	2,6	2,7	2,9	3,1	
IV	Zona urbana en general, industrial o forestal	1,3	1,4	1,7	1,9	2,1	2,2	2,4	2,6	
V	Centro de negocio de grandes ciudades, con profusión de edificios en altura	1,2	1,2	1,2	1,4	1,5	1,6	1,9	2,0	

Figura 8: Valores de coeficiente de exposición.

Como la altura requerida no está tabulada, se hace una interpolación:

$$\frac{C_e - 1.7}{10,68 - 9} = \frac{1.9 - 1.7}{12 - 9} \rightarrow C_e = 1.812$$

En el interior de la nave, el coeficiente de exposición varía. Se toma como altura el punto medio del hueco, que en este caso es de 3 metros, por lo que la altura a considerar será de 1,5 metros. Al no estar tabulada esta altura, se opta por coger primer coeficiente tabulado: para una altura de 3 metros y un grado de aspereza IV, el coeficiente de exposición interno tiene un valor de 1,3.

Coeficiente de presión

En el coeficiente de presión influye el tipo de cubierta, el área de cada panel, la inclinación de la cubierta y la dirección del viento. La nave dispondrá de una cubierta plana y paneles de más de 10 m²de área. Se estudiarán los casos para viento longitudinal y transversal.

3.3.4.1. Viento exterior

a) Viento transversal a 0º

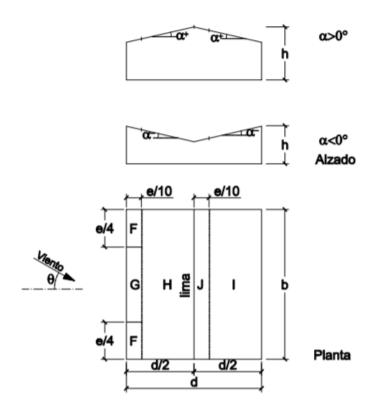


Figura 9. Acotación de las zonas para el viento transversal 0º.

A continuación, se escoge el valor de $c_{\mathcal{p}}$ acorde a las exigencias de la nave. Por ello, se emplea la pendiente de la cubierta, 15°. Para la cubierta se emplean chapas de 1 metro de ancho, y la longitud del faldón es de 10,35 metros, por lo que el área del faldón será 10,35 m², mayor que 10 m².

Los valores del coeficiente de presión vienen recogidos en la siguiente tabla:

Pendiente de la	A (2)		Zona (según figura)				
cubierta α	A (m ²)	F	G	Н	T	J	
-45°	≥ 10	-0,6	-0,6	-0,8	-0,7	-1	
-45	≤ 1	-0,6	-0,6	-0,8	-0,7	-1,5	
-30°	≥ 10	-1,1	-0,8	-0,8	-0,6	-0,8	
-30	≤ 1	-2	-1,5	-0,8	-0,6	-1,4	
-15°	≥ 10	-2,5	-1,3	-0,9	-0,5	-0,7	
-15	≤ 1	-2,8	-2	-1,2	-0,5	-1,2	
	≥ 10	-2,3	-1,2	-0,8	0,2	0,2	
-5°	2 10	-2,3	-2,5 -1,2	-0,0	-0,6	-0,6	
-5	≤ 1		1.2	0,2	0,2		
			21 -2,5 -2	-1,2	-0,6	-0,6	
	≥ 10	-1,7	-1,2	-0,6	-0,6	0,2	
5°	≥ 10	+0,0	+0,0	+0,0	-0,6	-0,6	
5	≤ 1	-2,5	-2	-1,2	-0,6	0,2	
	21	+0,0	+0,0	+0,0	-0,6	-0,6	
	≥ 10	-0,9	-0,8	-0,3	-0,4	-1	
15°	≥ 10	0,2	0,2	0,2	+0,0	+0,0	
15	≤ 1	-2	-1,5	-0,3	-0,4	-1,5	
	≥ I	0,2	0,2	0,2	+0,0	+0,0	
		0.5	0.5	0.2	0.4	0.5	

Figura 8. Valores del coeficiente de presión cp para el viento transversal.

Con estos valores, se puede calcular el valor del viento exterior:

		F	G	Н	I	J	Unidades
	Succión	-0,848016	-0,753792	-0,282672	-0,376896	-0,94224	kN/m ²
ĺ	Presión	0,188448	0,188448	0,188448	0	0	kN/m ²

Tabla 1:. Valores de la acción del viento para el viento transversal.

b) Viento longitudinal a 90º

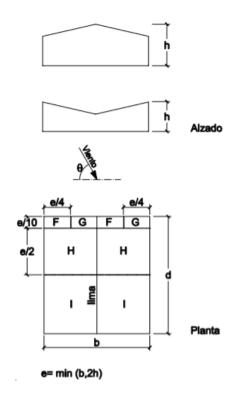


Figura 9. Acotación de las zonas para el viento longitudinal 90º.

Para una inclinación de 15º:

Pendiente de la	A (m ²)		Zona (según figu	ra), -45° ≤ θ ≤ 45°	
cubierta α	A (m)	F	G	Н	- 1
-45° —	≥ 10	-1,4	-1,2	-1,0	-0,9
-45	≤ 1	-2,0	-2,0	-1,3	-1,2
-30° —	≥ 10	-1,5	-1,2	-1,0	-0,9
-30	≤ 1	-2,1	-2,0	-1,3	-1,2
-15° —	≥ 10	-1,9	-1,2	-0,8	-0,8
-10	≤ 1	-2,5	-2,0	-1,2	-1,2
-5° —	≥ 10	-1,8	-1,2	-0,7	-0,6
-5"	≤ 1	-2,5	-2,0	-1,2	-1,2
5° —	≥ 10	-1,6	-1,3	-0,7	-0,6
5 —	≤ 1	-2,2	-2,0	-1,2	-0,6
15° —	≥ 10	-1,3	-1,3	-0,6	-0,5
15	≤ 1	-2,0	-2,0	-1,2	-0,5
30° —	≥ 10	-1,1	-1,4	-0,8	-0,5
30°	≤ 1	-1,5	-2,0	-1,2	-0,5
450	≥ 10	-1,1	-1,4	-0,9	-0,5
45° —	≤ 1	-1,5	-2,0	-1,2	-0,5
600	≥ 10	-1,1	-1,2	-0,8	-0,5
60° —	≤ 1	-1,5	-2,0	-1,0	-0,5
750	≥ 10	-1,1	-1,2	-0,8	-0,5
75° —	≤ 1	-1,5	-2,0	-1,0	-0,5

Nota:

No se deben mezclar valores positivos y negativos en una sola cara.

Figura 10: Valores del coeficiente de presión cp para el viento longitudinal.

Con estos valores, se puede calcular el valor del viento exterior:

		F	G	Н	I	J	Unidades
ĺ	Succión	-1,39932	-1,39932	-0,64584	-0,5382	0	kN/m²

Figura 8. Valores de la acción del viento para el viento longitudinal.

3.3.4.2. Viento interior

La nave tiene una puerta de 6x3 metros en uno de los hastiales, por lo que tendrá que considerarse la influencia del viento en el interior. Para dicho fin se tendrá en cuenta el apartado 3.3.5 del documento básico acciones en la edificación del CTE.

Para el cálculo de los coeficientes de presión interior se necesitan dos parámetros:

- Esbeltez en el plano paralelo al viento.
- Área de huecos en zonas de succión respecto al área total de huecos del edificio.

Esbeltez en el plano
$$\lambda = \frac{altura\ máxima}{ancho\ paralelo\ a\ la\ dirección\ del\ viento}$$

Como se ha comentario anteriormente, el coeficiente eólico interior es de 1,3.

Se van a estudiar los distintos casos para calcular el coeficiente de presión interior:

a) Viento transversal a 0º

Altura máxima	10,68 m
Ancho	40 m
Numero de huecos a succión	1

$$- \lambda = \frac{10,68 \, m}{40 \, m} = 0.27 \, m \le 1$$

A total de huecos en succión/
$$A$$
 total de huecos = 1

-
$$C_pinterior = -0.5$$

-
$$C_{ei} = 1.3$$

$$q_e = q_b \cdot C_{ei} \cdot C_p = 0.52 \cdot 1.3 \cdot (-0.5) = -0.338 kN/m^2$$

b) Viento longitudinal

Altura máxima	10,68 m
Ancho	20 m
Numero de huecos a succión	1

$$- \lambda = \frac{10,68 \, m}{20 \, m} = 0.53 \, m \le 1$$

- $C_pinterior = -0.5$
- A total de huecos en succión/A total de huecos = 1
- $C_{ei} = 1.3$
- $q_e = q_b \cdot C_{ei} \cdot C_p = 0.52 \cdot 1.3 \cdot (-0.5) = -0.338 kN/m^2$

c) <u>Viento longitudinal por el lateral abierto</u>

Altura máxima	10,68 m
Ancho	20 m
Numero de huecos a succión	0

$$- \lambda = \frac{10,68 \, m}{20 \, m} = 0.53 \, m \le 1$$

- $\lambda = \frac{10,68 \, m}{20 \, m} = 0.53 \, m \le 1$ A total de huecos en succión/A total de huecos = 0
- $C_pinterior = 0.7$
- $C_{ei} = 1.3$
- $q_e = q_b \cdot C_{ei} \cdot C_p = 0.52 \cdot 1.3 \cdot 0.7 = 0.4732 \ kN/m^2$

3.3.4.3. Combinaciones de viento

Se van a obtener las combinaciones de viento en todas las zonas de la cubierta:

a) Viento transversal

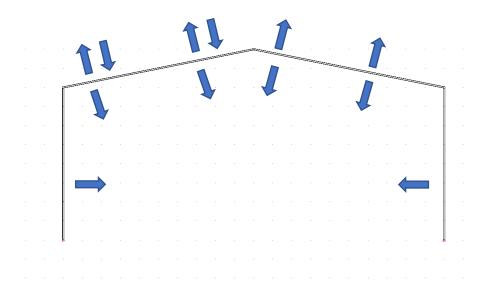


Figura 11: combinaciones de viento para viento transversal.

La carga más desfavorable a succión se da cuando la succión exterior y la succión interior se combina en la zona J, a su vez, la carga a presión más desfavorable se da cuando cualquiera de las cargas exteriores en las zonas F, G o H se combinan con la succión interior.

- $succión: q_{eI} = 0.338 0.9422 = -0.6042 \, kN/m^2$
- $presión: q_{eF,G,H} = 0.338 + 0.1884 = 0.5264 \, kN/m^2$

b) Viento longitudinal

Figura 12: combinaciones de viento para viento longitudinal.

La carga más desfavorable se da cuando la succión exterior y la succión interior se combina en la zona F o G.

- $succión: q_{eF,G} = 0.338 - 1.3993 = -1.061 \, kN/m^2$

c) Viento longitudinal por el lateral abierto

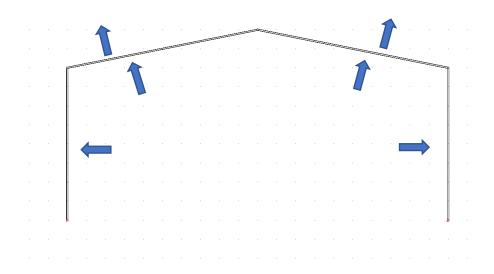


Figura 13: combinaciones de viento para viento longitudinal por la puerta.

La carga más desfavorable se da cuando la succión exterior y la presión interior se combina en la zona F o G.

-
$$succión$$
: $q_{eF,G} = -0.4732 - 1.3993 = -1.873 \, kN/m^2$

3.4. COMBINACIONES DE HIPOTESIS DE CARGA EN CUBIERTA

Una vez halladas todas las cargas que soporta la cubierta, se realiza el cálculo de la combinación de todas ellas. Para ello, primero hay que descomponerlas en sus proyecciones horizontales y verticales.

Peso propio

$$q_{\text{u}\perp} = 0.188 \cdot \cos 15^{\circ} = 0.1882 \, \frac{kN}{m^2}$$

 $q_{\text{U}\parallel} = 0.188 \cdot \sin 15^{\circ} = 0.049 \, \frac{kN}{m^2}$

Uso

$$q_{u\perp} = 0.4 \cdot \cos 15^{\circ} \cdot \cos 15^{\circ} = 0.373 \, \frac{kN}{m^2}$$

$$q_{U||} = 0.4 \cdot \cos 15^{\circ} \cdot \sin 15^{\circ} = 0.1 \, \frac{kN}{m^2}$$

Nieve

$$q_{\text{N}\perp} = 0.3 \cdot \cos 15^{\circ} \cdot \cos 15^{\circ} = 0.28 \, \frac{kN}{m^2}$$

 $q_{\text{N}\parallel} = 0.3 \cdot \cos 15^{\circ} \cdot \sin 15^{\circ} = 0.075 \, \frac{kN}{m^2}$

<u>Viento</u>

$$q_{Vs} = -1,737 \, \frac{kN}{m^2}$$

$$q_{Vp} = 0.6616 \, \frac{kN}{m^2}$$

El valor de cálculo de los efectos de las acciones correspondiente a una situación persistente o transitoria se determina mediante combinaciones de acciones a partir de la expresión:

$$\sum_{j \leq 1} \gamma_{G,j} \cdot G_{k,j} + \gamma_P \cdot P + \gamma_{Q,1} \cdot Q_{k,1} + \sum_{j \leq 1} \gamma_{Q,i} \cdot \Psi_{0,i} \cdot Q_{k,i}$$

Es decir, considerando la actuación simultánea de:

- a) Todas las acciones permanentes, en valor de cálculo $(y_{G,j} \cdot G_{k,j})$, incluido el pretensado $(y_P \cdot P)$;
- b) Una acción variable cualquiera, en valor de cálculo $(y_{Q,1}\cdot Q_{k,1})$, debiendo adoptarse como tal una tras otra sucesivamente en distintos análisis;
- c) El resto de las acciones variables, en valor de cálculo de combinación $(y_Q \cdot \Psi_0 \cdot Q_k)$.

Los valores de los coeficientes de seguridad, y, se establecen en la siguiente tabla para cada tipo de acción, atendiendo para comprobaciones de resistencia a si su efecto es desfavorable o favorable, considerada globalmente. Para comprobaciones de estabilidad, se diferenciará, aún dentro de la misma acción, la parte favorable (la estabilizadora) y la desfavorable (la desestabilizadora).

Tabla 4.1 Coeficientes parciales de seguridad (γ) para las acciones								
Tipo de verificación (1)	Tipo de acción	Situación persistente o transitoria						
		desfavorable	favorable					
Resistencia	Permanente Peso propio, peso del terreno Empuje del terreno Presión del agua Variable	1,35 1,35 1,20 1,50	0,80 0,70 0,90					
		desestabilizadora	estabilizadora					
Estabilidad	Permanente Peso propio, peso del terreno Empuje del terreno Presión del agua	1,10 1,35 1,05	0,90 0,80 0,95					
	Variable	1,50	0					

Tabla 4.1 Coeficientes parciales de seguridad (y) para las acciones

Figura 14: Coeficientes de seguridad.

Los valores de los coeficientes de simultaneidad, Ψ , se establecen en la siguiente tabla:

	rabia 4.2 Coeficientes de simultaneidad (ψ)			
		Ψο	Ψ1	Ψ2
Sobrecar	ga superficial de uso (Categorías según DB-SE-AE)			
•	Zonas residenciales (Categoría A)	0,7	0,5	0,3
•	Zonas administrativas(Categoría B)	0,7	0,5	0,3
•	Zonas destinadas al público (Categoría C)	0,7	0,7	0,6
•	Zonas comerciales (Categoría D)	0,7	0,7	0,6
	 Zonas de tráfico y de aparcamiento de vehículos ligeros con un peso total inferior a 30 kN (Categoría E) 			0,6
•	Cubiertas transitables (Categoría F)		(1)	
•	Cubiertas accesibles únicamente para mantenimiento (Categoría G)	0	0	0
Nieve				
•	para altitudes > 1000 m	0,7	0,5	0,2
•	para altitudes ≤ 1000 m	0,5	0,2	0
Viento		0,6	0,5	0
Tempera	tura	0,6	0,5	0
Acciones	variables del terreno	0,7	0,7	0,7

Figura 15: Coeficientes de simultaneidad.

(1) En las cubiertas transitables, se adoptarán los valores correspondientes al uso desde el que se accede.

Deberá tenerse en cuenta que, al ser una cubierta accesible únicamente para conservación, el uso no será concomitante. Es decir, los operarios no subirán a reparar la cubierta en días de nevadas o fuertes rachas de viento. Por lo tanto, siguiendo lo mencionado anteriormente, se procederá a describir las diferentes combinaciones de carga que afectarán a la cubierta. Ya que el uso no es

41

⁽¹⁾ Los coeficientes correspondientes a la verificación de la resistencia del terreno se establecen en el DB-SE-C

concomitante, cabe mencionar que solo se efectuarán 15 combinaciones de carga hasta llegar a los 3 componentes. Las combinaciones de 4 componentes no se examinarán ya que siempre se obtendrá un valor más pequeño que el que se logrará con las demás combinaciones.

$\gamma_G\cdot G$	$\gamma_G \cdot G + \gamma_{Q_{VP}} \cdot Q_{VP} + \gamma_{Q_N} \cdot \Psi_{0N} \cdot Q_N$
$\gamma_G \cdot G + \gamma_{Q_N} \cdot Q_N$	$\gamma_G \cdot G + \gamma_{Q_{VS}} \cdot Q_{VS}$
$\gamma_G \cdot G + \gamma_{Q_u} \cdot Q_u$ 3)	8) $\gamma_G \cdot G + \gamma_{Q_{VS}} \cdot Q_{VS} + \gamma_{Q_N} \cdot \Psi_{0N} \cdot Q_N$
$\gamma_G \cdot G + \gamma_{Q_{VP}} \cdot Q_{VP}$	9) $\gamma_G \cdot G + \gamma_{Q_N} \cdot Q_N + \gamma_{Q_{VS}} \cdot \Psi_{0VS} \cdot Q_{VS}$
5) $\gamma_G \cdot G + \gamma_{Q_N} \cdot Q_N + \gamma_{Q_{VP}} \cdot \Psi_{01}$ Q_{VP}	VP '

Tabla 3: hipótesis de combinaciones de carga.

Es posible tachar ciertas ecuaciones, ya que la lógica dice que el valor que se obtendrá será menor que el que se obtendrá con otras ecuaciones.

Por ese motivo, se analizarán las 3 más desfavorables, que son las siguientes:

1)
$$\gamma_G \cdot G + \gamma_{Q_{VS}} \cdot Q_{VS}$$

$$0.8 \cdot PP - 1.5 \cdot V_S = 0.8 \cdot 0.181 - 1.5 \cdot 1.873 = -2.665 \frac{kN}{m^2}$$

- 2) $\gamma_G \cdot G + \gamma_{Q_N} \cdot Q_N + \gamma_{Q_{VP}} \cdot \Psi_{0VP} \cdot Q_{VP}$ $1,35 \cdot \text{PP} + 1,5 \cdot \text{N} + 1,5 \cdot 0,6 \cdot \text{V}_P = 1,35 \cdot 0,181 + 1,5 \cdot 0,28 + 1,5 \cdot 0,526 \cdot 0,6 = 1,138$ $\frac{kN}{m^2}$
- 3) $\gamma_G \cdot G + \gamma_{Q_{VP}} \cdot Q_{VP} + \gamma_{Q_N} \cdot \Psi_{0N} \cdot Q_N$ $1,35 \cdot \text{PP} + 1,5 \cdot V_P + 1,5 \cdot 0,5 \cdot \text{N} = 1,35 \cdot 0,181 + 1,5 \cdot 0,526 + 1,5 \cdot 0,5 \cdot 0,28 = 1,243$ $\frac{kN}{m^2}$

Las cargas máximas que soporta por la cubierta son:

• Presión: 1,243 $^{kN}/_{m^2}$

• Succión: $-2,665 \, \frac{kN}{m^2}$

3.5. CARGAS PERMANENTES Y VARIABLES EN FACHADAS

3.5.1. Peso propio

Para los cerramientos de fachada, se ha escogido paneles de la empresa ACH, con núcleo de lana de roca en su interior, como en el caso de los cerramientos de fachada.

Dimensiones, pesos y características térmicas							
Espesor mm	Ancho mm	Long. máx. recomendada m	Tipo de núcleo	Peso kg/m²	Coef. Trans. Térmica W/m²K		
80	1.150	9,00	L	15,4	0,455		

Figura 16: Características de los paneles de fachada.

El espesor elegido es de 80mm, por lo que el peso propio de estos paneles será de:

$$15.4^{kg}/_{m^2} \cdot 9.81^{N}/_{kg} \cdot {^{kN}}/_{1000 N} = 0.151^{kN}/_{m^2}$$

3.5.2. Sobrecarga de viento

3.5.2.1. Viento exterior

La acción del viento en general es una fuerza perpendicular a la superficie de cada punto expuesto, o presión estática, que puede expresarse como:

$$?_{?} = ?_{?} \cdot ?_{?} \cdot c_{?}$$

siendo:

- q_b: la presión dinámica del viento. Su valor se obtiene mediante el anejo D en el DB SE-AE-23, figura 26, en función del emplazamiento geográfico de la obra.
- c_e : el coeficiente de exposición, variable con la altura del punto considerado, en función del grado de aspereza del entorno donde se encuentra ubicada la construcción. Se determina de acuerdo con lo establecido en la figura 27.
- c_p : el coeficiente eólico o de presión, dependiente de la forma y orientación de la superficie respecto al viento, un valor negativo indica succión. Su valor se establece en 3.3.4 y 3.3.5 del CTE.

Presión dinámica

Al igual que en el caso del viento sobre la cubierta, será de 0,52 kN/m para la zona C.

Coeficiente de exposición

Se mantiene invariable con respecto a los cálculos anteriores:

$$\frac{C_e - 1.7}{10.68 - 9} = \frac{1.9 - 1.7}{12 - 9} \rightarrow C_e = 1.812$$

Coeficiente de presión

a) Viento transversal

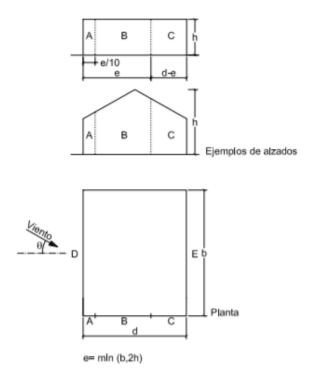


Figura 17: Acotación de las zonas para el viento transversal 0º

Se escoge el valor de cp según las exigencias de la nave objeto de cálculo. Por ello, se escoge la relación h/d y el área de los paneles, que estará entre los valores 10 m^2 y 1 m^2 , dado que la producción de los paneles será con un ancho de 1150 mm. Se obtienen en el Anejo D en la Tabla D.3 del documento DB_SE-AE-25.

Los paneles serán de 9,2 m² de área, por lo que habrá que interpolar para hallar el coeficiente de presión en las distintas regiones de la fachada.

Además, la relación $^h/_d$ es de 0,53, por lo que habrá que hacer una segunda iteración para hallar los valores exactos.

A	b/d	Zon	a (según	figura),	-45° < θ	< 45°
(m ²)	h/d	Α	В	С	D	E
≥ 10	5	-1,2	-0,8	-0,5	0,8	-0,7
	1	**	**	**	**	-0,5
	≤ 0,25	**	66		0,7	-0,3
5	5	-1,3	-0,9	-0,5	0,9	-0,7
	1	**	66	"	**	-0,5
	≤ 0,25	**	66	**	0,8	-0,3
2	5	-1,3	-1,0	-0,5	0,9	-0,7
	1	**	**	."	**	-0,5
	≤ 0,25	**	**	**	0,7	-0,3
≤ 1	5	-1,4	-1,1	-0,5	1,0	-0,7
	1	**	**	**	"	-0,5
	≤ 0,25	**	**	**	"	-0,3

Figura 18: Valores del coeficiente de presión cp para el viento transversal.

Tras la primera iteración, los resultados tabulados son los siguientes:

AREA	h/d	Α	В	С	D	Е
	1	-1,2	-0,8	-0,5	0,8	-0,5
≥10	0,53	-1,2	,0,8	-0,5	0,751	-0,42
	≤0,25	-1,2	-0,8	-0,5	0,7	-0,3
	1	-1,3	-1	-0,5	0,9	-0,5
5	0,53	-1,3	-1	-0,5	0,82	-0,42
	≤0,25	-1,3	-1	-0,5	0,7	-0,3

Tabla 4: Valores del coeficiente de presión cp tras primera iteración.

Se realiza una segunda iteración para conseguir el coeficiente de presión:

AREA	h/d	Α	В	С	D	Е
≥10	0,53	-1,2	,0,8	-0,5	0,751	-0,42
9,2	0,53	-1,22	0,83	-0,5	0,76	-0,42
5	0,53	-1,3	-1	-0,5	0,82	-0,42

Tabla 5: Valores del coeficiente de presión cp tras segunda iteración.

Para estos valores de coeficiente de presión, los valores de la carga de viento cuando sopla transversal son:

AREA	Α	В	С	D	Е	kN/m²
coef. presión	-1,149533	0,782059	-0,47112	0,716102	-0,395741	KIN/III

Tabla 6: Valores de la carga de viento en el caso transversal.

b) Viento longitudinal

Para el viento longitudinal el procedimiento es el mismo, solo que las zonas de la fachada varían de posición, y la componente d pasa de ser el largo de la nave, en vez del ancho.

Como en el caso estudiado anteriormente, se ha de hacer 2 iteraciones para hallar el coeficiente de presión.

AREA	h/d	Α	В	С	D	E
	1	-1,2	-0,8	-0,5	0,8	-0,5
≥10	0,31	-1,2	,0,8	-0,5	0,73	-0,32
	≤0,25	-1,2	-0,8	-0,5	0,7	-0,3
	1	-1,3	-1	-0,5	0,9	-0,5
5	0,31	-1,3	-1	-0,5	0,72	-0,32
	≤0,25	-1,3	-1	-0,5	0,7	-0,3

Tabla 7: Valores del coeficiente de presión cp tras primera iteración.

Tras la segunda iteración, se obtienen los valores del coeficiente de presión:

AREA	h/d	Α	В	С	D	E
≥10	0,31	-1,2	,0,8	-0,5	0,73	-0,32
9,2	0,31	-1,22	0,83	-0,5	0,73	-0,32
5	0,31	-1,3	-1	-0,5	0,72	-0,32

Tabla 8: Valores del coeficiente de presión cp tras segunda iteración.

Para estos valores de coeficiente de presión, los valores de la carga de viento para cuando sopla longitudinal son:

AREA	Α	В	С	D	E	kN/m²
coef. presión	-1,149533	0,782059	-0,47112	0,687835	-0,301517	KIN/III

Tabla 9: Valores de la carga de viento en el caso transversal.

3.5.2.2. Viento interior

Para el estudio del efecto del viento interior sobre la fachada, se realiza exactamente igual que en el caso de la cubierta.

El coeficiente de exposición interior será el mismo, 1,3.

Se estudian los 3 casos que se dan en la nave. Al igual que en los casos de la cubierta, las cargas de viento interior serán los siguientes:

a) Viento transversal

-
$$q_e = q_b \cdot C_{ei} \cdot C_p = 0.52 \cdot 1.3 \cdot (-0.5) = -0.338 kN/m^2$$

b) Viento longitudinal

-
$$q_e = q_b \cdot C_{ei} \cdot C_p = 0.52 \cdot 1.3 \cdot (-0.5) = -0.338kN/m^2$$

c) Viento longitudinal por el lado abierto

-
$$q_e = q_b \cdot C_{ei} \cdot C_p = 0.52 \cdot 1.3 \cdot 0.7 = 0.4732 \ kN/m^2$$

3.5.2.3. Combinaciones de viento

La combinación de viento interior y exterior, para los 3 casos que se pueden distinguir, se expresan a continuación:

a) Viento transversal

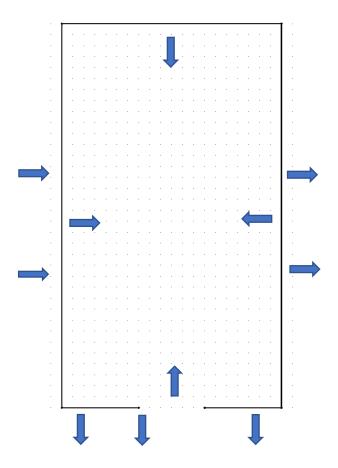


Figura 19: Combinaciones de viento para viento transversal.

La carga más desfavorable a succión se da cuando la succión exterior y la succión interior se combina en la zona A, a su vez, la carga a presión más desfavorable se da en la zona D, donde se combina la succión interior.

- succión: $q_{eA}=0.338-1.1495=-0.8115\ kN/m^2$ presión: $q_{eD}=0.338+0.716=1.054\ kN/m^2$

b) Viento longitudinal

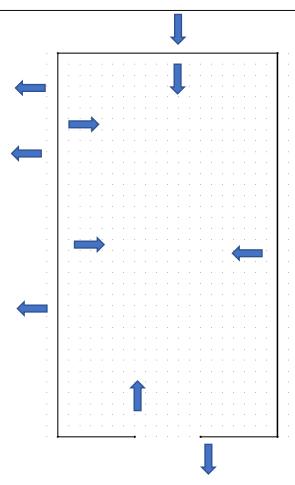


Figura 20: Combinaciones de viento para viento longitudinal.

En este caso, las zonas A, B y C se sitúan a la izquierda de la nave.

Como en el caso anterior, la mayor carga a succión se da en la zona A, mientras que la mayor carga a presión se da en la D.

- -succión: $q_{eA} = 0.338 1.1495 = -0.8115 \, kN/m^2$
- $presión: q_{eD} = 0.338 + 0.689 = 1.027 \ kN/m^2$

c) Viento longitudinal por el lateral abierto

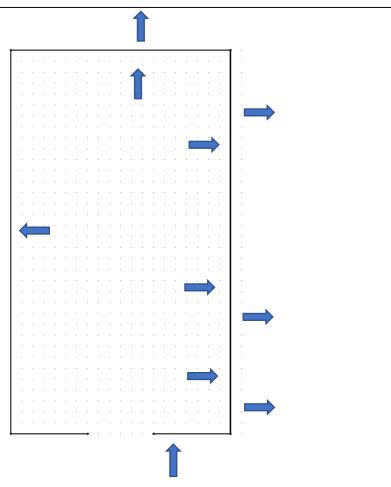


Figura 21: Combinaciones de viento para viento longitudinal por la puerta.

La carga más desfavorable se da cuando la succión exterior y la presión interior se combina en la zona A.

-
$$succión$$
: $q_{eA} = -0.4732 - 1.1495 = -1.62 \, kN/m^2$

3.5.3. Combinaciones de carga

se introducen las cargas como distribuidas, y al acudir al código técnico el valor en proyección horizontal se tiene que multiplicar la carga por el coseno del ángulo de la cubierta, en esta nave por el cos 15. En este caso, al actuar sobre la fachada, que está perpendicular al suelo, la descomposición de fuerzas no será necesaria.

Al igual que en la cubierta, en los laterales una vez obtenidas todas las cargas que van a actuar en la cubierta de manera independiente, se deben realizar las combinaciones de carga correspondientes, para así determinar la máxima que debe

de aguantar el cerramiento a elegir.

Dado que al tratarse de un panel vertical no habrá ni sobrecarga de uso ni nieve, las combinaciones nos quedan más simplificadas.

Las combinaciones resultantes son las siguientes:

1) $\gamma_G \cdot G$	2) $\gamma_{Q_{VP}} \cdot Q_{VP}$
3) $\gamma_{Q_{VS}} \cdot Q_{VS}$	

Tabla 10: hipótesis de combinaciones de carga.

El peso propio y las cargas de viento, al actuar en distinto plano, no pueden combinarse, por lo que se estudian por separado, pero teniendo en cuenta los coeficientes mayorativos.

En el plano paralelo a la fachada, donde se da la carga de peso propio, el valor de la carga mayorada es:

1)
$$1,35 \cdot PP = 1,35 \cdot 0,151 = 0,204 \frac{kN}{m^2}$$

En el plano perpendicular a la fachada se dan las dos cargas de viento:

2)
$$1.5 \cdot V_s = 1.5 \cdot (-0.812) = -1.217 \, \frac{kN}{m^2}$$

3)
$$1.5 \cdot V_p = 1.5 \cdot 1.054 = 2.6205 \, \frac{kN}{m^2}$$

3.6. CÁLCULO DE CORREAS

3.6.1. Correas de cubierta

3.6.1.1. Distancia entre correas

Dadas las cargas máximas que puede soportar la cubierta, se procede al cálculo de la distancia entre correas.

El fabricante nos proporciona la relación entre la distancia entre correas y la sobrecarga que son capaces de soportar. Para el caso más desfavorable, el valor de la carga es de 2665 Pa, por lo que la distancia entre correas estará comprendida entre 1250 mm y 1000 mm. Se escogerá una distancia de 1000 mm ya que es la distancia tabulada que más se aproxima al cumplimiento estructural que el fabricante nos proporciona.

Siendo esa la distancia entre correas, serán necesarias 20 correas para cubrir el ancho de la nave

3.6.1.2. Elección de correas

Las correas metálicas son los elementos constructivos sobre los que apoya el cerramiento de la nave. Se ha optado por colocar perfiles conformados en z con rigidizadores, dado su alto rendimiento y precio económico.

Los paneles de cerramiento se sujetarán a las correas mediante tornillos autorroscantes y autotaladrantes y las correas se sujetarán a los elementos estructurales de la nave mediante ejiones.

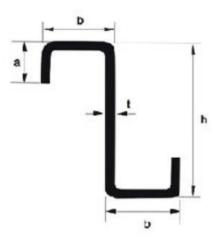


Figura 22: Perfil Z rigidizado.

Para el dimensionamiento de estos elementos se hará uso del software informático CYPE, donde en una de sus funciones, el Generador de pórticos, introduciendo las hipótesis de carga calculadas anteriormente, y la distancia entre pórticos requerida, el programa selecciona, de entre la lista de perfiles escogidos, los que cumplen con los requerimientos estructurales.

Una vez hecho esto, se procederá a la definición de una serie de datos previos, para posteriormente, llevar a cabo el cálculo.

Se limitará la flecha de las correas a L/300, de acuerdo con el CTE. A parte, se elegirá la opción 3 vanos, en el número de vanos que ofrece el programa, ya que el edificio

cuenta con 9 vanos, y esta opción representa la característica de multiapoyado. Se elegirá la opción de fijación rígida, sándwich se considera que tiene una rigidez suficiente para impedir el giro de las correas y arriostrarlas en su plano.

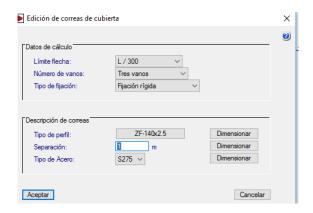


Figura 23: Datos de cálculo de corras de cubierta.

El programa traza una lista de perfiles que cumplen con las especificaciones estructurales del ELU y ELS. El perfil elegido será el ZF-140x2.5, y las comprobaciones son las siguientes:

Comprobación de resistencia

Comprobación de resistencia
El perfil seleccionado cumple todas las comprobaciones.
Aprovechamiento: 54.21 %

Barra pésima en cubierta

Perfil: ZF-140x2.5 Material: S275 Nudos Características mecánicas Longit Áre **y**g⁽³⁾ $I_{yz}{}^{(4)} \\$ $I_t^{(2)}$ $I_v^{(1)}$ $I_{7}^{(1)}$ $\alpha^{(5)}$ ud а Inicial Final (cm4 (cm (grado (cm4 (cm (m (m (m) (cm 4) 4) m) m) s) 2) 0.483, 40.000, 0.483, 35.000, 204. 49.2 1.1 2.3 5.000 74.9 6.84 0.14 22.0 8.129 8.129 80 6 3 3 7 Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme (3) Coordenadas del centro de gravedad (4) Producto de inercia $^{(5)}$ Es el ángulo que forma el eje principal de inercia U respecto al eje Y, positivo en sentido antihorario. Pandeo Pandeo lateral Plano XY Plano XZ Ala inf. Ala sup. 0.00 β 0.00 1.00 0.00 $L_{\text{\scriptsize K}}$ 0.000 5.000 0.000 0.000 C_1 1.000 Notación: β: Coeficiente de pandeo Lκ: Longitud de pandeo (m) C1: Factor de modificación para el momento crítico

Barra		COMPROBACIONES (CTE DB SE-A)													Fatada
	b /	t	$\bar{\lambda}$	N_{t}	N_c	My	Mz	$M_y M_z$	V _y	Vz	$N_t M_y M_z$	$N_c M_y M_z$	$NM_yM_zV_yV_z$	$M_tNM_yM_zV_yV_z$	Estado
pésima en cubierta	b /	$t \le (b / t)_{Máx.}$ Cumple	N.P. ⁽¹	N.P. ⁽²⁾	N.P. ⁽³⁾	x: 5 m η = 54.2	N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁶⁾	x: 5 m η = 9.4		N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	N.P. ⁽¹⁰⁾	CUMPLE η = 54.2
Notación: b / t: Relación and i: Limitación de e Ni: Resistencia a t Ni: Resistencia a i Mi: Resistencia V; Resistencia a c Vi: Resistencia NIM,Mi: Resistenci NIM,Mi: Resistencia a c NIM,Mi: Resisten	esbeli raccio comp flexió flexió a flex corte corte ia a ci ia a ci encia stencia gen d	tez ón resión n. Eje Y n. Eje Z kión biaxial Y Z racción y flexión ompresión y flexi a cortante, axil y cia a torsión comb le la barra	/ flexión	on axil, fle	exión y co	ortante									
Comprobaciones que no (2) La comprobació (3) La comprobació (4) La comprobació (4) La comprobació (5) La comprobació (6) La comprobació (7) No hay interacc (8) No hay interacc (9) No hay interacc (10) La comprobació	n no n no n no n no n no ión e ión e ión e	procede, ya que ntre axil de tracc ntre axil de compntre momento fie	no hay a no hay a no hay a no hay a no hay a ión y mo resión y ector, ax	exil de tra exil de con exil de con lexión bia esfuerzo con emento fle emomento il y cortan	cción. mpresión. flector. xial para ortante. ector para o flector p te para n	ninguna con ninguna con para ninguna	nbinación mbinaciór combina	n. Por lo ción. Por	lo tanto,	la compro	bación no	procede.			

Relación anchura / espesor (CTE DB SE-A, Tabla 5.5 y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 5.2)

Se debe satisfacer:

h / t : _ *52.0* _ ✓

b₁ / t : 20.0

c₁ / t : ___6.0_____

b₂ / t: 17.2 🗸

Los rigidizadores proporcionan suficiente rigidez, ya que se cumple:

 $c_1 / b_1 : 0.300$

 $c_2 / b_2 : 0.279$

Donde:

h: Altura del alma.h: 130.00 mmb1: Ancho del ala superior.b1: 50.00 mmc1: Altura del rigidizador del ala superior.c1: 15.00 mmb2: Ancho del ala inferior.b2: 43.00 mmc2: Altura del rigidizador del ala inferior.c2: 12.00 mmt: Espesor.t: 2.50 mm

Nota: Las dimensiones no incluyen el acuerdo entre elementos.

<u>Limitación de esbeltez</u> (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La comprobación no procede, ya que no hay axil de compresión ni de tracción.

Resistencia a tracción (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.2) La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.3)

La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión. Eje Y (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.4.1)

Se debe satisfacer:

η : **0.542** 🗸

Para flexión positiva:

 $\mathbf{M}_{\mathbf{v},\mathbf{Ed}}$: Momento flector solicitante de cálculo pésimo. $\mathbf{M}_{\mathbf{v},\mathbf{Ed}}^+$: 0.00 kN·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo 0.483, 35.000, 8.129, para la combinación de acciones 1.35*G1 + 1.35*G2 + 0.75*N(EI) + 1.50*V(0°) H4.

 $M_{y,Ed}$: Momento flector solicitante de cálculo pésimo. $M_{y,Ed}$: 4.02 kN·m

La resistencia de cálculo a flexión $M_{c,Rd}$ viene dada por:

M_{c,Rd}: *7.42* kN⋅m

Donde:

W_{el}: Módulo resistente elástico correspondiente a la fibra de mayor tensión.

W_{el}: 28.32 cm³

f_{yb}: Límite elástico del material base. (CTE DB SE-A, Tabla

4.1)

f_{yb}: *275.00* MPa

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

Resistencia a pandeo lateral del ala superior: (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.2.4)

La comprobación a pandeo lateral no procede, ya que no hay momento flector.

Resistencia a pandeo lateral del ala inferior: (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.2.4)

La comprobación a pandeo lateral no procede, ya que la longitud de pandeo lateral es nula.

Resistencia a flexión. Eje Z (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.4.1)

La comprobación no procede, ya que no hay momento flector.

Resistencia a flexión biaxial (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.4.1)

La comprobación no procede, ya que no hay flexión biaxial para ninguna combinación.

Resistencia a corte Y (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.5) La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a corte Z (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.5)

Se debe satisfacer:

0.094 η:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo 0.483, 35.000, 8.129, para la combinación de acciones 1.35*G1 + 1.35*G2 + 0.75*N(EI) + 1.50*V(0°) H4.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

El esfuerzo cortante resistente de cálculo $V_{b,Rd}$ viene dado por:

4.82 kΝ V_{Ed} :

 $V_{b,Rd}$: 51.38 kΝ

Donde:

hw: Altura del alma.

t: Espesor.

φ: Ángulo que forma el alma con la horizontal.

f_{bv}: Resistencia a cortante, teniendo en cuenta el pandeo.

135.30 h_w: mm t: 2.50 mm 90.0

159.50

grados

MPa

MPa

Siendo:

 $\overline{\lambda}_{\mathbf{w}}$: Esbeltez relativa del alma.

γ_{M0}: Coeficiente parcial de seguridad del material.

 $\overline{\lambda}_{w}$: 0.68

f_{bv}:

Donde:

f_{vb}: Límite elástico del material base. (CTE DB SE-A, Tabla 4.1)

E: Módulo de elasticidad.

E: 210000.00 MPa

275.00

1.05 γмо ∶

f_{vb}:

Resistencia a tracción y flexión (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículos 6.1.8 y 6.3)

No hay interacción entre axil de tracción y momento flector para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a compresión y flexión (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículos 6.1.9 y 6.2.5)

No hay interacción entre axil de compresión y momento flector para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante, axil y flexión (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.10)

No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a torsión combinada con axil, flexión y cortante (CTE DB SE-A y

Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.6)

La comprobación no procede, ya que no hay momento torsor.

Comprobación de flecha

El perfil seleccionado cumple todas las comprobaciones.

Porcentajes de aprovechamiento:

- Flecha: 97.13 %

Coordenadas del nudo inicial: 19.517, 10.000, 8.129 Coordenadas del nudo final: 19.517, 15.000, 8.129

El aprovechamiento pésimo se produce para la combinación de hipótesis 1.00*G1 + 1.00*G2 + 1.00*Q + 1.00*N(EI) + 1.00*V(180°) H4 a una distancia 2.500 m del origen en el tercer vano de la correa.

(Iy = 205 cm4) (Iz = 49 cm4)

3.6.2. Correas de fachada

3.6.2.1. Distancia entre correas

con los valores de las combinaciones de hipótesis de carga sobre la fachada, y gracias a los valores de carga suministrados por el fabricante, se puede hallar la distancia entre correas óptima para la nave en cuestión.

1) La carga más desfavorable, en este caso, es de 2,6205 $^{kN}/_{m^2}$, a presión.

Espesor			(L)) Distanc	ias entre	apoyos e	en cm. Cá	ilculos re	alizados	sobre pa	nel 0,5 m	ım/0,5 m	ım		
(mm)	150	175	200	225	250	275	300	325	350	375	400	450	500	550	600
50	346	283	237	201	172	149	130	114	100	89	79	-	-	-	-
60	-	351	294	241	216	188	165	145	128	114	102	82	-	-	-
80	-	-	412	353	307	268	237	210	188	168	152	124	103	86	72
100	-	-	-	-	-	351	312	278	249	225	203	168	141	119	101
120	-	-	-	-	-	-	388	347	313	283	257	214	180	153	131
150	-	-	-	-	-	-	-	453	410	372	339	285	242	207	179

^{*}Consultar para espesores superiores a 150 mm

Figura 24. Tabla de características técnicas del panel de fachada lateral.

Para el espesor seleccionado, de 80 mm, con una distancia de 237 cm entre correas sería suficiente. Se tomará una distancia de 220 cm entre correas, para ser conservadores en temas de seguridad estructural.

Siendo esta la distancia escogida entre correas, serán necesarias 4 correas de fachada por cada lado de la nave. Al colocarse un muro de medio metro de altura de hormigón armado alrededor de la nave, se ha decidido suprimir la última correa, pero se sigue respetando la distancia de 2,2 metro entre ellas. Por consiguiente, hay dispuestas 3 correar que distan entre sí 2,2 metros.

3.6.2.2. Elección de correas

la elección del tipo del perfil es idéntica a las correas de cubierta. Se ha escogido un perfil conformado en Z con rigidizadores por su bajo peso, bajo precio y buenas condiciones mecánicas.

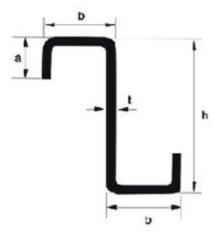


Figura 25: Perfil Z rigidizado.

las condiciones de cálculo son iguales, excepto en dos aspectos. Las cargas sobre la fachada son distintas a las que actúan sobre la cubierta, por lo que se introducen las cargas que afectan a la fachada. Además, la distancia entre correas en este caso será de 220 cm, por lo que se introducirá este dato en la pestaña de separación.

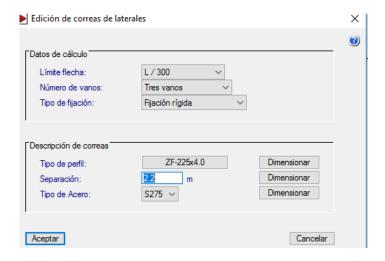


Figura 26: Datos de cálculo de corras de fachada.

Con esta separación entre correas, y teniendo en cuenta que la pared mide 8 metros, dispondremos de 4 correas laterales por cada lado.

Con todas estas variables, el programa determina que las correas que mejor se adaptan al diseño de la nave en cuestión son ZF-225x4.0. Aquí se muestran las comprobaciones de dichos perfiles:

Comprobación de resistencia

Comprobación de resistencia El perfil seleccionado cumple todas las comprobaciones. Aprovechamiento: 45.51 %

Barra pésima en lateral

Barra pesima e	en late	ral											
Perfil: ZF-225x4.0 Material: S275	D												
		Nuc	dos					Caracte	erísticas	meca	ánicas	5	
	Ir	nicial	Final		Longit ud (m)	Área (cm ²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _{yz} ⁽⁴⁾ (cm4)	I _t ⁽²⁾ (cm 4)	y _g ⁽³⁾ (m m)	z _g ⁽³⁾ (m m)	$\alpha^{(5)}$ (grado s)
v z), 5.000, .100	0.000, 0.00 1.100	00,	5.000	15.6 8	1152. 62	168.8 1	- 322.3 1	0.84	2.19	3.50	16.6
	(2) (3) (4)	Momento de i Coordenadas Producto de il	cto al eje indicad inercia a torsión del centro de gra nercia que forma el eje	unifor aveda	d	ercia U i	respecto a	al eje Y,	positivo e	en senti	do anti	ihorario	
			Pan	deo					Pa	ndeo I	atera	I	
		Pla	no XY		Planc	XZ		Al	a sup.			Ala ir	nf.
, ,	β	0	.00		1.0	00			0.00			0.00)
	Lĸ	0.	000		5.0	00		(0.000		0.000		0
	C_1		-	-						1.00	00		
	Ĺκ:	Coeficiente de Longitud de		el moi	mento crít	tico							

					COMP	DOBAC	TONES	/CTE I	OB SE-A)					
Barra		-	1	1						I	1	I		Estado
	b/t		-		My	Mz	M_yM_z	Vy	Vz	$N_t M_y M_z$	$N_c M_y M_z$	$NM_yM_zV_yV_z$	$M_tNM_yM_zV_yV_z$	
pésima en lateral	$b / t \le (b / t)_{Máx}$. Cumple	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽³⁾	x: 0 m η = 45.5	N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁶⁾	x: 0 m η = 11.0	N.P. ⁽⁷⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	N.P. ⁽¹⁰⁾	CUMPLE $\eta = 45.5$
Notación: b / t: Relación anchura / espesor i: Limitación de esbeltez N; Resistencia a tracción N; Resistencia a compresión M; Resistencia a flexión. Eje Y M; Resistencia a flexión. Eje Z M,M; Resistencia a flexión biaxial V; Resistencia a corte Y V; Resistencia a corte Y V; Resistencia a corte Z N,M,M; Resistencia a corte Z N,M,M; Resistencia a corte X I S, Lesistencia a cortente, axil y flexión N,M,M,V,V; Resistencia a cortante, axil y flexión M,MM,M,M,V; Resistencia a cortante, axil y flexión I S, Lesistencia a cortante, axil y flexión M,MM,M,M,V; Resistencia a torsión combinada con axil, flexión y cortante x: Distancia al origen de la barra η: Coeficiente de aprovechamiento (%) N,P; No procede														
(2) La comprobac (3) La comprobac (4) La comprobac (5) La comprobac (6) La comprobac (7) No hay intera (8) No hay intera (9) No hay intera	no proceden (N.P.): ión no procede, ya quión no procede, ya queción entre axil de tracción entre axil de cor ceción entre momento ción no procede, ya quión no procede, ya que qui que no procede, ya que qui que no procede, ya que qui que no procede, ya que	ne no hay ne no hay ne no hay ne no hay ne no hay nección y n npresión flector, a	axil de to axil de constant de	racción. compresió to flector. piaxial par o cortante flector pa nto flecto rante para	ón. ra ninguna c e. ara ninguna e ar para ningu a ninguna co	ombinaci combinac na combi	ión. Por l nación. F	or lo tan	to, la compre	obación no	procede.			

Relación anchura / espesor (CTE DB SE-A, Tabla 5.5 y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 5.2)

Se debe satisfacer:

c₁ / t: 3.8
$$\sqrt{}$$

c₂ / t: 3.0
$$\checkmark$$

Los rigidizadores proporcionan suficiente rigidez, ya que se cumple:

$$c_1 / b_1 : 0.250$$

$$c_2 / b_2 : 0.240$$

Donde:

h: Altura del alma.	h : 205.00 mm
b ₁ : Ancho del ala superior.	b ₁ : 60.00 mm
c ₁ : Altura del rigidizador del ala superior.	c ₁ : 15.00 mm
b ₂ : Ancho del ala inferior.	b ₂ : 50.00 mm
c ₂ : Altura del rigidizador del ala inferior.	c₂ : 12.00 mm
t: Espesor.	t : 4.00 mm

Nota: Las dimensiones no incluyen el acuerdo entre elementos.

<u>Limitación de esbeltez</u> (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La comprobación no procede, ya que no hay axil de compresión ni de tracción.

Resistencia a tracción (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.2) La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.3)

La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión. Eje Y (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.4.1)

Se debe satisfacer:

η : **0.455** 🗸

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo 0.000, 5.000, 1.100, para la combinación de acciones 0.80*G1 + 0.80*G2 + 1.50*V(270°) H1.

 $\mathbf{M}_{\mathbf{v},\mathbf{Ed}}$: Momento flector solicitante de cálculo pésimo. $\mathbf{M}_{\mathbf{v},\mathbf{Ed}}^+$: 11.84 kN·m

Para flexión negativa:

 $M_{y,Ed}$: Momento flector solicitante de cálculo pésimo. $M_{y,Ed}$: 0.00 kN·m

La resistencia de cálculo a flexión $M_{c,Rd}$ viene dada por:

M_{c,Rd} : <u>26.02</u> kN⋅m

Donde:

 $\mathbf{W}_{\mathbf{el}}$: Módulo resistente elástico correspondiente a la fibra de mayor tensión.

f_{yb}: Límite elástico del material base. (CTE DB SE-A, Tabla 4.1)

γ_{M0}: Coeficiente parcial de seguridad del material.

W_{el}: 99.36 cm³

f_{yb} : <u>275.00</u> MPa

 $\gamma_{M0}: 1.05$

Resistencia a pandeo lateral del ala superior: (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.2.4)

La comprobación a pandeo lateral no procede, ya que la longitud de pandeo lateral es nula.

Resistencia a pandeo lateral del ala inferior: (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.2.4)

La comprobación a pandeo lateral no procede, ya que no hay momento flector.

Resistencia a flexión. Eje Z (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.4.1)

La comprobación no procede, ya que no hay momento flector.

Resistencia a flexión biaxial (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.4.1)

La comprobación no procede, ya que no hay flexión biaxial para ninguna combinación.

Resistencia a corte Y (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.5) La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a corte Z (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.5)

Se debe satisfacer:

0.110 η:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo 0.000, 5.000, 1.100, para la combinación de acciones 0.80*G1 + 0.80*G2 + 1.50*V(270°) H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

 V_{Ed} : 14.40 kΝ

El esfuerzo cortante resistente de cálculo **V**_{b,Rd} viene dado por:

 $V_{b,Rd}$: 131.44 kΝ

Donde:

hw: Altura del alma.

t: Espesor.

\(\phi: Ángulo que forma el alma con la horizontal.

f_{bv}: Resistencia a cortante, teniendo en cuenta el pandeo.

h_w: 216.31 mm 4.00 t:

mm 90.0 grados φ:

f_{bv}: 159.50 MPa

Siendo:

 $\bar{\lambda}_{w}$: Esbeltez relativa del alma.

 $\overline{\lambda}_{w}$: 0.68

Donde:

fyb: Límite elástico del material

base. (CTE DB SE-A, Tabla 4.1) E: Módulo de elasticidad.

 $f_{yb}: 275.00$ MPa

E: 210000.00 MPa

1.05

γ_{Mo}: Coeficiente parcial de seguridad del material. γмо ∶

Resistencia a tracción y flexión (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículos 6.1.8 y 6.3)

No hay interacción entre axil de tracción y momento flector para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a compresión y flexión (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículos 6.1.9 y 6.2.5)

No hay interacción entre axil de compresión y momento flector para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante, axil y flexión (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.10)

No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a torsión combinada con axil, flexión y cortante (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.6)

La comprobación no procede, ya que no hay momento torsor.

Comprobación de flecha

El perfil seleccionado cumple todas las comprobaciones. Porcentajes de aprovechamiento:

- Flecha: 38.70 %

Coordenadas del nudo inicial: 0.000, 5.000, 1.100 Coordenadas del nudo final: 0.000, 0.000, 1.100

El aprovechamiento pésimo se produce para la combinación de hipótesis 1.00*G1 + 1.00*G2

+ 1.00 * V(270 $^{\circ}$) H1 a una distancia 2.500 m del origen en el tercer vano de la correa.

(Iy = 1153 cm4) (Iz = 169 cm4)

3.7. ENTREPLANTA

Se situará una entreplanta sobre los dos primeros vanos de la nave, ocupando un total de 200 m².

Se ha optado por emplear un tipo de forjado compuesto por una vigueta formada por una placa alveolar pretensada. Se trata de un elemento superficial plano de hormigón pretensado y prefabricado, aligerado mediante alveolos longitudinales y diseñado para soportar cargas producidas en forjados. Sus juntas laterales están especialmente diseñadas para que, una vez rellenadas de hormigón, puedan transmitir esfuerzos cortantes a losas adyacentes.

La placa alveolar es un elemento prefabricado de hormigón pretensado, con superficie plana y espesor constante, aligerado mediante orificios continuos en la placa llamados alvéolos, que reducen el peso del elemento. Adicionalmente, y gracias a la forma de este prefabricado permite que entre los alvéolos puedan colocarse instalaciones hidrosanitarias o eléctricas. Tiene un armado de negativos, que se posiciona en la superficie superior de la losa, centrado en los valles y cuya función es absorber los esfuerzos a tracción que se generan en los apoyos de la losa y un armado de positivos, que se sitúa en la parte inferior del valle y que a no ser

que el fabricante exija su colocación, será opcional.

Las placas alveolares se usan principalmente como sistema de entrepiso o cubierta, donde trabajan por lo general como elementos simplemente apoyados en una sola dirección. Estas placas deben proveer la capacidad para soportar las cargas verticales, además de transmitir adecuadamente las cargas horizontales resultantes de sismo o viento al sistema de resistencia lateral de la edificación. La transferencia de las fuerzas horizontales mediante la acción de diafragma se puede establecer a través de la acción compuesta con un hormigón de segunda etapa o sin este.

Este tipo de forjado es muy versátil, ya que se acomoda a muchos casos prácticos y multitud de soluciones en planta; de fácil ejecución, evitando la necesidad de encofrados y apuntalamiento, es más, proveen una plataforma segura y disponible inmediatamente después de instaladas para continuar con el resto de las actividades de obra; tiene una muy buena relación resistencia/peso, reduciendo el peso global de la estructura. Además, pueden acomodarse a grandes luces y la resistencia al fuego puede llegar hasta 4 horas, dependiendo del espesor de la placa y el recubrimiento del refuerzo. El hormigón y acero utilizado para la producción de las placas son de alta resistencia y cumplen con los estándares de calidad requeridos, asegurando una mayor durabilidad.

3.7.1. Selección de placa alveolar

Se ha seleccionado una placa alveolar proporcionada por la empresa Viguetas Navarra, compuesto por un canto de 15+5 cm de recubrimiento de hormigón.

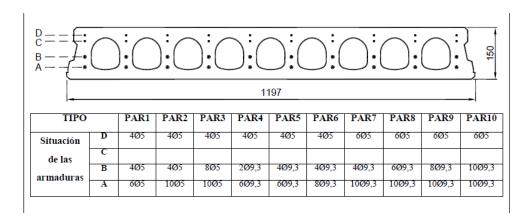


Figura 27: Losa alveolar PAR15.

Las características de este forjado son las siguientes:

- Resistencia a la compresión del hormigón: fck= 45 N/ mm²
- Resistencia última a tracción del acero: fck= 1860 N/ mm²

Para este forjado, el peso propio es el siguiente:

Tipo de Forjado	15+5	15+8	15+10
Peso (kN/m²)	3,67	4,42	4,91

Figura 28: Tipos y pesos de los forjados.

El peso propio de la losa será de 3,67 $\frac{kN}{m^2}$.

Se ha de tener también en cuenta la sobrecarga de uso para el cálculo de la losa alveolar. En este caso, al ser un espacio con la función de albergar oficinas y salas de reuniones, se encuentra en la categoría de uso C2.

Cat	egoría de uso	Subc	ategorías de uso	Carga uniforme [kN/m²]	Carga concentrada [kN]
				[KIN/III]	[KIA]
Α	Zonas residenciales	A1	Viviendas y zonas de habitaciones en, hospitales y hoteles	2	2
	The Section of the Control of the Co	A2	Trasteros	3	2
В	Zonas administrativas	13		2	2
		C1	Zonas con mesas y sillas	3	4
		C2	Zonas con asientos fijos	4	4
	Zonas de acceso al público (con la excep- ción de las superficies pertenecientes a las	СЗ	Zonas sin obstáculos que impidan el libre movimiento de las personas como vestíbulos de edificios públicos, administrativos, hoteles; salas de exposición en museos; etc.	5	4
	categorías A, B, y D)	C4	Zonas destinadas a gimnasio u actividades físicas	5	7
		C5	Zonas de aglomeración (salas de conciertos, estadios, etc)	5	4
		D1	Locales comerciales	5	4
D	Zonas comerciales	D2	Supermercados, hipermercados o grandes superficies	5	7
E	Zonas de tráfico y de ap	arcamier	nto para vehículos ligeros (peso total < 30 kN)	2	20 (1)
F	Cubiertas transitables ad			1	2
	Cubiertas accesibles	G1 ⁽⁷⁾	Cubiertas con inclinación inferior a 20°	1(4)(6)	2
G	únicamente para con-	(5)		0,4(4)	1
	únicamente para con- servación (3)	G2	Cubiertas con inclinación superior a 40°	0	2

Figura 29: Valores característicos de las sobrecargas de uso.

La sobrecarga de uso para la entreplanta será de:

$$q_U = 4 \frac{kN}{m^2}$$

El cálculo se hará para una losa de 1 metro de ancho, por lo que las cargas de peso propio y sobrecarga de uso serán de:

$$q_{p.p.} = 3.67 \ ^{kN}/_{m}$$

 $q_{U} = 4 \ ^{kN}/_{m}$

Para la comprobación de los estados últimos, se hará uso del programa informático CESPLA. Se introduce una viga apoyada en sus pilarillos intermedios, y las hipótesis de cargas a las que está influida, en este caso:

$$1,35 \cdot PP + 1,5 \cdot U$$

Se introducen 3 nudos empotrados, que distan 5 metros entre sí, para simular los apoyos de las vigas.

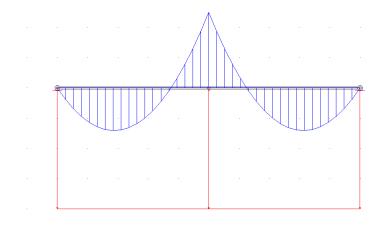


Figura 30: Diagramas de momentos soportado por la entreplanta.

Para determinar si la losa escogida cumple con los requerimientos estructurales, se recogen los momentos positivos máximos que soporta la viga, hallados mediante el CESPLA.

Figura 31: Momentos máximos y mínimos soportados por la losa.

El momento máximo que soporta la losa es de 19,33 kN·m, mientras que el momento mínimo es de -34,38 kN·m.

FORJ	ADO 15+5																
	Módulo		ELU. SOL	ICITACION	ES NORM	ALES			ELU	J. ESFUER	ZO CORTA	ANTE ULTI	MO			Rigide	7 E.I
TIDO	Resistente	ß*	Mutimo		Servicio		M _d > M ₀			M _d < M ₀	(kN/m)				R _u	rtigiue	ZLI
TIPO	Inferior		IVIutimo	M _o	M _o ·	$M_{0,2}$	Mid > Mig	le = 7	5 mm.	le = 10	00 mm.	le = 12	25 mm.	**ع	N _u	Total	Fis
	(mm³/m)			(m-ki	N/m)		(kN)	Vu	Va	Vu	Va	Vu	Va	7	(kN/m)	(m²-K	N/m)
PAR1	5175100		40,64	13,22	23,40	26,63	64,55	114,06	41,96	116,43	51,50	118,75	61,03			17494	1235
PAR2	5194875		54,23	19,31	29,52	34,91	70,19	119,25	62,30	122,18	76,46	125,04	90,62			17538	1689
PAR3	5203077		64,21	23,10	33,33	38,72	75,04	123,77	82,21	127,18	100,89	130,50	119,57			17553	2127
PAR4	5226757		76,14	29,30	39,57	48,15	78,54	114,17	52,52	116,48	64,45	118,74	76,39			17608	2471
PAR5	5237576	21	87,48	34,04	44,33	52,91	83,71	117,50	59,20	120,17	72,66	122,79	86,11	8	69.41	17627	3020
PAR6	5263666	2,	101,88	41,48	51,82	63,26	88,30	121,11	73,06	124,15	89,67	127,12	106,27	-	09,41	17684	3552
PAR7	5289280		115,96	48,15	58,54	72,84	93,93	125,48	85,95	128,97	105,49	132,36	125,02			17743	4068
PAR8	5299981		124,88	52,30	62,70	77,00	97,63	128,32	98,90	132,10	121,38	135,77	143,86			17762	4570
PAR9	5310649		133,28	56,29	66,71	81,01	101,08	131,04	111,48	135,10	136,82	139,03	162,15			17780	5059
PAR10	5321282		141,09	60,12	70,55	84,85	104,30	133,65	123,69	137,96	151,80	142,14	179,91			17799	5536

Figura 32: Características mecánicas del forjado a flexión positiva.

Según la tabla que nos proporciona el fabricante, se puede observar que la armadura tipo PAR1 es suficiente para soportar los esfuerzos positivos máximos a los que está expuestos.

40,64KNm > 19,33 KNm

TIPO DE LOS	SA	PAR1				
Disposición	Fila D	4Ø5				
de las						
Armaduras	4∅5					
Amadulas	6Ø5					
- (N/mm²)	Alambres	1.250				
σ _o (N/mm²)	Cordones	1.300				
Perdidas Totales %	Perdidas Totales %					

Figura 33: Disposición de los armados de la losa alveolar.

