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ABSTRACT 

 

E2F transcription factors control diverse biological processes through regulation of target gene 

expression. The identification of a large set of genes regulated by each individual E2F, including 

those coding for microRNAs, has led to a better understanding of the functions performed by 

the different members of the family. Many studies have detailed the role of classical E2Fs in cell 

cycle control and DNA damage response. By contrast, the contribution of the atypical members 

of the family, E2F7 and E2F8, to these processes has not been clearly defined. A recent study 

from our group identified a set of novel microRNAs and protein-coding genes regulated by E2F7. 

These genes are involved in processes such as cell cycle regulation or DNA damage response. In 

this work, we have examined the role that E2F7 plays in the regulation of these processes 

through the transcriptional regulation of its target genes.   

We have identified E2F7 as a transcription factor required for the repression of a set of 

microRNAs that promote cellular proliferation. We show that miR-25, miR-92 and miR-7 

expression is controlled at the transcriptional level by the antagonistic activity of E2F7 and E2F1-

3. Interestingly, we find that several E2F7-repressed microRNAs downregulate the expression of 

cell cycle progression inhibitors and promote cellular proliferation, suggesting that E2F7 

restrains cell cycle progression through repression of proliferation-promoting microRNAs. 

Importantly, we show that E2F7 plays a key role in the maintenance of genomic stability. We 

present evidence of E2F7-dependent transcriptional and non-transcriptional mechanisms for 

modulating cellular responses to genotoxic exposure. We identify an E2F7-dependent 

transcriptional regulation program that restricts homologous recombination-mediated DNA 

repair and cellular recovery upon induction of DNA lesions that interfere with replication fork 

progression (DNA interstrand cross-links and PARP1 inhibition).Additionally, we present 

evidence of a non-transcriptional mechanism by which E2F7 modulates cellular responses to 

alkylating DNA damage, possibly involving interaction with the repair protein XRRC1. Loss of 

E2F7 confers an increased resistance to chemotherapy in homologous recombination-deficient 

cells, a potentially harmful outcome for cancer treatment.  

Altogether, results in this work reveal a key role for E2F7 in limiting cellular proliferation and 

promoting genomic stability by ensuring the timely expression of protein-coding and microRNA 

genes that are required for cell cycle progression and DNA damage repair.
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1.1. E2F family of transcription factors 

 

The E2 factor (E2F) was originally identified more than three decades ago as the cellular factor 

required for the activation of the adenoviral E2 promoter (Kovesdi, Reichel and Nevins, 1986). 

Subsequent studies revealed that the term “E2F” encompasses a large family of transcription 

factors present in all multicellular organisms, which can bind target consensus sequences 

present in the promoters of many cellular genes and thereby regulate their expression 

(Reviewed in Dimova & Dyson 2005). Presently, it is well established that E2F transcription 

factors are essential for cell cycle regulation and cell fate decisions, and that their deregulation 

results in severe pathological consequences including cancer or autoimmunity (Reviewed in 

Dimova & Dyson 2005; Chen et al 2009; Iglesias-Ara & Zubiaga 2015; Julien &Blais, 2017). 

E2F factor activity is primarily regulated by the so-called pocket protein (PP) family members 

(pRB, p107 and p130), with which they interact on the promoters of target genes in a reversible 

manner: when is bound to a PP, E2F represses transcription, whereas free E2F activates 

transcription (Hauck and von Harsdorf, 2005; Fischer and Müller, 2017). To carry out 

transcriptional regulation, E2Fs are recruited to a consensus DNA binding motif (TTTXXCGC in 

mammals, where X may be C or G). This motif is usually present in a region near the transcription 

start site (between -1000bp and +500bp from the transcription start site) called the proximal 

promoter region (Rabinovich et al., 2008; Lee, Bhinge and Iyer, 2011; Laresgoiti et al., 2013), 

which is critical for the regulation of gene expression. There is also evidence that E2Fs can bind 

sequences that are not the consensus sites (Weinmann et al., 2002; Bieda et al., 2006; Xu et al., 

2007), although little is still known on this differential binding.  

In mammals, the E2F family comprises eight genes (E2F1–8), which give rise to ten distinct 

proteins: E2F1, 2, 3a, 3b, 4, 5, 6, 7a, 7b and 8 (Figure 1). These proteins exhibit a relatively 

conserved sequence structure, particularly in the DNA binding domain (DBD), which is present 

in all family members. While the first described members of the family (E2F1-6), also known as 

“classical E2Fs” show a single DBD, the more recently added E2F family members (E2F7-8), also 

known as “atypical E2Fs” show two DBDs arranged in tandem (Figure 1). 

Classical E2F family members bind DNA as heterodimers with one of the three dimerization 

partner proteins (DP1, DP2 and DP3) through their DP interaction domain (Figure 1). This 

dimerization enables E2Fs to bind DNA with high affinity, and to function as transcriptional 

regulators (Helin, 1998; Chen, Tsai and Leone, 2009). By contrast, atypical members of the 

family, E2F7 and E2F8, do not heterodimerize with DP family members. Instead, they harbor two 

DBDs with which they bind to the DNA molecule and mediate homo and heterodimerization 

among themselves to regulate transcription (Logan et al., 2004; Maiti et al., 2005).  
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E2F1-5 have a transactivation domain in their protein carboxy-terminus (Figure 1) that enables 

activation of gene expression. Within the transactivation domain, a short amino-acid stretch 

that mediates binding of pocket proteins is embedded. E2F1-3 have been shown to interact 

exclusively with pRB, whereas E2F4 and E2F5 preferentially bind p107 and p130, and with less 

affinity to pRB (Liban et al., 2016). The interaction with PPs masks the transactivation domain, 

and allows E2F1-5 to carry out their repressive activity over target genes. E2F6-8 do not harbor 

a transactivation domain, and are thought to function mainly as transcriptional repressors, 

independently of pocket proteins.  

 

Figure 1: Schematic representation of the mammalian E2F family of transcription factors. The most 

representative domains identified in E2F proteins are shown (Modified from Lv et al. 2017).  

 

Most E2F proteins are localized in the nucleus owing to nuclear localization signals (NLS) present 

in their sequence, with the exception of E2F4 and E2F5, which lack this signal. These factors rely 

on binding to pocket proteins to be transported to the nucleus in order to carry out their 

regulatory function. 
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1.1.1. Mechanisms of transcriptional regulation by E2F family members 

Traditionally, and mostly based on the findings gathered after ectopic expression of E2F factors 

in vitro, E2F members have been subdivided into transcriptional activators (E2F1-3a), and 

transcriptional repressors (E2F3b-8) (Chen, Tsai and Leone, 2009). To achieve these functions, 

E2Fs form complexes with a variety of proteins involved mainly in chromatin remodeling (Fischer 

and Müller, 2017). 

Transcriptional activation is carried out by E2F1-3a together with DP proteins, bound to target 

gene promoters through E2F consensus elements. These E2Fs can recruit, through their 

transactivation domain, protein complexes carrying histone acetyl transferase (HAT) activity, 

including the GCN5 complex (Lang et al., 2001) and the TIP60 complex (Taubert et al., 2004). 

This allows for the recruitment of Pol II and the subsequent induction of E2F target gene 

expression (Figure 2). 

E2F-dependent transcriptional repression can be achieved through a variety of protein 

complexes. The best characterized complexes involve pocket proteins. As mentioned above, 

binding of pRB to activator E2Fs masks their transactivation domain and blocks their activity 

(Figure 2). Moreover, pRB has been found to interact with a variety of chromatin modifiers, 

including the histone deacetylases HDAC1/2 and the SIN3B/ HDAC complex, or histone 

methyltransferases (HMTs) such as HP1 and SUV39H (Talluri and Dick, 2012; Uchida, 2016) 

(Figure 2). The deacetylation and methylation of the chromatin carried out by these interacting 

proteins ensures chromatin condensation and target gene repression.  

Binding of p107/p130 to E2F4/5 at the promoter region of its target genes triggers the assembly 

of the DREAM complex (dimerization partner, RB-like, E2F and multi-vulval class B) (Reviewed in 

Fischer and Müller, 2017), which includes the MuvB core complex (comprised of LIN9, LIN37, 

LIN52, LIN54, and RBBP4). The DREAM complex is responsible for the repression of gene 

expression at G0, but, unlike the pRB-HDAC/HMT complex, is unlikely to interact with histone 

modifiers. Instead, this complex has been described to promote the recruitment of H2A.Z, a 

variant of histone H2A, to the promoters (Latorre et al., 2015), and consequently reduce the 

access of the RNA polymerase and repress gene expression through the compaction of 

nucleosomes (Marques et al., 2010).  
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Figure 2: Protein complexes formed by E2F family 
members in transcriptional regulation. Activation (up) 
and repression (down) complexes formed by E2F family 
members with different proteins are represented.  

 

 

 

E2F6 does not exhibit a transactivation domain or a PP-binding domain. It is thought to regulate 

transcription through interaction with a different set of protein complexes, including Polycomb 

Repressive Complex 1 (PRC1) and Polycomb Repressive Complex 2 (PRC2) (Trimarchi et al., 2001; 

Attwooll et al., 2005; Leung and Nevins, 2012) (Figure 2). More specifically, E2F6 has been 

described to interact with the PRC2-complex protein EZH2 (Attwooll et al., 2005), a key protein 

for the histone methyltransferase activity of the PRC2 complex. This methylating activity, 

together with the additional interaction of PRC with HDAC1/2 proteins are responsible for the 

repressive activity of E2F6-PRC complex on target promoters (Morey and Helin, 2010).  

Atypical E2F7-8 bind DNA as homodimers or heterodimers formed among themselves. They are 

thought to carry out their transcriptional regulation through interaction with co-repressor 

proteins in a pocket protein-independent manner. Yeast two-hybrid assays and proteomic 

screenings have identified co-repressors CTBP1 and CTBP2 as E2F7-interactor proteins (Liu et 

al., 2013; Zalmas et al., 2013), which could be involved in the recruitment of deacetylases such 

as HDAC2 (Figure 2), and subsequent gene repression (Zhao et al., 2014). However, the repressor 

complex involving E2F7 and E2F8 remains to be fully characterized, and the mechanism of 

repression has not been addressed.  
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This variety of protein complexes recruited by E2F family members points to a high level of 

complexity in the mechanisms of transcriptional regulation involving E2Fs. Furthermore, an 

additional level of complexity stems from the fact that the traditional classification of E2Fs into 

activators and repressors of transcription is clearly oversimplified. Data gathered by our group 

and others has shown that although individual overexpression of E2F1-3 in vitro activates the 

expression of numerous responsive genes, the critical function of these E2Fs in vivo is to repress 

gene expression in quiescence (G0) and early G1 phase of the cell cycle, in complex with pRB 

protein (Murga et al., 2001; Infante et al., 2008; Chong et al., 2009; Zhang et al., 2017). In fact, 

these studies have shown that E2F1-3 proteins are mostly dispensable for transcriptional 

activation of their target genes in proliferating cells. Regarding the repressor arm of the E2F 

family, E2F4-5 and atypical E2F7-8 are not always transcriptional repressors. Numerous reports 

have shown that they are also able to activate gene transcription of many target genes under 

certain conditions (Lee, Bhinge and Iyer, 2011; Weijts et al., 2012; Arbi et al., 2016). Differences 

in cellular contexts may be responsible for this duality in functional activity of E2F factors, which 

hinders a clear understanding of their mechanisms of action. 

 

1.1.2. Regulation of E2F factor expression  

The expression of E2F family members can be regulated at several levels, of which 

transcriptional regulation has been described as the most important one. Additionally, there is 

evidence for non-transcriptional regulation, including post-translational modifications on E2F 

factors, which affect protein stability, and, more recently, microRNA-mediated regulation of E2F 

mRNA expression (Woods et al. 2007; Emmrich & Pützer 2010).  

Regarding transcriptional regulation, most E2F factors are controlled through a cell cycle-

dependent regulation. As part as this regulation, E2F factors themselves are able to regulate the 

expression of members of the family, forming both positive as well as negative feedback loops 

that ensure balanced levels of activators and repressors in each phase of the cell cycle. 

In quiescent cells (G0), the protein complexes formed by E2F1-3 or E2F4-5, together with pocket 

proteins, bind the promoters of E2F1-3 and E2F6-8 genes, as well as many of their downstream 

target genes, concomitant with their transcriptional silencing (Figure 3) (Takahashi, Rayman and 

Dynlacht, 2000; Balciunaite et al., 2005; Infante et al., 2008). These complexes maintain low 

transcription levels of E2F1-3 and E2F6-8 during G0 and early G1. E2F4 and E2F5 are not 

regulated by E2F, and their levels are maintained constant throughout the cell cycle (Dimova 

and Dyson, 2005). 
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Figure 3: Expression and regulation of mammalian E2Fs by other family members. In quiescent (G0) 
cells, the constitutively expressed E2F4 and E2F5, as well as E2F1-E2F3, repress the expression of E2F1-
3 and E26-8. Mitogenic stimulation signals induce E2F1-3 expression late in G1 phase; thereby 
activating the G1/S transcriptional program. E2F6, E2F7 and E2F8 have been suggested to accumulate 
during G1/S. In turn, E2F6-8 mediate the repression of E2F1-3.  

 

Upon mitogenic stimulation and progression through G1, pocket proteins undergo sequential 

phosphorylation by cyclin-dependent kinases, which reduce their affinity for E2Fs. 

Consequently, repression complexes turn into activation complexes and E2F1-3 genes are 

transcriptionally induced. E2F1 was first shown to induce its own expression through binding to 

canonical E2F motifs present in its promoter, resulting in a positive autoregulation (Johnson, 

Ohtani and Nevins, 1994). The promoters of E2F2 and E2F3 also display E2F motifs (Sears, Ohtani 

and Nevins, 1997; Adams et al., 2000) and they are thought to employ autoregulatory 

mechanisms similar to that of E2F1 to modulate their expression. This positive transcriptional 

feedback loop creates an “all-or-none switch” that results in the commitment of cells to progress 

through the cell cycle once the restriction point is reached (Skotheim et al., 2008). 

In G1, E2F1-3 initiate a transcriptional program driving cells into S phase. Concurrent with the 

entry into S phase, E2F1-3 expression and E2F-driven G1/S-specific transcriptome is attenuated. 

It has become increasingly clear that the mechanism of this transcriptional inactivation relies on 

negative feedback loops, which involve, among others, E2F6-8 proteins, whose expression is 

induced in late G1 by E2F1-3 (Figure 3). E2F7 and E2F8 directly repress E2F1-3 expression (Moon 

and Dyson, 2008; Endo-Munoz et al., 2009; Mitxelena, 2014) resulting in a negative regulation 

of E2F1-3 by atypical repressor E2F proteins, thus ensuring that activator E2Fs are 

transcriptionally silent when cells enter mitosis.  
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In addition to transcriptional regulation, an important regulatory process that finely tunes E2F 

levels takes place post-translationally. Post-translational modifications identified in E2F 

members include acetylation, phosphorylation and ubiquitination. These modifications can 

change E2F levels and exert either activating or inhibitory effects on E2F transcriptional activity 

(Dagnino, Kaur and Judah, 2011).  

E2F1 has been the most studied member of the E2F family referring to post-translational 

regulation, although E2F2 and E2F3 are thought to undergo similar post-translational 

modifications (Gong et al., 2016). Acetylation of lysine residues adjacent to DBDs allow for 

stabilization and significant increase in E2F1 protein levels (Martínez-Balbás et al., 2000; Ianari 

et al., 2004). Additionally, these acetylations increase DNA-binding activity of E2F1, leading to 

an elevation in the transcriptional induction of its target genes (Martínez-Balbás et al. 2000). 

Phosphorylation of E2F1 can also affect its stability, along with its ability to interact with other 

proteins. For example, it has been described that CDK8 protein phosphorylates E2F1 on serine 

375, both in vitro and in vivo, thereby modulating its ability to bind pRB and repress target genes 

(Zhao, Ramos and Demma, 2013).  

An ubiquitin/proteasomal system whereby the stability of E2F1 is controlled by ubiquitination 

throughout the cell cycle was described initially by Krek and collaborators (Marti et al., 1999), 

and its components have been subsequently identified by several groups. In early S phase, E2F1 

is conjugated with K63-linked ubiquitin chains in a cIAP1-dependent manner, contributing to its 

stabilization (Glorian et al., 2017). At the end of the S phase, the SCF/SKP2 complex mediates 

E2F1 ubiquitination and subsequent proteasomal degradation (Lu et al., 2014). The low levels of 

E2F1 in G2 and M are further guaranteed by APC/C-mediated ubiquitination and proteasomal 

degradation of this E2F (Peart et al., 2010; Budhavarapu et al., 2012).  

Over the last decade, microRNAs have been described to modulate E2F transcription factor 

expression, adding a new layer of complexity to their non-transcriptional regulation (Emmrich 

and Pützer, 2010; Bueno and Malumbres, 2011; Chafin et al., 2014; Teplyuk et al., 2015; Luo et 

al., 2016; Xu et al., 2017). One of the first studies relating E2F factors with microRNAs showed 

that E2F1 expression is negatively regulated by miR-17-92, whose expression is induced by c-

MYC and E2F1-3, thus ensuring the correct turn off of E2F1 during the progression of cell cycle 

(O’Donnell et al., 2005; Woods, Thomson and Hammond, 2007). Since the discovery of this novel 

level of regulation of E2F factors, more than 50 microRNAs have been described to control E2F 

mRNA expression (only within last year, close to 20 new microRNAs were described to target 

E2F family members).  
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The cellular consequences of microRNA-targeted E2F mRNA degradation are diverse, ranging 

from effects on proliferation, apoptosis, differentiation, migration or angiogenesis. However, in 

general, increased levels of these microRNAs result in a reduction of proliferation, by direct 

binding to individual activator E2F mRNA and its consequent degradation. For example, 

overexpression of miR-93 in primary leiomyoma cells result in a reduction of E2F1 levels and a 

consequent time-dependent inhibition of cell proliferation and cell motility (Chuang and 

Khorram, 2018). Conversely, overexpression of miR-26a led to a reduction of E2F7 sustaining 

cell proliferation in acute myeloid leukemia cells (Salvatori et al., 2012). Despite the recent 

identification of these microRNAs, little is known about the microRNA-dependent regulatory 

networks operating in cells that impact E2F mRNA stability, and to what extent these networks 

are relevant for E2F expression and function.  

 

1.1.3. Functions of E2F protein family 

1.1.3.1. Cell cycle regulation by E2F factors 

E2F factors are best known for their role in cell cycle control through the regulation of the 

transcriptional machinery required for the expression of genes involved in cell cycle entry and 

DNA synthesis (Bertoli, Skotheim and de Bruin, 2013). According to the currently accepted 

model of cell cycle regulation, in quiescent cells, the transcription of genes required for cell cycle 

entry and progression is repressed by complexes formed by hypophosphorylated pocket 

proteins bound to E2F factors (Weinberg, 1995; Trimarchi and Lees, 2002), together with a large 

number of chromatin modifying components. The main repressor complex present in some cells, 

such as fibroblasts, appears to be formed by E2F4-5 proteins (Li et al., 1997; Gaubatz et al., 

2000). By contrast, our group has shown that in resting lymphocytes the repressor complexes 

formed by E2F1-3 are as prevalent as those formed by E2F4-5 (Infante et al., 2008; Laresgoiti et 

al., 2013). 

Growth factor-mediated stimulation of quiescent cells triggers several signaling cascades 

leading to the activation of Cyclin/CDK complexes, thus allowing entry into the cell cycle 

(Santamaria and Ortega, 2006). The RAS-MAPK signaling pathway is well-known for its role in 

Cyclin/CDK activation, whereby activated MAP kinases phosphorylate the transcription factors 

MYC and AP-1, and lead to the transcriptional activation of Cyclin D1, CDK4 and CDK6 (Coleman, 

Marshall and Olson, 2004; Bretones, Delgado and León, 2015). Newly generated CyclinD1/CDK4-

6 complexes are capable of mono-phosphorylating pocket proteins (Narasimha et al., 2014) 

(Figure 4). The phosphorylation of PPs is thought to be sufficient to release a few repressor 

complexes, thereby leading to the expression of some E2F target genes, including Cyclin E. 



Introduction 

37 
 

 

 Figure 4: Mammalian cell cycle-dependent transcriptional regulation by E2F and pocket proteins. In 
G0 (quiescence) and G1, the constitutively expressed E2F4 and E2F5, as well as E2F1-E2F3, associate 
with pocket proteins and maintain repression of E2F-responsive genes. Upon mitogenic stimulation, 
the sequential phosphorylation of PPs by activated CDKs results in the loss of PPs function, and release 
of E2Fs. These events initiate a transcriptional program driven by E2F1, E2F2 and E2F3 that leads cells 
into S phase. This G1/S-specific transcriptome is then attenuated on completion of S phase and G2 by 
the action of E2F6 and E2F7/8.  

 

In late G1 phase, the newly transcribed Cyclin E complexes with CDK2 to multiphosphorylate the 

mono-phosphorylated PPs, leading to the full release of the activating E2F1–3 (Narasimha et al., 

2014), an event that is critical for cells to proceed through the restriction point (Yao et al., 2008). 

Cyclin D/CDK4-6 and Cyclin E/CDK2 can also phosphorylate p107 and p130, which enables the 

disruption of the DREAM complex (Guiley et al., 2015). Subsequently, free E2F4 is exported from 

the nucleus, and it is not thought to participate in the transcriptional induction of E2F target 

genes (Gaubatz et al., 2001).  

Once released from pRB, E2F1–3 together with DP1 or DP2 and histone acetylases (HATs) 

activate target gene promoters through E2F promoter elements (Figure 4).  These G1/S genes 

encode many of the factors required for DNA replication (i.e. MCM2-7, CDC6, PCNA), 

transcriptional regulation (i.e. MYBL2, E2Fs, EZH2), or key proteins for cell cycle progression such 

as kinases/phosphatases or polymerases (i.e. CCNE1-2, CDC7, CHEK1, POLA1-2) (Figure 5). 

Notably, genes that encode E2F1, E2F2 and E2F3 themselves are G1/S cell cycle genes and 

participate in a positive autoregulatory feedback loop that amplifies transactivator function at 

the G1/S boundary (Figure 5). E2F1-3 transcription factors are not only regulators of protein-
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coding genes involved in cell cycle regulation, but are also critical for the timely activation of a 

set of cell cycle-dependent microRNAs during G1/S.  At least four microRNA clusters, let-7a-d, 

let-7i, mir-15b-16-2, and mir-106b-25, have been identified as direct targets of E2F1 and E2F3 

during G1/S (Bueno et al., 2010). 

 

 

Figure 5: G1/S phase genes and microRNAs regulated by E2Fs. Genes and microRNAs activated by 
E2F1-3 in the G1-S transition are represented by their different functions. 

 

The classical model arguing that the main role of E2F1-3 factors is to promote cell cycle entry 

and progression (Nevins, 1992; Weinberg, 1995; C. Lee et al., 2002) has been recently challenged 

by findings gathered by our group. We have shown that loss of E2F2, or more dramatically, the 

combined loss of E2F1 and E2F2 leads to overexpression of target genes and to accelerated 

replication of DNA in multiple cell types, implying a negative role for these proteins in 

proliferation control (Murga et al. 2001; Infante et al. 2008; Laresgoiti, 2013). This findings have 

been subsequently confirmed by others (Pusapati et al., 2009; Zhang et al., 2017).  Importantly, 

our group has shown that inappropriate DNA replication upon E2F1/E2F2-loss leads to DNA 

replication stress and subsequent cell cycle arrest, suggesting that the critical role of activating 

E2Fs is not to promote cell cycle entry. Instead, they are required to prevent unscheduled DNA 

replication and replicative stress by repressing target genes involved in these processes, 

presumably in complex with pRB (Iglesias-Ara et al. 2010; 2015). E2F1-3 induced microRNAs also 

contribute to limit the cellular responses to E2F activation by dowregulating the expression of 

G1/S genes necessary to progress through the cell cycle, thus preventing replicative stress and 

genomic instability (Bueno et al., 2010).  
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When cells progress through S phase, the repressing E2Fs (E2F6-8) are induced by E2F1-3  

(Giangrande et al. 2004; Christensen et al. 2005, Di Stefano et al. 2003). During late S phase, 

E2F6-8 replace E2F1-3 on target promoters, and serve to repress the expression of the G1/S 

genes when DNA synthesis is completed (Giangrande et al. 2004; Di Stefano et al. 2003; 

Christensen et al. 2005; Westendorp et al. 2012) (Figure 4). Regarding E2F7, genome-wide 

chromatin immunoprecipitation and transcriptomic assays carried out by Alan de Bruin’s group 

has identified a set of E2F7 target genes involved in DNA replication and metabolism, as well as 

cell cycle regulation, whose expression is repressed by E2F7 in late S-phase (de Bruin et al., 

2003). The list of genes includes CDC6, CDT1, MCM2, DHFR and RRM2, all of which have been 

described as induced by E2F1-3. RNA-Seq experiments carried out recently by our group upon 

E2F7 mRNA silencing have confirmed the identity of the DNA replication and cell cycle regulation 

genes reported previously (Mitxelena, 2014), suggesting that E2F7 plays an important role in the 

attenuation of the transcriptional program that drives cells through G1 and S. The fact that 

overexpression of E2F7 blocks cell cycle progression (Westendorp et al., 2012), and that 

depletion of E2F7 accelerates the cell cycle (Mitxelena, 2014) is consistent with this repressor 

role for E2F7. Interestingly, our transcriptomic analysis also revealed a set of microRNAs that are 

repressed by E2F7 throughout the cell cycle (Mitxelena, 2014), although their cellular function 

was not established.  

1.1.3.2. Apoptosis regulation by E2F factors 

In addition to their role in regulating cell cycle progression, E2F transcription factors can also 

promote the expression of a set of genes that induces the apoptotic program in certain contexts. 

Given the seemingly opposite roles of E2Fs as pro-apoptotic and pro-proliferative factors, a 

considerable effort has been dedicated to elucidate the factors influencing E2F-induced 

apoptosis, as well as downstream targets of E2F in this process, to try to understand the 

mechanisms for such disparate roles.  

Among the E2F family members, E2F1 is the best characterized apoptosis regulator, owing to its 

ability to modulate a large number of pro-apoptotic genes (Jiang et al., 2015; Pagliarini et al., 

2015; He et al., 2018; Xie et al., 2018). E2F1 overexpression was firstly described as apoptosis 

inducer by the Adams group in 1994 (Qin et al., 1994). Consistent with this, our lab showed 

subsequently that E2F1 knockout mice exhibit reduced apoptosis rates in the thymus (Field et 

al., 1996) and deficient thymic negative selection, giving rise to the accumulation of self-reactive 

T cells in the peripheral lymphoid organs (García et al., 2000). E2F1 knockout mice develop late-

onset tumors (Rounbehler et al., 2002), which has led to propose that E2F1 functions as a tumor 

surveillance factor, detecting aberrant proliferation and engaging apoptotic pathways to protect 

the organism from developing tumors. 
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Mechanistically, E2F1-induced cell death is thought to occur via multiple pathways. E2F1 was 

first described to induce apoptosis through a p53-dependent pathway by inducing the 

transcription of E2F1 target gene p14ARF, which binds directly to MDM2 and inhibits its ability to 

degrade p53 (Pomerantz et al., 1998). This regulation results in p53 accumulation and 

subsequent activation of its downstream target genes required for apoptosis (Kowalik et al., 

1998). E2F1 can also induce apoptosis in a p53-independent manner regulating genes that are 

not directly related to p53 pathway. The main apoptotic gene regulated by E2F1 is the p53 family 

member p73. Activation of p73 by E2F1 can lead, at least in part, to the transcriptional activation 

of p53-responsive target genes and apoptosis in cells that are p53 deficient (Stiewe and Pützer, 

2000), which might constitute a p53-independent anti-tumorigenic safeguard mechanism. 

Moreover, E2F1 can also directly activate the expression of several pro-apoptotic genes, 

including APAF1, which forms a complex with cytochrome c and activates procaspase 9 leading 

to apoptosis (Bracken et al., 2004; Pützer, 2007; Polager and Ginsberg, 2008).  

It has recently been proposed that E2F1-driven regulation of apoptosis is dependent on the 

cellular levels of E2F1 protein and on the different affinities of E2F1 for its target genes. Low 

levels of E2F1 were found to only induce cell cycle-promoting genes which bind E2F1 with high 

affinity, whereas higher levels where necessary to induce the key apoptotic E2F1 targets APAF1, 

PUMA, HRK and BIM (Shats et al., 2017). Thus, the level of E2F1 expression emerges as a key 

parameter that determines whether a cell will progress into the cell cycle or whether it will 

undergo apoptosis. 

Other members of the E2F protein family have also been described as apoptosis modulators. 

The apoptosis elicited by E2F3 overexpression has been associated in some studies with 

increased E2F1 levels and E2F1-dependent apoptosis (Lazzerini Denchi and Helin, 2005; 

Martinez et al., 2010), whereas in another study it was described to be E2F1-independent (Hong, 

Paulson and Johnson, 2008). E2F2 has also been described to induce apoptosis independently 

of E2F1 levels (Chen et al., 2013).  

While E2F1-3 appear to be pro-apoptotic factors when overexpressed, E2F6-8 seem to have an 

anti-apoptotic role through the downregulation of E2F1 levels. E2F6 represses apoptosis by 

counteracting E2F1 expression in human hematopoietic cells (Kikuchi et al., 2007) and in human 

embryonic kidney cells (Yang et al., 2008). Similarly, E2F7 and E2F8 were found to modulate 

apoptotic responses through the regulation of E2F1 expression (Moon and Dyson, 2008). In 

keratinocytes, E2F7 was able to antagonize E2F1-induced apoptosis (Endo-Munoz et al., 2009), 

and the combined inactivation of E2F7-8 triggered apoptosis via induction of E2F1 in response 

to stress (Thurlings et al., 2016). 
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All these previous evidences point to E2F1 as a critical E2F family member in apoptosis 

regulation, which may impact tumor development because of its dual roles as a promoter of 

cell-cycle progression and as an inducer of apoptosis (Pomerantz et al., 1998; Irwin et al., 2000; 

Polager et al., 2002). In non-tumor cells expressing physiological levels of E2F1, its contradictory 

pro-survival and pro-apoptotic activities are thought to be under tight regulation in order to 

keep the homeostasis of the cell. In the event of a deregulation of the PP/E2F pathway, E2F1 

levels increase, thus activating the apoptotic program to eliminate aberrant cells. In cancer cells, 

in which E2F1 activity is typically increased, its pro-apoptotic activity needs to be restrained in 

order to achieve neoplastic transformation, either by the inhibition of negative regulators of 

E2F1 activity (such as p53) or by the activation of counterbalancing pro-survival signals (such as 

PI3K pathway) (Dynlacht, 2008; Hallstrom, Mori and Nevins, 2008).  The number of modulators 

of E2F1’s apoptotic activity is probably more numerous, but their nature remains to be 

identified. 

 

1.1.3.3. E2F factors and cancer 

Genomic aberrations involving PP/E2F pathway have been described in most cancer types 

during the last decades. Mutation of the pRB gene was first observed in inherited retinoblastoma 

(Friend et al., 1986). It was later found that loss of pRB function is very common in human cancer, 

including osteosarcomas, small cell lung carcinomas, breast carcinomas and others (Weinberg, 

1995). Besides mutation in pRB gene, other mutations in human cancers that disrupt the 

regulation of the PP/E2F pathway involve inactivating mutations of the p16INK4a cyclin kinase 

inhibitor or activating mutations of Cyclin D. In the absence of p16, Cyclin D/CDK4 activity is 

elevated, leading to abnormal pRB phosphorylation. Loss of p16INK4a function is highly prevalent 

in sporadic cancers of a variety of types (Romagosa et al., 2011). Cyclin D1, which functions as a 

mitogenic sensor and allosteric activator of CDK4/6, is one of the more frequently altered cell 

cycle regulators in cancers, and its overexpression can be attributed to many factors including 

increased transcription, translation, and protein stability (Witzel, Koh and Perkins, 2010).  

Due to the mutations in the PP/E2F pathway described above, virtually all cancers have an 

increased E2F activity, and for some cancers, such as ovarian carcinoma, it has been 

demonstrated that elevated E2F activity is the triggering cause for tumor growth (Zhan et al., 

2016).  
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In addition to increased E2F activity due to loss pRB function, E2F amplification has also been 

described in several cancers. According to the bioinformatics tool cBioportal 

(http://www.cbioportal.org/index.do) and the recently released The Cancer Genome Atlas 

(TCGA) data, E2F family genes are amplified in tumoral processes such as prostate cancer, 

cervical cancer or ovarian cancer (Table 1). More specifically, E2F1 has been described as 

amplified in a subset of head and neck squamous cell carcinomas (HNSCCs) infected with human 

papillomavirus (TGCA Network, 2014). 

Table 1: Percentage of tumoral processes showing E2F amplification 
 

 

The amplification of both E2F1 and E2F7 genes in prostate cancer could seemingly result in 

contradictory outcomes due to the negative-loop regulation that is established between these 

E2Fs. However, additional mechanisms may be in place in these cancers that counteract some 

of the effects of these E2Fs. For example, it has been recently described that head and neck 

squamous cell carcinomas express aberrant levels of XPO1, leading to the nuclear exclusion of 

E2F7 specifically. As a consequence, the transcription of E2F responsive genes by E2F1 is 

increased due to lack of E2F7-mediated repression (Saenz-Ponce et al., 2018). These results 

suggest a mechanism by which a tumor cell can develop in the simultaneous presence of both 

activator and repressor E2Fs. 

In summary, the increased E2F activity as well as the genomic amplification of E2F family 

members in many types of cancer suggest an important role for these factors in tumor 

development. However, mechanisms by which E2Fs could be regulating this process remain 

poorly understood.  

Amplified E2F Cancer type % of the cases

E2F1

Prostate 17

Ovarian 4.1

Cervical 2.9

E2F2-3
Bladder 11.7

Ovarian 8.2

E2F4-5
Breast 6.59

Prostate 4.87

E2F6
Ovarian 2.31

Endometrial 1.71

E2F7 Prostate 14

Soft Tissues 4.15

http://www.cbioportal.org/index.do
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1.2. The DNA Damage Response and E2F 

Genomic screens carried out to identify the transcriptional program regulated by E2Fs have 

identified a surprisingly large number of genes with functions in DNA repair and DNA damage 

checkpoints (Wang et al., 2000; Ren et al., 2002; Iglesias et al., 2004; Stevens and La Thangue, 

2004; Infante et al., 2008; Laresgoiti et al., 2013; Collin et al., 2018). These findings suggest that 

E2F directly links cell cycle progression with the coordinated regulation of genes essential for 

DNA stability and repair. Because of their interest for this thesis work, the types of DNA lesions 

and their repair mechanism will be examined in more detail in this section, including the role of 

E2F in this process.  

 

1.2.1. Sources of DNA damage and types of DNA lesions 

The genome of any living cell is constantly exposed to many sources of damage, both 

endogenous and exogenous, which can generate a great variety of DNA lesions. In order to solve 

these lesions and overcome the damage, cells are equipped with several systems – together 

called the DNA damage response (DDR) – to detect DNA damage, signal its existence and 

facilitate its repair. 

1.2.1.1. Endogenous sources of DNA damage 

A large proportion of the DNA damage that is relevant to mutagenesis, carcinogenesis and aging 

is of endogenous origin. Most of endogenous DNA damage metabolites generated as byproducts 

of cellular metabolic processes, such as reactive oxygen species (ROS), nitrous acid and S-

adenosylmethionine, are examples of sources of endogenous DNA damage. Reactive oxygen 

species are produced during aerobic respiration and can result in base modification and single- 

or double-strand DNA breaks (Figure 6) (De Bont and van Larebeke, 2004).  

Another important example is nitrous acid, which is formed in the stomach during consumption 

of nitrite-containing foods and certain metabolites of alcohol, cigarette, and high fat diet, such 

as acetaldehyde and malondialdehyde. These metabolites are endogenous sources of 

interstrand crosslinks (ICLs) in the DNA molecule (Langevin et al., 2011; Garaycoechea et al., 

2012; Huang and Li, 2013). In ICL lesions, two nucleotides on opposite strands are covalently 

joined and, thus, ICLs prevent the separation of the two DNA strands (Figure 6). DNA ICLs are 

considered among the most deleterious DNA lesions, since they block DNA replication and 

transcription.  
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Finally, S-adenosylmethionine is a reactive methyl group donor contributing to physiological 

enzymatic DNA methylation. This enzyme plays a role in regulation of gene expression (Holliday 

and Ho, 1998). However, it can also form mutagenic adducts (Figure 6) in the DNA due to its 

alkylating role (Stern et al., 2000). 

1.2.1.2. Exogenous sources of DNA damage 

As regards exogenous sources of DNA damage, they are environmental sources of DNA damage 

that could mainly come in form of radiation or exogenous genotoxic chemicals.  

Radiation is capable of penetrating to the cell nucleus and cause various injuries to the chemical 

structure of DNA. Ionizing radiation, such as X rays or gamma (γ) radiation, can generate single-

strand and double-strand breaks in the DNA (Figure 6) (Roots, Kraft and Gosschalk, 1985). 

Radiation of ultraviolet (UV) wavelength is the main example of non-ionizing DNA damage. UV-

radiation induces covalent bonds between nucleotides, generating dimers of different nature 

(Jiang et al., 2009). 

Regarding exogenous genotoxic chemicals, each agent causes lesions of different nature and 

toxicity (Hühn, Bolck and Sartori, 2013). Radiomimetic compounds such as neocarzinostatin 

(NCS), DNA intercalators (e.g. doxorubicin) and topoisomerase I and II inhibitors (e.g. etoposide 

and camptothecin) form single-strand and double-strand breaks in the DNA. There are also DNA 

interstrand crosslink-inducing agents (e.g. cisplatin and mitomycin-C) and DNA alkylating agents 

(e.g. temozolamide and methyl methanesulfonate) that form DNA adducts (Figure 6).  

Most anti-cancer therapies are based on the exogenous generation of DNA lesions either 

through use of radiation or through treatment with chemical compounds. A better 

understanding of how the various chemical agents damage DNA, and how this damage is 

repaired, has become a priority towards the design of effective doses and combination therapies 

for each type of cancer.  

 

Figure 6: Sources and types of DNA lesions. Exogenous and endogenous DNA damaging agents 
generate various types of lesions including DNA single- and double-strand breaks (SSBs and DSBs), DNA 
interstrand crosslinks (ICL), mismatches, DNA adducts and damaged pair bases.  
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1.2.2. DNA damage response 

1.2.2.1. DNA damage sensors and transducers 

In order to protect the genome, all types of structural alterations generated in the DNA must be 

detected by the cell. As a result, a DNA repair response will be activated. The DDR is a 

hierarchical process that activates several groups of proteins in a certain order and specific 

manner, depending on the type of damage (Figure 7) (Ciccia and Elledge, 2010). DNA damage 

signaling starts with the recognition of the lesion by several molecular complexes that sense and 

signal different types of insults in the DNA. These complexes, known as sensors, are in constant 

contact with the chromatin and, upon damage; they transmit and amplify the signal through 

complexes known as transducers.  

In the case of DNA adducts created by alkylating agents, those are first recognized by specific 

DNA glycosylases which remove the damaged base creating an abasic site. Subsequently, the 

endonuclease APE1 acts as a transducer to promote the recruitment of the SSB repair machinery 

(Figure 7). 

 

Figure 7: DNA damage responses. Schematic representation of different DNA response pathways 
depending the damage type. Examples of main sensors, transducers and effectors are indicated. 
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When a single-strand break (SSB) is generated, usually by γ-IR or ROS, or indirectly during repair 

of DNA adducts, PARP1 protein acts as molecular sensor (Figure 7). Activated PARP1 carries the 

synthesis of poly(ADP-ribose) (PAR) chains at damaged sites, and this is one of the earliest events 

of the DNA damage response to SSBs. Upon binding on sites of damaged DNA PARP1 assembles 

PAR chains on target proteins, including histones H1 and H2B, and PARP1 itself (Schreiber et al., 

2006). This histone parylation leads to the repair of the gap by one of the SSB repair mechanisms. 

When a double-strand break (DBS) is generated the most significant transducers of damage in 

the DNA are the kinases ATM (Ataxia Telangiectasia Mutated) and ATR (ATM and Rad3 related) 

(Blackford and Jackson, 2017), whereas PARP1 plays a role in its sensing (Ray Chaudhuri and 

Nussenzweig, 2017). ATR and ATM regulate a global cellular response by phosphorylating a 

number of target proteins that amplify the signal. Directly downstream of the ATM and ATR 

kinases, several  substrates, also known as mediators of the DDR, regulate the spatio-temporal 

assembly of protein complexes involved in DNA repair in the chromatin region next to the lesion 

(Fernandez-Capetillo et al., 2002; Blackford and Jackson, 2017). Among the proteins involved in 

amplifying the signal, the variant histone H2AX has been the most intensively studied. At the 

site of DNA damage, H2AX becomes phosphorylated on Ser139 by ATM and ATR (Rogakou et al., 

1998). This event facilitates an efficient signaling and repair of the lesion. 

UHRF1 acts as a sensor for DNA interstrand crosslinks (ICLs). UHRF1 is an integral part of the 

Fanconi anemia DNA repair pathway and is recruited to ICLs within seconds of their appearance 

in the genome. Its recruitment is required for proper assembly of FANC proteins to damaged 

sites (Liang et al., 2015).  

 

1.2.2.2. DDR signaling pathways 

In order to continue being viable, once the damage is identified and the transducers have 

amplified and transmitted the signal, the DNA lesion must be repaired by the cell. Several main 

repair mechanisms are used by the cells depending on the type of damage and the sensor 

involved.  

In the case of DNA adducts provoked by alkylating agents, the gap produced in the DNA by DNA 

glycosylases is repaired by Base Excision Repair (BER), one of the SSB repair mechanisms, 

through a short or a long-patch (Caldecott, 2008).  In the short-patch repair pathway (used to 

repair single nucleotide gaps) PARP1 recruits the scaffold protein XRCC1 and DNA 

polymerase β (POLβ) to replace the damaged nucleotide.  
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Figure 8: 
Simplified BER 
repair pathway. 
The first step of 
BER involves 
recognition, base 
removal and 
incision. Then, 
depending on the 
incision length, one 
of the two 
pathways, short 
patch repair (left) 
and long patch 
repair (right) are 
chosen in order to 
carry out the 
repair. 

 

Finally, DNA ligase III (LIG3) is recruited to ligate the nick, and intact DNA is restored (Figure 8). 

In the long-patch repair pathway (used to repair 2-15 nucleotide gaps), PARP1 also recruits 

XRCC1 as before, but now this is followed by the recruitment of PCNA. Subsequently, DNA 

polymerase δ/ε (POLδ/ε) extends the strand and FEN1 closes the gap. The nick is subsequently 

ligated by DNA ligase I (LIGI) (Figure 8). 

Double-strand breaks are repaired either by non-homologous end-joining (NHEJ) or homologous 

recombination (HR)  mechanisms (Ciccia and Elledge, 2010). During NHEJ, after the break 

detection by KU70/80, DNA-dependent protein kinase (DNA-PKcs) plays a critical role in 

stabilizing DSB ends and preventing end resection through a series of phosphorylation reactions 

providing access to end-processing enzymes, such as ARTEMIS (Meek, Dang and Lees-Miller, 

2008). After DNA-PKcs is loaded, scaffold protein XRCC4 is recruited, allowing the subsequent 

recruitment of the DNA Ligase 4 (LIG4) which promotes the religation of the broken ends 

(Mahaney, Meek and Lees-Miller, 2009).  
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Figure 9: Double-strand break repair pathways. Once the cell recognize the double strand breaks, one 
of the two main repair mechanisms is selected depending on the cellular context. In NHEJ (left) the 
action of KU 70/80, DNA-PKcs and Artemis kinase led to the recruitment of XRCC4 and LIG4 in order to 
repair the break. In HR (right) the recruitment of RAD51 and BRCA1/2 by RPA proteins led to the 
formation of the Holliday junction and the repair of the break.   

 

HR requires 5´-3´resection of DSBs, a process that depends largely on CTIP (also known as RBBP8) 

which cooperates with several MRN complex proteins (Ciccia and Elledge, 2010). The resection 

process generates ssDNA, which is covered by RPA. This initiates BRCA1- and BRCA2- dependent 

recruitment of RAD51 to the lesion (Ciccia and Elledge, 2010). Next, the replication machinery 

fills the lacking sequence using ssDNA ends as primers. This structure, known as Hollyday 

junction, will later give rise to two separate sister chromatids by a mechanism that is still under 

debate.  
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Interstrand crosslinks present a formidable challenge to the cellular repair machinery. It’s repair 

is thought to involve the coordination of components of several repair systems, including 

homologous recombination (HR) and translesion synthesis (TLS) (Walden and Deans, 2014). 

  

 

Figure 10: Fanconi Anemia repair 
pathway Schematic sequential 
representation of the steps of the 
Fanconi Anemia pathways are 
represented. 

ICLs are extremely toxic for the cell because they produce stalled replication forks and avoid the 

progression of the cell cycle (Osawa, Davies and Hartley, 2011). To cope with this life-threatening 

crisis, cells must invoke the Fanconi anemia (FA) DNA repair pathway. ICLs recruit and activate 

the FA core complex (FANCA, B, C, E, F, G, L) which is required for monoubiquitination of FANCD2 

and FANCI, leading to their retention on chromatin (Figure 10).  

FA core 
complex

FANCD2 FANCI

Ub Ub

FANCD2 FANCI

Ub Ub

FAN1

TLS

HR
machinery

Replication fork 
stalled by ICL

FA complex 
recruitment

FANCD2/I 
ubiquinization

FAN1 
resection

TLS machinery 
polimerization

HR machinery
repair

Ligation



Introduction 
 

50 
 

Retention of FANCD2–FANCI on chromatin is followed by the recruitment of components of HR 

and translesion synthesis (TLS), which bypass DNA lesions at the replication fork (Figure 10) 

(Ciccia and Elledge, 2010). FAN1 nuclease is thought to provoke the incision of ICLs by serial 

nuclease activity and the resulting gap is subsequently bypassed by TLS polymerases, followed 

by removal of the unhooked ICL. The resulting DSB is repaired by HR as described above. 

1.2.3. DNA damage and cell cycle control 

In order to have enough time for the cells to detect the damage in the DNA molecule, repair it 

and avoid its spreading to next generations, the described DDR pathways are able to pause cell 

cycle progression in proliferating cells through the activation of DNA damage checkpoints (Ciccia 

and Elledge, 2010). The DDR curbs the activity of Cyclin-CDK complexes to elicit a cell cycle arrest 

in G1 or G2 phases, or to slow down replication in S-phase (Mikhailov, Cole and Rieder, 2002). 

Checkpoint kinases CHK1 and CHK2, direct substrates of ATR and ATM respectively, play 

important roles in this process through multiple mechanisms (Shaltiel et al., 2015). On the one 

hand, CHK1 phosphorylates and activates proteins such as WEE1 kinase, which phosphorylates 

amino acids tyrosine 15 and threonine 14 of CDK1, keeping its kinase activity low and preventing 

entry into mitosis and contributing to G2/M checkpoint (Harvey et al., 2005). On the other hand, 

CHK2 phosphorylates the phosphatase CDC25 in serine 123 leading to its inhibition, which also 

leads to a blocking into mitosis entry and activation of G2/M checkpoint (Falck et al., 2001).  

Additionally, ATM, ATR, CHK1 and CHK2 DNA damage response proteins are able to 

phosphorylate p53 during all phases of the cell cycle, contributing to its stabilization (Canman et 

al., 1998) and enhancement of its transcriptional activity, both as an inductor and repressor of 

gene expression (Bieging, Mello and Attardi, 2014). For example, one of the mayor targets of 

p53 transcriptional activation is p21CIP1, a potent cyclin-dependent kinase inhibitor (CKI) that 

binds and inhibits CDK complexes thereby promoting activation of a checkpoint (Shaltiel et al., 

2015).  

Besides the more classical G1 or G2/M checkpoints, other checkpoints have been described that 

are also crucial in order to ensure a proper progression of the cell cycle, including the DNA 

replication checkpoint (Toledo, Neelsen and Lukas, 2017).  Cells activate this checkpoint in 

response to damage during S phase to protect genomic integrity and ensure replication fidelity. 

The checkpoint prevents genomic instability mainly by regulating origin firing, fork progression, 

and transcription of G1/S genes in response to DNA damage. Several studies hint that regulation 

of forks progression is perhaps the most critical function of the DNA replication checkpoint (Iyer 

and Rhind, 2017), and despite many years of intensive research into the replication checkpoint, 

the mechanisms underlying the consequences of its failure remain largely elusive and 

controversial. 
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1.2.4. Role of E2F factors in the DNA Damage Response.  