Para hallar la armadura de negativos, el proceso es casi idéntico, con la diferencia de que hay que acudir a la tabla que comprende estos esfuerzos:

FURJ	ADO 15+	5												
			Momen	to ultimo		Me	mentos se	nicio			Die	gidez	Corta	nte V _u
TIPO	Armado	Área Nervio	SECCIÓN	SECCIÓN		IVIC	menios se	TVICIO		χ***	Li	gidez	SECCIÓN	SECCIÓI
111 0	metro	1101110	TIPO	MACIZADO	Mfs	1	₈ - _b	IIIa - IV	IIIe	λ	Total	Fisurada	TIPO	MACIZAD
		(cm ² /m)	(m·k	N/m)			(m·kN/m)		1 1	(m²-	kN/m)	(kl	N/m)
N01	3∅8	1,51	10,90	10,90	15,75	9,10	6,90	4,60	2,30	1,81	18867	788	28,83	48,57
N02	4∅8	2,01	14,50	14,50	15,94	12,50	11,80	7,90	4,00	1,82	18877	1026	31,74	53,46
N03	3∅ 10	2,36	17,00	17,00	16,06	14,60	11,80	7,90	4,00	1,82	18884	1186	33,46	56,36
N04	5∅8	2,51	18,10	18,10	16,12	15,50	15,50	11,80	5,90	1,82	18887	1258	34,19	57,59
N05	4Ø 10	3,14	22,50	22,50	16,36	19,30	19,30	13,50	6,80	1,82	18899	1537	36,83	62,03
N06	3Ø 12	3,39	24,30	24,30	16,45	20,80	18,20	12,10	6,10	1,83	18904	1646	37,78	63,65
N07	7Ø 8	3,52	25,20	25,20	16,49	21,50	21,50	20,90	10,50	1,83	18906	1700	38,24	64,42
N08	5∅ 10	3,93	28,10	28,10	16,65	24,00	24,00	20,10	10,10	1,83	18914	1874	39,67	66,82
N09	4Ø 12	4,52	32,20	32,20	16,87	27,20	24,30	20,80	10,40	1,83	18925	2122	41,59	70,05
N10	10∅8	5,03	35,80	35,80	17,05	30,40	30,40	25,90	18,60	1,84	18935	2325	43,07	72,55
N11	7Ø 10	5,50	39,00	39,00	17,23	33,20	30,60	25,50	17,70	1,84	18944	2513	44,38	74,75
N12	5Ø 12	5,65	40,10	40,10	17,29	33,30	28,60	24,20	15,40	1,84	18947	2574	44,8	75,46
N13	3Ø 16	6,03	42,70	42,70	17,43	28,80	25,40	22,30	11,80	1,84	18954	2721	45,77	77,1
N14	13Ø 8	6,53	46,10	46,10	17,61	39,30	39,30	31,30	23,40	1,85	18964	2913	47,01	79,19
N15	10Ø 10	7,85	55,20	55,20	18,10	47,00	43,80	33,40	24,30	1,86	18989	3401	49,98	84,19
N16	7Ø 12	7,92	55,60	55,60	18,12	47,40	39,60	30,90	23,20	1,86	18990	3424	50,11	84,42
N17	4Ø 16	8,04	56,40	56,40	18,17	39,60	33,00	26,90	20,20	1,86	18993	3469	50,38	84,86
N18	5Ø 16	10,05	70,00	70,00	18,91	53,10	42,50	32,70	23,90	1,87	19031	4170	54,27	91,41
N19	13Ø 10	10,21	71,00	71,00	18,97	60,70	59,80	43,30	28,50	1,88	19034	4223	54,55	91,89
N20	10Ø 12	11,31	78,25	78,30	19,38	67,10	61,00	44,00	28,80	1,88	19055	4587	56,44	95,07
N21	7Ø 16	14,07	95,06	96,10	20,40	83,00	66,30	47,40	30,20	1,90	19108	5458	58,34	102,26
N22	13Ø 12	14,70	100,05	100,10	20,64	86,60	85,80	59,80	35,60	1,91	19120	5648	58,34	103,76
N23 N24	10Ø 16 13Ø 16	20,11 26,14	132,33 160.00	133,20 167,10	22,64 24,87	117,20 151.00	108,80 151.00	74,60 105.20	42,20 56,30	1,95 1,99	19224 19339	7173 8689	58,34 58,34	115,17 125,7

Figura 34: Características mecánicas del forjado a flexión negativa.

Es necesario emplear una armadura N10 para poder soportar el momento negativo máximo.

35,8 *KNm* > 34,38 *KNm*

Quedan así definidas las características de la losa alveolar.

3.8. ESTUDIO DE LOS PÓRTICOS

Para el estudio de estos elementos, se ha utilizado el programa de software para ingeniería CYPE.

el primer paso que se ha dado es utilizar el Generador de pórticos, un apartado de dicho programa donde se introduce el pórtico deseado, y donde se introducen las cargas que soporta la nave. El Generador de pórticos permite dimensionar las correas de cubierta y de fachada, una vez se hallan decidido ciertos parámetros, cómo la distancia entre correas o el número de apoyos.

Los datos iniciales que se ha de introducir en el Generador de pórticos son las medidas de estos mismos.

La nave dispondrá de 9 pórticos, separados 5 metros entre sí, de 10,68 metros de altura hasta la cumbrera, 8 metros de altura de las vigas y 20 metros de ancho.

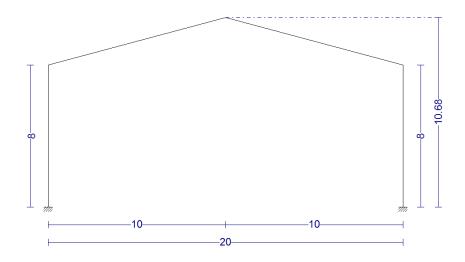


Figura 35: Croquis de los pórticos.

Una vez introducidos las dimensiones del pórtico, se insertan las cargas que actúan sobre la nave.

Se introducen las cargas de peso propio, generado por los paneles Sándwich de la cubierta y de la fachada; la carga de uso, de categoría G1, no concomitante con las demás cargas; la carga de viento, donde es grado de aspereza es IV, y la velocidad eólica es la de la zona C, además de introducir los valores de la apertura en el hastial

frontal; y la sobrecarga de nieve, considerando que la zona se encuentra a 50 metros de altura, y la exposición al viento es normal.

Figura 36: Cálculo sobrecarga de viento en CYPE.

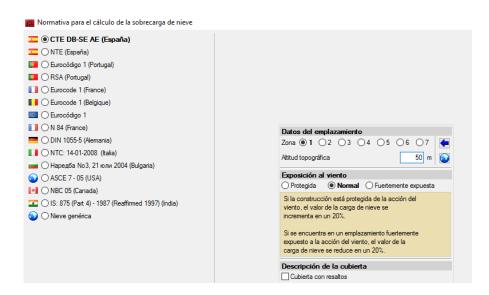


Figura 37: Cálculo sobrecarga de nieve en CYPE.

Una vez introducidos los datos generales de la obra, se procede al estudio de las correas, tanto de cubierta como de fachada.

El programa permite el dimensionamiento de estas, comprobando el ELU y el ELS, y proporcionando una biblioteca de perfiles. Una vez seleccionadas las correas, se

exporta el programa creado en el Generador de pórticos a CYPE3D, donde se estudiará el comportamiento al que está sometida la nave. Al exportar los pórticos, aparecen diversas opciones sobre la configuración de estos. Se construirán pórticos biempotrados, con pandeo en pórticos intranslacionales, y se decidirá por agruparlos diferenciándolos entre centrales y finales.

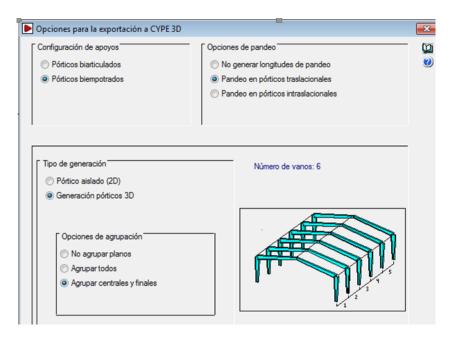


Figura 38: Opciones de exportación a CYPE3D.

Una vez terminada la operación, en el software CYPE 3D aparecerán lo 9 pórticos separados 5 metros.

El programa solo exporta los pórticos, los demás elementos requeridos para el dimensionamiento de la nave se han de introducir manualmente, como los elementos de entreplanta, las vigas de atado o los arriostramientos.

El próximo avance es en el programa de CYPE 3D, donde se completará la geometría de la nave: entreplanta, vigas de atado de entre pórticos, pilarillos y pilares en los hastiales, y arriostramientos.

3.8.1. Pandeo

El pandeo es un fenómeno llamado inestabilidad elástica que puede darse en elementos comprimidos esbeltos, y que se manifiesta por la aparición de desplazamientos importantes transversales a la dirección principal de compresión. Se consideran elementos esbeltos aquellos cuya longitud es mucho mayor que cuya

sección. Si dicha deformación aumenta hasta superar la resistencia de la estructura, se produce el colapso de esta. En ingeniería estructural el fenómeno aparece principalmente en pilares y columnas, y se traduce en la aparición de una flexión adicional en el pilar cuando se halla sometido a la acción de esfuerzos axiales de cierta importancia.

Será necesario definir los coeficientes de pandeo (β) para cada barra en el CYPE 3D. El coeficiente de pandeo es un valor que depende principalmente de las uniones de la barra y sirve además para definir su longitud de pandeo. O lo que es lo mismo, la distancia que hay entre dos puntos de inflexión de su deformada.

Al hacer la exportación de la obra desde el Generador de pórticos al CYPE 3D, los pórticos se han considerado traslacionales, es decir, se considera que los nudos de los pórticos pueden desplazarse trasversalmente. El plano de los cerramientos, en cambio, se considera intranslacionales gracias a la rigidez que le otorgan los elementos estructurales secundarios y los propios cerramientos de la nave.

La asignación de coeficientes se hará siguiendo el epígrafe 6.3.2. del CTE-DB-SE-A. Concretamente, se plantean en la tabla 6.1 los valores a usar en cada caso.

	Tabla	6.1 Longitud de p	andeo de barras c	anonicas	
Condiciones de extremo	biarticulada	biempotrada	empotrada articulada	biempotrada desplazable	en ménsula
Longitud L _k	1,0 L	0,5 L	0,7 L	1,0 L	2,0 L

Tabla 6.1 Longitud de pandeo de barras canónicas

Figura 39: Coeficientes y longitudes de pandeo.

Al llevar a cabo la asignación de los coeficientes de pandeo a cada barra, se tienen en cuenta los ejes locales de la misma. El plano débil de las barras es el paralelo a las alas que equidistan de ellas y que pasa por su eje de gravedad. Este plano está considerado el xy según los ejes locales que toma CYPE. El plano fuerte de las barras es el xz, coincide con el plano del alma de la pieza.

Pilares

En el plano de inercia débil (xy) se le asigna una longitud de pandeo (L_K) de 2,2 m correspondiente a la distancia entre correas laterales.

En el plano de inercia fuerte (xz) los pilares están biempotrados, existiendo en los nudos empotrados a la cimentación una imposibilidad de movimiento y de giro, le correspondería un coeficiente de pandeo de 0,7.

Pilares en hastiales

En el plano débil (xy) se le asigna una longitud de pandeo (L_K) de 2,2 m correspondiente a la distancia entre correas laterales.

En el caso del plano de inercia fuerte (xz) se distinguen los 2 hastiales:

- <u>Hastial delantero</u>: se diferencian 2 tramos: el primero, desde la parte inferior hasta la entreplanta, donde le corresponde un coeficiente de 0,7; y el segundo, desde la entreplanta al dintel, que le corresponde una longitud de pandeo L_K de 2,5 metros.

Dinteles

Para el plano de inercia débil (xy) se define la longitud de pandeo L_K , como la distancia entre correas de la cubierta 1 metro, debido a que las correas hacen de arriostramiento.

Para el plano de inercia fuerte (xz) se define Lk, como la longitud desde el pilar del pórtico hasta la cumbrera, por lo que será de 10,35 metros.

<u>Dinteles en hastiales</u>

Para el plano de inercia débil (xy) se define la longitud de pandeo LK, como la distancia entre correas de la cubierta 1 metro, debido a que las correas hacen de arriostramiento, al igual que en todos los dinteles.

En el plano de inercia del eje fuerte, al haber pilarillos, la longitud de pandeo será de 5,18 metros.

Vigas de entreplanta

en el plano de inercia débil (xy) el forjado ejerce la función de arriostramiento, impidiendo por completo el pandeo, por lo que les corresponde un coeficiente de 0. En el plano de inercia fuerte (xz) se consideran barras biempotradas traslacionales, por lo que les corresponde un coeficiente de 1.

Pilares de entreplanta

En el plano de inercia débil (xy) se considera una longitud de pandeo (Lk) de 2,2 metros, la distancia entre correas laterales, para los pilares exteriores. Para los pilares interiores, en el plano de inercia débil (xy) el coeficiente de pandeo será de 0,7.

En el plano de inercia fuerte (xz) le corresponde un coeficiente de pandeo de 0,7, ya que el empotramiento con la cimentación impide el movimiento y el giro en este nudo.

Pilarillos

Al plano débil (xy) le corresponde una longitud de pandeo (L_K) de 2,2 m, correspondiente a la distancia entre correas del cerramiento lateral. En el plano fuerte (xz), en cambio, está considerada una barra biempotrada traslacional, por lo que le corresponde un coeficiente de pandeo de 0,7.

Vigas de atado entre pórticos

en el plano de inercia débil (xy) ambas vigas van a tener un coeficiente de pandeo cuyo valor va a ser 0, debido al cerramiento de la cubierta que va a impedir su pandeo. En el plano de inercia fuerte (xz) van a tener un coeficiente de pandeo cuyo valor es 1, ya que son barras biarticuladas.

Diagonales

Se trata de barras biarticuladas, por lo que se considerara un coeficiente de pandeo de 1 en ambos planos.

Vigas del hueco de las escaleras

Al tratarse de barras biarticuladas, se considerará un coeficiente de pandeo 1 en ambos planos.

Vigas de atado de la puerta

Al tratarse de barras biarticuladas, se considerará un coeficiente de pandeo 1 en ambos planos.

3.8.2. Pandeo lateral

Para el pandeo lateral en los dinteles, se disponen de tornapuntas cada 5 correas, por lo que la separación entre arriostramientos del ala superior será de 1 metro, mientras que para el ala inferior será de 5 metros.

Las tornapuntas harán que se reduzca el pandeo lateral, fenómeno en el cual un elemento en compresión se flecta lateralmente sin giro ni cambios en su sección transversal.

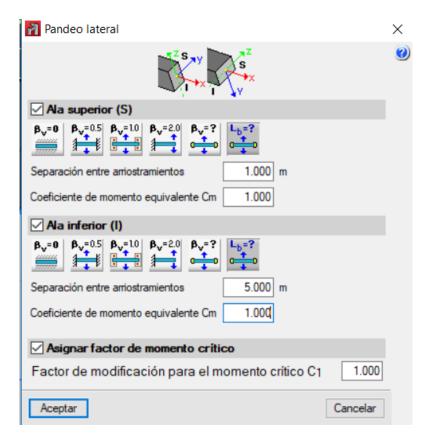


Figura 40: Longitudes de pandeo lateral.

3.8.3. Flecha límite

Para el cumplimiento de los Estados Límite de Servicio (ELS), es necesario limitar la flecha de las barras. Se limitarán las flechas máximas en los planos de las barras sometidas a flexión, que es el plano en el que van a dominar las cargas.

Se limitará la flecha relativa en el plano xz a L/300.

3.8.4. Cargas

El programa genera automáticamente las cargas desde el Generados de Pórticos. Tras realizar la exportación a CYPE 3D, la estructura tendrá lar cargas aplicadas y solo habrá que introducir las cargas de la entreplanta y las escaleras tras realizar los cálculos necesarios para su obtención, y se introducen en paños como carga distribuida superficial y el programa la reparte en los perfiles metálicos.

Peso propio

Se tienen en cuenta los pesos propios de todos los eventos que componen la estructura. Ha sido necesaria la creación de paños en la entreplanta para la

introducción de las cargas permanentes en la misma, peso propio del forjado y peso de elementos constructivos. También ha sido necesario la introducción de paños en la cubierta, entre los 3 primeros hastiales, para crear la sobrecarga que genera la presencia del falso techo

Uso

Es el peso de todo lo que puede gravitar sobre el edificio por razón de uso. En el caso de la nave a construir la categoría de uso es la G1 (según tabla 3.1 del DB SE-AE).

Para introducir la sobrecarga de uso de la entreplanta ha sido necesario crear un paño, al igual que para las escaleras, y se le ha introducido una sobrecarga de 4 kN/m², según la categoría C2.

Nieve

El programa tiene en consideración 3 casos:

- Carga de nieve simétrica
- Carga de nieve asimétrica derecha
- Carga de nieve asimétrica izquierda

Viento

Se plantean los siguientes casos:

- V (0°) H1 Viento a 0°, presión exterior tipo 1 sin acción en el interior
- V (0°) H2 Viento a 0°, presión exterior tipo 1 Succión interior
- V (0°) H3 Viento a 0°, presión exterior tipo 2 sin acción en el interior
- V (0°) H4 Viento a 0°, presión exterior tipo 2 Succión interior
- V (90°) H1 Viento a 90°, presión exterior tipo 1 sin acción en el interior
- V (90°) H2 Viento a 90°, presión exterior tipo 1 Succión interior
- V (180°) H1 Viento a 180°, presión exterior tipo 1 Presión interior
- V (180°) H2 Viento a 180°, presión exterior tipo 1 sin acción en el interior
- V (180°) H3 Viento a 180°, presión exterior tipo 2 Presión interior
- V (180°) H4 Viento a 180°, presión exterior tipo 2 sin acción en el interior
- V (270°) H1 Viento a 270°, presión exterior tipo 1 sin acción en el interior
- V (270°) H2 Viento a 270°, presión exterior tipo 1 Succión interior

3.8.5. Estado límite último (E.L.U.)

Una vez introducidos las cargas, y habiendo introducido todos los elementos, con las uniones pertinentes y sus coeficientes de pandeo, se procede a realizar los cálculos de la estructura.

El programa CYPE 3D analiza el estado limite ultimo de cada elemento. Dado su gran extensión, se mostrarán las barras más desfavorables de cada grupo, y un resumen sobre la resistencia de todas las barras.

3.8.5.1. Resumen E.L.U.

Barras							COMPROB	ACIONES (C	TE DB SE-A)							Estado
Duirus	λ	λw	Nt	N _c	M _Y		Vz	V _Y	M_YV_Z	M_zV_Y	NM _Y M _Z	$NM_YM_ZV_YV_Z$	Mt	M _t V _Z	M _t V _Y	
N1/N2	λ < 2.0 Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 7.906 m η = 0.3	x: 0 m η = 1.6	x: 0 m η = 22.6	x: 0 m η = 19.1	x: 0 m η = 5.3	x: 0 m η = 1.1	η < 0.1	η < 0.1	x: 0 m $\eta = 34.0$	η < 0.1	η = 0.7	x: 0 m η = 5.3	x: 0 m η = 1.1	CUMPLE η = 34.0
N3/N4	λ < 2.0 Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 7.906 m η = 0.3	x: 0 m η = 1.6	x: 0 m η = 22.6	x: 0 m η = 19.1	x: 0 m η = 5.3	x: 0 m η = 1.1	η < 0.1	η < 0.1	x: 0 m η = 34.2	η < 0.1	η = 0.7	x: 0 m η = 5.3	x: 0 m η = 1.1	CUMPLE η = 34.2
N6/N7	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	x: 7.898 m η = 1.6	x: 0 m η = 3.2	x: 7.9 m η = 41.6	x: 0 m η = 4.7	x: 7.9 m η = 8.4	η = 0.1	η < 0.1	$\eta < 0.1$	x: 0 m η = 44.4	η < 0.1	η = 0.6	x: 7.9 m η = 8.4	η = 0.1	CUMPLE η = 44.4
N8/N9	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	x: 7.898 m η = 1.6	x: 0 m η = 3.2	x: 7.9 m η = 41.7	x: 0 m η = 4.7	x: 7.9 m η = 8.4	η = 0.1	η < 0.1	η < 0.1	x: 0 m η = 44.6	η < 0.1	η = 0.6	x: 7.9 m η = 8.4	η = 0.1	CUMPLE η = 44.6
N11/N12	$\begin{array}{c} \overline{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	x: 7.898 m η = 1.4	x: 0 m η = 4.0	x: 7.9 m η = 58.3	x: 0 m η = 4.7	x: 7.9 m η = 8.8	η = 0.1	η < 0.1	η < 0.1	x: 7.9 m η = 61.4	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 61.4
N13/N14	$\begin{array}{c} \overline{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	x: 7.898 m η = 1.4	x: 0 m η = 4.0	x: 7.9 m η = 58.3	x: 0 m η = 4.7	x: 7.9 m η = 8.8	η = 0.1	η < 0.1	η < 0.1	x: 7.9 m η = 61.4	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 61.4
N12/N15	$\overline{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 10.353 m η = 2.4	x: 0.156 m η = 5.3	x: 0.156 m η = 84.8	$M_{Ed} = 0.00$ N.P. ⁽³⁾	x: 0.156 m η = 14.3	V _{Ed} = 0.00 N.P. ⁽⁴⁾	η < 0.1	N.P. ⁽⁵⁾	x: 0.156 m η = 93.8	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 93.8
N14/N15	$\overline{\lambda} < 2.0 \\ Cumple$	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	x: 10.353 m η = 2.4	x: 0.156 m η = 5.3	x: 0.156 m η = 84.8	$M_{Ed} = 0.00$ N.P. ⁽³⁾	x: 0.156 m η = 14.3	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	η < 0.1	N.P. ⁽⁵⁾	x: 0.156 m η = 93.8	η < 0.1	$M_{Ed} = 0.00$ N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 93.8
N16/N17	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	x: 7.898 m η = 1.4	x: 0 m η = 4.0	x: 7.9 m η = 58.3	x: 0 m η = 4.6	x: 7.9 m η = 8.8	η = 0.1	η < 0.1	η < 0.1	x: 7.9 m η = 61.4	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 61.4
N18/N19	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	x: 7.898 m η = 1.4	x: 0 m η = 4.0	x: 7.9 m η = 58.3	x: 0 m η = 4.7	x: 7.9 m η = 8.8	η = 0.1	η < 0.1	η < 0.1	x: 7.9 m η = 61.4	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 61.4
N17/N20	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	x: 10.353 m η = 2.4	x: 0.156 m η = 5.3	x: 0.156 m η = 84.8	$M_{Ed} = 0.00$ $N.P.^{(3)}$	x: 0.156 m η = 14.3	V _{Ed} = 0.00 N.P. ⁽⁴⁾	η < 0.1	N.P. ⁽⁵⁾	x: 0.156 m η = 93.8	η < 0.1	$M_{Ed} = 0.00$ N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 93.8
N19/N20	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 10.353 m η = 2.4	-	•	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0.156 m η = 14.3	V _{Ed} = 0.00 N.P. ⁽⁴⁾	η < 0.1	N.P. ⁽⁵⁾	x: 0.156 m η = 93.8	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 93.8
N21/N22	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 7.898 m η = 1.4	x: 0 m η = 4.0	x: 7.9 m η = 58.3	x: 0 m η = 4.6	x: 7.9 m η = 8.8	η = 0.1	η < 0.1	η < 0.1	x: 7.9 m η = 61.4	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 61.4
N23/N24	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 7.898 m η = 1.4	x: 0 m η = 4.0	x: 7.9 m η = 58.3	x: 0 m η = 4.6	x: 7.9 m η = 8.8	η = 0.1	η < 0.1	η < 0.1	x: 7.9 m η = 61.4	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 61.4
N26/N27	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 7.898 m η = 1.4	x: 0 m η = 4.0	x: 7.9 m η = 58.3	x: 0 m η = 4.5	x: 7.9 m η = 8.8	η = 0.1	η < 0.1	η < 0.1	x: 7.9 m η = 61.4	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 61.4
N28/N29	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 7.898 m η = 1.4	x: 0 m η = 4.0	x: 7.9 m η = 58.3	x: 0 m η = 4.6	x: 7.9 m η = 8.8	η = 0.1	η < 0.1	η < 0.1	x: 7.9 m η = 61.4	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 61.4
N27/N30	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 10.353 m η = 2.6			x: 0.156 m η < 0.1	x: 0.156 m η = 14.3	V _{Ed} = 0.00 N.P. ⁽⁴⁾	η < 0.1	N.P. ⁽⁵⁾	x: 0.156 m η = 93.8	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 93.8
N31/N54	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 5.348 m η = 1.0	x: 0 m η = 5.8	x: 0 m η = 28.2	x: 0 m η = 6.3	x: 0 m η = 8.7	η = 0.2	η < 0.1	η < 0.1	x: 0 m η = 33.4	η < 0.1	η = 0.2	x: 0 m η = 8.7	η = 0.2	CUMPLE η = 33.4
N54/N32	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 2.398 m η = 1.5	x: 0.15 m η = 4.0	x: 2.4 m η = 30.1	x: 0.15 m η = 1.6	x: 2.4 m η = 15.8	η = 0.1	η < 0.1	η < 0.1	x: 2.4 m η = 33.5	η < 0.1	η = 0.2	x: 2.4 m η = 15.3	η = 0.1	CUMPLE $\eta = 33.5$
N33/N55	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 5.348 m η = 1.0	x: 0 m η = 6.0	x: 0 m η = 28.8	x: 0 m η = 6.5	x: 0 m η = 8.6	η = 0.2	η < 0.1	η < 0.1	x: 0 m η = 33.9	η < 0.1	η = 0.2	x: 0 m η = 8.6	η = 0.2	CUMPLE η = 33.9
N55/N34	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	x: 2.398 m η = 1.5	x: 0.15 m η = 4.0	x: 2.4 m η = 29.7	x: 0.15 m η = 1.6	x: 2.4 m η = 15.8	η = 0.1	η < 0.1	η < 0.1	x: 2.4 m η = 33.1	η < 0.1	η = 0.2	x: 2.4 m η = 15.8	η = 0.1	CUMPLE η = 33.1
N36/N52	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	N _{Ed} = 0.00 N.P. ⁽⁶⁾	x: 0 m η = 6.2	x: 0 m η = 23.9	x: 0 m η = 6.4	x: 0 m η = 8.6	η = 0.2	η < 0.1	η < 0.1	x: 0 m η = 30.0	η < 0.1	η = 0.2	x: 0 m η = 8.6	η = 0.2	CUMPLE η = 30.0
N52/N37	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 2.398 m η = 1.1	x: 0.15 m η = 2.9	x: 2.4 m η = 30.6	x: 0.15 m η = 1.5	x: 2.4 m η = 17.1	η = 0.1	η < 0.1	η < 0.1	x: 2.4 m η = 33.0	η < 0.1	η = 0.6	x: 2.4 m η = 17.2	η = 0.1	CUMPLE η = 33.0
N38/N53	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	N _{Ed} = 0.00 N.P. ⁽⁶⁾	x: 0 m η = 7.1	x: 0 m η = 24.1	x: 0 m η = 6.6	x: 0 m η = 8.2	η = 0.2	η < 0.1	η < 0.1	x: 0 m η = 30.6	η < 0.1	η = 0.2	x: 0 m η = 8.2	η = 0.2	CUMPLE n = 30.6
N53/N39	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 2.398 m η = 1.1	x: 0.15 m η = 4.4	x: 2.4 m η = 32.2	x: 0.15 m η = 1.5	x: 2.4 m η = 17.6	η = 0.1	η < 0.1	η < 0.1	x: 2.4 m η = 35.9	η < 0.1	η = 0.5	x: 2.4 m η = 17.6	η = 0.1	CUMPLE n = 35.9
N41/N56	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 5.5 m η < 0.1	x: 0 m η = 4.1	x: 0 m η = 15.5	x: 0 m η = 7.4	x: 0 m η = 4.1	x: 0 m η = 0.5	η < 0.1	η < 0.1	x: 0 m η = 22.3	η < 0.1	η = 0.2	x: 0 m η = 4.1	x: 0 m η = 0.5	CUMPLE η = 22.3
N56/N42	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 2.406 m η = 0.4	x: 0 m η = 1.0	x: 2.408 m η = 9.6	x: 0 m η = 1.3	x: 2.408 m η = 2.2	x: 0 m η = 0.3	η < 0.1	η < 0.1	x: 2.408 m η = 10.5	η < 0.1	η = 0.2	x: 2.408 m η = 2.2	x: 0 m η = 0.3	CUMPLE η = 10.5
N43/N58		$\lambda_w \leq \lambda_{w,máx}$	x: 5.5 m η = 0.1	x: 0 m η = 3.9	x: 0 m η = 18.0	x: 0 m η = 7.6	x: 0 m η = 4.4	x: 0 m η = 0.5	η < 0.1	η < 0.1	x: 0 m η = 26.0	η < 0.1	η = 0.2	x: 0 m η = 4.4	x: 0 m η = 0.5	CUMPLE η = 26.0
N58/N44	$\bar{\lambda} < 2.0$ Cumple		x: 2.406 m η = 0.4	x: 0 m η = 1.3	x: 2.408 m η = 7.3		x: 2.408 m η = 1.7		η < 0.1	η < 0.1	x: 2.408 m η = 8.6	η < 0.1	η = 0.2	x: 2.408 m η = 1.7	x: 0 m η = 0.3	CUMPLE η = 8.6
N2/N7	$\bar{\lambda} < 2.0$ Cumple	$x: 0.313 \text{ m}$ $\lambda_w \leq \lambda_{w,máx}$ Cumple	η = 0.7	η = 15.1	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 15.7	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	-	N.P. ⁽²⁾	CUMPLE η = 15.7
N7/N12	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\begin{array}{c} x \colon 0.313 \text{ m} \\ \lambda_w \leq \lambda_{w,\text{máx}} \\ \text{Cumple} \end{array}$	η = 1.7	η = 9.3	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 9.9	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 9.9
N12/N17	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} x \colon 0.313 \text{ m} \\ \lambda_w \leq \lambda_{w,\text{máx}} \\ \text{Cumple} \end{array}$	η = 1.7	η = 8.8	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 9.5	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 9.5
N17/N22	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	Cumple	η = 1.7	η = 8.4	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 9.0	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 9.0
N22/N27	$\begin{array}{c} \overline{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\begin{array}{c} x\colon 0.313 \text{ m} \\ \lambda_w \leq \lambda_{w,\text{máx}} \\ \text{Cumple} \end{array}$	η = 1.7	η = 7.9	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 8.6	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 8.6

Parrae							COMPROB	ACIONES (C	TE DB SE-A)							Ectado
Barras			Nt	N _c	M _Y	Mz	Vz	V _Y	M _Y V _Z	M _Z V _Y	NM _Y M _Z	$NM_YM_ZV_YV_Z$	Mt	M _t V _Z	M_tV_Y	Estado
N27/N32	$\bar{\lambda} < 2.0$ Cumple	$\begin{array}{c} x \colon 0.313 \text{ m} \\ \lambda_w \leq \lambda_{w,\text{máx}} \\ \text{Cumple} \end{array}$	η = 1.7	η = 7.5	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 8.1	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 8.1
N32/N37	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$x: 0.313 \text{ m}$ $\lambda_w \leq \lambda_{w,m\acute{a}x}$ Cumple	η = 1.5	η = 7.7	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 8.3	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 8.3
N37/N42	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} x \colon 0.313 \ m \\ \lambda_w \leq \lambda_{w,\text{máx}} \\ \text{Cumple} \end{array}$	η = 0.2	η = 9.3	x: 2.5 m η = 1.2	$M_{Ed} = 0.00$ N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 10.0	x: 0.313 m η < 0.1	$M_{Ed} = 0.00$ $N.P.^{(1)}$	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 10.0
N4/N9	$\bar{\lambda} < 2.0$ Cumple	$\begin{array}{c} x \colon 0.313 \ m \\ \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	η = 0.7	η = 15.1	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 15.8	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 15.8
N9/N14	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$x: 0.313 \text{ m}$ $\lambda_w \leq \lambda_{w,m\acute{a}x}$ Cumple	η = 1.6	η = 9.5	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 10.1	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 10.1
N14/N19	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$x: 0.313 \text{ m}$ $\lambda_w \leq \lambda_{w,m\acute{a}x}$ Cumple	η = 1.6	η = 9.0	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 9.7	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 9.7
N19/N24	$\bar{\lambda} < 2.0$ Cumple	$x: 0.313 \text{ m}$ $\lambda_w \leq \lambda_{w,m\acute{a}x}$ Cumple	η = 1.6	η = 8.5	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 9.2	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 9.2
N24/N29	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$x: 0.313 \text{ m}$ $\lambda_w \leq \lambda_{w,m\acute{a}x}$ Cumple	η = 1.6	η = 8.1	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 8.8	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 8.8
N29/N34	$\begin{array}{c} \overline{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$x: 0.313 \text{ m}$ $\lambda_w \leq \lambda_{w,máx}$ Cumple	η = 1.6	η = 7.7	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 8.4	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 8.4
N34/N39	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$x: 0.313 \text{ m}$ $\lambda_w \leq \lambda_{w,máx}$ Cumple	η = 1.5	η = 7.8	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 8.5	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 8.5
N39/N44	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$x: 0.313 \text{ m}$ $\lambda_w \leq \lambda_{w,m\acute{a}x}$ Cumple	η = 0.2	η = 9.1	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 9.8	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 9.8
N49/N78	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	N _{Ed} = 0.00 N.P. ⁽⁶⁾	x: 0 m η = 21.5	x: 0 m n = 23.0	x: 0 m η = 5.6	x: 0 m η = 4.0	η = 0.1	η < 0.1	η < 0.1	x: 0 m η = 40.2	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 40.2
N78/N57	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	N _{Ed} = 0.00 N.P. ⁽⁶⁾	x: 0 m η = 20.6	x: 2.5 m η = 12.6	x: 2.5 m η = 2.6	x: 0 m η = 2.2	η = 0.1	η < 0.1	η < 0.1	x: 2.5 m η = 28.6	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 28.6
N57/N45	$\bar{\lambda} < 2.0$ Cumple	$x: 0 \text{ m}$ $\lambda_w \leq \lambda_{w,máx}$ Cumple	x: 5.18 m η = 1.5	x: 0 m η = 4.3	x: 1.036 m η = 13.3		x: 5.18 m η = 2.1	η < 0.1	x: 0 m η < 0.1	x: 0 m η < 0.1	x: 0.518 m η = 18.3	x: 0 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 18.3
N52/N75	$\bar{\lambda} < 2.0$	$\lambda_w \leq \lambda_{w,máx}$	η = 8.3	η = 4.3	x: 0.15 m	x: 4.4 m	x: 0.15 m	η < 0.1	η < 0.1	η < 0.1	x: 0.15 m	η < 0.1	η = 0.3	x: 0.15 m	η < 0.1	CUMPLE
N75/N60	$\frac{\bar{\lambda} < 2.0}{\text{Cumple}}$	Cumple $\lambda_w \leq \lambda_{w,m\acute{a}x}$ Cumple	η = 8.3	η = 1.5	η = 61.2 x: 0.6 m η = 59.7	η = 0.5 x: 0.6 m η = 0.6	η = 22.3 x: 0.6 m η = 32.9	η < 0.1	η < 0.1	η < 0.1	η = 69.0 x: 0.6 m η = 64.3	η < 0.1	η = 0.3	η = 20.5 x: 0.6 m η = 32.9	η < 0.1	η = 69.0 CUMPLE η = 64.3
N60/N62	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	η = 8.1	η = 1.6	x: 5 m η = 74.4	x: 5 m η = 0.6	x: 5 m η = 37.4	η < 0.1	η < 0.1	η < 0.1	x: 5 m η = 80.8	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 80.8
N62/N64	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	η = 8.1	η = 1.6	x: 0 m η = 74.4	x: 0 m η = 0.6	x: 0 m η = 36.5	η < 0.1	η < 0.1	η < 0.1	x: 0 m η = 80.8	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 80.8
N64/N53	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	η = 8.2	η = 1.7	x: 4.85 m η = 76.3	x: 0 m η = 0.6	x: 4.85 m η = 37.7	η < 0.1	η < 0.1	η < 0.1	x: 4.85 m η = 84.0	η < 0.1	η = 0.3	x: 4.85 m n = 37.1	η < 0.1	CUMPLE η = 84.0
N54/N74	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	η = 7.4	η = 2.5	x: 0.15 m η = 49.2	x: 4.4 m η = 0.5	x: 0.15 m n = 14.1	η < 0.1	η < 0.1	η < 0.1	x: 0.15 m n = 56.4	η < 0.1	η = 0.3	x: 0.15 m n = 12.2	η < 0.1	CUMPLE η = 56.4
N74/N66	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	η = 7.4	η = 2.4	x: 0.6 m η = 32.3	x: 0.6 m η = 0.6	x: 0.6 m n = 17.8	η < 0.1	η < 0.1	η < 0.1	x: 0.6 m η = 35.9	η < 0.1	η = 0.3	x: 0.6 m η = 17.8	η < 0.1	CUMPLE n = 35.9
N66/N68	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	η = 7.2	η = 2.6	x: 5 m η = 38.0	x: 5 m η = 0.6	x: 5 m η = 19.0	η < 0.1	η < 0.1	η < 0.1	x: 5 m η = 43.6	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 43.6
N68/N70			η = 7.2	η = 2.6	x: 0 m η = 38.0	x: 0.938 m η = 0.6	-	η < 0.1	η < 0.1	η < 0.1	x: 0 m η = 43.6	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 43.6
N70/N55		$\lambda_w \le \lambda_{w,máx}$ Cumple	η = 7.3	η = 2.6	x: 4.85 m η = 54.9	x: 0 m η = 0.6	x: 4.85 m η = 20.2	η < 0.1	η < 0.1	η < 0.1	x: 4.85 m η = 62.0	η < 0.1	η = 0.3	x: 0 m η = 18.6	η < 0.1	CUMPLE n = 62.0
N54/N72	$\bar{\lambda} < 2.0$ Cumple	x: 0.201 m	η = 0.4	η = 0.5	x: 3.22 m η = 66.2	x: 3.22 m η < 0.1	x: 0 m η = 6.6	η < 0.1	x: 0.201 m η < 0.1	x: 1.006 m η < 0.1		x: 0.201 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 66.6
N72/N76	$\bar{\lambda} < 2.0$ Cumple		η = 0.4	η = 0.4	x: 0 m n = 66.2	x: 0 m η < 0.1	x: 1.2 m η = 10.5	η < 0.1	η < 0.1	x: 0 m η < 0.1	x: 0 m η = 66.5	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 66.5
N76/N52	$\bar{\lambda} < 2.0$ Cumple	x: 0 m	η = 0.4	η = 0.4	x: 0 m η = 25.9	M _{Ed} = 0.00 N.P. ⁽³⁾	-	η < 0.1	x: 0 m η < 0.1	N.P. ⁽⁵⁾	x: 0 m η = 26.1	x: 0 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 26.1
N52/N56	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$x: 0.313 \text{ m}$ $\lambda_w \leq \lambda_{w,m\acute{a}x}$ Cumple	η = 0.6	η = 3.5	x: 2.5 m η = 1.5	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 4.9	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 4.9
N55/N53	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$x: 0.313 \text{ m}$ $\lambda_w \leq \lambda_{w,máx}$ Cumple	η = 0.4	η = 0.5	x: 2.5 m η = 1.5	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 2.0	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 2.0
N53/N58	$\bar{\lambda} < 2.0$ Cumple	$x: 0.313 \text{ m}$ $\lambda_w \leq \lambda_{w,máx}$ Cumple	η = 0.6	η = 3.5	x: 2.5 m η = 1.5	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 5.0	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 5.0
N59/N60	$\bar{\lambda} < 2.0$ Cumple	$x: 0 \text{ m}$ $\lambda_w \leq \lambda_{w,máx}$ Cumple	N _{Ed} = 0.00 N.P. ⁽⁶⁾	x: 0 m η = 45.2	x: 0 m η = 14.0	x: 0 m η = 0.8	η = 1.1	η < 0.1	x: 0 m η < 0.1	x: 0 m η < 0.1	x: 0 m η = 49.2	x: 0 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 49.2
N61/N62	$\bar{\lambda} < 2.0$ Cumple	$x: 0 \text{ m}$ $\lambda_w \leq \lambda_{w,máx}$ Cumple	N _{Ed} = 0.00 N.P. ⁽⁶⁾	x: 0 m η = 49.3	x: 0 m η = 13.0	x: 0 m η = 0.1	η = 1.0	η < 0.1	x: 0 m η < 0.1	x: 0 m η < 0.1	x: 0 m η = 54.7	x: 0 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 54.7
N63/N64	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$x: 0 m$ $\lambda_w \le \lambda_{w,máx}$ Cumple	N _{Ed} = 0.00 N.P. ⁽⁶⁾	x: 0 m η = 48.0	x: 0 m η = 12.7	x: 0 m η = 0.8	η = 1.0	η < 0.1	x: 0 m η < 0.1	x: 0 m η < 0.1	x: 0 m η = 53.1	x: 0 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 53.1
N65/N66	$\begin{array}{c} \overline{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$x: 0 \text{ m}$ $\lambda_w \leq \lambda_{w,m\acute{a}x}$ Cumple	N _{Ed} = 0.00 N.P. ⁽⁶⁾	x: 0 m η = 24.1	x: 0 m η = 13.4	x: 0 m η = 0.8	η = 1.1	η < 0.1	x: 0 m η < 0.1	x: 0 m η < 0.1	x: 0 m η = 27.4	x: 0 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 27.4

Barras	_		(I	1	1		ACIONES (C		1	l	1	1	1		Estado
NG7/NG0	$\bar{\lambda}$ $\bar{\lambda} < 2.0$	x: 0 m	N_{t} $N_{Ed} = 0.00$	N _c x: 0 m	M _Y x: 0 m	Mz x: 0 m		V _Y	M _Y V _Z x: 0 m	M _z V _Y x: 0 m	NM _Y M _Z x: 0 m	NM _Y M _Z V _Y V _Z x: 0 m	$M_{Ed} = 0.00$		M _t V _Y	CUMPLE
N67/N68	Cumple	$\lambda_w \le \lambda_{w,m\acute{e}x}$ Cumple x: 0 m	N.P. ⁽⁶⁾	η = 25.3	η = 12.6	η = 0.1	η = 1.0	η < 0.1	η < 0.1	η < 0.1	η = 30.2	η < 0.1	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	η = 30.2
N69/N70	$\bar{\lambda}$ < 2.0 Cumple	$\begin{array}{c} \lambda_w \leq \lambda_{w,\text{máx}} \\ \text{Cumple} \end{array}$	N _{Ed} = 0.00 N.P. ⁽⁶⁾	x: 0 m η = 24.8	x: 0 m η = 12.4	x: 0 m η = 0.8	η = 1.0	η < 0.1	x: 0 m η < 0.1	x: 0 m η < 0.1	x: 0 m η = 29.4	x: 0 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 29.4
N40/N45	$\begin{array}{l} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$x: 0.304 \text{ m}$ $\lambda_w \leq \lambda_{w,m\acute{a}x}$ Cumple	$N_{Ed} = 0.00$ $N.P.^{(6)}$	η = 2.1	x: 2.433 m η = 1.1	$M_{Ed} = 0.00$ N.P. ⁽³⁾	x: 4.865 m η = 0.4	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	x: 0.304 m η < 0.1	N.P. ⁽⁵⁾	x: 2.433 m η = 2.8	x: 0.304 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 2.8
N5/N10	$\begin{array}{l} \overline{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$x: 0.137 \text{ m}$ $\lambda_w \leq \lambda_{w,m\acute{a}x}$ Cumple	$N_{Ed} = 0.00$ $N.P.^{(6)}$	η = 7.5	x: 2.568 m η = 1.1	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0.135 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.137 m η < 0.1	N.P. ⁽⁵⁾	x: 2.568 m η = 8.1	x: 0.137 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 8.1
N72/N73	$\begin{array}{c} \overline{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$x: 0.275 \text{ m}$ $\lambda_w \leq \lambda_{w,máx}$ Cumple	η < 0.1	η < 0.1	x: 2.2 m η = 45.4	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 13.7	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.275 m η < 0.1	N.P. ⁽⁵⁾	x: 2.2 m η = 45.4	x: 0.275 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 45.4
N74/N73	$\bar{\lambda} < 2.0$ Cumple	$x: 0.201 \text{ m}$ $\lambda_w \leq \lambda_{w,m\acute{e}x}$ Cumple	η < 0.1	η < 0.1	x: 3.22 m η = 51.6	x: 3.22 m η < 0.1	x: 0 m η = 5.6	η < 0.1	x: 0.201 m η < 0.1	x: 1.006 m η < 0.1	x: 3.22 m η = 51.6	x: 0.201 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 51.6
N73/N77	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	η < 0.1	η < 0.1	x: 0 m η = 51.6	x: 0 m η < 0.1	x: 1.2 m η = 8.8	η < 0.1	η < 0.1	x: 0 m η < 0.1	x: 0 m η = 51.6	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 51.6
N77/N75	$\bar{\lambda} < 2.0$ Cumple	$x: 0 m$ $\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	η < 0.1	η < 0.1	x: 0 m η = 20.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0.58 m η = 11.6	η < 0.1	x: 0 m η < 0.1	N.P. ⁽⁵⁾	x: 0 m η = 20.2	x: 0 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 20.2
N76/N77	$\overline{\lambda} < 2.0$ Cumple	$x: 0.275 \text{ m}$ $\lambda_w \leq \lambda_{w,máx}$ Cumple	η < 0.1	η < 0.1	x: 2.2 m η = 9.0	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 2.7	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.275 m η < 0.1	N.P. ⁽⁵⁾	x: 2.2 m η = 9.0	x: 0.275 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 9.0
N79/N25	$\begin{array}{c} \overline{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 9.353 m η = 2.5	x: 0 m η = 5.3	x: 0 m η = 64.0	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 12.5	V _{Ed} = 0.00 N.P. ⁽⁴⁾	η < 0.1	N.P. ⁽⁵⁾	x: 0 m η = 72.0	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 72.0
N22/N79	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	x: 1 m η = 2.3	x: 0.156 m η = 5.3	x: 0.156 m η = 84.8		-	V _{Ed} = 0.00 N.P. ⁽⁴⁾	η < 0.1	N.P. ⁽⁵⁾	x: 0.156 m η = 93.8	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 93.8
N71/N40	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 5.176 m n = 3.3	x: 0 m η = 6.7	x: 1.294 m η = 23.1	x: 0 m η = 1.5	x: 5.176 m η = 9.8	η < 0.1	η < 0.1	η < 0.1	x: 1.035 m η = 30.6	η < 0.1	η = 0.4	x: 5.176 m η = 9.8	η < 0.1	CUMPLE n = 30.6
N32/N35	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 10.353 m η = 3.2	x: 0.156 m η = 8.4	x: 0.156 m η = 57.8		· ·	V _{Ed} = 0.00 N.P. ⁽⁴⁾	η < 0.1	N.P. ⁽⁵⁾	x: 0.156 m η = 69.9	η < 0.1	η = 0.1	x: 0.156 m η = 7.9	N.P. ⁽²⁾	CUMPLE η = 69.9
N34/N35	$\begin{array}{l} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	x: 10.353 m η = 3.2	x: 0.156 m η = 8.4	x: 0.156 m η = 56.9	x: 9.333 m η < 0.1	x: 0.156 m η = 12.1	V _{Ed} = 0.00 N.P. ⁽⁴⁾	η < 0.1	N.P. ⁽⁵⁾	x: 0.156 m η = 69.0	η < 0.1	η = 0.1	x: 0.156 m η = 8.0	N.P. ⁽²⁾	CUMPLE η = 69.0
N39/N71	$\begin{array}{l} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	x: 5.176 m η = 2.8	x: 0.156 m η = 6.8	x: 0.156 m η = 53.1	x: 5.176 m η = 1.5	x: 0.156 m η = 13.2	η < 0.1	η < 0.1	η < 0.1	x: 0.156 m η = 60.8	η < 0.1	η = 0.4	x: 0.156 m η = 13.2	η < 0.1	CUMPLE η = 60.8
N29/N30	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	x: 10.353 m η = 2.6	x: 0.156 m η = 5.3	x: 0.156 m η = 72.9	x: 0.156 m η < 0.1	x: 0.156 m η = 14.3	V _{Ed} = 0.00 N.P. ⁽⁴⁾	η < 0.1	N.P. ⁽⁵⁾	x: 0.156 m η = 81.4	η < 0.1	$M_{Ed} = 0.00$ $N.P.^{(1)}$	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 81.4
N80/N25	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	x: 9.353 m η = 2.5	x: 0 m η = 5.3	x: 0 m η = 64.0	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 12.5	V _{Ed} = 0.00 N.P. ⁽⁴⁾	η < 0.1	N.P. ⁽⁵⁾	x: 0 m η = 72.0	η < 0.1	$M_{Ed} = 0.00$ N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 72.0
N24/N80	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	x: 1 m η = 2.3	x: 0.156 m η = 5.3	x: 0.156 m η = 84.8	x: 0.156 m η < 0.1	x: 0.156 m η = 14.3	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	η < 0.1	N.P. ⁽⁵⁾	x: 0.156 m η = 93.8	η < 0.1	$M_{Ed} = 0.00$ N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 93.8
N48/N5	$\overline{\lambda} < 2.0$ Cumple	$\begin{array}{c} x\colon 0 \ m \\ \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	x: 10.68 m η = 1.9	x: 0 m η = 5.4	x: 0 m η = 86.4	x: 0 m η = 2.0	x: 0 m η = 13.4	η < 0.1	x: 0 m η < 0.1	x: 0 m η < 0.1	x: 0 m η = 87.0	x: 0 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 87.0
N4/N81	$\begin{array}{l} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	x: 5.176 m η = 0.8	x: 0.145 m η = 1.1	x: 0.145 m η = 17.2	x: 2.409 m η = 1.7	x: 5.176 m η = 4.5	x: 0.145 m η = 0.1	η < 0.1	η < 0.1	x: 0.145 m η = 18.4	η < 0.1	η = 18.5	x: 5.176 m η = 4.7	x: 0.145 m η = 0.2	η = 18.5
N81/N5	$\begin{array}{l} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	x: 5.104 m η = 2.1	x: 0 m η = 1.3	x: 0 m η = 7.2	x: 5.106 m η = 3.8	x: 0 m η = 3.3	x: 0 m η = 0.2	η < 0.1	η < 0.1	x: 5.106 m η = 8.6	η < 0.1	η = 18.9	x: 0 m η = 3.4	x: 0 m η = 0.2	CUMPLE η = 18.9
N50/N81	$\overline{\lambda} < 2.0$ Cumple	$\begin{array}{c} x\colon 0\ m\\ \lambda_w \leq \lambda_{w,m\acute{a}x}\\ Cumple \end{array}$	x: 9.21 m η = 0.8	x: 0 m η = 6.3	x: 0 m η = 72.4	x: 0 m η = 2.8	x: 0 m η = 11.9	η < 0.1	x: 0 m η < 0.1	x: 0 m η < 0.1	x: 0 m η = 74.6	x: 0 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 74.6
N9/N82	$\begin{array}{l} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	x: 5.176 m η = 1.6	x: 0.156 m η = 4.0	x: 0.156 m η = 65.9	x: 5.176 m η = 2.9	x: 0.156 m η = 14.1	η = 0.1	η < 0.1	η < 0.1	x: 0.156 m η = 70.7	η < 0.1	η = 1.1	x: 0.156 m η = 14.2	η = 0.1	CUMPLE η = 70.7
N82/N10	$\begin{array}{l} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	x: 5.176 m η = 1.9	x: 0 m η = 4.0	x: 2.329 m η = 27.9	x: 0 m η = 2.9	x: 5.176 m η = 5.5	η = 0.1	η < 0.1	η < 0.1	x: 2.071 m η = 32.5	η < 0.1	η = 1.1	x: 5.176 m η = 5.6	η = 0.1	CUMPLE η = 32.5
N81/N82	$\overline{\lambda} < 2.0$ Cumple	$x: 0.313 \text{ m}$ $\lambda_w \leq \lambda_{w,m\acute{a}x}$ Cumple	N _{Ed} = 0.00 N.P. ⁽⁶⁾	η = 12.0	x: 2.5 m η = 1.1	x: 2.5 m η = 1.5	x: 0 m η = 0.3	x: 0 m η = 0.1	x: 0.313 m η < 0.1	x: 0.313 m η < 0.1	x: 2.5 m η = 14.4	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 14.4
N2/N83	$\begin{array}{l} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	x: 5.176 m η = 0.8	x: 0.145 m η = 1.1	x: 0.145 m η = 17.2	x: 2.409 m η = 1.7	x: 5.176 m η = 4.5	x: 0.145 m η = 0.1	η < 0.1	η < 0.1	x: 0.145 m η = 18.4	η < 0.1	η = 18.5	x: 5.176 m η = 4.7	x: 0.145 m η = 0.2	η = 18.5
N83/N5	$\begin{array}{l} \bar{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	x: 5.104 m η = 2.1	x: 0 m η = 1.3	x: 0 m η = 7.2	x: 5.106 m η = 3.8	x: 0 m η = 3.3	x: 0 m η = 0.2	η < 0.1	η < 0.1	x: 5.106 m η = 8.6	η < 0.1	η = 18.9	x: 0 m η = 3.4	x: 0 m η = 0.2	CUMPLE η = 18.9
N7/N84	$\begin{array}{l} \bar{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	x: 5.176 m η = 1.6	x: 0.156 m η = 4.0	x: 0.156 m η = 65.9	x: 5.176 m η = 2.9	x: 0.156 m η = 14.1	η = 0.1	η < 0.1	η < 0.1	x: 0.156 m η = 70.6	η < 0.1	η = 1.1	x: 0.156 m η = 14.2	$\eta = 0.1$	CUMPLE η = 70.6
N84/N10	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{e}x} \\ Cumple \end{array}$	x: 5.176 m η = 1.9	x: 0 m η = 4.0	x: 2.329 m η = 27.9	x: 0 m η = 2.9	x: 5.176 m η = 5.5	η = 0.1	η < 0.1	η < 0.1	x: 2.071 m η = 32.5	η < 0.1	η = 1.1	x: 5.176 m η = 5.6	η = 0.1	CUMPLE η = 32.5
N46/N83	$\overline{\lambda} < 2.0$ Cumple	$\begin{array}{c} x\colon 0\ m\\ \lambda_w \leq \lambda_{w,\text{máx}}\\ Cumple \end{array}$	x: 9.21 m η = 0.8	x: 0 m η = 6.3	x: 0 m η = 72.4	x: 0 m η = 2.8	x: 0 m η = 11.9	η < 0.1	x: 0 m η < 0.1	x: 0 m η < 0.1	x: 0 m η = 74.6	x: 0 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 74.6
N83/N84	$\overline{\lambda} < 2.0$ Cumple	$x: 0.313 \text{ m}$ $\lambda_w \leq \lambda_{w,m\acute{a}x}$ Cumple	N _{Ed} = 0.00 N.P. ⁽⁶⁾	η = 12.0	x: 2.5 m η = 1.1	x: 2.5 m η = 1.5	x: 0 m η = 0.3	x: 0 m η = 0.1	x: 0.313 m η < 0.1	x: 0.313 m η < 0.1	x: 2.5 m η = 14.4	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 14.4
N44/N85	$\begin{array}{l} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	x: 5.176 m η = 0.2	x: 0.145 m η = 0.7	x: 0.145 m η = 11.2	x: 2.409 m η = 1.2	x: 5.176 m η = 4.2	x: 0.145 m η = 0.1	η < 0.1	η < 0.1	x: 0.145 m η = 12.0	η < 0.1	η = 9.5	x: 5.176 m η = 4.4	x: 0.145 m η = 0.1	1 CUMPLE η = 12.0
N85/N45	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	x: 5.104 m η = 0.4	x: 0 m η = 0.4	x: 0 m η = 6.5	x: 5.106 m η = 1.8	x: 0 m η = 3.2	x: 0 m η = 0.1	η < 0.1	η < 0.1	x: 0 m η = 6.8	η < 0.1	η = 8.5	x: 0 m η = 3.3	x: 0 m η = 0.1	CUMPLE η = 8.5
N51/N87	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	$N_{Ed} = 0.00$ $N.P.^{(6)}$	x: 0 m η = 21.6	x: 0 m η = 29.3	x: 0 m η = 5.6	x: 0 m η = 5.4	η = 0.1	η < 0.1	η < 0.1	x: 0 m η = 46.8	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 46.8
N87/N86	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	$N_{Ed} = 0.00$ $N.P.^{(6)}$	x: 0 m η = 20.8	x: 2.5 m η = 13.2	x: 2.5 m η = 2.5	x: 0 m η = 2.6	η = 0.1	η < 0.1	η < 0.1	x: 2.5 m η = 29.4	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 29.4
N86/N85	$\overline{\lambda} < 2.0$ Cumple	$\begin{array}{c} x \colon 0 \ m \\ \lambda_w \leq \lambda_{w, m\acute{a}x} \\ Cumple \end{array}$	x: 3.71 m η = 1.9	x: 0 m η = 4.9	x: 0.412 m η = 13.3	x: 0 m η = 2.5	x: 3.71 m η = 2.7	η < 0.1	x: 0 m η < 0.1	x: 0 m η < 0.1	x: 0 m η = 19.1	x: 0 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 19.1
N57/N86	$\overline{\lambda} < 2.0$	x: 0.313 m λ _w ≤ λ _{w,máx}	η = 2.0	η = 3.0	x: 2.5 m η = 68.7	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 20.9	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 70.1	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 70.1

							COMPROB	ACIONES (C	TE DB SE-A))						
Barras	λ	λ_w	Nt	Nc	M _Y	Mz	Vz	V _Y	M _Y V _Z	M_zV_Y	NM_YM_Z	NM _Y M _Z V _Y V _Z	Mt	M_tV_Z	M_tV_Y	Estado
N86/N58	$\begin{array}{c} \overline{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\begin{array}{c} x \colon 0.304 \ m \\ \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	η = 2.0	η = 3.1	x: 2.43 m η = 64.9	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 4.86 m η = 21.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.304 m η < 0.1	N.P. ⁽⁵⁾	x: 2.43 m η = 66.3	x: 0.304 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 66.3
N78/N87	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} x \colon 0.313 \text{ m} \\ \lambda_w \leq \lambda_{w,\text{máx}} \\ \text{Cumple} \end{array}$	η < 0.1	η < 0.1	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 1.2	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 1.2
N71/N85	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} x \colon 0.313 \ m \\ \lambda_w \leq \lambda_{w,\text{máx}} \\ \text{Cumple} \end{array}$	η < 0.1	η = 3.4	x: 2.5 m η = 1.1	x: 2.5 m η = 1.5	x: 0 m η = 0.3	x: 0 m η = 0.1	x: 0.313 m η < 0.1	x: 0.313 m η < 0.1	x: 2.5 m η = 5.7	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 5.7
N42/N88	$\begin{array}{c} \bar{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	$x: 5.176 \text{ m} \\ \eta = 0.1$	x: 0.145 m η = 0.9	x: 0.145 m η = 14.8	x: 2.409 m η = 1.2	x: 0.145 m η = 4.2	x: 0.145 m η = 0.1	η < 0.1	η < 0.1	x: 0.145 m η = 15.9	η < 0.1	η = 9.5	x: 0.145 m η = 4.3	x: 0.145 m η = 0.1	CUMPLE η = 15.9
N88/N45	$\begin{array}{c} \bar{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	x: 5.104 m η = 0.4	x: 0 m η = 0.4	x: 0 m η = 5.9	x: 5.106 m η = 1.8	x: 0 m η = 3.1	x: 0 m η = 0.1	η < 0.1	η < 0.1	x: 5.106 m η = 6.2	η < 0.1	η = 8.5	x: 0 m η = 3.2	x: 0 m η = 0.1	CUMPLE η = 8.5
N47/N91	$\begin{array}{c} \bar{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	$N_{Ed} = 0.00$ $N.P.^{(6)}$	x: 0 m η = 21.2	x: 0 m η = 29.3	x: 0 m η = 5.6	x: 0 m η = 5.4	η = 0.1	η < 0.1	η < 0.1	x: 0 m η = 45.1	η < 0.1	$M_{Ed} = 0.00 \\ N.P.^{(1)}$	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 45.1
N91/N90	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	$N_{Ed} = 0.00$ $N.P.^{(6)}$	x: 0 m η = 20.4	x: 2.5 m η = 13.2	x: 2.5 m η = 2.4	x: 0 m η = 2.6	η = 0.1	η < 0.1	η < 0.1	x: 2.5 m η = 28.3	η < 0.1	$M_{Ed} = 0.00$ N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 28.3
N90/N88	$\bar{\lambda} < 2.0$ Cumple	$\begin{array}{c} x\colon 0\ m\\ \lambda_w \leq \lambda_{w,m\acute{a}x}\\ Cumple \end{array}$	x: 3.71 m η = 2.0	x: 0 m η = 4.7	x: 0.412 m η = 13.3	x: 0 m η = 2.4	x: 3.71 m η = 2.7	η < 0.1	x: 0 m η < 0.1	x: 0 m η < 0.1	x: 0 m η = 18.5	x: 0 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 18.5
N37/N89	$\begin{array}{c} \overline{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	x: 5.176 m η = 2.9	x: 0.156 m η = 6.6	x: 0.156 m η = 50.8	x: 5.176 m η = 1.5	x: 0.156 m η = 12.2	η < 0.1	η < 0.1	η < 0.1	x: 0.156 m η = 58.3	η < 0.1	η = 0.4	x: 0.156 m η = 12.3	η < 0.1	CUMPLE η = 58.3
N89/N40	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\begin{array}{c} \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	x: 5.176 m η = 3.3	x: 0 m η = 6.7	x: 1.294 m η = 16.6	x: 0 m η = 1.5	x: 5.176 m η = 7.6	η < 0.1	η < 0.1	η < 0.1	x: 1.035 m η = 24.0	η < 0.1	η = 0.4	x: 5.176 m η = 7.6	η < 0.1	CUMPLE η = 24.0
N89/N88	$\begin{array}{c} \overline{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\begin{array}{c} x \colon 0.313 \text{ m} \\ \lambda_w \leq \lambda_{w,\text{máx}} \\ \text{Cumple} \end{array}$	N _{Ed} = 0.00 N.P. ⁽⁶⁾	η = 3.1	x: 2.5 m η = 1.1	x: 2.5 m η = 1.5	x: 0 m η = 0.3	x: 0 m η = 0.1	x: 0.313 m η < 0.1	x: 0.313 m η < 0.1	x: 2.5 m η = 5.2	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 5.2
N56/N90	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} x \colon 0.141 \ m \\ \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	η = 2.1	η = 3.1	x: 2.57 m η = 64.9	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0.14 m η = 21.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.141 m η < 0.1	N.P. ⁽⁵⁾	x: 2.57 m η = 66.4	x: 0.141 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 66.4
N90/N57	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} x \colon 0.313 \text{ m} \\ \lambda_w \leq \lambda_{w,\text{máx}} \\ \text{Cumple} \end{array}$	η = 2.0	η = 3.0	x: 2.5 m η = 68.7	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 20.9	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 70.1	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 70.1
N91/N78	$\bar{\lambda} < 2.0$ Cumple	$\begin{array}{c} x \colon 0.313 \ m \\ \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	η < 0.1	η < 0.1	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽³⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 0.313 m η < 0.1	N.P. ⁽⁵⁾	x: 2.5 m η = 1.2	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 1.2

Barras		COMPROBACIONES (CTE DB SE-A)													
barras	$\overline{\lambda}$	Nt	Nc	M _Y	Mz	Vz	V_{Y}	M_YV_Z	$M_{Z}V_{Y}$	NM_YM_Z	$NM_YM_ZV_YV_Z\\$	$M_{\rm t}$	M_tV_Z	M_tV_{Υ}	Estado
N41/N52	$\bar{\lambda} \le 4.0$ Cumple	η = 52.7	N _{Ed} = 0.00 N.P. ⁽⁷⁾	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$M_{Ed} = 0.00$ N.P. ⁽³⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 52.7
N36/N56	$\bar{\lambda} \le 4.0$ Cumple	$\eta = 52.4$	N D (7)	$M_{Ed} = 0.00$ $N.P.^{(3)}$	N D (3)	N D (4)	N D (4)	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 52.4
N56/N37	$\overline{\lambda} \le 4.0$ Cumple	η = 54.0	N _{Ed} = 0.00 N.P. ⁽⁷⁾	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ $N.P.^{(1)}$	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 54.0
N52/N42	$\bar{\lambda} \le 4.0$ Cumple	η = 56.0	N _{Ed} = 0.00 N.P. ⁽⁷⁾	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ $N.P.^{(1)}$	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 56.0
N3/N9	$\overline{\lambda} \le 4.0$ Cumple	η = 54.6	N _{Ed} = 0.00 N.P. ⁽⁷⁾	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ $N.P.^{(1)}$	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 54.6
N9/N81	$\overline{\lambda} \le 4.0$ Cumple	η = 72.4	N _{Ed} = 0.00 N.P. ⁽⁷⁾	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ N.P. ⁽¹⁾			CUMPLE η = 72.4
N81/N10			N _{Ed} = 0.00 N.P. ⁽⁷⁾					N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ N.P. ⁽¹⁾			CUMPLE $\eta = 30.2$
N83/N10	Cumpic		$N_{Ed} = 0.00$ $N.P.^{(7)}$	14.1 .	14.1 .	14.1 .	14.1 .	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE $\eta = 30.2$
N7/N83	$\bar{\lambda} \le 4.0$ Cumple	η = 72.5	$N_{Ed} = 0.00$ N.P. ⁽⁷⁾	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$M_{Ed} = 0.00$ N.P. ⁽³⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾		N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	N.P.	N.P.(2)		CUMPLE η = 72.5
N1/N7	$\bar{\lambda} \le 4.0$ Cumple	η = 55.5	N _{Ed} = 0.00 N.P. ⁽⁷⁾	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 55.5
N6/N2	$\overline{\lambda} \le 4.0$ Cumple	η = 53.9	N _{Ed} = 0.00 N.P. ⁽⁷⁾	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$M_{Ed} = 0.00$ N.P. ⁽³⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 53.9
N2/N84	$\bar{\lambda} \le 4.0$ Cumple	η = 86.0	N _{Ed} = 0.00 N.P. ⁽⁷⁾	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ $N.P.^{(1)}$	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 86.0
N84/N5	$\bar{\lambda} \le 4.0$ Cumple	η = 25.1	N _{Ed} = 0.00 N.P. ⁽⁷⁾	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$M_{Ed} = 0.00$ N.P. ⁽³⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ N.P. ⁽¹⁾			CUMPLE η = 25.1
N82/N5	$\bar{\lambda} \le 4.0$ Cumple	η = 25.1	N _{Ed} = 0.00 N.P. ⁽⁷⁾	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 25.1
N4/N82	$\bar{\lambda} \le 4.0$ Cumple	η = 86.0	N _{Ed} = 0.00 N.P. ⁽⁷⁾	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$M_{Ed} = 0.00$ N.P. ⁽³⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 86.0
N8/N4	$\overline{\lambda} \le 4.0$ Cumple	η = 55.5	N _{Ed} = 0.00 N.P. ⁽⁷⁾	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ $N.P.^{(1)}$	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 55.5
N53/N44	$\begin{array}{c} \overline{\lambda} \leq 4.0 \\ Cumple \end{array}$	η = 54.8	N _{Ed} = 0.00 N.P. ⁽⁷⁾	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$M_{Ed} = 0.00$ N.P. ⁽³⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ N.P. ⁽¹⁾	N.P. ⁽²⁾		CUMPLE η = 54.8
N58/N39	$\begin{array}{c} \overline{\lambda} \leq 4.0 \\ Cumple \end{array}$	η = 55.3	N _{Ed} = 0.00 N.P. ⁽⁷⁾	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ $N.P.^{(1)}$	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 55.3

D					CON	4PROBACIO	NES (CTE I	DB SE-	A)						F-t-d-
Barras	$\bar{\lambda}$	Nt	Nc	M _Y	Mz	Vz	V _Y	M_YV_Z	M_ZV_Y	NM_YM_Z	$NM_YM_ZV_YV_Z$			M_tV_Y	Estado
N38/N58	Cumple		IN.F.	IN.F.	$M_{Ed} = 0.00$ N.P. ⁽³⁾	INTE 15	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ $N.P.^{(1)}$	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 51.3
N43/N53	Curriple		INTE	IN.F.	N.P. ⁽³⁾	IN.F.	N.P. ⁽⁴⁾				N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ $N.P.^{(1)}$	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE $\eta = 53.8$
N39/N85	$\begin{array}{c} \overline{\lambda} \leq 4.0 \\ Cumple \end{array}$	$\eta = 32.3$	$N_{Ed} = 0.00$ $N.P.^{(7)}$	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$M_{Ed} = 0.00$ N.P. ⁽³⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ $N.P.^{(1)}$	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 32.3
N44/N71	Cumple		IN.F.	IN.F.	$M_{Ed} = 0.00$ N.P. ⁽³⁾	IN.F.	IN.F.	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ $N.P.^{(1)}$	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 24.7
N71/N45	$\begin{array}{l} \overline{\lambda} \leq 4.0 \\ Cumple \end{array}$	η = 12.0	$N_{Ed} = 0.00$ $N.P.^{(7)}$	$M_{Ed} = 0.00$ $N.P.^{(3)}$	$M_{Ed} = 0.00$ N.P. ⁽³⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ $N.P.^{(1)}$	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 12.0
N85/N40	$\overline{\lambda} \leq 4.0$ Cumple	η = 10.6	N.P. ⁽⁷⁾	N.P. ⁽³⁾	$M_{Ed} = 0.00$ N.P. ⁽³⁾		N.P. ⁽⁴⁾				N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ $N.P.^{(1)}$	N.P. ⁽²⁾		CUMPLE $\eta = 10.6$
N42/N89	$\overline{\lambda} \leq 4.0$ Cumple	η = 21.8	$N_{Ed} = 0.00$ $N.P.^{(7)}$		$M_{Ed} = 0.00$ N.P. ⁽³⁾						14.11	N.P.(1)	14.1	N.P.(2)	CUMPLE η = 21.8
N89/N45	$\begin{array}{l} \overline{\lambda} \leq 4.0 \\ Cumple \end{array}$	η = 15.1	$N_{Ed} = 0.00$ $N.P.^{(7)}$	$M_{Ed} = 0.00$ N.P. ⁽³⁾	$M_{Ed} = 0.00$ N.P. ⁽³⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 15.1
N88/N40	Culliple	$\eta = 7.6$	N.P. ⁽⁷⁾	N.P. ⁽³⁾	$M_{Ed} = 0.00$ N.P. ⁽³⁾	N.P. ⁽⁴⁾	N.P. ⁽⁴⁾	IN.P.			IN.F.	N.P.	IV.F.		CUMPLE η = 7.6
N37/N88	$\overline{\lambda} \leq 4.0$ Cumple	η = 35.5	$N_{Ed} = 0.00$ $N.P.^{(7)}$	$M_{Ed} = 0.00$ N.P. ⁽³⁾	$M_{Ed} = 0.00$ N.P. ⁽³⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	$V_{Ed} = 0.00$ N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	$M_{Ed} = 0.00$ $N.P.^{(1)}$	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 35.5

- Notación: $\bar{\lambda}$: Limitación de esbeltez
 - λw: Abolladura del alma inducida por el ala comprimida
 - Nt: Resistencia a tracción
 - *N_c: Resistencia a compresión*
 - My: Resistencia a flexión eje Y
 - Mz: Resistencia a flexión eje Z
 - Vz: Resistencia a corte Z
 - Vy: Resistencia a corte Y
 - M_YV_Z : Resistencia a momento flector Y y fuerza cortante Z combinados
 - M_ZV_Y : Resistencia a momento flector Z y fuerza cortante Y combinados
 - NM_YM_Z: Resistencia a flexión y axil combinados
 - NM_YM_ZV_YV_Z: Resistencia a flexión, axil y cortante combinados
 - Mt: Resistencia a torsión
 - M_tV_Z: Resistencia a cortante Z y momento torsor combinados
 - M_tV_Y: Resistencia a cortante Y y momento torsor combinados
 - x: Distancia al origen de la barra
 - η: Coeficiente de aprovechamiento (%)
 - N.P.: No procede

Comprobaciones que no proceden (N.P.):

- (1) La comprobación no procede, ya que no hay momento torsor.
 (2) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

 (3) La comprobación no procede, ya que no hay momento flector.