Genome-wide studies performed in the absence of an obvious induction of DNA lesions with 

gain-of-function and loss-of-function cellular models of E2Fs have led to the identification of a 

large number of genes involved in DNA Damage Response regulated by E2Fs. Included in this 

group are checkpoint regulators (CHK1, BUB3, TTK or DHFR) or DNA repair factors (BRCA1, 

UHFR1, BARD1, RAD51 or FEN1) (Wang et al., 2000; Ren et al., 2002; Iglesias et al., 2004; 

Westendorp et al., 2012; Laresgoiti et al., 2013), suggesting an important role for E2Fs in genome 

stability. However, the E2F-dependent regulation of these target genes upon exogenous DNA 

damage, and the role of individual E2Fs in DNA damage responses are still poorly understood.  

In response to DNA damage of diverse origins, such as UV radiation or chemotherapeutic agents, 

the levels of some E2F proteins are increased significantly (Engelmann et al., 2009; Biswas, 

Mitchell and Johnson, 2014). The induction of E2F1 was described to be primarily due to an 

increase in the stability of the protein through post-translational modifications such as 

phosphorylations by ATM/ATR in serine 31 after neocarzinostatin treatment (Lin, Lin and Nevins, 

2001) or acetylations on lysines adjacent to DBD domain (Martínez-Balbás et al., 2000). 

Phosphorylation of E2F3 by ATR/CHK1 axis on serine 124 in response to treatment with the 

alkylating compound MNNG also leads to protein stabilization (Gong et al., 2016). At the 

transcriptional level, E2F1 expression can also be induced together with E2F2 in neurons after 

oxidative damage (Castillo et al., 2015). The atypical E2F protein, E2F7, was also shown to be 

induced in response to genotoxic damage (Zalmas et al., 2008). Again, E2F7 accumulation was 

the result of protein stabilization due to a specific phosphorylation by CHK1 in cells treated with 

etoposide or doxorubicin (Yuan et al., 2018) or by increase in p53-dependent mRNA expression 

in cells treated with doxorubicin (Carvajal et al., 2012). 

Little is known about the role of E2Fs in DNA damage responses. It has been reported that E2F1 

protein accumulates at sites of DSBs and UV radiation-induced lesions. In this lesion sites, E2F1 

functions to enhance DNA repair by the recruitment of repair factors such as NBS1, leading to 

the correct formation of DSB repair foci (Liu et al., 2003; Chen et al., 2011; Biswas, Mitchell and 

Johnson, 2014). Moreover, E2F1 together with E2F2, can be located in DNA damage sites after 

oxidation and UV-treatment interacting with γH2AX promoting the repairing RAD51 foci 

formation (Castillo et al., 2015). E2F7 has been described to locate to damaged sites of DNA 

after treatment with camptothecin and to recruit CTBP and HDAC proteins thus, altering the 

local chromatin environment of the DNA lesion (Zalmas et al., 2013). 
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E2F-mediated transcriptional regulation of DDR genes has been described in several examples 

of genotoxic damage. E2F1 was found to be involved in DNA SSB responses through cell-cycle-

dependent upregulation of the repair protein XRCC1 expression leading to the increase of the 

DNA repair (Jin et al., 2011). E2F1 has also been described as regulator of UV-induced DNA 

damage response by upregulation of target genes including p19INK4 (Carcagno et al., 2012) which 

improves DNA repair. Regarding the other classical members of the family, E2F3 activates RRM2 

expression to maintain genome stability in response to environmental chemical carcinogens 

(Gong et al., 2016). Atypical E2F7 is thought to act in concert with p53 in the arrest of the cell 

cycle upon treatment with doxorubicin by repressing the expression of cell cycle genes such as 

DHFR or RRM2 (Carvajal et al., 2012). However, with the exception of a few reports, the role of 

E2Fs in DNA damage responses and repair has not been fully addressed. 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.- HYPOTHESIS AND AIMS 
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E2F transcription factors control the cell cycle and DNA damage responses through regulation 

of target gene expression. Work from numerous laboratories has led to the identification of a 

large set of genes regulated by each individual E2F (Dyson, 1998; Nevins, 1998; DeGregori and 

Johnson, 2006; Xu et al., 2007; Infante et al., 2008; Bueno et al., 2010; Westendorp et al., 2012; 

Laresgoiti et al., 2013). However, most of these studies have been focused on the classical E2Fs 

(E2F1-5), whereas the contribution of the newest additions to the family, E2F7 and E2F8, to 

these processes has not been clearly defined. 

E2F7, an atypical member of the family, whose expression is cell-cycle regulated, displays a 

transcriptional repressor activity capable of suppressing E2F target promoters independently of 

RB (de Bruin et al., 2003; Di Stefano, Jensen and Helin, 2003; Mitxelena, 2014). Gene expression 

profiling analyses carried out recently in our group have identified a set of microRNAs and 

protein-coding genes whose expression is regulated by E2F7 (Mitxelena, 2014). 

We hypothesize that E2F7 plays a unique role in the regulation of cell cycle progression and DNA 

damage response through the transcriptional regulation of its target genes (microRNA and 

protein-coding genes).  

In order to test this hypothesis we established the following aims:  

1. To define the regulation and functional role of E2F7-responsive microRNAs. 

2. To define the regulation and functional role of E2F7-responsive protein-coding genes, 

with a particular focus on the DNA damage response and repair processes.  



 
 

 
 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.- MATERIALS AND METHODS 
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3.1 Cellular biology methods 

 

3.1.1. Cell lines and culture conditions 

The U2OS human osteosarcoma cell line and U2OS-TetOn cell line were purchased from 

American Type Culture Collection. U2OS-DR-GFP cells were kindly provided by Dr. Jordi Surrallés 

(Universitat Autònoma de Barcelona). The HeLa human epithelial cervix carcinoma cell line was 

kindly provided by Dr Jose Antonio Rodriguez (UPV/EHU). The CAPAN-1 human metastatic 

pancreatic cell line was kindly provided by Dr. David Olmos (CNIO). 

U2OS and HeLa cell lines were maintained in DMEM medium supplemented with 10% (vol/vol) 

fetal bovine serum (FBS) at 37°C in a humidified atmosphere containing 5% CO2. CAPAN-1 cell 

line was maintained in DMEM medium supplemented with 20% (vol/vol) fetal bovine serum 

(FBS) at 37°C in a humidified atmosphere containing 5% CO2 

Table 2: Cell seeding conditions in each experimental setting. 

 

 

Procedure Cell line Type of plate Cell density

Western Blot
U2OS 6-well 0.25x106/well

U2OS-DR-GFP 6-well 0.25x106/well

RT-Q-PCR
U2OS 6-well 0.2x106/well

HeLa 6-well 0.2x106/well

pH3+ Mitotic index

U2OS 6-well 0.2x106/well

U2OS-E2F7 KO 6-well 0.2x106/well

HeLa 6-well 0.2x106/well

Metaphase spreads U2OS 100 mm dish 1.5x106/dish

ChIP U2OS 150 mm dish 5x106/dish

Co-Immunoprecipitation U2OS-TetOn 150 mm dish 5x106/dish

CFSE U2OS 6-well 0.25x106/well

BrDU U2OS 6-well 0.25x106/well

Colony formation assay
U2OS-E2F7 KO 6-well 10.000/well

CAPAN-1 6-well 10.000/well

γ-H2AX staining U2OS-E2F7 KO 6-well 0.25x106/well

Homologous
Recombination efficiency U2OS-DR-GFP 6-well 0.25x106/well

Cell survival assay U2OS-TRE-E2F1 96-well 10.000/well

High-throughput
screening U2OS-TRE-E2F1 384 well 1.500/well
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For each experimental condition, cells were seeded at a specific concentration, as detailed in 

Table 2. Briefly, cells were detached by incubation with trypsin-EDTA (Sigma) solution for about 

3 minutes at 37°C, and resuspended in culture medium containing FBS to inhibit further trypsin 

activity. The cell density of the suspension was evaluated using a Neubauer cell-counting 

chamber. In order to count only viable cells, an aliquot of the cell suspension was diluted in the 

vital dye trypan blue. This dye allows discriminating between live and dead cells, since the latter 

have their plasma membrane damaged, and thus are stained blue when treated with trypan 

blue. 

 

3.1.2. Cell lines generated in this thesis 

3.1.2.1. U2OS-E2F7-KO cells 

E2F7 knockout cells were generated using the CRISPR/Cas9 system with the collaboration of Dr. 

Iraia García-Santisteban in the laboratory. A CRISPR guide RNA (gRNA) targeting the second 

coding exon of E2F7 was designed using Benchling, and cloned into the BbsI site of pX330 

(42230, Addgene). U2OS cells were co-transfected with this plasmid, together with pDonorPuro 

plasmid containing a gRNA to the zebrafish TIA gene (5 -GGTATGTCGGGAACCTCTCC3 ) and a 

P2A-puromycin resistance cassette flanked by two TIA target sites, kindly provided by Dr. 

Brummelkamp (Netherlands Cancer Institute) (Figure 11).  

 

Figure 11: Schematic representation of the generation of U2OS-E2F7-KO using CRISPR-Cas9 system.  
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Co-transfection resulted in excision of the cassette and subsequent sporadic incorporation at 

the site of the targeted genomic locus as previously described (Matas-Rico et al., 2016). 

Successful integration of the cassette into the targeted gene disrupts the allele and renders cells 

resistant to puromycin (Figure 11). After puromycin selection, resistant clones were expanded 

and screened for cassette integration and insertions or deletions into the target gene by 

sequencing the region after PCR amplification (Figure 11). A cell clone carrying an integrated 

puromycin cassette in one allele of E2F7 gene, and a base-pair insertion in the other allele of 

E2F7 gene was selected for experiments involving E2F7-knockout studies (Figure 12).  

  

 

Figure 12: Validation of U2OS E2F7 CRISPR knockout cell clone. Schematic overview of E2F7 gene, 
including exons (grey boxes) and introns (grey line). CRISPR-targeted exon 2 is highlighted in purple, 
and its sequence is indicated below. Guide RNA (gRNA) sequence is indicated in italics, and PAM 
sequence is underlined. Sequences corresponding to the wild type (WT) and knockout (KO) E2F7 cell 
lines are represented. Regarding to the KO cell line, each allele carries a different mutation after the 
PAM sequence: allele 1 has a single base pair insertion, and allele 2 has the P2A-Puromycin-cassette 
insertion. 
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3.1.2.2. U2OS-TRE-E2F1 

U2OS-TRE-E2F1 cells were generated to achieve a regulated overexpression of E2F1 with the 

addition of doxycycline (Das, Tenenbaum and Berkhout, 2016). Plasmids pTetOn Advanced and 

pTRE2hyg2-HA were purchased from Clontech (ref.: 631069 and 631051).  

In order to generate U2OS-TRE-E2F1 cells, E2F1 gene was inserted in pTRE2hyg2-HA plasmid. 

Subsequently, both pTetOn and pTRE2hyg2-E2F1-HA plasmids were co-transfected into cells as 

described in section 3.1.3. Neomycin and hygromycin B resistant cells were selected for 

experiments.  

3.1.3. Transfection 

Transfection of protein-coding and microRNA-coding plasmids (Voorhoeve et al., 2006) was 

performed using XtremeGENE HD (Roche) transfection reagent following manufacturer´s 

recommendations. For 6-well culture plates, the following transfection mixture was prepared:  

1 µg of DNA, 200 µl Optimem culture medium (GIBCO) and 3 µl of XtremeGene HD. The mixture 

was incubated for 15 minutes at room temperature and added dropwise to cell cultures.  

Transfection of small interfering RNAs (siRNAs) and of anti-microRNA oligonucleotides 

(miRVanas) was performed using Lipofectamine RNAiMAX transfection reagent 

(Lifetechnologies) following manufacturer´s recommendations. Briefly, transfection reagent 

was mixed with Optimem (3 µl transfection reagent + 150 µl Optimem per 6-well plate) and 

incubated for 2 min at room temperature. The transfection reagent/Optimem mix was added 

dropwise into a tube containing 0.3 µl siRNA or miRVanas (50 µM) diluted in 150 µl of Optimem. 

The mixture was incubated for 20 minutes at room temperature and added to the cells whilst 

rocking the plate.  

To knockdown the endogenous expression of E2F7, TP53, RAD51 and BRCA2, we used 

commercial siRNAs from Ambion (Life Technologies). As a control, an oligonucleotide with no 

sequence specificity for any human RNA (siNT) was used (Life Technologies) (Table 3). To 

knockdown the expression of miR-7, miR-92 and let-7f we used commercial miRVana from 

Ambion (Life Technologies) and pooled them (Table 3). As a control, a scramble miRVana with 

no specificity (Life Technologies) was used (Table 3). 

To achieve E2F7 overexpression, U2OS-TetOn cells were transfected with pTRE2hyg2-HA 

containing E2F7 coding gene carrying a FLAG tag inserted in the amino terminal end (E2F7-FLAG) 

the protein generated previously in the lab (Mitxelena, 2014). 
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Table 3: List of siRNAs and miRVanas used in this study 

 

 

3.1.4. Cell synchronization 

To synchronize cell cultures in early S phase, exponentially growing cells were incubated with 

4mM hydroxyurea (HU) for 24 hours (Westendorp et al., 2012). HU is known to inhibit the 

activity of ribonucleotide reductase (Elford, 1968), the enzyme that catalyzes the conversion of 

ribonucleotides to deoxyribonucleotides. As a result of such inhibition, treatment with HU 

generates damage in the DNA and cells are arrested at the beginning of S phase. To induce entry 

into cell cycle after HU-induced block, cells were washed twice with PBS and incubated in 

complete medium in the absence of HU. 

To collect cells in mitosis and to prevent their progression to the next cell division cycle, the 

antimitotic drug nocodazole (50ng/ml) was added to the cultures for another 10 hours. 

 

3.1.5. DNA replication assays (BrDU) 

The immunofluorescent staining of incorporated bromodeoxyuridine (BrdU) provides a high-

resolution technique to determine the number of cells that have newly synthesized DNA. In this 

method, BrdU (an analog of the DNA precursor thymidine) is incorporated into newly 

synthesized DNA by cells entering and progressing through the S phase of the cell cycle.  

For the assessment of cell replication, we used FITC Mouse Anti-BrdU Set assay (ref.: 556028) 

supplied by BD Bioscience. Cells were incubated with 10 μM BrDU for 30 minutes at 37ºC and 

5% CO2 to follow its incorporation into the cells. Then, cells were fixed at various time points in 
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70% ethanol in PBS. Finally, cells were disrupted with an HCl solution (2M HCL/Triton X-100 

0.5%) and 1x105 cells were incubated with FITC-anti-BrDU antibody. Samples were analyzed on 

a FACSCalibur flow cytometer (Becton Dickinson). Data generated by the flow cytometer were 

processed with the Summit 4.3 (Beckman Coulter) software. 

 

3.1.6. Proliferation assays 

3.1.6.1. Carboxyfluorescein succinimidyl ester (CFSE) assay  

The assay based on carboxyfluorescein succinimidyl ester (CFSE) intracellular labelling is an 

effective technique to monitor cell division. CFSE covalently labels long-lived intracellular 

molecules with the fluorescent dye, carboxyfluorescein. Thus, when a CFSE-labeled cell divides, 

its progeny are endowed with half the number of carboxyfluorescein-tagged molecules and thus 

each cell generation can be assessed by measuring the corresponding decrease in cell 

fluorescence via flow cytometry. Samples collected at the beginning of the assay represent the 

parental generation (Figure 13), in which intracellular CFSE is undiluted. Cells in the following 

generation (Division 1) carry half the amount of CFSE.  

We used the CellTrace™ CFSE Cell Proliferation Kit (ref.: C34554) supplied by Invitrogen. Cells 

were stained with 0.5 μM CFSE for 20 minutes, washed twice with PBS and seeded for the 

experiment. At various time-points, a sample of the cells were fixed in 70% ethanol in PBS 48h 

after staining. Samples were analyzed on a FACSCalibur flow cytometer (Becton Dickinson). Data 

generated by the flow cytometer were processed with the Summit 4.3 (Beckman Coulter) 

software. 

 

Figure 13: Example of CFSE lost due to first two cell divisions after staining. Each cell generation could 
be identified due to the lost fluorescent signal after CFSE staining 
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3.1.6.2. Crystal violet staining 

To measure cell proliferation by the crystal violet staining method, cells were seeded in 6-well 

plates under indicated experimental conditions and then fixed with 3.7% of paraformaldehyde. 

Then, cells were stained with 0.1% crystal violet (in 70% ethanol/PBS) for 30 minutes and washed 

twice with PBS. Finally, the stained cells were dissolved in 20% acetic acid in water and the signal 

was measured at 590 nm.  

3.1.6.3. Colony formation assay 

The effect of genotoxic compounds on cell survival was assessed by the colony formation assay. 

First, cells were seeded in low density conditions (10.000 cells/well on a 6-well plate). 

Subsequently, cells were transfected and treated as indicated in each case. After 14 days in 

culture, surviving cell colonies were fixed with 3.7% of paraformaldehyde, stained with 0.1% 

crystal violet (in 70% ethanol/PBS) for 30 minutes and washed twice with PBS. Finally, the 

number of colonies was counted manually and we took pictures of each well were taken. 

 

3.1.7. Mitotic index analysis and DDR quantification assay 

In order to analyze the percentage of cells in mitosis cells were stained with an antibody against 

the phosphorylated form of Histone H3 on serine 10 (pH3), a specific marker for chromosome 

condensation occurring in mitosis (Crosio et al., 2002). In order to analyze the percentage of 

cells undergoing DNA damage repair, cells were stained with an antibody against γ-H2AX protein 

as a key protein localized on damage sites (Kuo and Yang, 2008). 

Cell cultures were fixed in 70% ethanol in PBS, centrifuged for 5 min at 1400 rpm and 

permeabilized with 0.05% Tween-20 in PBS. Subsequently, cells were incubated for 2 hours at 

room temperature with a specific antibody against pH3 (06-570, Millipore) to detect mitotic cells 

or with antibody γ-H2AX to detect DDR. Both antibodies were diluted 1:500 in 0.05% Tween-

20/3% BSA solution. Samples were washed twice with permeabilization solution (0.05% Tween-

20), followed by incubation with the secondary antibody against rabbit immunoglobulin labeled 

with a green fluorophore (Alexa Fluor 488) during 1 hour at room temperature. After incubation 

with the secondary antibody three washes were performed with permeabilization solution to 

finally stain the DNA with Propidium Iodide (PI); cells were resuspended in 300 μl staining 

solution composed of 140μM PI, 38mM NaCitrate and 0.01% Triton X-100 (vol/vol). Finally 

samples were incubated for 30 min in darkness at 37°C. 

Samples were analyzed on a FACSCalibur flow cytometer (Becton Dickinson). Data generated by 

the flow cytometer were processed with the Summit 4.3 (Beckman Coulter) software. 
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3.1.8. Homologous recombination efficiency assay 

Homologous recombination (HR)-dependent DNA double stranded break (DSB) repair was 

assessed using the DR-GFP/SceI assay described by M. Jasin´s group (Pierce et al., 1999) (Figure 

14). For these experiments we used a U2OS cell line that carries a recombination substrate, DR–

GFP, inserted in the genome (U2OS DR-GFP cell line). DR–GFP is composed of two inactive GFP 

genes carrying different mutations, and oriented as direct repeats. One of the GFP genes, Sce-

GFP, is mutated to contain the recognition site for the rare-cutting Sce I endonuclease. As a 

result, it will undergo a DSB when the enzyme is expressed ectopically in the cells. The Sce I site 

was incorporated by substituting 11 bp of wild-type GFP sequence with those of the Sce I site 

(Pierce et al., 1999). These substituted base pairs also supply two in-frame stop codons, which 

terminate translation and inactivate the protein. Downstream of the Sce-GFP gene lies an 812-

bp inactive GFP fragment, which contains the wild-type sequence of the region mutated in the 

Sce-GFP copy, and thus, can be used as a substrate for homologous recombination-mediated 

repair of the Sce-GFP copy. Expression of functionally active GFP protein only occurs after an 

HR-mediated repair event of Sce I-produced breaks, which can be assessed by flow cytometry 

as cellular green fluorescence. 

 

 

Figure 14: M. Jasin group method to analyze HR-mediated repair efficiency. DR-GFP substrate 
contains two defective alleles of GFP, one of which harbors an SceI restriction endonuclease site. This 
DNA substrate is integrated into U2OS DR-GFP cells at a single site in the genome. Active repair of the 
double-stranded DNA break at the SceI site by homologous recombination produces a functionally 
active GFP allele. 

 



Materials and Methods 

67 
 

3.1.9. Analysis of chromosomal aberrations 

Chromosomal aberrations were visualized in chromosome spreads following published 

protocols, with minor modifications (Remeseiro et al., 2012). Cells were arrested in metaphase 

after treating cell cultures with Karyomax Colcemid (Lifetechnologies) for 12 hours at a final 

concentration of 100 ng/ml. Metaphase-arrested cells were subsequently harvested and 

resuspended in 9 ml of 75mM KCl at 37°C for 30 mins. 3-4 drops of freshly prepared Carnoy fix 

solution (3:1 Methanol/Acetic) were added to the suspension. Cells were then centrifuged at 

900 rpm and resuspended in 9 ml of fixing solution. After repeating this process three times, an 

aliquot of the cellular suspension was dropped onto microscopy slides to obtain chromosome 

spreads, which were stained and mounted with ProLong Gold Antifade with DAPI 

(Lifetechnologies) reagent. Image acquisition was performed on a Leica DMI 6000B fluorescence 

microscope.  

 

3.1.10. High-throughput apoptosis screening assay 

A screening assay using 4216 pharmaceutical compounds approved by the FDA (supplied by 

Chemical Biology Consortium Sweden) was used to identify mediators of E2F1-driven apoptosis. 

For these experiments, we used U20S-TRE-E2F1 as shown in Figure 15A. Twenty-four hours after 

cell seeding in 384-well plates, doxycycline was added to each well to induce E2F1 expression. 

One day later compounds were added to each corresponding well. Cells were fixed and stained 

with Propidium Iodide (PI) and Hoechst 24 hours later. 

Differences in cell death were detected by high-throughput microscopy with an IN CellAnalyzer 

2200 microscope (General Electric). Using Propidium Iodide (PI) and Hoechst double staining; PI 

positive cells were identified as cells with their membrane compromised, which is one of the 

first hallmarks of cells in apoptosis, and Hoechst staining provided us the total cell amount of 

each cell. The number of PI positive cells relative to Hoechst positive cells provided the accurate 

percentage of cell death.  

Individual images of each well were taken for cell analysis. Image analysis was done using Cell 

Profiler program. To analyze the 4216 compounds in triplicates, 45 384-well plates were used 

(Figure 15B). As positive controls, we used cells treated with doxycycline (overexpressing E2F1), 

but without any compound treatment. As negative controls, we used cells without doxycycline 

or treatments addition. These cells were distributed in several wells in each plate as shown in 

Figure 15B. After image acquisition, the percentage of cell death (PI positive cells/Hoechst 

positive cells) was calculated for each well, being the result the average of three triplicates.  
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Figure 15: Screening approach. (A) Workflow diagram of the experimental protocol followed (B) 

Schematic representation of each plate of the screening 

 

3.2. Molecular biology techniques 

3.2.1. RNA expression analyses 

3.2.1.1.RNA extraction 

RNA is a fragile and unstable biological material. To protect RNA from undergoing degradation, 

all manipulations of RNA samples were performed in RNase-free conditions, as previously 

indicated (Infante et al., 2008). 

Total RNA extraction was performed using Trizol reagent (Lifetechnologies). Cells were lysed by 

adding 1 ml of Trizol per well of a 6-well plate well and were subsequently transferred to an 

eppendorf tube. Next, 400 µl chloroform were added, and tubes were vigorously shaken and 

incubated for 2-3 minutes at room temperature. Samples were centrifuged at 10000 rpm for 10 

minutes at 4°C, and the aqueous phase containing RNA was transferred to a clean 

microcentrifuge. RNA was purified using the miRNeasy kit (Qiagen) following the manufacturer's 

recommendations. This procedure allows the purification of both mRNA and small RNAs, 

including microRNAs.  
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The concentration of purified RNA was determined with a NanoDrop spectrophotometer 

(Thermo Fisher Scientific), by measuring absorbance at 260 nm. RNA samples were stored at –

80°C until use. 

 

3.2.1.2. RT-Q-PCR of mRNA 

RNA was reverse-transcribed into cDNA using the High-Capacity cDNA Reverse Transcription kit 

(Lifetechnologies). One µg of previously extracted and purified RNA was reverse-transcribed 

following the manufacturer's instructions. 