- (4) La comprobación no procede, ya que no hay esfuerzo cortante.
 (5) No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
- (6) La comprobación no procede, ya que no hay axil de tracción.
- (7) La comprobación no procede, ya que no hay axil de compresión.
- (8) No hay interacción entre axil y momento flector ni entre momentos flectores en ambas direcciones para ninguna
- combinación. Por lo tanto, la comprobación no procede.

 (9) No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Tabla 11: Resumen comprobaciones E.L.U.

3.8.5.2. E.L.U. de las barras más desfavorables de cada grupo **Dintel hastial**

Barra N81/N5

Perfil: HE 260 A Material: Acero (S275)												
	Nuc	los	Lanaitu	Cai	acterístic	as med	cáni	cas				
	Inicial	Final	Longitu (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	_	I _z ⁽¹⁾ (cm4)					
Z	N81	N5	5.176	86.80	10450.00	3668	.00	52.37				
	Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme											
			Pande	0	Pa	ndeo I	ate	ral				
		Pland	XY	Plano X	Z Ala s	sup.	Αl	a inf.				
	β	0.1	9	1.00	0.0	00	C	0.00				
	L _K	1.00	00	5.200	0.0	00 0		.000				
	C _m	1.00	00	1.000	1.0	00	00 1					
	C_1		-		1.000							
	Notación: β: Coeficiente de pandeo Lκ: Longitud de pandeo (m) Cm: Coeficiente de momentos C1: Factor de modificación para el momento crítico											

D						COMP	ROBACIO	ONES (C	TE DB SI	E-A)						Estado
Barra	$\bar{\lambda}$	λw	Nt	Nc	MY	Mz	Vz	VY	MyVz	MzVy	NM _Y Mz	NMyMzVyVz	Mt	MtVz	MtVY	Estado
N81/N5	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\lambda_w \leq \lambda_{w,máx}$ Cumple	x: 5.104 m η = 2.1	x: 0 m η = 1.3	x: 0 m η = 7.2	x: 5.106 m η = 3.8	x: 0 m η = 3.3	x: 0 m η = 0.2	η < 0.1	η < 0.1	x: 5.106 m η = 8.6	η < 0.1	η = 18.9			CUMPLE η = 18.9
Aw: Ne: Ne: My: My: Mz: Vy: Ny: Myl MzNM NM NM NM NM	Cumple Cumple $ \eta = 2.1 \eta = 1.3 \eta = 7.2 \eta = 3.8 \eta = 3.3 \eta = 0.2 $															

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

 $\overline{\lambda}$: 0.55

86.80

A:

Donde:

Clase: Clase de la sección, según la capacidad de deformación Clase: y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 275.00 N_{cr}: Axil crítico de pandeo elástico. **N**_{cr}: 8009.93 kΝ

cm²

MPa

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

- a) Axil crítico elástico de pandeo por flexión respecto al eje Y.
- N_{cr,y}: 8009.93 kN
- b) Axil crítico elástico de pandeo por flexión respecto al eje Z.
- N_{cr,z}: 76023.59 kN
- c) Axil crítico elástico de pandeo por torsión.
- $N_{cr,T}$: ∞

Donde:

- **I**_y: Momento de inercia de la sección bruta, respecto al eje Y.
- \mathbf{I}_z : Momento de inercia de la sección bruta, respecto al eje Z.
- It: Momento de inercia a torsión uniforme.
- Iw: Constante de alabeo de la sección.
- E: Módulo de elasticidad.
- **G**: Módulo de elasticidad transversal.
- $\mathbf{L}_{\mathbf{k}\mathbf{y}}$: Longitud efectiva de pandeo por flexión, respecto al eje Y.
- $\mathbf{L}_{\mathbf{kz}}$: Longitud efectiva de pandeo por flexión, respecto al eje Z.
- Lkt: Longitud efectiva de pandeo por torsión.
- i_0 : Radio de giro polar de la sección bruta, respecto al centro de torsión.

- **I_y** : <u>10450.00</u> cm4
- **I**_z: 3668.00 cm4
- **I**_t: 52.37 cm4
- **I**_w: 516400.00 cm6
- **E**: 210000 MPa
- **G**: 81000 MPa
- **L**_{ky}: 5.200 m
- **L_{kz}**: 1.000 m
- **L**_{kt} : _____0.000 ___ m
- **i**₀: <u>12.75</u> cm

Siendo:

- i_y , i_z : Radios de giro de la sección bruta, respecto a los ejes principales de inercia Y y Z.
- yo , zo: Coordenadas del centro de torsión en la dirección de los ejes principales Y y Z, respectivamente, relativas al centro de gravedad de la sección.
- **i_y** : ____10.97 __cm
- **i**_z : ____6.50 __cm
- **y₀**: 0.00 mm
- **z**₀: _____0.00 ___mm

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE Ingenieros, basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

30.00 ≤ 165.08 ∨

Donde:

hw: Altura del alma. **h**_w: 225.00 mm tw: Espesor del alma. 7.50 t_w : mm Aw: Área del alma. $A_w: 16.88 \text{ cm}^2$ **A**_{fc,ef}: 32.50 cm² Afc,ef: Área reducida del ala comprimida. k: Coeficiente que depende de la clase de la sección. **k**: 0.30

E: 210000 MPa E: Módulo de elasticidad. f_{vf}: Límite elástico del acero del ala comprimida. f_{vf}: 275.00 MPa

Siendo:

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: **0.021 √**

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 5.104 m del nudo N81, para la combinación de acciones $1.35 \cdot PP + 1.05 \cdot Qforjado(C) + 1.5 \cdot V(270^{\circ})H1 + 0.75 \cdot N(EI)$.

N_{t,Ed}: Axil de tracción solicitante de cálculo pésimo. N_{t,Ed}: 48.54 kN

La resistencia de cálculo a tracción N_{t,Rd} viene dada por:

N_{t,Rd}: 2273.33 kN

Donde:

A: Área bruta de la sección transversal de la barra. A: 86.80 cm² f_{vd}: Resistencia de cálculo del acero. fyd: 261.90 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 275.00 MPa γ_{м0}: 1.05 γ_{M0} : Coeficiente parcial de seguridad del material.

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

0.011

η: 0.013

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N81, para la combinación de acciones

 $1.35 \cdot PP + 1.05 \cdot Qforjado(C) + 1.5 \cdot V(90^{\circ})H1 + 0.75 \cdot N(EI)$.

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo. $N_{c,Ed}$: 25.76 kN

La resistencia de cálculo a compresión N_{c,Rd} viene dada por:

N_{c,Rd}: 2273.33 kN

cm²

Donde:

Clase: Clase de la sección, según la capacidad de Clase : 1 deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2

86.80 **f**_{vd}: Resistencia de cálculo del acero. **f**_{vd}: 261.90 MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y: 275.00 MPa

YMO: Coeficiente parcial de seguridad del material.

γ_{м0}: 1.05

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo N_{b,Rd} en una barra comprimida viene dada por:

N_{b,Rd}: 1962.58 kN

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2

86.80 cm² f_{yd}: 261.90 MPa **f**_{vd}: Resistencia de cálculo del acero.

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_y**: 275.00 MPa

үм1: Coeficiente parcial de seguridad del material.

χ: Coeficiente de reducción por pandeo.

0.86 χy:

γ**м1**: 1.05

 χ_z : 1.00 Siendo: 0.71 φν: φ_z : 0.51 α: Coeficiente de imperfección elástica. 0.34 0.49 α_z : $\overline{\lambda}$: Esbeltez reducida. $\overline{\lambda}_{\mathbf{v}}$: 0.55 λ, : 0.18 N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores: N_{cr}: 8009.93 kN N_{cr,v}: Axil crítico elástico de pandeo por flexión respecto al eje Y. **N**_{cr,y}: 8009.93 kN N_{cr.z}: Axil crítico elástico de pandeo por flexión respecto al eje Z. N_{cr,z}: 76023.59 kN N_{cr.T}: Axil crítico elástico de pandeo por torsión. $N_{cr,T}$:

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η : **0.072** 🗸

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N81, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N81, para la combinación de acciones

1.35·PP+1.05·Qforjado(C)+1.5·V(180°)H2+0.75·N(EI).

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

El momento flector resistente de cálculo Mc,Rd viene dado por:

M_{Ed}⁻ : 17.42 kN⋅m

M_{Ed}⁺ : 5.33 kN⋅m

M_{c,Rd}: 240.90 kN⋅m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

 $\mathbf{W}_{\text{pl,y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

Clase: 1

 $W_{pl,y}: 919.80 \text{ cm}^3$

f_{vd}: Resistencia de cálculo del acero.

f_{yd}: 261.90 MPa

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: $\underline{275.00}$ MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.038** 🗸

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 5.106 m del nudo N81, para la combinación de acciones 1.35·PP+1.5·V(270°)H1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁺: 4.07 kN⋅m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 5.106 m del nudo N81, para la combinación de acciones 0.8·PP+1.5·V(90°)H1+0.75·N(EI).

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

 M_{Ed} : 4.27 kN·m

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

M_{c,Rd} : <u>112.67</u> kN⋅m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

 $\mathbf{W}_{\mathsf{pl},\mathsf{z}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

f_{yd}: Resistencia de cálculo del acero.

Clase: 1

 $W_{pl,z}: 430.20 \text{ cm}^3$

f_{yd}: 261.90 MPa

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: $\underline{275.00}$ MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : $\underline{1.05}$

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: 0.033 🗸

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N81, para la combinación de acciones

1.35·PP+1.05·Qforjado(C)+1.5·V(180°)H2+0.75·N(EI).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 14.20 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 434.54 kN

Donde:

A_v: Área transversal a cortante.

 $A_v: 28.74 \text{ cm}^2$

Siendo:

h: Canto de la sección. tw: Espesor del alma.

h: 250.00 mm **t**_w: 7.50 mm

f_{vd}: Resistencia de cálculo del acero.

fyd: 261.90 MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 275.00 MPa

γ_{M0}: Coeficiente parcial de seguridad del material.

γмo: 1.05

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

23.60 < 64.71

Donde:

 λ_w : Esbeltez del alma.

 $\lambda_{w}: 23.60$

λ_{máx}: Esbeltez máxima.

 $\lambda_{\text{máx}}: 64.71$

ε: Factor de reducción.

ε: 0.92

Siendo:

 $\mathbf{f_{ref}}$: Límite elástico de referencia. $\mathbf{f_{ref}}$: 235.00 MPa $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: 275.00 MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: 0.002 **√**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N81, para la combinación de acciones 0.8·PP+1.5·V(90°)H1+0.75·N(EI).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 2.25 kN

El esfuerzo cortante resistente de cálculo **V**c,Rd viene dado por:

 $V_{c,Rd}$: 1057.34 kN

Donde:

 A_v : Área transversal a cortante. A_v : 69.93 cm²

Siendo:

A: Área de la sección bruta.A: 86.80 cm²d: Altura del alma.d: 225.00 mm $\mathbf{t_w}$: Espesor del alma. $\mathbf{t_w}$: 7.50 mm

 \mathbf{f}_{yd} : Resistencia de cálculo del acero. \mathbf{f}_{yd} : 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : __275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : __1.05

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{\mathsf{c},\mathsf{Rd}}$.

 $14.20 \text{ kN} \le 217.27 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones

 $1.35 \cdot PP + 1.05 \cdot Qforjado(C) + 1.5 \cdot V(180^{\circ})H2 + 0.75 \cdot N(EI).$

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 14.20 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 434.54 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{c,Rd}$.

 $2.25 \text{ kN} \le 528.67 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(90^{\circ})H1 + 0.75 \cdot N(EI)$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 2.25 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 1057.34 kN

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.086**

η: **0.048** 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 5.106 m del nudo N81, para la combinación de acciones $0.8 \cdot PP+1.05 \cdot Qforjado(C)+1.5 \cdot V(270^\circ)H1$.

Donde:

 $\mathbf{N}_{\mathsf{t,Ed}}$: Axil de tracción solicitante de cálculo pésimo.

 $\mathbf{M}_{\mathbf{y}, \mathbf{Ed}}$, $\mathbf{M}_{\mathbf{z}, \mathbf{Ed}}$: Momentos flectores solicitantes de cálculo pésimos, según los ejes Y y Z, respectivamente.

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos

planos, para axil y flexión simple.

 $N_{t,Ed}$: 47.51 kN $M_{y,Ed}^+$: 7.19 kN·m

 $\mathbf{M}_{\mathbf{z},\mathbf{Ed}}^{+}$: 3.95 kN·m

Clase: 1

 $M_{pl,Rd,z}$: 112.67 kN·m

 $W_{v,com}: 919.80 \text{ cm}^3$

A: 86.80 cm²

 $N_{pl,Rd}$: Resistencia a tracción. $N_{pl,Rd}$: 2273.33 kN

 $\mathbf{M}_{\mathsf{pl},\mathsf{Rd},\mathsf{yr}}$ $\mathbf{M}_{\mathsf{pl},\mathsf{Rd},\mathsf{z}}$: Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z,

respectivamente

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.1)

 $\mathbf{M}_{ef,Ed}$: Momento flector solicitante de cálculo pésimo. $\mathbf{M}_{ef,Ed}$: 3.17 kN·m

Siendo:

σ_{com,Ed}: Tensión combinada en la fibra extrema

comprimida. $\sigma_{com,Ed}$: 3.44 MPa

W_{y,com}: Módulo resistente de la sección referido a la fibra extrema comprimida, alrededor del eje Y.

A: Área de la sección bruta.

 $\mathbf{M_{b,Rd,y}}$: Momento flector resistente de cálculo. $\mathbf{M_{b,Rd,y}}: \underline{240.90}$ kN·m

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V}_{\mathbf{Ed}}$ es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V}_{\mathbf{c},\mathbf{Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $1.35 \cdot PP + 1.05 \cdot Qforjado(C) + 1.5 \cdot V(180^{\circ})H2 + 0.75 \cdot N(EI)$.

 $14.20 \text{ kN} \le 209.78 \text{ kN}$

/

Donde:

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

Se debe satisfacer:

η: **0.189** 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.5·V(90°)H1+0.75·N(EI).

 $M_{T,Ed}$: Momento torsor solicitante de cálculo pésimo. $M_{T,Ed}$: 1.20 kN·m

El momento torsor resistente de cálculo $M_{T,Rd}$ viene dado por:

M_{T,Rd}: 6.34 kN⋅m

Donde:

 $\mathbf{W_T}$: Módulo de resistencia a torsión. $\mathbf{W_T}$: $\underbrace{41.90}_{\mathbf{f_{vd}}}$ cm³ $\mathbf{f_{vd}}$: Resistencia de cálculo del acero. $\mathbf{f_{vd}}$: $\underbrace{261.90}_{\mathbf{f_{vd}}}$ MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η : **0.034 √**

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N81, para la combinación de acciones $1.35 \cdot PP+1.05 \cdot Qforjado(C)+1.5 \cdot V(180^{\circ})H2+0.75 \cdot N(EI)$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 14.20 kN

 $M_{T,Ed}$: Momento torsor solicitante de cálculo pésimo. $M_{T,Ed}$: 0.54 kN·m El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado

oor:

 $V_{pl,T,Rd}$: 419.56 kN

Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{pl,Rd}$: $\underline{434.54}$ kN $\tau_{T,Ed}$: Tensiones tangenciales por torsión. $\tau_{T,Ed}$: $\underline{12.81}$ MPa

Siendo:

 \mathbf{W}_{T} : Módulo de resistencia a torsión. \mathbf{W}_{T} : $\underbrace{41.90}_{\mathsf{CM}}$ cm³ \mathbf{f}_{yd} : Resistencia de cálculo del acero. \mathbf{f}_{yd} : $\underbrace{261.90}_{\mathsf{CM}}$ MPa

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: $\underline{275.00}$ MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.002** ✓

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N81, para la combinación de acciones 0.8·PP+1.5·V(90°)H1+0.75·N(EI).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

 V_{Ed} : 2.25

M_{T,Ed}: 1.20 kN⋅m

M_{T,Ed}: Momento torsor solicitante de cálculo pésimo. El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

 $V_{pl,T,Rd}$: 974.25 kN

Donde:

V_{pl.Rd}: Esfuerzo cortante resistente de cálculo. ττ,Ed: Tensiones tangenciales por torsión.

V_{pl,Rd}: 1057.34 kN тт,**Ed**: 28.54 MPa

Siendo:

W_τ: Módulo de resistencia a torsión.

W_T: 41.90 cm³ **f**_{yd}: 261.90 MPa

f_{vd}: Resistencia de cálculo del acero.

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) γ_{M0}: Coeficiente parcial de seguridad del

f_v: 275.00 MPa

material.

умо: 1.05

Dintel

Barra N27/N30

Perfil: HE 280 A Material: Acero (S275)										
	Nuc	los	Langitud	Car	Características mecánicas					
	Inicial	Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)			
Z	N27	N30	10.353	97.30	13670.00	4763.00	62.10			
		Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme								
	Pandeo)	Pand		eo lateral			
		Plano	XY F	lano X	Z Ala s	up. Al	a inf.			
	β	0.1	0	1.00	0.1	0 (0.48			
	L _K	1.00	00	10.350	1.00	00 5	.000			
	C _m	1.00	00	1.000	1.00	00 1	.000			
	C ₁		-			1.000				
	Notación: β: Coeficiente de pandeo Lκ: Longitud de pandeo (m) Cm: Coeficiente de momentos C1: Factor de modificación para el momento crítico									

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

 $\overline{\lambda}$: 1.01 \checkmark

Donde:

Clase: Clase de la sección, según la capacidad de deformación Clase: _____2 y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

 ${\bf A}$: Área de la sección bruta para las secciones de clase 1, 2 y ${\bf 3}$

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1)

N_{cr}: Axil crítico de pandeo elástico.

f_y: 275.00 MPa **N**_{cr}: 2644.89 kN

97.30

cm²

A:

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr,y}: 2644.89 kN

b) Axil crítico elástico de pandeo por flexión respecto al eje Z.

N_{cr,z}: 98718.74 kN

c) Axil crítico elástico de pandeo por torsión.

N_{cr,T}: 6092.23 kN

Donde:

 I_y: Momento de inercia de la sección bruta, respecto al eje Y. I : Momento de inercia de la sección bruta. 	I _y :	13670.00	cm4
I _z : Momento de inercia de la sección bruta, respecto al eje Z.	Iz:	4763.00	cm4
It: Momento de inercia a torsión uniforme.	$\mathbf{I_t}$:	62.10	cm4
$\mathbf{I_w}$: Constante de alabeo de la sección.	$\mathbf{I_w}$:	785400.00	cm6
E: Módulo de elasticidad.	E:	210000	MPa
G : Módulo de elasticidad transversal.	G :	81000	MPa
$\mathbf{L_{ky}}$: Longitud efectiva de pandeo por flexión, respecto al eje Y.	L _{ky} :	10.350	m
$\mathbf{L}_{\mathbf{kz}}$: Longitud efectiva de pandeo por flexión, respecto al eje Z.	L _{kz} :	1.000	m
Lkt: Longitud efectiva de pandeo por torsión.	L_{kt} :	5.000	m
i ₀ : Radio de giro polar de la sección bruta,			
respecto al centro de torsión.	i _o :	13.76	cm
Siendo: i_{v ,} i_z: Radios de giro de la sección	i _v :	11.85	cm
bruta, respecto a los ejes principales de inercia Y y Z.	i _z :	7.00	cm
yo, zo: Coordenadas del centro de	y o:	0.00	mm
torsión en la dirección de los ejes principales Y y Z, respectivamente, relativas al centro de gravedad de la sección.	z ₀ :	0.00	mm

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE Ingenieros, basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

30.50 ≤ 223.68 ✓

Donde:

h _w : Altura del alma.	h _w :	244.00	mm
tw: Espesor del alma.	t _w :	8.00	mm
Aw: Área del alma.	$\mathbf{A}_{\mathbf{w}}$:	19.52	cm ²
A _{fc,ef} : Área reducida del ala comprimida.	A _{fc,ef} :	36.40	cm ²
k: Coeficiente que depende de la clase de la sección.	k :	0.40	_
E: Módulo de elasticidad.	E :	210000	MPa
f _{vf} : Límite elástico del acero del ala comprimida.	f _{yf} :	275.00	MPa
Siendo:			_

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N30, para la combinación de acciones 0.8·PP+1.5·V(270°)H1.

N_{t,Ed}: Axil de tracción solicitante de cálculo pésimo.

 $N_{t,Ed}$: 65.38 kN

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

N_{t,Rd}: 2548.33 kN

Donde:

A: Área bruta de la sección transversal de la barra.

A: 97.30 cm²

fyd: Resistencia de cálculo del acero.

fyd: 261.90 MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 275.00 MPa

 γ_{M0} : Coeficiente parcial de seguridad del material.

γ_{м0}: 1.05

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: 0.032 \

η: **0.053**

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.156 m del nudo N27, para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo.

 $N_{c,Ed}$: 80.51 kN

La resistencia de cálculo a compresión $N_{c,Rd}$ viene dada por:

N_{c,Rd}: 2548.33 kN

Donde:

Clase: Clase de la sección, según la capacidad de Clase: deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2

f_{vd}: Resistencia de cálculo del acero.

97.30 cm²

2

f_{yd}: 261.90 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) YMO: Coeficiente parcial de seguridad del

material.

f_v: 275.00 MPa

умо: 1.05

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo N_{b.Rd} en una barra comprimida viene dada por:

N_{b,Rd}: 1512.02 kN

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2

f_{vd}: Resistencia de cálculo del acero.

A: 97.30 cm²

f_{vd}: 261.90 MPa

Siendo:

fy: Límite elástico. (CTE DB SE-A, Tabla 4.1)

γ_{M1}: Coeficiente parcial de seguridad del material.

f_y: 275.00 MPa

1.05 γм1 :

χ: Coeficiente de reducción por pandeo.

0.59 χ_y : 1.00 χ_z :

χт: 0.75

Siendo:

1.14 фу:

φ_z : 0.50 0.83 фт:

α: Coeficiente de imperfección elástica.

α_v: 0.34 0.49 αz:

α_T: 0.49

 $\bar{\lambda}$: Esbeltez reducida.

 $\overline{\lambda}_{\mathbf{v}}$: 1.01 $\overline{\lambda}_z$: 0.16

 $\overline{\lambda}_{T}$: 0.66

N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

> N_{cr,y}: Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr}: 2644.89 kN

N_{cr,y}: 2644.89 kN

 $N_{cr,z}$: Axil crítico elástico de pandeo por

flexión respecto al eje Z.

 $\mathbf{N}_{\mathbf{cr},\mathbf{T}}$: Axil crítico elástico de pandeo

por torsión.

N_{cr.z}: 98718.74 kN

N_{cr,T}: 6092.23 kN

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: 0.729

η: **0.848**

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.156 m del nudo N27, para la combinación de acciones 0.8·PP+1.5·V(270°)H1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.156 m del nudo N27, para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

El momento flector resistente de cálculo M_{c.Rd} viene dado por:

M_{Ed}⁺: 97.30 kN⋅m

M_{Ed}⁻: 212.38 kN·m

 $M_{c,Rd}$: _291.24 kN·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

 $\mathbf{W}_{\text{pl,y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y

2.

 \mathbf{f}_{yd} : Resistencia de cálculo del acero.

Clase : 2

 $W_{pl,y}: 1112.00 \text{ cm}^3$

f_{yd}: 261.90 MPa

Siendo:

f_γ: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M0} : Coeficiente parcial de seguridad del material.

f_y: __275.00 MPa

умо: 1.05

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

El momento flector resistente de cálculo M_{b,Rd} viene dado por:

 $M_{b,Rd}^{+}$: 291.24 kN·m

 $M_{b,Rd}^{-}$: 250.30 kN·m

 $W_{pl,y}: 1112.00 \text{ cm}^3$

f_v: 275.00 MPa

Donde:

 $\mathbf{W}_{\mathbf{pl},\mathbf{y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y

f_{yd}: 261.90 MPa f_{vd}: Resistencia de cálculo del acero.

Siendo:

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

YM1: Coeficiente parcial de seguridad del material.

γ**м1**: 1.05

χ_{LT}: Factor de reducción por pandeo lateral.

 $\chi_{LT}^{+}: 1.00$

χ_{LT}⁻: 0.86

ф_{LT}+ : 0.51

> φ_{LT} : 0.78

α_{LT}: Coeficiente de imperfección elástica. 0.21 α_{LT} :

 $\bar{\lambda}_{LT}$: Esbeltez reducida.

 $\overline{\lambda}_{LT}^+:~0.15$

 $\bar{\lambda}_{LT}^-$: 0.67

M_{cr}+: 12783.29 kN·m **M**_{cr}: Momento crítico elástico de pandeo lateral.

M_{cr}⁻: 672.41 kN·m

El momento crítico elástico de pandeo lateral Mcr se determina según la teoría de la elasticidad:

Siendo:

MLTv: Componente que representa la resistencia por torsión uniforme de la barra.

M_{LTv}⁺: 2228.37 kN·m

M_{LTv}⁻: 445.67 kN·m

M_{LTw}: Componente que representa la resistencia por torsión no uniforme de la barra.

M_{LTw}+ : 12587.57 kN·m

	M _{LTw} ⁻: <i>503.50</i> kN·m
Siendo:	
W _{el,y} : Módulo resistente elástico de la sección bruta, obtenido para la fibra más comprimida.	W _{el,y} : 1012.59 cm ³
I _z : Momento de inercia de la sección bruta, respecto al eje Z.	I_z: 4763.00 cm4
I ₊ : Momento de inercia a torsión uniforme.	$I_t: 62.10 \text{ cm4}$
E : Módulo de elasticidad.	E : 210000 MPa
G: Módulo de elasticidad transversal.	G : 81000 MPa
$\mathbf{L_c^+}$: Longitud efectiva de pandeo lateral del ala superior.	L _c ⁺ : <i>1.000</i> m
$\mathbf{L_{c}}^{-}$: Longitud efectiva de pandeo lateral del ala inferior.	L _c ⁻ : <i>5.000</i> m
C ₁ : Factor que depende de las condiciones de apoyo y de la forma de la ley de momentos flectores sobre la barra.	C ₁ : 1.00
i _{f,z} : Radio de giro, respecto al eje de menor inercia de la sección, del soporte formado por el ala comprimida y la tercera parte de la zona comprimida del alma adyacente al ala	i_{f,z}+ : <u>7.74</u> cm
comprimida.	i _{f,z} - : <u>7.74</u> cm

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η < 0.001 🗸

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.156~m del nudo N27, para la combinación de acciones $0.8\cdot PP+1.5\cdot V(0^\circ)H2$.

 $\mathbf{M_{Ed}}^+$: Momento flector solicitante de cálculo pésimo. $\mathbf{M_{Ed}}^+$: $\underline{0.00}$ kN·m Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.156 m del nudo N27, para la combinación de acciones 0.8.PP+1.5.W(180°)H2

combinación de acciones 0.8·PP+1.5·V(180°)H2.

Mexico Momento flector solicitante de cálculo pésimo

 \mathbf{M}_{Ed} : Momento flector solicitante de cálculo pésimo. \mathbf{M}_{Ed} : 0.00 kN·m El momento flector resistente de cálculo $\mathbf{M}_{\mathsf{c},\mathsf{Rd}}$ viene dado por:

M_{c,Rd}: 135.69 kN⋅m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase: 2

 $\mathbf{W}_{\mathrm{pl,z}}$: Módulo resistente plástico correspondiente a la fibra $\mathbf{W}_{\mathrm{pl,z}}$: $\underline{518.10}$ cm³

con mayor tensión, para las secciones de clase 1 y 2.

 $\mathbf{f_{vd}}$: Resistencia de cálculo del acero. $\mathbf{f_{vd}}$: 261.90 MPa

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: 275.00 MPa

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: 0.143 🗸

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.156 m del nudo N27, para la combinación de acciones 1.35·PP+1.5·V(0°)H2+0.75·N(EI).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo. **V**_{Ed}: 68.90 kN

El esfuerzo cortante resistente de cálculo V_{c,Rd} viene dado por:

 $V_{c,Rd}$: 480.55 kN

Donde:

 A_v : Área transversal a cortante. A_v : 31.78 cm²

Siendo:

h: Canto de la sección.h: 270.00 mm $\mathbf{t_w}$: Espesor del alma. $\mathbf{t_w}$: 8.00 mm

 \mathbf{f}_{yd} : Resistencia de cálculo del acero. \mathbf{f}_{yd} : 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

24.50 < 64.71

√

Donde:

 $\lambda_{\mathbf{w}}$: Esbeltez del alma. $\lambda_{\mathbf{w}}$: 24.50

 $\lambda_{máx}$: Esbeltez máxima. $\lambda_{máx}$: 64.71

 ϵ : Factor de reducción. ϵ : 0.92

Siendo:

 $\mathbf{f_{ref}}$: Límite elástico de referencia. $\mathbf{f_{ref}}$: 235.00 MPa $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: 275.00 MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{\mathsf{c},\mathsf{Rd}}$.

 $68.90 \text{ kN} \le 240.27 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·V(0°)H2+0.75·N(EI).

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 68.90 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 480.55 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.761**

η: 0.938

η: **0.680 γ**

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.156 m del nudo N27, para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

Donde:

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo.

 $\mathbf{M}_{\mathbf{y},\mathbf{Ed}}$, $\mathbf{M}_{\mathbf{z},\mathbf{Ed}}$: Momentos flectores solicitantes de cálculo pésimos, según los

ejes Y y Z, respectivamente.

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y

flexión simple.

N_{pl,Rd}: Resistencia a compresión de la sección bruta.

 $\mathbf{M}_{\mathsf{pl},\mathsf{Rd},\mathsf{y}}$, $\mathbf{M}_{\mathsf{pl},\mathsf{Rd},\mathsf{z}}$: Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z, respectivamente.

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)

A: Área de la sección bruta.

 $\mathbf{W}_{pl,y}$, $\mathbf{W}_{pl,z}$: Módulos resistentes plásticos correspondientes a la fibra comprimida, alrededor de los ejes Y y Z, respectivamente.

fyd: Resistencia de cálculo del acero.

A: 97.30 cm²

 $N_{pl,Rd}$: 2548.33 kN

 $M_{pl,Rd,y}$: 291.24 kN·m

M_{pl,Rd,z}: 135.69 kN·m

 $\mathbf{N_{c,Ed}}: 80.51 \text{ kN}$ $\mathbf{M_{y,Ed}}: 212.38 \text{ kN} \cdot \text{m}$

 $M_{z,Ed}^-$: 0.00 kN·m

Clase :

W_{pl,y}: <u>1112.00</u> cm³

W_{pl,z}: 518.10 cm³

f_{yd} : <u>261.90</u> MPa

f_v: 275.00 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

ym1: Coeficiente parcial de seguridad del material.

γ**м1**: 1.05

 $\mathbf{k_y},\ \mathbf{k_z},\ \mathbf{k_{y,LT}}$: Coeficientes de interacción.

 k_y : 1.04

k_z: 1.00

 $k_{y,LT}: 0.76$

$C_{m,y}$, $C_{m,z}$, $C_{m,LT}$: Factores de momento flector uniforme equivalente.	$C_{m,y}$:	1.00
	$C_{m,z}$:	1.00
	C _{m,LT} :	1.00
χ_{y} , χ_{z} : Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z,	χy:	0.59
respectivamente.	χ _z :	1.00
χιτ: Coeficiente de reducción por pandeo lateral.	χιт:	0.86
$\overline{\lambda}_y$, $\overline{\lambda}_z$: Esbelteces reducidas con valores no mayores que 1.00, en	$\overline{\lambda}_{y}:$	1.01
relación a los ejes Y y Z, respectivamente.	$\overline{\lambda}_z$:	0.16
α_y , α_z : Factores dependientes de la clase de la sección.	α _y :	0.60
	α _z :	0.60

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V_{Ed}}$ es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V_{c,Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·V(0°)H2+0.75·N(EI).

 $68.90 \text{ kN} \le 240.27 \text{ kN}$

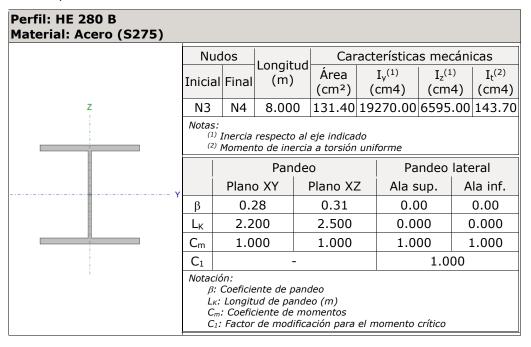
Donde:

 $oldsymbol{V_{Ed,z}}$: Esfuerzo cortante solicitante de cálculo pésimo. $oldsymbol{V_{Ed,z}}$: $blue{68.90}$ kN $oldsymbol{V_{c,Rd,z}}$: Esfuerzo cortante resistente de cálculo. $oldsymbol{V_{c,Rd,z}}$: $blue{480.55}$ kN

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)


No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Pilar hastial

Barra N3/N4

Barra						COMPR	OBACIO	NES (CT	E DB SE	-A)						Estado
Darra	$\bar{\lambda}$	λw	Nt	Nc	MY	Mz	Vz	VY	MyVz	MzVy	NM _Y Mz	NMyMzVyVz	Mt	MtVz	MtVY	ESLAUO
N3/N4	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 7.906 m η = 0.3	x: 0 m η = 1.6	x: 0 m η = 22.6	x: 0 m η = 19.1	x: 0 m η = 5.3	x: 0 m η = 1.1	η < 0.1	η < 0.1	x: 0 m η = 34.2	η < 0.1	η = 0.7		x: 0 m η = 1.1	CUMPLE η = 34.2
2.0 N. N. M. M. M. V. V. V. M. M. M. N. N. M. X.	:: Limitación :: Abolladur :: Resistenc :/ Resiste :/ Distancia a	ia a tracción ia a compresió ia a flexión eje ia a flexión eje ia a corte Z ia a corte Y encia a momen encia a flexión Resistencia a flexió ia a torsión ncia a cortante	to flector Y y fue to flector Z y fue to flector Z y fue n y axil combina exión, axil y cort z Z y momento to Y y momento to barra	rza cortant irza cortant dos ante combi orsor combi	e Z combinac e Y combinac nados inados											

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $~\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

 $\overline{\lambda}$: 0.35

1

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

A: <u>131.40</u> cm² **f_v**: <u>265.00</u> MPa

Clase :

 N_{cr} : Axil crítico de pandeo elástico. N_{cr} : 28241.55 kN

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr,y}: 63902.93 kN

b) Axil crítico elástico de pandeo por flexión respecto al eje Z.

N_{cr.z}: 28241.55 kN

c) Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}$: ∞

Donde:

 $\mathbf{I}_{\mathbf{y}}$: Momento de inercia de la sección bruta, respecto al eje Y.

 $\mathbf{I}_{\mathbf{z}}$: Momento de inercia de la sección bruta, respecto al eje Z.

 \mathbf{I}_t : Momento de inercia a torsión uniforme.

 $\mathbf{I_w}$: Constante de alabeo de la sección.

E: Módulo de elasticidad.

G: Módulo de elasticidad transversal.

 $\mathbf{L}_{\mathbf{ky}}$: Longitud efectiva de pandeo por flexión, respecto al eje Y.

 $\mathbf{L}_{\mathbf{kz}}$: Longitud efectiva de pandeo por flexión, respecto al eje Z.

Lkt: Longitud efectiva de pandeo por torsión.

i₀: Radio de giro polar de la sección bruta, respecto al centro de torsión. **I_y** : ___19270.00 cm4

I_z: 6595.00 cm4

 $\mathbf{I_t} : \underline{143.70}$ cm4 $\mathbf{I_w} : \underline{1130000.00}$ cm6

E: 210000 MPa **G**: 81000 MPa

L_{ky}: 2.500 m

L_{kz}: 2.200 m

L_{kt}: 0.000 m

i₀: 14.03 cm

Siendo:

 i_y , i_z : Radios de giro de la sección bruta, respecto a los ejes principales de inercia Y y Z.

y₀ , z₀: Coordenadas del centro de torsión en la dirección de los ejes principales Y y Z, respectivamente, relativas al centro de gravedad de la sección. **i_y** : ____12.11 ___cm

i_z: 7.08 cm y₀: 0.00 mm

z₀: 0.00 mm

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE Ingenieros, basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

23.24 ≤ 169.50 √

Donde:

hw: Altura del alma. **h**_w: 244.00 mm tw: Espesor del alma. **t**_w: 10.50 mm **A**_w: 25.62 cm² A_w : Área del alma. Afc,ef: Área reducida del ala comprimida. $A_{fc,ef}: 50.40 \text{ cm}^2$ k: Coeficiente que depende de la clase de la sección. **k**: 0.30

E: Módulo de elasticidad. E: 210000 MPa $\mathbf{f_{yf}}$: Límite elástico del acero del ala comprimida. fyf: 265.00 MPa

Siendo:

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: 0.003

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 7.906 m del nudo N3, para la combinación de acciones 0.8·PP+1.05·Qforjado(C)+1.5·V(90°)H1.

N_{t,Ed}: Axil de tracción solicitante de cálculo pésimo. $N_{t,Ed}$: 9.63 kN

La resistencia de cálculo a tracción N_{t,Rd} viene dada por:

N_{t,Rd}: 3316.29 kN

Donde:

A: Área bruta de la sección transversal de la barra. A: 131.40 cm² fyd: Resistencia de cálculo del acero. f_{yd}: 252.38 MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f**_y: 265.00 MPa γ_{M0}: Coeficiente parcial de seguridad del material. γмо: 1.05

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

 $\eta : 0.015$

η: **0.016**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N3, para la combinación de acciones $1.35 \cdot PP+1.05 \cdot Qforjado(C)+1.5 \cdot V(0^\circ)H2+0.75 \cdot N(EI)$.

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo. $N_{c,Ed}$: 49.78 kN

La resistencia de cálculo a compresión $N_{c,Rd}$ viene dada por:

 $N_{c,Rd}$: 3316.29 kN

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_{yd}: Resistencia de cálculo del acero.

A: 131.40 cm²

f_y: 265.00 MPa

f_{yd} : ____________________MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M0} : Coeficiente parcial de seguridad del material.

γмо: 1.05

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

N_{b,Rd}: 3060.53 kN

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2

f_{vd}: Resistencia de cálculo del acero.

A: 131.40 cm²

f_{yd}: 252.38 MPa

f_y: 265.00 MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M1} : Coeficiente parcial de seguridad del material.

material.

γ**м1**: 1.05

χ: Coeficiente de reducción por pandeo.

 $\chi_{\mathbf{y}}: 0.99$

	χz: 0.92
Siendo:	
	φ _y : 0.53
	φ _z : 0.60
α: Coeficiente de imperfección elástica.	$\alpha_{\mathbf{y}}: 0.34$
	α_z : 0.49
$ar{\lambda}$: Esbeltez reducida.	
	$\overline{\lambda}_{\mathbf{y}}: 0.23$
	$\bar{\lambda}_z$: 0.35
N _{cr} : Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:	N _{cr} : <u>28241.55</u> kN
N _{cr,y} : Axil crítico elástico de pandeo por flexión respecto al eje Y.	N _{cr,y} : <u>63902.93</u> kN
N _{cr,z} : Axil crítico elástico de pandeo por flexión respecto al eje Z.	N _{cr,z} : <u>28241.55</u> kN
$N_{cr,T}$: Axil crítico elástico de pandeo por torsión.	N _{cr,T} : ∞

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N3, para la combinación de acciones 1.35·PP+1.5·V(0°)H2+0.75·N(EI).

 M_{Ed}^+ : Momento flector solicitante de cálculo pésimo. M_{Ed}^+ : 59.09 kN·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N3, para la combinación de acciones

 $0.8 \cdot PP + 1.05 \cdot Qforjado(C) + 1.5 \cdot V(180^{\circ})H2.$

 M_{Ed} : Momento flector solicitante de cálculo pésimo. M_{Ed} : 87.60 kN·m

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

M_{c,Rd}: 387.15 kN⋅m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los

elementos planos de una sección a flexión simple.

 $\mathbf{W}_{\mathbf{pl},\mathbf{y}}$: Módulo resistente plástico correspondiente a la fibra $\mathbf{W}_{\mathbf{pl},\mathbf{y}}$: 1534.00 cm³

con mayor tensión, para las secciones de clase 1 y 2.

 $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: 252.38 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) умо: Coeficiente parcial de seguridad del

f_v: 265.00 MPa

material.

γ_{м0}: 1.05

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.191** 🗸

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N3, para la combinación de acciones 0.8·PP+1.5·V(90°)H1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁺ : 34.52 kN⋅m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N3, para la combinación de acciones

 $1.35 \cdot PP + 1.05 \cdot Q forjado(C) + 1.5 \cdot V(270^{\circ})H1 + 0.75 \cdot N(EI).$

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁻: 30.65 kN·m

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

M_{c,Rd}: 181.11 kN·m

1

 $W_{pl,z}: 717.60 \text{ cm}^3$

Clase :

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

W_{pl.7}: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

f_{vd}: Resistencia de cálculo del acero. f_{vd}: 252.38 MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 265.00 MPa $\gamma_{M0}: 1.05$ γ_{M0} : Coeficiente parcial de seguridad del material.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: **0.053** 🗤

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N3, para la combinación de acciones $0.8 \cdot PP + 1.05 \cdot Qforjado(C) + 1.5 \cdot V(180^{\circ})H2.$

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 31.65 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 599.31 kN

Donde:

 A_v : Área transversal a cortante.

 A_v : 41.13 cm²

Siendo:

h: Canto de la sección. tw: Espesor del alma.

h: 280.00 mm **t**_w: 10.50 mm

f_{yd}: Resistencia de cálculo del acero.

f_{yd}: *252.38* MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_v: 265.00 MPa

 γ_{M0} : Coeficiente parcial de seguridad del material.

 $\gamma_{M0}: 1.05$

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

18.67 < **65.92**

Donde:

 λ_w : Esbeltez del alma.

 λ_{w} : 18.67

 $\lambda_{máx}$: Esbeltez máxima.

 $\lambda_{\text{máx}}$: 65.92

ε: Factor de reducción.

ε: 0.94

Siendo:

fref: Límite elástico de referencia. f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) fref: 235.00 MPa

f_v: 265.00 MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: 0.011 🗸

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N3, para la combinación de acciones 0.8·PP+1.5·V(90°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 17.47 kN

El esfuerzo cortante resistente de cálculo $\mathbf{V}_{\mathbf{c},Rd}$ viene dado por:

V_{c,Rd}: 1541.34 kN

Donde:

A_v: Área transversal a cortante.

A_v: 105.78 cm²

Siendo:

A: Área de la sección bruta.d: Altura del alma.t_w: Espesor del alma.

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: 252.38 MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 265.00 MPa

 γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{c,Rd}$.

 $31.65 \text{ kN} \le 299.66 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $0.8 \cdot PP + 1.05 \cdot Qforjado(C) + 1.5 \cdot V(180^\circ)H2$.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo. **V**_{Ed}: 31.65 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 599.31 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{\mathsf{c},\mathsf{Rd}}$.

 $17.47 \text{ kN} \le 770.67 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(90^{\circ})H1$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 17.47 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 1541.34 kN

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.342** 🗸

η: **0.299** 🗸

η: **0.253** 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N3, para la combinación de acciones 1.35·PP+1.05·Qforjado(C)+1.5·V(180°)H2.

Donde:

 $\mathbf{N}_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo. $\mathbf{M}_{y,Ed}$, $\mathbf{M}_{z,Ed}$: Momentos flectores solicitantes de cálculo pésimos, según los ejes Y y Z, respectivamente.

 $egin{array}{lll} m{N_{c,Ed}} : & 30.04 & \text{kN} \\ m{M_{y,Ed}}^- : & 87.05 & \text{kN·m} \\ m{M_{z,Ed}}^- : & 19.64 & \text{kN·m} \\ \end{array}$

Clase: 1

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple.

 $\mathbf{N_{pl,Rd}}$: Resistencia a compresión de la sección bruta. $\mathbf{N_{pl,Rd}}$: 3316.29 kN $\mathbf{M_{pl,Rd,y}}$, $\mathbf{M_{pl,Rd,z}}$: Resistencia a flexión de la sección bruta en $\mathbf{M_{pl,Rd,y}}$: 387.15 kN·m

condiciones plásticas, respecto a los ejes Y y Z, respectivamente.

M_{pl,Rd,z}: 181.11 kN⋅m

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)

A: Área de la sección bruta. A: 131.40 cm²

 $\mathbf{W}_{\mathsf{pl,y}}, \ \mathbf{W}_{\mathsf{pl,z}}$: Módulos resistentes plásticos correspondientes a la fibra comprimida, alrededor de los ejes Y y Z, respectivamente. $\mathbf{W}_{\mathsf{pl,z}}$: $\frac{1534.00}{717.60} \, \mathrm{cm}^3$

 $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: 252.38 MPa

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: 265.00 MPa

үмı: Coeficiente parcial de seguridad del material. $\gamma_{M1}: 1.05$

 $\mathbf{k_y}$, $\mathbf{k_z}$: Coeficientes de interacción.

k_y: 1.00

 k_z : 1.00

 $C_{m,y}$, $C_{m,z}$: Factores de momento flector uniforme equivalente. $C_{m,y}$: 1.00

C_{m,z}: 1.00

 χ_y , χ_z : Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z, respectivamente. χ_y :

 $\chi_{y}: 0.99$ $\chi_{z}: 0.92$

 $\overline{\lambda}_{\text{y}},\ \overline{\lambda}_{\text{z}}\text{:}$ Esbelteces reducidas con valores no mayores que

 $\overline{\lambda}_{v}: 0.23$

1.00, en relación a los ejes Y y Z, respectivamente.

 $\overline{\lambda}_{z}$: 0.35

 $\alpha_{\boldsymbol{y}},\;\alpha_{\boldsymbol{z}} :$ Factores dependientes de la clase de la sección.

α_y: 0.60 α_z: 0.60

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V}_{\mathsf{c,Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $0.8 \cdot PP + 1.05 \cdot Qforjado(C) + 1.5 \cdot V(180^{\circ})H2$.

 $31.65 \text{ kN} \le 299.55 \text{ kN}$

Donde:

 $V_{Ed,z}$: Esfuerzo cortante solicitante de cálculo pésimo. $V_{Ed,z}$: 31.65 kN $V_{c,Rd,z}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd,z}$: 599.11 kN

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

Se debe satisfacer:

η: 0.007 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.5·V(90°)H1+0.75·N(EI).

M_{T.Ed}: Momento torsor solicitante de cálculo pésimo.

 $M_{T,Ed}$: 0.08 kN·m

El momento torsor resistente de cálculo M_{T,Rd} viene dado por:

 $M_{T,Rd}$: 11.63 kN·m

Donde:

 $\mathbf{W_T}$: Módulo de resistencia a torsión. $\mathbf{W_T}$: $\underline{79.83}$ cm³ $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: $\underline{252.38}$ MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : $265.00 \atop \gamma_{M0}$: Coeficiente parcial de seguridad del material. γ_{M0} : $1.05 \atop \gamma_{M0}$

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η : **0.053 √**

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N3, para la combinación de acciones $0.8 \cdot PP + 1.05 \cdot Qforjado(C) + 1.5 \cdot V(180^\circ)H2$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 31.65 kN

 $\mathbf{M}_{\mathsf{T,Ed}}$: Momento torsor solicitante de cálculo pésimo. $\mathbf{M}_{\mathsf{T,Ed}}$: 0.01 kN·m

El esfuerzo cortante resistente de cálculo reducido $\mathbf{V}_{\text{pl,T,Rd}}$ viene dado por:

 $V_{pl,T,Rd}$: 599.11 kN

Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{pl,Rd}$: $\underline{599.31}$ kN $\tau_{T,Ed}$: Tensiones tangenciales por torsión. $\tau_{T,Ed}$: 0.13 MPa

Siendo:

 $\mathbf{W_{T}}$: Módulo de resistencia a torsión. $\mathbf{W_{T}}$: $\underline{79.83}$ cm³ $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: $\underline{252.38}$ MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : $\underline{265.00}$ MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : $\underline{1.05}$

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.011 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N3, para la combinación de acciones 0.8·PP+1.5·V(90°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed}: 17.47 kN

 $\mathbf{M_{T,Ed}}$: Momento torsor solicitante de cálculo pésimo. $\mathbf{M_{T,Ed}}: \underline{0.06}$ kN·m El esfuerzo cortante resistente de cálculo reducido $\mathbf{V_{pl,T,Rd}}$ viene dado por:

V_{pl,T,Rd}: 1538.08 kN

Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{pl,Rd}$: $\underline{1541.34}$ kN $\tau_{T,Ed}$: Tensiones tangenciales por torsión. $\tau_{T,Ed}$: $\underline{0.77}$ MPa

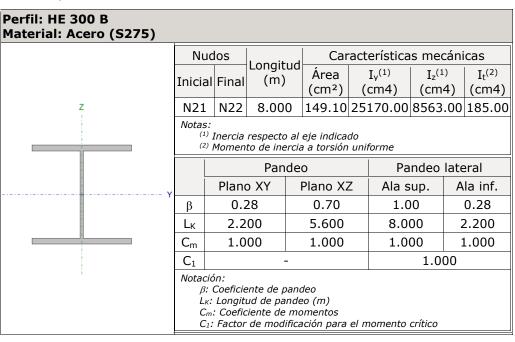
Siendo:

 $\mathbf{W_T}$: Módulo de resistencia a torsión. $\mathbf{W_T}$: $\underline{79.83}$ cm³ $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: $\underline{252.38}$ MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M0} : Coeficiente parcial de seguridad del


material.

f_v: 265.00 MPa

γмo: 1.05

Pilar

Barra N21/N22

D						COMF	ROBACIO	NES (CT	E DB SE	-A)						F-4- d-
Barra	$\overline{\lambda}$	λw	Nt	Nc	MY	Mz	Vz	VY	MyVz	MzVy	NM _Y Mz	NMyMzVyVz	Mt	MtVz	M_tV_Y	Estado
N21/N22	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 7.898 m η = 1.4	x: 0 m η = 4.0	x: 7.9 m η = 58.3	x: 0 m η = 4.6	x: 7.9 m η = 8.8	η = 0.1	η < 0.1	η < 0.1	x: 7.9 m η = 61.4	η < 0.1	$M_{Ed} = 0.00$ $N.P.^{(1)}$	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 61.4
Aw: A N.; R Nc; R Nc; R My: F Mz: F Vz: R Vv; R MvVz: MzVy NM, M; R Mvz: M; Vz M; Vz X: Di	Notación: *** L' Limitación de esbeltez *** Abolladura del alma inducida por el ala comprimida N.: Resistencia a tracción M.: Resistencia a tracción M.: Resistencia a torte Z V.: Resistencia a corte Y M.** Resistencia a fiexión eje Z V.: Resistencia a corte Y M.** Resistencia a fiexión y axil combinados N.** Resistencia a fiexión y axil combinados N.** Resistencia a fiexión, axil y cortante combinados N.** Resistencia a fiexión, axil y cortante combinados N.** Resistencia a fiexión, y axil combinados N.** Resistencia a cortante Y y momento torsor combinados N.** Resistencia a cortante Z y momento torsor combinados N.** Resistencia a cortante Z y momento torsor combinados N.** Resistencia a cortante Z y momento torsor combinados N.** Resistencia a cortante Z y momento torsor combinados N.** Resistencia a proyechamiento (%)															
Comprobaciones que no proceden (N.P.): (1) La comprobación no procede, ya que no hay momento torsor. (2) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.																

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

> $\bar{\lambda}$: 0.66

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

N_{cr}: Axil crítico de pandeo elástico.

149.10 **A**: cm² 265.00 MPa f_v: N_{cr} :

Clase :

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr,y}: 16635.13 kN

9039.58

kΝ

b) Axil crítico elástico de pandeo por flexión respecto al eje Z.

N_{cr,z}: 36669.05 kN

c) Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}$: 9039.58 kN

Donde:

I_v: Momento de inercia de la sección bruta, respecto al eje Y.

I_z: Momento de inercia de la sección bruta, respecto al eje Z.

It: Momento de inercia a torsión uniforme.

I_y: 25170.00 cm4

 \mathbf{I}_{z} : 8563.00 cm4

185.00 $\mathbf{I_t}$: cm4

				-
$\mathbf{I_w}$: Constan	te de alabeo de la sección.	$\mathbf{I_w}$:	1688000.00	cm6
E: Módulo d	e elasticidad.	E :	210000	MPa
G : Módulo d	le elasticidad transversal.	G :	81000	MPa
L_{ky}: Longitu respecto al e	d efectiva de pandeo por flexión, eje Y.	L _{ky} :	5.600	m
L _{kz} : Longitu	d efectiva de pandeo por flexión,			•
respecto al e	eje Z.	L_{kz} :	2.200	m
L kt: Longitue	d efectiva de pandeo por torsión.	$\mathbf{L}_{\mathbf{kt}}$:	8.000	m
i₀: Radio de	giro polar de la sección bruta,			
respecto al o	centro de torsión.	io:	15.04	cm
Siendo	:			
İy	, i₂: Radios de giro de la sección	i _y :	12.99	cm
	ruta, respecto a los ejes principales e inercia Y y Z.	i _z :	7.58	cm
-	, z ₀ : Coordenadas del centro de	y ₀ :	0.00	mm
pr re	rsión en la dirección de los ejes incipales Y y Z, respectivamente, lativas al centro de gravedad de la ección.	z o :	0.00	mm
				-

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE Ingenieros,

basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

23.82 ≤ 169.05 √

Donde:

h_w: 262.00 mm hw: Altura del alma. $\mathbf{t_w}$: Espesor del alma. $t_w: 11.00 \text{ mm}$ A_w: Área del alma. **A**_w: 28.82 cm² **A**_{fc,ef}: 57.00 cm² **A**_{fc,ef}: Área reducida del ala comprimida. k: Coeficiente que depende de la clase de la sección. **k**: 0.30 E: 210000 MPa **E**: Módulo de elasticidad. $\mathbf{f_{vf}}$: Límite elástico del acero del ala comprimida. f_{vf}: 265.00 MPa Siendo:

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: 0.014 🗸

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 7.898 m del nudo N21, para la combinación de acciones 0.8·PP+1.5·V(270°)H1.

N_{t,Ed}: Axil de tracción solicitante de cálculo pésimo.

 $N_{t,Ed}$: 51.48 kN

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

 $N_{t,Rd}$: 3763.00 kN

Donde:

A: Área bruta de la sección transversal de la barra.

f_{yd}: Resistencia de cálculo del acero.

A: 149.10 cm² **f**_{vd}: *252.38* MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M0} : Coeficiente parcial de seguridad del material.

f_v: 265.00 MPa $\gamma_{M0}: 1.05$

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

0.030

0.040

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N21, para la combinación de acciones 1.35·PP+1.5·V(0°)H2+0.75·N(EI).

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo.

N_{c.Ed}: 112.44 kN

La resistencia de cálculo a compresión $N_{c,Rd}$ viene dada por:

N_{c,Rd}: 3763.00 kN

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_{yd}: Resistencia de cálculo del acero.

Clase :

A: 149.10 cm²

f_{vd}: 252.38 MPa

Siendo:			
$\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1)	f _y :	265.00	MPa

 γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

ene dada por.	
	N _{b,Rd} : 2816.95 kN
Davidso	
Donde: A: Área de la cocción bruta para las cocciones de clase 1, 2	
A : Área de la sección bruta para las secciones de clase 1, 2 y 3.	A : 149.10 cm ²
f _{yd} : Resistencia de cálculo del acero.	f _{yd} : 252.38 MPa
Siendo:	
f _y : Límite elástico. (CTE DB SE-A, Tabla 4.1)	f_y : 265.00 MPa
γ _{M1} : Coeficiente parcial de seguridad del	<u> </u>
material.	γм1: 1.05
χ: Coeficiente de reducción por pandeo.	γ _v : 0.89
	$\chi_{y}: 0.89$ $\chi_{z}: 0.93$
	~
Siendo:	χτ: <u>0.75</u>
Siendo.	φ _v : 0.67
	φ _z : 0.59
	φ _T : 0.83
	· <u></u>
α: Coeficiente de imperfección elástica.	$\alpha_{\mathbf{y}}: 0.34$
	α_z : 0.49
	α_{T} : 0.49
$ar{\lambda}$: Esbeltez reducida.	- 0.40
	$\frac{\overline{\lambda}_{\mathbf{v}}}{\overline{\lambda}_{\mathbf{z}}}: \frac{0.49}{0.33}$
	$\frac{\lambda_z}{\lambda_T}$: 0.66
N _{cr} : Axil crítico elástico de pandeo, obtenido	λ1 ·
como el menor de los siguientes valores:	N _{cr} : 9039.58 kN
N _{cr,y} : Axil crítico elástico de pandeo	
por flexión respecto al eje Y.	N _{cr,y} : 16635.13 kN
$\mathbf{N}_{cr,z}$: Axil crítico elástico de pandeo por flexión respecto al eje Z.	N _{cr,z} : 36669.05 kN
N _{cr,T} : Axil crítico elástico de pandeo	
por torsión.	N _{cr,T} : 9039.58 kN

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: 0.459 \

η: 0.583

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 7.900 m del nudo N21, para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 7.900 m del nudo N21, para la combinación de acciones 0.8·PP+1.5·V(270°)H1.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

El momento flector resistente de cálculo M_{c.Rd} viene dado por:

M_{Ed}⁺: 216.53 kN⋅m

M_{Ed}⁻: 101.48 kN⋅m

M_{c,Rd}: 471.70 kN⋅m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

W_{pl,v}: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

fyd: Resistencia de cálculo del acero.

Clase: 1

 $W_{pl,y}: 1869.00 \text{ cm}^3$

f_{vd}: 252.38 MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) γ_{MO}: Coeficiente parcial de seguridad del

material.

f_y: 265.00 MPa

 $\gamma_{M0}: 1.05$

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

El momento flector resistente de cálculo M_{b.Rd} viene dado por:

 $M_{b,Rd}^{+}$: 371.32 kN·m

 $M_{b,Rd}$: 461.06 kN·m

 $W_{pl,y}: 1869.00 \text{ cm}^3$

Donde:

W_{pl.v}: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

f_{yd}: Resistencia de cálculo del acero. **f**_{vd}: *252.38* MPa

Siendo:	
f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)	f_y : <i>265.00</i> MPa
үм1: Coeficiente parcial de seguridad del	
material.	γ _{м1} : 1.05
	,
χ _{LT} : Factor de reducción por pandeo lateral.	
	$\chi_{LT}^{+}: 0.79$
	
	χ _{LT} -: 0.98
C'arrida	χει :
Siendo:	
	ф _{LT} +: 0.90
	ф _{LT} ⁻ : 0.56
m-: Conficiente de imperfección eláctica	
α _{LT} : Coeficiente de imperfección elástica.	α _{LT} : 0.21
$ar{\lambda}_{LT}$: Esbeltez reducida.	
	$\overline{\lambda}_{LT}^+: 0.81$
	761 · <u>6761</u>
	$\bar{\lambda}_{LT}^-: 0.30$
M _{cr} : Momento crítico elástico de pandeo lateral.	M _{cr} + : <i>746.24</i> kN⋅m
Mer. Momento critico elastico de pandeo lateral.	
	M _{cr} ⁻ : 5495.92 kN·m
El momento crítico elástico de pandeo lateral \mathbf{M}_{cr} se determina	
según la teoría de la elasticidad:	
Siendo:	
M _{LTv} : Componente que representa la resistencia por	
torsión uniforme de la barra.	
	M + . 644.62 kN m
	M _{LTv} ⁺ : <u>644.63</u> kN⋅m
	M_{LTv}⁻ : <i>2344.11</i> kN·m
M _{LTw} : Componente que representa la resistencia por	
torsión no uniforme de la barra.	
torsion no annorme de la barrar	
	M_{LTw} ⁺ : <u>375.93</u> kN⋅m
	M _{LTw} ⁻: 4970.95 kN·m
Siendo:	
	1670.00
W el,y: Módulo resistente elástico de la sección	$W_{el,y}: 1678.00$ cm ³
bruta, obtenido para la fibra más comprimida.	
I _z : Momento de inercia de la sección bruta,	
respecto al eje Z.	I _z : <i>8563.00</i> cm4
I* MUMENTO DE INERCIA A TORGION HINITORME	T. 185.00 cm4
I _t : Momento de inercia a torsión uniforme.	I _t : 185.00 cm4
E: Módulo de elasticidad.	E : 210000 MPa

 $\mathbf{L_c^+}$: Longitud efectiva de pandeo lateral del ala superior.

 $\mathbf{L}_{\mathbf{c}}^{-}$: Longitud efectiva de pandeo lateral del ala inferior.