To determine the abundance of specific mRNAs, quantitative PCRs (qPCR) were conducted using 

SYBR Green chemistry. This chemistry uses SYBR Green dye, which binds to double stranded 

nucleic acids emitting fluorescence at 580 nm. During the PCR reaction, SYBR Green dye binds 

to each new copy of double-stranded DNA, resulting in a proportional increase in fluorescence 

as PCR products accumulate during PCR cycles.  

Due to the nonspecific nature of SYBR Green dye´s detection, primer optimization needs to be 

performed with caution. The amplicon should span one or more introns to avoid amplification 

of the target gene in genomic DNA. In our case, primers were designed using the PrimerQuest 

tool from the Integrated DNA Technologies website (https://eu.idtdna.com/site). To identify the 

optimal primer concentrations that provide optimal assay performance, several optimization 

reactions were performed by independently varying forward and reverse primer concentrations 

and using as a template cDNA obtained from control samples. 

cDNA samples were mixed with specific primers for each gene in the optimized concentrations 

(Table 4) together with the Power SYBR Green PCR Master Mix product containing SYBR Green 

dye, AmpliTaq Gold DNA polymerase, dNTPs with a mixture of dUTP/dTTP and buffer 

components. Quantitative PCR reactions were performed in a QuantStudio3 thermocycler 

(Applied Biosystems) as described previously (Infante et al., 2008). The following PCR program 

was used: a first cycle at 95 ° C for 10 minutes, required for activation of the polymerase and, a 

second step of 40 repetitions consisting of 15 s at 95°C for DNA denaturation to take place and 

1 min at 60°C to allow annealing between primers and target sequence and subsequent 

polymerization. After completing these cycles samples were subjected to a dissociation protocol 

to look for the presence of multiple products and nonspecific amplification, to this end the 

temperature was gradually increased from 60 to 90°C.  

 



Materials and Methods 
 

70 
 

The qPCR method allows reactions to be quantified by the point in time during cycling when 

amplification of a PCR product achieves a fixed level of fluorescence, rather than the amount of 

PCR product accumulated after a fixed number of cycles, as in semi-quantitative PCR reactions. 

This fixed fluorescence level, known as the threshold, is set within the exponential phase of the 

amplification curve, that is, when the amount of amplified product is proportional to the amount 

of initial cDNA. The amount of cDNA of a particular sequence is estimated from the number of 

necessary cycles (CT) for fluorescence to reach the established threshold (T).  

 

Table 4: List of RT-qPCR primers used in this study. Nucleotide sequence and concentrations of each 
primer are specified. 
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Relative quantification of gene expression was performed using the comparative CT (ΔΔCT) 
method. It has been established that target amplification and endogenous control amplification 

efficiencies must be approximately equal for the ΔΔCT to be valid. This requirement is fulfilled 
by the SYBR Green assays used in this work (according to the manufacturer´s specifications), 

which allowed us to apply the ΔΔCT method. Relative expression levels were represented as 2- 

ΔΔCT
. Relative target gene quantity was determined from a standard curve prepared using serial 

dilutions of a control cDNA sample. In addition, the quantity of an endogenous control (EIF2C2) 
(Ben Shachar et al., 2010) was determined to normalize the amount of cDNA present in each 

sample. To determine the fold difference in mRNA expression between control and test samples, 
ΔΔCT was calculated (ΔCT test sample-ΔCT control sample). Table 4 shows the nucleotide 

sequence of the primers used for qPCR, and the concentration used for each particular primer. 

 

3.2.1.2. RT-Q-PCR of microRNA 

microRNA RT-qPCR analyses were performed using specific Taqman assays from Applied 

Biosystems. TaqMan microRNA Assays are preformulated primer and probe sets designed to 

detect and quantify mature microRNAs, as they can discriminate mature microRNA sequences 

from their precursors, as well as from highly similar microRNAs. These assays use a stem-looped 

primer for reverse transcription and a sequence specific TaqMan assay to accurately detect 

mature microRNAs. Each TaqMan Assay includes one tube containing small RNA-specific RT 

primer and a second tube containing a mix of the following components: a small RNA-specific 

forward PCR primer, a specific reverse PCR primer and a small RNA-specific TaqMan MGB probe. 

TaqMan microRNA Assays used in this study are listed below (Table 5). 

For reverse transcription, the TaqMan MicroRNA Reverse Transcription Kit (Lifetechnologies) 

was used. Total RNA (300 ng) was used to synthesize cDNA for each microRNA, using for this 

purpose the specific primer provided by the TaqMan assay kit. Reverse transcription reaction 

contained 1.5 µl of RT primer, 0.075 µl of dNTP-s, 0.75 µl of buffer, 0.095 µl of RNAse inhibitor 

and 0.5 µl of reverse transcriptase in a final volume of 5 µl. The reactions were incubated in a 

thermocycler for 30 minutes at 16°C, 30 minutes at 42°C, 5 minutes at 85°C and stored at 4 ° C. 

Quantitative PCR amplification was performed using the TaqMan Universal PCR Master Mix 2x, 

and the specific primers and TaqMan probes for each microRNA. The reaction contained 2 µl of 

the RT reaction product, 5 µl of the TaqMan Universal PCR master mix and 0.5 µl of primer and 

probe mix provided by the manufacturer, in a final reaction volume of 10 µL. Samples were 

incubated at 95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 30 

seconds in a QuantStudio3 thermocycler (Applied Biosystems). 



Materials and Methods 
 

72 
 

To correct quantification errors due to variations in either the amount of starting material,  

sample collection, or RNA quality, microRNA quantities for each sample were normalized to two 

endogenous small RNAs: RNU6B and RNU19 (Bueno and Malumbres, 2011; Ofir, Hacohen and 

Ginsberg, 2011). 

 

Table 5: TaqMan microRNA Assays used in this study 

 

 

 

Relative quantification of microRNA expression was performed using the comparative CT (ΔΔCT) 

method. It has been established that target amplification and endogenous control amplification 

efficiencies must be approximately equal for the ΔΔCT to be valid. This requirement is fulfilled 

by the Taqman assays used in this work (according to the manufacturer´s specifications), which 

allowed us to apply the ΔΔCT method. To obtain microRNA comparative CT (ΔCT) values, the 

quantity of endogenous small RNAs (calculated by the geometric mean of RNU6B and RNU19 

values) was subtracted from the target microRNA quantity in each sample (CT Target microRNA-

CT Endogenous microRNA). To determine the fold difference in microRNA expression between 

control and test samples, ΔΔCT was calculated (ΔCT test sample-ΔCT control sample). Relative 

expression levels were represented as 2- ΔΔCT
. 
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3.2.2. Protein expression analyses 

3.2.2.1. Protein extraction 

Cell plates were washed once with ice-cold PBS, lysed by scrapping in protein lysis buffer 

(supplemented with Na3VO4, PMSF and Complete Protease Inhibitor Cocktail from Roche), and 

incubated for 30 min in a rotating platform at 4°C. Samples were centrifuged at 13000 rpm for 

10 min at 4°C, and the supernatant was transferred to a clean microcentrifuge tube.  

Protein concentration was determined using the colorimetric kit DC Protein Assay (Bio-Rad), 

which is based on the Lowry method. Standards of bovine serum albumin (BSA) prepared at 

known concentrations were used to determine the concentration of the protein extracts. 

 Protein samples were diluted with 6X protein loading buffer and boiled for 5 min inmediately 

before electrophoresis.  

3.2.2.1. Western Blotting 

Proteins were separated according to their molecular weight by SDS-PAGE (Sodium Dodecyl 

Sulfate PolyAcrylamide Gel Electrophoresis). Protein samples (10-30 µg per lane) were migrated 

in a MiniPROTEAN Tetra Cell Vertical Electrophoresis system (Bio-Rad) at constant amperage (25 

mA per gel) in 1x Running buffer. BenchMark Pre-Stained Protein Ladder (Lifetechnologies) was 

loaded as protein standard to determine the size of the proteins under analysis. 

Following electrophoresis, proteins were transferred from the gel to a nitrocellulose membrane 

(Bio-Rad). Transfer was performed using the Mini Trans-Blot Cell transfer system (Bio-Rad) in 1x 

transfer buffer for 2 hours at 100 V. The membrane was then stained with Ponceau S (Sigma), in 

order to confirm the successful transfer of the proteins. Membranes were blocked with 5% (w/v) 

non-fat dry milk powder in TBS-T (TBS + 0.05 % Tween-20) for 1 hour at room temperature with 

gentle shaking. 

Membranes were incubated with a specific primary antibody diluted in blocking solution 

overnight at 4°C with gentle shaking (Table 6), washed three times for 5 minutes with TBS-T and 

subsequently incubated with the corresponding horseradish peroxidase (HRP)-labeled 

secondary antibody in blocking solution for 1 hour at room temperature. Membranes were again 

washed as described above. 

The detection of the antibodies bound to their target proteins was carried out using Pierce ECL 

Western Blotting Substrate (Thermo Scientific) in a ChemiDoc Imaging System (Bio-Rad). 

Quantifications were performed by densitometry analysis using the Quantity One software 

(Bio-Rad). 
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Table 6: List of antibodies used in this work. Antibody, provider, reference, host and working dilution 
for each method are indicated. 
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3.2.3. Chromatin Immunoprecipitation (ChIP) analyses 

ChIP analyses were performed following previously published protocols with minor 

modifications (Infante et al., 2008; Laresgoiti et al., 2013), in collaboration with Dr. Jone 

Mitxelena in the laboratory. 

Cell cultures (10-15 x 106 cells per ChIP) were fixed for 10 min at room temperature with a 

solution containing 1.1 % formaldehyde (90% PBS 1X, 7% “formaldehyde dilution buffer” and 

3% of formaldehyde 37%). This step produces a reversible crosslink of amino and imino groups 

between DNA and amino acids at a maximum distance of 2 Å (Orlando, 2000). Cross-linking was 

stopped by the addition of glycine to a final concentration of 0.125 M and subsequent incubation 

for 5 min at room temperature.  

Fixed cells were harvested by incubation with trypsin and washed twice with PBS. Cells were 

lysed on ice for 10 min with a hypotonic buffer (“Cell lysis buffer”). Nuclei were collected by 

centrifugation, resuspended in “Nuclei lysis buffer”, and incubated for 10 min on ice. Chromatin 

was sonicated applying 10 pulses of 15 seconds each, with a rest period of 1 minute between 

pulses. DNA concentration (A260) was measured using a NanoDrop spectrophotometer (Thermo 

Scientific).  

To verify successful chromatin fragmentation, a small volume of the sonicated sample was 

subjected to crosslink reversion, protein digestion, and DNA purification steps, as specified 

below. The fragmented chromatin was visualized in an agarose gel containing ethidium bromide. 

Only chromatin samples with fragments displaying an average length of 300–400 bp were 

selected for further analysis. 

Fragmented chromatin was diluted in “ChIP dilution buffer” supplemented with 1 mM PMSF and 

protease inhibitor cocktail. At this point 200 µl of sample were set aside to be used as the "input 

DNA” sample. In order to reduce possible non-specific antibody binding we performed a 

pleclearing step with protein A-Sepharose (50% slurry, 50% TE) blocked with salmon sperm DNA 

and BSA. Twenty μL of protein A-Sepharose per 400 μL of the chromatin sample were added and 

incubated at 4°C for 3 h with gentle shaking. After incubation, protein A-Sepharose was 

discarded by two consecutive centrifugations. Fragmented and precleared chromatin (100–120 

µg) was incubated overnight at 4°C with 4 µg of test antibody (Table 6). 

Antibody-bound samples were incubated with protein A-Sepharose (20 µl per 400µl of sample) 

at 4°C for 3 h and immune complexes were recovered by centrifugation. Immune complexes 

were washed once with each of “Low Salt Wash”, “High Salt Wash” and “LiCl Wash” buffers, and 

three times with TE buffer, in order to remove non-specific and low affinity antibody-chromatin 

binding. 
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Immunocomplex were eluted with a buffer containing 0.1 M NaHCO3 and 1% SDS. Crosslinking 

was reversed by addition of NaCl to a final concentration of 200 mM followed by an overnight 

incubation at 65°C. RNA digestion was simultaneously performed with 10 µg of RNase A. Both 

immunoprecipitated and “input DNA” samples underwent crosslink reversal and RNA digestion 

treatments. Before protein digestion, EDTA pH 8.0 (10mM) and Tris-Cl pH 6.5 (36mM) were 

added to the samples. Subsequently, proteins were digested with 80 µg of proteinase K at 42°C 

for 2 h.  

Table 7: Promoter-specific primer sequences and concentrations for ChIP analysis 

 

 

DNA was purified with the classical phenol-chloroform protocol, precipitated with ethanol and 

resuspended in 60 µl of H2O. Immunoprecipitated DNA was quantified by real-time PCR in the 

QuantStudio3 thermocycler using Power SYBR Green PCR master mix. Primers were designed in 

order to flank promoter regions bound by E2F factors according to ENCODE data obtained from 

UCSC Genome Browser (http://genome.ucsc.edu/). Quantitative PCRs were performed as 

previously specified in section 3.2.1.2. Primers and conditions used for qPCR are specified in 

Table 7. Data were represented as percentages of the input sample. 
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3.2.4. Co-Immunoprecipitation (CoIP) analyses 

CoIP experiments were carried out after transfecting U2OS-TetOn cells with the pE2F7-FLAG 

plasmid and extracting the protein fraction. Paralelly, cells were transfected with a plasmid 

expressing the FLAG tag, which served as a negative regulator. 

Protein extracts were pre-cleaned with magnetic beads for 3h (Dynabeads, ThermoFischer 

Scientific) to remove the non-specificities of the protein. A small fraction of each extract was 

removed at this point in order to be used later as an “Input” sample in the final Western Blot. 

Following the pre-cleaning step, extracts were incubated with magnetic beads previously 

crosslinked with a specific antibody against FLAG tag. This crosslinking was achieved by 

incubating the beads and the antibody for 90 minutes in a rotating platform at 4°C. After the 

incubation, the mixture was washed twice with trietanolamine 0.2M and incubated with the 

crosslinking agent DMP (20mM) for 30 minutes in a rotating platform at room temperature and 

finally washed with 50mM and pH 7.5 TrisHCl.  

After incubation of pre-cleaned extracts with antibody-bound magnetic beads, fractions were 

eluted twice (IP1 and IP2) and analyzed by Western Blot (as described above).  

 

3.3. Bioinformatic analyses 

 

3.3.1. Localization of E2F consensus motifs  

Localization analysis of E2F motifs in E2F7-regulated genes was carried out with the 

MotifLocator tool from TOUCAN program (https://gbiomed.kuleuven.be/english 

/research/50000622/lcb /tools/toucan)  (Aerts et al., 2005). This application allows searching 

and localizing transcription factor binding motifs (TFBMs) in sequences provided by the user. 

The sequences introduced by the user are compared with position-weight matrices (PWMs) 

belonging to the database JASPAR. The comparison is based on the similarity between the 

sequence and the matrix, as established by the MatInspector program 

(http://www.genomatix.de/products/ MatInspector/index.html). 

The search was restricted to the proximal promoter region (-1000 and +500 bp relative to the 

transcription start site). Cutoffs of 0.8, 0.85 and 0.9 were applied, and the “Human 1 Kb Proximal 

1000 ENSMUSG” was used as background. 

http://www.genomatix.de/products/
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3.3.2. Identification of protein motifs  

Identification of functional small linear motifs present in the protein E2F7 was carried out with 

the bioinformatics webtool ELM (http://elm.eu.org/) after uploading the aminoacid sequence 

of E2F7 protein in the application. This tool identifies by sequence similarity which small sections 

of a protein could be involved on functional processes such as interactions with other proteins. 

It also identified post-transcriptional modification sites.   

 

3.4. Statistical analyses 

Data are presented as mean ± SD. The significance of the difference between two groups was 

assessed using the Student two-tailed t-test. A P<0.05 was considered statistically significant.

http://elm.eu.org/
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4.0 PREVIOUS FINDINGS GENERATED IN THE LABORATORY 

 

The work presented in this thesis report stems from previous results generated in the laboratory 

whereby an E2F7-regulated gene expression profile was identified. The study consisted of 

silencing E2F7 by transient transfection of specific siRNA molecules in cell cycle-synchronized 

U2OS cells and assessing by RNA-seq the expression profiles of micro-RNA coding and protein 

coding genes at G1/S, S and G2/M phases (Mitxelena, 2014). 

Regarding microRNA expression profile analysis, a total of 18 microRNAs were found to be 

deregulated upon E2F7 knockdown, 15 of which were upregulated whereas 3 microRNAs were 

downregulated, suggesting a major role for E2F7 as a negative regulator of microRNA expression 

through the cell cycle (Figure 16).  

 

Figure 16: Identification of E2F7-regulated microRNAs. microRNA expression levels under E2F7 

knockdown are represented in red (upregulated expression) and blue (downregulated expression). 
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Using these results as a starting point, in the present thesis work we have carried out an 

extensive analysis on the regulation and functional characterization of these E2F7-responsive 

micro-RNAs, in particular those microRNAs repressed by E2F7. 

Regarding protein-coding mRNA expression profiles, a Gene Set Enrichment Analysis performed 

with significantly deregulated genes produced a list of pathways that were enriched in E2F7-

depleted cells compared to their corresponding controls (i.e. cells transfected with non-target 

siRNA) (Table 8).  

 

Table 8: Overrepresented pathways in E2F7-depleted cells throughout the cell cycle (Modified from 

Mitxelena, 2014). In red pathways important to DNA Damage Response 

 

As shown in Table 8, E2F and Rb protein pathways were identified as regulated by E2F7, 

consistent with previous reports (Moon and Dyson, 2008; Westendorp et al., 2012). Included in 

this last group were E2F1, E2F2 and E2F3 genes, whose expression was significantly increased 

upon E2F7 silencing, supporting the prevailing view that typical and atypical members of the E2F 

family cross-regulated each other´s expression (Sears, Ohtani and Nevins, 1997; Adams et al., 

2000; Westendorp et al., 2012)  

Remarkably, the transcriptomic analysis revealed novel pathways regulated by E2F7, mainly 

related to DNA damage response and repair pathways, including the categories of Fanconi 

Anemia (FA), BARD1 signaling and ATR signaling pathway suggesting major role for E2F7 in DDR. 

The E2F7-mediated repression of some of these genes (FANCE, FANCI, CTIP, RAD51, BARD1 and 

BRIP1) was subsequently validated by RT-Q-PCR (Mitxelena, 2014). Using these results as a 

starting point, one aim of the present thesis work, has been to define the mechanisms by which 

E2F7-mediates DNA damage responses. 
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4.1 FUNCTIONAL ANALYSIS OF microRNAs REGULATED BY E2F7 

 

In this section, we aimed to analyze the regulation and function of microRNAs that are negatively 

regulated by E2F7. This work has been performed in collaboration with two members of our 

group, Dr. Mitxelena and Dr. Apraiz.  

4.1.1 Validation of the microRNA profiling 

We selected three microRNAs exhibiting different expression levels in the RNA-seq study (miR-

25, miR-92 and miR-7). We performed RT-qPCR analyses using Taqman assays designed to 

detect and quantify mature microRNAs in siNT- and siE2F7-transfected cells (Figure 17A). These 

analyses were carried out with RNA samples extracted from cells in G1/S, S phase and G2/M 

boundary (0h, 4.5h and 10.5h respectively after exit from HU-induced arrest) following the 

protocol used for the original RNA-seq analysis.  

 

Figure 17: Expression analyses of E2F7 modulated microRNAs. (A) U2OS cells were transfected with 
E2F7 siRNA or Non-Target (NT) siRNA molecules. (B) E2F7 silencing was checked by Western Blot using 
specific antibody against E2F7 (C)Transfected cells were treated with HU for  24h microRNA qPCR 
assays were carried out with RNA samples harvested at 0h (G1/S), 4.5h (S phase) and 10.5h (G2/M) 
after HU release. Mature miR-25, miR-92 and miR-7 expression levels were normalized to RNU6B and 
RNU19 small RNA expression, used as standard controls. Data are represented as fold change relative 
to siNT (*, P<0.05). Dotted line represent siNT microRNA levels. 
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The expression of the mature microRNAs was compared between siNT and siE2F7-transfected 

cells which had depleted efficiently E2F7 levels (Figure 17B). Quantification results revealed that 

miR-7, miR-92 and miR-25 were significantly overexpressed upon E2F7 knockdown all over the 

cell cycle. The overexpression values ranged between 1.5 and 3-fold for miR-7 and miR-92, and 

were higher (4-to-5 fold) for miR-25 (Figure 17C), validating the previous screening results 

(Figure 17). 

 

4.1.2 Regulation of microRNA expression by E2F7 

To determine the role of E2F7 in the negative regulation of microRNAs, we first examined the 

regulatory regions of the microRNAs identified in the gene expression profiling assay previously 

mentioned. In particular, we searched for putative E2F sites in their regulatory regions,  using 

Motif locator tool from TOUCAN program (Aerts et al., 2005).   

Many of the E2F7 downregulated microRNAs identified in our study (miR-7, miR-25, miR-26a, 

miR-27b and miR-153) were located within intronic regions of known protein-coding genes 

(Table 9). It is known that the expression pattern of this type of microRNAs matches the 

transcription of their host gene (Baskerville and Bartel, 2005) implying a co-regulation through 

the generation of a common precursor transcript. Thus, we analyzed the promoter regions of 

the genes harboring the E2F7-regulated microRNAs to look for E2F binding sites.  

Other microRNAs identified in our study were located in regions lacking known protein-coding 

genes, either individually (miR-30c and miR-331) or clustered with other microRNAs (miR-92, 

let-7b, miR-195 and let-7f). To search for E2F binding sites in these microRNA coding genes, we 

analyzed the genomic region upstream of each microRNA transcription start site, thought to 

harbor their transcriptional regulatory sites (Zhao et al., 2017).  

We narrowed down our search to a region comprising -1000/+500 bp from the transcription 

start site, taking into account previous reports showing that the members of the E2F family of 

transcription factors are mainly recruited to this proximal region of their target genes 

(Rabinovich et al., 2008; Lee, Bhinge and Iyer, 2011; Laresgoiti et al., 2013). Using a minimum 

threshold level of 80% of similarity with the canonical E2F motif recorded in the JASPAR database 

(http://jaspar.genereg.net), all the E2F7-downregulated microRNAs except for let-7f presented 

putative E2F-recognition sites in their proximal promoter region, with a similarity of 80% or 

higher (Table 9), suggesting that their downregulation could be mediated by direct binding of 

E2F7 to their promoters on these sites. 
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Table 9: Consensus E2F sites found in the promoter regions of E2F7-regulated microRNAs. The locus, 

similarity to canonical motif, position and sequence are indicated. 

 

 

 

miRNA Locus
E2F site

% similaritya Location
from TSS* Sequence

miR-7 HNRNPK

80 ᵻ88 GTTCGCGG

85 ᵻ444 TCTCGCGC

90 -17 GTTCGCGC

95 -175 TTTGCCGC

miR-92 MIR17HG

80 -233 ATTGGCGG

80 -3 CTTCGCGG

85 -82 CTTCGCGC

85 -72 CTTCGCGC

85 ᵻ281 TTGGCCGC

miR-25 MCM7

80 -241 TTTCGAAC

80 ᵻ254 TTTCGCCG

85 -143 TTTGGCGG

90 ᵻ357 TTTCCCGC

miR-26a CTDSPL

80 -602 TTTACCGC

80 -484 ATTCGCGG

85 ᵻ311 TTTCTCGC

miR-27b C9ORF3
80 -912 GTTCCCGC

80 ᵻ303 TGTGCCGC

let-7b MIRLET7BHG
80 ᵻ467 TTCCCCGC

85 -206 TTTGCCGG

miR-195 MIR497HG
80 -679 TTTGGGGC

85 -580 CTTCGCGC

miR-30c MIR30C2 90 -326 TTTGGCGA

miR-331 MIR331 85 ᵻ301 TTTCTCGC

miR-153 PTPRN 80 ᵻ159 TTTGCCTC

let-7f MIRLET7DHG n.f. n.f. n.f.
aThreshold level of similarity with the canonical E2F motif recorded in the JASPAR database (TTTSSCGC)
*Transcription Start Site
n.f.: not found
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4.1.2.1 In vivo transcription factor binding to the promoter regions of microRNAs regulated by E2F7  

To determine whether E2F7 regulates directly the expression of its target microRNAs, we 

selected the validated microRNAs to carry out Chromatin Immunoprecipitation (ChIP) assays 

with anti-E2F7 specific antibody. We made use of chromatin extracted from cells collected at 3h 

following HU release corresponding to early S phase, when E2F7 expression is highest 

(Mitxelena, 2014). We performed qPCR with the immunoprecipitated chromatin using specific 

oligonucleotides that hybridize with sequences encompassing the E2F binding sites present in 

the regulatory regions of the microRNAs. Additionally, parallel ChIP assays were done using an 

irrelevant antibody (anti-simian virus 40 large T antigen, SV40LT) to assess the nonspecific 

chromatin immunoprecipitation. The β-actin gene (ACTB), a gene whose promoter lacks E2F 

sites, was used as negative control (Infante et al., 2008). Quantitative PCR analyses (Figure 18) 

showed direct E2F7 binding to the regulatory region of miR-7, miR-92 and miR-25, compared 

with E2F7 binding to the ACTB gene. The extent of E2F7 binding activity paralleled the microRNA 

expression results. A substantially higher E2F7 binding activity to miR-25 regulatory region 

relative to miR-7 and miR-92 was correlated with a higher expression of miR-25 upon E2F7 

depletion. 

 

 

Figure 18: E2F7 is recruited to the promoter regions of selected microRNAs. E2F7 was 
immunoprecipitated from chromatin lysates harvested from cells in S phase after HU release with 
specific anti-E2F7 antibodies (α-E2F7). Promoter regions near E2F consensus sites were amplified by 
qPCR. ACTB amplification values were used as a negative control. An unrelated antibody against the 
SV40 large T antigen (α-SV40LT) was used as a control for unspecific immunoprecipitation. Data is 
presented as percentage of input chromatin. These results are representative of three independent 
experiments. 
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It has been described that individual E2F sites of the regulatory regions are bound by multiple 

E2F members in vivo (Wells et al., 2000; Infante et al., 2008). To determine whether other E2F 

family members besides E2F7 are recruited to the regulatory regions of the identified microRNAs 

we focused on E2F1, E2F2 and E2F3 because they were found to be repressed by E2F7 in our 

transcriptomic analysis (Mitxelena, 2014), and thus, could potentially be involved in E2F7-

dependent microRNA regulation. As shown in Figure 19, in ChIPs carried out with siNT-

transfected cells, we found that E2F1 and E2F3 were efficiently recruited to the regulatory 

regions of miR-7, miR-92 and miR-25, whereas binding of E2F2 was more moderate (about 2-

fold over ACTB promoter amplification).  

 

 

 

Figure 19: Occupancy of target microRNA regulatory regions by E2F1-3 factors.  Cell lysates from 
siNT and siE2F7-transfected cells were harvested 3 h (early phase S) after HU release and used for 
ChIP assays with antibodies against E2F1, E2F2 and E2F3. Promoter regions near E2F consensus sites 
were amplified by qPCR. Promoter binding of E2F1-3 was significantly increased upon E2F7 silencing. 
Note the Y-axis scale difference in the siE2F7-treated samples. An unrelated antibody against the 
SV40 large T antigen (SV40LT) was used as a control for unspecific immunoprecipitation. ACTB 
amplification values are represented as dotted horizontal lines. Data is presented as percentage of 
input chromatin. These results are representative of three independent experiments. 
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Importantly, E2F7 silencing led to a dramatic increase in recruitment of E2F1, E2F2, and E2F3 to 

miR-25, miR-92 and miR-7 promoter regions (note right Y-axis scale) consistent with the 

increased expression of these E2Fs in E2F7-knockdown cells. These results reveal the existence 

of a complex regulation of miR-7, miR-92 and miR-25 by typical and atypical E2Fs, whereby 

microRNA expression is bound to be under the influence of both positive and negative signals 

provided by individual E2Fs.  

 

4.1.2 Functional activity of E2F7-downregulated microRNAs 

We next aimed to determine the functional role of the microRNA set identified as E2F7 targets 

by using the bioinformatics tool miRBase (Griffiths-Jones et al., 2006). We searched for potential 

pathways regulated by these microRNAs through a bioinformatics analysis of their predicted 

target genes. To increase the potency of the analysis we carried out a Gene Ontology analysis of 

the combined predicted targets of all deregulated microRNAs. Interestingly, this study revealed 

that E2F7-repressed microRNAs preferentially modulate genes involved in cell cycle and mitosis 

regulation (Figure 20).  Other biological processes including hemostasis, signaling by Nerve 

Growth Factor (NGF) or transmembrane transport also appeared enriched in this analysis, 

suggesting that E2F7 regulates a diversity of functions through control of microRNA expression.  

 

 

Figure 20: Gene Ontology (GO) analysis of the combined predicted targets of E2F7-repressed 
microRNAs. Gene ontology (GO) analysis of predicted targets (as identified by miRBase bioinformatic 
tool) of E2F7-repressed microRNAs using FatiGO tool. Only terms with adjusted P-value of > 0.001 were 
considered. 
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Given the GO results, we next focused our analysis on determining the contribution of E2F7-

regulated microRNAs to cellular proliferation. In addition to miR-7, miR-92 and miR-25 we 

included for these analyses several other microRNAs with E2F consensus motifs in their 

regulatory region (miR-26a, miR-27b and let-7b), as well as let-7f, a microRNA with no known 

E2F sites that we found to be regulated indirectly by E2F7 (Mitxelena, 2014), and we carried out 

microRNA overexpression as well as inhibition assays to assess their effect in cellular division. 

We overexpressed individual microRNAs in U2OS cells and assessed cellular proliferation by the 

carboxyfluorescein succinimidyl ester (CFSE) method. This method reflects how many cell 

division cycles have completed the cells over time because the cellular CFSE staining is diluted 

by 50% with each cell division. U2OS cells transfected with expression vectors coding for a 

scramble sequence (negative control) or for each individual microRNA, were incubated with the 

vital dye CFSE. Forty-eight hours later cells were fixed and fluorescence of CFSE-stained cells was 

quantified by flow cytometry.  

 

 

Figure 21: Individual transfection of selected microRNAs accelerates cell cycle progression. U2OS cells 
were transfected with various microRNA encoding plasmids and incubated with CFSE. A vector coding 
for a scramble sequence (scr) was used as a negative control. Cells were harvested 48h after 
transfection and CFSE fluorescence was determined by flow cytometry. The number cellular divisions 
achieved in each condition is indicated. 

 

As shown in Figure 21, control cells treated with scramble plasmid underwent several cell 

division cycles, within the 48h time period. Most cells were in generation 3, and a smaller 

percentage reached up to generation 4.  
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Remarkably, individual overexpression of microRNAs led to an increase in the cellular 

proliferation rate, as evidenced by the increased proportion of cells in more advanced cellular 

generations compared with the scramble-transfected cells (Figure 21). Of those, overexpression 

of miR-7, miR-92 and let-7f microRNAs led to the strongest effect on proliferation, as shown by 

the higher proportion of proliferating cells that were able to reach generation 5. 

We next analyzed the effect of inhibiting these microRNAs in cell cycle progression. For this 

purpose, we selected anti-microRNA oligonucleotides specific for miR-7, miR-92 and let-7f since 

those were the microRNAs whose expression in U2OS cells results in a stronger proliferative 

effect (Figure 22). These anti-microRNA oligonucleotides (miRVanas) are designed to neutralize 

the microRNA sequences by preventing selective binding of the microRNAs to the target mRNA 

molecules (Wang et al., 2012). We pooled all three of them in order to achieve a stronger 

response and avoid the small effect that individual oligonucleotides could have, and analyzed 

their impact in cell cycle progression by scoring the fraction of cells able to reach mitosis 

 

Figure 22: Abrogation of the expression of miR-7, miR92 and let7f interferes with E2F7-dependent 
cell cycle progression. (A) U2OS cells were synchronized in the presence of 4 mM HU and transfected 
with siNT or E2F7 siRNA molecules and a pool of anti-microRNA oligonucleotides against miR-7, miR-
92 and let-7f. (B) The percentage of mitotic cells was determined by pH3 positivity and FACS analysis 
12 hours after cell cycle re-entry. Numbers represent pH3-positive cells (enclosed in boxes).  
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U2OS cells were synchronized in G1/S with HU and transfected with siNT or siE2F7, along with 

scramble oligonucleotides and a pool of all three anti-microRNA oligonucleotides. 10h after HU 

release cells were treated with nocodazole and 24h after HU release, we used FITC-labeled 

antibodies to phospho-Histone H3 (pH3), a mitotic marker, to study cell cycle progression.  

As previously described (Mitxelena, 2014) we observed that depletion of E2F7 caused an 

acceleration of the cell cycle, as we observed a higher percentage of cells reaching mitosis in 

cells with reduced E2F7 levels (2.75% in siNT vs 4.25% in siE2F7 in cells transfected with scramble 

oligonucleotides) (Figure 22). Transfection of anti-microRNA oligonucleotides provoked a 

reduction in the percentage of cells in mitosis (2.75% in scramble vs 0.86% in anti-microRNA 

pool). Importantly, inhibition of miR-7/miR-92/let-7f in E2F7 depleted cells abrogated the 

increased percentage of cells in mitosis seen in the scramble condition (Figure 22). These results 

suggest that E2F7 negatively regulates cellular proliferation at least in part by repressing the 

expression of pro-proliferative microRNAs. 

To get an insight into the mechanism by which E2F7-regulated microRNAs may contribute to 

cellular proliferation, we examined the expression of potential mRNA targets of these 

microRNAs. It has been reported that several genes involved in cell cycle control including  

p21Cip1, p57Kip2, PTEN and p130 are potential targets of these microRNAs (Zhang et al. 2015; 

Knudsen et al. 2015; Feng et al. 2017; Zhu et al. 2018).  

 

 

Figure 23: Expression of cell cycle inhibitors upon microRNA overexpression. p21CIP1, p57KIP2, PTEN, 
p130 and p18INK4C mRNA levels were assessed by RT-Q-PCR in RNA samples extracted from U2OS cells 
treated as in Figure 21. Expression values are normalized to the expression of EIF2C2, used as standard 
control. Data are represented as normalized log2-ratios over control scr transfection. 
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Individual overexpression of E2F7-regulated microRNAs resulted in the downregulation of some 

of these genes (Figure 23). In contrast, p18INK4C, which has not been described as regulated by 

these microRNAs, was unaffected by microRNA overexpression compared to controls, ruling out 

possible general effects due to an overall increase in proliferation rates after microRNA 

overexpression (Figure 23).  

Collectively, our results point to a role for these microRNAs in E2F7-mediated negative 

regulation of cell proliferation and cell cycle control by modulating the levels of critical cell cycle 

inhibitors. The findings of this section regarding E2F7-dependent microRNA regulation and 

function have been included in a recently published manuscript (Mitxelena et al., 2016). 
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4.2 ROLE OF E2F7 IN DNA DAMAGE RESPONSE AND REPAIR 

 

In this section, we aimed to analyze the role of the E2F7 transcription factor in the DNA damage 

response and repair. This work has been performed in collaboration with two members of our 

group, Dr. Mitxelena and Dr. Apraiz.  

 

4.2.1 Characterization of a set of DNA damage response genes as direct E2F7 targets 

The role of E2F7 in the maintenance of genomic stability is poorly understood. The 

transcriptomic results obtained recently in our laboratory showing that a set of genes involved 

in DNA damage responses are repressed by E2F7 led us to analyze in detail the contribution of 

E2F7 to the regulation of DNA damage and repair pathways. We first considered whether E2F7 

could be regulating the expression of its target genes at the transcriptional level. To this end, we 

first searched for E2F consensus sites in the promoter regions of the E2F7-responsive genes 

involved in DNA damage and repair. We focused our analysis on the set of six genes that had 

been previously validated by RT-Q-PCR as E2F7-repressed genes (Mitxelena, 2014). These genes 

belong to the Fanconi Anemia, BARD1 and ATR signaling pathways. Using Motif locator tool from 

TOUCAN program (Aerts et al., 2005)  we analyzed the promoter region of the selected genes. 

We narrowed down our search to the region comprising -1000/+500 bp form the transcription 

start site, as for the microRNA study. 

Using a minimum threshold level of 80% of similarity with the canonical E2F motif recorded in 

the JASPAR database (http://jaspar.genereg.net), all selected genes presented putative E2F-

recognition sites in their proximal promoter region (Table 10). With the exception of FANCE, 

which only encompasses one E2F binding site at 80% similarity with the consensus sequence, 

the rest of analyzed genes exhibit several E2F binding sites with up to 90% similarity with the 

consensus site (Table 10).  
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Table 10: Consensus E2F sites found in the promoter regions of E2F7-regulated protein-coding genes. 

The  similarity of the identified sequence to the canonical motif, the position and sequence are 

indicated. 

 

 

 

Gene
E2F site

%similaritya Location
from TSS* Sequence

RAD51

80 +163 TTACGCTC

85 -528 TTTGGCAC

85 +434 TTTCGCCC

90 +10 TTTGGCGG
FANCE 80 +1 GTTCCCGC

FANCI
85 -433 TTTTGCGC

90 +247 TTTCGCGG

90 +469 TTTCCCGC

CTIP

80 -22 TTTCGCCG

80 +120 TTTGCCCC

80 +460 TTTTGCGA

85 -379 TTTGGCAC

85 -356 TTTCGCCC

90 -289 TTTCGCGA

BARD1

80 -324 TTTCGACC

80 +49 TTTCGAGT

80 +81 TTTCCCGA

80 +356 TCTGCCGC

85 -582 TTTCCCGG

85 +202 TTCCGCGC

85 +394 GTTCCCGC

BRIP1

80 -841 TTTGCCTC

80 -425 ATTCCCGC

80 -268 TTTGCTGC

80 -29 TTGGGCGC

80 -1 ATTCCCGC

80 +230 TTTCCCTC

85 -511 TTTCCCGG

85 -445 TTTGGCTC
aThreshold level of similarity with the canonical E2F motif recorded in the JASPAR database (TTTSSCGC)
*Transcription Start Site
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Next, we performed ChIP assays to confirm the direct binding of E2F7 to the selected promoters. 

To this end, U2OS cells were synchronized with HU and after release they were collected in S 

phase coinciding with the peak expression of E2F7 (Mitxelena, 2014). In order to detect E2F7 

binding, we used an E2F7-specific antibody to immunoprecipitate chromatin followed by qPCR 

using specific primers hybridizing near the putative E2F7 binding sites in each promoter. The β-

actin (ACTB) promoter amplification was used as a negative control, since this promoter lacks 

E2F binding sites but is highly expressed in U2OS cells (Laresgoiti et al., 2013). In addition, as a 

control for antibody specificity, we used an irrelevant antibody (SV40LT) which has no affinity 

for chromatin and is unable to immunoprecipitate any of the various E2F target sequences 

(Infante et al., 2008). 

 

 

Figure 24: E2F7 is recruited to the promoter regions of validated genes. E2F7 was immunoprecipitated 
from U2OS chromatin lysates harvested from cells in S phase after HU release. Promoter regions near 
E2F consensus sites were amplified by qPCR. The promoter of ACTB was used as a negative control. An 
unrelated antibody against the SV40 large T antigen (SV40LT) was used as a control for unspecific 
immunoprecipitation. Data is presented as percentage of input chromatin. These results are 
representative of three independent experiments. 

 

As shown in Figure 24, ChIP analyses revealed significant E2F7 binding to the promoters of all 

the validated genes (RAD51, FANCE, FANCI, CTIP, BARD1 and BRIP1) compared to E2F7 binding 

to ACTB promoter. These results suggest that DNA damage response genes are repressed by 

E2F7 through a direct regulation of their transcriptional activity. 
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4.2.2 Role of E2F7 in the cellular responses to genotoxic DNA damage  

Given the overrepresentation of DNA damage response and repair genes directly controlled by 

E2F7, we hypothesized that E2F7 could be regulating cellular responses following DNA damage.  

We focused our attention on the type of damage that is typically repaired by genes that 

participate in Fanconi Anemia and Homologous Recombination repair, a pathway enriched in 

the E2F7-regulated transcriptome. We treated the cells with Mitomycin-C (MMC) and Cisplatin 

(CSP), two compounds known to produce DNA interstrand crosslinks (ICL), which compromise 

the progression of replication forks typically repaired by the Fanconi Anemia repair pathway 

(McCabe, Olson and Moses, 2009).  Additionally, we included in our analyses double-strand DNA 

break (DBS)-inducing treatments, which are repaired by mechanisms that do not involve the FA 

pathway (Ceccaldi, Rondinelli and D ’Andrea, 2016). These treatments include γ-irradiation (γ-

IR) or neocarzinostatin (NCS), a radiomimetic drug that mimics DNA damage caused by γ-

irradiation by inducing free radical-mediated DSBs (Wang et al., 2002). 

 

4.2.2.1 E2F7 attenuates cell cycle progression upon DNA lesions affecting replication fork 

progression 

We first examined the ability of E2F7-competent of E2F7-deficient cells to recover from cellular 

checkpoints induced by DNA damage. To this end, non-target and E2F7 siRNA-transfected U2OS 

cells (see Figure 17B) were synchronized in G1/S with HU and treated with MMC, CSP or γ-IR, 

following the scheme depicted in Figure 25A. Nocodazole was added to the cell cultures for the 

last 14h of the experiments to trap cells entering mitosis (Alvarez-Fernández et al., 2010). We 

determined mitotic index by scoring pH3 positive cells by flow citometry. 

All three DNA damaging treatments used in the experiment are known to induce the activation 

of the DNA-PK/ATM/ATR pathway and the subsequent G2 checkpoint, which results in the 

accumulation of cells in G2 and a reduction of the cell fraction able to advance to mitosis (Bartek 

and Lukas, 2003; Toledo, Murga and Fernandez-Capetillo, 2011). This effect can be observed in 

a representative Figure 25B, in which MMC, CSP and γ-IR treatments reduced significantly the 

fraction of accumulated mitotic cells relative to untreated cells (15.13% vs 1.83% with MMC, 

1.3% with CSP and 8.15% with NCS). Remarkably, we found that transient knockdown of E2F7 in 

these cells resulted in an increased capacity of the cells to exit from the G2 arrest provoked by 

MMC (2.8-fold) and CSP (1.5-fold) in comparison with siNT-transfected cells (Figure 25C). By 

contrast, this recovery was not observed upon γ-IR.  
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Figure 25:  Increased cellular recovery after DNA damage arrest caused by MMC and CSP in E2F7-
knockdown cells. (A). Schematic diagram of the cellular recovery experiment. U2OS cells were HU-
synchronized and transfected with siNT and siE2F7. After HU treatment for 24 h, cells were released 
into the cell cycle and treated for 24 hours with 250nM MMC, 30 µM CSP and a dose of 2.5 Gy of γ-IR. 
Nocodazole was added 10 hours later. (B) All treatments induced an arrest in cell cycle progression in 
U2OS cells as assessed by the reduction in the proportion of pH3+ mitotic cells present in the cultures. 
(C) The percentage of mitotic cells determined by pH3 positivity and FACS analysis is shown comparing 
siE2F7 cells over siNT in synchronized cells. The graph represents fold-change of E2F7-depleted pH3-
positive cells over siNT values (mean ± SD) from three independent experiments. (*, P < 0.05) (D) The 
percentage of mitotic cells determined by pH3 positivity and FACS analysis is shown comparing siE2F7 
cells over siNT in asynchronous cells without HU treatment. The graph represents fold-change of E2F7-
depleted pH3-positive cells over siNT values (mean ± SD) from three independent experiments. (*, P < 
0.05) 

 

In order to replicate these results in another cellular context, we carried out the protocol 

described in Figure 25A in asynchronously growing U2OS cells, that is, in the absence of previous 

HU treatment. We again found that transient knockdown of E2F7 in these cells confers an 

increased ability to exit from the G2 arrest induced by MMC and CSP in comparison with siNT-

transfected cells (Figure 25D). 
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It has been described that transitory silencing using siRNA technology could impact several off-

target effects, which may lead to wrong conclusions regarding the role of the gene under study 

(Caffrey et al., 2011). We have optimized the siRNA concentration to reduce these effects and 

have used three different siRNA molecules to target E2F7, with similar results (Mitxelena, 2014). 

Additionally, in order to repeat our results with more than one system in which expression of 

E2F7 is depleted, we developed E2F7-knockout U2OS cells using the CRISPR-Cas9 technology, as 

described in the Materials and Methods section. We confirmed by sequencing the disruption of 

both E2F7 alleles; one allele was interrupted by the insertion of the puromycin cassette and the 

other by a premature stop codon provoked by the insertion of a nucleotide. The chronic 

depletion of E2F7 in U2OS cells (Figure 26B) gave us the opportunity to replicate our results in a 

different system.  

 

 

Figure 26:  E2F7 controls cellular recovery after DNA damage arrest caused by MMC and CSP. (A) 
Schematic diagram of the cellular recovery experiment. U2OS cells were transfected with siNT and 
siE2F7. After HU treatment for 24 h, cells were released into the cell cycle and treated for 24 hours 
with 250nM MMC, 30 µM CSP and a dose of 20 ng/ml NCS. Nocodazole was added 10 hours later. (B) 
Western Blot analysis showing the chronic depletion of E2F7 expression in E2F7-KO cells. (C) The 
percentage of mitotic cells determined by pH3 positivity and FACS analysis is shown comparing E2F7-
KO cells over E2F7-WT in synchronized cells. The graph represents fold-change of E2F7-deficient pH3-
positive cells over E2F7-proficient cells values (mean ± SD) from three independent experiments. (*, P 
< 0.05) 
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Wild-type U2OS cells and E2F7-KO U2OS cells were HU-synchronized in G1/S, released from HU-

induced block and treated with MMC, CSP or NCS. Next, we added nocodazole to cell cultures 

for the last 14h of the experiments to trap cells entering mitosis. The percentage of mitotic cells 

was determined by scoring pH3 positive cells by flow citometry. We observed that knockout of 

E2F7 in U2OS cells resulted in a significant increase in the fraction of cells capable of exiting from 

the arrest imposed by MMC and CSP in comparison with U2OS WT cells, consistent with the 

results gathered with E2F7-kockdown cells (Figure 26). Again, we did not observe any significant 

recovery after treatment with NCS, raising the possibility that E2F7 depletion affects selectively 

certain types of DNA damage.  

Interstrand DNA crosslinks, such as those generated by MMC and CSP, are known to impact 

replication fork progression (Jieqiong Zhang et al., 2015). Other genotoxic agents that affect 

replication fork activity include the compound Olaparib (OLA). This compound has been widely 

reported to inhibit the DNA repair activity of PARP1, thereby leading to replication fork stalling 

and cell cycle arrest (Ray Chaudhuri and Nussenzweig, 2017).  

  

Figure 27: E2F7 controls cellular recovery after the cell cycle arrest caused by inhibition of PARP1. (A) 
U2OS cells were HU-synchronized and transfected with siNT and siE2F7. After HU treatment for 24 h, 
cells were released into the cell cycle and treated for 24 hours with 4 µM OLA. Nocodazole was added 
10 hours later. The percentage of mitotic cells, as determined by pH3 positivity and FACS analysis is 
shown comparing siE2F7 cells over siNT. The graph represents fold-change of E2F7-depleted pH3-
positive cells over siNT values (mean ± SD) from three independent experiments. (*, P < 0.05) (B) U2OS 
E2F7-WT and U2OS E2F7-KO cells were HU-synchronized. After HU treatment for 24 h, cells were 
released into the cell cycle and treated for 24 hours with 4 µM OLA. Nocodazole was added 10 hours 
later. The percentage of mitotic cells determined by pH3 positivity and FACS analysis is shown. The 
graph represents fold-change values of E2F7-deficient pH3-positive cells over E2F7-proficient pH3-
positive cells (mean ± SD) from three independent experiments. (*, P < 0.05). (UT= untreated; OLA= 
Olaparib) 
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We wondered whether E2F7 could also be involved in the control of cellular recovery following 

the arrest produced by PARP1 inhibition provoked by OLA. To this end, we followed the protocol 

described above and compared the behavior of U2OS cells treated with OLA in the absence of 

E2F7. We found that transient knockdown of E2F7 with specific siRNA-mediated interference in 

these cells resulted in an up to 2.5-fold increase in the fraction of cells capable of exiting from 

the cell cycle arrest impaired by OLA, in comparison with siNT-transfected cells (Figure 27A). 

Similarly, CRISPR/Cas9-mediated knockout of E2F7 in U2OS also resulted in an over 4-fold 

increase in cells capable of exiting from the arrest imposed by OLA (Figure 27B).  

Taken together, these results suggest a role for E2F7 protein in attenuating cell cycle progression 

after DNA damage induced by ICLs or by PARP1 inhibition, as the absence of E2F7 confers an 

advantage to overcome the G2 arrest induced by these types of treatments. 