C₁: Factor que depende de las condiciones de apoyo y de la forma de la ley de momentos flectores sobre la barra.

i_{f,z}: Radio de giro, respecto al eje de menor inercia de la sección, del soporte formado por el ala comprimida y la tercera parte de la zona comprimida del alma adyacente al ala comprimida. **L**_c⁺: 8.000 m

____...

 L_c^- : 2.200 m C_1 : 1.00

i_{f,z}+: 8.32 cm

 $i_{f,z}^{-}$: 8.32 cm

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η : **0.046** 🗸

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N21, para la combinación de acciones

1.35·PP+1.05·Qforjado(C)+1.5·V(90°)H1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁺: 10.09 kN⋅m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N21, para la combinación de acciones 0.8·PP+1.5·V(270°)H1+0.75·N(EI).

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

El momento flector resistente de cálculo $\mathbf{M}_{c,Rd}$ viene dado por:

 M_{Ed}^{-} : 9.90 kN·m

Mc,Rd: 219.60 kN·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

 $\mathbf{W}_{\mathsf{pl,z}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

f_{vd}: Resistencia de cálculo del acero.

Clase: 1

 $W_{pl,z}: 870.10 \text{ cm}^3$

f_{yd}: *252.38* MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) γ_{MO}: Coeficiente parcial de seguridad del material. **f**_y : <u>265.00</u> MPa

умо: 1.05

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: 0.088 v

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 7.900 m del nudo N21, para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 60.79 kN

El esfuerzo cortante resistente de cálculo $\mathbf{V}_{c,Rd}$ viene dado por:

 $V_{c,Rd}$: 691.40 kN

Donde:

 A_v : Área transversal a cortante.

 $A_{v}: 47.45 \text{ cm}^{2}$

Siendo:

h: Canto de la sección.t_w: Espesor del alma.

 $\mathbf{h} : \underline{300.00} \text{ mm}$ $\mathbf{t_w} : \underline{11.00} \text{ mm}$

f_{vd}: Resistencia de cálculo del acero.

f_{yd}: 252.38 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) γ_{M0} : Coeficiente parcial de seguridad del material.

f_y: <u>265.00</u> MPa

γ_{мо}: 1.05

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

18.91 < **65.92**

/

Donde:

 λ_w : Esbeltez del alma.

 $\lambda_{w}: 18.91$

λ_{máx}: Esbeltez máxima.

λ_{máx}: 65.92

ε: Factor de reducción.

ε: 0.94

Siendo:

 $\mathbf{f_{ref}}$: Límite elástico de referencia. $\mathbf{f_{ref}}$: 235.00 MPa $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: 265.00 MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: **0.001** √

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.05·Qforjado(C)+1.5·V(90°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 1.26 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 1752.63 kN

Donde:

 A_v : Área transversal a cortante. A_v : 120.28 cm²

Siendo:

A: Área de la sección bruta.A: $\underline{149.10}$ cm²d: Altura del alma.d: $\underline{262.00}$ mm $\mathbf{t_w}$: Espesor del alma. $\mathbf{t_w}$: $\underline{11.00}$ mm

 \mathbf{f}_{yd} : Resistencia de cálculo del acero. \mathbf{f}_{yd} : 252.38 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : __265.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : __1.05

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{\mathsf{c},\mathsf{Rd}}$.

52.11 kN ≤ 345.70 kN

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $1.35 \cdot PP+1.5 \cdot V(180^{\circ})H2+0.75 \cdot N(EI)$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 52.11 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 691.40 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{c,Rd}$.

 $1.26 \text{ kN} \le 876.31 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones

 $1.35 \cdot PP + 1.05 \cdot Q for jado(C) + 1.5 \cdot V(90^{\circ}) H1.$

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 1.26 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 1752.63 kN

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.482** 🗸

η: 0.614 🗸

η: **0.566 √**

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 7.900 m del nudo N21, para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

Donde:

 N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo. M_{y,Ed}, M_{z,Ed}: Momentos flectores solicitantes de cálculo pésimos, según los ejes Y y Z, respectivamente. Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple. 	$egin{array}{lll} m{N}_{c,Ed} : & 87.47 & kN \\ m{M}_{y,Ed}^+ : & 216.53 & kN \cdot m \\ m{M}_{z,Ed}^- : & 0.00 & kN \cdot m \\ m{Clase} : & 1 & & & & & & & & & \end{array}$
N _{pl,Rd} : Resistencia a compresión de la sección bruta. M _{pl,Rd,y} , M _{pl,Rd,z} : Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z,	$N_{pl,Rd}$: 3763.00 kN $M_{pl,Rd,y}$: 471.70 kN·m
respectivamente.	M_{pl,Rd,z} : <u>219.60</u> kN⋅m
Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)	
A: Área de la sección bruta.	A : 149.10 cm ²
W _{pl,y} , W _{pl,z} : Módulos resistentes plásticos correspondientes a la fibra comprimida, alrededor de los ejes Y y Z,	W _{pl,y} : 1869.00 cm ³
respectivamente.	W _{pl,z} : 870.10 cm ³
f _{yd} : Resistencia de cálculo del acero.	f _{yd} : <u>252.38</u> MPa
Siendo: $f_y \colon \text{L\'imite elástico. (CTE DB SE-A, Tabla 4.1)} \\ \gamma_{\text{M1}} \colon \text{Coeficiente parcial de seguridad del material.}$	f_y : <u>265.00</u> MPa γ _{M1} : <u>1.05</u>
k _y , k _z , k _{y,LT} : Coeficientes de interacción.	k _y :1.01
	k _z :1.00
	k _{y,LT} : 0.93
$C_{m,y}$, $C_{m,z}$, $C_{m,LT}$: Factores de momento flector uniforme equivalente.	C _{m,y} : 1.00 C _{m,z} : 1.00 C _{m,LT} : 1.00
χ_{y},χ_{z} : Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z, respectivamente.	$\chi_{\mathbf{y}}: \underline{0.89}$ $\chi_{\mathbf{z}}: \underline{0.93}$
χ_{LT} : Coeficiente de reducción por pandeo lateral. $\bar{\lambda}_y$, $\bar{\lambda}_z$: Esbelteces reducidas con valores no mayores que 1.00, en relación a los ejes Y y Z, respectivamente.	$\chi_{\text{LT}}: 0.79$ $\bar{\lambda}_{y}: 0.49$ $\bar{\lambda}_{z}: 0.33$
$lpha_y, lpha_z$: Factores dependientes de la clase de la sección.	α_y : 0.60 α_z : 0.60

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V_{Ed}}$ es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V_{c,Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

 $52.11 \ kN \le 345.70 \ kN$

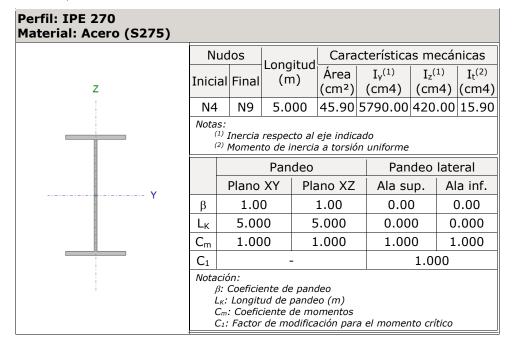
Donde:

 $V_{Ed,z}$: Esfuerzo cortante solicitante de cálculo pésimo. $V_{Ed,z}$: 52.11 kN $V_{c,Rd,z}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd,z}$: 691.40 kN

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)


No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Viga de atado

Barra N4/N9

D	COMPROBACIONES (CTE DB SE-A)													F-4- 4-		
				Nc	MY	Mz	Vz	VY	MyVz	MzVy	NM _Y Mz	NMyMzVyVz	Mt	MtVz	M_tV_Y	Estado
N4/N9	$\overline{\lambda} < 2.0$ Cumple	$\begin{array}{c} x \colon 0.313 \text{ m} \\ \lambda_w \leq \lambda_{w,\text{máx}} \\ \text{Cumple} \end{array}$	η = 0.7	η = 15.1	x: 2.5 m η = 1.2	M _{Ed} = 0.00 N.P. ⁽¹⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽²⁾	x: 0.313 m η < 0.1	N.P. ⁽³⁾	x: 2.5 m η = 15.8	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽⁴⁾	N.P. ⁽⁵⁾	N.P. ⁽⁵⁾	CUMPLE η = 15.8
λω: Nt: Nt: Nc: My: Mz: Vz: Vy: MxV MzV NM, NM, NM, NM, Λt: MtV X: L	Limitación Abolladura Resistencia Resistencia Resistencia Resistencia /z: Resistencia /y/Mz: Resistencia /y/Mz: Resistencia /z: Resistencia /z: Resistencia /z: Resistencia	o de esbeltez a del alma inducia a des alma inducia a a tracción la a fexión eje la a corte Z la la a compresión cia a flexión eje la a corte Z la la corte Y nota a momento tencia a momento tencia a flexión elesistencia a flexión nota a cortante la la cortante la lorigen de la bie de aprovecham de la cela provecham el la cia cia cela provecham el la cia cia cela provecham el la cia cia cia cia cia cia cia cia cia ci	y Z flector Y y flector Z y y axil comb kión, axil y Z y momeni y y momeni	fuerza corta fuerza corta inados cortante com to torsor com	nte Z combin nte Y combin nbinados nbinados											

- (a) La comprobación no procede, ya que no hay esfuerzo cortante.
 (b) No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
 (d) La comprobación no procede, ya que no hay momento torsor.
 (e) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

> $\bar{\lambda}$: 1.90

Donde:

Clase: Clase de la sección, según la capacidad de deformación Clase : 2 y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3. **A**: 45.90 cm² **f**_y: 275.00 f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) MPa N_{cr}: Axil crítico de pandeo elástico. N_{cr} : 348.20 kΝ

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje

N_{cr,y}: 4800.18 kN

b) Axil crítico elástico de pandeo por flexión respecto al eje

N_{cr,z}: 348.20 kN

I_v: 5790.00 cm4

I_z: 420.00 cm4

Iw: 70600.00 cm6

E: 210000 MPa **G**: 81000

5.000

0.000

 i_0 : 11.63

cm4

MPa

m

m

cm

I_t: 15.90

 $L_{ky}: 5.000$

 L_{kz} :

L_{kt}:

c) Axil crítico elástico de pandeo por torsión.

 ∞ $N_{cr,T}$:

Donde:

I _y : Momento de inercia de la sección bruta	a,
respecto al eje Y.	

I₂: Momento de inercia de la sección bruta. respecto al eje Z.

It: Momento de inercia a torsión uniforme.

Iw: Constante de alabeo de la sección. E: Módulo de elasticidad.

G: Módulo de elasticidad transversal.

Lky: Longitud efectiva de pandeo por flexión, respecto al eje Y.

Lkz: Longitud efectiva de pandeo por flexión, respecto al eje Z.

Lkt: Longitud efectiva de pandeo por torsión.

io: Radio de giro polar de la sección bruta, respecto al centro de torsión.

Siendo:

i_v , i_z: Radios de giro de la sección bruta, respecto a los ejes principales de inercia Y y Z.

yo, zo: Coordenadas del centro de torsión en la dirección de los eies principales Y y Z, respectivamente, relativas al centro de gravedad de la sección.

i_v: 11.23 cm

iz: 3.02 cm

yo: 0.00 mm

0.00 mm **Z**₀:

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE Ingenieros, basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

 $37.82 \le 250.57 \checkmark$

Donde:

 $\mathbf{f}_{\mathbf{yf}}$: Límite elástico del acero del ala comprimida. $\mathbf{f}_{\mathbf{yf}}$: 275.00 MPa

Siendo:

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: **0.007 √**

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.5·V(180°)H1+0.75·N(R)1.

 $N_{t,Ed}$: Axil de tracción solicitante de cálculo pésimo. $N_{t,Ed}$: 8.19 kN

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

N_{t,Rd}: 1202.14 kN

Donde:

A: Área bruta de la sección transversal de la barra. A: 45.90 cm² f_{yd} : Resistencia de cálculo del acero. f_{yd} : 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: **0.035**

η: 0.151 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.05·Qforjado(C)+1.5·V(90°)H1.

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo. $N_{c,Ed}$: 41.58 kN

La resistencia de cálculo a compresión N_{c,Rd} viene dada por:

 $N_{c,Rd}$: 1202.14 kN

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_{vd}: Resistencia de cálculo del acero.

A: 45.90 cm²

2

f_{yd}: 261.90 MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

γ_{M0}: Coeficiente parcial de seguridad del material.

f_y: 275.00 MPa

γ_{м0}: 1.05

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

N_{b,Rd}: 274.71 kN

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2

у 3.

f_{vd}: Resistencia de cálculo del acero.

A: 45.90 cm²

f_{vd}: 261.90 MPa

Siendo:

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_v: 275.00 MPa

 γ_{M1} : Coeficiente parcial de seguridad del material.

 $\gamma_{M1}: 1.05$

χ: Coeficiente de reducción por pandeo.

 $\chi_{\mathbf{y}}: 0.92$

 χ_z : 0.23

 $\phi_{v}: 0.66$

φ_z: 2.60

α: Coeficiente de imperfección elástica.

 α_y : 0.21

 α_z : 0.34 $\overline{\lambda}$: Esbeltez reducida.

 $\overline{\lambda}_{\mathbf{y}}: 0.51$

 $\bar{\lambda}_z$: 1.90

N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

N_{cr}: 348.20 kN

 $N_{cr,y}$: Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr,y}: 4800.18 kN

N_{cr,z}: Axil crítico elástico de pandeo por

N . 240 20 LN

flexión respecto al eje Z.

N_{cr,z}: 348.20 kN

 $N_{cr,T}$: Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}$: ∞

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.012 √**

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.500 m del nudo N4, para la combinación de acciones $1.35 \cdot PP$.

 M_{Ed}^+ : Momento flector solicitante de cálculo pésimo. M_{Ed}^+ : 1.49 kN·m

Para flexión negativa:

 M_{Ed}^- : Momento flector solicitante de cálculo pésimo. M_{Ed}^- : 0.00 kN·m

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

M_{c,Rd}: 126.76 kN⋅m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase: 1

 $\mathbf{W}_{\mathsf{pl},\mathsf{y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

W_{pl,y}: 484.00 cm³

f_{vd}: Resistencia de cálculo del acero.

f_{yd}: 261.90 MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 275.00 MPa

 γ_{M0} : Coeficiente parcial de seguridad del material.

γ_{м0}: 1.05

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

La comprobación no procede, ya que no hay momento flector.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: **0.004** 🗸

√

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N4, para la combinación de acciones 1.35·PP.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 1.19 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

 $V_{c,Rd}$: 334.07 kN

Donde:

 A_v : Área transversal a cortante.

 $A_v: 22.09 \text{ cm}^2$

Siendo:

h: Canto de la sección.t_w: Espesor del alma.

h: <u>270.00</u> mm **t**_w: <u>6.60</u> mm

f_{vd}: Resistencia de cálculo del acero.

f_{yd}: 261.90 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_v: 275.00 MPa

 γ_{M0} : Coeficiente parcial de seguridad del material.

γ_{мо}: 1.05

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

33.27 < 64.71

√

Donde:

 $\lambda_{\mathbf{w}}$: Esbeltez del alma.

 $\lambda_{w}: 33.27$

 $\lambda_{m\acute{a}x}$: Esbeltez máxima.

λ_{máx}: 64.71

ε: Factor de reducción.

ε: 0.92

Siendo:

 $\mathbf{f_{ref}}$: Límite elástico de referencia. $\mathbf{f_{ref}}$: $\underline{235.00}$ MPa $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: $\underline{275.00}$ MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{c,Rd}$.

 $1.04 \text{ kN} \le 167.04 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.313 m del nudo N4, para la combinación de acciones 1.35·PP.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 1.04 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo.

V_{c,Rd}: 334.07 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.046

η: 0.049

η: 0.158

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 2.500 m del nudo N4, para la combinación de acciones 1.35·PP+1.05·Qforjado(C)+1.5·V(90°)H1.

Donde:

Donac.	
$N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo.	N_{c,Ed} : 41.34 kN
$\mathbf{M_{y,Ed}}$, $\mathbf{M_{z,Ed}}$: Momentos flectores solicitantes de cálculo pésimos,	$M_{y,Ed}^+$: 1.49 kN·m
según los ejes Y y Z, respectivamente.	$\mathbf{M}_{\mathbf{z},\mathbf{Ed}}^{+}: \underline{0.00}$ kN·m
Clase : Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple.	Clase :2
$N_{pl,Rd}$: Resistencia a compresión de la sección bruta.	$N_{pl,Rd}$: 1202.14 kN
$M_{pl,Rd,yr}$, $M_{pl,Rd,z}$: Resistencia a flexión de la sección bruta en	$\mathbf{M}_{pl,Rd,y}: \underline{126.76}kN\cdotm$
condiciones plásticas, respecto a los ejes Y y Z, respectivamente.	$\mathbf{M}_{pl,Rd,z}: 25.40 \mathrm{kN}\cdot\mathrm{m}$
Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)	
A: Área de la sección bruta.	A : 45.90 cm ²
W _{pl,y} , W _{pl,z} : Módulos resistentes plásticos correspondientes a la	$\mathbf{W}_{pl,y}: 484.00 \text{ cm}^3$
fibra comprimida, alrededor de los ejes Y y Z, respectivamente.	$W_{pl,z}: 97.00 \text{ cm}^3$
$\mathbf{f_{yd}}$: Resistencia de cálculo del acero.	f_{yd} : <u>261.90</u> MPa
Siendo: $f_y\colon \text{Limite elástico. (CTE DB SE-A, Tabla 4.1)} \\ \gamma_{\text{M1}}\colon \text{Coeficiente parcial de seguridad del material.}$	f_y : <u>275.00</u> MPa γ _{M1} : <u>1.05</u>
$\mathbf{k_y},\ \mathbf{k_z}$: Coeficientes de interacción.	
	k _y :1.01
	k _z :1.21

Resistencia a flexión, axil	y cortante combinados	(CTE DB SE-A,	Artículo 6.2.8)

 $C_{m,y}$, $C_{m,z}$: Factores de momento flector uniforme equivalente.

 $\chi_{y},\,\chi_{z}\colon$ Coeficientes de reducción por pandeo, alrededor de los ejes

 $\bar{\lambda}_{y}$, $\bar{\lambda}_{z}$: Esbelteces reducidas con valores no mayores que 1.00,

en relación a los ejes Y y Z, respectivamente.

 α_y , α_z : Factores dependientes de la clase de la sección.

Y y Z, respectivamente.

1.00

1.00

0.92

0.23

0.51

1.90

0.60

0.60

C_{m,y}:

χy:

χz:

 $\overline{\lambda}_{y}$:

 $\overline{\lambda}_z$:

α_y:_ α_z:

 $C_{m,z}$:

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V_{Ed}}$ es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V_{c,Rd}}$.

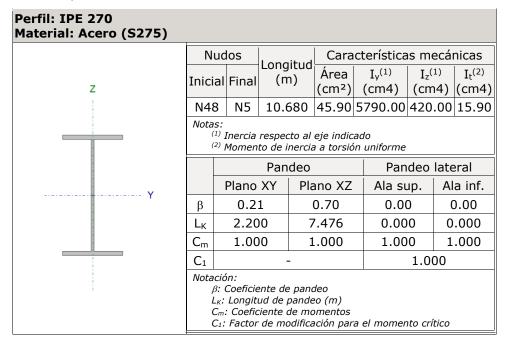
Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.313 m del nudo N4, para la combinación de acciones 1.35·PP.

 $1.04 \text{ kN} \le 167.04 \text{ kN}$

Donde:

 $V_{Ed,z}$: Esfuerzo cortante solicitante de cálculo pésimo. $V_{Ed,z}$: 1.04 kN $V_{c,Rd,z}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd,z}$: 334.07 kN

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)


La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Pilarillo

Barra N48/N5

COMPROBACIONES (CTE DB SE-A)													C-4- 4-			
Barra	$\overline{\lambda}$	λw	Nt	Nc	MY	Mz	Vz	VY	MyVz	MzVy	NM _Y Mz	NMyMzVyVz	Mt	MtVz	M_tV_Y	Estado
N48/N5	$\overline{\lambda} < 2.0$ Cumple	$\begin{array}{c} x\colon 0\ m\\ \lambda_w \leq \lambda_{w,\text{máx}}\\ \text{Cumple} \end{array}$	x: 10.68 m η = 1.9	x: 0 m η = 5.4	x: 0 m η = 86.4	x: 0 m η = 2.0	x: 0 m η = 13.4	η < 0.1	x: 0 m η < 0.1	x: 0 m η < 0.1	x: 0 m η = 87.0	x: 0 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 87.0
N48/N5 $\sqrt[5]{\lambda}$ (2.0 cumple) $\sqrt[5]{\lambda}$ (2.1.0 cumple) $\sqrt[5]{\lambda}$ (2.1.																
(1) L	Comprobaciones que no proceden (N.P.): (1) La comprobación no procede, ya que no hay momento torsor. (2) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.															

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

> ī. 0.84

Donde:

Clase: Clase de la sección, según la capacidad de deformación Clase : 2 y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3. **A**: 45.90 cm² f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa N_{cr}: Axil crítico de pandeo elástico. N_{cr}: 1798.55 kN

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje

N_{cr,y}: 2147.13 kN

b) Axil crítico elástico de pandeo por flexión respecto al eje

N_{cr.z}: 1798.55 kN

c) Axil crítico elástico de pandeo por torsión.

 ∞ $N_{cr,T}$:

Donde:

$\mathbf{I_y}$: Momento de inercia de la sección b	ruta,
respecto al eje Y.	

I_z: 420.00 cm4

Iz: Momento de inercia de la sección bruta, respecto al eje Z.

I_t: 15.90 cm4

I_v: *5790.00* cm4

It: Momento de inercia a torsión uniforme. **I**_w: Constante de alabeo de la sección.

I_w: 70600.00 cm6 E: 210000 MPa

E: Módulo de elasticidad. G: Módulo de elasticidad transversal.

respecto al centro de torsión.

G: 81000 MPa

Lky: Longitud efectiva de pandeo por flexión, respecto al eje Y.

L_{ky}: 7.476 m

Lkz: Longitud efectiva de pandeo por flexión, respecto al eje Z.

 L_{kz} : 2.200 m L_{kt} : 0.000 m

L_{kt}: Longitud efectiva de pandeo por torsión. io: Radio de giro polar de la sección bruta,

 $i_0: 11.63$ cm

Siendo:

i_y , i_z: Radios de giro de la sección bruta, respecto a los ejes principales de inercia Y y Z.

11.23 i_v: cm

y₀ , z₀: Coordenadas del centro de torsión en la dirección de los ejes

i_z: 3.02 cm 0.00 **y**o: mm

principales Y y Z, respectivamente, relativas al centro de gravedad de la sección.

0.00 mm **Z**₀:

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE Ingenieros, basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

37.82 ≤ 250.57 √

Donde:

 \mathbf{f}_{yf} : Límite elástico del acero del ala comprimida. \mathbf{f}_{yf} : 275.00 MPa

Siendo:

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: 0.019 🗸

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N5, para la combinación de acciones 0.8·PP+1.5·V(90°)H1.

 $N_{t,Ed}$: Axil de tracción solicitante de cálculo pésimo. $N_{t,Ed}$: 22.51 kN

La resistencia de cálculo a tracción N_{t,Rd} viene dada por:

 $N_{t,Rd}$: 1202.14 kN

Donde:

A: Área bruta de la sección transversal de la barra. A: 45.90 cm² f_{yd} : Resistencia de cálculo del acero. f_{yd} : 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: **0.038**

η: **0.054** 🗸

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N48, para la combinación de acciones 1.35·PP+1.5·V(0°)H2+0.75·N(EI).

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo. $N_{c,Ed}$: 45.80 kN

La resistencia de cálculo a compresión $N_{c,Rd}$ viene dada por:

 $N_{c,Rd}$: 1202.14 kN

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_{vd}: Resistencia de cálculo del acero.

A: 45.90 cm²

2

f_{vd}: 261.90 MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

γ_{MO}: Coeficiente parcial de seguridad del material.

f_y: <u>275.00</u> MPa γ_{M0}: 1.05

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

N_{b,Rd}: 842.57 kN

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2

у 3.

 $\mathbf{f}_{\mathbf{vd}}$: Resistencia de cálculo del acero.

A: 45.90 cm²

f_{yd}: 261.90 MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: *275.00* MPa

γ_{M1}: Coeficiente parcial de seguridad del material.

γм1: 1.05

χ: Coeficiente de reducción por pandeo.

 $\chi_{v}: 0.81$

 χ_z : 0.70

Siendo:

φ_y: 0.85

φ_z: 0.96

α: Coeficiente de imperfección elástica.

 $\alpha_{\mathbf{v}}$: 0.21

 $\overline{\lambda}$: Esbeltez reducida.

 $\overline{\lambda}_{\mathbf{y}}: 0.77$

 $\bar{\lambda}_z$: 0.84

N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

N_{cr}: 1798.55 kN

N_{cr,y}: Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr,v}: 2147.13 kN

 $N_{cr,z}$: Axil crítico elástico de pandeo por flexión respecto al eje Z.

N_{cr.z}: 1798.55 kN

 $N_{cr,T}$: Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}$: ∞

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.864 ∨**

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N48, para la combinación de acciones

 $0.8 \cdot PP + 1.05 \cdot Qforjado(C) + 1.5 \cdot V(270^{\circ})H1.$

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo. M_{Ed}⁺: 95.59 kN⋅m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N48, para la combinación de acciones 1.35·PP+1.5·V(90°)H1+0.75·N(EI).

 $\mathbf{M}_{\mathbf{Ed}}^{-}$: Momento flector solicitante de cálculo pésimo. $\mathbf{M}_{\mathbf{Ed}}^{-}$: 109.53 kN·m

El momento flector resistente de cálculo $\mathbf{M}_{\mathbf{c},\mathbf{Rd}}$ viene dado por:

M_{c,Rd}: 126.76 kN⋅m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase : ____1

 $\mathbf{W}_{\text{pl,y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,y}: 484.00 \text{ cm}^3$

f_{yd}: Resistencia de cálculo del acero.

f_{yd}: 261.90 MPa

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: $\underline{275.00}$ MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: 0.020 **√**

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N48, para la combinación de acciones 0.8·PP+1.5·V(0°)H2.

 $\mathbf{M_{Ed}}^+$: Momento flector solicitante de cálculo pésimo. $\mathbf{M_{Ed}}^+$: 0.52 kN·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N48, para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

 $\mathbf{M}_{\mathbf{Ed}}^{-}$: Momento flector solicitante de cálculo pésimo. $\mathbf{M}_{\mathbf{Ed}}^{-}$: <u>0.52</u> kN·m

El momento flector resistente de cálculo $\mathbf{M}_{\mathbf{c},\mathbf{Rd}}$ viene dado por:

 $M_{c,Rd}$: 25.40 kN·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los

elementos planos de una sección a flexión simple.

 $\mathbf{W}_{\mathrm{pl,z}}$: Módulo resistente plástico correspondiente a la fibra $\mathbf{W}_{\mathrm{pl,z}}$: 97.00 cm³

con mayor tensión, para las secciones de clase 1 y 2.

 $\mathbf{f_{vd}}$: Resistencia de cálculo del acero. $\mathbf{f_{vd}}$: 261.90 MPa

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: 275.00 MPa

γMo: Coeficiente parcial de seguridad del material. γMo: 1.05

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: 0.134 🗸

√

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N48, para la combinación de acciones 1.35·PP+1.5·V(90°)H1+0.75·N(EI).

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 44.81 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 334.07 kN

Donde:

A_v: Área transversal a cortante.

 A_v : 22.09 cm²

Siendo:

 $\begin{array}{ll} \textbf{h} \colon \text{Canto de la sección.} & \textbf{h} \colon \underline{270.00} \text{ mm} \\ \textbf{t}_{\textbf{w}} \colon \text{Espesor del alma.} & \textbf{t}_{\textbf{w}} \colon \underline{-6.60} \text{ mm} \end{array}$

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

33.27 < 64.71

Donde:

λ_w: Esbeltez del alma.

 $\lambda_{w}: 33.27$

λ_{máx}: Esbeltez máxima.

 $\lambda_{\text{máx}}$: 64.71

ε: Factor de reducción.

ε: 0.92

Siendo:

 $\begin{array}{ll} \textbf{f}_{\text{ref}} \colon \text{L\'imite el\'astico de referencia.} & \textbf{f}_{\text{ref}} \colon \underline{235.00} \text{ MPa} \\ \textbf{f}_{\text{y}} \colon \text{L\'imite el\'astico.} \text{ (CTE DB SE-A, Tabla 4.1)} & \textbf{f}_{\text{y}} \colon \underline{275.00} \text{ MPa} \end{array}$

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η < **0.001 √**

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^{\circ})H2$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.05 kN

El esfuerzo cortante resistente de cálculo **V**_{c,Rd} viene dado por:

V_{c,Rd}: 444.96 kN

Donde:

 A_v : Área transversal a cortante. A_v : 29.43 cm²

Siendo:

A: Área de la sección bruta.A: $\frac{45.90}{249.60}$ cm²d: Altura del alma.d: $\frac{249.60}{6.60}$ mm $\mathbf{t_w}$: Espesor del alma. $\mathbf{t_w}$: $\frac{6.60}{6.60}$ mm

 \mathbf{f}_{yd} : Resistencia de cálculo del acero. \mathbf{f}_{yd} : 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{c,Rd}$.

 $44.81 \text{ kN} \le 167.04 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N48, para la combinación de acciones 1.35·PP+1.5·V(90°)H1+0.75·N(EI).

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 44.81 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 334.07 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{c,Rd}$.

 $0.05 \text{ kN} \le 222.48 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N48, para la combinación de acciones 0.8·PP+1.5·V(0°)H2.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.05 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 444.96 kN

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.867 √**

η: **0.870** γ

η: **0.525** 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N48, para la combinación de acciones 1.35·PP+1.5·V(90°)H1+0.75·N(EI).

Donde:

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo. $N_{c,Ed}$: 4.13 kN $M_{y,Ed}$, $M_{z,Ed}$: Momentos flectores solicitantes de cálculo pésimos, según los ejes Y y Z, respectivamente. $M_{y,Ed}$: 109.53 kN·mClase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistancia plástica de sus elementosClase: 1

y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple.

N_{pl.Rd}: Resistencia a compresión de la sección bruta.

 $\mathbf{M}_{pl,Rd,y}$, $\mathbf{M}_{pl,Rd,z}$: Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z, respectivamente.

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)

A: Área de la sección bruta.

 $\mathbf{W}_{pl,y}$, $\mathbf{W}_{pl,z}$: Módulos resistentes plásticos correspondientes a la fibra comprimida, alrededor de los ejes Y y Z, respectivamente.

 $N_{pl,Rd}$: <u>1202.14</u> kN $M_{pl,Rd,y}$: <u>126.76</u> kN·m

 $M_{pl,Rd,z}$: 25.40 kN·m

Mpl,Rd,z · ____23.40 KIN'III

 $A : 45.90 \text{ cm}^2$ $W_{\text{pl,v}} : 484.00 \text{ cm}^3$

W_{pl,z}: 97.00 cm³

f _{yd} : [Resistencia de cálculo del acero.	f _{yd} :	261.90	MPa
---------------------	-----------------------------------	-------------------	--------	-----

Siendo:

f _y : Límite elástico. (CTE DB SE-A, Tabla 4.1)	f _y :	275.00	MPa
γ _{M1} : Coeficiente parcial de seguridad del material.	γм1:	1.05	

k_v, k_z: Coeficientes de interacción.

 k_y : 1.00

k_z: 1.01

 $C_{m,y}$, $C_{m,z}$: Factores de momento flector uniforme equivalente. $C_{m,y}$: 1.00

C_{m,z}: 1.00

 χ_{y} , χ_{z} : Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z, respectivamente.

 χ_{y} : 0.81 χ_{z} : 0.70

 $\bar{\lambda}_y$, $\bar{\lambda}_z$: Esbelteces reducidas con valores no mayores que 1.00, en relación a los ejes Y y Z, respectivamente.

 $\frac{\overline{\lambda}_{\mathbf{y}}}{\overline{\lambda}_{\mathbf{z}}}: \frac{0.77}{0.84}$

 $\alpha_{\textbf{y}},~\alpha_{\textbf{z}} :$ Factores dependientes de la clase de la sección.

 $\alpha_{\mathbf{y}}$: 0.60 $\alpha_{\mathbf{z}}$: 0.60

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V_{Ed}}$ es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V_{c,Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N48, para la combinación de acciones 1.35·PP+1.5·V(90°)H1+0.75·N(EI).

 $44.81 \text{ kN} \le 167.04 \text{ kN}$

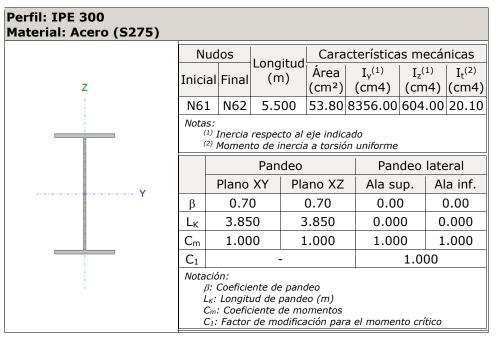
Donde:

$V_{Ed,z}$: Esfuerzo cortante solicitante de cálculo pésimo.	$V_{Ed,z}$:	44.81	kN
V _{c,Rd,z} : Esfuerzo cortante resistente de cálculo.	$V_{c,Rd,z}$:	334.07	kN

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)


No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Pilar entreplanta

Barra N61/N62

COMPROBACIONES (CTE DB SE-A)													Estado			
Barra	$\overline{\lambda}$	λw	Nt	Nc	MY	Mz	Vz	VY	MyVz	MzVy	NMyMz	NMyMzVyVz	Mt	MtVz	MtVY	Estado
N61/N62	$\overline{\lambda} < 2.0$ Cumple	$\lambda w \leq \lambda w m \dot{a} v$	N _{Ed} = 0.00 N.P. ⁽¹⁾	x: 0 m η = 49.3	x: 0 m η = 13.0	x: 0 m η = 0.1	η = 1.0	η < 0.1	x: 0 m η < 0.1	x: 0 m η < 0.1	x: 0 m η = 54.7	x: 0 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽²⁾	N.P. ⁽³⁾	N.P. ⁽³⁾	CUMPLE η = 54.7
A: A N.: R N.: R My: R My: R Vy: R My: V.: My: My: My: My: My: My: My: My: My: My:	Cumple Cumple N.P.(1) $\eta = 49.3 \eta = 13.0 \eta = 0.1 $ $\eta < 0.1 \eta < 0.1 \eta = 54.7 \eta < 0.1 N.P.(2) \eta = 54.7 \eta < 0.1 \eta = 54.7 \eta < 0.1 N.P.(2) $															
⁽¹⁾ La ⁽²⁾ La	comprobac comprobac	ión no procede	.P.): e, ya que no hay e, ya que no hay mento torsor y	momento to	orsor.	guna comb	inación. Po	r lo tanto, l	a comproba	ación no pro	ocede.					

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\ \bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

 $\overline{\lambda}$: 1.32 \checkmark

53.80

275.00

844.57

N_{cr,y}: 11684.12 kN

 $N_{cr,z}$: 844.57

 ∞

I_v: 8356.00 cm4

604.00

20.10

I_w: 126000.00 cm6

81000

3.850

3.850

0.000

12.91

E: 210000

cm²

MPa

kΝ

kΝ

cm4

cm4

MPa

MPa

m

m

cm

Donde:

Clase: Clase de la sección, según la capacidad de deformación Clase: 2 y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{N_{cr}}$: Axil crítico de pandeo elástico.

El axil crítico de pandeo elástico N_{cr} es el menor de los valores

obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al

a) Axil crítico elástico de pandeo por flexión respecto al eje Y.

b) Axil crítico elástico de pandeo por flexión respecto al eje Z.

c) Axil crítico elástico de pandeo por torsión.

N_{cr,T} : _____

 \mathbf{I}_{z} :

 $\mathbf{I_t}$:

G:

 L_{ky} :

L_{kz}:

L_{kt}:

io:

A:

 f_v :

 N_{cr} :

Donde:

I_y: Momento de inercia de la sección bruta, respecto al eje Y.

 $\mathbf{I}_{\mathbf{z}} :$ Momento de inercia de la sección bruta, respecto al eje Z.

 $\begin{aligned} \mathbf{I_t} \colon \text{Momento de inercia a torsión uniforme.} \\ \mathbf{I_w} \colon \text{Constante de alabeo de la sección.} \end{aligned}$

E: Módulo de elasticidad. **G**: Módulo de elasticidad transversal.

 $\mathbf{L}_{\mathbf{kv}}$: Longitud efectiva de pandeo por flexión,

respecto al eje Y. $\mathbf{L}_{\mathbf{kz}}$: Longitud efectiva de pandeo por flexión,

respecto al eje Z. **L**_{kt}: Longitud efectiva de pandeo por torsión.

 i_0 : Radio de giro polar de la sección bruta, respecto al centro de torsión.

Siendo:

 i_y , i_z : Radios de giro de la sección bruta, respecto a los ejes principales de inercia Y y Z.

i_y: <u>12.46</u> cm

 $\mathbf{i_z}: \underline{3.35}$ cm $\mathbf{y_0}: 0.00$ mm

 y_0 , z_0 : Coordenadas del centro de torsión en la dirección de los ejes principales Y y Z, respectivamente, relativas al centro de gravedad de la sección.

0.00 mm **Z**₀:

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE Ingenieros,

basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

39.24 ≤ 254.33 ✓

Donde:

hw: Altura del alma. **h**_w: 278.60 mm tw: Espesor del alma. $t_w: 7.10$ mm $A_w: 19.78 \text{ cm}^2$ A_w : Área del alma. A_{fc,ef}: Área reducida del ala comprimida. **A**_{fc,ef}: 16.05 cm² k: Coeficiente que depende de la clase de la sección. **k**: 0.30 E: 210000 MPa E: Módulo de elasticidad. **f**_{yf}: 275.00 MPa f_{vf}: Límite elástico del acero del ala comprimida.

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

Siendo:

η: **0.205**

η: **0.493**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N61, para la combinación de acciones

 $1.35 \cdot PP + 1.5 \cdot Qforjado(C) + 0.9 \cdot V(0^{\circ})H2 + 0.75 \cdot N(EI).$

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo. N_{c.Ed}: 288.49 kN La resistencia de cálculo a compresión $\mathbf{N}_{\mathbf{c},\mathbf{Rd}}$ viene dada por:

	N_{c,Rd} : 1409.05 kN
Donde:	
Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.	Clase :2
A: Área de la sección bruta para las secciones de clase 1, 2 y 3. • Posistancia do cálculo del acoro	A : 53.80 cm ²
$\mathbf{f_{yd}}$: Resistencia de cálculo del acero.	f _{yd} : <u>261.90</u> MPa
Siendo: $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\gamma_{ extsf{MO}}$: Coeficiente parcial de seguridad del	f _y : <u>275.00</u> MPa
material.	умо: <u>1.05</u>
Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2) La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:	
	N_{b,Rd} : 585.74 kN
Donde:	
A: Área de la sección bruta para las secciones de clase 1, 2 y 3.	A : <i>53.80</i> cm ²
f_{yd}: Resistencia de cálculo del acero.	f_{yd} : 261.90 MPa
Siendo: $ \mathbf{f_{y}} \text{: Límite elástico. (CTE DB SE-A, Tabla 4.1)} $	f _y : <u>275.00</u> MPa γ _{M1} : <u>1.05</u>
χ: Coeficiente de reducción por pandeo.	χ _γ : 0.96
Siendo:	χ _z : 0.42
	$\phi_{\mathbf{y}} : 0.58$
	φ _z : 1.57
α: Coeficiente de imperfección elástica.	$\alpha_{\mathbf{y}}$: 0.21
	α_z : 0.34
$ar{\lambda}$: Esbeltez reducida.	$\overline{\lambda}_{\mathbf{y}}: \underline{0.36}$
	$\bar{\lambda}_{z}: 1.32$
N_{cr} : Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:	N _{cr} : 844.57 kN

N_{cr,y}: Axil crítico elástico de pandeo por flexión respecto al eje Y.

 $N_{cr,z}$: Axil crítico elástico de pandeo por flexión respecto al eje Z.

 $\mathbf{N}_{\mathbf{cr,T}}$: Axil crítico elástico de pandeo

por torsión.

N_{cr,y}: 11684.12 kN

N_{cr,z}: 844.57 kN

 $N_{cr,T}$: ∞

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: 0.130 🗸

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N61, para la combinación de acciones 0.8·PP+1.5·V(0°)H2.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N61, para la combinación de acciones

 $1.35 \cdot PP + 1.05 \cdot Qforjado(C) + 1.5 \cdot V(180^{\circ})H2.$

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

M_{Ed}⁻: 21.32 kN·m

 M_{Ed}^+ : 17.77 kN·m

 $M_{c,Rd}$: 164.48 kN·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

 $\mathbf{W}_{\mathsf{pl},\mathsf{y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

f_{vd}: Resistencia de cálculo del acero.

Clase: 1

 $W_{pl,y}: 628.00 \text{ cm}^3$

f_{vd} : *261.90* MPa

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: $\underline{275.00}$ MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : $\underline{1.05}$

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: 0.001 🗸

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N61, para la combinación de acciones ${\sf N61}$

 $0.8 \cdot PP + 1.05 \cdot Qforjado(C) + 1.5 \cdot V(180^{\circ})H1.$

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^+ : 0.02 kN·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N61, para la combinación de acciones 1.35·PP+1.5·Q(G1).

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁻: 0.03 kN·m

El momento flector resistente de cálculo Mc,Rd viene dado por:

M_{c,Rd}: *32.74* kN⋅m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los

elementos planos de una sección a flexión simple.

 $\mathbf{W}_{pl,z}$: Módulo resistente plástico correspondiente a la fibra $\mathbf{W}_{pl,z}$: 125.00 cm³

con mayor tensión, para las secciones de clase 1 y 2.

f_{yd}: 261.90 MPa

 $\mathbf{f}_{\mathbf{yd}}$: Resistencia de cálculo del acero.

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: $\underline{275.00}$ MPa

γ_{м0}: Coeficiente parcial de seguridad del material.

γ_{м0}: 1.05

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: 0.010 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.05·Qforjado(C)+1.5·V(180°)H2.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo.

 V_{Ed} : 3.98 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

 $V_{c,Rd}$: 388.15 kN

Donde:

 A_{v} : Área transversal a cortante.

 $A_v: 25.67 \text{ cm}^2$

Siendo:

h: Canto de la sección.h: 300.00 mm $\mathbf{t_w}$: Espesor del alma. $\mathbf{t_w}$: 7.10 mm

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa γ_{MO}: Coeficiente parcial de seguridad del material. γ_{MO}: 1.05

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

35.01 < **64.71**

Donde:

 $\lambda_{\mathbf{w}}$: Esbeltez del alma. $\lambda_{\mathbf{w}}$: 35.01

 $\lambda_{máx}$: Esbeltez máxima. $\lambda_{máx}$: 64.71

 ϵ : Factor de reducción. ϵ : 0.92

Siendo:

 $\mathbf{f_{ref}}$: Límite elástico de referencia. $\mathbf{f_{ref}}$: 235.00 MPa $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: 275.00 MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

 $\eta < 0.001 \checkmark$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.5·Q(G1).

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.00 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 514.41 kN

Donde:

 A_v : Área transversal a cortante. A_v : 34.02 cm²

Siendo:

A: Área de la sección bruta.A: 53.80 cm²d: Altura del alma.d: 278.60 mm $\mathbf{t_w}$: Espesor del alma. $\mathbf{t_w}$: 7.10 mm

 $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V}_{\mathbf{Ed}}$ no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{\mathbf{c},\mathbf{Rd}}$.

 $3.98 \text{ kN} \le 194.08 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N61, para la combinación de acciones 1.35·PP+1.05·Qforjado(C)+1.5·V(180°)H2.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 3.98 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 388.15 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{c,Rd}$.

 $0.00 \text{ kN} \le 257.21 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N61, para la combinación de acciones 1.35·PP+1.5·Q(G1).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.00 kΝ

 $V_{c,Rd}$: 514.41 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. kΝ

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.292**

η: **0.302**

η: 0.547 V

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N61, para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot Qforjado(C) + 0.9 \cdot V(180^{\circ})H2 + 0.75 \cdot N(EI).$

Donde:

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo. N_{c,Ed}: 288.49 kN M_{v,Ed}, M_{z,Ed}: Momentos flectores solicitantes de cálculo $M_{y,Ed}^{-}$: 14.26 kN·m pésimos, según los ejes Y y Z, respectivamente. $M_{z,Ed}^{-}: 0.01$ kN·m Clase :

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple.

N_{pl.Rd}: Resistencia a compresión de la sección bruta.

M_{pl,Rd,y}, M_{pl,Rd,z}: Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z, respectivamente.

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)

A: Área de la sección bruta.

 $\mathbf{W}_{\mathsf{pl},\mathsf{y}_{\mathsf{f}}}$, $\mathbf{W}_{\mathsf{pl},\mathsf{z}}$: Módulos resistentes plásticos correspondientes a la fibra comprimida, alrededor de los ejes Y y Z, respectivamente.

f_{yd}: Resistencia de cálculo del acero.

 $N_{pl,Rd}$: 1409.05 kN $M_{pl,Rd,y}$: 164.48 kN·m

 $M_{pl,Rd,z}$: 32.74 kN·m

A: 53.80 cm² $W_{pl,y}: 628.00 \text{ cm}^3$

 $W_{pl,z}: 125.00 \text{ cm}^3$

fyd: 261.90 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 275.00 MPa γ_{M1}: Coeficiente parcial de seguridad del material. 1.05 γм1:

k_v, k_z: Coeficientes de interacción.

1.03

1.69 k_z :

 $C_{m,y}$, $C_{m,z}$: Factores de momento flector uniforme equivalente. C_{m,y}: 1.00

 $C_{m,z}$: 1.00

 χ_{y} , χ_{z} : Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z, respectivamente.

χy: 0.96 0.42 χ_z :

 $\bar{\lambda}_{v}$, $\bar{\lambda}_{z}$: Esbelteces reducidas con valores no mayores que 1.00, en relación a los ejes Y y Z, respectivamente.

 $\overline{\lambda}_{\mathbf{v}}$: 0.36 $\bar{\lambda}_z$: 1.32

 α_v , α_z : Factores dependientes de la clase de la sección.

α_v: 0.60 0.60 αz:

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} es menor o igual que el 50% del esfuerzo cortante resistente de cálculo V_{c,Rd}.

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N61, para la combinación de acciones $1.35 \cdot PP + 1.05 \cdot Qforjado(C) + 1.5 \cdot V(180^{\circ})H2.$

 $3.98 \text{ kN} \le 194.08 \text{ kN}$

Donde:

V_{Ed,z}: Esfuerzo cortante solicitante de cálculo pésimo.

 $V_{Ed.z}$:

3.98 kΝ

V_{c,Rd,z}: Esfuerzo cortante resistente de cálculo.

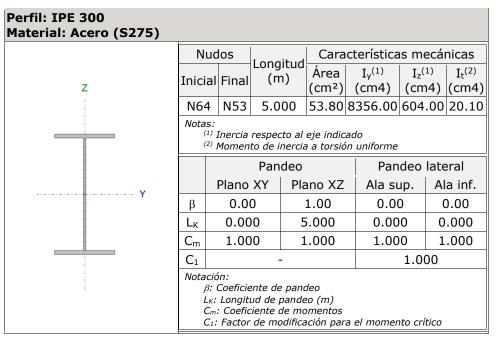
 $V_{c,Rd,z}$:

388.15 kΝ

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)


No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Viga de entreplanta

Barra N64/N53

Barra		COMPROBACIONES (CTE DB SE-A)														
	$\bar{\lambda}$	λw	Nt	Nc	MY	Mz	Vz	VY	M _Y V _Z	MzVy	NM _Y Mz	NMyMzVyVz	-	MtVz	MtVY	Estado
N64/N53	$\overline{\lambda} < 2.0 \\ Cumple$	$\lambda_w \le \lambda_{w,máx}$ Cumple	η = 8.2	η = 1.7	x: 4.85 m η = 76.3	x: 0 m η = 0.6	x: 4.85 m η = 37.7	η < 0.1	η < 0.1	η < 0.1	x: 4.85 m η = 84.0	η < 0.1	η = 0.3	x: 4.85 m η = 37.1	η < 0.1	CUMPLE η = 84.0
N64/N53 $\left \begin{array}{c} \overline{\lambda} < 2.0 \\ \text{Cumple} \end{array} \right \lambda_W \le \lambda_{W,\text{máx}} \left \begin{array}{c} \lambda_{\text{Cumple}} \le \lambda_{\text{W}} \le \lambda_{\text{W,máx}} \\ \text{Cumple} \end{array} \right \eta = 8.2 \left \begin{array}{c} \eta = 1.7 \\ \eta = 76.3 \end{array} \right \left \begin{array}{c} x: 4.85 \text{ m} \\ \eta = 0.6 \end{array} \right \eta < 0.1 \right \eta < 0.1 \left \begin{array}{c} \eta < 0.1 \\ \eta = 0.1 \end{array} \right \left \begin{array}{c} x: 4.85 \text{ m} \\ \eta = 84.0 \end{array} \right \eta < 0.1 \right \eta < 0.1 \right \eta < 0.1 \right \eta < 0.1 \left \begin{array}{c} x: 4.85 \text{ m} \\ \eta = 84.0 \end{array} \right \eta < 0.1 \right \eta < 0.1 \right \eta < 0.1 \left \begin{array}{c} x: 4.85 \text{ m} \\ \eta = 84.0 \end{array} \right \eta < 0.1 \right \eta < 0.1 \right \eta < 0.1 \right \eta < 0.1 \left \begin{array}{c} x: 4.85 \text{ m} \\ \eta = 84.0 \end{array} \right \eta < 0.1 \right \eta < 0.1 \right \eta < 0.1 \right \eta < 0.1 \left \begin{array}{c} x: 4.85 \text{ m} \\ \eta = 84.0 \end{array} \right \eta < 0.1 \\ \eta < 0.1 \right \eta < 0.1 \\ \eta < 0.1 \right \eta < 0.1 \right \eta < 0.1 \right \eta < 0.1 \\ \eta < 0.1 \right \eta < 0.1 \\ \eta <$																

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $~\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

$\overline{\lambda}$:	0.46	√
	-		

Donde:

Clase: 2

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

N_{cr}: Axil crítico de pandeo elástico.

53.80 cm² **A**: 275.00 **MPa** f_v:

N_{cr}: 6927.51 kΝ

N_{cr,y}: 6927.51 kN

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje Y.

b) Axil crítico elástico de pandeo por flexión respecto al

eje Z.

c) Axil crítico elástico de pandeo por torsión.

 ∞ $N_{cr,z}$:

 ∞ $N_{cr,T}$:

Donde:

I_v: Momento de inercia de la sección bruta, respecto al eje Y.

I_z: Momento de inercia de la sección bruta, respecto al eje Z.

It: Momento de inercia a torsión uniforme. I_w: Constante de alabeo de la sección.

E: Módulo de elasticidad.

G: Módulo de elasticidad transversal.

Lkv: Longitud efectiva de pandeo por flexión, respecto al eje Y.

Lkz: Longitud efectiva de pandeo por flexión, respecto al eje Z.

Lkt: Longitud efectiva de pandeo por torsión.

io: Radio de giro polar de la sección bruta. respecto al centro de torsión.

I_v: 8356.00 cm4

I_z: 604.00 cm4 $\mathbf{I_t}$: 20.10 cm4

I_w: 126000.00 cm6 **E**: 210000 MPa

G: 81000 MPa

L_{ky}: 5.000 m

 L_{kz} : 0.000 m 0.000

 L_{kt} :

io: 12.91 cm

m

Siendo:

i_v , i_z: Radios de giro de la sección bruta, respecto a los ejes principales de inercia Y y Z.

yo, zo: Coordenadas del centro de torsión en la dirección de los ejes principales Y y Z, respectivamente, relativas al centro de gravedad de la sección.

12.46 i_v: cm

 i_z : 3.35 cm **y**₀: 0.00 mm

0.00 **Z**o: mm

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE Ingenieros,

basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

39.24 ≤ 254.33 ✓

Donde:

hw: Altura del alma. **h**_w: 278.60 mm tw: Espesor del alma. $t_{w}: 7.10$ mm Aw: Área del alma. $A_w: 19.78 \text{ cm}^2$ **A**_{fc,ef}: Área reducida del ala comprimida. **A**_{fc,ef}: 16.05 cm² k: Coeficiente que depende de la clase de la sección. 0.30 **k** :

E: Módulo de elasticidad. E: 210000 MPa **f**_{yf}: 275.00 MPa $\mathbf{f_{vf}}$: Límite elástico del acero del ala comprimida.

Siendo:

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: 0.082 \

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $1.35 \cdot PP + 0.9 \cdot V(0^{\circ})H2 + 1.5 \cdot N(EI)$.

N_{t,Ed}: Axil de tracción solicitante de cálculo pésimo. $N_{t,Ed}$: 115.55 kN

La resistencia de cálculo a tracción N_{t,Rd} viene dada por:

N_{t,Rd}: 1409.05 kN

Donde:

A: Área bruta de la sección transversal de la barra. A: 53.80 cm² **f_{yd}**: 261.90 MPa f_{vd}: Resistencia de cálculo del acero.

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f**_v: 275.00 MPa γ_{M0}: Coeficiente parcial de seguridad del material. γ_{м0}: 1.05

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: **0.015** 🗸

η: **0.017 √**

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.05·Qforjado(C)+1.5·V(270°)H1.

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo.

 $N_{c,Ed}$: 21.83 kN

La resistencia de cálculo a compresión $N_{c,Rd}$ viene dada por:

N_{c,Rd}: 1409.05 kN

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

 $\mathbf{f}_{\mathbf{yd}}$: Resistencia de cálculo del acero.

Clase :

A: 53.80 cm² f_{yd} : 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) γ_{M0} : Coeficiente parcial de seguridad del material.

f_y: <u>275.00</u> MPa γ_{M0}: 1.05

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

N_{b,Rd}: 1318.35 kN

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2 v 3

f_{vd}: Resistencia de cálculo del acero.

A: 53.80 cm²

f_{yd}: 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) γ_{M1} : Coeficiente parcial de seguridad del material.

 $f_y: 275.00$ MPa $\gamma_{M1}: 1.05$

χ: Coeficiente de reducción por pandeo.

 $\chi_{y}: 0.94$

Siendo:

 $\phi_{v}: 0.63$

α: Coeficiente de imperfección elástica.

 α_{v} : 0.21

 $\bar{\lambda}$: Esbeltez reducida.

 $\overline{\lambda}_{\mathbf{v}}: 0.46$

N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

N_{cr}: 6927.51 kN

N_{cr,y}: Axil crítico elástico de pandeo por flexión respecto al eje Y.

 $N_{cr,v}$: 6927.51 kN

N_{cr,z}: Axil crítico elástico de pandeo por flexión respecto al eje Z.

 $N_{cr,z}$:

N_{cr.T}: Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}$:

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.763** 🗸

Para flexión positiva:

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁺: 0.00 kN⋅m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 4.850 m del nudo N64, para la combinación de acciones

 $1.35 \cdot PP + 1.05 \cdot Qforjado(C) + 1.5 \cdot V(0^{\circ})H2 + 0.75 \cdot N(EI)$.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo. **M**_{Ed}⁻ : 125.48 kN⋅m

El momento flector resistente de cálculo Mc,Rd viene dado por:

M_{c,Rd}: 164.48 kN·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase : __1_

W_{pl,y}: Módulo resistente plástico correspondiente a la fibra

 $W_{pl,y}: 628.00 \text{ cm}^3$

con mayor tensión, para las secciones de clase 1 y 2.

f_{vd}: 261.90 MPa

 \mathbf{f}_{vd} : Resistencia de cálculo del acero.

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: 0.006

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N64, para la combinación de acciones $0.8 \cdot PP + 1.05 \cdot Qforjado(C) + 1.5 \cdot V(270^\circ)H1$.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^+ : 0.19 kN·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N64, para la combinación de acciones 1.35·PP+1.5·V(90°)H1+0.75·N(EI).

 M_{Ed}^- : Momento flector solicitante de cálculo pésimo. M_{Ed}^- : 0.18 kN·m

El momento flector resistente de cálculo M_{c,Rd} viene dado por:

 $M_{c,Rd}$: 32.74 kN·m

Clase: 1

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

W_{pl,z}: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

f_{yd}: Resistencia de cálculo del acero.

f_{vd}: 261.90 MPa

 $W_{pl,z}: 125.00 \text{ cm}^3$

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: **0.377** 🗸

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 4.850 m del nudo N64, para la combinación de acciones 1.35·PP+1.5·Qforjado(C)+0.9·V(0°)H2+0.75·N(EI).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 146.49 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

 $V_{c,Rd}$: 388.15 kN

Donde:

 A_{v} : Área transversal a cortante.

 A_v : 25.67 cm²

Siendo:

h: Canto de la sección.t_w: Espesor del alma.

h : <u>300.00</u> mm

t_w: __*7.10*_ mm

 $\mathbf{f}_{\mathbf{vd}}$: Resistencia de cálculo del acero.

f_{yd}: 261.90 MPa

Siendo:

 f_{y} : Límite elástico. (CTE DB SE-A, Tabla 4.1) γ_{M0} : Coeficiente parcial de seguridad del material.

f_y: <u>275.00</u> MPa

γ**мо**: 1.05

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

35.01 < **64.71**

 \checkmark

Donde:

 λ_w : Esbeltez del alma.

 $\lambda_{w}: 35.01$

 $\lambda_{máx}$: Esbeltez máxima.

 $\lambda_{\text{máx}}$: 64.71

ε: Factor de reducción.

ε: 0.92

Siendo:

fref: Límite elástico de referencia.

f_{ref}: 235.00 MPa

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 275.00 MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η < 0.001 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.5·V(270°)H1+0.75·N(EI).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.05 kN

El esfuerzo cortante resistente de cálculo $\mathbf{V}_{\mathbf{c},Rd}$ viene dado por:

V_{c,Rd}: 514.41 kN

Donde:

 A_v : Área transversal a cortante.

 A_v : 34.02 cm²

Siendo:

A: Área de la sección bruta.d: Altura del alma.t_w: Espesor del alma.

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) γ_{M0} : Coeficiente parcial de seguridad del material.

 $\mathbf{f_y}: \ \ \underline{275.00} \ \ \mathsf{MPa}$ $\gamma_{\mathbf{M0}}: \ \ 1.05$

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{c,Rd}$.

 $140.73 \text{ kN} \le 194.08 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·Qforjado(C)+0.9·V(180°)H1.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 140.73 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 388.15 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $V_{c,Rd}$.

 $0.05 \text{ kN} \le 257.21 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·V(270°)H1+0.75·N(EI).

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.05 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 514.41 kN

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.840 V

η: **0.703** 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 4.850 m del nudo N64, para la combinación de acciones

 $1.35 \cdot PP + 1.05 \cdot Qforjado(C) + 1.5 \cdot V(0^{\circ})H2 + 0.75 \cdot N(EI).$

Donde:

N_{t,Ed}: Axil de tracción solicitante de cálculo pésimo.
 M_{v,Ed}, M_{z,Ed}: Momentos flectores solicitantes de cálculo

pésimos, según los ejes Y y Z, respectivamente.

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple.

 $\mathbf{M}_{\mathbf{t},\mathbf{Ed}}$: 107.55 kN $\mathbf{M}_{\mathbf{y},\mathbf{Ed}^-}$: 125.48 kN·m $\mathbf{M}_{\mathbf{z},\mathbf{Ed}^-}$: 0.02 kN·m

Clase: 1

 $N_{pl,Rd}$: Resistencia a tracción. $N_{pl,Rd}$: 1409.05 kN

 $\mathbf{M}_{\mathsf{pl},\mathsf{Rd},\mathsf{yr}}$, $\mathbf{M}_{\mathsf{pl},\mathsf{Rd},\mathsf{z}}$: Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z,

respectivamente. $\mathbf{M}_{\mathbf{pl},\mathbf{Rd},\mathbf{z}}$: 32.74 kN·m

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.1)

 $\mathbf{M}_{ef,Ed}$: Momento flector solicitante de cálculo pésimo. $\mathbf{M}_{ef,Ed}$: -115.44 kN·m

Siendo:

 $σ_{com,Ed}$: Tensión combinada en la fibra extrema comprimida. $σ_{com,Ed}$: 183.81 MPa

fibra extrema comprimida, alrededor del eje Y. $W_{y,com}: \underline{628.00} \text{ cm}^3$ A: Área de la sección bruta. $A: \underline{53.80} \text{ cm}^2$

 $M_{b,Rd,y}$: Momento flector resistente de cálculo. $M_{b,Rd,y}$: 164.48 kN·m

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

W_{v,com}: Módulo resistente de la sección referido a la

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V}_{c,Rd}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·Qforjado(C)+0.9·V(270°)H1.

 $140.69 \text{ kN} \le 193.96 \text{ kN}$

/

Donde:

V_{Ed,z}: Esfuerzo cortante solicitante de cálculo

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

Se debe satisfacer:

η: **0.003** ✓

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.5·V(90°)H1.

 $\mathbf{M}_{\mathsf{T,Ed}}$: Momento torsor solicitante de cálculo pésimo. $\mathbf{M}_{\mathsf{T,Ed}}: \underline{0.01}_{\mathsf{kN}\cdot\mathsf{m}}$

El momento torsor resistente de cálculo $M_{T,Rd}$ viene dado por:

M_{T,Rd}: 2.84 kN⋅m

Donde:

 $\mathbf{W_T}$: Módulo de resistencia a torsión. $\mathbf{W_T}$: 18.79 cm³ $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : $\underbrace{275.00}_{\gamma_{M0}}$: MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : $\underbrace{1.05}_{\gamma_{M0}}$

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η : **0.371** 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 4.850 m del nudo N64, para la combinación de acciones

 $1.35 \cdot PP + 1.5 \cdot Qforjado(C) + 0.9 \cdot V(0^{\circ})H1 + 0.75 \cdot N(EI).$

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo. **V**_{Ed}: 143.99 kN

 $M_{T,Ed}$: Momento torsor solicitante de cálculo pésimo. $M_{T,Ed}$: 0.00 kN·m

El esfuerzo cortante resistente de cálculo reducido $\mathbf{V}_{\mathbf{pl},\mathbf{T},\mathbf{Rd}}$ viene dado

 $V_{pl,T,Rd}$: 388.10 kN

Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{pl,Rd}$: 388.15 kN $\tau_{T,Ed}$: Tensiones tangenciales por torsión. $\tau_{T,Ed}$: 0.05 MPa

Siendo:

 $\mathbf{W_T}$: Módulo de resistencia a torsión. $\mathbf{W_T}$: $\underline{18.79}$ cm³ $\mathbf{f_{vd}}$: Resistencia de cálculo del acero. $\mathbf{f_{vd}}$: $\underline{261.90}$ MPa

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: $\underline{275.00}$ MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

 $\eta < 0.001 \checkmark$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(270^{\circ})H1 + 0.75 \cdot N(EI)$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.05 kN

 $\mathbf{M}_{\mathsf{T,Ed}}$: Momento torsor solicitante de cálculo pésimo. $\mathbf{M}_{\mathsf{T,Ed}}$: ________kN·m

El esfuerzo cortante resistente de cálculo reducido $\mathbf{V}_{\text{pl,T,Rd}}$ viene dado por:

V_{pl,T,Rd}: 513.91 kN

Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{pl,Rd}$: $\underline{514.41}$ kN $\tau_{T,Ed}$: Tensiones tangenciales por torsión. $\tau_{T,Ed}$: $\underline{0.37}$ MPa

Siendo:

 \mathbf{W}_{T} : Módulo de resistencia a torsión. \mathbf{W}_{T} : 18.79 cm³ \mathbf{f}_{yd} : Resistencia de cálculo del acero. \mathbf{f}_{yd} : 261.90 MPa

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: $\underline{275.00}$ MPa $\mathbf{y_{M0}}$: Coeficiente parcial de seguridad del

Viga para hueco de escalera

Barra N74/N73

Perfil: IPE 240 Material: Acero (S275)										
	Nuc	dos	Longitud	Cara	cterística	is mecá	inicas			
z	Inicial	Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)			
	N74	N73	3.220	39.10	3892.00	284.00	12.90			
			respecto al to de inerci		ado In uniforme					
			Pandeo		Pan	deo lat	eral			
Y		Plano	XY Pla	ano XZ	no XZ Ala su		la inf.			
Υ	β	1.0	0	1.00	0.00)	0.00			
	L _K	3.22	20 3	3.220	0.00	0 (0.000			
	C _m	1.00	00 1	1.000	1.00	0 :	1.000			
	C ₁ - 1.000									
	Notación: β : Coeficiente de pandeo L_{K} : Longitud de pandeo (m) C_{m} : Coeficiente de momentos C_{1} : Factor de modificación para el momento crítico									

Barra						C	OMPROB	ACIONES	CTE DB S	E-A)						Fata da
Багга	$\bar{\lambda}$	λ_w	Nt	N _c	M _Y	Mz	Vz	V_Y	M_YV_Z	M_ZV_Y	NM_YM_Z	$NM_YM_ZV_YV_Z\\$	Mt	M_tV_Z	M_tV_Y	Estado
N74/N73	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\begin{array}{c} x \colon 0.201 \text{ m} \\ \lambda_w \leq \lambda_{w,\text{máx}} \\ \text{Cumple} \end{array}$	η < 0.1	η < 0.1	x: 3.22 m η = 51.6	x: 3.22 m η < 0.1	x: 0 m η = 5.6	η < 0.1	x: 0.201 m η < 0.1	x: 1.006 m η < 0.1	x: 3.22 m η = 51.6	x: 0.201 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	CUMPLE η = 51.6
Net Net	Abolladura Resistencia Resistencia Resistencia Resistencia Resistencia z: Resisten y: Resisten Mz: Resisten Mz: Resistencia z: Resistencia v: Resistencia oistancia al	a compresión a flexión eje Y a a flexión eje Z a a corte Z a corte Y cia a momento cia a momento encia a flexión y sistencia a flex a torsión cia a cortante Y origen de la ba de aprovecham	flector Y y flector Z y axil comb ión, axil y y momen y y momen rra	/ fuerza co / fuerza co binados cortante c	rtante Z coml rtante Y coml ombinados ombinados											

<u>Limitación de esbeltez</u> (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $~\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

\(\bar{\lambda} : ___1.38 __√

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.A: 39.10 cm² f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa

 N_{cr} : Axil crítico de pandeo elástico. N_{cr} : 567.71 kN

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje

N_{cr,y}: 7780.01 kN

b) Axil crítico elástico de pandeo por flexión respecto al eje

N_{cr,z}: 567.71 kN

c) Axil crítico elástico de pandeo por torsión.