Given that interstrand crosslinks and PARP1 inhibition compromise the progression of the 

replication fork, we next considered whether DNA replication rates were affected after 

knockdown of E2F7. To analyze the replication rate we carried out a BrDU incorporation assay 

whereby cells incorporate BrDU as an analog of thymidine as they progress through the S phase 

of the cell cycle. We measured BrdU incorporation in asynchronously growing cells treated with 

CSP for 12 h in the presence or absence of E2F7. As expected, DNA synthesis rate was reduced 

in siNT control cells under CSP treatment, and only 14% of the cells were actively replicating 

DNA compared to 45% in the untreated condition. By contrast, the reduction in DNA replication 

was alleviated in E2F7-knockdown cells, and as many as 40% of cells replicated their DNA 

efficiently. These results suggest that E2F7 inhibits DNA replication when DNA lesions that 

interfere with fork progression are generated. 

 

 

Figure 28: E2F7 inhibits DNA replication with 
treatments that interfere with replication fork 
progression. Asynchronously growing U2OS cells 
were transfected with siNT and siE2F7 and 
subsequently treated with 16 μM CSP for 12 h. 
BrdU was present in the cultures for the last 2 h. 
Cells were stained with anti-BrdU conjugated with 
FITC and with propidium iodide. A representative 
FACS analysis is shown. 
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Having shown that depletion of E2F7 confers an increased ability to damaged cells to replicate 

their DNA and enter mitosis, we next determined the role of E2F7 in overall cell survival by 

performing long-term clonogenic assays. To this end, we treated E2F7-knockout cells with 

several doses of CSP for 24 h and subsequently cultured them at low density for two additional 

weeks in drug-free medium to allow for colony formation from individual surviving cells.  

 

 

Figure 29: Lack of E2F7 provides long-term resistance against CSP. U2OS cells (E2F7-WT or E2F7-KO) 
were treated with 2, 4 and 8 μM of CSP for 24 h and cultured at low density for two additional weeks 
in treatment-free medium. After this period, colonies were stained fixed with paraformaldehyde and 
stained with crystal violet. Finally, the number of colonies was scored in each condition. (A) 
Representative images of colony density in each condition. (B) Cell viability ratio was calculated 
normalizing data against untreated (Ø) samples, which defined as 1. The graph represents colony 
survival ratio of treated samples against untreated samples (mean ± SD) from three independent 
experiments. (*, P < 0.05) 

 

The number of colonies that were scored in untreated E2F7 knockout cultures was slightly higher 

than the number of colonies scored in E2F7-competent cultures, which probably reflects the 

reported role of E2F7 to hinder cellular proliferation (de Bruin et al. 2003; Westendorp et al. 

2012; Mitxelena, 2014). As expected, CSP treatment caused a dose-dependent decrease in 

colony numbers, which reflects the ability of CSP to induce cytotoxicity.  
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However, as shown in Figure 29, the number of colonies that were scored in E2F7-knockout 

cultures exposed to all three CSP doses was significantly higher than in E2F7-WT cultures 

(between 7% and 28% higher depending on the dose), consistent with our pH3 and BrDU results 

. 

Altogether, our results suggest that lack of E2F7 confers an increased recovery competence and 

survival upon treatment with compounds that affect replication fork progression.  

 

4.2.2.2 E2F7-dependent gene expression regulation of DDR genes upon DNA damage 

Our finding that E2F7 negatively affects cellular recovery upon genotoxic damage prompted us 

to examine the mechanism underlying this phenotype. Several genotoxic drugs such as 

doxorubicin and etoposide have been reported to induce an accumulation of E2F7 levels (Zalmas 

et al., 2008; Carvajal et al., 2012). We examined whether E2F7 expression and therefore its 

transcriptional activity were also regulated upon ICL induction.  

 

 

Figure 30: Robust overexpression of DDR genes in CSP-treated cells depleted of E2F7.  Asynchronously 
growing U2OS cells were transfected with siNT and siE2F7 and subsequently treated with 8 μM CSP for 
24 h. RT-qPCR analyses of indicated genes are shown. Expression values are normalized to the 
expression of EIF2C2, used as standard control. Data are represented as relative mRNA levels from 
three different experiments (*, P<0.05). 
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To this end, U2OS cells that had been transfected with siNT or siE2F7 molecules were treated 

with CSP during 24h and target gene expression was analyzed at the mRNA level. A significant 

increase in E2F7 levels was detected upon CSP exposure, similarly to what has been reported 

for other treatments, which was blocked in siE2F7-transfected cells (Figure 30). In contrast to 

E2F7 expression, the mRNA levels of target genes involved in DNA repair identified in our RNA-

seq assay were consistently reduced upon CSP treatment. Importantly, silencing of E2F7 led to 

a robust overexpression of target genes in CSP treated cells (Figure 30). These findings point to 

a role for E2F7 in the negative regulation of genes involved in DNA damage responses following 

ICL induction. 

At the protein level, E2F7 levels were significantly induced after treatment of U2OS cells with 

various doses of CSP and MMC (Figure 31A), consistent with mRNA expression results. It has 

been reported that E2F7 induction upon treatment with topoisomerase II inhibitors doxorubicin 

and etoposide is p53-dependent (Carvajal et al., 2012). To determine whether the observed 

accumulation of E2F7 levels upon induction of ICL lesions was mediated by p53, we silenced p53 

expression by siRNA interference and examined E2F7 expression upon genotoxic treatment. 

Surprisingly, loss of p53 did not reduce E2F7 levels (Figure 31B), suggesting that the increase in 

E2F7 expression upon ICL-producing agents is independent of p53 activity.  

Intriguingly, NCS treatment had no effect on E2F7 or p53 accumulation. By contrast, the levels 

of a p53 target gene, p21Cip1, were significantly elevated after NCS treatment, but not after MMC 

or CSP treatment, reflecting differences in the mechanisms of action of these genotoxic agents 

at the molecular level.  

In functional assays, we found that depletion of p53 did not enhance the recovery of U2OS cells 

exposed to CSP or MMC as would have been expected if E2F7 levels were controlled by p53 

upon ICL-inducing conditions. In fact, the percentage of pH3 positive cells was similar to the siNT 

condition under p53-depletion conditions (Figure 31C). Conversely, cells with double silencing 

of E2F7 and p53 exhibited increased recovery competence, which was even higher than the 

simple silencing of E2F7. 
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Figure 31: E2F7 induction and functional activity after ICL damage are p53-independent. (A,B) U2OS 
cells were transfected with siRNA molecules specific for p53 or with siRNA control, and 24 h later 
treated with MMC (250 and 500 nM), CSP (4 and 8) or NCS (40 ng/ml) for an additional 24 h period. 
E2F7, p53 and p21Cip1 protein levels were analyzed by western blots using specific antibodies. (C) U2OS 
cells were HU-synchronized and transfected with siNT, siE2F7 and/or sip53. Subsequently, cells were 
treated as in Figure 26A,B. Finally, cells were treated nocodazole 10 hours later and the percentage of 
mitotic cells determined by pH3 positivity and FACS analysis. The graphs represent fold-change over 
siNT values (mean ± SD) of E2F7- and/or p53-depleted pH3-positive cells from three independent 
experiments. UT, untreated. 
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To confirm these results we made use of HeLa cells, in which p53 activity is very low due to 

human papillomavirus derived E6 protein expression in these cells (Haupt et al., 1995). Using 

the protocol described in Figure 25, we found that transient knockdown of E2F7 in synchronized 

HeLa cells resulted in a significant increase in cells capable of exiting from the arrest imposed by 

MMC and CSP in comparison with siNT-transfected cells (Figure 32A). This recovery effect, again, 

disappeared in E2F7-knockdown cells treated with NCS.  

 

 

 

Figure 32: E2F7-mediated cell cycle modulation and transcriptional activity after ICL damage in HeLa 
cells. (A) Synchronized HeLa cells were transfected and treated as in Figure 31B and the percentage of 
mitotic pH3-positive cells was analyzed by flow cytometry. The graph represents fold-change of E2F7-
depleted pH3-positive cells over siNT values (mean ± SD) from three independent experiments. (*, P < 
0.05). (B) Asynchronously growing HeLa cells were transfected with siNT and siE2F7 and subsequently 
treated with 8 M CSP for 24 h. RT-qPCR analyses of indicated genes are shown. Expression values are 
normalized to the expression of EIF2C2, used as standard control. The graph represents relative mRNA 
expression average values (mean ± SD) from three independent experiments. (*, P < 0.05). 
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At the gene expression level, exposure to CSP led to a significant induction of E2F7 mRNA levels 

in HeLa cells (Figure 32B), whereas no effect was observed in the expression of repair genes. 

However, E2F7 depletion in CSP-treated cells led to a significant increase in the expression of all 

the analyzed target genes (Figure 32B). Taken together these results point to an essential p53-

independent mechanism for E2F7-mediated control of G2 arrest after treatment with 

compounds producing ICLs. 

 

4.2.3 Role of E2F7 on the repair of ICL-inducing DNA damage 

Given the transcriptional repression of E2F7 over genes involved in the repair of ICL-producing 

DNA damage, we next considered the possibility that E2F7 could specifically contribute to the 

modulation of this DNA repair pathway. It has been described that treatments with DNA 

damaging agents that induce interstrand crosslinks give rise to the formation of nuclear foci 

containing 53BP1 and FANCD2 proteins, two of the main indicators of DNA repair (Rappold et 

al., 2001; Hussain et al., 2004). Interestingly, we found that depletion of E2F7 caused a 

significant decrease in the number of 53BP1 and FANCD2 foci upon ICL induction (Mitxelena, 

2014).  

We next asked whether the lower number of foci detected upon E2F7 depletion was the result 

of a reduced uploading of repair proteins to damage sites or a more efficient repair activity. In 

order to answer this question we analyzed foci formation dynamics at early and late treatment 

time-points. The levels of γ-H2AX, a key protein localized on damage foci were analyzed at 7 and 

24h after genotoxic treatments in E2F7-WT and E2F7-KO U2OS cells.  

 

Figure 33: Reduced number of γ-H2AX-positive cells in E2F7-null cells. E2F7- knockout and wild-type 
U2OS cells were treated with 250nM MMC, 4µM CSP and 2µM OLA, and fixed after 7h or 24h. Cells 
were stained for γ-H2AX with a FITC-conjugated specific antibody. Fluorescence intensity was analyzed 
by flow cytometry. Data are represented as the ratio of γ-H2AX-positive cells in E2F7 knockout samples 
relative to control samples from three independent analyses (*, P<0.05, one sample t-test). 
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We observed that E2F7-null cells showed lower levels of γ-H2AX compared to E2F7-competent 

cells after 24 h of genotoxic treatment, whereas the γ-H2AX levels were comparable at earlier 

time points in both cell lines (Figure 33). These data suggest that E2F7 is dispensable for foci 

formation. Instead, E2F7 appears to play a key role in the negative control of repair pathways 

targeting ICL lesions or PARP1 inhibition. 

Finally, we assessed one of the main hallmarks of ICL-inducing agents, which is the accumulation 

of chromosomal aberrations, identified as broken and radial chromosomes in metaphase 

spreads (Nijman et al., 2005; McCabe, Olson and Moses, 2009). Nearly 40% of the control cells 

(siNT) displayed radial or broken chromosomes upon MMC exposure whereas silencing of E2F7 

provided partial resistance against MMC-induced chromosomal aberrations, with a 2-fold 

reduction in the number of cells exhibiting radial and broken chromosomes (Figure 34). Thus, 

E2F7 appears to have a negative role in the repair of chromosomal aberrations resulting from 

MMC treatment.  

 

 

Figure 34: Negative role of E2F7 in the repair of chromosomal aberrations upon ICL damage. siNT and 

siE2F7 transfected U2OS cells were treated with 250 nM MMC for 48 h and scored for chromosomal 

aberrations by analyzing metaphase spreads. Representative images of a radial chromosome and a 

chromatid break are shown. Data are represented as the percentage of cells presenting any 

chromosomal aberration on each condition (n = 50 cells) in three independent experiments. (*, P < 

0.05), 
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4.2.3.1 Role of E2F7 on Homologous Recombination (HR) repair 

As has been described in the Introduction section of this report, one of the key steps in the 

Fanconi Anemia repair pathway is the step mediated by the homologous recombination 

machinery (Michl, Zimmer and Tarsounas, 2016). In order to assess whether E2F7 has a role in 

this process we next investigated the efficiency of HR in cells lacking or overexpressing E2F7. For 

these experiments, we used a U2OS cell line with an integrated direct repeat recombination 

reporter (DR-GFP). As described in the Materials and Methods section, homology-directed DNA 

repair can be detected in U2OS-DR-GFP cells when a DSB introduced into the chromosome by 

the I-SceI endonuclease is repaired by HR to give rise to GFP-positive cells (Richardson, 

Moynahan and Jasin, 1999).  

Knockdown of E2F7 in U2OS-DR-GFP cells resulted in a significant increase in HR efficiency, 

measured as a percentage of GFP+ cells (Figure 35). Conversely, overexpression of E2F7 in U2OS-

DR-GFP cells led to a significant reduction in HR efficiency (Figure 35). Taken together, these 

results suggest that E2F7 inhibits HR-mediated repair.  

 

 

Figure 35: E2F7 affects negatively Homologous Recombination efficiency. U2OS-DR-GFP cells were 

transfected with siRNAs specific for E2F7 or with a plasmid expressing E2F7, together with an SceI 

expression vector. GFP-positive cells were analyzed by FACS. Data are shown as a ratio of GFP-positive 

cells upon E2F7 silencing or overexpressing relative to siNT or empty pCMV transfection. The values 

shown represent the mean ± SD of three independent experiments (*, P < 0.05). 
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To better define the mechanism underlying E2F7-mediated modulation of DNA repair, we 

assessed whether the improved homologous recombination, and thus improved genomic 

stability conferred by loss of E2F7 could be attributed to increased expression of E2F7 target 

genes that are required for HR repair. We focused on RAD51, a key HR protein and one of the 

genes identified in this work as direct target of E2F7. Using the DR-GFP reporter system, siRNA-

mediated RAD51 depletion led to a reduction in HR repair, whereas E2F7 depletion resulted in 

increased HR rates, as measured by the differences in the percentages of GFP-positive cells 

detected by flow cytometry (Figure 36A). In parallel assays, we co-transfected E2F7-specific 

siRNAs with a concentration of RAD51-specific siRNAs that would attenuate RAD51 expression 

to the levels found in E2F7 competent cells (Figure 36B). 

 

Figure 36: E2F7 suppresses HR 
through transcriptional 
repression of DNA repair 
genes. (A) U2OS-DR-GFP cells 
were transfected with siRNAs 
specific for E2F7, RAD51 or 
with a combination of both 
and analyzed as in Figure 35. 
(B) Western blot analysis 
confirmed knockdown of E2F7 
and RAD51 (arrow). Shown is a 
representative experiment of 
two independent 
experiments. A non-specific 
band in RAD51 blot is 
indicated with an asterisk. 

 

 

Interestingly, the increased HR repair efficiency conferred by loss of E2F7 was abrogated under 

these conditions, and the percentage of GFP positive cells decreased to the levels found in 

control cells (Figure 36). These results suggest that E2F7 modulates DNA repair through the 

transcriptional repression of target genes that play a central role in the resolution of DNA lesions 

requiring homology-directed repair, such as RAD51. These results also suggest that in the 

absence of E2F7 the HR pathway could become hyperactive and potentially harmful. 
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4.2.4 Role of E2F7 in genomic stability 

Given that E2F7 displays features of an HR inhibitor, we next tested whether downregulation of 

E2F7 could suppress the genomic instability that characterizes cells with an underlying genetic 

defect in HR. We hypothesized that the increased recombination capacity conferred by E2F7 

depletion might promote DNA repair and protect these cells from genomic instability and cell 

death. 

 

 

Figure 37: Improved genomic stability upon E2F7 
depletion in BRCA2-deficient cells.  (A) HR 
efficiency of U2OS-DR-GFP cells transfected with 
siRNAs specific for E2F7, BRCA2 or with a 
combination of both. Data are represented as 
fold-change (mean ± SEM) relative to siNT-
transfected samples from two independent 
experiments. (B) Silencing control RT-qPCR 
analyses of E2F7 and BRCA2 genes are shown. 
Expression values are normalized to the 
expression of EIF2C2, used as standard control. 
The graph represents relative mRNA expression 
average values (mean ± SD) from three 
independent experiments. (*, P < 0.05). 

To test this possibility we made use of two systems, both of which involve BRCA2, a key player 

in HR-mediated repair (Powell and Kachnic, 2003). In the first system, we used RNA interference 

to attenuate the expression of BRCA2 and E2F7 in the U2OS-DR-GFP cell line (Figure 37A). As 

expected, knockdown of BRCA2 abolished HR repair in this assay. Interestingly, we observed 

that co-depletion of E2F7 could improve HR in cells with reduced BRCA2 activity (Figure 37B), 

suggesting that E2F7 silencing alleviates the genomic instability provoked by the absence of 

BRCA2. 
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In the second system, we made use of CAPAN-1 pancreatic adenocarcinoma cells, which are 

defective in HR due to a loss-of-function mutation of BRCA2 (McCabe et al., 2005). It has been 

recently demonstrated that, cancer cells deficient in HR repair through loss of BRCA2 are 

hypersensitive to inhibition of PARP-1, a key protein in the repair of DNA damage involving DSBs 

(Lord and Ashworth, 2017). Thus, we examined the impact of E2F7 upon PARP1 inhibition in 

CAPAN-1 cells by performing long-term clonogenic survival assays.  

 

Figure 38: Improved cell survival upon 
E2F7 depletion in BRCA2-deficient 
cells. Clonogenic survival assays were 
carried out with siE2F7 or siNT 
transfected CAPAN-1. Cells were 
treated with indicated doses of OLA for 
24 h and cultured for two additional 
weeks at low density in treatment-free 
medium. After this period, colonies 
were fixed with paraformaldehyde and 
stained with crystal violet. Finally, the 
number of surviving colonies was 
scored in each condition. (A) 
Representative images of colony 
formation in each condition. (B) Colony 
formation ratio was calculated by 
normalizing data against untreated (Ø) 
samples in each transfection condition. 
The graph represents colony survival 
ratio of OLA-treated samples against 
untreated samples (mean ± SD) from 
three independent experiments. (*, P < 
0.05) 

 

As expected, treatment of BRCA2-deficient CAPAN-1 cells with PARP1 inhibitor OLA 

compromised cell viability, by reducing significantly the number of surviving colonies (Figure 38). 

Remarkably, downregulation of E2F7 expression in CAPAN-1 cells was associated with increased 

resistance to the PARP1 inhibitor OLA, as the number of colonies scored in E2F7-depleted cells 

was significantly higher in both OLA concentrations that were tested (Figure 38). These findings 

suggest that E2F7 knockdown confers an increased resistance to chemotherapy in cells carrying 

defects in genes involved in HR. 

The results compiled in this section regarding the role of E2F7 in the Fanconi Anemia and HR-

mediated repair pathways have been recently published (Mitxelena*, Apraiz*, Vallejo-

Rodríguez* et al, 2018). 
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4.2.5. Role of E2F7 in the response to DNA alkylation damage  

We have shown that lack of E2F7 confers an advantage to cells that have been treated with 

PARP1 inhibitor Olaparib, as E2F7-depleted cells can progress in the cell cycle more efficiently 

and show a better clonogenicity than E2F7-competent cells (Figure 27).  PARP1 has been 

described as a key component of several DNA repair pathways. In addition to its role in HR-

mediated repair mentioned above, PARP1 has been described as a key member of the machinery 

responsible for the repair of single-strand DNA breaks (Ray Chaudhuri and Nussenzweig, 2017). 

Single-strand DNA breaks (SSB) are commonly produced by DNA oxidation or alkylation. They 

are detected and subsequently processed by the Base Excision Repair (BER) pathway, and finally 

repaired by a specific SSB-repairing machinery (Kim, Wilson and III, 2012).  

Given the impact of E2F7 depletion in the cellular responses to PARP1 inhibition, we wondered 

whether E2F7 could play a role in the repair pathway that targets single-strand DNA breaks. To 

address this question we treated E2F7-deficient and E2F7-proficient U2OS cells with methyl 

methanesulfonate (MMS). This compound produces alkylating damage in the DNA molecule that 

can be detected by the BER pathway and repaired by the SSB repair machinery (Wyatt and 

Pittman, 2006).  

 

4.2.4.1. Role of E2F7 in the cellular recovery from alkylating damage on DNA 

Following the protocol described in Figure 39A, we analyzed the contribution of E2F7 to cellular 

responses upon MMS exposure in U2OS cells, measured as the fraction of cells capable of 

undergoing mitosis. We found that the fraction of cells capable of exiting from the arrest 

imposed by MMS is significantly increased in the absence of E2F7 (Figure 39B). This result points 

to a negative role for E2F7 in the cellular recovery from alkylating damage in DNA. 
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Figure 39:  E2F7 controls cellular recovery after DNA alkylation damage caused by MMS. U2OS WT 
and E2F7 KO cells were HU-synchronized for 24h. After HU treatment, cells were released into the cell 
cycle and treated for 24 hours with indicated doses of MMS. Nocodazole was added 10 hours later. (A) 
Schematic diagram of the cellular recovery experiment. (B) The percentage of mitotic cells determined 
by pH3 positivity after FACS analysis is shown comparing E2F7 KO cells over E2F7 WT cells. The graph 
represents fold-change of E2F7-deficient pH3-positive cells over E2F7-proficient cells values (mean ± 
SD) from three independent experiments. (*, P < 0.05). 

 

To examine the long-term effect of E2F7 in MMS-treated cells, we carried out clonogenic survival 

assays with U2OS cells displaying wild-type or null E2F7 levels. Cells were treated with MMS for 

24 hours and their viability was assessed by their capacity to form colonies within a period of 14 

days. As reported in Lee et al., 2007, increasing amounts of MMS reduced the viability of wild-

type control cells. Remarkably, we found that E2F7 knockout cells treated with MMS presented 

higher clonogenicity rates relative to E2F7-WT cultures (Figure 40).  

These results suggest that lack of E2F7 confers a resistance to cell death induced by MMS 

treatment owing to an improved recovery from the checkpoint imposed by this genotoxic 

compound. 
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Figure 40: E2F7 silencing provides 
long-term resistance against MMS. 
U2OS WT or E2F7 KO cells were 
treated with 75 and 100 μM of MMS 
for 24 h and cultured for two 
additional weeks in treatment-free 
medium. After this period colonies 
were stained fixed with 
paraformaldehyde and stained with 
crystal violet. Finally, were scored in 
each condition. (A) Representative 
images of colony density in each 
condition. (B) Colony formation ratio 
was calculated normalizing data 
against untreated (Ø) samples on 
each silencing condition. The graph 
represents colony survival ratio of 
treated samples against untreated 
samples (mean ± SD) from three 
independent experiments. (*, P < 
0.05) 

 

 

4.2.4.2 Role of E2F7 in the expression of alkylation damage repair genes 

We have described in the previous section that E2F7 modulates ICL-producing damage repair 

through the transcriptional regulation of key components of the repair machinery (Figure 30). 

We next wondered whether E2F7 was similarly involved in modulating responses to DNA 

alkylation damage through the transcriptional regulation of key proteins involved in BER and 

SSBR pathways.  

XRCC1 and DNA ligase III (LIG3) are key components of BER and SSBR pathways (Kim, Wilson and 

III, 2012). XCRR1 is a scaffold protein essential for the recruitment of other proteins such as LIG3, 

which is the ligase responsible of the last step of the repair process. The promoters of both genes 

harbor consensus E2F binding sites, as it appears from our visual inspection of their regulatory 

sequences in Ensembl (https://www.ensembl.org/index.html). Moreover, E2F1 protein has 

been described as a direct transcriptional regulator of XRCC1 protein (Chen et al., 2008). These 

evidences suggested that E2F7 could be regulating directly the expression of these two proteins 

that are critical for the repair of DNA alkylation damage. 
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Figure 41: Silencing of E2F7 does not affect XRCC1 
or LIG3 mRNA expression in MMS-treated cells.  
Asynchronously growing U2OS cells were 
transfected with siNT and siE2F7 and 
subsequently treated with indicated 
concentrations of MMS for 24 h. RT-qPCR analyses 
of E2F7 (A), XRCC1 (B) and LIG3 (C) are shown. 
Expression values are normalized to the 
expression of EIF2C2, used as standard control. 
Data represent as fold-change of siE2F7 relative to  
siNT values (mean ± SD) from three independent 
experiments. (*, P < 0.05) 

 

To test this hypothesis, we performed gene expression analyses with U2OS cells that had been 

transfected with siNT or siE2F7 molecules and subsequently treated with MMS. As shown in 

Figure 41A and Figure 42A,B, MMS treatment induced the expression of E2F7 in a dose-

dependent manner at the mRNA and protein level, similarly to what was found for ICL-inducing 

agents. In contrast to E2F7, the expression of XRCC1 and LIG3 was consistently reduced upon 

MMS treatment, both at the RNA and protein levels (Figure 41B,C and Figure 42A).  

However, contrary to what we found upon treatment with ICL-inducing conditions, silencing of 

E2F7 did not affect significantly the expression of these genes in MMS treated cells (Figure 41 

and Figure 42). These findings suggest that E2F7 does not regulate BER and SSBR pathways at 

the transcriptional level and points to a fundamental difference in the mechanisms by which 

E2F7 modulates the cellular responses to specific DNA lesions. 
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Figure 42: Silencing of E2F7 does not affect XRCC1 or LIG3 protein expression in MMS-treated cells.  
Asynchronously growing U2OS cells were transfected with siNT and siE2F7 and subsequently treated 
with indicated concentrations of MMS for 24 h. (A) Protein expression levels were analyzed by western 
blot using specific antibodies against E2F7, XRCC1, LIG3 and α-Tubulin proteins. Densitometry of E2F7 
(B), XRCC1 (C) and LIG3 (D) protein levels relativized to α-Tubulin levels in each sample. 

 

4.2.4.3 Interaction of E2F7 with proteins involved in DNA alkylation repair 

We next set out to investigate E2F7-dependent mechanisms for the alkylating damage response 

that did not involve transcriptional regulation. A central mechanism to regulate protein activity 

involves direct protein-protein interaction (De Las Rivas and Fontanillo, 2010). We used the 

bioinformatics tool ELM (http://elm.eu.org/) to search for functional motifs in the amino acid 

sequence of E2F7 that could be involved in the interaction with other proteins. We identified 

several functional linear motifs distributed along the sequence of E2F7. Interestingly, this 

analysis pinpointed a motif in E2F7 that interacts with the BRCT domain, an aminoacid tandem 

repeat that functions as a phosphoprotein binding domain (Yu et al., 2003).  
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The BRCT domain was first identified as part of the breast cancer suppressor protein BRCA1 

(Bork et al., 1997), but it was subsequently found in many proteins of the DNA damage response 

such XRCC1 (Zhang et al., 1998). In fact, the BRCT domain in XRCC1 binds and stabilizes DNA 

Ligase III protein, and disruption of this binding prevents XRCC1-dependent DNA repair (Della-

Maria et al., 2012). The presence of this BRCT-binding motif in E2F7 could modulate the activity 

of repair proteins carrying BRCT motif through a direct protein-protein interaction. 

 

 

Figure 43: Motif analysis in E2F7 protein sequence.  Schematic representation of the protein E2F7 with 

the localization of BRCT domain interaction motif. BRCT_1 motif was identified between 290 and 294 

residues of E2F7 protein, which allows the interaction with BRCT domain present in target proteins. N, 

nuclear localization motif. DBD, DNA binding domain.  

 

In order to confirm the ELM bioinformatics tool prediction, we next performed protein co-

immunoprecipitation experiments. For these experiments, we used U2OS-TetOn cells 

(described in Materials and Methods section) that were transfected with a plasmid encoding the 

E2F7 protein tagged with FLAG (U2OS-TRE-E2F7-FLAG) or with an empty plasmid carrying the 

FLAG tag (U2OS-TRE-FLAG). These plasmids carry the tetracycline response elements in the 

promoter of the gene, thus allowing the overexpression of transfected recombinant genes in a 

regulated manner upon the addition of doxycycline, a tetracycline analog (Das, Tenenbaum and 

Berkhout, 2016).  

In order to identify the proteins that could be detected exclusively in E2F7-FLAG overexpressing 

cells and, therefore, could interact potentially with E2F7, U2OS-TRE-E2F7-FLAG and U2OS-TRE-

FLAG cells were seeded and treated with doxycycline 2 μg/ml for 24h hours in order to 

overexpress E2F7-FLAG or FLAG. Then protein lysates were collected and subsequently 

immunoprecipitated, as indicated in Materials and Methods section, using antibodies against 

FLAG tag. As shown in Figure 44, we observed high amounts of E2F7 protein 

immunoprecipitated in E2F7-FLAG transfected cells (IP1, immunoprecipitation elution 1), which 

were absent in the IP2 (immunoprecipitation elution 2), or in NB (not bound) fractions. As a 

control, we showed no E2F7 immunoprecipitated in empty FLAG-transfected cell.  
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Remarkably, antibodies against FLAG could immunoprecipitate a substantial amount of XRCC1 

and LIG3 proteins in E2F7-FLAG transfected cell lysates in comparison with cells transfected with 

the empty plasmid (compare IP1 elutions in both cases). Although further experiments are 

needed to confirm these findings, the immunoprecipitation results suggest a direct interaction 

between E2F7 and the proteins XRCC1 and LIG3 that could account for the E2F7-driven 

modulation of DNA alkylating damage response found in this work.  

 

          

Figure 44: Specific interaction of E2F7 with the repair proteins XRCC1 and LIG3. U2OS TetOn cells were 
stably transfected with pTre-E2F7-FLAG and pTre-FLAG-empty vectors and after addition of doxycycline 
these vectors were overexpressed. An immunoprecipitation was carried out against FLAG tag and the 
elutions were blotted with specific antibodies against E2F7, XRCC1 and LIG3. (Input, 
immunoprecipitation elution 1 (IP1), immunoprecipitation elution 2 (IP2), Not Bound fraction (NB)). 
Note: endogenous E2F7 levels are not detected in the input fraction due to the short exposure of the 
image in order to detect an overexpression. 

 

Collectively, these results point to a novel E2F7-driven regulatory mechanism in DNA alkylation 

damage response. This novel mechanism could involve protein-protein interaction between 

E2F7 and key proteins of the repair of this DNA damage, adding a new layer of complexity to the 

mechanisms underlying E2F7-regulated DNA damage responses.  
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4.3. THE E2F7-E2F1 AXIS IN CELL PROLIFERATION. A SEARCH FOR MODULATORS 

OF E2F1-MEDIATED APOPTOSIS  

 

E2F1 is the best known transcriptional target of E2F7 (Li et al., 2008; Moon and Dyson, 2008; 

Zalmas et al., 2008; Carvajal et al., 2012; Mitxelena, 2014; Thurlings et al., 2016). Increasing 

cellular levels of E2F7 (and/or E2F8) repress E2F1 expression, whereas reducing the levels of 

E2F7 (and/or E2F8) results in aberrantly induced E2F1 expression and activation. Furthermore, 

it has been shown that the high apoptosis rates detected in tissues derived from E2F7-/- or               

E2F7-/-/ E2F8-/- compound mice are triggered by the aberrant levels of E2F1, since ablation of 

E2F1 in cells derived from E2F7-/-/ E2F8-/- mice blocks apoptosis-driven lethality of DKO mice (Li 

et al., 2008). Moreover, loss of E2F1 accelerates tumorigenesis in E2F7/8-deficient skin tumors 

(Thurlings et al., 2016). These findings have suggested the existence of an E2F1-E2F7/8 axis that 

is critical for tissue homeostasis, whose dysregulation can lead to several unfavorable outcomes.  

Thus, to gain a better understanding of E2F7 function, it is necessary to learn about the pro-

apoptotic activity of E2F1, and how this activity is restrained by counterbalancing signals to 

facilitate the neoplastic transformation. However, with the exception of PI3K/AKT signaling 

pathway which can partially block the apoptotic program of E2F1 overexpressing cells 

(Hallstrom, Mori and Nevins, 2008), little is known about the cellular signals that mediate tumor 

development under excessive E2F1 activity. The identification and characterization of these 

modulators could help in the development of therapeutic strategies against tumor progression. 

 

4.3.1. Screening assay to identify modulators of E2F1-driven apoptosis  

In order to identify signaling pathways that could be modulating E2F1-driven apoptosis, we 

carried out a cell-based phenotypic screening assay using a library of 4,216 pharmaceutical 

compounds (supplied by Chemical Biology Consortium Sweden). We selected this library 

because all its compounds are approved by the FDA to be used in human clinical trials. 

Furthermore, they are actively being used for high-throughput screening strategies, so that dose 

and safety have already been confirmed. This library contains structurally diverse, medicinally 

active and cell permeable drugs, and a rich documentation on structure and IC50 data is 

accessible for each compound. All the screening experiments were carried out in Dr. Fernandez-

Capetillo´s lab (Karolinska Institutet, Stockholm) as part of our ongoing collaboration, under the 

supervision of Dr. Jordi Carreras. 
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To work with an E2F1-driven apoptosis system, we generated U2OS-TRE-E2F1 cells (described 

in Materials and Methods section). These cells overexpress E2F1 and, therefore, promote E2F1-

driven apoptosis upon doxycycline addition in a reproducible manner. Additionally, with this 

system we avoid cytotoxic effects of transfection reagents used in transitory overexpression 

systems. U2OS-TRE-E2F1 cultures induce overexpression of E2F1 and apoptosis as early as 24h 

after doxycycline addition, and the percentage of apoptotic cells increases substantially over 

time (Figure 45).  

 

 

 

Figure 45: Cell death analysis upon E2F1 overexpression. U2OS-TRE-E2F1 cells were treated with 2 
μg/ml doxycycline for the indicated times. (A) Cells were fixed, stained with propidium iodide (PI) and 
cell cycle profile was analyzed by flow cytometry. Cell death percentages were calculated as the sub-
G1 cell fraction over total cell amount. (B) E2F1 overexpression was checked by Western Blot using a 
specific antibody against E2F1. 

 

To identify new modulators of E2F1-driven apoptosis we selected the 48h doxycycline time 

point. We reasoned that the percentage of cell death of around 10% triggered by E2F1 at 48h 

could allow the detection of two types of compounds: those compounds that would increase 

the apoptotic rate triggered by E2F1 and those compounds that would decrease the apoptotic 

rate. In the first case we would be looking for compounds that sensitized cells against E2F1-

driven apoptosis, that is, compounds that could be inhibiting a pathway that counterbalances 

E2F1-induced cell death. In the second case, we would be looking for compounds that protected 

cells against E2F1-driven apoptosis, that is, compounds that could be blocking the apoptosis 

pathway. 
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We carried out a high-throughput screening assay as described in Materials and Methods 

section following a methodology developed by Fernandez-Capetillo´s group. Briefly, U20S-TRE-

E2F1 cells were seeded at 1x104/well density in 384-well plates. A total of 45 plates were used 

to screen the 4216 compounds in triplicates. The following day, doxycycline was added at 2 

μg/ml and 24 hours after the activation of E2F1 expression, each triplicate well was treated with 

an individual compound at a final concentration of 10μM. Subsequently, 24 hours after 

compound addition, cells were fixed and stained with Propidium Iodide (PI) and Hoechst. We 

used Propidium Iodide (PI) and Hoechst double staining to detect differences in cell death at 

high-throughput screening levels. PI positive cells were identified as cells whose membranes had 

been compromised, which is one of the first hallmarks of cells undergoing apoptosis, and 

Hoechst staining provided us the total amount of cells in each well. The ratio of PI positive 

cells/Hoechst positive cells, allowed us to calculate the percentage of cell death in each 

treatment. Finally, we took individual photos of each well, and image analysis was done using 

Cell Profiler program (Carpenter et al., 2006) where nuclei were automatically counted. After 

image acquisition, we calculated the percentage of cell death (PI positive cells/Hoechst positive) 

for each treatment, which was the average of three replicate wells.  

Each plate carried several positive control wells (i.e. treated with doxycycline, and 

overexpressing E2F1, but without any treatment) and negative control wells (i.e. without E2F1 

overexpression and without treatments), which facilitate the comparison of results among 

plates. As expected, the average of all positive control replicate wells overexpressing E2F1 

showed a significantly higher cell death percentage (7.2%±) than the average of all negative 

control replicate wells (1.24%±) (Figure 46).  

 

Figure 46: Effect of E2F1 overexpression on cell death percentage in the high-throughput screening. 
U2OS-TRE-E2F1 cells were cultured for 48 hours in the presence or absence of doxycycline and cell 
death fraction of each condition (± E2F1 overexpression) was analyzed with PI staining. Data are a 
compilation of all control wells for each condition in 45 plates. (*, P < 0.05) 
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In order to search for reliable modulators of E2F1-mediated apoptosis, we focused on 

compounds that changed significantly the percentage of cell death exhibited by the positive 

controls. On the one hand, we searched for compounds that increased this cell death percentage 

more than four times the standard deviation of the positive control. We considered these 

compounds as compounds that increase significantly E2F1-mediated apoptosis. On the other 

hand, we searched for compounds that decreased this cell death percentage more than two 

times the standard deviation of the positive control. We considered these compounds as 

compounds that decrease significantly the E2F1-mediated apoptosis. The different criterion 

between the two groups is explained because of the small percentage margin between 

apoptotic rates of negative and positive controls. 

Using the described criteria, we identified 315 compounds as significant modulators of E2F1-

mediated cell death. 

 

4.3.2. Validation of selected E2F1-driven apoptosis modulators 

Our next step consisted of validating the screening results. To this end, we repeated the protocol 

used in the high-throughput screening with the 315 compounds that gave a significant 

difference in the first screen. In this occasion, we used six 384-well plates, three of them for cells 

without doxycycline addition and, therefore, without E2F1 overexpression and three with 

doxycycline addition and E2F1 overexpression. As in the first screen, the average of all the wells 

overexpressing E2F1 showed a significantly higher percentage of apoptosis (9.33%±) than in the 

non-overexpressing control cells (1.42%±) (Figure 47).  

 

Figure 47: Effect of E2F1 overexpression on cell death in validation screen. U2OS-TRE-E2F1 cells were 
cultured for 48 hours in the presence and absence of doxycycline and cell death fraction of each 
condition (± E2F1 overexpression) was analyzed with PI staining. Data are a compilation of all control 
wells for each condition in 6 plates. (*, P < 0.05). 
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Using the same standard deviation criterion described above, we validated 61 compounds as 

significant modulators of E2F1-mediated cell death. Among these 61 compounds, we identified 

HDAC inhibitors (4 different compounds), serotonin receptor antagonists (4 different 

compounds), calcium channels inhibitors (4 different compounds) and kinase modulators (3 

inhibitors and 3 activators) (Figure 48). While most of the compounds acted promoting cell 

death after E2F1 overexpression, we identified three compounds that activate protein kinases 

and protect cells with aberrant E2F1 levels.  

 

Figure 48: Pathways modulating E2F1-driven cell death. Validated E2F1-driven cell death 
modulator compounds were classified in pathways. Those pathways with 3 or more 
compounds identified in the assay as modulators are indicated.  

 

We focused our attention on the group of serotonin receptor antagonists that our screen 

identified as possible modulators. Serotonin receptors are a large family of proteins (5-HT1 to 5-

HT7) required for the membrane transduction of the serotonin signaling cascade. In our 

validation assay, we identified GR-127935 (5-HT1B/1D antagonist), RS-39604 (5-HT4 

antagonist), Indatraline and Vortioxetine (general serotonin receptors antagonists) as 

compounds that could increase significantly E2F1-induced apoptosis (Table 11). Of these, GR-

127935 and RS-39604 stand out as particularly interesting for sensitizing cells that overexpress 

E2F1: (1) they have minimal effect on cell death in cells without E2F1 overexpression (1.42% vs 

2.3% and 4.7%) (2) they have a significant effect upon E2F1 overexpression (9.33% vs 20.6% and 

34.4%) and (3) they have shown specificity for serotonin receptors, unlike Indatraline and 

Vortioxetine (Table 11).  

HDAC inhibitors Serotonin antagonists

Calcium channels inhibitors Kinases inhibitors

Kinases activators Pathways with small representation
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Table 11: List of serotonin receptor antagonists identified as E2F1 driven cell death modulators.  

 

 

4.3.2. Serotonin receptor antagonists as E2F1-mediated cell death modulators 

We have started to explore the impact of serotonin receptor antagonists on E2F1-mediated cell 

death. To this end, we have selected the two compounds that looked more promising in the 

screening assay, and we have treated the U2OS-TRE-E2F1 cells with several doses of the 

compounds in the presence or absence of doxycycline for 24 and 48h. Cell viability was 

determined by measuring the absorbance of crystal violet-stained cells. 

As shown in Figure 49, both serotonin receptor antagonists induced a slight reduction in cell 

viability in cells that did not overexpress E2F1, especially at concentration of 10 μM, which was 

the one used in the screening assay. Importantly, both serotonin receptor antagonists increased 

significantly the cell death induced by E2F1. In the case of RS-39604, all the tested 

concentrations elevated E2F1-driven apoptosis in a dose-dependent manner, with a maximum 

effect triggered by 10 μM both at 24 and at 48h. In the case of GR-127935, two of the tested 

concentrations resulted in significant cell death, with a maximum with a maximum effect with 

the 10 μM, at 24h and with the 5 μM concentration at 48h. 

Name Therapeutic class
% Cell Death

DOX - DOX +
GR 127935 hydrochloride 5-HT1B/1D antagonist 2.30 (±0.44) 20.64 (±2.12)
RS 39604 hydrochloride 5-HT4 antagonist 4.72 (±0.07) 34.45 (±1.41)

Indatraline hydrochloride 5-HT antagonist 5.31 (±0.99) 33.74 (±4,24)
Vortioxetine hydrobromide 5-HT antagonist 52.48 (±3.54) 100 (±3,54)

No compound - 1.42 (±0.18) 9.33 (±1.79)



Results 

125 
 

 

Figure 49: Specific serotonin receptor antagonists sensitize E2F1-overexpressing U2OS cells to cell 
death. U2OS-TRE-E2F1 cells were treated with doxycycline for 48h and with indicated doses of 
compounds for 24 and 48h. After that, cell were fixed using paraformaldehyde and stained with crystal 
violet. Crystal violet was dissolved with acetic acid and the absorbance was measured by 
spectrophotometry. Cell survival ratio was calculated by normalizing the absorbance of each condition 
using their untreated (Ø) controls. (A) Graphs obtained with the compound RS-39604 data and (B) 
Graphs obtained with the compound GR-127935 data. Data represent the mean ±SD from three 
independent experiments. *, p<0.05.  

 

These results suggest a modulation of serotonin antagonists over E2F1-mediated cell death. A 
detailed study on the impact of the serotonin receptor antagonists on E2F1-driven apoptosis 

could determine the role of the serotonin pathway as modulator of apoptosis, and could help in 

the development of therapeutic strategies against tumor progression.
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E2F transcription factors have been widely described as regulators of gene expression associated 

with cell cycle regulation and cell growth. Previous studies have detailed the role for E2F factors 

in the control of the cell cycle through the regulation of genes involved in G1/S transition or in 

DNA replication (Stanelle et al. 2002; Di Stefano et al. 2003). It has been suggested that the 

temporal control of gene expression during a cell division cycle not only involves the 

transcriptional regulation mediated by classical E2Fs (E2F1-5) in quiescence and G1/S transition, 

but also the repression of these E2F-induced genes as cells advance through the cell cycle, 

allowing correct progression into the following phases (Infante et al., 2008; Iglesias-Ara et al., 

2010; Bertoli, Skotheim and de Bruin, 2013; Laresgoiti et al., 2013). Accumulating evidence 

points to a role for atypical E2F7 in the repression of E2F-induced transcriptional program as 

cells move through S- and G2-phases (Di Stefano, Jensen and Helin, 2003; Westendorp et al., 

2012), although its full set of target genes are far from being elucidated.  

In addition to controlling the expression of genes necessary for cell cycle progression, E2F factors 

have also been involved in the control of cell surveillance mechanisms. Genomic and proteomic 

analyses have identified numerous genes regulated by classical E2Fs beyond those involved in 

S-phase entry and progression, including genes involved in DNA repair pathways (Muller et al., 

2001; Polager et al., 2002; Ren et al., 2002; Infante et al., 2008; Westendorp et al., 2012; 

Laresgoiti et al., 2013). Whether atypical E2F7 is involved in the DNA damage responses has not 

yet been clarified. 

In this work, we have investigated the function of E2F7 by analyzing the contribution of its target 

genes (microRNAs and protein-coding genes) to the regulation of cellular proliferation and DNA 

damage responses.  
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5.1. Regulation of microRNA expression by E2F7  

The role of E2F7 in cell cycle progression is now well established. Early overexpression 

experiments suggested that E2F7 could be a negative regulator of the cell cycle (de Bruin et al., 

2003; Di Stefano, Jensen and Helin, 2003), and acute depletion of E2F7 has demonstrated a 

unique requirement for this E2F member in repressing a timely cell cycle progression, a role that 

is not shared with E2F8 (Mitxelena et al., 2016). Mechanistically, E2F7 has been found to 

modulate the expression of protein-coding genes involved in cell cycle regulation (Westendorp 

et al., 2012; Mitxelena, 2014). We now identify a microRNA set repressed by E2F7 that might 

play a role in E2F7 function. 

Regulation of microRNAs is under tight temporal and spatial control, and changes in their 

expression are associated with many human diseases, particularly cancer. Recent data suggest 

that microRNAs are regulated by transcription factors involved in cell cycle regulation such as c-

MYC, E2F or p53, and act coordinately with them to finely tune cell cycle progression (Bueno 

and Malumbres, 2011).  

At the onset of this thesis project, no microRNAs regulated by the atypical E2F7 had been 

reported in the literature. This work was initiated from the results obtained earlier in our group 

from a microRNA expression profiling analysis using U2OS cells knockdown for E2F7 (Mitxelena, 

2014). This expression profiling provided evidence that E2F7 has a major role as a negative 

regulator of microRNA expression, in line with its role as negative regulator of protein-coding 

gene expression (de Bruin et al., 2003; Di Stefano, Jensen and Helin, 2003; Carvajal et al., 2012; 

Westendorp et al., 2012). The Q-RT-PCR results gathered in this work using some of the 

identified microRNAs confirm the repressor role of E2F7. miR-25 and let-7f exhibited the highest 

levels of overexpression upon E2F7 loss. Interestingly, these microRNAs have previously been 

identified as induced by E2F1 and E2F3 in S phase entry (Bueno et al., 2010), indicating that E2F7 

might repress during S-phase the expression of microRNAs that have been activated by 

canonical E2Fs during G1/S (Mitxelena et al., 2016). 

A recent study has confirmed the role of E2F7 as transcriptional repressor of microRNA 

expression, by showing that it downregulates the expression of miR-15a and miR-16 in breast 

cancer, leading to tamoxifen resistance (Chu et al., 2015). These microRNAs, together with miR-

449a/b were previously related to E2F (Lizé, Pilarski and Dobbelstein, 2010; Ofir, Hacohen and 

Ginsberg, 2011). However, they were not detected in our work, perhaps because of the 

restrictive criteria that we used in the different steps of RNA-Seq data analysis. On the other 

hand, our small RNA-Seq experiment has revealed many other differentially expressed 

microRNAs that have not been previously linked to E2F activity such as miR-7, miR-92 or miR153; 

thus representing potentially novel E2F-regulated microRNAs (Mitxelena et al., 2016). 
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microRNA sequences are located within various contexts in the genome. In humans, the majority 

of canonical microRNAs are encoded by introns of noncoding or protein coding transcripts. 

Additionally, some microRNAs are encoded by exonic regions of the genome (Rodriguez et al., 

2004). In both cases, several microRNA loci are commonly in close proximity to each other, 

constituting a polycistronic transcription unit (Y. Lee et al., 2002). Although microRNA expression 

can be regulated throughout their maturation process (Ha and Kim, 2014), regulation of most 

microRNAs takes place at the transcriptional level, similarly to that of protein-coding genes (Krol, 

Loedige and Filipowicz, 2010; Gulyaeva and Kushlinskiy, 2016). In fact, factors that regulate 

protein-coding gene transcription largely overlap with those that control microRNA expression 

(Davis and Hata, 2009). 

Our bioinformatic analysis of regulatory regions has revealed the presence of E2F consensus 

binding sequences in all the E2F7-responsive microRNAs, except for let-7f, and chromatin 

immunoprecipitation assays have shown that E2F7 directly binds to the regulatory region of 

miR-7, miR-92 and miR-25, suggesting that their repression could be carried out through a direct 

binding of E2F7 to their promoters. Given that individual E2F sites present in gene regulatory 

regions are commonly bound by multiple E2F members in vivo (Wells et al., 2000; Infante et al., 

2008), we also tested recruitment of typical E2Fs to the microRNA promoters. E2F1-3 could 

efficiently bind E2F7-target microRNA promoters (Figure 19). Interestingly, depletion of E2F7 

increases dramatically the recruitment of E2F1-3 to the target promoters. An upregulation of 

E2F1-3 expression in E2F7-knockdown cells may account for this increased binding activity. Thus, 

E2F7 and E2F1-3 may compete for the same binding sites on miR-7, miR-92 and miR-25 

promoters, as has been suggested for the regulation of miR-15a and miR-16 (Chu et al., 2015), 

implying a complex regulation of miR-7, miR-92 and miR-25 expression by typical and atypical 

E2Fs. A tightly controlled time-course assay might reveal whether recruitment of these 

individual E2Fs takes place in a temporal fashion, as expected from their gene expression 

patterns, and whether expression levels of the microRNAs change accordingly.  