 ∞ $N_{cr,T}$:

Donde:

I _y : Momento de inercia de la sección bruta,
respecto al eje Y.

I_v: 3892.00 cm4

I_z: Momento de inercia de la sección bruta, respecto al eje Z.

I_z: 284.00 cm4 **I**_t: 12.90 cm4

It: Momento de inercia a torsión uniforme. **I**_w: Constante de alabeo de la sección.

I_w: 37400.00 cm6

E: Módulo de elasticidad.

E: 210000 MPa **G**: 81000 MPa

G: Módulo de elasticidad transversal. Lkv: Longitud efectiva de pandeo por flexión,

L_{ky}: 3.220 m

respecto al eje Y. Lkz: Longitud efectiva de pandeo por flexión,

L_{kz}: 3.220 m

respecto al eje Z. Lkt: Longitud efectiva de pandeo por torsión.

 L_{kt} : 0.000 m

io: Radio de giro polar de la sección bruta, respecto al centro de torsión.

io: 10.33 cm

Siendo:

i_y , i_z: Radios de giro de la sección bruta, respecto a los ejes principales de inercia Y y Z.

9.98 i_y: cm

y₀ , z₀: Coordenadas del centro de torsión en la dirección de los ejes

i_z: 2.70 cm 0.00 **y**o: mm

principales Y y Z, respectivamente, relativas al centro de gravedad de la sección.

0.00 z_0 : mm

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE Ingenieros, basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

35.55 ≤ 246.95 ✓

Donde:

hw: Altura del alma. **h**_w: 220.40 mm $\mathsf{t_w}$: tw: Espesor del alma. 6.20 Aw: Área del alma. A_w : 13.66 cm² A_{fc,ef}: Área reducida del ala comprimida. **A**_{fc,ef}: 11.76 cm² k: Coeficiente que depende de la clase de la sección. **k** : 0.30

E: 210000 MPa E: Módulo de elasticidad. **f_{vf}**: 275.00 MPa f_{vf}: Límite elástico del acero del ala comprimida.

Siendo:

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

 $\eta < 0.001$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.05·Qforjado(C)+1.5·V(0°)H1.

N_{t,Ed}: Axil de tracción solicitante de cálculo pésimo. N_{t.Ed}: 0.01 kN

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

 $N_{t,Rd}$: 1024.05 kN

Donde:

A: Área bruta de la sección transversal de la barra. A: 39.10 cm² f_{vd}: Resistencia de cálculo del acero. **f_{vd}**: 261.90 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. $\gamma_{M0}: 1.05$

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η < 0.001

η < **0.001**

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot Q(G1)$.

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo. 0.01 kN $N_{c,Ed}$:

La resistencia de cálculo a compresión $N_{c,Rd}$ viene dada por:

 $N_{c,Rd}$: 1024.05 kN

Donde:

Clase: Clase de la sección, según la capacidad de Clase : 2 deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2

y 3.

A: 39.10 cm² fyd: 261.90 MPa fyd: Resistencia de cálculo del acero.

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 275.00 MPa γмo: 1.05

γ_{M0}: Coeficiente parcial de seguridad del material.

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo N_{b,Rd} en una barra comprimida viene dada por:

N_{b,Rd}: 401.32 kN

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2 A: 39.10 cm²

f_{vd}: Resistencia de cálculo del acero. f_{yd}: 261.90 MPa

Siendo:

f_y: 275.00 MPa f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

γ_{M1}: Coeficiente parcial de seguridad del material. γ**м1**: 1.05

χ: Coeficiente de reducción por pandeo.

χ_γ: 0.96

χz: 0.39 Siendo:

0.59

φ_z : 1.65

α: Coeficiente de imperfección elástica. 0.21 α_{v} :

0.34 α_z : $\bar{\lambda}$: Esbeltez reducida.

> $\overline{\lambda}_{\mathbf{v}}$: 0.37

 $\overline{\lambda}_z$: 1.38

N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

> N_{cr.v}: Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr.z}: Axil crítico elástico de pandeo por flexión respecto al eje Z.

N_{cr.T}: Axil crítico elástico de pandeo por torsión.

N_{cr,v}: 7780.01 kN

N_{cr}: 567.71 kN

N_{cr,z}: 567.71 kN

 $N_{cr,T}$:

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.516** 🗸

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N73, para la combinación de acciones 1.35·PP+1.5·Qforjado(C).

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo. M_{Ed}⁺: 49.61 kN⋅m

Para flexión negativa:

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo. M_{Ed}^- : 0.00 kN·m

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

M_{c,Rd}: 96.12 kN·m

Donde:

Clase: Clase de la sección, según la capacidad de Clase: 1 deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

W_{pl.v}: Módulo resistente plástico correspondiente a la fibra $W_{pl,y}: 367.00 \text{ cm}^3$ con mayor tensión, para las secciones de clase 1 y 2.

f_{vd}: 261.90 MPa

f_{vd}: Resistencia de cálculo del acero.

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 275.00 MPa γ_{M0}: Coeficiente parcial de seguridad del material. $\gamma_{M0}: 1.05$

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η < 0.001 🗸

M_{Ed}⁺: 0.00 kN·m

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N73, para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N73, para la combinación de acciones 1.35·PP.

 M_{Ed} : Momento flector solicitante de cálculo pésimo. M_{Ed} : 0.01 kN·m

El momento flector resistente de cálculo M_{c,Rd} viene dado por:

M_{c,Rd}: 19.35 kN⋅m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los

 $\mathbf{W}_{\mathsf{pl,z}}$: Módulo resistente plástico correspondiente a la fibra

elementos planos de una sección a flexión simple.

con mayor tensión, para las secciones de clase 1 y 2.

f_{yd}: 261.90 MPa

 $W_{pl,z}: 73.90 \text{ cm}^3$

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : $275.00 \atop \gamma_{M0}$: Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

f_{vd}: Resistencia de cálculo del acero.

Se debe satisfacer:

η:_**0.056**_**√**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N74, para la combinación de acciones 1.35·PP+1.5·Qforjado(C).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

 $V_{c,Rd}$: 289.23 kN

V_{Ed}: 16.06 kN

Donde:

 A_v : Área transversal a cortante.

 A_v : 19.13 cm²

Siendo:

 $\begin{array}{lll} \textbf{h} : \text{ Canto de la sección.} & & \textbf{h} : \underline{240.00} \text{ mm} \\ \textbf{t_w} : \text{ Espesor del alma.} & & \textbf{t_w} : \underline{6.20} \text{ mm} \end{array}$

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

30.71 < 64.71

Donde:

 λ_w : Esbeltez del alma.

 $\lambda_{w}: 30.71$

 $\lambda_{máx}$: Esbeltez máxima.

λ_{máx}: 64.71

ε: Factor de reducción.

ε: 0.92

Siendo:

 $\begin{array}{ll} \textbf{f}_{\text{ref}} \colon \text{L\'imite el\'astico de referencia.} & \textbf{f}_{\text{ref}} \colon \underline{235.00} \text{ MPa} \\ \textbf{f}_{\text{y}} \colon \text{L\'imite el\'astico.} \text{ (CTE DB SE-A, Tabla 4.1)} & \textbf{f}_{\text{y}} \colon \underline{275.00} \text{ MPa} \end{array}$

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

 $\eta < 0.001 \checkmark$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.00 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 384.61 kN

Donde:

 A_v : Área transversal a cortante. A_v : 25.44 cm²

Siendo:

A: Área de la sección bruta.A: 39.10 cm²d: Altura del alma.d: 220.40 mm $\mathbf{t_w}$: Espesor del alma. $\mathbf{t_w}$: 6.20 mm

 $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{\mathsf{c},\mathsf{Rd}}$.

 $15.98 \text{ kN} \le 144.61 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.201 m del nudo N74, para la combinación de acciones 1.35·PP+1.5·Qforjado(C).

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : ____15.98 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 289.23 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{c,Rd}$.

 $0.00 \text{ kN} \le 192.30 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 1.006 m del nudo N74, para la combinación de acciones 1.35·PP.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.00 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 384.61 kN

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.516** 🗸

η: **0.516** 🗸

η: 0.310

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N73, para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot Qforjado(C) + 0.75 \cdot N(EI)$.

Donde:

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo.

 $N_{c,Ed}$: 0.01 kN

 $\mathbf{M}_{\mathbf{y}, \mathbf{Ed}}$, $\mathbf{M}_{\mathbf{z}, \mathbf{Ed}}$: Momentos flectores solicitantes de cálculo pésimos, según los ejes Y y Z, respectivamente.

 ${\bf M_{y,Ed}}^+: \underline{49.61} {
m kN \cdot m} \\ {\bf M_{z,Ed}}^-: \underline{0.01} {
m kN \cdot m}$

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple.

Clase: 1

N_{pl,Rd}: Resistencia a compresión de la sección bruta.

 $N_{pl,Rd}$: 1024.05 kN

 $\mathbf{M}_{pl,Rd,y}$, $\mathbf{M}_{pl,Rd,z}$: Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z, respectivamente.

 $\mathbf{M_{pl,Rd,y}}: \underline{96.12} \quad \mathrm{kN \cdot m} \\ \mathbf{M_{pl,Rd,z}}: \underline{19.35} \quad \mathrm{kN \cdot m}$

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)

A: 39.10 cm²

A: Área de la sección bruta. $\mathbf{W}_{pl,y}$, $\mathbf{W}_{pl,z}$: Módulos resistentes plásticos correspondientes a la fibra comprimida, alrededor de los ejes Y y Z, respectivamente.

 $\mathbf{W}_{\text{pl,y}} : 367.00 \text{ cm}^3$ $\mathbf{W}_{\text{pl,z}} : 73.90 \text{ cm}^3$

 \mathbf{f}_{vd} : Resistencia de cálculo del acero.

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa

γ_{M1}: Coeficiente parcial de seguridad del material.

γ**м1**: 1.05

k_v, k_z: Coeficientes de interacción.

k_y: __1.00

k_z: 1.00

 $C_{m,y}$, $C_{m,z}$: Factores de momento flector uniforme equivalente. $C_{m,y}$: 1.00

C_{m,z}: 1.00

 χ_y , χ_z : Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z, respectivamente.

 χ_{y} : 0.96 χ_{z} : 0.39

 $\overline{\lambda}_y$, $\overline{\lambda}_z$: Esbelteces reducidas con valores no mayores que 1.00, en relación a los ejes Y y Z, respectivamente.

 $\frac{\overline{\lambda}_{\mathbf{y}}}{\overline{\lambda}_{\mathbf{z}}}$: 0.37

 α_{y} , α_{z} : Factores dependientes de la clase de la sección.

 $\alpha_{\mathbf{y}}$: 0.60 $\alpha_{\mathbf{z}}$: 0.60

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V_{Ed}}$ es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V_{c,Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.201 m del nudo N74, para la combinación de acciones 1.35·PP+1.5·Qforjado(C).

 $15.98 \ kN \le 144.61 \ kN$

/

Donde:

V_{Ed,z}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed,z}: 15.98 kN

 $V_{c,Rd,z}$: Esfuerzo cortante resistente de cálculo.

V_{c,Rd,z}: 289.23 kN

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por

lo tanto, la comprobación no procede.

Arriostramiento

Barra N4/N82

Perfil: R 16 Material: Acero (S275)										
	Nu	dos	Lon	aitud	Características mecánicas					
	Inicia	Inicial Final		gitud n)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z (1 (cm		I _t ⁽²⁾ (cm4)	
Z	N4	N82	7.3	197	2.01	0.32	0.3	2	0.64	
	Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme									
			Pano	deo		Pan	deo l	late	eral	
		Plano	XY	Plan	o XZ	Ala su	ıp.	Αl	a inf.	
	β	0.00)	0.	00	0.00		C	0.00	
	L _K	0.00	0	0.0	000	0.000		0	.000	
	C _m	1.00	0	1.0	000	1.00	0	1	.000	
	C ₁ - 1.000									
,	Notación: β: Coeficiente de pandeo Lκ: Longitud de pandeo (m) Cm: Coeficiente de momentos C1: Factor de modificación para el momento crítico									

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras de arriostramiento traccionadas no debe superar el valor 4.0.

 $\bar{\lambda} < 0.01 \checkmark$

Donde:

A: Área bruta de la sección transversal de la barra. A: 2.01 cm² f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f**_y: 275.00 MPa N_{cr}: Axil crítico de pandeo elástico.

 N_{cr} : ∞

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: 0.860 γ

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.05·Qforjado(C)+1.5·V(90°)H1.

N_{t,Ed}: Axil de tracción solicitante de cálculo pésimo. $N_{t,Ed}$: 45.30 kN

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

N_{t,Rd}: 52.66 kN

Donde:

A: Área bruta de la sección transversal de la barra. A: 2.01 cm² f_{vd} : Resistencia de cálculo del acero. f_{vd} : 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa γ_{MO}: Coeficiente parcial de seguridad del material. γ_{MO}: 1.05

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

La comprobación no procede, ya que no hay momento flector.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

La comprobación no procede, ya que no hay momento flector.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre axil y momento flector ni entre momentos flectores en ambas direcciones para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

3.9. UNIONES

Las uniones entre los elementos metálicos se realizarán, casi en su totalidad, mediante uniones atornilladas, salvo en casos particulares en las que estas no sean posibles debido a los esfuerzos surgidos en ciertas uniones.

La norma que rige las uniones atornilladas está recogida en CTE DB SE-A: Código Técnico de la Edificación. Seguridad estructural. Acero. Apartado 8.5. Resistencia de los medios de unión. Uniones atornilladas. Los materiales a utilizar serán, perfiles de material base S275, y tornillos no pretensados de clase 8.8 y tornillos pretensados de 10,9.

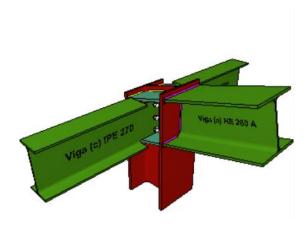
Las disposiciones constructivas de los tornillos a emplear son las siguientes:

- No deben soldarse ni los tornillos ni las tuercas.
- Cuando los tornillos se dispongan en posición vertical, la tuerca se situará por debajo de la cabeza del tornillo.
- Debe comprobarse antes de la colocación que las tuercas pueden desplazarse libremente sobre el tornillo correspondiente.
- En cada tornillo se colocará una arandela en el lado de la cabeza y otra en el lado de la tuerca.
- En cada tornillo, se colocará una arandela con chaflán (ISO 7416) en el lado de la cabeza, de tal manera que el chaflán de la arandela se sitúa hacia la cabeza. Para el lado de la tuerca, se permite usar una arandela plana (ISO 7415) o una arandela con chaflán (ISO 7416), con el chaflán de la arandela situado hacia la tuerca.
- Los agujeros deben realizarse por taladrado u otro proceso que proporcione un acabado equivalente.
- El punzonado se admite para piezas de hasta 15 mm de espesor, siempre que el espesor nominal de la pieza no sea mayor que el diámetro nominal del agujero (o dimensión mínima si el agujero no es circular). De realizar el punzonado, se recomienda realizarlo con un diámetro 3 mm menor que el diámetro definitivo y luego taladrar hasta el diámetro nominal.

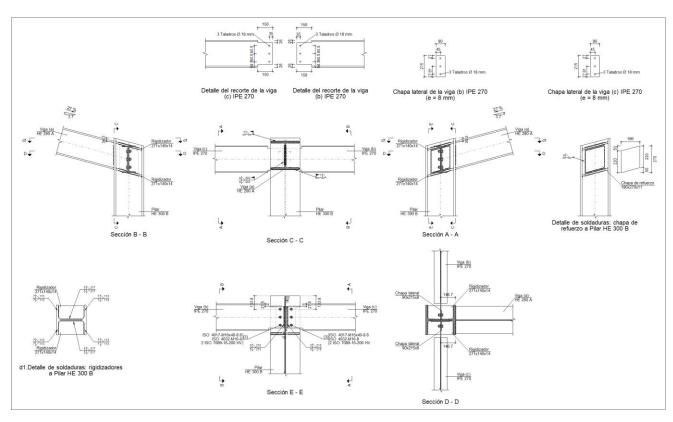
- Condiciones para el apriete de los tornillos ordinarios:
- Cada conjunto de tornillo, tuerca y arandelas debe alcanzar la condición de "apretado a tope" sin sobrepretensar los tornillos. Esta condición es la que conseguiría un operario con la llave normal, sin brazo de prolongación.
- Para los grandes grupos de tornillos, el apriete debe realizarse desde los tornillos centrales hacia el exterior e incluso realizar algún ciclo de apriete adicional.
- Condiciones para el apriete de los tornillos pretensados:
- Los tornillos de un grupo, antes de iniciar el pretensado, deben estar apretados como si fueran tornillos sin pretensar.
- Con la finalidad de garantizar la capacidad frente al deslizamiento de las superficies a unir, las piezas a unir serán tratadas de la siguiente manera: Superficies limpiadas a cepillo metálico o con llama, con eliminación de partes oxidadas (Clase C según UNE-ENV 1090-1:1997).
- Con objeto de alcanzar un pretensado uniforme, el apriete se realizará progresivamente, desde los tornillos centrales de un grupo hasta los bordes, para posteriormente realizar ciclos adicionales de apriete. Pueden utilizarse lubricantes entre las tuercas y tornillos o entre las arandelas y el componente que gira, siempre que no se alcance la superficie de contacto, esté contemplado como posibilidad por el procedimiento y lo admita el pliego de condiciones.
- Si un conjunto tornillo, tuerca y arandelas se ha apretado hasta el pretensado mínimo y luego aflojado, debe ser retirado y descartar su utilización, salvo que lo admita el pliego de condiciones.

Para las uniones soldadas que se empleen, el material base utilizado será el S275. El material de aportación que se emplea deberá tener unas características mecánicas superiores a las del acero S275.

La norma que siguen estas soldaduras está recogida en el CTE DB SE-A: Código Técnico de la Edificación. Seguridad estructural. Acero. Apartado 8.6. Resistencia de los medios de unión. Uniones soldadas.


Las uniones soldadas deberán seguir las siguientes disposiciones constructivas:

- Las siguientes prescripciones se aplican a uniones soldadas donde los espesores de las piezas a unir sean al menos de 4 mm.
- Los cordones de las soldaduras en ángulo no podrán tener un espesor de garganta inferior a 3 mm ni superior al menor espesor de las piezas a unir.
- Los cordones de las soldaduras en ángulo cuyas longitudes sean menores de 40 mm o 6 veces el espesor de garganta, no se tendrán en cuenta para calcular la resistencia de la unión.
- En el detalle de las soldaduras en ángulo se indica la longitud efectiva del cordón (longitud sobre la cual el cordón tiene su espesor de garganta completo). Para cumplirla, puede ser necesario prolongar el cordón rodeando las esquinas, con el mismo espesor de garganta y una longitud de 2 veces dicho espesor. La longitud efectiva de un cordón de soldadura deberá ser mayor o igual que 4 veces el espesor de garganta.
- Las soldaduras en ángulo entre dos piezas que forman un ángulo b deberán cumplir con la condición de que dicho ángulo esté comprendido entre 60 y 120 grados. En caso contrario:
- Si se cumple que b > 120 (grados): se considerará que no transmiten esfuerzos.
- Si se cumple que b < 60 (grados): se considerarán como soldaduras a tope con penetración parcial


A continuación, se presentan los listados de comprobación de todos los diferentes tipos de uniones. Los detalles de las uniones de cada pórtico están recogidos en el apartado de DOCUMENTO 4.- PLANOS.

Para realizar unos análisis más sencillos y simplificados de la estructura, se ha tratado de agrupar las uniones lo máximo posible.

3.9.1. Unión pilar-dintel

a) Detalle

b) Descripción de los componentes de la unión

	Perfiles											
			G	ieometría				Acero				
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _y (MPa)	f _u (MPa)			
Pilar	HE 300 B	11 ## # P	300	300	19	11	S275	275.0	410.0			
Viga	IPE 270	6.6	270	135	10.2	6.6	S275	275.0	410.0			
Viga	HE 280 A	8 ** 230	270	280	13	8	S275	275.0	410.0			

Elementos complementarios										
	Ge	ometrí	a		Tala	dros		Acero		
Pieza	Esquema		Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _y (MPa)	f _u (MPa)	
Rigidizador	271.2	271.2	140	14	-	-	S275	275.0	410.0	
Chapa de refuerzo	186	186	270	11	-	-	S275	275.0	410.0	
Chapa lateral: Viga (c) IPE 270	215	90	215	8	3	18	S275	275.0	410.0	
Chapa lateral: Viga (b) IPE 270	215	90	215	8	3	18	S275	275.0	410.0	

Elementos de tornillería										
	Geo	Acero								
Descripción	Esquema	Diámetro	Longitud (mm)	Clase	f _y (MPa)	f _u (MPa)				
ISO 4017-M16x40-8.8 ISO 4032-M16-8 2 ISO 7089-16-200 HV		M16	40	8.8	640.0	800.0				

c) Comprobación

1) Pilar HE 300 B

		Comprobacion	nes de re	sistenc	ia	
	Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
	Panel	Esbeltez				36.81
	Pariei	Cortante	kN	726.44	838.52	86.63
	Rigidizador superior	Tensión de Von Mises	N/mm²	200.22	261.90	76.45
	Rigidizador inferior	Tensión de Von Mises	N/mm²	216.05	261.90	82.49
	Rigidizador superior	Tensión de Von Mises	N/mm²	200.22	261.90	76.45
	Rigidizador inferior	Tensión de Von Mises	N/mm²	216.04	261.90	82.49
	Ala	Desgarro	N/mm²	115.37	261.90	44.05
	Ala	Cortante	N/mm ²	126.74	261.90	48.39
		Punzonamiento	kN	41.57	965.50	4.31
Viga (c) IPE 270	Alma	Flexión por fuerza perpendicular	kN	25.90	135.68	19.09
		Punzonamiento	kN	41.54	965.50	4.30
Viga (b) IPE 270	Alma	Flexión por fuerza perpendicular	kN	25.90	135.68	19.09

Cordones de soldadura

Comprobaciones geo	omótricas				
Comprobaciones ger	oilleti icas			1	-
Ref.	Tipo	a (mm)	(mm)	t (mm)	Ángulo (grados)
Soldadura del rigidizador superior a las alas	En ángulo	7	113	14.0	75.00
Soldadura del rigidizador superior al alma	En ángulo	5	217	11.0	90.00
Soldadura del rigidizador inferior a las alas	En ángulo	7	113	14.0	75.00
Soldadura del rigidizador inferior al alma	En ángulo	5	217	11.0	90.00
Soldadura del rigidizador superior a las alas	En ángulo	7	113	14.0	75.00
Soldadura del rigidizador superior al alma	En ángulo	5	217	11.0	90.00
Soldadura del rigidizador inferior a las alas	En ángulo	7	113	14.0	75.00
Soldadura del rigidizador inferior al alma	En ángulo	5	217	11.0	90.00
Soldadura de la chapa de refuerzo al alma	En ángulo	8	827	11.0	90.00
a: Espesor garganta	*	•			

a: Espesor garganta l: Longitud efectiva t: Espesor de piezas

	Comprobación de resistencia											
		Tensiór	n de Vor	Mises		Tensión	normal	f _{II}				
Ref.	σ⊥ (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	σ_{\perp} (N/mm ²)	Aprov.	(N/mm²)	βw			
Soldadura del rigidizador superior a las alas	121.9	158.8	0.0	300.9	77.98	121.9	37.16	410.0	0.85			
Soldadura del rigidizador superior al alma	0.0	0.0	150.9	261.5	67.75	0.0	0.00	410.0	0.85			
Soldadura del rigidizador inferior a las alas	131.5	171.4	0.0	324.7	84.15	131.5	40.10	410.0	0.85			
Soldadura del rigidizador inferior al alma	0.0	0.0	162.9	282.1	73.11	0.0	0.00	410.0	0.85			
Soldadura del rigidizador superior a las alas	121.9	158.8	0.0	300.9	77.98	121.9	37.16	410.0	0.85			
Soldadura del rigidizador superior al alma	0.0	0.0	150.9	261.5	67.75	0.0	0.00	410.0	0.85			
Soldadura del rigidizador inferior a las alas	131.5	171.4	0.0	324.7	84.15	131.5	40.10	410.0	0.85			
Soldadura del rigidizador inferior al alma	0.0	0.0	162.9	282.1	73.11	0.0	0.00	410.0	0.85			
Soldadura de la chapa de refuerzo al alma		La	comprol	oación r	o proce	ede.		410.0	0.85			

2) Viga (a) HE 280 A

Cordones de soldadura

Comprobaciones geométricas											
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)						
Soldadura del ala superior	En ángulo	7	280	13.0	75.00						
Soldadura del alma	En ángulo	4	203	8.0	90.00						
Soldadura del ala inferior	En ángulo	7	280	13.0	75.00						

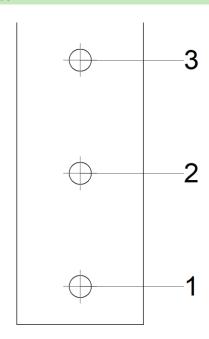
- a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia											
		Tensiór	n de Vor	Tensión	normal	£					
Ref.	σ⊥ (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	$\sigma_{\perp} \\ (\text{N/mm}^2)$	Aprov.	f _u (N/mm²)	βw		
Soldadura del ala superior	175.5	134.6	0.2	291.9	75.63	175.5	53.50	410.0	0.85		
Soldadura del alma	119.2	119.2	52.2	255.0	66.07	119.2	36.34	410.0	0.85		
Soldadura del ala inferior	143.2	186.6	0.2	353.4	91.59	160.7	49.00	410.0	0.85		

3) Viga (c) IPE 270

Comprobaciones de resistencia										
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)					

	Interacción flexión - cortante				0.04
Chapa lateral	Tensiones combinadas				9.52
	Pandeo local	N/mm ²	24.91	228.15	10.92
	Aplastamiento	kN	14.12	87.48	16.14
	Desgarro	kN	41.57	194.76	21.35
	Aplastamiento	kN	14.12	86.59	16.31
Alma	Desgarro	kN	41.57	233.12	17.83
	Pandeo local	N/mm ²	32.28	67.97	47.50


Cordones de soldadura

Comprobaciones geométricas											
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)						
Detalle de la soldadura de la chapa lateral.	En ángulo	5	215	8.0	90.00						

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia										
		Tensiór	n de Vor	Mises		Tensión	normal	£		
Ref.	σ⊥ (N/mm²)	τ⊥ (N/mm²)	τ (N/mm²)	Valor (N/mm²)		σ_{\perp} (N/mm ²)	Aprov.	(N/mm²)	β_{W}	
Detalle de la soldadura de la chapa lateral.	14.1	14.1	0.6	28.2	7.31	14.1	4.30	410.0	0.85	

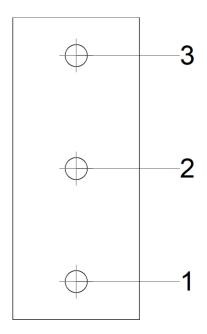
Comprobaciones para los tornillos

	Disposición											
Tornillo	Denominación	d_0 (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)					
1	ISO 4017-M16x40-8.8	18.0	27	35	81		27.0					
2	ISO 4017-M16x40-8.8	18.0		35	81		45.0					

	Disposición										
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)				
3	ISO 4017-M16x40-8.8	18.0	27	35	81		27.0				
: La comprol	: La comprobación no procede.										

					Resistencia	1				
Tornil lo	Co	ortante	e			Traccio		Interacci ón tracción y cortante	Aprov. Máx. (%)	
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.	
1	Sección transversal	13.6 65	50.240	27.2 0	Vástago	0.00	90.432	0.00	27.20	27.20
1	Aplastamiento	13.6 65	87.444	15.6 3	Punzonami ento	0.00	103.54 4	0.00	27.20	27.20
2	Sección transversal	13.8 62	50.240	27.5 9	Vástago	0.00	90.432	0.00	27 F0	27.59
2	Aplastamiento	13.8 62	87.471	15.8 5	Punzonami ento	0.00	103.54 4	0.00	27.59	27.59
3	Sección transversal	14.1 20	50.240	28.1 0	Vástago	0.00	90.432	0.00	28.10	29.10
3	Aplastamiento	14.1 20	87.477	16.1 4	Punzonami ento	0.00	103.54 4	0.00	20.10	28.10

4) Viga (b) IPE 270


	Comprobaciones de resistencia												
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)								
	Interacción flexión - cortante				0.04								
	Tensiones combinadas				9.51								
Chapa lateral	Pandeo local	N/mm²	24.88	228.15	10.90								
	Aplastamiento	kN	14.10	87.48	16.12								
	Desgarro	kN	41.55	194.76	21.33								
	Aplastamiento	kN	14.10	86.59	16.29								
Alma	Desgarro	kN	41.55	233.12	17.82								
	Pandeo local	N/mm²	32.24	67.97	47.44								

Cordones de soldadura

Comprobaciones geométricas												
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)							
Detalle de la soldadura de la chapa lateral.	En ángulo	5	215	8.0	90.00							
a: Espesor garganta I: Longitud efectiva t: Espesor de piezas												

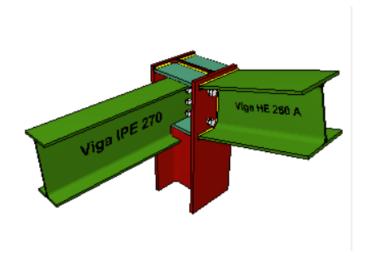
Comprobación de resistencia										
		Tensiór	n de Vor	Mises		Tensión	normal	£		
Ref.	σ⊥ (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)		$\sigma_{\perp} \\ (\text{N/mm}^2)$	Aprov.	(N/mm²)	βw	
Detalle de la soldadura de la chapa lateral.	14.1	14.1	0.6	28.2	7.30	14.1	4.29	410.0	0.85	

Comprobaciones para los tornillos

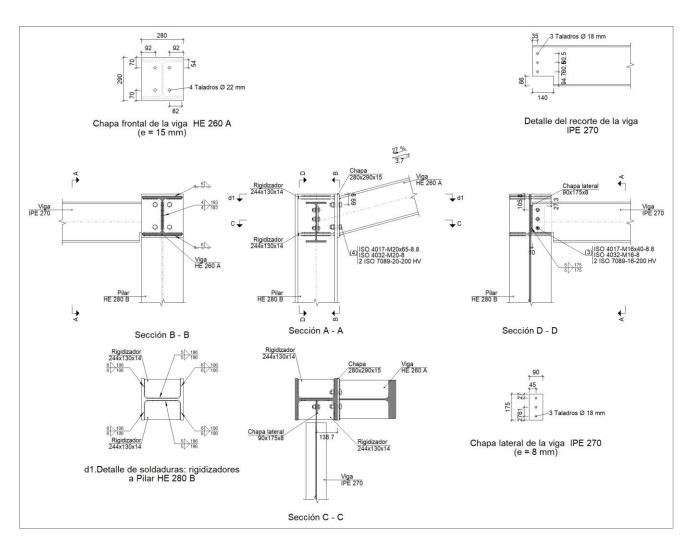
	Disposición											
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)					
1	ISO 4017-M16x40-8.8	18.0	27	35	81		27.0					
2	ISO 4017-M16x40-8.8	18.0		35	81		45.0					
3	ISO 4017-M16x40-8.8	18.0	27	35	81		27.0					
: La comprob	: La comprobación no procede.											

					Resistencia)				
Tornil lo						Traccio		Interacci ón tracción y cortante	Aprov. Máx. (%)	
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.	
1	Sección transversal	13.6 52	50.240	27.1 7	Vástago	0.00	90.432	0.00	27.17	27.17
1	Aplastamiento	13.6 52	87.444	15.6 1	Punzonami ento	0.00	103.54 4	0.00	27.17	27.17
2	Sección transversal	13.8 50	50.240	27.5 7	Vástago	0.00	90.432	0.00	27.57	27.57
	Aplastamiento	13.8 50	87.471	15.8 3	Punzonami ento	0.00	103.54 4	0.00	27.37	27.57

	Resistencia											
Tornil lo	Cortante				Tracción				Interacci ón tracción y cortante	Aprov. Máx. (%)		
lo	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.			
2	Sección transversal	14.1 02	50.240	28.0 7	Vástago	0.00	90.432	0.00	28.07	28.07		
3	Aplastamiento	14.1 02	87.477	16.1 2	Punzonami ento	0.00	103.54 4	0.00	20.07	26.07		


d) Medición

		Sold	aduras	
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)
			5	2598
	En taller	En ángulo	7	1808
410.0			8	827
	En el lugar de montaje	En ángulo	4	406
	Lii ei iugai de montaje	Lii aligulo	7	1062


		Chapas		
Material	Tipo	Cantidad	Dimensiones (mm)	Peso (kg)
	Rigidizadores	4	271x140x14	16.69
C27E	Chanas	2	90x215x8	2.43
S275	Chapas	1	186x270x11	4.34
			Total	23.46

	Elementos de tornillería										
Tipo	Material	Cantidad	Descripción								
Tornillos	Clase 8.8	6	ISO 4017-M16x40								
Tuercas	Clase 8	6	ISO 4032-M16								
Arandelas	Dureza 200 HV	12	ISO 7089-16								

3.9.2. Unión pilar-dintel hastial

a) Detalle

b) Descripción de los componentes de la unión

				Perfiles						
			G	Geometría			Acero			
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _y (MPa)	f _u (MPa)	
Pilar	HE 280 B	10.5	280	280	18	10.5		275.0		
Viga	IPE 270	270	270	135	10.2	6.6	S275	275.0	410.0	

	Perfiles											
Pieza Descrip			Acero									
	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _y (MPa)	f _u (MPa)			
Viga	HE 260 A	7.5	250	260	12.5	7.5	S275	275.0	410.0			

	Elementos complementarios											
		ometrí				dros		Acero				
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _y (MPa)	f _u (MPa)			
Rigidizador	9E 244	244	130	14	-	-	S275	275.0	410.0			
Chapa lateral: Viga IPE 270	90 0	90	175	8	3	18	S275	275.0	410.0			
Chapa frontal: Viga HE 260 A	86	280	290	15	4	22	S275	275.0	410.0			

	Elementos de	tornillería	1				
	Geo	metría		Acero			
ISO 4032-M16-8 2 ISO 7089-16-200 HV ISO 4017-M20x65-8.8 ISO 4032-M20-8	Esquema	Diámetro	Longitud (mm)	Clase	f _y (MPa)	f _u (MPa)	
ISO 4017-M16x40-8.8 ISO 4032-M16-8 2 ISO 7089-16-200 HV		M16	40	8.8	640.0	800.0	
ISO 4017-M20x65-8.8 ISO 4032-M20-8 2 ISO 7089-20-200 HV		M20	65	8.8	640.0	800.0	

c) Comprobación

1) Pilar HE 280 B

		Comprobacion	es de res	istencia	a	
	Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
	Panel	Esbeltez	1			35.91
	Pallel	Cortante	kN	98.25	371.36	26.46
	Rigidizador superior	Tensión de Von Mises	N/mm²	29.20	261.90	11.15
	Rigidizador inferior	Tensión de Von Mises	N/mm²	32.02	261.90	12.23
	Rigidizador superior	Tensión de Von Mises	N/mm²	29.47	261.90	11.25
	Rigidizador inferior	Tensión de Von Mises	N/mm²	31.75	261.90	12.12
	Ala	Desgarro	N/mm²	21.87	261.90	8.35
	Ald	Cortante	N/mm²	20.87	261.90	7.97
	Ala	Tracción por flexión	kN	117.75	282.24	41.72
Viga HE 260 A	Ala	Tracción	kN	24.37	384.42	6.34
	Alma	Tracción	kN	68.99	201.63	34.22
		Punzonamiento	kN	24.97	756.30	3.30
Viga IPE 270	Alma	Flexión por fuerza perpendicular	kN	24.97	115.56	21.61

Cordones de soldadura

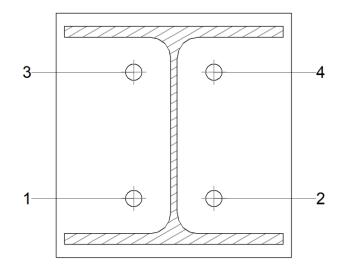
Comprobaciones geométricas											
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)						
Soldadura del rigidizador superior a las alas	En ángulo	6	106	14.0	90.00						
Soldadura del rigidizador superior al alma	En ángulo	5	196	10.5	90.00						
Soldadura del rigidizador inferior a las alas	En ángulo	6	106	14.0	90.00						
Soldadura del rigidizador inferior al alma	En ángulo	5	196	10.5	90.00						
Soldadura del rigidizador superior a las alas	En ángulo	6	106	14.0	90.00						
Soldadura del rigidizador superior al alma	En ángulo	5	196	10.5	90.00						
Soldadura del rigidizador inferior a las alas	En ángulo	6	106	14.0	90.00						
Soldadura del rigidizador inferior al alma	En ángulo	5	196	10.5	90.00						

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

t. Espesor de piezas										
Comprobación de resistencia										
		Tensiór	n de Vor	Mises		Tensión	normal	f _u (N/mm²)	βw	
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	$\sigma_{\perp} \\ \text{(N/mm²)}$	Aprov.			
Soldadura del rigidizador superior a las alas	24.1	24.1	1.1	48.1	12.48	24.1	7.33	410.0	0.85	
Soldadura del rigidizador superior al alma	0.0	0.0	22.1	38.2	9.90	0.0	0.00	410.0	0.85	
Soldadura del rigidizador inferior a las alas	26.4	26.4	1.2	52.8	13.68	26.4	8.04	410.0	0.85	
Soldadura del rigidizador inferior al alma	0.0	0.0	24.2	41.9	10.85	0.0	0.00	410.0	0.85	
Soldadura del rigidizador superior a las alas	24.3	24.3	1.1	48.6	12.59	24.3	7.40	410.0	0.85	

Comprobación de resistencia										
		Tensiór	n de Vor	Tensión	normal	£				
Ref.	σ⊥ (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	σ_{\perp} (N/mm ²)	Aprov.	f _u (N/mm²)	βw	
Soldadura del rigidizador superior al alma	0.0	0.0	22.3	38.6	10.01	0.0	0.00	410.0	0.85	
Soldadura del rigidizador inferior a las alas	26.1	26.1	1.2	52.3	13.56	26.2	7.97	410.0	0.85	
Soldadura del rigidizador inferior al alma	0.0	0.0	24.0	41.6	10.78	0.0	0.00	410.0	0.85	

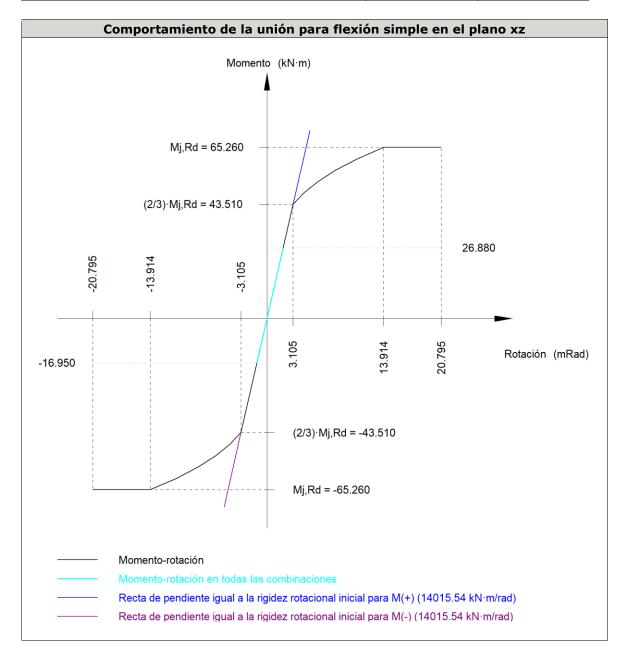
2) Viga HE 260 A


	Comprobaciones de resistencia									
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)					
Chapa frontal	Tracción por flexión	kN	117.75	273.36	43.08					
Ala	Compresión	kN	147.11	881.23	16.69					
	Tracción	kN	31.68	349.63	9.06					
Alma	Tracción	kN	54.36	202.23	26.88					

Cordones de soldadura

Comprobaciones geométricas										
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)					
Soldadura del ala superior	En ángulo	6	260	12.5	75.00					
Soldadura del alma	En ángulo	4	183	7.5	90.00					
Soldadura del ala inferior	En ángulo	6	260	12.5	75.00					

- a: Espesor garganta l: Longitud efectiva t: Espesor de piezas


Comprobación de resistencia										
Ref.	Tensión de Von Mises					Tensión	normal	£		
	σ⊥ (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	σ⊥ (N/mm²)	Aprov.	f _u (N/mm²)	βw	
Soldadura del ala superior	39.1	50.9	0.6	96.5	25.00	39.1	11.91	410.0	0.85	
Soldadura del alma	68.2	68.2	12.9	138.1	35.80	68.2	20.78	410.0	0.85	
Soldadura del ala inferior	24.9	32.5	0.7	61.5	15.94	32.7	9.96	410.0	0.85	

	Disposición										
Tornillo	Denominación	d_0 (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)				
1	ISO 4017-M20x65-8.8	22.0		92	150	96	41.4				
2	ISO 4017-M20x65-8.8	22.0		92	150	96	41.4				
3	ISO 4017-M20x65-8.8	22.0		92	150	96	41.4				
4	ISO 4017-M20x65-8.8	22.0		92	150	96	41.4				
: La comprol	pación no procede.										

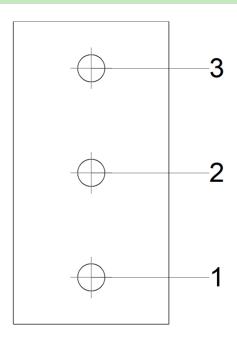
					Resistencia	1					
Tornil lo	Cortante					Tracción				Aprov. Máx. (%)	
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.		
1	Sección transversal	5.59 8	78.400	7.14	Vástago	38.9 15	141.12 0	27.5 8	21.91	27.58	
1	Aplastamiento	5.59 8	246.00 0	2.28	Punzonami ento	38.9 15	294.58 8	13.2 1	21.91	27.56	
2	Sección transversal	4.34 3	78.400	5.54	Vástago	38.9 84	141.12 0	27.6 2	22.78	27.62	
2	Aplastamiento	4.34 3	246.00 0	1.77	Punzonami ento	38.9 84	294.58 8	13.2 3	22.78	27.62	
3	Sección transversal	5.55 3	78.400	7.08	Vástago	60.7 51	141.12 0	43.0 5	37.78	43.05	
3	Aplastamiento	5.55 3	246.00 0	2.26	Punzonami ento	60.7 51	294.58 8	20.6 2	37.78	43.05	
4	Sección transversal	4.20 4	78.400	5.36	Vástago	60.7 89	141.12 0	43.0 8	36.06	43.08	
4	Aplastamiento	4.20 4	246.00 0	1.71	Punzonami ento	60.7 89	294.58 8	20.6 4	30.00	43.06	

Rigidez rotacional inicial	Plano xy (kN·m/rad)	Plano xz (kN·m/rad)
Calculada para momentos positivos	22703.08	14015.54
Calculada para momentos negativos	22703.08	14015.54

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Relación entre modos 1 y 3		1.31	1.80	72.88
Momento resistente	kNm	26.88	65.26	41.20
Capacidad de rotación	mRad	92.240	667	13.84

3) Viga IPE 270

Comprobaciones de resistencia									
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)				


	Interacción flexión - cortante				0.07
Chapa lateral	Tensiones combinadas				11.98
	Pandeo local	N/mm ²	31.35	228.15	13.74
	Aplastamiento	kN	12.23	87.44	13.99
	Desgarro	kN	24.98	146.37	17.06
Alma	Aplastamiento	kN	12.23	86.59	14.12
Aiilla	Desgarro	kN	24.98	193.00	12.94

Cordones de soldadura

Comprobaciones geométricas										
Ref.	Tipo	a (mm)	(mm)	t (mm)	Ángulo (grados)					
Detalle de la soldadura de la chapa lateral.	En ángulo	5	175	8.0	90.00					

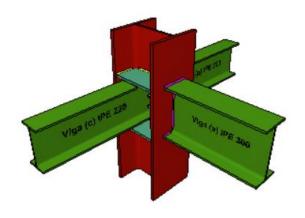
- a: Espesor garganta l: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia									
	Tensión de Von Mises				Tensión	normal	£		
Ref.	σ⊥ (N/mm²)	τ_{\perp} (N/mm ²)	τ (N/mm²)	Valor (N/mm²)	Aprov.	σ⊥ (N/mm²)	Aprov.	(N/mm²)	βw
Detalle de la soldadura de la chapa lateral.	16.7	16.7	0.4	33.4	8.66	16.7	5.09	410.0	0.85

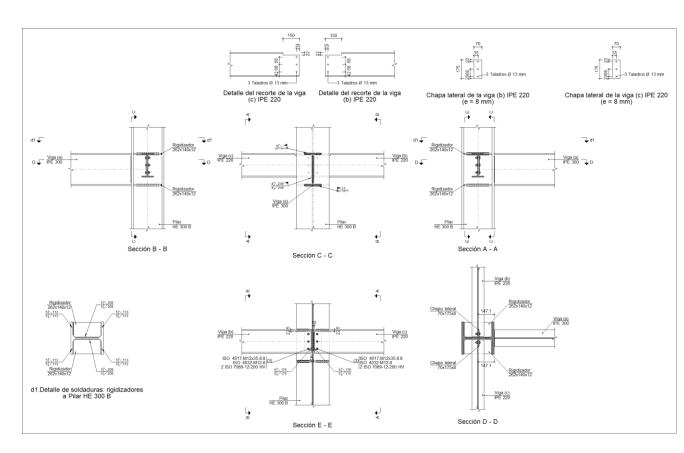
	Disposición									
Tornillo	Denominación	d_0 (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)			
1	ISO 4017-M16x40-8.8	18.0	27	35	61		27.0			
2	ISO 4017-M16x40-8.8	18.0		35	61		45.0			
3	ISO 4017-M16x40-8.8	18.0	27	35	61		27.0			

Disposición									
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)		
: La comprol	: La comprobación no procede.								

					Resistencia	1					
Tornil lo	Cortante				Tracción				Interacci ón tracción y cortante	Aprov. Máx. (%)	
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.		
1	Sección transversal	12.2 30	50.240	24.3 4	Vástago	0.00	90.432	0.00	24.34	24.34	
1	Aplastamiento	12.2 30	87.438	13.9 9	Punzonami ento	0.00	103.54 4	0.00	24.34	24.34	
2	Sección transversal	8.32 6	50.240	16.5 7	Vástago	0.00	90.432	0.00	16.57	16 57	
2	Aplastamiento	8.32 6	87.470	9.52	Punzonami ento	0.00	103.54 4	0.00	10.57	16.57	
3	Sección transversal	4.59 5	30.240 9.15 Vastago 0 90.432 0.00		0.15						
3	Aplastamiento	4.59 5	87.494	5.25	Punzonami ento	0.00	103.54 4	0.00	9.15	9.15	


d) Medición

			Soldaduras	
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)
			4	366
410.0	En taller	En ángulo	5	1918
			6	2677


		Chapas		
Material	Tipo	Cantidad	Dimensiones (mm)	Peso (kg)
	Rigidizadores	4	244x130x14	13.94
COZE	Chapas	1	90x175x8	0.99
S275		1	280x290x15	9.56
			Total	24.49

	Elementos	s de tornillería	
Tipo	Material	Cantidad	Descripción
Tornillos	Clase 8.8	3	ISO 4017-M16x40
TOTTIIIOS	Clase 6.6	4	ISO 4017-M20x65
Tuesde	Class 9	3	ISO 4032-M16
Tuercas	Clase 8	4	ISO 4032-M20
Arandelas	D 200 IN/	6	ISO 7089-16
Aranueias	Dureza 200 HV	8	ISO 7089-20

3.9.3. Unión pilar-viga entreplanta

a) Detalle

b) Descripción de los componentes de la unión

				Perfiles					
			G	ieometría				Acero	
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _y (MPa)	f _u (MPa)
Pilar	HE 300 B	300	300	300	19	11	S275	275.0	410.0
Viga	IPE 220	5.9	220	110	9.2	5.9	S275	275.0	410.0
Viga	IPE 300	7.1	300	150	10.7	7.1	S275	275.0	410.0

	Ele	ement	os con	nplemer	ntarios				
	Ge	eometrí				dros		Acero	
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _y (MPa)	f _u (MPa)
Rigidizador	262	262	140	12	-	-	S275	275.0	410.0
Chapa lateral: Viga (c) IPE 220	921	70	175	8	3	13	S275	275.0	410.0
Chapa lateral: Viga (b) IPE 220	921	70	175	8	3	13	S275	275.0	410.0

Elementos de tornillería										
	Geo	metría		Acero						
Descripción	Esquema	Diámetro	Longitud (mm)	Clase	f _y (MPa)	f _u (MPa)				
ISO 4017-M12x35-8.8 ISO 4032-M12-8 2 ISO 7089-12-200 HV		M12	35	8.8	640.0	800.0				

c) Comprobación

1) Pilar HE 300 B

	Comprobacio	nes de re	sistenc	ia	
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Panel	Esbeltez				36.81
Pallel	Cortante	kN	414.00	451.04	91.79
Rigidizador superior	Tensión de Von Mises	N/mm²	183.66	261.90	70.12
Rigidizador inferior	Tensión de Von Mises	N/mm²	134.08	261.90	51.20
Rigidizador superior	Tensión de Von Mises	N/mm²	183.96	261.90	70.24
Rigidizador inferior	Tensión de Von Mises	N/mm²	133.78	261.90	51.08
Ala	Cortante	N/mm²	75.36	261.90	28.77
Alma	Punzonamiento	kN	26.45	792.32	3.34

Viga (c) IPE 220		Flexión por fuerza perpendicular	kN	22.79	190.85	11.94
		Punzonamiento	kN	3.75	792.32	0.47
Viga (b) IPE 220	Alma	Flexión por fuerza perpendicular	kN	22.79	190.85	11.94

Cordones de soldadura

Comprobaciones geo	métricas				
Ref.	Tipo	a (mm)	(mm)	t (mm)	Ángulo (grados)
Soldadura del rigidizador superior a las alas	En ángulo	5	113	12.0	90.00
Soldadura del rigidizador superior al alma	En ángulo	5	208	11.0	90.00
Soldadura del rigidizador inferior a las alas	En ángulo	5	113	12.0	90.00
Soldadura del rigidizador inferior al alma	En ángulo	5	208	11.0	90.00
Soldadura del rigidizador superior a las alas	En ángulo	5	113	12.0	90.00
Soldadura del rigidizador superior al alma	En ángulo	5	208	11.0	90.00
Soldadura del rigidizador inferior a las alas	En ángulo	5	113	12.0	90.00
Soldadura del rigidizador inferior al alma	En ángulo	5	208	11.0	90.00

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

	Con	nproba	ción de	resiste	encia				
		Tensiór	n de Vor	Mises		Tensión	normal	f_u	
Ref.	σ⊥ (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	σ_{\perp} (N/mm ²)	Aprov.	I _u (N/mm²)	βw
Soldadura del rigidizador superior a las alas	155.8	155.8	0.0	311.7	80.77	155.8	47.51	410.0	0.85
Soldadura del rigidizador superior al alma	0.0	0.0	65.2	112.9	29.25	0.0	0.00	410.0	0.85
Soldadura del rigidizador inferior a las alas	113.8	113.8	0.0	227.6	58.97	113.8	34.69	410.0	0.85
Soldadura del rigidizador inferior al alma	0.0	0.0	47.6	82.4	21.35	0.0	0.00	410.0	0.85
Soldadura del rigidizador superior a las alas	156.1	156.1	0.0	312.2	80.90	156.1	47.59	410.0	0.85
Soldadura del rigidizador superior al alma	0.0	0.0	65.3	113.1	29.30	0.0	0.00	410.0	0.85
Soldadura del rigidizador inferior a las alas	113.5	113.5	0.0	227.0	58.84	113.5	34.61	410.0	0.85
Soldadura del rigidizador inferior al alma	0.0	0.0	47.5	82.2	21.30	0.0	0.00	410.0	0.85

2) Viga (a) IPE 300

Cordones de soldadura

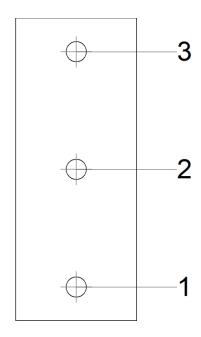
Comprobaciones geométricas									
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)				
Soldadura del ala superior	En ángulo	5	150	10.7	90.00				

Comprobaciones geométricas									
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)				
Soldadura del alma	En ángulo	4	249	7.1	90.00				
Soldadura del ala inferior	En ángulo	5	150	10.7	90.00				

- a: Espesor garganta l: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia										
		Tensiór	n de Vor	Tensión	normal	£				
Ref.	σ⊥ (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)		σ_{\perp} (N/mm ²)	Aprov.	f _u (N/mm²)	βw	
Soldadura del ala superior	180.7	180.7	0.0	361.3	93.64	180.7	55.08	410.0	0.85	
Soldadura del alma	150.1	150.1	39.3	307.9	79.80	150.2	45.78	410.0	0.85	
Soldadura del ala inferior	147.2	147.2	0.0	294.5	76.31	147.2	44.89	410.0	0.85	

3) Viga (c) IPE 220


	Comprobaciones de resistencia									
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)					
	Interacción flexión - cortante				0.06					
Chapa lateral	Tensiones combinadas				7.50					
	Pandeo local	N/mm²	19.60	241.98	8.10					
	Aplastamiento	kN	9.03	70.65	12.78					
	Desgarro	kN	26.50	164.52	16.11					
Alma	Aplastamiento	kN	9.03	58.06	15.55					
Alma	Desgarro	kN	26.50	173.02	15.32					

Cordones de soldadura

Comprobaciones geométricas									
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)				
Detalle de la soldadura de la chapa lateral.	En ángulo	5	175	8.0	90.00				

- a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

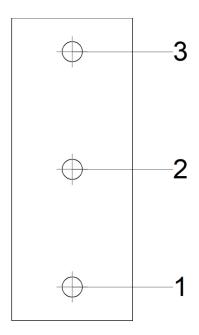
Comprobación de resistencia										
		Tensiór	n de Vor	Tensión	normal	£				
Ref.	σ⊥ (N/mm²)	τ_{\perp} (N/mm ²)	τ (N/mm²)	Valor (N/mm²)		σ_{\perp} (N/mm ²)	Aprov.	(N/mm²)	β_{W}	
Detalle de la soldadura de la chapa lateral.	11.2	11.2	0.5	22.5	5.83	11.2	3.43	410.0	0.85	

Disposición										
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)			
1	ISO 4017-M12x35-8.8	13.0	20	25	68		19.5			
2	ISO 4017-M12x35-8.8	13.0		25	68		35.0			
3	ISO 4017-M12x35-8.8	13.0	20	25	68		19.5			
: La comprob	pación no procede.									

					Resistencia	1				
Tornil lo	Co		Tracci	Interacci ón tracción y cortante	Aprov. Máx. (%)					
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.	
1	Sección transversal	8.70 2	26.976	32.2 6	Vástago	0.00	48.557	0.00	22.26	32.26
1	Aplastamiento	8.70 2	70.616	12.3 2	Punzonami ento	0.00	69.362	0.00	32.26	32.20
2	Sección transversal	8.83 4	26.976	32.7 5	Vástago	0.00	48.557	0.00	32.75	32.75
2	Aplastamiento	8.83 4	70.649	12.5 0	Punzonami ento	0.00	69.362	0.00	32.73	32.73
3	Sección transversal	9.02 9	26.976	33.4 7	Vástago	0.00	48.557	0.00	22.47	22.47
3	Aplastamiento	9.02 9	70.653	12.7 8	Punzonami ento	0.00	69.362	0.00	33.47	33.47

4) Viga (b) IPE 220

Comprobaciones de resistencia										
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)					


	Interacción flexión - cortante				0.06
Chapa lateral	Tensiones combinadas				19.55
	Pandeo local	N/mm ²	30.21	241.98	12.48
	Aplastamiento	kN	14.48	46.45	31.17
	Desgarro	kN	33.47	164.52	20.35
Alma	Aplastamiento	kN	14.48	46.10	31.41
Alma	Desgarro	kN	33.47	173.02	19.35

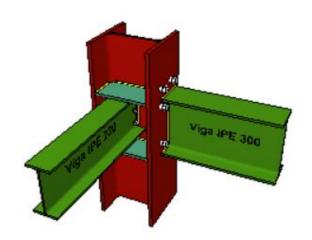
Cordones de soldadura

Comprobaciones geométricas										
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)					
Detalle de la soldadura de la chapa lateral.	En ángulo	5	175	8.0	90.00					

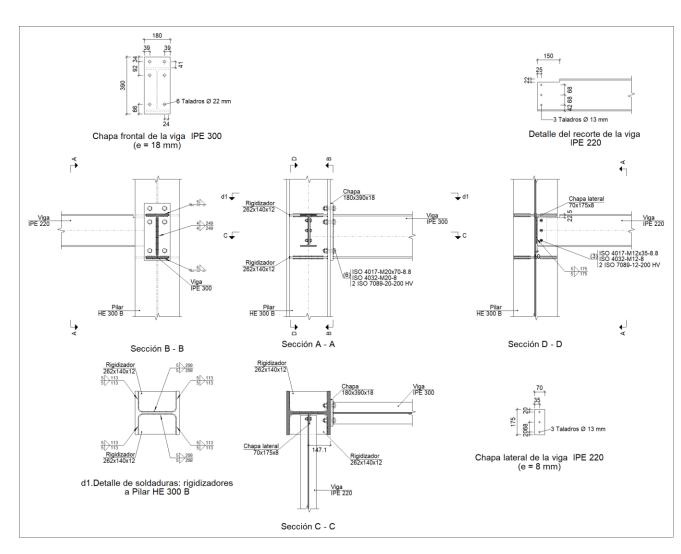
a: Espesor garganta l: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia									
	Tensión de Von Mises					Tensión		-	
Ref.	σ⊥ (N/mm²)	τ_{\perp} (N/mm ²)	τ (N/mm²)	Valor (N/mm²)	Aprov.	σ⊥ (N/mm²)	Aprov.	(N/mm²)	βw
Detalle de la soldadura de la chapa lateral.	17.1	17.1	19.1	47.6	12.33	17.1	5.21	410.0	0.85

	Disposición										
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)				
1	ISO 4017-M12x35-8.8	13.0	20	25	68		19.5				
2	ISO 4017-M12x35-8.8	13.0		25	68		35.0				
3	ISO 4017-M12x35-8.8	13.0	20	25	68		19.5				
: La comprol	bación no procede.										


					Resistencia	1				
Tornil lo	Cortante			Tracción				Interacci ón tracción y cortante	Aprov. Máx. (%)	
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.	
1	Sección transversal	14.4 79	26.976	53.6 7	Vástago	0.00	48.557	0.00	53.67	53.67
1	Aplastamiento	14.4 79	46.445	31.1 7	Punzonami ento	0.00	69.362	0.00	33.07	53.07
2	Sección transversal	11.1 58	26.976	41.3 6	Vástago	0.00	48.557	0.00	41.36	41.36
2	Aplastamiento	11.1 58	78.679	14.1 8	Punzonami ento	0.00	69.362	0.00	41.30	41.30
3	Sección transversal	14.5 27	26.976	53.8 5	Vástago	0.00	48.557	0.00	E2 0E	53.85
3	Aplastamiento	14.5 27	75.067	19.3 5	Punzonami ento	0.00	69.362	0.00		55.65

d) Medición


	Soldaduras									
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)						
	En taller	En ángulo	5	4172						
410.0		En ángula	4	497						
	En el lugar de montaje	En ángulo	5	569						

	Chapas										
Material	Tipo	Cantidad	Dimensiones (mm)	Peso (kg)							
	Rigidizadores	4	262x140x12	13.82							
S275	Chapas	2	70x175x8	1.54							
			Total	15.36							

	Elementos	de tornillería	
Tipo	Material	Cantidad	Descripción
Tornillos	Clase 8.8	6	ISO 4017-M12x35
Tuercas	Clase 8	6	ISO 4032-M12
Arandelas	Dureza 200 HV	12	ISO 7089-12

a) Detalle

b) Descripción de los componentes de la unión

	Perfiles									
			G	ieometría			Acero			
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _y (MPa)	f _u (MPa)	
Pilar	HE 300 B	11 11 11 11 11 11 11 10 10 10 10 10 10 1	300	300	19	11	S275	275.0	410.0	
Viga	IPE 220	5.9	220	110	9.2	5.9	S275	275.0	410.0	

	Perfiles								
			Geometría						
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _y (MPa)	f _u (MPa)
Viga	IPE 300	7.1	300	150	10.7	7.1	S275	275.0	410.0

Elementos complementarios										
	Ge	Geometría						Acero		
Pieza	Esquema		Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _y (MPa)	f _u (MPa)	
Rigidizador	044	262	140	12	-	-	S275	275.0	410.0	
Chapa lateral: Viga IPE 220	921	70	175	8	3	13	S275	275.0	410.0	
Chapa frontal: Viga IPE 300	06 0 0	180	390	18	6	22	S275	275.0	410.0	

	Elementos de	tornillería	1				
	Geo	Geometría					
Descripción	Esquema	Diámetro	Longitud (mm)	Clase	f _y (MPa)	f _u (MPa)	
ISO 4017-M12x35-8.8 ISO 4032-M12-8 2 ISO 7089-12-200 HV		M12	35	8.8	640.0	800.0	
ISO 4017-M20x70-8.8 ISO 4032-M20-8 2 ISO 7089-20-200 HV		M20	70	8.8	640.0	800.0	

c) Comprobación

1) Pilar HE 300 B

		Comprobacione	s de resi	stencia		
	Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
	Panel	Esbeltez				36.81
	Parier	Cortante	kN	339.80	451.04	75.34
	Rigidizador superior	Tensión de Von Mises	N/mm²	150.87	261.90	57.60
	Rigidizador inferior	Tensión de Von Mises	N/mm²	84.16	261.90	32.13
	Rigidizador superior	Tensión de Von Mises	N/mm²	150.87	261.90	57.60
	Rigidizador inferior	Tensión de Von Mises	N/mm²	84.16	261.90	32.13
	Ala	Cortante	N/mm ²	63.73	261.90	24.33
	Ala	Tracción por flexión	kN	188.13	282.24	66.66
Viga IPE 300	Ald	Tracción	kN	66.65	341.08	19.54
	Alma	Tracción	kN	109.40	194.64	56.21
		Punzonamiento	kN	3.77	792.32	0.48
Viga IPE 220	Alma	Flexión por fuerza perpendicular	kN	3.77	190.85	1.98

Cordones de soldadura

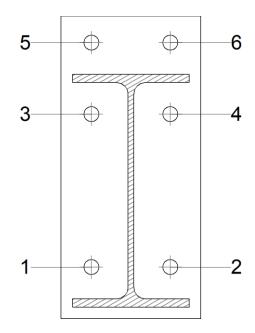
Comprobaciones geométricas										
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)					
Soldadura del rigidizador superior a las alas	En ángulo	5	113	12.0	90.00					
Soldadura del rigidizador superior al alma	En ángulo	5	208	11.0	90.00					
Soldadura del rigidizador inferior a las alas	En ángulo	5	113	12.0	90.00					
Soldadura del rigidizador inferior al alma	En ángulo	5	208	11.0	90.00					
Soldadura del rigidizador superior a las alas	En ángulo	5	113	12.0	90.00					
Soldadura del rigidizador superior al alma	En ángulo	5	208	11.0	90.00					
Soldadura del rigidizador inferior a las alas	En ángulo	5	113	12.0	90.00					
Soldadura del rigidizador inferior al alma	En ángulo	5	208	11.0	90.00					

- a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

ti Espesor de prezas									
	Cor	nproba	ción de	resiste	encia				
		Tensiór	n de Vor	Mises		Tensión normal			
Ref.	σ⊥ (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	σ_{\perp} (N/mm ²)	Aprov.	f _u (N/mm²)	βw
Soldadura del rigidizador superior a las alas	128.0	128.0	0.0	256.0	66.35	128.0	39.03	410.0	0.85
Soldadura del rigidizador superior al alma	0.0	0.0	53.5	92.7	24.03	0.0	0.00	410.0	0.85
Soldadura del rigidizador inferior a las alas	71.4	71.4	0.0	142.8	37.01	71.4	21.77	410.0	0.85
Soldadura del rigidizador inferior al alma	0.0	0.0	37.1	64.3	16.67	0.0	0.00	410.0	0.85
Soldadura del rigidizador superior a las alas	128.0	128.0	0.0	256.0	66.35	128.0	39.03	410.0	0.85

Comprobación de resistencia										
		Tensiór	n de Vor	Mises		Tensión	normal	£		
Ref.	σ⊥ (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	σ⊥ (N/mm²)	Aprov.	f _u (N/mm²)	βw	
Soldadura del rigidizador superior al alma	0.0	0.0	53.5	92.7	24.03	0.0	0.00	410.0	0.85	
Soldadura del rigidizador inferior a las alas	71.4	71.4	0.0	142.8	37.01	71.4	21.77	410.0	0.85	
Soldadura del rigidizador inferior al alma	0.0	0.0	37.1	64.3	16.67	0.0	0.00	410.0	0.85	

2) Viga IPE 300

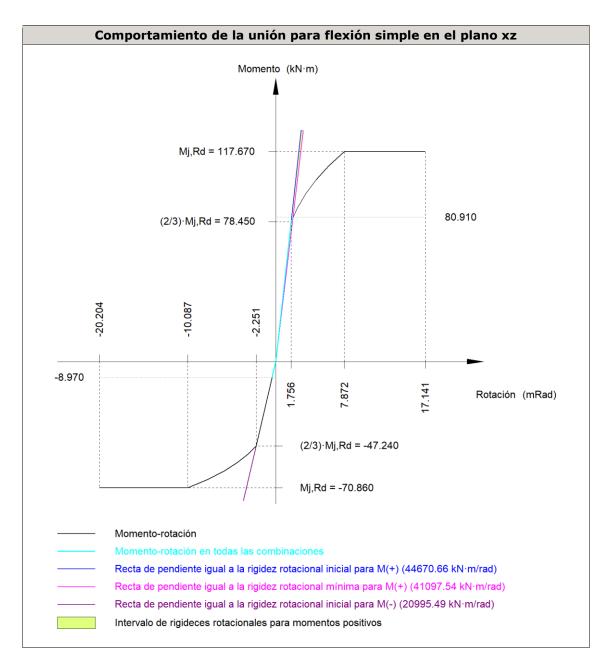

	Comprobaciones de resistencia									
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)					
Chapa frontal	Tracción por flexión	kN	188.13	196.00	95.99					
Ala	Compresión	kN	192.34	420.36	45.76					
Ald	Tracción	kN	130.36	210.18	62.02					
Alma	Tracción	kN	57.82	204.22	28.31					

Cordones de soldadura

Comprobaciones geométricas									
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)				
Soldadura del ala superior	En ángulo	5	150	10.7	90.00				
Soldadura del alma	En ángulo	4	249	7.1	90.00				
Soldadura del ala inferior	En ángulo	5	150	10.7	90.00				

- a: Espesor garganta l: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia										
		Tensiór	n de Vor	Mises		Tensión normal		£		
Ref.	σ⊥ (N/mm²)	τ⊥ (N/mm²)	τ (N/mm²)		Aprov.	σ_{\perp} (N/mm ²)	Aprov.	f _u (N/mm²)	βw	
Soldadura del ala superior	177.4	177.4	0.0	354.7	91.93	177.4	54.08	410.0	0.85	
Soldadura del alma	122.8	122.8	26.1	249.7	64.72	122.8	37.44	410.0	0.85	
Soldadura del ala inferior	116.2	116.2	0.0	232.4	60.22	116.2	35.43	410.0	0.85	



	Disposición										
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)				
1	ISO 4017-M20x70-8.8	22.0		39	197	102	39.0				
2	ISO 4017-M20x70-8.8	22.0		39	197	102	39.0				
3	ISO 4017-M20x70-8.8	22.0		39	92	102	39.0				
4	ISO 4017-M20x70-8.8	22.0		39	92	102	39.0				
5	ISO 4017-M20x70-8.8	22.0	34	39	92	102	34.4				
6	ISO 4017-M20x70-8.8	22.0	34	39	92	102	34.4				
: La comprol	pación no procede.										

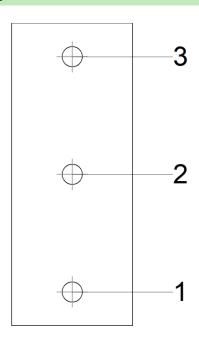
					Resistencia	а				
Tornil lo	Co	Tracción				Interacc ión tracción y cortante	Aprov. Máx. (%)			
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pésim o (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.	
1	Sección transversal	35.3 43	78.400	45.0 8	Vástago	16.91 7	141.12 0	11.9 9	45.08	45.08
1	Aplastamiento	35.3 43	295.20 0	11.9 7	Punzonami ento	16.91 7	353.50 6	4.79	45.08	43.08
2	Sección transversal	28.8 56	78.400	36.8 1	Vástago	16.91 7	141.12 0	11.9 9	36.81	36.81
2	Aplastamiento	28.8 56	295.20 0	9.77	Punzonami ento	16.91 7	353.50 6	4.79	30.81	30.81
3	Sección transversal	9.15 1	78.400	11.6 7	Vástago	70.46 1	141.12 0	49.9 3	46.72	49.93
3	Aplastamiento	9.15 1	295.20 0	3.10	Punzonami ento	70.46 1	353.50 6	19.9 3	40.72	49.93
4	Sección transversal	9.15 1	78.400	11.6 7	Vástago	70.46 1	141.12 0	49.9 3	46.72	49.93
7	Aplastamiento	9.15 1	295.20 0	3.10	Punzonami ento	70.46 1	353.50 6	19.9 3	40.72	49.93

					Resistenci	a				
Tornil lo	_	ortante				Tracció	Interacc ión tracción y cortante	Aprov. Máx. (%)		
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pésim o (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.	
5	Sección transversal	9.15 1	78.400	11.6 7	Vástago	135.4 54	141.12 0	95.9 9	79.62	95.99
3	Aplastamiento	9.15 1	153.63 8	5.96	Punzonami ento	135.4 54	353.50 6	38.3 2	79.02	93.99
6	Sección transversal	9.15 1	78.400	11.6 7	Vástago	135.4 54	141.12 0	95.9 9	79.62	95.99
0	Aplastamiento	9.15 1	153.63 8	5.96	Punzonami ento	135.4 54	353.50 6	38.3 2	79.02	95.99

Rigidez rotacional inicial	Plano xy (kN·m/rad)	Plano xz (kN·m/rad)
Calculada para momentos positivos	7278.71	44670.66
Calculada para momentos negativos	7278.71	20995.49

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Relación entre modos 1 y 3		1.05	1.80	58.47
Momento resistente	kNm	80.91	117.67	68.76
Capacidad de rotación	mRad	114.851	667	17.23

3) Viga IPE 220


Comprobaciones de resistencia									
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)				
	Interacción flexión - cortante				0.06				
Chana lateral	Tensiones combinadas				9.51				
Chapa lateral	Pandeo local	N/mm ²	15.22	241.98	6.29				
	Aplastamiento	kN	7.12	47.29	15.07				

	Desgarro	kN	16.07	164.52	9.77
Almon	Aplastamiento	kN	7.12	45.35	15.71
Alma	Desgarro	kN	16.07	173.02	9.29

Cordones de soldadura

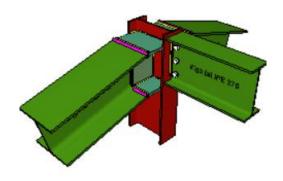
Comprobaciones geométricas									
Ref.	Tipo	a (mm)	(mm)	t (mm)	Ángulo (grados)				
Detalle de la soldadura de la chapa lateral.	En ángulo	5	175	8.0	90.00				

Comprobación de resistencia										
	Tensión de Von Mises					Tensión	normal	£		
Ref.	σ⊥ (N/mm²)	τ_{\perp} (N/mm ²)	τ (N/mm²)	Valor (N/mm²)		σ⊥ (N/mm²)	Aprov.	(N/mm²)	β_{W}	
Detalle de la soldadura de la chapa lateral.	8.6	8.6	9.1	23.4	6.05	8.6	2.63	410.0	0.85	

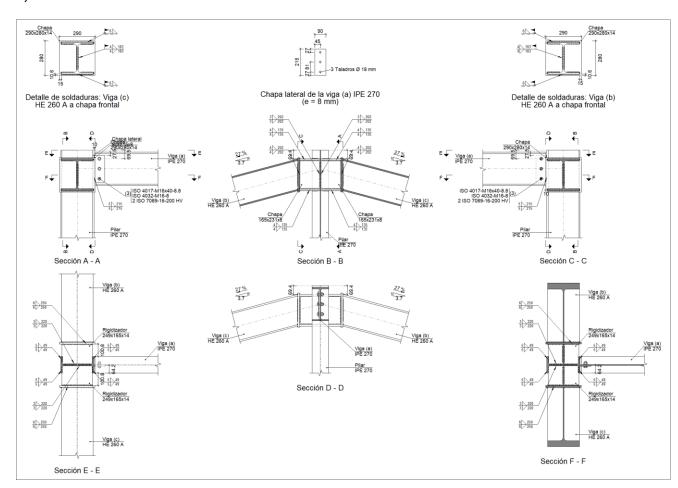
	Disposición										
Tornillo	Denominación	d_0 (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)				
1	ISO 4017-M12x35-8.8	13.0	20	25	68		19.5				
2	ISO 4017-M12x35-8.8	13.0		25	68		35.0				
3	ISO 4017-M12x35-8.8	13.0	20	25	68		19.5				
: La comprol	pación no procede.		•	•		•					

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

					Resistencia	1				
Tornil lo	Co		Traccio	Interacci ón tracción y cortante	Aprov. Máx. (%)					
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.	
1	Sección transversal	7.12 4	26.976	26.4 1	Vástago	0.00	48.557	0.00	26.41	26.41
1	Aplastamiento	7.12 4	47.291	15.0 7	Punzonami ento	0.00	69.362	0.00	20.41	20.41
2	Sección transversal	5.35 6	26.976	19.8 5	Vástago	0.00	48.557	0.00	19.85	19.85
2	Aplastamiento	5.35 6	78.541	6.82	Punzonami ento	0.00	69.362	0.00	19.85	19.85
3	Sección transversal	7.17 5	26.976	26.6 0	Vástago	0.00	48.557	0.00	26.60	26.60
3	Aplastamiento	7.17 5	74.732	9.60	Punzonami ento	0.00	69.362	0.00	20.60	20.00


d) Medición

			Soldaduras	
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)
410.0	En tallar	En ángulo	4	497
410.0 En tal	En taller	n taller En ángulo	5	4391


	Chapas										
Material	Tipo	Cantidad	Dimensiones (mm)	Peso (kg)							
Rigidizadores		4	262x140x12	13.82							
S275	Chapas	1	70x175x8	0.77							
52/5		1	180x390x18	9.92							
			Total	24.51							

	Elementos	de tornillería	
Tipo	Material	Cantidad	Descripción
Tornillos	Clase 8.8	3	ISO 4017-M12x35
Tornillos	Clase 6.6	6	ISO 4017-M20x70
Tueros	Clase 8	3	ISO 4032-M12
Tuercas		6	ISO 4032-M20
A d a l a	as Dureza 200 HV	6	ISO 7089-12
Arandelas		12	ISO 7089-20

3.9.4. Unión pilarillo-dintel

a) Detalle

b) Descripción de los componentes de la unión

	Perfiles											
			G	ieometría				Acero				
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _y (MPa)	f _u (MPa)			
Pilar	IPE 270	270	270	135	10.2	6.6	S275	275.0	410.0			
Viga	HE 260 A	7.5	250	260	12.5	7.5	S275	275.0	410.0			
Viga	IPE 270	270	270	135	10.2	6.6	S275	275.0	410.0			

	Ele	mento	os con	nplemer	ntarios					
	Ge	ometrí	a		Tala	dros	Acero			
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _y (MPa)	f _u (MPa)	
Rigidizador	249.6	249.6	165	14	-	-	S275	275.0	410.0	
Chapa de apoyo de la viga Viga (c) HE 260 A	290	290	280	14	-	-	S275	275.0	410.0	
Chapa vertical de la viga Viga (c) HE 260 A	531.9	165	231.9	8	-	-	S275	275.0	410.0	
Chapa de apoyo de la viga Viga (b) HE 260 A	290	290	280	14	-	-	S275	275.0	410.0	

	Elementos complementarios									
		eometrí			Tala	Acero				
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _y (MPa)	f _u (MPa)	
Chapa vertical de la viga Viga (b) HE 260 A	231.9	165	231.9	8	-	-	S275	275.0	410.0	
Chapa lateral: Viga (a) IPE 270	215	90	215	8	3	18	S275	275.0	410.0	

Elementos de tornillería										
	Geo	Acero								
Descripción	Esquema	Diámetro	Longitud (mm)	Clase	f _y (MPa)	f _u (MPa)				
ISO 4017-M16x40-8.8 ISO 4032-M16-8 2 ISO 7089-16-200 HV		M16	40	8.8	640.0	800.0				

c) Comprobación

1) Pilar IPE 270

	Comprobaciones de r	esistenci	а		
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Panel	Esbeltez				58.44
Pallel	Cortante	kN	8.85	242.51	3.65
Rigidizador superior	Tensión de Von Mises	N/mm ²	77.05	261.90	29.42
Rigidizador inferior	Tensión de Von Mises	N/mm ²	85.47	261.90	32.63
Rigidizador superior	Tensión de Von Mises	N/mm ²	77.03	261.90	29.41
Rigidizador inferior	Tensión de Von Mises	N/mm²	85.46	261.90	32.63
Chapa frontal [Viga (c) HE	Interacción flexión - cortante				0.00
260 A]	Deformación admisible	mRad		2	0.00
Chapa vertical [Viga (c) HE 260 A]	Cortante	kN	10.41	163.31	6.37
Chapa frontal [Viga (b) HE 260 A]	Interacción flexión - cortante				0.00
200 AJ	Deformación admisible	mRad		2	0.00
Chapa vertical [Viga (b) HE 260 A]	Cortante	kN	10.40	163.31	6.37
Ala	Desgarro	N/mm ²	58.76	261.90	22.44
Ald	Cortante	N/mm²	64.23	261.90	24.52

Cordones de soldadura

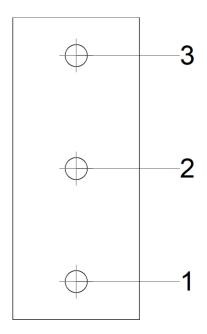
Comprobaciones geomét	ricas				
Ref.	Tipo	a (mm)	 (mm)	t (mm)	Ángulo (grados)
Soldadura del rigidizador superior a las alas	En ángulo	5	49	10.2	90.00
Soldadura del rigidizador superior al alma	En ángulo	3	220	6.6	90.00
Soldadura del rigidizador superior a la chapa frontal	En ángulo	6	290	14.0	90.00
Soldadura del rigidizador inferior a las alas	En ángulo	5	49	10.2	90.00
Soldadura del rigidizador inferior al alma	En ángulo	3	220	6.6	90.00
Soldadura del rigidizador inferior a la chapa frontal	En ángulo	6	290	14.0	90.00
Soldadura del rigidizador superior a las alas	En ángulo	5	49	10.2	90.00
Soldadura del rigidizador superior al alma	En ángulo	3	220	6.6	90.00
Soldadura del rigidizador superior a la chapa frontal	En ángulo	6	290	14.0	90.00
Soldadura del rigidizador inferior a las alas	En ángulo	5	49	10.2	90.00
Soldadura del rigidizador inferior al alma	En ángulo	3	220	6.6	90.00
Soldadura del rigidizador inferior a la chapa frontal	En ángulo	6	290	14.0	90.00
Soldadura de la chapa vertical al alma	En ángulo	3	202	6.6	90.00
Soldadura de la chapa vertical a la chapa frontal	En ángulo	4	202	8.0	90.00
Soldadura de la chapa vertical al rigidizador superior	En ángulo	4	135	8.0	90.00
Soldadura de la chapa vertical al rigidizador inferior	En ángulo	4	135	8.0	90.00
Soldadura de la chapa vertical al alma	En ángulo	3	202	6.6	90.00
Soldadura de la chapa vertical a la chapa frontal	En ángulo	4	202	8.0	90.00
Soldadura de la chapa vertical al rigidizador superior	En ángulo	4	135	8.0	90.00
Soldadura de la chapa vertical al rigidizador inferior	En ángulo	4	135	8.0	90.00

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

	Con	nproba	ción de	resiste	encia				
		Tensiór	n de Vor	Mises		Tensión	normal	£	
Ref.	σ_{\perp} (N/mm ²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	$\sigma_{\perp} \\ \text{(N/mm²)}$	Aprov.	f _u (N/mm²)	βw
Soldadura del rigidizador superior a las alas	0.0	0.0	62.3	107.9	27.96	0.0	0.00	410.0	0.85
Soldadura del rigidizador superior al alma	0.0	0.0	3.4	5.8	1.51	0.0	0.00	410.0	0.85
Soldadura del rigidizador superior a la chapa frontal	10.0	10.0	0.3	20.0	5.19	10.0	3.05	410.0	0.85
Soldadura del rigidizador inferior a las alas	0.0	0.0	69.1	119.7	31.01	0.0	0.00	410.0	0.85
Soldadura del rigidizador inferior al alma	0.0	0.0	3.8	6.6	1.70	0.0	0.00	410.0	0.85
Soldadura del rigidizador inferior a la chapa frontal	13.6	13.6	1.6	27.3	7.08	13.6	4.14	410.0	0.85
Soldadura del rigidizador superior a las alas	0.0	0.0	62.3	107.9	27.95	0.0	0.00	410.0	0.85
Soldadura del rigidizador superior al alma	0.0	0.0	3.4	5.8	1.51	0.0	0.00	410.0	0.85
Soldadura del rigidizador superior a la chapa frontal	10.0	10.0	0.6	20.0	5.18	10.0	3.04	410.0	0.85

	Con	nproba	ción de	resiste	encia				
_		Tensiór	n de Vor	Mises		Tensión	normal	fu	
Ref.	σ⊥ (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	σ⊥ (N/mm²)	Aprov.	(N/mm²)	βw
Soldadura del rigidizador inferior a las alas	0.0	0.0	69.1	119.7	31.01	0.0	0.00	410.0	0.85
Soldadura del rigidizador inferior al alma	0.0	0.0	3.8	6.6	1.70	0.0	0.00	410.0	0.85
Soldadura del rigidizador inferior a la chapa frontal	13.6	13.6	1.6	27.3	7.08	13.6	4.14	410.0	0.85
Soldadura de la chapa vertical al alma	0.0	0.0	11.1	19.3	5.00	0.0	0.00	410.0	0.85
Soldadura de la chapa vertical a la chapa frontal	0.0	0.0	8.3	14.5	3.75	0.0	0.00	410.0	0.85
Soldadura de la chapa vertical al rigidizador superior	0.0	0.0	9.6	16.7	4.33	0.0	0.00	410.0	0.85
Soldadura de la chapa vertical al rigidizador inferior	0.0	0.0	9.6	16.7	4.33	0.0	0.00	410.0	0.85
Soldadura de la chapa vertical al alma	0.0	0.0	11.1	19.3	4.99	0.0	0.00	410.0	0.85
Soldadura de la chapa vertical a la chapa frontal	0.0	0.0	8.3	14.5	3.74	0.0	0.00	410.0	0.85
Soldadura de la chapa vertical al rigidizador superior	0.0	0.0	9.6	16.7	4.32	0.0	0.00	410.0	0.85
Soldadura de la chapa vertical al rigidizador inferior	0.0	0.0	9.6	16.7	4.32	0.0	0.00	410.0	0.85

2) Viga (a) IPE 270


	Comprobaciones	de resiste	ncia		
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
	Interacción flexión - cortante				0.04
	Tensiones combinadas				4.91
Chapa lateral	Pandeo local	N/mm²	12.79	228.15	5.61
	Aplastamiento	kN	7.17	87.51	8.20
	Desgarro	kN	20.64	194.76	10.60
Alma	Aplastamiento	kN	7.17	86.59	8.28
Allila	Desgarro	kN	20.64	233.12	8.85

Cordones de soldadura

Comprobaciones geométricas										
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)					
Detalle de la soldadura de la chapa lateral.	En ángulo	5	215	8.0	90.00					

a: Espesor garganta l: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia										
		Tensiór	n de Vor	Tensión	normal	f				
Ref.	σ⊥ (N/mm²)	τ_{\perp} (N/mm ²)	τ (N/mm²)	Valor (N/mm²)		σ⊥ (N/mm²)	Aprov.	(N/mm²)	βw	
Detalle de la soldadura de la chapa lateral.	6.8	6.8	0.3	13.6	3.52	6.8	2.07	410.0	0.85	

	Disposición												
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)						
1	ISO 4017-M16x40-8.8	18.0	27	35	81		27.0						
2	ISO 4017-M16x40-8.8	18.0		35	81		45.0						
3 ISO 4017-M16x40-8.8 18.0 27 35 81 27.0													
: La comprol	: La comprobación no procede.												

					Resistencia)				
Tornil lo								Interacci ón tracción y Aprov. Macortante (%)		
	Comprobación	Pési mo (kN)	nte v. Comprobaci mo nte					Apro v. (%)	Aprov.	
1	Sección transversal	6.67 8	50.240	13.2 9	Vástago	0.00	90.432	0.00	13.29	13.29
1	Aplastamiento	6.67 8	87.365	7.64	Punzonami ento	0.00	103.54 4	0.00	13.29	13.29
2	Sección transversal	6.88 1	50.240	13.7 0	Vástago	0.00	90.432	0.00	13.70	13.70
	Aplastamiento	6.88	87.483	7.87	Punzonami ento	0.00	103.54 4	0.00	13.70	13.70

					Resistencia)				
Tornil lo		ortante	9			Tracci	ón	Interacci ón tracción y cortante	Aprov. Máx. (%)	
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro V. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro V. (%)	Aprov.	
3	Sección transversal	7.17 3	50.240	14.2 8	Vástago	0.00	90.432	0.00	14.28	14.70
3	Aplastamiento	7.17 3	87.510	8.20	Punzonami ento	0.00	103.54 4	0.00	14.28	14.28

3) Viga (c) HE 260 A

Cordones de soldadura

Comproba	Comprobaciones geométricas											
Ref. Tipo a I t Ángulo (mm) (mm) (grados)												
Soldadura del ala superior	En ángulo	6	260	12.5	75.00							
Soldadura del alma	En ángulo	4	183	7.5	90.00							
Soldadura del ala inferior	En ángulo	6	260	12.5	75.00							

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

	Comprobación de resistencia												
		Tensiór	n de Vor		Tensión	normal	£						
Ref.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							f _u (N/mm²)	βw				
Soldadura del ala superior	16.7	21.7	0.2	41.1	10.66	20.9	6.38	410.0	0.85				
Soldadura del alma	0.0	0.0	9.2	15.9	4.13	0.0	0.00	410.0	0.85				
Soldadura del ala inferior	21.2	27.6	1.7	52.4	13.57	28.9	8.80	410.0	0.85				

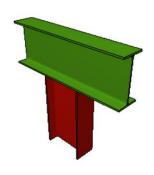
4) Viga (b) HE 260 A

Cordones de soldadura

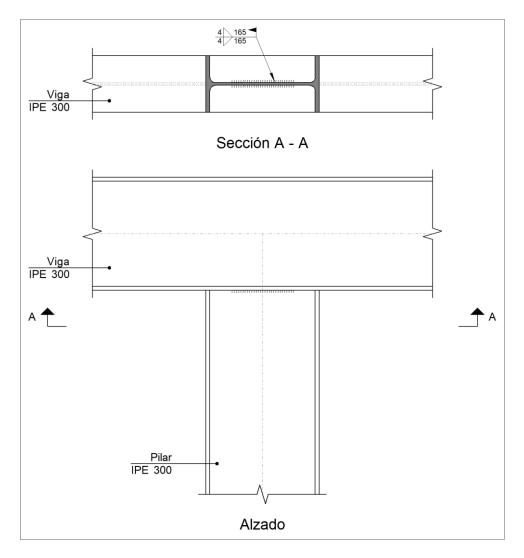
Comprobaciones geométricas										
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)					
Soldadura del ala superior	En ángulo	6	260	12.5	75.00					
Soldadura del alma	En ángulo	4	183	7.5	90.00					
Soldadura del ala inferior	En ángulo	6	260	12.5	75.00					

a: Espesor garganta l: Longitud efectiva t: Espesor de piezas

	Comprobación de resistencia											
		Tensiór	n de Vor	Tensión	normal	£						
Ref.	σ⊥ (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	σ_{\perp} (N/mm ²)		f _u (N/mm²)	βw			
Soldadura del ala superior	16.7	21.7	0.2	41.1	10.66	20.9	6.38	410.0	0.85			
Soldadura del alma	0.0	0.0	9.2	15.9	4.13	0.0	0.00	410.0	0.85			
Soldadura del ala inferior	21.2	27.6	1.7	52.4	13.57	28.9	8.80	410.0	0.85			


d) Medición

		Sold	aduras	
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)
	En hallan		3	2564
		En taller En ángulo 4		1888
410.0	EII tallei	En angulo	5	1217
410.0			6	2320
	En al lugar de montajo	En ángulo	4	733
	En el lugar de montaje	Lii aiigulo	6	1962


		Chapas		
Material	Tipo	Cantidad	Dimensiones (mm)	Peso (kg)
	Rigidizadores	4	249x165x14	18.10
		1	90x215x8	1.22
S275	Chapas	2	165x231x8	4.81
		2	290x280x14	17.85
			Total	41.97

	Elementos	de tornillería			
Tipo Material Cantidad Descripción					
Tornillos	Clase 8.8	3	ISO 4017-M16x40		
Tuercas	Clase 8	3	ISO 4032-M16		
Arandelas	Dureza 200 HV	6	ISO 7089-16		

3.9.5. Unión pilar entreplanta-viga entreplanta

a) Detalle

b) Descripción de los componentes de la unión

				Perfiles					
			G	ieometría			Acero		
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _y (MPa)	f _u (MPa)
Viga	IPE 300	7.1	300	150	10.7	7.1	S275	275.0	410.0
Pilar	IPE 300	7.1	300	150	10.7	7.1	S275	275.0	410.0

c) Comprobación

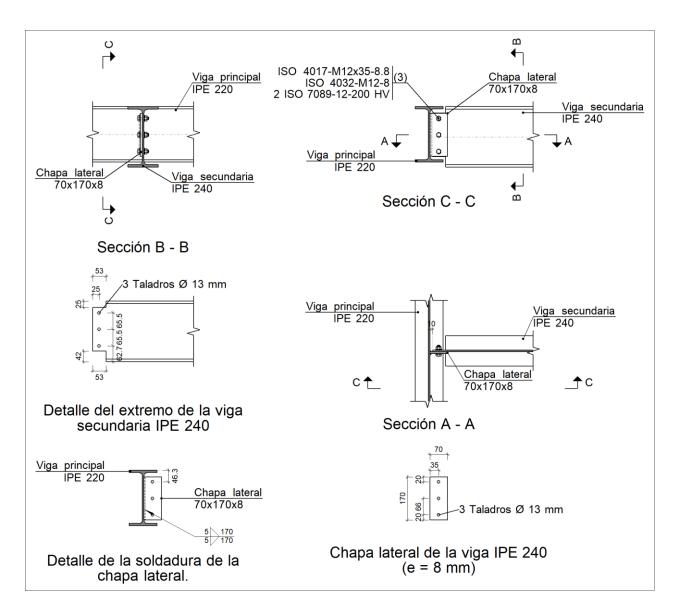
1) Viga IPE 300

2) Pilar IPE 300

Comprobaciones de resistencia									
Componente Comprobación Unidades Pésimo Resistente Aprov. (
Alma	Tensión de Von Mises	N/mm²	243.71	261.90	93.05				

Cordones de soldadura

	Comprobaciones geométricas									
Ref.			Tipo		a (mm)	l (mm)	t (mm)	Ángı (grad		
Soldadura del alma	adura del alma En ángulo 4 165 7.1						90.0	00		
a: Espesor garganta I: Longitud efectiva t: Espesor de piezas Comprobación de resistencia										
	1				Stericia			ı	ı	
		Tensió	n de Von	ı Mises		Tensión normal				
Ref.	σ⊥ (N/mm²)	τ_{\perp} (N/mm ²)	τ (N/mm²)	Valor (N/mm²)	Aprov.	σ_{\perp} (N/mm ²)	Aprov.	f _u (N/mm²)	βw	
Soldadura del alma	152.9	152.9	2.0	305.9	79.27	152.9	46.63	410.0	0.85	


d) Medición

	Soldaduras									
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)						
410.0	En el lugar de montaje	En ángulo	4	330						

3.9.6. Unión viga del hueco de escaleras- viga de entreplanta

a) Detalle

b) Descripción de los componentes de la unión

				Perfiles					
			G	Geometría			Acero		
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _y (MPa)	f _u (MPa)
Viga	IPE 220	5.9	220	110	9.2	5.9	S275	275.0	410.0
Viga	IPE 240	6.2	240	120	9.8	6.2	S275	275.0	410.0

	Elementos complementarios										
	G	Geometría				Taladros		Acero			
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _y (MPa)	f _u (MPa)		
Chapa lateral: Viga secundaria IPE 240	021	70	170	8	3	13	S275	275.0	410.0		

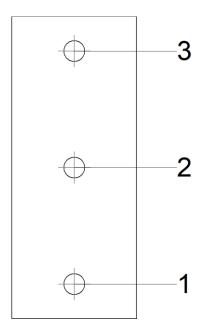
Elementos de tornillería										
	Geo	Acero								
Descripción	Esquema	Diámetro	Longitud (mm)	Clase	f _y (MPa)	f _u (MPa)				
ISO 4017-M12x35-8.8 ISO 4032-M12-8 2 ISO 7089-12-200 HV		M12	35	8.8	640.0	800.0				

c) Comprobación

1) Viga principal

Comprobaciones de resistencia									
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)				
Alma	Punzonamiento	kN	0.00	94.08	0.01				
	Flexión por fuerza perpendicular	kN	0.00	193.91	0.00				

2) Viga secundaria IPE 240


Comprobaciones de resistencia									
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)				
Chapa lateral	Interacción flexión - cortante				0.06				
	Tensiones combinadas				23.71				
	Pandeo local	N/mm ²	36.06	241.98	14.90				
	Aplastamiento	kN	16.96	46.06	36.82				
	Desgarro	kN	39.70	158.47	25.05				
Alma	Aplastamiento	kN	16.96	39.12	43.35				
	Desgarro	kN	39.70	125.63	31.60				
	Pandeo local	N/mm²	71.82	212.82	33.75				

Cordones de soldadura

Comprobaciones geométricas										
Ref.	Tipo	a (mm)	(mm)	t (mm)	Ángulo (grados)					
Detalle de la soldadura de la chapa lateral.	En ángulo	5	170	5.9	90.00					
a: Espesor garganta I: Longitud efectiva t: Espesor de piezas										

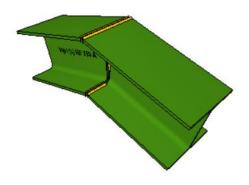
Comprobación de resistencia										
Ref.	Tensión de Von Mises					Tensión normal		£		
	σ⊥ (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)		σ_{\perp} (N/mm ²)	Aprov.	(N/mm²)	βw	
Detalle de la soldadura de la chapa lateral.	20.4	20.4	23.4	57.5	14.89	20.4	6.22	410.0	0.85	

Comprobaciones para los tornillos

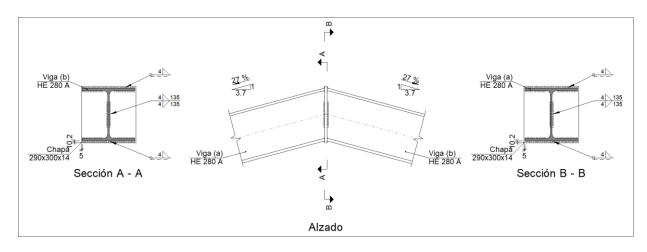
	Disposición											
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)					
1	ISO 4017-M12x35-8.8	13.0	20	25	66		19.5					
2	ISO 4017-M12x35-8.8	13.0		25	66		35.0					
3	ISO 4017-M12x35-8.8	13.0	20	25	66		19.5					
: La comprol	: La comprobación no procede.											

					Resistencia)					
Tornil lo	Cortante				Tracción				Interacci ón tracción y cortante	Aprov. Máx. (%)	
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.		
1	Sección transversal	16.9 56	26.976	62.8 6	Vástago	0.00	48.557	0.00	62.86	62.86	
1	Aplastamiento	16.9 56	46.057	36.8 2	Punzonami ento	0.00	72.889	0.00	02.00	62.86	
2	Sección transversal	13.2 32	26.976	49.0 5	Vástago	0.00	48.557	0.00	49.05	49.05	
2	Aplastamiento	13.2 32	78.720	16.8 1	Punzonami ento	0.00	72.889	0.00	49.03	49.03	

					Resistencia						
Tornil lo	Cortante					Tracci	Interacci ón tracción y cortante	Aprov. Máx. (%)			
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.		
3	Sección transversal	16.9 59	26.976	62.8 7	Vástago	0.00	48.557	0.00	62.87	62.87	
3	Aplastamiento	16.9 59	75.244	22.5 4	Punzonami ento	0.00	72.889	0.00	02.87	02.87	


d) Medición

	Soldaduras											
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)								
410.0	En taller	En ángulo	5	340								


		Chapas		
Material	Tipo	Cantidad	Dimensiones (mm)	Peso (kg)
S275	Chapas	1	70x170x8	0.75
32/3			Total	0.75

	Elementos	de tornillería	
Tipo	Material	Cantidad	Descripción
Tornillos	Clase 8.8	3	ISO 4017-M12x35
Tuercas	Clase 8	3	ISO 4032-M12
Arandelas	Dureza 200 HV	6	ISO 7089-12

3.9.7. Unión dintel-dintel

a) Detalle

b) Descripción de los componentes de la unión

	Perfiles									
			Acero							
Pieza Descripción		Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _y (MPa)	f _u (MPa)	
Viga	HE 280 A	270	270	280	13	8	S275	275.0	410.0	

	Elementos complementarios									
	G	Geometría								
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Tipo	f _y (MPa)	f _u (MPa)			
Chapa frontal	290	290	300	14	S275	275.0	410.0			

c) Comprobación

1) Chapa frontal

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Interacción flexión - cortante				0.00
Deformación admisible	mRad		2	0.00

2) Viga (a) HE 280 A

Cordones de soldadura

Comprobaciones geométricas										
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)					
Soldadura del ala superior	En ángulo	4	280	13.0	75.00					
Soldadura del alma	En ángulo	4	135	8.0	90.00					
Soldadura del ala inferior	En ángulo	4	280	13.0	75.00					

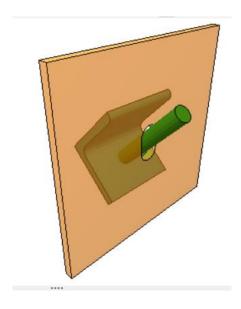
a: Espesor garganta l: Longitud efectiva t: Espesor de piezas

	Comprobación de resistencia										
Ref.		Tensiór	n de Vor		Tensión normal		f				
	σ⊥ (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	σ_{\perp} (N/mm ²)	Aprov.	f _u (N/mm²)	βw		
Soldadura del ala superior	87.3	113.8	1.4	215.6	55.86	99.7	30.40	410.0	0.85		
Soldadura del alma	56.5	56.5	0.5	113.0	29.28	56.5	17.22	410.0	0.85		
Soldadura del ala inferior	85.5	111.5	2.5	211.2	54.74	126.0	38.42	410.0	0.85		

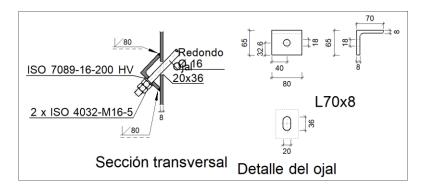
3) Viga (b) HE 280 A

Cordones de soldadura

Comprobaciones geométricas									
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)				
Soldadura del ala superior	En ángulo	4	280	13.0	75.00				
Soldadura del alma	En ángulo	4	135	8.0	90.00				
Soldadura del ala inferior	En ángulo	4	280	13.0	75.00				


	Comprobaciones geométricas								
Ref.			Ti	ро	a (mm)	l (mm)	t (mm)	Áng (grad	
a: Espesor garganta I: Longitud efectiva t: Espesor de piezas									
Comprobación de resistencia									
		Tensiór	n de Vor	Mises		Tensión normal			
Ref.	σ_{\perp} (N/mm ²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	σ_{\perp} (N/mm ²)	Aprov.	f _u (N/mm²)	βw
Soldadura del ala superior	87.3	113.8	1.4	215.6	55.86	99.7	30.40	410.0	0.85
Soldadura del alma	56.5	56.5	0.5	113.0	29.28	56.5	17.22	410.0	0.85
Soldadura del ala inferior	85.5	111.5	2.5	211.2	54.74	126.0	38.42	410.0	0.85

d) Medición


	Soldaduras								
(f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)				
4	110.0	En taller	En ángulo	4	2556				

		Chapas		
Material	Tipo	Cantidad	Dimensiones (mm)	Peso (kg)
C27F	Chapas	1	290x300x14	9.56
S275			Total	9.56

3.9.8. Unión arriostramientos

a) Detalle

b) Comprobación

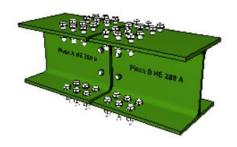
1) L70x8 (S275)

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Cortante de la sección transversal	kN	11.46	75.00	15.27
Flector				59.96

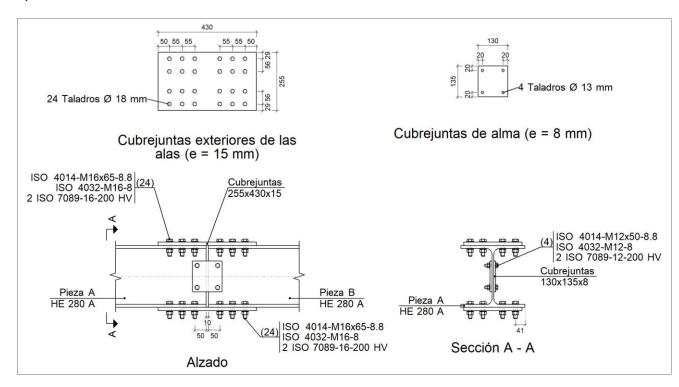
Cordones de soldadura

Comprobaciones geométricas								
Ref.	Tipo	Preparación de bordes (mm)	l (mm)					
Soldaduras a tope del angular a la pieza	A tope en bisel simple	8	80					
I: Longitud efectiva								

Comprobación de resistencia								
Ref.	Tensión de Von Mises Tensión normal						£	
	σ⊥ (N/mm²)	τ_{\perp} (N/mm ²)	τ (N/mm²)	Valor (N/mm²)	Aprov.	σ⊥ (N/mm²)	Aprov.	(N/mm²)
Soldaduras a tope del angular a la pieza						410.0	0.85	


c) Medición

	Soldaduras									
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)						
410.0	En taller	A tope en bisel simple	8	160						


Angulares										
Material	Tipo	Descripción (mm)	Longitud (mm)	Peso (kg)						
S275	Anclajes de tirantes	L70x8	80	0.66						
			Total	0.66						

Elementos de tornillería								
Tipo	Material	Cantidad	Descripción					
Tuercas	Clase 5	2	ISO 4032-M16					
Arandelas	Dureza 200 HV	1	ISO 7089-16					

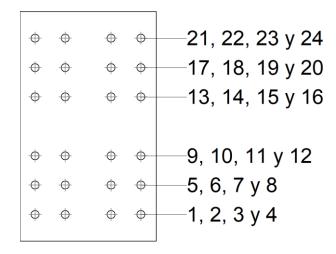
3.9.9. Unión atornillada dintel-dintel

a) Detalle

b) Descripción de los componentes de la unión

	Perfiles										
			G	eometría			Acero				
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _y (MPa)	f _u (MPa)		
Pieza	HE 280 A	270	270	280	13	8	S275	275.0	410.0		

	Elementos complementarios								
	Ge	Geometría				Taladros Acero			
Pieza	Esquema			Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _y (MPa)	f _u (MPa)
Cubrejuntas	084	255	430	15	24	18	S275	275.0	410.0
Cubrejuntas	\$£	130	135	8	4	13	S275	275.0	410.0

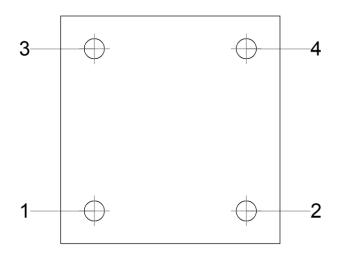

Elementos de tornillería								
	Geo	metría			Acero			
Descripción	Esquema	Diámetro	Longitud (mm)	Clase	f _y (MPa)	f _u (MPa)		
ISO 4014-M16x65-8.8 ISO 4032-M16-8 2 ISO 7089-16-200 HV		M16	65	8.8	640.0	800.0		
ISO 4014-M12x50-8.8 ISO 4032-M12-8 2 ISO 7089-12-200 HV		M12	50	8.8	640.0	800.0		

c) Comprobación

1) Cubrejuntas

Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
	Tracción	kN	583.63	810.32	72.02
Cubrejuntas exterior del ala superior	Aplastamiento	kN	48.64	151.24	32.16
	Desgarro	kN	583.63	848.29	68.80
	Compresión	kN	241.28	1001.79	24.08
Colored to the state of	Aplastamiento	kN	20.52	39.82	51.53
Cubrejuntas de alma	Desgarro	kN	29.94	133.07	22.50
	Compresión	kN	663.28	1001.79	66.21
Cubraiumtae autoriar dal ala infariar	Aplastamiento	kN	55.27	151.24	36.55
Cubrejuntas exterior del ala inferior	Desgarro	kN	300.46	848.29	35.42
	Tracción	kN	300.46	810.32	37.08

– Ala superior

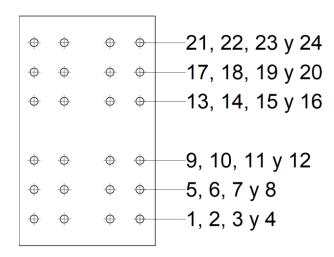

	Dispos	sición					
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)
1	ISO 4014-M16x65-8.8	18.0	50	29	55	56	41.0
2	ISO 4014-M16x65-8.8	18.0	50		55	56	39.0
3	ISO 4014-M16x65-8.8	18.0	50		55	56	39.0
4	ISO 4014-M16x65-8.8	18.0	50	29	55	56	41.0
5	ISO 4014-M16x65-8.8	18.0		29	55	56	41.0
6	ISO 4014-M16x65-8.8	18.0			55	56	39.0
7	ISO 4014-M16x65-8.8	18.0			55	56	39.0
8	ISO 4014-M16x65-8.8	18.0		29	55	56	41.0
9	ISO 4014-M16x65-8.8	18.0		29	55	56	41.0
10	ISO 4014-M16x65-8.8	18.0			55	56	39.0
11	ISO 4014-M16x65-8.8	18.0			55	56	39.0
12	ISO 4014-M16x65-8.8	18.0		29	55	56	41.0
13	ISO 4014-M16x65-8.8	18.0		29	55	56	41.0
14	ISO 4014-M16x65-8.8	18.0			55	56	39.0
15	ISO 4014-M16x65-8.8	18.0			55	56	39.0
16	ISO 4014-M16x65-8.8	18.0		29	55	56	41.0
17	ISO 4014-M16x65-8.8	18.0		29	55	56	41.0
18	ISO 4014-M16x65-8.8	18.0			55	56	39.0
19	ISO 4014-M16x65-8.8	18.0			55	56	39.0
20	ISO 4014-M16x65-8.8	18.0		29	55	56	41.0
21	ISO 4014-M16x65-8.8	18.0	50	29	55	56	41.0
22	ISO 4014-M16x65-8.8	18.0	50	-	55	56	39.0
23	ISO 4014-M16x65-8.8	18.0	50		55	56	39.0
24	ISO 4014-M16x65-8.8	18.0	50	29	55	56	41.0
: La comprot	pación no procede.			-	-		

		Resist	tencia			
		Cortante				
Tornillo	Comprobación	Pésimo (kN)	Resistente (kN)	Aprov.	Aprov. Máx. (%)	
1	Sección transversal	48.636	64.340	75.59	75 50	
1	Aplastamiento	48.636	131.079	37.10	75.59	
2	Sección transversal	48.636	64.340	75.59	75.59	
2	Aplastamiento	48.636	131.079	37.10	75.59	
3	Sección transversal	48.636	64.340	75.59	75.59	
3	Aplastamiento	48.636	131.079	37.10	73.39	
4	Sección transversal	48.636	64.340	75.59	75.59	
7	Aplastamiento	48.636	131.079	37.10	73.39	
5	Sección transversal	48.636	64.340	75.59	75.59	
3	Aplastamiento	48.636	131.079	37.10	73.39	
6	Sección transversal	48.636	64.340	75.59	75.59	
U	Aplastamiento	48.636	131.079	37.10	73.39	
7	Sección transversal	48.636	64.340	75.59	75.59	
,	Aplastamiento	48.636	131.079	37.10	/ J.J3	
8	Sección transversal	48.636	64.340	75.59	75.59	
0	Aplastamiento	48.636	131.079	37.10	73.39	
9	Sección transversal	48.636	64.340	75.59	75.59	
9	Aplastamiento	48.636	151.244	32.16	73.39	
10	Sección transversal	48.636	64.340	75.59	75.59	
10	Aplastamiento	48.636	151.244	32.16	73.39	
11	Sección transversal	48.636	64.340	75.59	75.59	
11	Aplastamiento	48.636	151.244	32.16	73.39	
12	Sección transversal	48.636	64.340	75.59	75.59	
12	Aplastamiento	48.636	151.244	32.16	73.39	
13	Sección transversal	48.636	64.340	75.59	75.59	
13	Aplastamiento	48.636	151.244	32.16	73.39	
14	Sección transversal	48.636	64.340	75.59	75.59	
14	Aplastamiento	48.636	151.244	32.16	73.39	
15	Sección transversal	48.636	64.340	75.59	75.59	
13	Aplastamiento	48.636	151.244	32.16	73.39	
16	Sección transversal	48.636	64.340	75.59	75.59	
10	Aplastamiento	48.636	151.244	32.16	73.39	
17	Sección transversal	48.636	64.340	75.59	75.59	
1/	Aplastamiento	48.636	131.079	37.10	73.33	
18	Sección transversal	48.636	64.340	75.59	75.59	
10	Aplastamiento	48.636	131.079	37.10	73.33	
19	Sección transversal	48.636	64.340	75.59	75.59	
13	Aplastamiento	48.636	131.079	37.10	73.33	
20	Sección transversal	48.636	64.340	75.59	75.59	
20	Aplastamiento	48.636	131.079	37.10	73.33	
21	Sección transversal	48.636	64.340	75.59	75.59	
4 1	Aplastamiento	48.636	131.079	37.10		
22	Sección transversal	48.636	64.340	75.59	75.59	
22	Aplastamiento	48.636	131.079	37.10	73.33	
23	Sección transversal	48.636	64.340	75.59	75.59	

	Resistencia							
Tornillo	Comprobación	Pésimo (kN)	Resistente (kN)	Aprov.	Aprov. Máx. (%)			
	Aplastamiento	48.636	131.079	37.10				
24	Sección transversal	48.636	64.340	75.59	75.59			
24	Aplastamiento	48.636	131.079	37.10	75.59			

– Alma

Comprobaciones para los tornillos



	Disposición									
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)			
1	ISO 4014-M12x50-8.8	13.0	20	20	96	90	40.0			
2	ISO 4014-M12x50-8.8	13.0	20	20	96	90	40.0			
3	ISO 4014-M12x50-8.8	13.0	20	20	96	90	40.0			
4	ISO 4014-M12x50-8.8	13.0	20	20	96	90	40.0			

	Resistencia							
		Cortante						
Tornillo	Comprobación	Pésimo (kN)	Resistente (kN)	Aprov.	Aprov. Máx. (%)			
1	Sección transversal	41.041	72.382	56.70	56.70			
1	Aplastamiento	41.041	78.720	52.14	30.70			
2	Sección transversal	41.041	72.382	56.70	56.70			
2	Aplastamiento	41.041	78.720	52.14	30.70			
3	Sección transversal	41.041	72.382	56.70	56.70			
3	Aplastamiento	41.041	78.720	52.14	30.70			
4	Sección transversal	41.041	72.382	56.70	56.70			
4	Aplastamiento	41.041	78.720	52.14	30.70			

- Ala inferior

Comprobaciones para los tornillos

	Disposición								
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)		
1	ISO 4014-M16x65-8.8	18.0	50	29	55	56	41.0		
2	ISO 4014-M16x65-8.8	18.0	50		55	56	39.0		
3	ISO 4014-M16x65-8.8	18.0	50		55	56	39.0		
4	ISO 4014-M16x65-8.8	18.0	50	29	55	56	41.0		
5	ISO 4014-M16x65-8.8	18.0		29	55	56	41.0		
6	ISO 4014-M16x65-8.8	18.0			55	56	39.0		
7	ISO 4014-M16x65-8.8	18.0			55	56	39.0		
8	ISO 4014-M16x65-8.8	18.0		29	55	56	41.0		
9	ISO 4014-M16x65-8.8	18.0		29	55	56	41.0		
10	ISO 4014-M16x65-8.8	18.0			55	56	39.0		
11	ISO 4014-M16x65-8.8	18.0			55	56	39.0		
12	ISO 4014-M16x65-8.8	18.0		29	55	56	41.0		
13	ISO 4014-M16x65-8.8	18.0		29	55	56	41.0		
14	ISO 4014-M16x65-8.8	18.0			55	56	39.0		
15	ISO 4014-M16x65-8.8	18.0			55	56	39.0		
16	ISO 4014-M16x65-8.8	18.0		29	55	56	41.0		
17	ISO 4014-M16x65-8.8	18.0		29	55	56	41.0		
18	ISO 4014-M16x65-8.8	18.0			55	56	39.0		
19	ISO 4014-M16x65-8.8	18.0			55	56	39.0		
20	ISO 4014-M16x65-8.8	18.0		29	55	56	41.0		
21	ISO 4014-M16x65-8.8	18.0	50	29	55	56	41.0		
22	ISO 4014-M16x65-8.8	18.0	50		55	56	39.0		
23	ISO 4014-M16x65-8.8	18.0	50		55	56	39.0		

	Disposición							
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)	
24 ISO 4014-M16x65-8.8 18.0 50 29 55 56 41.0					41.0			
: La comprol	: La comprobación no procede.							

		Resist	tencia			
		Cortante				
Tornillo	Comprobación	Pésimo (kN)	Resistente (kN)	Aprov.	Aprov. Máx. (%)	
1	Sección transversal	55.274	64.340	85.91	85.91	
1	Aplastamiento	55.274	151.244	36.55	65.91	
2	Sección transversal	55.274	64.340	85.91	85.91	
2	Aplastamiento	55.274	151.244	36.55	65.91	
3	Sección transversal	55.274	64.340	85.91	85.91	
3	Aplastamiento	55.274	151.244	36.55	65.91	
4	Sección transversal	55.274	64.340	85.91	85.91	
4	Aplastamiento	55.274	151.244	36.55	05.91	
5	Sección transversal	55.274	64.340	85.91	0F 01	
5	Aplastamiento	55.274	131.079	42.17	85.91	
6	Sección transversal	55.274	64.340	85.91	85.91	
0	Aplastamiento	55.274	131.079	42.17	05.91	
7	Sección transversal	55.274	64.340	85.91	85.91	
,	Aplastamiento	55.274	131.079	42.17	05.91	
8	Sección transversal	55.274	64.340	85.91	85.91	
0	Aplastamiento	55.274	131.079	42.17	05.91	
9	Sección transversal	55.274	64.340	85.91	85.91	
9	Aplastamiento	55.274	131.079	42.17	05.91	
10	Sección transversal	55.274	64.340	85.91	85.91	
10	Aplastamiento	55.274	131.079	42.17	03.91	
11	Sección transversal	55.274	64.340	85.91	85.91	
11	Aplastamiento	55.274	131.079	42.17	63.91	
12	Sección transversal	55.274	64.340	85.91	85.91	
12	Aplastamiento	55.274	131.079	42.17	63.91	
13	Sección transversal	48.636	64.340	75.59	75.59	
13	Aplastamiento	48.636	151.244	32.16	73.39	
14	Sección transversal	48.636	64.340	75.59	75.59	
14	Aplastamiento	48.636	151.244	32.16	73.39	
15	Sección transversal	48.636	64.340	75.59	75.59	
13	Aplastamiento	48.636	151.244	32.16	75.59	
16	Sección transversal	48.636	64.340	75.59	75.59	
10	Aplastamiento	48.636	151.244	32.16	73.33	
17	Sección transversal	48.636	64.340	75.59	75.59	
1/	Aplastamiento	48.636	131.079	37.10	73.33	
18	Sección transversal	48.636	64.340	75.59	75.59	
10	Aplastamiento	48.636	131.079	37.10		
19	Sección transversal	48.636	64.340	75.59	75.59	
13	Aplastamiento	48.636	131.079	37.10	/3.33	
20	Sección transversal	48.636	64.340	75.59	75.59	

	Resistencia							
		Cortante						
Tornillo	Comprobación	Pésimo (kN)	Resistente (kN)	Aprov.	Aprov. Máx. (%)			
	Aplastamiento	48.636	131.079	37.10				
21	Sección transversal	48.636	64.340	75.59	75.59			
21	Aplastamiento	48.636	131.079	37.10	75.59			
22	Sección transversal	48.636	64.340	75.59	75.59			
22	Aplastamiento	48.636	131.079	37.10	75.59			
23	Sección transversal	48.636	64.340	75.59	75.59			
23	Aplastamiento	48.636	131.079	37.10	75.59			
24	Sección transversal	48.636	64.340	75.59	75.59			
24	Aplastamiento	48.636	131.079	37.10	/5.59			

2) Pieza A HE 280 A

Comprobaciones de resistencia									
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)				
	Aplastamiento	kN	55.27	131.08	42.17				
Ala	Desgarro	kN	583.63	735.19	79.39				
	Tracción	kN	583.63	798.22	73.12				
Alma	Aplastamiento	kN	41.04	78.72	52.14				
Alma	Desgarro	kN	59.88	181.45	33.00				

3) Pieza B HE 280 A

Comprobaciones de resistencia					
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Ala	Aplastamiento	kN	55.27	131.08	42.17
	Desgarro	kN	583.63	735.19	79.39
	Tracción	kN	583.63	798.22	73.12
Alma	Aplastamiento	kN	41.04	78.72	52.14
	Desgarro	kN	59.88	181.45	33.00

d) Medición

		Chapas		
Material	Tipo	Cantidad	Dimensiones (mm)	Peso (kg)
	Chanas	2	130x135x8	2.20
S275	Chapas	2	255x430x15	25.82
			Total	28.03

Elementos de tornillería				
Tipo	Material	Cantidad	Descripción	
Tornillos	Clase 8.8	4	ISO 4014-M12x50	
Torrillios Clase 8.8	48	ISO 4014-M16x65		
Tuerese	Class 9	4	ISO 4032-M12	
Tuercas Clase 8	48	ISO 4032-M16		
Avandalaa	Durana 200 LIV	8	ISO 7089-12	
Arandelas	Dureza 200 HV	96	ISO 7089-16	

3.10. CIMENTACIÓN

La función estructural de las placas de anclaje es repartir y transmitir la carga al hormigón, menos capaz estructuralmente que el acero. Si no hay chapa de reparto no es posible unir ambos materiales de forma compatible.

La unión con la zapata se efectuará mediante pernos de anclaje, con sus correspondientes tuercas, embebidos en el hormigón. Desplazando las tuercas bajo la placa de asiento, se aplomará y nivelará el pilar. Una vez nivelado, se verterá una capa de mortero. Finalmente, el pilar se fijará a la zapata apretando las tuercas de anclaje.

Las placas de anclaje y serán de acero S275 y los pernos serán barras corrugadas de acero B500S en diferentes diámetros.

En este apartado se han dimensionado las zapatas, las vigas de atado y las placas de anclaje.

3.10.1. Zapatas

Se han agrupado las zapatas en estos grupos, donde se muestras en el siguiente croquis por colores:

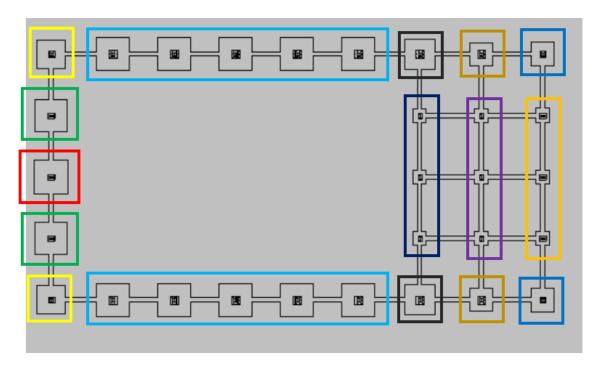


Figura 41: Agrupación zapatas.

Los detalles geométricos de las zapatas están definidos en el DOCUMENTO 4.-PLANOS. Según el sistema de colores, los grupos a los que pertenecen las zapatas son los siguientes:

- Grupo 1: Amarillo
- Grupo 2: Cian
- Grupo 3: Morado
- Grupo 4: Negro
- Grupo 5: Marrón
- Grupo 6: Azul
- Grupo 7: Azul marino
- Grupo 8: Verde
- Grupo 9: Naranja
- Grupo 10: Rojo

A continuación, se muestra el resumen de las distintas zapatas utilizadas para esta obra, y del acero empleado en ellas:

Referencias	Geometría	Armado
	Zapata rectangular excéntrica	Sup X: 12Ø12c/20
N1 v N2	Ancho zapata X: 240.0 cm	Sup Y: 12Ø12c/20
	Ancho zapata Y: 240.0 cm	Inf X: 12Ø12c/20
	Canto: 60.0 cm	Inf Y: 12Ø12c/20

Referencias	Geometría	Armado
N6, N8, N11, N13, N16, N18, N21, N23, N26 y N28	Zapata rectangular excéntrica Ancho zapata X: 275.0 cm Ancho zapata Y: 275.0 cm Canto: 65.0 cm	Sup X: 14Ø12c/19 Sup Y: 14Ø12c/19 Inf X: 14Ø12c/19 Inf Y: 14Ø12c/19
N31 y N33	Zapata rectangular excéntrica Ancho zapata X: 255.0 cm Ancho zapata Y: 255.0 cm Canto: 65.0 cm	Sup X: 13Ø12c/19 Sup Y: 13Ø12c/19 Inf X: 13Ø12c/19 Inf Y: 13Ø12c/19
N36 y N38	Zapata rectangular excéntrica Ancho zapata X: 195.0 cm Ancho zapata Y: 195.0 cm Canto: 65.0 cm	Sup X: 10Ø12c/19 Sup Y: 10Ø12c/19 Inf X: 10Ø12c/19 Inf Y: 10Ø12c/19
N41 y N43	Zapata rectangular excéntrica Ancho zapata X: 200.0 cm Ancho zapata Y: 200.0 cm Canto: 60.0 cm	Sup X: 10Ø12c/20 Sup Y: 10Ø12c/20 Inf X: 10Ø12c/20 Inf Y: 10Ø12c/20
N46 y N50	Zapata rectangular excéntrica Ancho zapata X: 265.0 cm Ancho zapata Y: 265.0 cm Canto: 60.0 cm	Sup X: 13Ø12c/20 Sup Y: 13Ø12c/20 Inf X: 13Ø12c/20 Inf Y: 13Ø12c/20
N47, N49 y N51	Zapata rectangular excéntrica Ancho zapata X: 125.0 cm Ancho zapata Y: 125.0 cm Canto: 60.0 cm	Sup X: 6Ø12c/20 Sup Y: 6Ø12c/20 Inf X: 6Ø12c/20 Inf Y: 6Ø12c/20
N48	Zapata rectangular excéntrica Ancho zapata X: 285.0 cm Ancho zapata Y: 285.0 cm Canto: 65.0 cm	Sup X: 14Ø12c/19 Sup Y: 14Ø12c/19 Inf X: 14Ø12c/19 Inf Y: 14Ø12c/19
N59, N61 y N63	Zapata rectangular excéntrica Ancho zapata X: 115.0 cm Ancho zapata Y: 115.0 cm Canto: 40.0 cm	X: 4Ø12c/30 Y: 4Ø12c/30
N65, N67 y N69	Zapata rectangular excéntrica Ancho zapata X: 115.0 cm Ancho zapata Y: 115.0 cm Canto: 40.0 cm	Sup X: 4Ø12c/30 Sup Y: 4Ø12c/30 Inf X: 4Ø12c/30 Inf Y: 4Ø12c/30

Tabla 12: Resumen dimensiones zapatas.

	B 500 S, Ys=1.15 (kg)	Hormigón (m³)
Elemento	Ø12	HA-25, Limpiez Yc=1.5 a
Referencias: N1 y N3	2x105.03	2x3.46 2x0.58
Referencias: N6, N8, N11, N13, N16, N18, N21, N23, N26 y N28	10x141.64	10x4.92 10x0.7 6
Referencias: N31 y N33	2x121.40	2x4.23 2x0.65
Referencias: N36 y N38	2x78.89	2x2.47 2x0.38
Referencias: N41 y N43	2x71.90	2x2.40 2x0.40
Referencias: N46 y N50	2x126.46	2x4.21 2x0.70
Referencias: N47, N49 y N51	3x32.34	3x0.94 3x0.16
Referencia: N48	147.14	5.28 0.81
Referencias: N59, N61 y N63	3x9.77	3x0.53 3x0.13
Referencias: N65, N67 y N69	3x19.54	3x0.53 3x0.13
Totales	2755.85	93.96 15.05

Tabla13: Resumen acero en zapatas.

También se adjunta la comprobación de cada grupo de zapatas:

<u>GRUPO 1:</u>

Referencia: N1 y N3		
Dimensiones: 240 x 240 x 60		
Armados: Xi:Ø12c/20 Yi:Ø12c/20 Xs:Ø12c/20 Ys:Ø12c/2	20	
Comprobación	Valores	Estado
Tensiones sobre el terreno:		
Criterio de CYPE Ingenieros		
-Tensión media en situaciones persistentes:	Máximo: 0.2 MPa	
	Calculado: 0.0281547 MPa	Cumple
-Tensión máxima en situaciones persistentes sin	Máximo: 0.249959 MPa	
viento:	Calculado: 0.0205029 MPa	Cumple
-Tensión máxima en situaciones persistentes con	Máximo: 0.249959 MPa	
viento:	Calculado: 0.0672966 MPa	Cumple
Vuelco de la zapata:		
Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
-En dirección X:	Reserva seguridad: 34.0 %	Cumple
-En dirección Y:	Reserva seguridad: 8.2 %	Cumple
Flexión en la zapata:		
-En dirección X:	Momento: 27.61 kN⋅m	Cumple
-En dirección Y:	Momento: 74.64 kN·m	Cumple
Cortante en la zapata:		
-En dirección X:	Cortante: 33.26 kN	Cumple
-En dirección Y:	Cortante: 90.74 kN	Cumple

Referencia: N1 y N3		
Dimensiones: 240 x 240 x 60		
Armados: Xi:Ø12c/20 Yi:Ø12c/20 Xs:Ø12c/20 Ys:Ø12c	ı	
Comprobación	Valores	Estado
Compresión oblicua en la zapata:		
-Situaciones persistentes:	Máximo: 5000 kN/m²	
Criterio de CYPE Ingenieros	Calculado: 59.5 kN/m ²	Cumple
Canto mínimo:	Mínimo: 25 cm	
Artículo 58.8.1 de la norma EHE-08	Calculado: 60 cm	Cumple
Espacio para anclar arranques en cimentación:	Mínimo: 49 cm	
-N1:	Calculado: 53 cm	Cumple
Cuantía geométrica mínima:		
Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
-Armado superior dirección X:	Calculado: 0.0009	Cumple
- Armado inferior dirección Y:	Calculado: 0.0009	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión:		
Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	
- Armado inferior dirección X:	Mínimo: 0.0002	Cumple
- Armado inferior dirección Y:	Mínimo: 0.0004	Cumple
-Armado superior dirección X:	Mínimo: 0.0002	Cumple
-Armado superior dirección Y:	Mínimo: 0.0002	Cumple
Diámetro mínimo de las barras:		
Recomendación del Artículo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras:		
Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
- Armado inferior dirección X:	Calculado: 20 cm	Cumple
- Armado inferior dirección Y:	Calculado: 20 cm	Cumple
-Armado superior dirección X:	Calculado: 20 cm	Cumple
- Armado superior dirección Y:	Calculado: 20 cm	Cumple
Separación mínima entre barras:		
Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 20 cm	Cumple
- Armado inferior dirección Y:	Calculado: 20 cm	Cumple
-Armado superior dirección X:	Calculado: 20 cm	Cumple
- Armado superior dirección Y:	Calculado: 20 cm	Cumple

Referencia: N1 y N3		
Dimensiones: 240 x 240 x 60		
Armados: Xi:Ø12c/20 Yi:Ø12c/20 Xs:Ø12c/20 Ys:Ø12c/	20	
Comprobación	Valores	Estado
Longitud de anclaje:		
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 15 cm	
-Armado inf. dirección X hacia der:	Calculado: 43 cm	Cumple
-Armado inf. dirección X hacia izq:	Calculado: 43 cm	Cumple
-Armado inf. dirección Y hacia arriba:	Calculado: 43 cm	Cumple
-Armado inf. dirección Y hacia abajo:	Calculado: 43 cm	Cumple
-Armado sup. dirección X hacia der:	Calculado: 43 cm	Cumple
-Armado sup. dirección X hacia izq:	Calculado: 43 cm	Cumple
-Armado sup. dirección Y hacia arriba:	Calculado: 43 cm	Cumple
-Armado sup. dirección Y hacia abajo:	Calculado: 43 cm	Cumple
Se cumplen todas las compre	obaciones	

GRUPO2:

Referencia: N6, N8, N11, N13, N16, N18, N21, N23, N Dimensiones: 275 x 275 x 65	26 y N28	
Armados: Xi:Ø12c/19 Yi:Ø12c/19 Xs:Ø12c/19 Ys:Ø12	c/19	
Comprobación	Valores	Estado
Tensiones sobre el terreno:		
Criterio de CYPE Ingenieros		
-Tensión media en situaciones persistentes:	Máximo: 0.2 MPa Calculado: 0.0719073 MPa	
Tanaián máxima an citurais na namistantas sin	Máximo: 0.249959 MPa	Cumple
-Tensión máxima en situaciones persistentes sin viento:	Calculado: 0.071613 MPa	Cumple
-Tensión máxima en situaciones persistentes con	Máximo: 0.249959 MPa	
viento:	Calculado: 0.144796 MPa	Cumple
Vuelco de la zapata:		
Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
-En dirección X:	Reserva seguridad: 225.4 %	Cumple
-En dirección Y:	Reserva seguridad: 35.6 %	Cumple
Flexión en la zapata:		
-En dirección X:	Momento: 29.59 kN·m	Cumple
-En dirección Y:	Momento: 137.63 kN·m	Cumple
Cortante en la zapata:		
-En dirección X:	Cortante: 25.21 kN	Cumple
-En dirección Y:	Cortante: 137.83 kN	Cumple
Compresión oblicua en la zapata:		
-Situaciones persistentes:	Máximo: 5000 kN/m²	
Criterio de CYPE Ingenieros	Calculado: 94.4 kN/m²	Cumple
Canto mínimo:	Mínimo: 25 cm	
Artículo 58.8.1 de la norma EHE-08	Calculado: 65 cm	Cumple
Espacio para anclar arranques en cimentación:	Mínimo: 55 cm	
-N6:	Calculado: 58 cm	Cumple
Cuantía geométrica mínima:		
Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
-Armado inferior dirección X:	Calculado: 0.0009	Cumple
-Armado superior dirección X:	Calculado: 0.0009	Cumple
-Armado inferior dirección Y:	Calculado: 0.0009	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión:		
Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	
-Armado inferior dirección X:	Mínimo: 0.0002	Cumple

Referencia: N6, N8, N11, N13, N16, N18, N21, N23, N26 y N28			
Dimensiones: 275 x 275 x 65			
Armados: Xi:Ø12c/19 Yi:Ø12c/19 Xs:Ø12c/19 Ys:Ø12c/Comprobación	Valores	Estado	
-Armado inferior dirección Y:	Mínimo: 0.0005	Cumple	
- Armado superior dirección X:	Mínimo: 0.0001	Cumple	
- Armado superior dirección Y:	Mínimo: 0.0002	Cumple	
Diámetro mínimo de las barras:			
Recomendación del Artículo 58.8.2 (norma EHE-08)	Mínimo: 12 mm		
- Parrilla inferior:	Calculado: 12 mm	Cumple	
- Parrilla superior:	Calculado: 12 mm	Cumple	
Separación máxima entre barras:			
Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm		
- Armado inferior dirección X:	Calculado: 19 cm	Cumple	
-Armado inferior dirección Y:	Calculado: 19 cm	Cumple	
-Armado superior dirección X:	Calculado: 19 cm	Cumple	
-Armado superior dirección Y:	Calculado: 19 cm	Cumple	
Separación mínima entre barras:			
Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm		
-Armado inferior dirección X:	Calculado: 19 cm	Cumple	
- Armado inferior dirección Y:	Calculado: 19 cm	Cumple	
- Armado superior dirección X:	Calculado: 19 cm	Cumple	
-Armado superior dirección Y:	Calculado: 19 cm	Cumple	
Longitud de anclaje:			
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 15 cm		
-Armado inf. dirección X hacia der:	Calculado: 53 cm	Cumple	
-Armado inf. dirección X hacia izq:	Calculado: 53 cm	Cumple	
-Armado inf. dirección Y hacia arriba:	Calculado: 53 cm	Cumple	
-Armado inf. dirección Y hacia abajo:	Calculado: 53 cm	Cumple	
- Armado sup. dirección X hacia der:	Calculado: 53 cm	Cumple	
-Armado sup. dirección X hacia izq:	Calculado: 53 cm	Cumple	
- Armado sup. dirección Y hacia arriba:	Calculado: 53 cm	Cumple	
- Armado sup. dirección Y hacia abajo:	Calculado: 53 cm	Cumple	
Se cumplen todas las compr	robaciones	•	

<u>GRUPO 3:</u>

Referencia: N59, N61 y N63		
Dimensiones: 115 x 115 x 40		
Armados: Xi:Ø12c/30 Yi:Ø12c/30		
Comprobación	Valores	Estado
Tensiones sobre el terreno:		
Criterio de CYPE Ingenieros		
-Tensión media en situaciones persistentes:	Máximo: 0.2 MPa Calculado: 0.163435 MPa	Cumple
-Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.249959 MPa Calculado: 0.171675 MPa	Cumple
-Tensión máxima en situaciones persistentes con viento:	Máximo: 0.249959 MPa Calculado: 0.225434 MPa	Cumple
Vuelco de la zapata:		
Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
-En dirección X:	Reserva seguridad: 272227.0 %	Cumple
-En dirección Y:	Reserva seguridad: 188.8 %	Cumple
Flexión en la zapata:		
-En dirección X:	Momento: 30.10 kN⋅m	Cumple
-En dirección Y:	Momento: 25.50 kN·m	Cumple
Cortante en la zapata:		
-En dirección X:	Cortante: 35.12 kN	Cumple
-En dirección Y:	Cortante: 17.56 kN	Cumple
Compresión oblicua en la zapata:		
- Situaciones persistentes:	Máximo: 5000 kN/m²	
Criterio de CYPE Ingenieros	Calculado: 734 kN/m ²	Cumple
Canto mínimo:	Mínimo: 25 cm	
Artículo 58.8.1 de la norma EHE-08	Calculado: 40 cm	Cumple
Espacio para anclar arranques en cimentación: -N61:	Mínimo: 30 cm Calculado: 33 cm	Cumple
Cuantía geométrica mínima: Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado inferior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión: Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	FIG
- Armado inferior dirección X:	Mínimo: 0.0008	Cumple
-Armado inferior dirección Y:	Mínimo: 0.0007	Cumple

Referencia: N59, N61 y N63		
Dimensiones: 115 x 115 x 40		
Armados: Xi:Ø12c/30 Yi:Ø12c/30		
Comprobación	Valores	Estado
Diámetro mínimo de las barras:		
- Parrilla inferior:	Mínimo: 12 mm	
Recomendación del Artículo 58.8.2 (norma EHE-08)	Calculado: 12 mm	Cumple
Separación máxima entre barras:		
Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
-Armado inferior dirección X:	Calculado: 30 cm	Cumple
- Armado inferior dirección Y:	Calculado: 30 cm	Cumple
Separación mínima entre barras:		
Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 30 cm	Cumple
- Armado inferior dirección Y:	Calculado: 30 cm	Cumple
Longitud de anclaje:		
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991		
- Armado inf. dirección X hacia der:	Mínimo: 17 cm	
	Calculado: 17 cm	Cumple
-Armado inf. dirección X hacia izq:	Mínimo: 17 cm	
	Calculado: 17 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Mínimo: 15 cm	
	Calculado: 15 cm	Cumple
-Armado inf. dirección Y hacia abajo:	Mínimo: 15 cm Calculado: 15 cm	C
Longitud mínima de las patillas:	Mínimo: 12 cm	Cumple
- Armado inf. dirección X hacia der:		
	Calculado: 12 cm	Cumple
-Armado inf. dirección X hacia izq:	Calculado: 12 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
Se cumplen todas las comprobaciones		

<u>GRUPO 4:</u>

Referencia: N31 y N33		
Dimensiones: 255 x 255 x 65		
Armados: Xi:Ø12c/19 Yi:Ø12c/19 Xs:Ø12c/19 Ys:Ø12c	c/19	
Comprobación	Valores	Estado
Tensiones sobre el terreno:		
Criterio de CYPE Ingenieros		
-Tensión media en situaciones persistentes:	Máximo: 0.2 MPa Calculado: 0.040221 MPa	Cumple
-Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.249959 MPa Calculado: 0.0408096 MPa	Cumple
-Tensión máxima en situaciones persistentes con viento:	Máximo: 0.249959 MPa Calculado: 0.0817173 MPa	Cumple
Vuelco de la zapata:		
Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
-En dirección X:	Reserva seguridad: 527.9 %	Cumple
-En dirección Y:	Reserva seguridad: 31.7 %	Cumple
Flexión en la zapata:		
-En dirección X:	Momento: 41.97 kN·m	Cumple
-En dirección Y:	Momento: 97.24 kN·m	Cumple
Cortante en la zapata:		
-En dirección X:	Cortante: 35.12 kN	Cumple
-En dirección Y:	Cortante: 88.19 kN	Cumple
Compresión oblicua en la zapata:		
- Situaciones persistentes:	Máximo: 5000 kN/m²	
Criterio de CYPE Ingenieros	Calculado: 147.7 kN/m²	Cumple
Canto mínimo:	Mínimo: 25 cm	
Artículo 58.8.1 de la norma EHE-08	Calculado: 65 cm	Cumple
Espacio para anclar arranques en cimentación:	Mínimo: 55 cm	
-N31:	Calculado: 58 cm	Cumple
Cuantía geométrica mínima: Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
-Armado superior dirección X:	Calculado: 0.0009	Cumple
- Armado inferior dirección Y:	Calculado: 0.0009	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión:		
Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	
-Armado inferior dirección X:	Mínimo: 0.0002	Cumple

Referencia: N31 y N33		
Dimensiones: 255 x 255 x 65		
Armados: Xi:Ø12c/19 Yi:Ø12c/19 Xs:Ø12c/19 Ys:Ø12c/	/19 Valores	Estado
- Armado inferior dirección Y:	Mínimo: 0.0004	
		Cumple
- Armado superior dirección X:	Mínimo: 0.0001	Cumple
- Armado superior dirección Y:	Mínimo: 0.0002	Cumple
Diámetro mínimo de las barras: Recomendación del Artículo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cummla
- Parrilla superior:		Cumple
·	Calculado: 12 mm	Cumple
Separación máxima entre barras: Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
- Armado inferior dirección X:	Calculado: 19 cm	Cumple
- Armado inferior dirección Y:	Calculado: 19 cm	Cumple
- Armado superior dirección X:	Calculado: 19 cm	Cumple
- Armado superior dirección Y:	Calculado: 19 cm	Cumple
Separación mínima entre barras:		
Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 19 cm	Cumple
- Armado inferior dirección Y:	Calculado: 19 cm	Cumple
- Armado superior dirección X:	Calculado: 19 cm	Cumple
- Armado superior dirección Y:	Calculado: 19 cm	Cumple
Longitud de anclaje:		
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 15 cm	
- Armado inf. dirección X hacia der:	Calculado: 43 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 43 cm	Cumple
-Armado inf. dirección Y hacia arriba:	Calculado: 43 cm	Cumple
-Armado inf. dirección Y hacia abajo:	Calculado: 43 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 43 cm	Cumple
-Armado sup. dirección X hacia izq:	Calculado: 43 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 43 cm	Cumple
-Armado sup. dirección Y hacia abajo:	Calculado: 43 cm	Cumple
Se cumplen todas las comprobaciones		

GRUPO 5:

Referencia: N36 y N38		
Dimensiones: 195 x 195 x 65		
Armados: Xi:Ø12c/19 Yi:Ø12c/19 Xs:Ø12c/19 Ys:Ø12c	c/19	
Comprobación	Valores	Estado
Tensiones sobre el terreno:		
Criterio de CYPE Ingenieros		
-Tensión media en situaciones persistentes:	Máximo: 0.2 MPa Calculado: 0.0855432 MPa	Cumple
-Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.249959 MPa Calculado: 0.0712206 MPa	Cumple
-Tensión máxima en situaciones persistentes con viento:	Máximo: 0.249959 MPa Calculado: 0.175893 MPa	Cumple
Vuelco de la zapata:		
Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
-En dirección X:	Reserva seguridad: 183.2 %	Cumple
-En dirección Y:	Reserva seguridad: 4.0 %	Cumple
Flexión en la zapata:		
-En dirección X:	Momento: 35.11 kN·m	Cumple
-En dirección Y:	Momento: 102.05 kN⋅m	Cumple
Cortante en la zapata:		
-En dirección X:	Cortante: 19.62 kN	Cumple
-En dirección Y:	Cortante: 131.75 kN	Cumple
Compresión oblicua en la zapata:		
- Situaciones persistentes:	Máximo: 5000 kN/m²	
Criterio de CYPE Ingenieros	Calculado: 185.9 kN/m²	Cumple
Canto mínimo:	Mínimo: 25 cm	
Artículo 58.8.1 de la norma EHE-08	Calculado: 65 cm	Cumple
Espacio para anclar arranques en cimentación:	Mínimo: 55 cm	
-N36:	Calculado: 58 cm	Cumple
Cuantía geométrica mínima: Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado superior dirección X:	Calculado: 0.0009	Cumple
- Armado inferior dirección Y:	Calculado: 0.0009	Cumple
-Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión:		
Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	
-Armado inferior dirección X:	Mínimo: 0.0002	Cumple

Referencia: N36 y N38 Dimensiones: 195 x 195 x 65		
Armados: Xi:Ø12c/19 Yi:Ø12c/19 Xs:Ø12c/19 Ys:Ø12c	·/19	
Comprobación	Valores	Estado
- Armado inferior dirección Y:	Mínimo: 0.0006	Cumple
- Armado superior dirección X:	Mínimo: 0.0001	Cumple
- Armado superior dirección Y:	Mínimo: 0.0001	Cumple
Diámetro mínimo de las barras: Recomendación del Artículo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras:		
Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
- Armado inferior dirección X:	Calculado: 19 cm	Cumple
- Armado inferior dirección Y:	Calculado: 19 cm	Cumple
- Armado superior dirección X:	Calculado: 19 cm	Cumple
- Armado superior dirección Y:	Calculado: 19 cm	Cumple
Separación mínima entre barras:		
Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
-Armado inferior dirección X:	Calculado: 19 cm	Cumple
- Armado inferior dirección Y:	Calculado: 19 cm	Cumple
- Armado superior dirección X:	Calculado: 19 cm	Cumple
- Armado superior dirección Y:	Calculado: 19 cm	Cumple
Longitud de anclaje:		
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 25 cm	
-Armado inf. dirección X hacia der:	Calculado: 25 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 25 cm	Cumple
-Armado inf. dirección Y hacia arriba:	Calculado: 25 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 25 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 25 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 25 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 25 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 25 cm	Cumple
Longitud mínima de las patillas:	Mínimo: 12 cm	
- Armado inf. dirección X hacia der:	Calculado: 12 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 12 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 12 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 12 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 12 cm	Cumple

Referencia: N36 y N38		
Dimensiones: 195 x 195 x 65		
Armados: Xi:Ø12c/19 Yi:Ø12c/19 Xs:Ø12c/19 Ys:Ø12c	/19	
Comprobación	Valores	Estado
- Armado sup. dirección X hacia izq:	Calculado: 12 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 12 cm	Cumple
-Armado sup. dirección Y hacia abajo:	Calculado: 12 cm	Cumple
Se cumplen todas las comprobaciones		

<u>GRUPO 6:</u>

Referencia: N41 y 43		
Dimensiones: 200 x 200 x 60		
Armados: Xi:Ø12c/20 Yi:Ø12c/20 Xs:Ø12c/20 Ys:Ø12c/	20	T.
Comprobación	Valores	Estado
Tensiones sobre el terreno:		
Criterio de CYPE Ingenieros		
-Tensión media en situaciones persistentes:	Máximo: 0.2 MPa Calculado: 0.0389457 MPa	Cumple
-Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.249959 MPa Calculado: 0.0401229 MPa	Cumple
-Tensión máxima en situaciones persistentes con viento:	Máximo: 0.249959 MPa Calculado: 0.0751446 MPa	Cumple
Vuelco de la zapata:		
Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
-En dirección X:	Reserva seguridad: 80.4 %	Cumple
-En dirección Y:	Reserva seguridad: 37.9 %	Cumple
Flexión en la zapata:		
-En dirección X:	Momento: 27.96 kN⋅m	Cumple
-En dirección Y:	Momento: 47.61 kN⋅m	Cumple
Cortante en la zapata:		
-En dirección X:	Cortante: 23.84 kN	Cumple
- En dirección Y:	Cortante: 49.93 kN	Cumple
Compresión oblicua en la zapata:		
-Situaciones persistentes:	Máximo: 5000 kN/m²	
Criterio de CYPE Ingenieros	Calculado: 150.5 kN/m ²	Cumple
Canto mínimo:	Mínimo: 25 cm	
Artículo 58.8.1 de la norma EHE-08	Calculado: 60 cm	Cumple
Espacio para anclar arranques en cimentación:	Mínimo: 49 cm	
-N41:	Calculado: 53 cm	Cumple

Referencia: N41 y 43		
Dimensiones: 200 x 200 x 60 Armados: Xi:Ø12c/20 Yi:Ø12c/20 Xs:Ø12c/20 Ys:Ø12c/	20	
Comprobación	Valores	Estado
Cuantía geométrica mínima:		
Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado superior dirección X:	Calculado: 0.0009	Cumple
- Armado inferior dirección Y:	Calculado: 0.0009	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión:		
Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	
- Armado inferior dirección X:	Mínimo: 0.0002	Cumple
- Armado inferior dirección Y:	Mínimo: 0.0003	Cumple
- Armado superior dirección X:	Mínimo: 0.0001	Cumple
- Armado superior dirección Y:	Mínimo: 0.0001	Cumple
Diámetro mínimo de las barras:		
Recomendación del Artículo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras:		
Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
- Armado inferior dirección X:	Calculado: 20 cm	Cumple
- Armado inferior dirección Y:	Calculado: 20 cm	Cumple
- Armado superior dirección X:	Calculado: 20 cm	Cumple
- Armado superior dirección Y:	Calculado: 20 cm	Cumple
Separación mínima entre barras:		
Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 20 cm	Cumple
- Armado inferior dirección Y:	Calculado: 20 cm	Cumple
- Armado superior dirección X:	Calculado: 20 cm	Cumple
- Armado superior dirección Y:	Calculado: 20 cm	Cumple
Longitud de anclaje:		
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 15 cm	
-Armado inf. dirección X hacia der:	Calculado: 24 cm	Cumple
-Armado inf. dirección X hacia izq:	Calculado: 24 cm	Cumple
-Armado inf. dirección Y hacia arriba:	Calculado: 24 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 24 cm	Cumple
-Armado sup. dirección X hacia der:	Calculado: 24 cm	Cumple
-Armado sup. dirección X hacia izq:	Calculado: 24 cm	Cumple

Referencia: N41 y 43		
Dimensiones: 200 x 200 x 60		
Armados: Xi:Ø12c/20 Yi:Ø12c/20 Xs:Ø12c/20 Ys:	Ø12c/20	
Comprobación	Valores	Estado
- Armado sup. dirección Y hacia arriba:	Calculado: 24 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 24 cm	Cumple
Se cumplen todas las o	comprobaciones	

<u>GRUPO 7:</u>

Referencia: N65, N67 y N69		
Dimensiones: 115 x 115 x 40		
Armados: Xi:Ø12c/30 Yi:Ø12c/30 Xs:Ø12c/30 Ys:Ø	12c/30	ı
Comprobación	Valores	Estado
Tensiones sobre el terreno:		
Criterio de CYPE Ingenieros		
-Tensión media en situaciones persistentes:	Máximo: 0.2 MPa Calculado: 0.0859356 MPa	Cumple
-Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.249959 MPa Calculado: 0.0884862 MPa	Cumple
-Tensión máxima en situaciones persistentes con viento:	Máximo: 0.249959 MPa Calculado: 0.138713 MPa	Cumple
Vuelco de la zapata:		
Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
-En dirección X:	Reserva seguridad: 12021.5 %	Cumple
-En dirección Y:	Reserva seguridad: 7.0 %	Cumple
Flexión en la zapata:		
-En dirección X:	Momento: 14.75 kN·m	Cumple
-En dirección Y:	Momento: 14.87 kN·m	Cumple
Cortante en la zapata:		
-En dirección X:	Cortante: 17.27 kN	Cumple
-En dirección Y:	Cortante: 30.21 kN	Cumple
Compresión oblicua en la zapata:		
- Situaciones persistentes:	Máximo: 5000 kN/m²	
Criterio de CYPE Ingenieros	Calculado: 358.1 kN/m ²	Cumple
Canto mínimo:	Mínimo: 25 cm	
Artículo 58.8.1 de la norma EHE-08	Calculado: 40 cm	Cumple
Espacio para anclar arranques en cimentación:	Mínimo: 30 cm	
-N65:	Calculado: 33 cm	Cumple

Referencia: N65, N67 y N69 Dimensiones: 115 x 115 x 40		
Armados: Xi:Ø12c/30 Yi:Ø12c/30 Xs:Ø12c/30 Ys:Ø	12c/30	
Comprobación	Valores	Estado
Cuantía geométrica mínima:		
Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
-Armado inferior dirección X:	Calculado: 0.0009	Cumple
-Armado superior dirección X:	Calculado: 0.0009	Cumple
-Armado inferior dirección Y:	Calculado: 0.0009	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión:		
Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	
- Armado inferior dirección X:	Mínimo: 0.0005	Cumple
-Armado inferior dirección Y:	Mínimo: 0.0005	Cumple
- Armado superior dirección Y:	Mínimo: 0.0001	Cumple
Diámetro mínimo de las barras:		
Recomendación del Artículo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras:		
Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
-Armado inferior dirección X:	Calculado: 30 cm	Cumple
- Armado inferior dirección Y:	Calculado: 30 cm	Cumple
-Armado superior dirección X:	Calculado: 30 cm	Cumple
-Armado superior dirección Y:	Calculado: 30 cm	Cumple
Separación mínima entre barras:		
Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 30 cm	Cumple
- Armado inferior dirección Y:	Calculado: 30 cm	Cumple
- Armado superior dirección X:	Calculado: 30 cm	Cumple
- Armado superior dirección Y:	Calculado: 30 cm	Cumple
Longitud de anclaje:		
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991		
- Armado inf. dirección X hacia der:	Mínimo: 17 cm Calculado: 17 cm	Cumple
- Armado inf. dirección X hacia izq:	Mínimo: 17 cm Calculado: 17 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Mínimo: 15 cm Calculado: 15 cm	Cumple
-Armado inf. dirección Y hacia abajo:	Mínimo: 15 cm Calculado: 15 cm	Cumple
		Jampie

Referencia: N65, N67 y N69		
Dimensiones: 115 x 115 x 40		
Armados: Xi:Ø12c/30 Yi:Ø12c/30 Xs:Ø12c/30	Ys:Ø12c/30	
Comprobación	Valores	Estado
-Armado sup. dirección X hacia der:	Mínimo: 17 cm Calculado: 17 cm	Cumple
-Armado sup. dirección X hacia izq:	Mínimo: 17 cm Calculado: 17 cm	Cumple
-Armado sup. dirección Y hacia arriba:	Mínimo: 15 cm Calculado: 15 cm	Cumple
-Armado sup. dirección Y hacia abajo:	Mínimo: 15 cm Calculado: 15 cm	Cumple
Longitud mínima de las patillas:	Mínimo: 12 cm	
-Armado inf. dirección X hacia der:	Calculado: 12 cm	Cumple
-Armado inf. dirección X hacia izq:	Calculado: 12 cm	Cumple
-Armado inf. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
-Armado inf. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
-Armado sup. dirección X hacia der:	Calculado: 12 cm	Cumple
-Armado sup. dirección X hacia izq:	Calculado: 12 cm	Cumple
-Armado sup. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
-Armado sup. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
Se cumplen todas las comprobaciones		

GRUPO 8:

Referencia: N46 y N50					
Dimensiones: 265 x 265 x 60					
Armados: Xi:Ø12c/20 Yi:Ø12c/20 Xs:Ø12c/20 Ys:Ø12c/20					
Comprobación	Valores	Estado			
Tensiones sobre el terreno:					
Criterio de CYPE Ingenieros					
-Tensión media en situaciones persistentes:	Máximo: 0.2 MPa				
	Calculado: 0.0231516 MPa	Cumple			
-Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.249959 MPa				
	Calculado: 0.0213858 MPa	Cumple			
-Tensión máxima en situaciones persistentes con viento:	Máximo: 0.249959 MPa				
	Calculado: 0.0464013 MPa	Cumple			
Vuelco de la zapata:					
Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.					
-En dirección X:	Reserva seguridad: 19.3 %	Cumple			
-En dirección Y:	Reserva seguridad: 20324.5 %	Cumple			

Referencia: N46 y N50		
Dimensiones: 265 x 265 x 60	742 (22	
Armados: Xi:Ø12c/20 Yi:Ø12c/20 Xs:Ø12c/20 Ys:Ø		E-td-
Comprobación	Valores	Estado
Flexión en la zapata:		
- En dirección X:	Momento: 74.80 kN·m	Cumple
-En dirección Y:	Momento: 16.37 kN·m	Cumple
Cortante en la zapata:		
- En dirección X:	Cortante: 86.13 kN	Cumple
-En dirección Y:	Cortante: 15.11 kN	Cumple
Compresión oblicua en la zapata:		
- Situaciones persistentes:	Máximo: 5000 kN/m²	
Criterio de CYPE Ingenieros	Calculado: 67.3 kN/m ²	Cumple
Canto mínimo:	Mínimo: 25 cm	
Artículo 58.8.1 de la norma EHE-08	Calculado: 60 cm	Cumple
Espacio para anclar arranques en cimentación:	Mínimo: 49 cm	
-N46:	Calculado: 53 cm	Cumple
Cuantía geométrica mínima:		
Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
-Armado inferior dirección X:	Calculado: 0.0009	Cumple
-Armado superior dirección X:	Calculado: 0.0009	Cumple
-Armado inferior dirección Y:	Calculado: 0.0009	Cumple
-Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión:		
Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	
- Armado inferior dirección X:	Mínimo: 0.0004	Cumple
- Armado inferior dirección Y:	Mínimo: 0.0001	Cumple
- Armado superior dirección X:	Mínimo: 0.0002	Cumple
Diámetro mínimo de las barras:		
Recomendación del Artículo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras:		
Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
-Armado inferior dirección X:	Calculado: 20 cm	Cumple
- Armado inferior dirección Y:	Calculado: 20 cm	Cumple
-Armado superior dirección X:	Calculado: 20 cm	Cumple
- Armado superior dirección Y:	Calculado: 20 cm	Cumple
Separación mínima entre barras: Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	

Referencia: N46 y N50				
Dimensiones: 265 x 265 x 60				
Armados: Xi:Ø12c/20 Yi:Ø12c/20 Xs:Ø12c/20 Ys:Ø12c/20				
Comprobación	Valores	Estado		
- Armado inferior dirección X:	Calculado: 20 cm	Cumple		
- Armado inferior dirección Y:	Calculado: 20 cm	Cumple		
- Armado superior dirección X:	Calculado: 20 cm	Cumple		
- Armado superior dirección Y:	Calculado: 20 cm	Cumple		
Longitud de anclaje:				
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 15 cm			
- Armado inf. dirección X hacia der:	Calculado: 55 cm	Cumple		
- Armado inf. dirección X hacia izq:	Calculado: 55 cm	Cumple		
- Armado inf. dirección Y hacia arriba:	Calculado: 62 cm	Cumple		
- Armado inf. dirección Y hacia abajo:	Calculado: 62 cm	Cumple		
- Armado sup. dirección X hacia der:	Calculado: 55 cm	Cumple		
- Armado sup. dirección X hacia izq:	Calculado: 55 cm	Cumple		
- Armado sup. dirección Y hacia arriba:	Calculado: 62 cm	Cumple		
- Armado sup. dirección Y hacia abajo:	Calculado: 62 cm	Cumple		
Se cumplen todas las comprobaciones				

<u>GRUPO 9:</u>

Referencia: N47, N49 y N51				
Dimensiones: 125 x 125 x 60				
Armados: Xi:Ø12c/20 Yi:Ø12c/20 Xs:Ø12c/20 Ys:Ø12c/20				
Comprobación	Valores	Estado		
Tensiones sobre el terreno:				
Criterio de CYPE Ingenieros				
-Tensión media en situaciones persistentes:	Máximo: 0.2 MPa			
	Calculado: 0.0999639 MPa	Cumple		
-Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.249959 MPa			
	Calculado: 0.0968247 MPa	Cumple		
-Tensión máxima en situaciones persistentes con	Máximo: 0.249959 MPa			
viento:	Calculado: 0.193257 MPa	Cumple		
Vuelco de la zapata:				
Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.				
-En dirección X:	Reserva seguridad: 11.2 %	Cumple		
-En dirección Y:	Reserva seguridad: 3410.2 %	Cumple		
Flexión en la zapata:				
-En dirección X:	Momento: 28.53 kN·m	Cumple		

Referencia: N47, N49 y N51		
Dimensiones: 125 x 125 x 60	124/20	
Armados: Xi:Ø12c/20 Yi:Ø12c/20 Xs:Ø12c/20 Ys:Ø Comprobación	Valores	Estado
- En dirección Y:	Momento: 19.61 kN·m	Cumple
Cortante en la zapata:	Tromenter 19101 N.V.III	Cumpic
- En dirección X:	Cortante: 0.00 kN	Cumple
- En dirección Y:	Cortante: 0.00 kN	Cumple
Compresión oblicua en la zapata:	Corcanica 0.00 km	Cumple
- Situaciones persistentes:	Mássica e . 5000 leN/m 3	
Criterio de CYPE Ingenieros	Máximo: 5000 kN/m² Calculado: 226.1 kN/m²	Cumple
Canto mínimo:	Mínimo: 25 cm	Campic
Artículo 58.8.1 de la norma EHE-08	Calculado: 60 cm	Cumple
Espacio para anclar arranques en cimentación:	Mínimo: 49 cm	
- N47:	Calculado: 53 cm	Cumple
Cuantía geométrica mínima:		
Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado superior dirección X:	Calculado: 0.0009	Cumple
- Armado inferior dirección Y:	Calculado: 0.0009	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión:		
Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	
- Armado inferior dirección X:	Mínimo: 0.0004	Cumple
- Armado inferior dirección Y:	Mínimo: 0.0003	Cumple
-Armado superior dirección X:	Mínimo: 0.0001	Cumple
Diámetro mínimo de las barras:		
Recomendación del Artículo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras:		
Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
-Armado inferior dirección X:	Calculado: 20 cm	Cumple
-Armado inferior dirección Y:	Calculado: 20 cm	Cumple
-Armado superior dirección X:	Calculado: 20 cm	Cumple
- Armado superior dirección Y:	Calculado: 20 cm	Cumple
Separación mínima entre barras:		
Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 20 cm	Cumple
- Armado inferior dirección Y:	Calculado: 20 cm	Cumple
	I .	- 3

Referencia: N47, N49 y N51							
Dimensiones: 125 x 125 x 60							
Armados: Xi:Ø12c/20 Yi:Ø12c/20 Xs:Ø12c/20 Ys:	Ø12c/20						
Comprobación	Valores	Estado					
-Armado superior dirección X:	Calculado: 20 cm	Cumple					
-Armado superior dirección Y:	Calculado: 20 cm	Cumple					
Longitud de anclaje:							
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 15 cm						
-Armado inf. dirección X hacia der:	Calculado: 15 cm	Cumple					
-Armado inf. dirección X hacia izq:	Calculado: 15 cm	Cumple					
-Armado inf. dirección Y hacia arriba:	Calculado: 15 cm	Cumple					
-Armado inf. dirección Y hacia abajo:	Calculado: 15 cm	Cumple					
-Armado sup. dirección X hacia der:	Calculado: 15 cm	Cumple					
-Armado sup. dirección X hacia izq:	Calculado: 15 cm	Cumple					
-Armado sup. dirección Y hacia arriba:	Calculado: 15 cm	Cumple					
-Armado sup. dirección Y hacia abajo:	Calculado: 15 cm	Cumple					
Longitud mínima de las patillas:	Mínimo: 12 cm						
- Armado inf. dirección X hacia der:	Calculado: 15 cm	Cumple					
-Armado inf. dirección X hacia izq:	Calculado: 15 cm	Cumple					
-Armado inf. dirección Y hacia arriba:	Calculado: 15 cm	Cumple					
- Armado inf. dirección Y hacia abajo:	Calculado: 15 cm	Cumple					
-Armado sup. dirección X hacia der:	Calculado: 15 cm	Cumple					
-Armado sup. dirección X hacia izq:	Calculado: 15 cm	Cumple					
-Armado sup. dirección Y hacia arriba:	Calculado: 15 cm	Cumple					
-Armado sup. dirección Y hacia abajo:	Calculado: 15 cm	Cumple					
Se cumplen todas las comprobaciones							

GRUPO 10:

Referencia: N48		
Dimensiones: 285 x 285 x 65		
Armados: Xi:Ø12c/19 Yi:Ø12c/19 Xs:Ø12c/19 Ys:Ø	12c/19	
Comprobación	Valores	Estado
Tensiones sobre el terreno:		
Criterio de CYPE Ingenieros		
-Tensión media en situaciones persistentes:	Máximo: 0.2 MPa Calculado: 0.0227592 MPa	Cumple
-Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.249959 MPa Calculado: 0.0229554 MPa	Cumple
-Tensión máxima en situaciones persistentes con viento:	Máximo: 0.249959 MPa Calculado: 0.0455184 MPa	Cumple
Vuelco de la zapata:		
Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
-En dirección X:	Reserva seguridad: 20.2 %	Cumple
-En dirección Y:	Reserva seguridad: 39924.9 %	Cumple
Flexión en la zapata:		
-En dirección X:	Momento: 86.62 kN·m	Cumple
- En dirección Y:	Momento: 15.57 kN·m	Cumple
Cortante en la zapata:		
-En dirección X:	Cortante: 92.41 kN	Cumple
-En dirección Y:	Cortante: 13.24 kN	Cumple
Compresión oblicua en la zapata:		
- Situaciones persistentes:	Máximo: 5000 kN/m²	
Criterio de CYPE Ingenieros	Calculado: 53.8 kN/m²	Cumple
Canto mínimo:	Mínimo: 25 cm	
Artículo 58.8.1 de la norma EHE-08	Calculado: 65 cm	Cumple
Espacio para anclar arranques en cimentación:	Mínimo: 49 cm	
-N48:	Calculado: 58 cm	Cumple
Cuantía geométrica mínima:		
Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
-Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado superior dirección X:	Calculado: 0.0009	Cumple
-Armado inferior dirección Y:	Calculado: 0.0009	Cumple
-Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión:		
Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	
- Armado inferior dirección X:	Mínimo: 0.0004	Cumple

Referencia: N48		
Dimensiones: 285 x 285 x 65	740 440	
Armados: Xi:Ø12c/19 Yi:Ø12c/19 Xs:Ø12c/19 Ys:Ø Comprobación	012c/19 Valores	Estado
- Armado inferior dirección Y:	Mínimo: 0.0001	Cumple
- Armado superior dirección X:	Mínimo: 0.0002	Cumple
- Armado superior dirección Y:	Mínimo: 0.0001	Cumple
Diámetro mínimo de las barras:	1 11111101 010001	Cumple
Recomendación del Artículo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras:		
Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
- Armado inferior dirección X:	Calculado: 19 cm	Cumple
- Armado inferior dirección Y:	Calculado: 19 cm	Cumple
-Armado superior dirección X:	Calculado: 19 cm	Cumple
- Armado superior dirección Y:	Calculado: 19 cm	Cumple
Separación mínima entre barras:		
Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
-Armado inferior dirección X:	Calculado: 19 cm	Cumple
-Armado inferior dirección Y:	Calculado: 19 cm	Cumple
- Armado superior dirección X:	Calculado: 19 cm	Cumple
- Armado superior dirección Y:	Calculado: 19 cm	Cumple
Longitud de anclaje:		
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 15 cm	
- Armado inf. dirección X hacia der:	Calculado: 61 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 61 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 68 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 68 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 61 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 61 cm	Cumple
-Armado sup. dirección Y hacia arriba:	Calculado: 68 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 68 cm	Cumple
Se cumplen todas las c	omprobaciones	•

3.10.2. Vigas de atado

Para este elemento estructural, se ha tomado la misma dimensión en toda la estructura, 40 x 40 cm. Las vigas de atado conectarán todas las zapatas entre sí, por lo que cada una medirá 5 metros de longitud. El armado de estas vigas también será idéntico en todas ellas.

Referencias	Geometría	Armado
ΙΟΙΣ	Ancho: 40.0 cm	Superior: 2Ø12 Inferior: 2Ø12 Estribos: 1xØ8c/30

A continuación, se muestran las comprobaciones realizadas por el programa de software informático CYPE 3D:

VIGAS DE ATADO -Dimensiones: 40.0 cm x 40.0 cm -Armadura superior: 2Ø12 -Armadura inferior: 2Ø12 -Estribos: 1xØ8c/30		
Comprobación	Valores	Estado
Diámetro mínimo estribos:	Mínimo: 6 mm Calculado: 8 mm	Cumple
Separación mínima entre estribos: Artículo 69.4.1 de la norma EHE-08	Mínimo: 3.7 cm Calculado: 29.2 cm	Cumple
Separación mínima armadura longitudinal: Artículo 69.4.1 de la norma EHE-08	Mínimo: 3.7 cm	
-Armadura superior:	Calculado: 26 cm	Cumple
-Armadura inferior:	Calculado: 26 cm	Cumple
Separación máxima estribos:		
-Sin cortantes:	Máximo: 30 cm	
Artículo 44.2.3.4.1 de la norma EHE-08	Calculado: 30 cm	Cumple
Separación máxima armadura longitudinal:		
Artículo 42.3.1 de la norma EHE-08	Máximo: 30 cm	
-Armadura superior:	Calculado: 26 cm	Cumple
-Armadura inferior:	Calculado: 26 cm	Cumple
Se cumplen todas las compro	baciones	

3.10.3. Placas de anclaje

Las placas de anclaje de esta obra de dividen en las de los pilares, los pilares de los hastiales, los pilarillos y los pilares de entreplanta. La función de estos elementos es la de transmitir los esfuerzos que se generan en la estructura metálica, del pilar a la estructura de hormigón.

Para el dimensionamiento de las placas de anclaje, se han de realizar las siguientes comprobaciones:

- Hormigón sobre el que apoya la placa: Se comprueba que la tensión de compresión en la interfaz placa de anclaje-hormigón es menor a la tensión admisible del hormigón según la naturaleza de cada combinación.
- Pernos de anclaje:
- Resistencia del material de los pernos: Se descomponen los esfuerzos actuantes sobre la placa en axiles y cortantes en los pernos y se comprueba que ambos esfuerzos, por separado y con interacción entre ellos (tensión de Von Mises), producen tensiones menores a la tensión límite del material de los pernos.
- Anclaje de los pernos: Se comprueba el anclaje de los pernos en el hormigón de tal manera que no se produzca el fallo de deslizamiento por adherencia, arrancamiento del cono de rotura o fractura por esfuerzo cortante (aplastamiento).
- Aplastamiento: Se comprueba que en cada perno no se supera el cortante que produciría el aplastamiento de la placa contra el perno.
- Placa de anclaje
- Tensiones globales: En placas con vuelo, se analizan cuatro secciones en el perímetro del perfil, y se comprueba en todas ellas que las tensiones de Von Mises sean menores que la tensión límite según la norma.
- Flechas globales relativas: Se comprueba que en los vuelos de las placas no aparezcan flechas mayores que 1/250 del vuelo.
- Tensiones locales: Se comprueban las tensiones de Von Mises en todas las placas locales en las que tanto el perfil como los rigidizadores dividen a la placa de anclaje propiamente dicha. Los esfuerzos en cada una de las subplacas se obtienen a partir de las tensiones de contacto con el hormigón y los axiles de los pernos. El modelo generado se resuelve por diferencias finitas.

En la siguiente ilustración se muestran las placas de anclaje agrupadas:

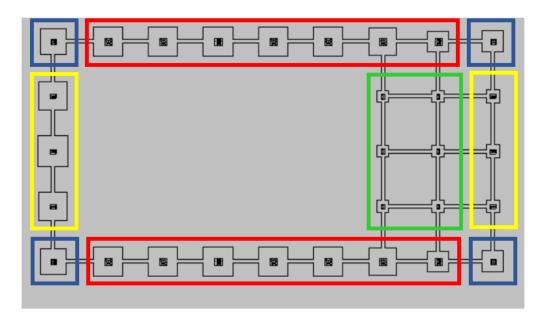
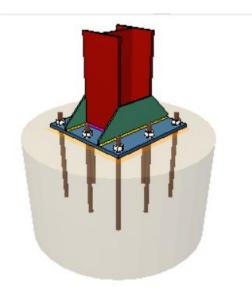


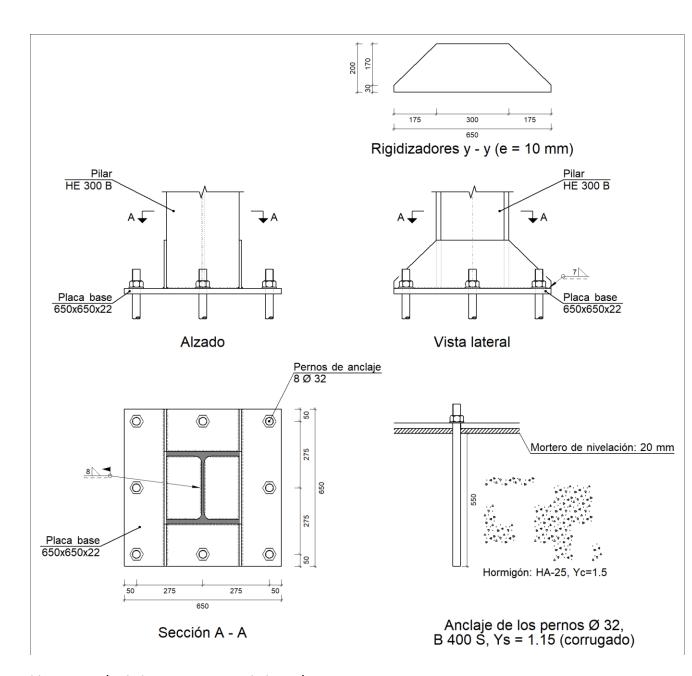
Figura 42: Agrupación de placas de anclaje.

Donde los distintos colores representan as distintas placas de anclaje empleadas para este proyecto:

Pilares: Rojo


• Pilarillos: Amarillo

Pilares hastiales: Azul


• Pilares entreplanta: Verde

A continuación, se muestran las comprobaciones de estos elementos:

3.10.3.1. Placas de anclaje pilares

a) Detalle

b) Descripción de los componentes de la unión

Elementos complementarios										
	Geometría					Taladros		Acero		
Pieza	Esquema	Ancho (mm)		Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _y (MPa)	f _u (MPa)	
Placa base	059 + + +	650	650	22	8	32	S275	275.0	410.0	

Elementos complementarios									
	Ge	Tala	dros	Acero					
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _y (MPa)	f _u (MPa)
Rigidizador	650	650	200	10	-	-	S275	275.0	410.0

c) Comprobación

1) Pilar HE 300 B

Cordones de soldadura

Comprobaciones geométricas								
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)			
Soldadura perimetral a la placa	En ángulo	8	1486	11.0	90.00			
a: Espesor garganta I: Longitud efectiva t: Espesor de piezas								

Comprobación de resistencia									
	Tensión de Von Mises					Tensión normal		£	
Ref.	σ⊥ (N/mm²)	τ⊥ (N/mm²)	τ (N/mm²)	Valor (N/mm²)	Aprov.	σ⊥ (N/mm²)	Aprov.	(N/mm²)	β_{W}
Soldadura perimetral a la placa		La comprobación no procede.				410.0	0.85		

2) Placa de anclaje

Referencia:		
Comprobación	Valores	Estado
Separación mínima entre pernos:	Mínimo: 96 mm	
3 diámetros	Calculado: 275 mm	Cumple
Separación mínima pernos-perfil:	Mínimo: 48 mm	
1.5 diámetros	Calculado: 116 mm	Cumple
Separación mínima pernos-borde:	Mínimo: 48 mm	
1.5 diámetros	Calculado: 50 mm	Cumple
Esbeltez de rigidizadores:	Máximo: 50	
- Paralelos a Y:	Calculado: 46	Cumple
Longitud mínima del perno:	Mínimo: 37 cm	
Se calcula la longitud de anclaje necesaria por adherencia.	Calculado: 55 cm	Cumple
Anclaje perno en hormigón:		
-Tracción:	Máximo: 150.44 kN	
	Calculado: 131.08 kN	Cumple

Referencia:		
Comprobación	Valores	Estado
- Cortante:	Máximo: 105.31 kN	
	Calculado: 8.04 kN	Cumple
-Tracción + Cortante:	Máximo: 150.44 kN	
	Calculado: 142.56 kN	Cumple
Tracción en vástago de pernos:	Máximo: 204.55 kN	
Tanaián da Van Missa sa vásba sa da namas.	Calculado: 119.89 kN	Cumple
Tensión de Von Mises en vástago de pernos:	Máximo: 380.952 MPa Calculado: 149.928 MPa	Cumple
Anlastamiente perpe en placa.		Cumple
Aplastamiento perno en placa: Límite del cortante en un perno actuando contra la placa	Máximo: 368.76 kN Calculado: 7.48 kN	
		Cumple
Tensión de Von Mises en secciones globales:	Máximo: 261.905 MPa	
-Derecha:	Calculado: 143.41 MPa	Cumple
-Izquierda:	Calculado: 139.346 MPa	Cumple
-Arriba:	Calculado: 186.873 MPa	Cumple
-Abajo:	Calculado: 186.9 MPa	Cumple
Flecha global equivalente:		
Limitación de la deformabilidad de los vuelos	Mínimo: 250	
- Derecha:	Calculado: 656.764	Cumple
-Izquierda:	Calculado: 731.816	Cumple
-Arriba:	Calculado: 5064.73	Cumple
-Abajo:	Calculado: 5064.73	Cumple
Tensión de Von Mises local:	Máximo: 261.905 MPa	
Tensión por tracción de pernos sobre placas en voladizo	Calculado: 259.329 MPa	Cumple
Se cumplen todas las con	nprobaciones	

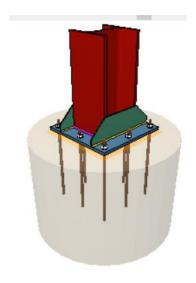
Cordones de soldadura

Comprobaciones geométricas									
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)				
Rigidizador y-y (x = -155): Soldadura a la placa base	En ángulo	7	650	10.0	90.00				
Rigidizador y-y (x = 155): Soldadura a la placa base	En ángulo	7	650	10.0	90.00				

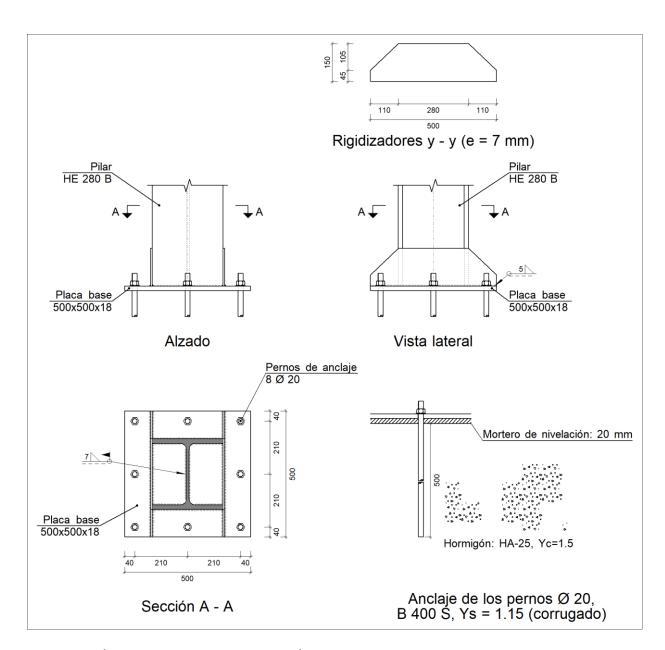
a: Espesor garganta

i: Longitud (etectiva
t: Espesor d	de piezas

Comprobación de resistencia									
		Tensiór	n de Vor	Mises		Tensión	normal	£	
Ref.	σ⊥ (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)		σ_{\perp} (N/mm ²)		f _u (N/mm²)	β_{W}
Rigidizador y-y (x = - 155): Soldadura a la placa base		La comprobación no procede.					410.0	0.85	
Rigidizador y-y (x = 155): Soldadura a la placa base		La comprobación no procede.					410.0	0.85	


d) Medición

	Soldaduras									
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)						
410.0	En taller	En ángulo	7	2524						
410.0	En el lugar de montaje	En ángulo	8	1486						


Elementos de tornillería no normalizados							
Tipo	Cantidad	Descripción					
Tuercas	8	T32					
Arandelas	8	A32					

Placas de anclaje									
Material	Elementos	Dimensiones (mm)	Peso (kg)						
	Placa base	1	650x650x22	72.97					
S275	Rigidizadores pasantes	2	650/300x200/30x10	15.74					
			Total	88.70					
P 400 C Vo = 1 15 (corrugado)	Pernos de anclaje	8	Ø 32 - L = 624	31.52					
B 400 S, Ys = 1.15 (corrugado)			Total	31.52					

3.10.2.2. Placas de anclaje pilares de hastiales

a) Detalle

b) Descripción de los componentes de la unión

Elementos complementarios									
	Geometría			Tala	Acero				
Pieza	Esquema	Ancho (mm)		Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _y (MPa)	f _u (MPa)
Placa base	000	500	500	18	8	20	S275	275.0	410.0

Elementos complementarios									
	Geometría			Tala		Acero			
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _y (MPa)	f _u (MPa)
Rigidizador	500	500	150	7	ı	-	S275	275.0	410.0

c) Comprobación

1) Pilar HE 280 B

Cordones de soldadura

Comprobaciones geométricas										
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)					
Soldadura perimetral a la placa	En ángulo	7	1395	10.5	90.00					
a: Espesor garganta I: Longitud efectiva										

t: Espesor de piezas Comprobación de resistencia Tensión de Von Mises Tensión normal Ref. β_{W} σ_{\perp} Aprov. (N/mm²) (N/mm^2) (%)

Soldadura perimetral a la 410.0 0.85 La comprobación no procede. placa

2) Placa de anclaje

Referencia:		
Comprobación	Valores	Estado
Separación mínima entre pernos:	Mínimo: 60 mm	
3 diámetros	Calculado: 210 mm	Cumple
Separación mínima pernos-perfil:	Mínimo: 30 mm	
1.5 diámetros	Calculado: 63 mm	Cumple
Separación mínima pernos-borde:	Mínimo: 30 mm	
1.5 diámetros	Calculado: 40 mm	Cumple
Esbeltez de rigidizadores:	Máximo: 50	
- Paralelos a Y:	Calculado: 46	Cumple
Longitud mínima del perno:	Mínimo: 23 cm	
Se calcula la longitud de anclaje necesaria por adherencia.	Calculado: 50 cm	Cumple
Anclaje perno en hormigón:		
-Tracción:	Máximo: 85.48 kN	
	Calculado: 74.02 kN	Cumple

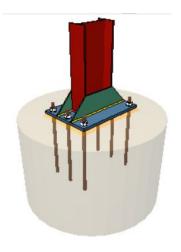
Referencia:		
Comprobación	Valores	Estado
-Cortante:	Máximo: 59.83 kN	
	Calculado: 4.92 kN	Cumple
-Tracción + Cortante:	Máximo: 85.48 kN	
	Calculado: 81.06 kN	Cumple
Tracción en vástago de pernos:	Máximo: 79.89 kN Calculado: 69.79 kN	
Tanaián da Van Missa an crásha a da namasa		Cumple
Tensión de Von Mises en vástago de pernos:	Máximo: 380.952 MPa Calculado: 223.763 MPa	Cumple
Aplastamiento perno en placa:		Cumple
Límite del cortante en un perno actuando contra la placa	Máximo: 188.57 kN Calculado: 4.61 kN	
		Cumple
Tensión de Von Mises en secciones globales:	Máximo: 261.905 MPa	
- Derecha:	Calculado: 207.998 MPa	Cumple
-Izquierda:	Calculado: 228.335 MPa	Cumple
-Arriba:	Calculado: 135.67 MPa	Cumple
-Abajo:	Calculado: 135.294 MPa	Cumple
Flecha global equivalente:		
Limitación de la deformabilidad de los vuelos	Mínimo: 250	
- Derecha:	Calculado: 596.763	Cumple
-Izquierda:	Calculado: 393.044	Cumple
-Arriba:	Calculado: 8802.23	Cumple
-Abajo:	Calculado: 8823.37	Cumple
Tensión de Von Mises local:	Máximo: 261.905 MPa	
Tensión por tracción de pernos sobre placas en voladizo	Calculado: 218.642 MPa	Cumple
Se cumplen todas las con	nprobaciones	

Cordones de soldadura

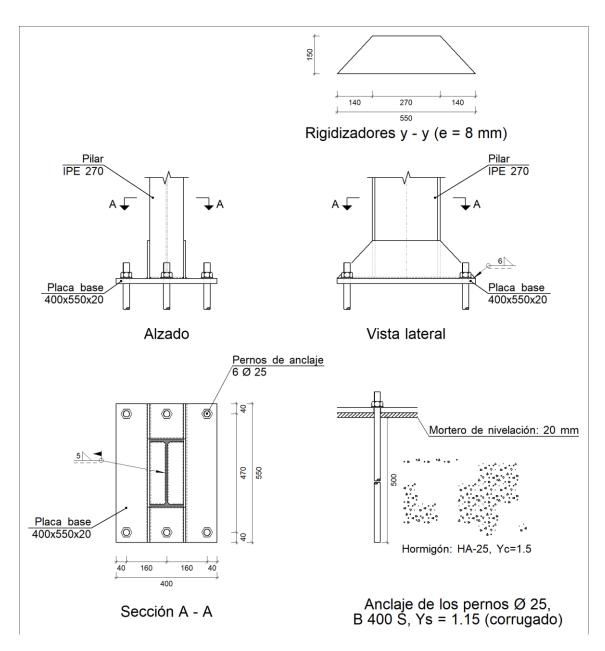
Comprobaciones geométricas										
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)					
Rigidizador y-y (x = -144): Soldadura a la placa base	En ángulo	5	500	7.0	90.00					
Rigidizador y-y (x = 144): Soldadura a la placa base	En ángulo	5	500	7.0	90.00					

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia									
		Tensiór	n de Vor	Mises		Tensión normal		£	
Ref. $ \begin{array}{c c c c c c c c c c c c c c c c c c c $						Aprov.	(N/mm²)	β_{W}	
Rigidizador y-y (x = - 144): Soldadura a la placa base		La comprobación no procede.						410.0	0.85
Rigidizador y-y (x = 144): Soldadura a la placa base	La comprobación no procede.						410.0	0.85	


d) Medición

	Soldaduras							
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)				
410.0	En taller	En ángulo	5	1928				
410.0	En el lugar de montaje	En ángulo	7	1395				


Elementos de tornillería							
Tipo	Material	Cantidad	Descripción				
Tuercas	Clase 5	8	ISO 4032-M20				
Arandelas	Dureza 200 HV	8	ISO 7089-20				

Placas de anclaje									
Material	Elementos	Cantidad	Dimensiones (mm)	Peso (kg)					
	Placa base	1	500x500x18	35.32					
S275	Rigidizadores pasantes	2	500/280x150/45x7	6.97					
			Total	42.30					
D 400 C Vo 1 1 E (commune do	Pernos de anclaje	8	Ø 20 - L = 558	11.01					
B 400 S, Ys = 1.15 (corrugado)			Total	11.01					

3.10.3.3. Placas de anclaje pilarillos

a) Detalle

b) Descripción de los componentes de la unión

Elementos complementarios									
	Ge	eometrí	а		Tala	dros	Acero		
Pieza Esquema		Ancho (mm)		Espesor (mm)	Cantidad Diámetro (mm)		Tipo	f _y (MPa)	f _u (MPa)
Placa base	099	400	550	20	6	25	S275	275.0	410.0

Elementos complementarios									
	Ge	eometrí	а		Tala	Acero			
Pieza	Esquema	Ancho (mm)		Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _y (MPa)	f _u (MPa)
Rigidizador	<u>Q</u> 550	550	150	8	-	-	S275	275.0	410.0

c) Comprobación

1) Pilar IPE 270

Cordones de soldadura

Comprobaciones geométricas						
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)	
Soldadura perimetral a la placa	En ángulo	5	906	6.6	90.00	
a: Espesor garganta I: Longitud efectiva t: Espesor de piezas						

Comprobación de resistencia									
		Tensión de Von Mises					Tensión normal		
Ref.	σ⊥ (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)	Aprov.	σ⊥ (N/mm²)	Aprov.	(N/mm²)	βw
Soldadura perimetral a la placa	La comprobación no procede.					410.0	0.85		

2) Placa de anclaje

Referencia:		
Comprobación	Valores	Estado
Separación mínima entre pernos:	Mínimo: 75 mm	
3 diámetros	Calculado: 160 mm	Cumple
Separación mínima pernos-perfil:	Mínimo: 37 mm	
1.5 diámetros	Calculado: 68 mm	Cumple
Separación mínima pernos-borde:	Mínimo: 37 mm	
1.5 diámetros	Calculado: 40 mm	Cumple
Esbeltez de rigidizadores:	Máximo: 50	
- Paralelos a Y:	Calculado: 44.4	Cumple
Longitud mínima del perno:	Mínimo: 29 cm	
Se calcula la longitud de anclaje necesaria por adherencia.	Calculado: 50 cm	Cumple
Anclaje perno en hormigón:		
-Tracción:	Máximo: 106.85 kN	
	Calculado: 86.22 kN	Cumple

Referencia:							
Comprobación	Valores	Estado					
- Cortante:	Máximo: 74.79 kN						
	Calculado: 7.98 kN	Cumple					
-Tracción + Cortante:	Máximo: 106.85 kN						
	Calculado: 97.61 kN	Cumple					
Tracción en vástago de pernos:	Máximo: 124.92 kN Calculado: 80.77 kN						
Tanaián da Man Missa an másta sa da namas.		Cumple					
Tensión de Von Mises en vástago de pernos:	Máximo: 380.952 MPa Calculado: 167.076 MPa	Cumple					
Aplastamiento perno en placa:		Cumple					
Límite del cortante en un perno actuando contra la placa	Máximo: 261.9 kN Calculado: 7.47 kN						
		Cumple					
Tensión de Von Mises en secciones globales:	Máximo: 261.905 MPa						
- Derecha:	Calculado: 112.158 MPa	Cumple					
-Izquierda:	Calculado: 115.888 MPa	Cumple					
-Arriba:	Calculado: 161.346 MPa	Cumple					
-Abajo:	Calculado: 194.113 MPa	Cumple					
Flecha global equivalente:							
Limitación de la deformabilidad de los vuelos	Mínimo: 250						
- Derecha:	Calculado: 757.976	Cumple					
-Izquierda:	Calculado: 730.638	Cumple					
-Arriba:	Calculado: 4804.68	Cumple					
-Abajo:	Calculado: 3996.31	Cumple					
Tensión de Von Mises local:	Máximo: 261.905 MPa						
Tensión por tracción de pernos sobre placas en voladizo	Calculado: 167.773 MPa	Cumple					
Se cumplen todas las comprobaciones							

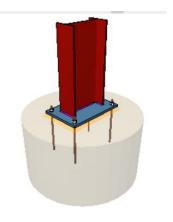
Cordones de soldadura

Comprobaciones geométricas						
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)	
Rigidizador y-y (x = -72): Soldadura a la placa base	En ángulo	6	550	8.0	90.00	
Rigidizador y-y ($x = 72$): Soldadura a la placa base	En ángulo	6	550	8.0	90.00	

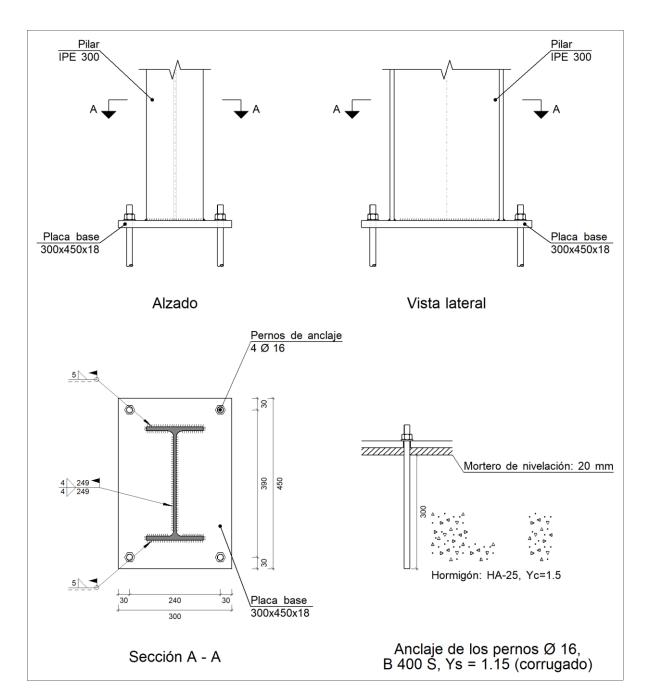
a: Espesor garganta l: Longitud efectiva

t:	Espesor	de	pieza

·									
Comprobación de resistencia									
		Tensiór	n de Vor	Mises		Tensión normal		ء	
Ref.	σ⊥ (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)		σ_{\perp} (N/mm ²)	Aprov.	I _u (N/mm²)	β_{W}
Rigidizador y-y (x = -72): Soldadura a la placa base		La comprobación no procede.						410.0	0.85
Rigidizador y-y $(x = 72)$: Soldadura a la placa base		La comprobación no procede.						410.0	0.85


d) Medición

Soldaduras							
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)			
410.0	En taller	En ángulo	6	2159			
410.0	En el lugar de montaje	En ángulo	5	906			


Elementos de tornillería no normalizados								
Tipo	Cantidad	Descripción						
Tuercas	6	T25						
Arandelas	6	A25						

Placas de anclaje									
Material	Elementos	Cantidad	Dimensiones (mm)	Peso (kg)					
	Placa base	1	400x550x20	34.54					
S275	Rigidizadores pasantes	2	550/270x150/0x8	7.72					
			Total	42.26					
B 400 S, Ys = 1.15 (corrugado)	Pernos de anclaje	6	Ø 25 - L = 565	13.06					
		·	Total	13.06					

3.10.3.4. Placas de anclaje pilares de entreplanta

a) Detalle

b) Descripción de los componentes de la unión

Elementos complementarios											
	Ge	Taladros		Acero							
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _y (MPa)	f _u (MPa)		
Placa base	300	300	450	18	4	16	S275	275.0	410.0		

c) Comprobación

1) Pilar IPE 300

Cordones de soldadura

Comprobaciones geométricas									
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)				
Soldadura del ala superior	En ángulo	5	150	10.7	90.00				
Soldadura del alma	En ángulo	4	249	7.1	90.00				
Soldadura del ala inferior	En ángulo	5	150	10.7	90.00				

Comprobación de resistencia										
		Tensión de Von Mises				Tensión normal		f		
Ref.	σ⊥ (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	σ_{\perp} (N/mm ²)	Aprov.	(N/mm²)	βw	
Soldadura del ala superior	63.6	63.6	2.3	127.2	32.96	63.6	19.38	410.0	0.85	
Soldadura del alma	65.5	65.5	3.1	131.2	34.00	65.5	19.98	410.0	0.85	
Soldadura del ala inferior	72.0	72.0	2.3	144.1	37.34	72.0	21.96	410.0	0.85	

2) Placa de anclaje

Referencia:		
Comprobación	Valores	Estado
Separación mínima entre pernos:	Mínimo: 48 mm	
3 diámetros	Calculado: 241 mm	Cumple
Separación mínima pernos-perfil:	Mínimo: 24 mm	
1.5 diámetros	Calculado: 64 mm	Cumple
Separación mínima pernos-borde:	Mínimo: 24 mm	
1.5 diámetros	Calculado: 30 mm	Cumple
Longitud mínima del perno:	Mínimo: 18 cm	
Se calcula la longitud de anclaje necesaria por adherencia.	Calculado: 30 cm	Cumple
Anclaje perno en hormigón:		
-Tracción:	Máximo: 41.03 kN	
	Calculado: 22.19 kN	Cumple
- Cortante:	Máximo: 28.72 kN	
	Calculado: 1.16 kN	Cumple
-Tracción + Cortante:	Máximo: 41.03 kN	
	Calculado: 23.85 kN	Cumple
Tracción en vástago de pernos:	Máximo: 51.14 kN	
	Calculado: 22.02 kN	Cumple
Tensión de Von Mises en vástago de pernos:	Máximo: 380.952 MPa	
	Calculado: 109.953 MF	Cumple

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

Referencia:							
Comprobación	Valores	Estado					
Aplastamiento perno en placa:	Máximo: 150.86 kN						
Límite del cortante en un perno actuando contra la placa	Calculado: 1.07 kN	Cumple					
Tensión de Von Mises en secciones globales:	Máximo: 261.905 MPa						
-Derecha:	Calculado: 110.891 MPa	Cumple					
-Izquierda:	Calculado: 111.005 MPa	Cumple					
-Arriba:	Calculado: 185.087 MPa	Cumple					
-Abajo:	Calculado: 161.819 MPa	Cumple					
Flecha global equivalente:							
Limitación de la deformabilidad de los vuelos	Mínimo: 250						
-Derecha:	Calculado: 1474.7	Cumple					
-Izquierda:	Calculado: 1471.63	Cumple					
-Arriba:	Calculado: 772.178	Cumple					
-Abajo:	Calculado: 858.722	Cumple					
Tensión de Von Mises local:	Máximo: 261.905 MPa						
Tensión por tracción de pernos sobre placas en voladizo	Calculado: 0 MPa	Cumple					
Se cumplen todas las comprobaciones							

d) Medición

Soldaduras								
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)				
410.0	En al lugar de montajo	En ángulo	4	497				
410.0 En el lugar de montaje	En ángulo	5	569					

Elementos de tornillería								
Tipo	Material	Cantidad	Descripción					
Tuercas	Clase 5	4	ISO 4032-M16					
Arandelas	Dureza 200 HV	4	ISO 7089-16					

Placas de anclaje									
Material	Elementos	Cantidad	Dimensiones (mm)	Peso (kg)					
S275	Placa base	1	300x450x18	19.08					
32/3			Total	19.08					
B 400 S, Ys = 1.15 (corrugado)	Pernos de anclaje	4	Ø 16 - L = 354	2.23					
			Total	2.23					

3.11. SOLERA

Las soleras son los revestimientos de suelos naturales en los interiores de edificios, constituidos por una capa resistente de hormigón en masa, quedando la superficie a la vista o puede colocarse algún revestimiento para su acabado.

Se empleará una solera como revestimiento del suelo natural en el interior del edificio, tanto en la zona de taller, como en la zona de oficinas.

Según la norma NTE-RSS, para naves industriales con sobrecarga estática superior a 5 t/m^2 , se utilizan soleras pesadas (RSS-6).

La colocación de la solera se realizará de la siguiente manera:

- 1) Se colocará sobre el terreno compactado una capa de 15 cm de arena de río con tamaño máximo de grano de 0,5 cm, enrasándola en 2 capas.
- 2) Se colocará una lámina aislante de polietileno. Esta capa permite el libre movimiento de la masa de hormigón sobre el soporte, reduciendo el rozamiento entre las capas, y, además, evita posibles humedades.
- 3) Se coloca un mallazo y se vierte una capa de hormigón de 20 cm. La superficie se terminará mediante reglado y el curado se realizará mediante riego.

3.12. ESCALERA

Para el dimensionamiento de la escalera, se ha de tener en cuenta que se quiere salvar una altura de 5,5 metros, para poder acceder a la entreplanta.

La estructura de la escalera será metálica y para la formación de los peldaños se empleará chapa lagrimada.

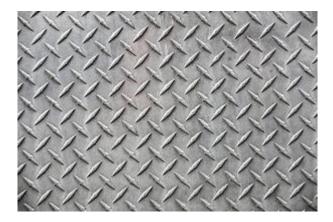


Figura 43: Chapa lagrimada.

El CTE DB-SUA1 establece que la escalera de esta nave entra en la categoría de escaleras de uso general.

En este tipo de escaleras, en tramos rectos, la huella medirá 28 cm como mínimo y la contrahuella entre 13 y 18,5 cm. Todos los peldaños de un mismo tramo de escalera tendrán la misma huella y la misma contrahuella, y de un tramo a otro podrán variar ±1 cm como mucho. La huella (H) y contrahuella

cumplirán a lo largo de una misma escalera la siguiente relación:

$$54 cm \le 2C + H \le 70 cm$$

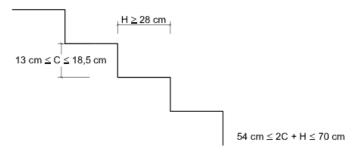


Figura 44: Relación entre huella y contrahuella, DB-SUA.

La anchura mínima se determina mediante esta tabla:

Tabla 4.1 Escaleras de uso general.	Anchura útil mínim	do tramo or	función del uso
Tabla 4.1 Escaleras de uso general.	Anchura util minima	i de tramo er	i funcion dei uso

	Uso del edificio o zona	Anchura útil mínima (m) en escaleras pre- vistas para un número de personas:						
		≤ 25	≤ 25 ≤ 50 ≤ 100					
Residenci aparcamie	ial Vivienda, incluso escalera de comunicación con ento	1,00 (1)						
	con escolarización infantil o de enseñanza primaria oncurrencia y Comercial	0,80 (2)	0,80 (2) 0,90 (2) 1,00					
Sanitario	Zonas destinadas a pacientes internos o externos con recorridos que obligan a giros de 90° o mayores	1,40						
	Otras zonas	1,20						
Casos res	tantes	0,80 (2) 0,90 (2) 1,00						

⁽¹⁾ En edificios existentes, cuando se trate de instalar un ascensor que permita mejorar las condiciones de accesibilidad para personas con discapacidad, se puede admitir una anchura menor siempre que se acredite la no viabilidad técnica y económica de otras alternativas que no supongan dicha reducción de anchura y se aporten las medidas complementarias de mejora de la seguridad que en cada caso se estimen necesarias.

Figura 45: Anchura mínima en escaleras en función de su uso.

⁽²⁾ Excepto cuando la escalera comunique con una zona accesible, cuyo ancho será de 1,00 m como mínimo.

Como la planta dispone de entre 50 y 100 empleados, habrá que respetar los 0,9 m de anchura mínima que le corresponden a la escalera. Las mesetas, o descansillos, entre tramos de una escalera tendrán al menos la anchura de la escalera y una longitud mínima de 1 m.

Las escaleras que salven una altura mayor que 55 cm dispondrán de pasamanos al menos en un lado. El pasamanos estará en una altura comprendida entre 90 y 110 cm.

Teniendo en cuenta las disposiciones descritas anteriormente, la escalera tendrá una anchura de 1 m y salvará una distancia de 5,5 m uniendo la entreplanta con la planta baja.

El número de peldaños necesarios será de:

$$n^{\circ}$$
 de peldaños = $\frac{altura\ entreplanta}{altura\ contrahuella} = \frac{550\ cm}{18.5\ cm} = 29,7 \approx 30\ peldaños$

Por lo que para 30 peldaños la altura de la contrahuella será de 18,33 cm.

La escalera se hará en dos tramos, con un descansillo intermedio, ya que la normativa exige la existencia de un descansillo, mínimo cada 18 peldaños. Así que, a los 16 peldaños del suelo, se situará un descansillo, y los 13 peldaños restantes unirán el descansillo con la entreplanta.

Si la contrahuella mide 18,33 cm, la huella no puede medir más de 33,34 cm, ni menos de 28 cm. Se empleará una huella de 28 cm, ya que cumple con la normativa.

La altura del suelo al descansillo será de 3,11 metros, al igual que la altura del descansillo a la entreplanta. Esta altura cumple con los requisitos del CTE, que dice que debe haber un descansillo antes de los 3,2 metros de altura.

Aparte de las exigencias estructurales, todos los peldaños de la escalera han de estar comprendidos en el perfil UPN.

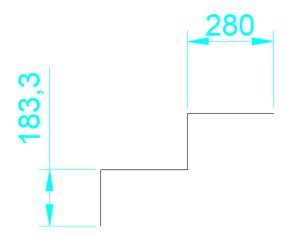


Figura 46: Esquema medidas de los peldaños.

Se comprobará la anchura mínima de perfil UPN donde encajen los peldaños. Para ello se ha de calcular la cota h.

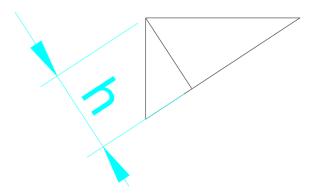


Figura 47: Anchura mínima del perfil UPN.

Mediante trigonometría, se concluye que la cota h tiene un valor de 153,4 mm.

El perfil UPN más bajo que cumple esta distancia esta tabulado en la siguiente tabla.

Designación	M (kg/m)	P (kN/m)	h (mm)	b (mm)	tw (mm)	tf (mm)	r1 (mm)	r2 (mm)	d (mm)	A (cm2)
UPN 80	8,6	0,086	80	45	6,0	8,0	8,0	4,0	46,0	11,0
UPN 100	10,6	0,106	100	50	6,0	8,5	8,5	4,5	64,0	13,5
UPN 120	13,3	0,133	120	55	7,0	9,0	9,0	4,5	82,0	17,0
UPN 140	16,0	0,160	140	60	7,0	10,0	10,0	5,0	98,0	20,4
UPN 160	18,8	0,188	160	65	7,5	10,5	10,5	5,5	115,0	24,0
UPN 180	22,0	0,220	180	70	8,0	11,0	11,0	5,5	133,0	28,0
UPN 200	25,3	0,253	200	75	8,5	11,5	11,5	6,0	151,0	32,2
UPN 220	29,4	0,294	220	80	9,0	12,5	12,5	6,5	167,0	37,4
UPN 240	33,2	0,332	240	85	9,5	13,0	13,0	6,5	184,0	42,3
UPN 260	37,9	0,379	260	90	10,0	14,0	14,0	7,0	200,0	48,3
UPN 280	41,8	0,418	280	95	10,0	15,0	15,0	7,5	216,0	53,3
UPN 300	46,2	0,462	300	100	10,0	16,0	16,0	8,0	232,0	58,8
UPN 320	59,5	0,595	320	100	14,0	17,5	17,5	8,8	246,0	75,8
UPN 350	60,7	0,607	350	100	14,0	16,0	16,0	8,0	282,0	77,3
UPN 380	63,1	0,631	380	102	13,5	16,0	16,0	8,0	313,0	80,4
UPN 400	71,8	0,718	400	110	14,0	18,0	18,0	9,0	324,0	91,5

Figura 48: Características estructurales de los perfiles UPN.

El perfil más bajo que cumple con estas características es el UPN 160.

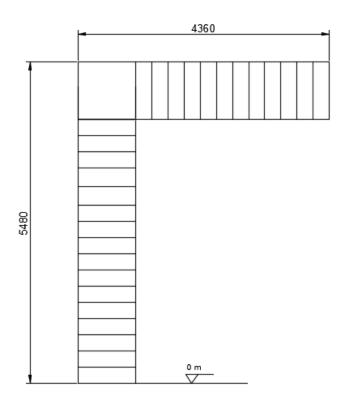


Figura 49: Esquema alzado de la escalera.

Para el dimensionamiento de los perfiles que conforman la escalera se hará uso del programa de software informático para ingenieros CYPE 3D.

Para ello, se introducirá la estructura de la escalera. Una vez definida la geometría y la disposición de los apoyos, se introducirán las cargas.

Las zancas de la escalera será de perfiles UPN, mientras que los pilares serán de perfiles IPE. Las uniones entre los distintos perfiles se realizarán mediante uniones soldadas. La escalera descansará sobre 2 pilares, y estará empotrada en ménsula junto con la fachada de la nave.

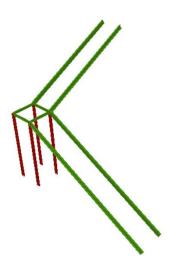


Figura 50: Croquis de la estructura metálica de la escalera.

Se le introducirá una sobrecarga de 1,5 kN/m² de peso propio, y una sobrecarga de uso de 4 kN/m²

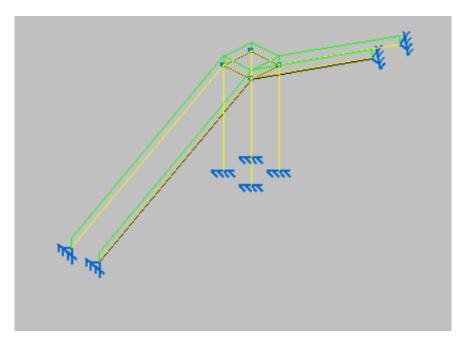
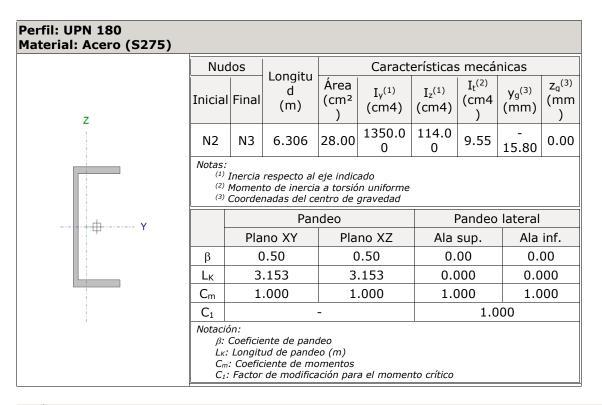



Figura 51: Hipótesis de carga sobre la escalera.

El cálculo de los perfiles en las distintas barras de la escalera da como resultado distintos tipos de perfiles según su posición.

Calculando, mediante el programa informático CYPE, el tipo de perfil óptimo para el diseño de la escalera, el perfil que aguanta la carga más desfavorable es el UPN 180. Por lo tanto, las zancas serán dimensionadas con un perfil UPN 180, mientras que las barras que soportan el descansillo serán diseñadas con un perfil UPN 100. Aquí se muestran las comprobaciones de ambos perfiles:

ZANCAS

Da	COMPROBACIONES (CTE DB SE-A)									Cata da						
Barra	$\overline{\lambda}$	λ_w	Nt	N _c	M _Y	M_{Z}	Vz	V_Y	M_YV_Z	$M_{Z}V_{Y}$	NM_YM_Z	$NM_YM_ZV_YV_Z$	Mt	M_tV_Z	M_tV_Y	Estado
N2/N3	$\bar{\lambda} < 2.0$	$\begin{array}{c} x \colon 0.394 \ m \\ \lambda_w \leq \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	x: 6.306 m η = 0.8	x: 0 m η = 3.6	x: 2.759 m η = 28.1	x: 6.306 m η < 0.1	x: 6.306 m η = 5.5	V _{Ed} = 0.00 N.P. ⁽¹⁾	x: 0.394 m η < 0.1	N.P. ⁽²⁾	x: 2.759 m η = 28.2	x: 0.394 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽³⁾	N.P. ⁽⁴⁾	N.P. ⁽⁴⁾	CUMPLE η = 28.2
Comprobaciones que no proceden (N.P.): (I) La comprobación no procede, ya que no hay esfuerzo cortante. (2) No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede, ya que no hay momento torsor. (4) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede, ya que no hay momento torsor.																

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $~\overline{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

⊼:__**1.80**__✓

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3. A: 28.00 cm² f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa

N _{cr} : Axil crítico de pandeo el	N _{cr} : 237.68 kN								
El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a) y b):									
a) Axil critico elastico de	e pandeo por flexión respecto al eje Z.	N _{cr,z} : <u>237.68</u> kN							
b) Axil crítico elástico de	e pandeo por flexotorsión.	N _{cr,FT} : <u>2814.58</u> kN							
Donde: N_{cr,y}: Axil crítico el eje Y.	ástico de pandeo por flexión respecto al	N _{cr,y} : <u>2814.58</u> kN							
N _{cr,T} : Axil crítico el	ástico de pandeo por torsión.	N _{cr,T} :∞							
Y.	ercia de la sección bruta, respecto al eje ercia de la sección bruta, respecto al eje	I_y : <u>1350.00</u> cm4							
Z.	ercia a torsión uniforme.	$I_z : 114.00 \text{ cm4}$ $I_t : 9.55 \text{ cm4}$							
	alabeo de la sección.	I _w : 5570.00 cm6							
E : Módulo de elast	icidad.	E : 210000 MPa							
G : Módulo de elast		G : 81000 MPa							
L_{ky}: Longitud efect eje Y.	iva de pandeo por flexión, respecto al	L _{ky} : _ <i>3.153</i> _ m							
	iva de pandeo por flexión, respecto al	L_{kz}: 3.153 m							
eje Z. L v: Longitud efect	iva de pandeo por torsión.	L_{kz} : 3.153 m L_{kt} : 0.000 m							
β: Constante adime	ensional obtenida mediante la siguiente								
expresión:		β: <u>0.76</u>							
Donde:									
i o: Radio respecto	i ₀ : <u>8.27</u> cm								
Sier									
0.0.	i_γ : <u>6.94</u> cm								
	i₂ : 2.02 cm								
	y₀ : <u>-40.19</u> mm								
	z₀ :0.00mm								

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE Ingenieros, basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

19.75 ≤ 293.52 √

Donde:

h_w: Altura del alma. hw: 158.00 mm tw: Espesor del alma. 8.00 mm Aw: Área del alma. **A**_w: 12.64 cm² Afc,ef: Área reducida del ala comprimida. A_{fc,ef}: 7.70 cm² **k**: Coeficiente que depende de la clase de la sección. **k** : 0.30 E: Módulo de elasticidad. E: 210000 MPa f_{vf}: Límite elástico del acero del ala comprimida. f_{vf}: 275.00 MPa

Siendo:

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: 0.008

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N3, para la combinación de acciones 1.35·PP+1.5·Q1.

N_{t,Ed}: Axil de tracción solicitante de cálculo pésimo.

 $N_{t,Ed}$: 6.19 kN

La resistencia de cálculo a tracción N_{t,Rd} viene dada por:

N_{t,Rd}: 733.33 kN

Donde:

A: Área bruta de la sección transversal de la barra. A: 28.00 cm² f_{vd}: Resistencia de cálculo del acero. f_{vd}: 261.90 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v: 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. $\gamma_{M0}: 1.05$

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: **0.008**

η: **0.036** 🗸

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N2, para la combinación de acciones 1.35·PP+1.5·Q1.

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo.

N_{c,Ed}: 6.19 kN

La resistencia de cálculo a compresión $N_{c,Rd}$ viene dada por:

 $N_{c,Rd}$: 733.33 kN

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_{vd}: Resistencia de cálculo del acero.

Clase : _____1

 $A : 28.00 \text{ cm}^2$ $f_{vd} : 261.90 \text{ MPa}$

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) γ_{MO}: Coeficiente parcial de seguridad del material.

 $f_y: 275.00$ MPa $\gamma_{M0}: 1.05$

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

N_{b,Rd}: 171.99 kN

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

 \mathbf{f}_{yd} : Resistencia de cálculo del acero.

 $\mathbf{A} : \underline{28.00} \text{ cm}^2 \\ \mathbf{f_{yd}} : \underline{261.90} \text{ MPa}$

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 275.00 MPa

 γ_{M1} : Coeficiente parcial de seguridad del material.

γ_{м1}: 1.05

 $\chi\colon$ Coeficiente de reducción por pandeo.

	χ _z : 0.23
Cianda	χ _{FT} : 0.83
Siendo:	φ _z : 2.51
	ф гт : 0.72
α: Coeficiente de imperfección elástica.	α_z : 0.49
	α_{FT} : 0.49
$\overline{\lambda}$: Esbeltez reducida.	
	$\overline{\lambda}_z$: 1.80
	$\overline{\lambda}_{FT}$: 0.52
N _{cr} : Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:	N _{cr} : 237.68 kN
N _{cr,z} : Axil crítico elástico de pandeo por flexión respecto al eje Z.	N _{cr,z} : 237.68 kN
N _{cr,FT} : Axil crítico elástico de pandeo por flexotorsión.	N _{cr,FT} : <u>2814.58</u> kN

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.759 m del nudo N2, para la combinación de acciones 1.35·PP+1.5·Q1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

Para flexión negativa:

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

El momento flector resistente de cálculo $\mathbf{M}_{\mathbf{c},\mathbf{Rd}}$ viene dado por:

M_{Ed}⁺ : <u>13.15</u> kN⋅m

M_{Ed}⁻: 0.00 kN·m

M_{c,Rd}: 46.88 kN·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

 $\mathbf{W}_{\mathsf{pl},\mathsf{y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 \mathbf{f}_{yd} : Resistencia de cálculo del acero.

Clase: 1

 $\mathbf{W}_{\text{pl,y}}: \underline{179.00} \text{ cm}^3$

f_{yd} : <u>261.90</u> MPa

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: $\underline{275.00}$ MPa $\mathbf{\gamma_{M0}}$: Coeficiente parcial de seguridad del material. $\mathbf{\gamma_{M0}}$: $\underline{1.05}$

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η < 0.001 🗸

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N3, para la combinación de acciones 1.35·PP.

 M_{Ed}^+ : Momento flector solicitante de cálculo pésimo. M_{Ed}^+ : 0.00 kN·m

Para flexión negativa:

 $\mathbf{M}_{\mathbf{Ed}}^{-}$: Momento flector solicitante de cálculo pésimo. $\mathbf{M}_{\mathbf{Ed}}^{-}$: 0.00 kN·m

El momento flector resistente de cálculo Mc,Rd viene dado por:

M_{c,Rd}: 11.24 kN⋅m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los

elementos planos de una sección a flexión simple.

 $\mathbf{W}_{pl,z}$: Módulo resistente plástico correspondiente a la fibra $\mathbf{W}_{pl,z}$: $\underline{42.90}$ cm³ con mayor tensión, para las secciones de clase 1 y 2.

fyd: Resistencia de cálculo del acero. fyd: 261.90 MPa

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: $\underline{275.00}$ MPa

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: **0.055** 🗸

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N3, para la combinación de acciones 1.35·PP+1.5·Q1.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 12.21 kN

El esfuerzo cortante resistente de cálculo V_{c,Rd} viene dado por:

 $V_{c,Rd}$: 222.13 kN

Donde:

 A_{v} : Área transversal a cortante.

 A_v : 14.69 cm²

Siendo:

h: Canto de la sección.t_w: Espesor del alma.

 $\mathbf{h} : \frac{180.00}{8.00} \, \text{mm}$

fyd: Resistencia de cálculo del acero.

fyd: 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} :

f_y: <u>275.00</u> MPa

γ_{м0}: 1.05

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

19.75 < **64.71**

Donde:

 λ_w : Esbeltez del alma.

 λ_{w} : 19.75

 $\lambda_{máx}$: Esbeltez máxima.

 $\lambda_{\text{máx}}: 64.71$

ε: Factor de reducción.

ε: 0.92

Siendo:

f_{ref}: Límite elástico de referencia.f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 $\mathbf{f_{ref}} : \underline{235.00}$ MPa $\mathbf{f_y} : \underline{275.00}$ MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{c,Rd}$.

 $8.16 \text{ kN} \le 111.06 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.394 m del nudo N2, para la combinación de acciones 1.35·PP+1.5·Q1.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 8.16 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 222.13 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η : **0.282** 🗸

η: **0.282 √**

η: **0.173** 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 2.759 m del nudo N2, para la combinación de acciones 1.35·PP+1.5·Q1.

Donde:

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo.

 $N_{c,Ed}$: 0.77 kN

 $\mathbf{M}_{\mathbf{y}, \mathbf{Ed}}$, $\mathbf{M}_{\mathbf{z}, \mathbf{Ed}}$: Momentos flectores solicitantes de cálculo pésimos, según los ejes Y y Z, respectivamente.

 $M_{y,Ed}^+$: 13.15 kN·m $M_{z,Ed}^+$: 0.00 kN·m

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple.

Clase: 1

N_{pl.Rd}: Resistencia a compresión de la sección bruta.

 $\mathbf{N}_{\mathsf{pl},\mathsf{Rd}}$: $\underline{733.33}$ kN $\mathbf{M}_{\mathsf{pl},\mathsf{Rd},\mathsf{y}}$: $\underline{46.88}$ kN·m

 M_{pl,Rd,y}, M_{pl,Rd,z}: Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z, respectivamente. Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2) A: Área de la sección bruta. W_{pl,y}, W_{pl,z}: Módulos resistentes plásticos correspondientes a la fibra comprimida, alrededor de los ejes Y y Z, respectivamente. f_{yd}: Resistencia de cálculo del acero. 	$\mathbf{M_{pl,Rd,z}}$: 11.24 kN·m $\mathbf{A}: 28.00 \text{ cm}^2$ $\mathbf{W_{pl,y}}: 179.00 \text{ cm}^3$ $\mathbf{W_{pl,z}}: 42.90 \text{ cm}^3$ $\mathbf{f_{yd}}: 261.90 \text{ MPa}$
Siendo: $f_y\colon \text{L\'imite el\'astico. (CTE DB SE-A, Tabla 4.1)}$ $\gamma_{M1}\colon \text{Coeficiente parcial de seguridad del material.}$ $k_y,\ k_z\colon \text{Coeficientes de interacción.}$	f_y : <u>275.00</u> MPa γ _{M1} : <u>1.05</u>
	k _y :1.00
	k _z :1.01
$\boldsymbol{C}_{m,y},\;\boldsymbol{C}_{m,z}$: Factores de momento flector uniforme equivalente.	C _{m,y} : 1.00 C _{m,z} : 1.00
$\chi_y,\chi_z\colon$ Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z, respectivamente.	$\chi_{\mathbf{y}}: \underline{0.83}$ $\chi_{\mathbf{z}}: \underline{0.23}$
$\overline{\lambda}_y$, $\overline{\lambda}_z$: Esbelteces reducidas con valores no mayores que 1.00, en relación a los ejes Y y Z, respectivamente. α_y , α_z : Factores dependientes de la clase de la sección.	$ \frac{\overline{\lambda}_{y}: 0.52}{\overline{\lambda}_{z}: 1.80} $ $ \alpha_{y}: 0.60 $ $ \alpha_{z}: 0.60 $

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V_{Ed}}$ es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V_{c,Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.394 m del nudo N2, para la combinación de acciones 1.35·PP+1.5·Q1.

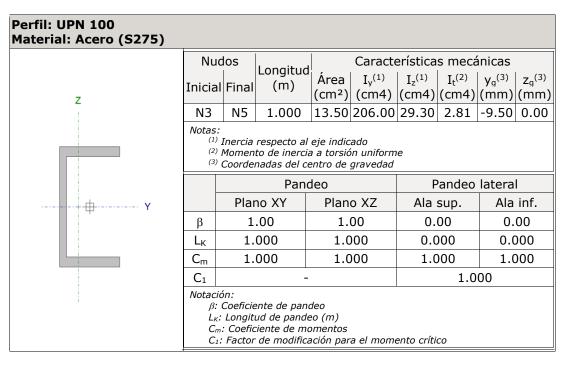
 $8.16 \text{ kN} \le 111.06 \text{ kN}$

Donde:

 $oldsymbol{V_{Ed,z}}$: Esfuerzo cortante solicitante de cálculo pésimo. $oldsymbol{V_{Ed,z}}$: 8.16 kN $oldsymbol{V_{c,Rd,z}}$: Esfuerzo cortante resistente de cálculo. $oldsymbol{V_{c,Rd,z}}$: 222.13 kN

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.


Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

DESCANSILLO

D						COMP	ROBACIO	NES (CT	E DB SE	-A)						F-4- 4-
Barra	$\bar{\lambda}$	λω	Nt	Nc	MY	Mz	Vz	VY	MyVz	MzVy	NMyMz	NMyMzVyVz	Mt	MtVz	MtVY	Estado
N3/N5	N.P. ⁽¹⁾	$\lambda_w \le \lambda_{w,máx}$ Cumple	$N_{Ed} = 0.00$ $N.P.^{(2)}$	$N_{Ed} = 0.00$ $N.P.^{(3)}$	x: 0 m η = 66.0	x: 1 m η = 0.1	x: 0 m η = 11.0	η < 0.1	η < 0.1	η < 0.1	x: 0 m η = 66.1	η < 0.1	η = 0.5	x: 0 m η = 11.0	η < 0.1	CUMPLE η = 66.1
N, N, N, M, M, M, N, N, N, M,	: Limitaci: : Abollad: : Resistei: : Resistei: : Resistei: : Resistei: : Resistei: ! Vy: Resis ! Distancia	ncia a tracción ncia a flexión e ncia a flexión e ncia a flexión e ncia a corte Y stencia a mome sistencia a mome sistencia a flexi : Resistencia a ncia a trosio tencia a cortar a al origen de la tente de aproveción tente de aproveción tente de de proveción tente de	nducida por el a. sión seje Y sento flector Y y sento flector Z y sión y axil combi flexión, axil y c site Z y moment site Y y moment a barra	la comprimida fuerza cortante fuerza cortante nados rortante combin o torsor combin	Z combinado Y combinado ados ados	ıs										
(1)	La comp La comp	robación no pr	en (N.P.): ocede, ya que n ocede, ya que n ocede, ya que n	no hay axil de tr	acción.	de tracción.										

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La comprobación no procede, ya que no hay axil de compresión ni de tracción.

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE Ingenieros,

basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

 $13.83 \le 247.99 \checkmark$

Donde:

h _w : Altura del alma.	h _w :	83.00	mm
tw: Espesor del alma.	t _w :	6.00	mm
A _w : Área del alma.	A _w :	4.98	cm ²
A _{fc,ef} : Área reducida del ala comprimida.	$A_{fc,ef}$:	4.25	cm ²
k: Coeficiente que depende de la clase de la sección.	k :	0.30	_
E: Módulo de elasticidad.	E:	210000	MPa
$\mathbf{f_{vf}}$: Límite elástico del acero del ala comprimida.	f _{yf} :	275.00	MPa
Siendo:			_

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.660 √**

Para flexión positiva:

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo. M_{Ed}^+ : 0.00 kN·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N3, para la combinación de acciones 1.35·PP+1.5·Q1.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo. **M**_{Ed}⁻: 8.47 kN·m

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

 $M_{c,Rd}$: 12.83 kN·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los

elementos planos de una sección a flexión simple.

W_{pl,v}: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

f_{vd}: Resistencia de cálculo del acero.

Clase: 1

 $W_{pl,y}: 49.00 \text{ cm}^3$

f_{vd}: 261.90 MPa

Siendo:

f_y: 275.00 MPa **f**_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) γ_{M0}: Coeficiente parcial de seguridad del material. γмo: 1.05

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.001** ✓

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N5, para la combinación de acciones 1.35·PP+1.5·Q1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

Para flexión negativa:

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

El momento flector resistente de cálculo M_{c.Rd} viene dado por:

M_{Ed}⁺: 0.00 kN⋅m

 M_{Ed}^- : 0.00 kN·m

M_{c,Rd}: 4.24 kN⋅m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

W_{pl,z}: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

f_{vd}: Resistencia de cálculo del acero.

Clase: 1

 $W_{pl,z}: 16.20 \text{ cm}^3$

f_{vd}: 261.90 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v: 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. $\gamma_{M0}: 1.05$

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: 0.110

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N3, para la combinación de acciones 1.35·PP+1.5·Q1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 10.39 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 94.24 kN

Donde:

A_v: Area transversal a cortante.

 A_v : 6.23 cm²

Siendo:

h: Canto de la sección. tw: Espesor del alma.

h: 100.00 mm **t**_w: 6.00 mm

f_{vd}: Resistencia de cálculo del acero.

fyd: 261.90 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_v: 275.00 MPa

γ_{M0}: Coeficiente parcial de seguridad del material.

γмo: 1.05

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

13.83 < **64.71**

Donde:

 $\lambda_{\mathbf{w}}$: Esbeltez del alma.

 $\lambda_{\boldsymbol{w}}:~13.83$

λ_{máx}: Esbeltez máxima.

λ_{máx}: 64.71

ε: Factor de reducción.

ε: 0.92

Siendo:

 $\mathbf{f_{ref}}$: Límite elástico de referencia. $\mathbf{f_{ref}}$: $\underline{235.00}$ MPa $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: $\underline{275.00}$ MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η < **0.001 √**

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot Q1$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.00 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 128.83 kN

Donde:

 A_v : Área transversal a cortante. A_v : 8.52 cm²

Siendo:

 \mathbf{f}_{yd} : Resistencia de cálculo del acero. \mathbf{f}_{yd} : $\underline{261.90}$ MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{c,Rd}$.

10.39 $kN \le 47.12 kN$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·Q1.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 10.39 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 94.24 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{c,Rd}$.

 $0.00 \text{ kN} \le 64.42 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot Q1$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.00 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 128.83 kN

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.661 V

η : **0.661** 🗸

η: **0.397 √**

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N3, para la combinación de acciones 1.35·PP+1.5·Q1.

Donde:

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo. $N_{c,Ed}$: 0.00 kN

$\mathbf{M}_{\mathbf{y}, \mathbf{Ed}}$, $\mathbf{M}_{\mathbf{z}, \mathbf{Ed}}$: Momentos flectores solicitantes de cálculo pésimos, según los ejes Y y Z, respectivamente.	$\mathbf{M}_{\mathbf{y},\mathbf{Ed}}$: 8.47 kN·m $\mathbf{M}_{\mathbf{z},\mathbf{Ed}}$ +: 0.00 kN·m
Clase : Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple.	Clase : 1
N _{pl,Rd} : Resistencia a compresión de la sección bruta.	N_{pl,Rd} : 353.57 kN
condiciones plásticas, respecto a los ejes Y y Z,	$\mathbf{M}_{\mathbf{pl},\mathbf{Rd},\mathbf{y}}: \underline{12.83} \text{ kN·m}$ $\mathbf{M}_{\mathbf{pl},\mathbf{Rd},\mathbf{z}}: \underline{4.24} \text{ kN·m}$
Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)	
A: Area de la sección bruta.	A : 13.50 cm ²
$\mathbf{W}_{pl,y}, \ \mathbf{W}_{pl,z}$: Módulos resistentes plásticos correspondientes a la	$W_{pl,y}: 49.00 \text{ cm}^3$
fibra comprimida, alrededor de los ejes Y y Z, respectivamente.	$\mathbf{W_{pl,z}}: 16.20 \text{ cm}^3$
$\mathbf{f_{vd}}$: Resistencia de cálculo del acero.	f_{vd} : 261.90 MPa
Siendo:	
f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1)	f_v : 275.00 MPa
γ _{M1} : Coeficiente parcial de seguridad del material.	γ _{м1} : 1.05
MIT escherence pareiar de segundad del materiali	/MI
$\mathbf{k_y},\ \mathbf{k_z}$: Coeficientes de interacción.	
	k _y :1.00
	k z :1.00
$\mathbf{C}_{m,y}$, $\mathbf{C}_{m,z}$: Factores de momento flector uniforme equivalente.	C _{m,y} : 1.00 C _{m,z} : 1.00
$\chi_y,\chi_z\colon$ Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z, respectivamente.	χ _y : <u>0.95</u> χ _z : <u>0.67</u>
$\overline{\lambda}_y$, $\overline{\lambda}_z$: Esbelteces reducidas con valores no mayores que 1.00, en relación a los ejes Y y Z, respectivamente. α_y , α_z : Factores dependientes de la clase de la sección.	$ \overline{\lambda}_{\mathbf{y}} : \underline{0.29} $ $ \overline{\lambda}_{\mathbf{z}} : \underline{0.78} $ $ \alpha_{\mathbf{y}} : \underline{0.60} $ $ \alpha_{\mathbf{z}} : \underline{0.60} $

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V_{Ed}}$ es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V_{c,Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·Q1.

 $10.39 \ kN \le 47.03 \ kN$

/

Donde:

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

Se debe satisfacer:

η: 0.005 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.5·Q1.

M_{T,Ed}: Momento torsor solicitante de cálculo pésimo.

 $M_{T,Ed}$: 0.00 kN·m

El momento torsor resistente de cálculo $M_{T,Rd}$ viene dado por:

M_{T,Rd}: 0.50 kN⋅m

Donde:

 $\mathbf{W_T}$: Módulo de resistencia a torsión. $\mathbf{W_T}$: 3.31 cm³ $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.110 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N3, para la combinación de acciones 1.35·PP+1.5·Q1.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 10.39 kN

 $\mathbf{M}_{\mathsf{T},\mathsf{Ed}}$: Momento torsor solicitante de cálculo pésimo. $\mathbf{M}_{\mathsf{T},\mathsf{Ed}}: \underline{0.00}$ kN·m

El esfuerzo cortante resistente de cálculo reducido $\mathbf{V}_{\mathbf{pl},\mathbf{T},\mathbf{Rd}}$ viene dado por:

 $V_{pl,T,Rd}$: 94.07 kN

Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{pl,Rd}$: 94.24 kN $\tau_{T,Ed}$: Tensiones tangenciales por torsión. $\tau_{T,Ed}$: 0.70 MPa

Siendo:

 $\mathbf{W_T}$: Módulo de resistencia a torsión. $\mathbf{W_T}$: 3.31 cm³ $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: 261.90 MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : $\underbrace{275.00}_{\gamma_{M0}}$: MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : $\underbrace{1.05}_{\gamma_{M0}}$

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η < 0.001 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot Q1$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.00 kN

 $\mathbf{M}_{\mathsf{T,Ed}}$: Momento torsor solicitante de cálculo pésimo. $\mathbf{M}_{\mathsf{T,Ed}}$: 0.00 kN·m El esfuerzo cortante resistente de cálculo reducido $\mathbf{V}_{\mathsf{pl,T,Rd}}$ viene

dado por:

 $V_{pl,T,Rd}$: 128.59 kN

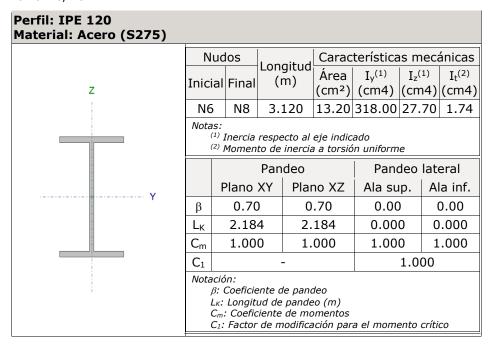
Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{pl,Rd}$: $\underline{128.83}$ kN $\tau_{T,Ed}$: Tensiones tangenciales por torsión. $\tau_{T,Ed}$: 0.70 MPa

Siendo:

 $\mathbf{W_T}$: Módulo de resistencia a torsión. $\mathbf{W_T}$: 3.31 cm³ $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: 261.90 MPa

Siendo:


 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: 275.00 MPa

γ_{мο}: Coeficiente parcial de seguridad del material.

γмo: 1.05

PILAR ESCALERAS

Barra N6/N8

Barra	COMPROBACIONES (CTE DB SE-A)						Estado									
Вагга	$\bar{\lambda}$	λω	Nt	Nc	MY	Mz	Vz	VY	MyVz	MzVy	NM _Y Mz	NMyMzVyVz	-	MtVz	M_tV_Y	Estado
N6/N8	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$				x: 3.016 m η = 25.6		η = 2.2	η = 0.1	η < 0.1	η < 0.1	x: 3.016 m η = 72.6	η < 0.1	$M_{Ed} = 0.00$ $N.P.^{(2)}$	N.P. ⁽³⁾	N.P. ⁽³⁾	CUMPLE η = 72.6
2., N., N., M., V., V., M., N., N., M., M., M., M., M.,	I: Limitación I: Abolladur. I: Resistenci II: Res	a a tracción a a tracción eje ia a flexión eje ia a flexión eje ia a corte Y ncia a momeni ncia a momeni tencia a flexión lesistencia a flexión ia a torsión ncia a cortante I origen de la ! de aprovecha ede	to flector Y y fun to flector Z y fun to glector Z y fun to y axil combina exión, axil y cor Z y momento to barra miento (%)	erza cortante erza cortante dos tante combin	nados											
(1,	La comproi	bación no proc	ède, ya que no ede, ya que no	hay moment		nguna combinaci	ón. Por lo t	anto, la con	mprobación	no procede	2.					

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $~\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

$\overline{\lambda}$:	1.74	V

Donde	:

Clase: 1

N_{cr}: Axil crítico de pandeo elástico.

obtenidos en a), b) y c):

N_{cr}: 120.36 kN

Clase: Clase de la sección, según la capacidad de deformación y
de desarrollo de la resistencia plástica de los elementos planos
comprimidos de una sección.A: Área de la sección bruta para las secciones de clase 1, 2 y 3.A: $\underline{13.20}$ cm² $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: $\underline{275.00}$ MPa

El axil crítico de pandeo elástico **N**_{cr} es el menor de los valores

a) Axil crítico elástico de pandeo por flexión respecto al eje Y. **N**_{cr,y}: 1381.79 kN

b) Axil crítico elástico de pandeo por flexión respecto al eje Z. $\mathbf{N}_{cr,z}$: 120.36 kN

c) Axil crítico elástico de pandeo por torsión. $\mathbf{N}_{\mathsf{cr},\mathsf{T}}$:

Donde:

I_v: Momento de inercia de la sección bruta, respecto al eje Y. I_v: 318.00 cm4 I_z: Momento de inercia de la sección bruta, respecto al eje Z. **I_z**: 27.70 cm4 It: Momento de inercia a torsión uniforme. $I_t: 1.74$ cm4 I_w: 890.00 cm6 I_w: Constante de alabeo de la sección. E: Módulo de elasticidad. E: 210000 MPa G: Módulo de elasticidad transversal. **G**: 81000 MPa **L**_{kv}: Longitud efectiva de pandeo por flexión, respecto al eje Y. **L**_{ky}: 2.184 m Lkz: Longitud efectiva de pandeo por flexión, respecto al eje Z. **L_{kz}**: 2.184 m Lkt: Longitud efectiva de pandeo por torsión. **L**_{kt}: 0.000 m in: Radio de giro polar de la sección bruta. respecto al centro de torsión. io: 5.12 cm

Siendo:

i_v , i_z: Radios de giro de la sección 4.91 cm bruta, respecto a los ejes principales de inercia Y y Z. i_z: 1.45 cm yo, zo: Coordenadas del centro de **y**o: 0.00 mm torsión en la dirección de los ejes principales Y y Z, respectivamente, relativas al centro de gravedad de la sección. 0.00mm

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE Ingenieros, basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

24.41 ≤ 248.01 ✓

Donde:

hw: Altura del alma. **h**_w: 107.40 mm tw: Espesor del alma. t_w: 4.40 mm A_w : A_w : Área del alma. 4.73 cm² A_{fc,ef}: Área reducida del ala comprimida. $A_{fc,ef}: 4.03 \text{ cm}^2$ k: Coeficiente que depende de la clase de la sección. k: 0.30 E: Módulo de elasticidad. E: 210000 MPa $\mathbf{f_{vf}}$: Límite elástico del acero del ala comprimida. f_{vf}: 275.00 MPa

Siendo:

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: **0.121** 🗸

η: **0.450** ✓

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N6, para la combinación de acciones 1.35·PP+1.5·Q1.

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo. $N_{c,Ed}$: 41.75 kN

La resistencia de cálculo a compresión N_{c,Rd} viene dada por:

 $N_{c,Rd}$: 345.71 kN

Clase :

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2

y 3. **A**: 13.20 cm²

f _{yd} : Resistencia de cálculo del acero.	f _{yd} :	261.90	МРа

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

	N _{b,Rd} : 92.69 kN
Donde:	
A : Área de la sección bruta para las secciones de clase 1, 2 y 3.	A : 13.20 cm ²
f _{yd} : Resistencia de cálculo del acero.	f _{yd} : 261.90 MPa
Siendo:	
f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) γ_{M1} : Coeficiente parcial de seguridad del material.	f_y : 275.00 MPa γ _{M1} : 1.05
χ : Coeficiente de reducción por pandeo.	
	$\chi_{\mathbf{y}}: 0.92$
Siendo:	χ _z : 0.27
Siendo.	φ _y : 0.66
	φ _z : 2.27
α: Coeficiente de imperfección elástica.	α_y : 0.21
$\overline{\lambda}$: Esbeltez reducida.	α_z : 0.34
W. Especieez reducida.	$\overline{\lambda}_{\mathbf{y}}: \underline{0.51}$
	$\bar{\lambda}_z$: 1.74
N _{cr} : Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:	N _{cr} : <u>120.36</u> kN
$\mathbf{N}_{cr,y}$: Axil crítico elástico de pandeo por flexión respecto al eje Y.	N _{cr,y} : 1381.79 kN
$N_{cr,z}$: Axil crítico elástico de pandeo por flexión respecto al eje Z.	N _{cr,z} : <u>120.36</u> kN

 $N_{cr,T}$: Axil crítico elástico de pandeo por

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

torsión.

Se debe satisfacer:

 ∞

 $N_{cr,T}$:

η: 0.256 🗸

Para flexión positiva:

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^+ : 0.00 kN·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 3.016 m del nudo N6, para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot Q1$.

M_{Ed}⁻: *4.07* kN·m

 $\mathbf{M_{Ed}}^-$: Momento flector solicitante de cálculo pésimo. El momento flector resistente de cálculo $\mathbf{M_{c,Rd}}$ viene dado por:

 $M_{c,Rd}$: 15.90 kN·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase : ____1

 $\mathbf{W}_{\mathsf{pl},\mathsf{y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,y}: 60.70 \text{ cm}^3$

con mayor tension, para las secciones de clase 1 y

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: 261.90 MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 275.00 MPa

 γ_{M0} : Coeficiente parcial de seguridad del material.

 $\gamma_{M0}: 1.05$

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.074** 🗸

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 3.016 m del nudo N6, para la combinación de acciones 1.35·PP+1.5·Q1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁺: 0.26 kN⋅m

Para flexión negativa:

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁻: 0.00 kN·m

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

 $M_{c,Rd}$: 3.56 kN·m

η: 0.022 **√**

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los

elementos planos de una sección a flexión simple.

 $\mathbf{W}_{pl,z}$: Módulo resistente plástico correspondiente a la fibra $\mathbf{W}_{pl,z}$: __13.60_ cm³ con mayor tensión, para las secciones de clase 1 y 2.

 f_{vd} : Resistencia de cálculo del acero. f_{vd} : 261.90 MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y: 275.00 MPa

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.5·Q1.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 2.06 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

 $V_{c,Rd}$: 95.19 kN

Donde:

 A_v : Área transversal a cortante. A_v : 6.30 cm²

Siendo:

h: Canto de la sección.h: $\underline{120.00}$ mm $\mathbf{t_w}$: Espesor del alma. $\mathbf{t_w}$: $\underline{4.40}$ mm

 $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: $\underline{261.90}$ MPa

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 275.00 MPa γ_{MO}: Coeficiente parcial de seguridad del material. γ_{MO}: 1.05

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

21.23 < 64.71

Donde:

 λ_w : Esbeltez del alma.

 $\lambda_{w}: 21.23$

 $\lambda_{máx}$: Esbeltez máxima.

λ_{máx}: 64.71

ε: Factor de reducción.

ε: 0.92

Siendo:

f_{ref}: Límite elástico de referencia.

f_{ref}: 235.00 MPa

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

fy: 275.00 MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: **0.001** √

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.5·Q1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.13 kN

El esfuerzo cortante resistente de cálculo $\mathbf{V}_{\mathbf{c},\mathbf{Rd}}$ viene dado por:

V_{c,Rd}: 128.14 kN

Donde:

 A_{v} : Área transversal a cortante.

 $A_v: 8.47 \text{ cm}^2$

Siendo:

A: Área de la sección bruta. d: Altura del alma. tw: Espesor del alma.

d: 107.40 mm **t**_w: 4.40 mm

A: 13.20 cm²

f_{vd}: Resistencia de cálculo del acero.

f_{yd}: 261.90 MPa

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: $\underline{275.00}$ MPa

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{c,Rd}$.

 $2.06 \text{ kN} \le 47.60 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·Q1.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 2.06 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 95.19 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V_{Ed}}$ no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V_{c,Rd}}$.

 $0.13 \text{ kN} \le 64.07 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·Q1.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.13 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 128.14 kN

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.450 √**

η: 0.468 🗸

η: **0.726 √**

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 3.016 m del nudo N6, para la combinación de acciones 1.35·PP+1.5·Q1.

Donde:

N _{c,Ed} : Axil de compresión solicitante de cálculo pésimo. M _{y,Ed} , M _{z,Ed} : Momentos flectores solicitantes de cálculo pésimos según los ejes Y y Z, respectivamente.	M _{z,Ed} ⁺ : 0.26 kN⋅m
Clase : Clase de la sección, según la capacidad de deformación de desarrollo de la resistencia plástica de sus elementos planos para axil y flexión simple.	
N _{pl,Rd} : Resistencia a compresión de la sección bruta.	N _{pl,Rd} : <u>345.71</u> kN
M _{pl,Rd,y} , M _{pl,Rd,z} : Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z, respectivamente.	$\mathbf{M}_{\mathbf{pl},\mathbf{Rd},\mathbf{y}}: \underline{15.90} \text{ kN·m}$ $\mathbf{M}_{\mathbf{pl},\mathbf{Rd},\mathbf{z}}: \underline{3.56} \text{ kN·m}$
·	
Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)	
A: Area de la sección bruta.	A : 13.20 cm ²
W _{pl,y} , W _{pl,z} : Módulos resistentes plásticos correspondientes a la fibra comprimida, alrededor de los ejes Y y Z, respectivamente.	
	20 pi,2 1 citi
f yd: Resistencia de cálculo del acero.	f _{yd} : <u>261.90</u> MPa
Siendo:	$\mathbf{f_y}: \underline{275.00}$ MPa $_{\gamma_{\mathbf{M1}}}: \underline{1.05}$ MPa $_{\mathbf{k_y}}: \underline{1.04}$
$\boldsymbol{C}_{m,y},\;\boldsymbol{C}_{m,z}\colon$ Factores de momento flector uniforme equivalente.	${f C_{m,y}}: \underline{1.00}$ ${f C_{m,z}}: \underline{1.00}$
$\chi_y,\chi_z\colon$ Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z, respectivamente.	$\chi_{\mathbf{v}}: \underline{0.92}$ $\chi_{\mathbf{z}}: \underline{0.27}$
$\overline{\lambda}_{y},~\overline{\lambda}_{z}$: Esbelteces reducidas con valores no mayores que 1.00 en relación a los ejes Y y Z, respectivamente.	, $\overline{\lambda}_{\mathbf{y}}: \underline{0.51}$ $\overline{\lambda}_{\mathbf{z}}: \underline{1.74}$
$\alpha_{y}, \alpha_{z}\colon$ Factores dependientes de la clase de la sección.	α_y : 0.60

 α_z : 0.60

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V}_{C.Rd}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·Q1.

 $2.06 \text{ kN} \le 47.60 \text{ kN}$

Donde:

V_{Ed,z}: Esfuerzo cortante solicitante de cálculo pésimo.
 V_{c,Rd,z}: Esfuerzo cortante resistente de cálculo.

V_{Ed,z}: 2.06 kN

Vc,Rd,z: 95.19 kN

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y v momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

3.13. ALBAÑILERÍA 3.13.1. Tabiquería

Se utilizarán tabiques en la zona administrativa, la zona de entreplanta, para la separación entre la oficina y las distintas salas de reuniones, y los aseos, a parte del perímetro que abarca toda la oficina.

Los tabiques medirán 2,5 metros, la altura entre la entreplanta y el falso techo. Para esta función, se empleará placas estándar prefabricadas de placas de cartón-yeso, debido al amplio abanico de posibilidades que ofrecen, a lo fáciles que resultan de instalar y también por su económico precio.

Estos tabiques prefabricados cuentan con una estructura interna de acero galvanizado, teniendo ambas caras recubiertas con placas de yeso laminado que le aportan la resistencia necesaria.

Se ha escogido paneles del grupo KNAUF, que utilizan una estructura metálica de canales horizontales sujetos al forjado superior y al suelo, y montantes verticales encajados en los canales. A esta estructura se le atornilla a cada lado una o más placas de yeso laminado.

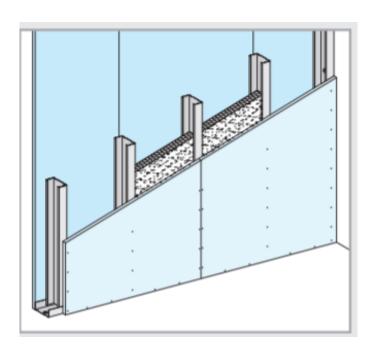


Figura 52: Tabique W111.

Estos paneles dan solución a todos los requisitos exigidos por el CTE: Protección al fuego, aislamiento acústico, robustez y resistencia al golpe, y calidad de acabado.

Los tabiques elegidos serán los W111, que cuentan con una placa a cada lado.

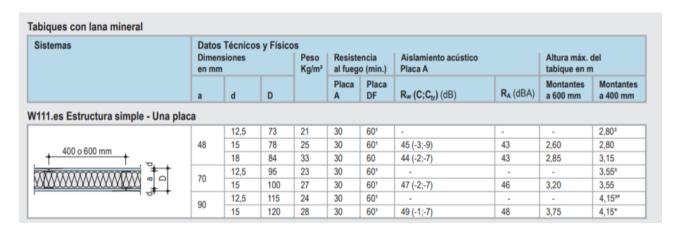


Figura 53: Dimensiones de los tabiques W111.

Se escogerá la opción de 100 mm de anchura, cuya altura máxima es de 3,2 metros, suficiente para la utilización requerida.

Las características prioritarias son las siguientes:

• Dimensiones: 1000x2500 mm.

• Espesor total: 100 mm.

• Peso: 27 kg/m².

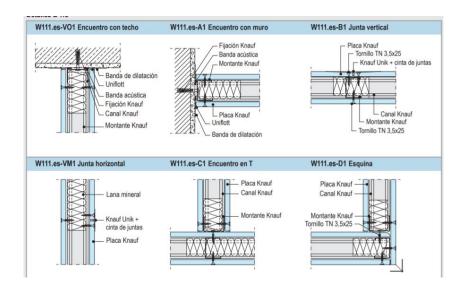


Figura 54: Uniones entre tabiques y demás elementos.

3.13.2. Falso techo

Se ha decidido colocar un falso techo en la zona de oficina. Este se encontrará a 2,5 metros de la entreplanta. Para este trabajo se utilizarán los elementos proporcionados por la empresa PLACO, formados por placas de cartón-yeso unidas a perfiles de acero mediante tornillos.

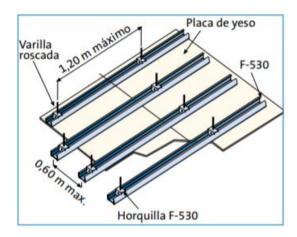


Figura 55: Croquis del falso techo.

La instalación de estos paneles se hará mediante grapas SM-8, las cuales se embuten dentro de los perfiles metálicos, y se fijan al perfil mediante una varilla de métrica 6mm. El otro extremo se une a los perfiles metálicos del falso techo.

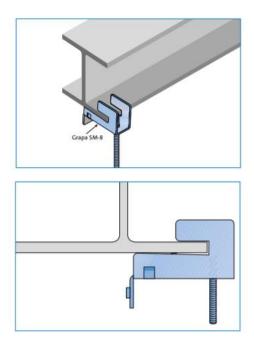


Figura 56: Unión entre los perfiles de cubierta y el falso techo.

	Suspensión		Varilla M6 + Horquilla F-			
	Modulación en	tre ejes de perfiles (m)	0,50	0,60		
	Distancia entre	suspensiones (m)	1,45	1,20		
	Capacidad de re	eglaje (mm)	≥20			
	Carro (1)	Rotura (daN)	10	65		
Grapa ŚM-8	Carga (1)	Trabajo (daN)	55			
	Peso máximo d	el techo (kg/m²)	45			
	Carga de rotura	de SM 8 (kg)	570			

(1) Peso máximo por m² del techo limitado por la carga de trabajo de la unión entre horquilla y perfil F-530. 1kg en la superficie de la tierra es igual a 9,8 Newton.

Figura 57: Características de la unión con el perfil.

El peso máximo del peso es de 45 kg/m², 0,44 kN/m², que será el peso extra que soporte los 3 primeros pórticos.

3.14. RED DE EVACUACIÓN DE AGUAS PLUVIALES

Los elementos pertenecientes a la red de agua pluviales se dispondrán siguiendo el Documento Básico de Salubridad, además de tener en cuenta la norma NTE-ISS.

El primer paso a dar es obtener la intensidad pluviométrica del lugar donde está ubicada la nave, en este caso, el municipio de Zamudio.

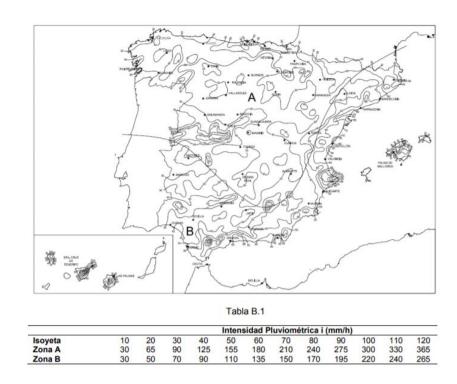


Figura 58: Obtención de la intensidad pluviométrica.

Según la tabla B1, obtenida del Documento Básico de Salubridad del CTE, a Zamudio le corresponde una intensidad pluviométrica de 155 mm/h.

3.14.1. Canalones

El diámetro nominal del canalón viene dado por la siguiente tabla:

Tabla 4.7 Diámetro del canalón para un régimen pluviométrico de 100 mm/h						
Máxima si	uperficie de cubierta	en proyección horiz	contal (m²)	Diámetro nominal del canalón		
	Pendiente d	del canalón		(mm)		
0.5 %	1 %	2 %	4 %	(mm)		
35	45	65	95	100		
60	80	115	165	125		
90	125	175	255	150		
185	260	370	520	200		
335	475	670	930	250		

Figura 59: Dimensionamiento de canalones.

Al disponer de 2 canalones, uno en cada fachada lateral, cada canalón será capaz de evacuar la mitad del área de la cubierta.

Es decir, cada canalón le corresponderá evacuar el agua correspondiente a 414,11 m². Como la intensidad pluviométrica difiere de 100 mm/h, se ha de aplicar un factor de corrección a la superficie de la cubierta, que viene definido por la fórmula:

$$f = i/100$$

Donde i es la intensidad pluviométrica calculada en el apartado anterior. Por lo tanto, la superficie cubierta en proyección horizontal resulta de multiplicar el área obtenida por el factor de corrección, dando un área de 621.16 m².

Con una inclinación de 2º, el diámetro nominal del canalón será entre 200 y 250 mm.

Se escogerá un diámetro de 250mm para el dimensionamiento de estos.

3.14.2. Bajantes

El dimensionamiento de las bajantes para esta obra viene dado por la siguiente tabla perteneciente al Documento Básico de Salubridad.

Tabla 4.8 Diámetro de las bajantes de aguas pluviales para un régimen pluviométrico de 100 mm/h					
Superficie en proyección horizontal servida (m²)	Diámetro nominal de la bajante (mm)				
65	50				
113	63				
177	75				
318	90				
580	110				
805	125				
1.544	160				
2.700	200				

Figura 60: Dimensionamiento de bajantes.

Se empleará el mismo valor obtenido en el apartado para el cálculo de los canalones.

Por lo tanto, con un valor de 621,16 m2, el diámetro de las bajantes debe de ser de 125 mm como mínimo.

Se escogerán unas bajantes de 125 mm de diámetro.

3.14.3. Colectores

Al igual que los canalones, las dimensiones de los colectores vienen dadas por la superficie proyectada y por la pendiente de estos:

	Superficie proyectada (m²)	Diámetro nominal del colecto	
	Pendiente del colector		
1 %	2 %	4 %	(mm)
125	178	253	90
229	323	458	110
310	440	620	125
614	862	1.228	160
1.070	1.510	2.140	200
1.920	2.710	3.850	250
2.016	4.589	6.500	315

Figura 62: Dimensionamiento de colectores.

Para los mismos datos obtenidos anteriormente, el diámetro idóneo para los colectores es de 160 mm.

3.14.4. Arquetas

Las dimensiones de las arquetas vienen dadas en función del diámetro de los colectores. Con ese dato, y con la ayuda de la siguiente tabla, se haya la longitud y anchura de este elemento:

		Tabla 4.1	3 Dimens	siones de	las arquet	as			
		Diámetro del colector de salida [mm]							
	100	150	200	250	300	350	400	450	500
L x A [cm]	40 x 40	50 x 50	60 x 60	60 x 70	70 x 70	70 x 80	80 x 80	80 x 90	90 x 90

Figura 62: Dimensionamiento de arquetas.

Para un diámetro de $160\,\mathrm{mm}$, las dimensiones óptimas de las arquetas son de $60\mathrm{x}60\,\mathrm{cm}$.

3.15. RED DE EVACUACIÓN DE AGUAS FECALES

Para el dimensionamiento de los elementos que componen la red de evacuación de aguas fecales, es necesario conocer el número de componentes que forman esta instalación. El dimensionamiento de estos elementos está descrito en el Documento Básico de Salubridad, al igual que la red de evacuación de aguas pluviales.

La nave a diseñar contará con un lavado y 3 retretes. Los diámetros de cada elemento vienen definidos en la siguiente tabla:

Tipo de aparato sanitario		Unidades de	desagüe UD	Diámetro mínimo sifón y deri- vación individual (mm)	
		Uso privado	Uso público	Uso privado	Uso público
Lavabo		1	2	32	40
Bidé		2	3	32	40
Ducha		2	3	40	50
Bañera (con o sin ducha)		3	4	40	50
Inadasa	Con cisterna	4	5	100	100
Inodoro	Con fluxómetro	8	10	100	100
Pr. 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pedestal	-	4	2	50
Urinario	Suspendido	-	2	-	40
	En batería	-	3.5	-	-
	De cocina	3	6	40	50
Fregadero	De laboratorio, restaurante, etc.	-	2	-	40
Lavadero	-	3	-	40	-
Vertedero		<u> </u>	8	-	100
Fuente para beber		-	0.5	-	25
Sumidero sifónico		1	3	40	50
Lavavajillas		3	6	40	50
Lavadora		3	6	40	50
Cuarto de baño	Inodoro con cisterna	7	-	100	-
(lavabo, inodoro, bañera) bidé)	Inodoro con fluxómetro	8	-	100	-
Cuarto de aseo	Inodoro con cisterna	6	-	100	
(lavabo, inodoro y ducha)	Inodoro con fluxómetro	8	-	100	-

Figura 63: Dimensionamiento de salidas de inodoros y lavabo.

El diámetro utilizado para el lavabo será de 40mm, mientras que para los inodoros será de 50 mm.

3.15.1. Ramales para los colectores

Estos elementos vienen definidos dependiendo de la inclinación de los conductos y del número de elementos que componen está instalación, en este caso 4.

Máximo número de UD			
	Pendiente	Diámetro (mm)	
1 %	2 %	4 %	
-	1	1	32
_	2	3	40
-	6	8	50
-	11	14	63
-	21	28	75
47	60	75	90
123	151	181	110
180	234	280	125
438	582	800	160
870	1.150	1.680	200

Figura 64: Dimensionamiento de ramales.

Para una pendiente del 2% y un número de 4 unidades, corresponde un diámetro de 50 mm den los conductos de los ramales que dirigen las aguas fecales hacia la bajante.

3.15.2. Bajante

El dimensionado de las bajantes debe realizarse de forma tal que no se rebase el límite de \pm 250 Pa de variación de presión y para un caudal tal que la superficie ocupada por el agua no sea mayor que 1/3 de la sección transversal de la tubería

El diámetro de las bajantes se obtiene en la tabla 4.4 como el mayor de los valores obtenidos considerando el máximo número de UD en la bajante y el máximo número de UD en cada ramal en función del número de plantas.

Máximo número de UD, para una altura de bajante de:		Máximo número de U una altura d	Diámetro (mm)	
Hasta 3 plantas	Más de 3 plantas	Hasta 3 plantas	Más de 3 plantas	
10	25	6	6	50
19	38	11	9	63
27	53	21	13	75
135	280	70	53	90
360	740	181	134	110
540	1.100	280	200	125
1.208	2.240	1.120	400	160
2.200	3.600	1.680	600	200
3.800	5.600	2.500	1.000	250
6.000	9.240	4.320	1.650	315

Figura 65: Dimensionamiento de bajantes.

Con estos datos, el diámetro de las bajantes será de 50 mm.

3.15.3. Colectores

Los colectores horizontales se dimensionan para funcionar a media de sección, hasta un máximo de tres cuartos de sección, bajo condiciones de flujo uniforme.

El diámetro de los colectores horizontales se obtiene en la tabla 4.5 en función del máximo número de UD y de la pendiente.

Tabla 4.5 Diámetro de los colectores horizontales en función del número máximo de UD y la pendiente adop-
tada

	Máximo número de UD		
	Pendiente		
1 %	2 %	4 %	
-	20	25	50
-	24	29	63
-	38	57	75
96	130	160	90
264	321	382	110
390	480	580	125
880	1.056	1.300	160
1.600	1.920	2.300	200
2.900	3.500	4.200	250
5.710	6.920	8.290	315
8.300	10.000	12.000	350

Figura 66: Dimensionamiento de colectores.

Con un diámetro nominal de 50mm se cumplen con las especificaciones requeridas para la evacuación de aguas fecales.

3.15.4. Arquetas

El dimensionamiento de las arquetas para la red de aguas fecales es idéntico a la realizada para la red de aguas pluviales, las dimensiones de estos elementos vienen dadas según el diámetro de los colectores.

Siguiendo los datos obtenidos por la figura 62, dimensionamiento de arquetas, las dimensiones de esta serán de 40x40 cm

3.16. SUMINISTRO DE AGUAS

La red de suministro de agua de la nave estará conectada a la red de abastecimiento municipal del Polígono de Torrelarragoiti.

El dimensionamiento de esta instalación se hará siguiendo lo establecido en el Documento Básico de Salubridad sección HS 4.

Solo se diseñará la red de abastecimiento para el agua fría.

Los elementos que pertenecen a este sistema de suministro son los siguientes:

- Acometida
- Válvula de paso
- Bomba
- Ascendentes
- Tubería (Red interior y exterior)

Se procede a calcular el caudal necesario para los 4 elementos que se desean abastecer, los cuales viene tabulados en la siguiente figura:

Tipo de aparato	Caudal instantáneo míni- mo de agua fría [dm³/s]	Caudal instantáneo míni- mo de ACS [dm³/s]	
Lavamanos	0,05	0,03	
Lavabo	0,10	0,065	
Ducha	0,20	0,10	
Bañera de 1,40 m o más	0,30	0,20	
Bañera de menos de 1,40 m	0,20	0,15	
Bidé	0,10	0,065	
Inodoro con cisterna	0,10	-	
Inodoro con fluxor	1,25	-	
Urinarios con grifo temporizado	0,15	-	
Urinarios con cisterna (c/u)	0,04	-	
Fregadero doméstico	0,20	0,10	
Fregadero no doméstico	0,30	0,20	
Lavavajillas doméstico	0,15	0,10	
Lavavajillas industrial (20 servicios)	0,25	0,20	
Lavadero	0,20	0,10	
Lavadora doméstica	0,20	0,15	
Lavadora industrial (8 kg)	0,60	0,40	
Grifo aislado	0,15	0,10	
Grifo garaje	0,20	_	
Vertedero	0,20	-	

Figura 67: Cálculo de caudales.

Según la tabla 2.1 del apartado HS 4 del Documento Básico de Salubridad, el caudal mínimo para agua fría de los inodoros ha de ser de 0,1 dm³/s, al igual que para el lavabo. Por lo que el caudal total que el sistema debe suministrar es de 0,4 dm³/s.

Según el apartado 4.2.1 del HS 4 del Documento Básico de Salubridad, la velocidad de circulación del agua a través de tuberías metálicas debe estar comprendida entre 0,5 y 2 m/s.

El diámetro correspondiente a la tubería de cobre que se va a utilizar estará dimensionado teniendo en cuenta la relación entre caudal y velocidad. Así, tomando la velocidad más pequeña posible a la que puede circular el fluido, 0,5 m/s, el diámetro de la tubería será de:

$$0.0004 \text{ m}^3/\text{s} = 0.5 \text{ m/s} \cdot \text{S}$$

Donde S es la sección de la tubería.

por lo que el diámetro utilizado para la red de suministro de agua será de 50,4 mm.

Se tomará un diámetro de 50 mm ya que se ha sido conservador con la velocidad a la que circula el agua a través de la red de tuberías.