A substantially higher E2F7 binding activity was detected at the miR-25 regulatory region relative 

to miR-7 and miR-92, which correlates with the higher expression of miR-25 upon E2F7 

depletion. However, binding activity and microRNA expression did not correlate well with the 

number of E2F sites or with the degree of similarity of the E2F sites relative to the consensus 

E2F sequence (TTTXXCGC, where X may be C or G ), as identified by the bioinformatic analysis. 

E2F binding sites in miR-7 are closest to the consensus sequence. However, its E2F7-binding 

activity was substantially lower than that of miR-25. By contrast, the E2F sites in miR-25 are less 

similar to the consensus sequence, but it displayed the highest E2F7-binding activity. The 

reasons for this discrepancy are presently unknown, but could involve a differential affinity of 

E2F7 for the various E2F motif sequences. ChIP-seq analysis have revealed that E2F7 binds 
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preferentially to genomic sites containing the TTCCCGCC motif, which is not exactly the same as 

the consensus motif (Westendorp et al., 2012). However, more recent chromatin 

immunoprecipitation assays, together with structural and molecular dynamics results found that 

both typical and atypical E2Fs are recruited to the same sequence motif (Morgunova et al., 

2015). Another possibility is that there is a differential accessibility of E2F7 to the regulatory 

regions of these microRNAs. MCM7, the host gene of miR-25, is a well-recognized E2F-target 

gene in U2OS cells, whose levels are regulated throughout the cell cycle (Mitxelena et al., 2016). 

By contrast, it is unknown whether HNRNPK, the host gene of miR-7, and MIR17HG, the host 

gene of miR-92, are expressed in U2OS cells, and whether they are regulated by E2F7. Analysis 

of the expression levels of these genes in our cellular system may provide some clues regarding 

the differential E2F7-mediated binding and expression of their nested microRNAs. 

 

5.1.1. microRNA-dependent cell cycle regulation mediated by E2F7 

A Gene Ontology analysis of the combined predicted targets of all deregulated microRNAs 

revealed that E2F7-repressed microRNAs preferentially modulate genes involved in cell cycle 

and mitosis regulation suggesting that E2F7 could modulate cell cycle progression through these 

microRNAs.  

Several of the microRNAs that we found to be repressed by E2F7 have previously been described 

as regulators of proliferation pathways (Bueno et al., 2010; Poliseno et al., 2010), and some of 

their target mRNAs have been identified. miR-25 has been described to regulate cell cycle 

progression targeting cell cycle inhibitors  such as p57Kip2 in gastric cancer cells  (Y.-K. Kim et al., 

2009) and PTEN in prostate cancer cells (Poliseno et al., 2010), or promoters of proliferation 

such as CDC42 or CDK2 (Sárközy, Kahán and Csont, 2018). let-7 has been found to target multiple 

mediators of cell growth, including HMGA2, PRDM1, CDC34, CDK6 or RRM2 (Johnson et al. 2007, 

Boyerinas 2010). However, their potential roles in cancer have not been clearly established, as 

these microRNAs appear to have both oncogenic and anti-oncogenic functions in different 

cellular contexts. Our data evidence that miR-25, let-7f, miR-27b, let-7b, miR-92a, miR-7 and to 

a lesser extent miR-26a, promote cell proliferation in U2OS cells, at least in part by silencing the 

expression of anti-proliferative cell cycle regulators (p21Cip1, p57Kip2, PTEN and p130) (Mitxelena 

et al., 2016). Thus, by downregulating microRNA expression, E2F7 would indirectly upregulate 

the levels of cell cycle inhibitors to restrain cell cycle progression. These findings suggest that 

E2F7 controls cell cycle progression and cellular proliferation through a coordinated 

performance of both protein-coding and non-coding genes. 
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Besides their role in cell proliferation control, E2F7-regulated microRNAs are involved in other 

biological processes including hemostasis, signaling by Nerve Growth Factor (NGF) or 

transmembrane transport. For example, miR-92 promotes cardiovascular disease via mediating 

the NRF2-KEAP1-ARE signaling pathway (Liu et al., 2017); let-7 directly targets NGF to mediate 

the protective effect of melatonin in brain injury (Yang et al., 2018); miR-25 is involved in calcium 

signaling through targeting the expression of MCU and SERCA2 (Pan, 2015; Sárközy et al. 2018). 

Thus, E2F7 could regulate a diversity of functions through control of microRNA expression, a 

field that remains to be explored. 

Overall, our study identifies E2F7 as a critical regulator of microRNA biogenesis throughout the 

cell cycle. Interestingly, we have uncovered a novel interplay between E2F7 and E2F1-3 in the 

regulation of microRNAs to ensure induction and repression of microRNA genes during the cell 

division cycle, which in turn could contribute to cell growth control. In this regard, E2F7 might 

repress microRNA gene expression through binding to its target genes and directly repressing 

their transcription (miR-25, miR-92a and miR-7). These findings support a model in which the 

transcriptional activity of E2F-target microRNAs may be dictated by an ‘E2F-network’ in which 

E2F1-3 and E2F7 play antagonistic roles. Future studies may help to further identify the 

components of this novel molecular network as well as its biological relevance. 

 

5.2. E2F7 and the regulation of DNA damage responses 

Genome-wide studies performed with gain-of-function and loss-of-function cellular models of 

E2Fs have led to the recognition of E2F family transcription factors as part of the DNA damage 

response through the transcriptional regulation of genes involved in this process, such as BRCA1, 

BARD1 or RAD51 (Wang et al., 2000; Ren et al., 2002; Westendorp et al., 2012). Although E2F7 

has been reported to regulate the expression of RRM2 or DHFR, genes involved in DNA 

metabolism (Carvajal et al., 2012), the role of E2F7 in the maintenance of genome stability is 

poorly understood. Conflicting results have been reported in the literature regarding the 

contribution of E2F7 to the cellular response upon genotoxic damage. Zalmas and collaborators 

described that upon DNA damage E2F7 inhibits apoptosis by repressing E2F1 expression (Zalmas 

et al., 2008). By contrast, Carvajal and collaborators found that E2F7 is able to block the cell cycle 

and induce apoptosis through the inhibition of cell cycle-promoting genes after exposure to 

genotoxic compounds (Carvajal et al., 2012). In this work we have investigated the role of E2F7 

in DNA damage responses by analyzing its contribution to the control of gene expression and to 

cellular responses upon exposure to several genotoxic compounds.  
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The Gene Set Enrichment Analysis performed with RNA-seq data gathered from cell cycle-

synchronized U2OS cells that had been depleted of E2F7, produced a list of pathways that were 

enriched in E2F7-depleted cells compared to their corresponding controls. Remarkably, we 

found that in addition to controlling the timely expression of genes necessary for G1/S transition 

and DNA replication in unperturbed conditions (RB and E2F signaling pathways), E2F7 is involved 

in the negative regulation of genes controlling DNA repair pathways. These genes are clustered 

in the categories of Fanconi Anemia (FA), BARD1 signaling and ATR signaling pathway 

(Mitxelena*, Apraiz*, Vallejo-Rodríguez* et al, 2018). These results have led us to propose that 

E2F7 activity is associated with a suppression of DNA repair reactions. 

Interestingly, all upregulated genes included in the DNA damage repair functional group harbor 

at least one E2F binding site in their promoters, and although many of those have been 

previously identified as targets of classical E2F proteins (Ren et al., 2002; Bindra and Glazer, 

2006; Tategu et al., 2007; Laresgoiti et al., 2013), their regulation by E2F7 has only been 

demonstrated for some of them (Westendorp et al., 2012). Our RNA-seq followed by ChIP assays 

have extended the collection of direct E2F7 target genes involved in DNA repair by 

demonstrating that E2F7 is recruited to the promoter regions of RAD51, FANCE, FANCI, CTIP, 

BARD1 and BRIP1, implying their direct transcriptional repression by E2F7. 

 

5.2.1. Contribution of E2F7 to the cellular responses elicited by ICL-induced DNA 

damage  

Interestingly, the FA pathway, which is known to be involved in ICL repair (Clauson, Schärer and 

Niedernhofer, 2013), is highly enriched among E2F7- repressed genes. ICLs are extremely toxic 

for the cell because they produce stalled replication forks that hinder the progression of the cell 

cycle (Osawa, Davies and Hartley, 2011). ICL-resistant cell lines are known to have elevated gene 

expression involving the FA/BRCA pathway, including FANCF and RAD51C, which was suggested 

to be causally related with enhanced removal of ICLs by the resistant cells (Hazlehurst et al., 

2003; Chen et al., 2005). We have found evidence that the expression of at least FANCE, FANCI, 

BRIP1 (also called FANCJ) or RAD51 (also called FANCR) is directly regulated by E2F7, both in 

unperturbed conditions as well as upon genotoxic exposure, suggesting that E2F7 is tightly 

involved in the regulation of responses to ICL damage. It will be interesting to analyze whether 

a correlation can be found between ICL resistance and E2F7 levels in different cancer cell lines 

in unperturbed conditions, but also upon exposure to ICL-inducing chemotherapy. 
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The classical E2F family members E2F1-3 have been described to induce the expression of the 

Fanconi Anemia pathway genes as key determinants for cells to enter into the DNA damage 

repair pathway and facilitate progression through the cell cycle (Tategu et al. 2007; Hoskins et 

al. 2008; Laresgoiti et al 2013) although there is no clear demonstration that classical E2Fs are 

involved in responses elicited by ICLs. We now demonstrated that the atypical member E2F7 

impairs cellular recovery during an ongoing DNA damage response induced by ICLs. Firstly, we 

found that E2F7-depleted U20S cells exhibit increased DNA replication rates after CSP treatment 

relative to control U2OS cells. Secondly, we show that loss of E2F7 confers an increased recovery 

competence upon treatment with DNA damage-inducing doses of CSP and MMC, both in the 

first cell division cycle and in long-term proliferation assays. These results suggest that E2F7 is a 

factor that negatively controls cellular recovery during an ongoing DNA damage response. This 

response is not detected upon γ-irradiation or treatment with the radiomimetic drug 

neocarcinostatin (NCS), suggesting that this role of E2F7 is specific to certain types of DNA 

damage. 

In contrast to our findings, it has been reported that lack of E2F7 sensitizes cells to 

topoisomerase inhibitors by inducing apoptosis through a mechanism involving E2F1 

upregulation (Zalmas et al., 2008; Thurlings et al., 2016). Several reasons could explain the 

disparity between our results and those from previous studies. On the one hand, we have used 

a set of genotoxic agents that are known to differ in their mechanism of DNA damage and in the 

elicited response from the previously analyzed ones. On the other hand, the drug doses used in 

our study were non-lethal, although sufficient to induce checkpoint arrest in G2, whereas 

previous studies employed doses sufficiently high to induce apoptosis. Thus, there could be a 

DNA damage threshold below which cells lacking E2F7 could be involved in repairing the 

damage, but above which these cells would activate cell death pathways. Systematic analyses 

using a wide range of doses of a variety of compounds may help resolve these differences.  

Regarding the methodology used to carry out our experiments, several points have elicited 

further discussion. On the one hand, the study of some DNA damage responses has been carried 

out after having synchronized the cells in the cell cycle with hydroxyurea, a widely used method 

to analyze cell cycle-dependent processes. Treating cells with HU depletes the cellular pool of 

dNTPs, and leads to a cell cycle arrest in G1/S (Singh and Xu, 2016). HU treatment also results in 

stalled replication forks, causing the activation of the DDR and the induction of pathways 

involved in the protection of stalled forks and fork restart after removal of the drug (Petermann 

et al., 2010). It is possible that E2F7-depleted cells overcome more easily the HU-induced 

checkpoint, and this may facilitate their recovery from subsequent ICL induction. Nevertheless, 

we have repeated the DNA damage recovery experiments in asynchronous cells, and the results 
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are similar to those in synchronized cells, suggesting that the increased recovery competence 

upon DNA damage conferred by E2F7 deficiency is specific to CSP and MMC treatments.  

Another important point relates to the approaches to deplete E2F7 levels in our studies. Many 

of the experiments in this study have been carried out using transient E2F7 silencing by siRNA 

interference, a widely-used method to analyze gene function (Semizarov, Kroeger and Fesik, 

2004) which was  established previously in the laboratory (Mitxelena, 2014). It has been 

described that transitory silencing using siRNA technology could impact several off-target genes, 

which may lead to wrong conclusions regarding the role of the gene under study (Caffrey et al., 

2011). In order to avoid these negative effects, we repeated the DNA damage recovery 

experiments using E2F7-knockout U2OS cells. We find that cells with chronic depletion of E2F7 

also present increased recovery competence against under CSP and MMC treatments, 

confirming the idea that this effect is not due to the off-target effects of transitory silencing.  

We decided to extend our studies on the role of E2F7 upon genotoxic damage by inducing 

replication fork stalling independently of ICL. It has been described that the compound Olaparib 

(OLA) leads to replication fork stalling and cell cycle arrest by inhibiting the DNA repair activity 

of PARP1 (Ray Chaudhuri and Nussenzweig, 2017). Repeating our experiments with OLA, we 

found that E2F7 not only increased recovery competence upon treatment with CSP and MMC, 

but also with the PARP1 inhibitor. These results suggest a role for E2F7 protein in attenuating 

cell cycle progression after DNA damage and replication fork block induced by ICLs or by PARP1 

inhibition, as the absence of E2F7 confers an advantage to overcome the G2 arrest induced by 

these types of treatments. 

E2F7 levels are increased upon ICL-producing damage both at mRNA and protein levels but not 

after NCS treatment. Previous studies have linked E2F7 expression and cell-cycle target gene 

repression to p53 after DNA damage by topoisomerase inhibitors (Carvajal et al., 2012). 

Unexpectedly, using p53-knockodown U2OS cells and p53-deficient HeLa cells, we found that 

E2F7 expression and E2F7-modulated cellular recovery after ICL damage is largely p53-

independent. Our results point to a fundamental difference in the DNA damage-mediated 

regulation of E2F7 expression and function between DNA topoisomerase inhibitors and ICL 

inducers. It will be interesting to determine whether other p53 family members are involved in 

E2F7 regulation upon ICL induction or whether an entirely distinct pathway mediates E2F7 

regulation in this context.  

Intriguingly, NCS treatment had no effect on E2F7 or p53 accumulation. By contrast, the levels 

of p21Cip1, a gene that is typically induced by p53 but it can also be regulated in a p53-

independent manner (Russo et al., 1995), were significantly elevated after NCS treatment, but 

not after MMC or CSP treatment. This result could reflect differences in the mechanisms of 
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action of the tested genotoxic agents at the molecular level. Another possibility could be that 

the gene expression kinetics are different between NCS and DNA crosslinkers, and that we did 

not detect them because we only used the 24h time-point. In fact, it has been described that 

NCS induces an early and transient accumulation of p53 within a few hours after exposure to 

the compound (Brazina et al., 2015; Stewart-Ornstein, Cheng and Lahav, 2017). Analysis of an 

earlier time-point may resolve whether E2F7 and p53 are NCS-responsive. However, given that 

E2F7-depleted cells did not recover after NCS treatment, in contrast to MMC or CSP, suggests 

that NCS plays a small role, if any, in E2F7 induction.  

Regarding the functional assay in the presence or absence of p53, the combined ablation of p53 

and E2F7 significantly increased the ability of cells to overcome ICL-producing damage relative 

to the silencing of each gene individually (Figure 31). This result suggests some kind of 

complementary interaction between E2F7 and p53, whereby the full phenotypic response is only 

observed when both genes are silenced. Further experiments are required in order to elucidate 

these mechanisms.  

Upon treatment with DNA damaging agents that induce interstrand crosslinks, cells give rise to 

the formation of nuclear foci containing 53BP1 and FANCD2 proteins, two of the main indicators 

of DNA repair (Rappold et al., 2001; Hussain et al., 2004). Previous results from our group have 

described how depletion of E2F7 caused a significant decrease in the number of 53BP1 and 

FANCD2 foci upon ICL induction (Mitxelena, 2014). Our finding that γ-H2AX foci number is not 

altered after 7h of treatment with CSP, MMC or OLA after E2F7 ablation but is reduced after 24h 

treatment in E2F7 depleted cells significantly contributes to our understanding of E2F function 

by suggesting that E2F7 is dispensable for foci formation but appears to play a key role in the 

negative control of repair pathways targeting ICL lesions or PARP1 inhibition. Our observation 

that E2F7 knockdown has a protective effect against chromosomal aberrations induced by MMC 

treatment supports this hypothesis. 

 

5.2.3. Role of E2F7 homologous recombination and genomic stability 

ICL repair is known to involve homology-directed repair machinery and increased HR is 

associated with resistance to ICL-inducing agents in human tumor cells (Slupianek et al., 2001; 

Xu et al., 2005). Our results are consistent with a negative role for E2F7 in HR repair activity. 

Using a DR-GFP assay to measure the effect of E2F7 in HR, we found that E2F7 negatively affects 

HR activity. A transcription-independent contribution to DNA repair process for E2F7 and E2F1 

has been previously reported, which involves the binding of these E2Fs and recruitment of 

several factors to damaged DNA sites (Guo et al., 2010, 2011; Chen et al., 2011; Zalmas et al., 
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2013). We cannot discard the possibility that there is a transcription-independent contribution 

to E2F7-mediated regulation of ICL lesion repair in our system, which should be important to 

analyze. However, our data strongly suggest that a major DNA damage response function of 

E2F7 is through transcription-dependent regulation of DNA repair genes. Several genes involved 

in HR were found upregulated upon E2F7 depletion, including RAD51, CTIP and BARD1, among 

others. Most importantly, the results obtained in our E2F7/RAD51 co-depletion experiments 

suggest that increased HR activity in E2F7 silenced cells is associated with increased levels of 

RAD51 recombinase, implying a transcriptional role for E2F7 in repair of ICL lesions, through 

upregulation of target genes involved in homology directed DNA repair. Thus, the transcriptional 

landscape regulated by E2F7 could provide an additional level of recombination control in 

addition to that described for several recombinases (Barber et al., 2008; Moldovan et al., 2012), 

whereby cells can interfere with HR at different steps in the process. 

Increasing recombination in HR-deficient cells might result in protective effects. Our results have 

revealed an intriguing link between genomic integrity of DNA repair deficient cells and E2F7. HR-

deficient (BRCA2 mutated) cells exhibit increased genomic instability and accumulation of 

mutations that ultimately disrupt cell-cycle control pathways, leading to cancer. In this scenario, 

increased HR activity conferred by inactivation of E2F7 might prevent genomic instability in the 

cells of these patients and protect against cancer onset, as has been proposed for the depletion 

of the PCNA-binding protein PARI (Moldovan et al., 2012). However, dysregulated hyper-

recombination has also been associated with increased genomic instability and resistance to 

genotoxic therapy in some cellular contexts, such as after RAD51 upregulation (Martin et al., 

2007). In fact, the increased survival of BRCA2- deficient tumor Capan-1 cells treated with OLA 

that we observe after knockdown of E2F7 implies that loss of E2F7 in the context of HR deficiency 

confers resistance to chemotherapy, a potentially harmful outcome for cancer treatment.  

Although further research is needed to elucidate the molecular mechanisms underlying E2F7-

dependent control of genomic stability, our data are consistent with an antioncogenic function 

for E2F7 whereby E2F7 functions to inhibit or to switch off repair pathways for specific DNA 

lesions. It has been reported that efficient ICL repair requires negative regulation of the FA 

pathway. Once repair is completed, the repair factors have to be inactivated to avert 

inappropriate action and corruption of genetic information (Kim et al. 2009). Thus, the inability 

to turn off or reset the FA pathway after the repair of specific DNA damage sites may have 

deleterious effects on genome integrity. In a similar manner, E2F7 might counter-balance the 

transcriptional program activated in response to ICL repair to fine-tune the cellular response to 

DNA lesions and ensure response termination. 
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5.2.4. Role of E2F7 in the response to DNA alkylation damage  

In this work, we have shown that E2F7 modulates the cellular responses to multiple types of 

DNA lesions: DNA crosslink lesions induced by MMC or CSP, as well as DNA alkylation damage 

induced by methyl methanesulfonate (MMS). DNA alkylation commonly produces single-strand 

DNA breaks, which are detected and subsequently processed by the Base Excision Repair (BER) 

pathway, and finally repaired by a specific SSB-repairing machinery (Kim, Wilson and III, 2012). 

Thus, E2F7 may impair cellular recovery of DNA lesions involving single-strand breaks. The 

improved cellular responses that we detected in E2F7-depleted cells treated with Olaparib may 

also have involved the BER pathway, since PARP1 participates in the machinery responsible for 

the repair of SSBs (Campalans et al., 2013). 

Some of key components of single-strand break repair pathway are XRCC1 and DNA ligase III 

(Kim, Wilson and III, 2012). XCRR1 is a scaffold protein essential for the recruitment of other 

proteins such as LIG3, which is the ligase responsible of the last step of the repair process. 

Interestingly, their regulatory regions harbor consensus E2F binding sites, and E2F1 has been 

described as a direct regulator of XRCC1 gene expression (Chen et al., 2008; Jin et al., 2011), 

supporting the idea that XRCC1 and LIG3 are E2F-responsive genes. However, we did not 

observe any change in XRCC1 and LIG3 expression after E2F7 depletion, not at mRNA or at 

protein level, discarding an E2F7-mediated transcriptional regulation of their expression. 

Although further experiments, such as ChIPs or luciferase reporter assays are needed to 

unequivocally elucidate whether these genes or others in the pathway are E2F7-target genes, 

our results suggest that the mechanisms by which E2F7 modulates BER repair responses are 

substantially different from ICL repair responses. The first one would involve non-transcriptional 

mechanisms whereas the second one would rely on transcriptional mechanisms for modulating 

DNA damage responses.  

The mechanism by which E2F7 impairs BER repair responses remains to be elucidated. One 

possibility is that E2F7 might be recruited to SSB sites. It has been described that, after treatment 

with topoisomerase inhibitors, E2F7, together with CTBP and HDAC, can be recruited to double-

strand breaks (Zalmas et al., 2013). The complex could then alter the local chromatin 

environment of the DNA lesion and modulate the repair activity. Our finding that XRCC1 

interacts with E2F7 through the BRCT1-binding motif suggests a mechanism by which binding of 

E2F7 to XRCC1 could negatively impact XRCC1 repair activity since this is the motif used by XRCC1 

to interact with LIG3 and initiate DNA repair. However, further experiments are needed in order 

to better describe this interaction and its functional role.  
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5.3 Modulators of E2F1-driven apoptosis  

Some of the best recognized mechanisms for E2F7 function involve E2F1 and the negative 

feedback loop established between the two E2F members. E2F1 induces E2F7 expression, which 

in turn targets E2F1 for transcriptional repression (Li et al., 2008; Moon and Dyson, 2008; Zalmas 

et al., 2008; Carvajal et al., 2012; Mitxelena, 2014; Thurlings et al., 2016). 

Non-tumor cells maintain in balance the pro-survival and pro-apoptotic activities of E2F1. 

However, cancer cells, whereby E2F1 amplification or aberrant E2F1 activity is commonly 

observed, the pro-apoptotic activity of E2F1 must be restrained by counterbalancing signals in 

order to facilitate the neoplastic transformation. With the exception of PI3K/AKT signaling 

pathway, which can partially block the apoptotic program of E2F1 overexpressing cells 

(Hallstrom, Mori and Nevins, 2008), little is known about the cellular signals that mediate tumor 

development under excessive E2F1 activity. The high-throughput screening system using a 

collection of FDA-approved inhibitors that we have employed could be useful to identify 

modulators of E2F1-induced apoptosis. Our preliminary results suggest that the serotonin 

regulatory pathway could be a modulator of the cell death triggered by E2F1. 

Serotonin receptor antagonists have been previously used in order to dissect the serotonin 

signaling pathway. It has been established that this pathway is a key regulator of cell viability 

and apoptosis in tumoral processes (Siddiqui et al., 2006). Ketanserin, a selective 5-HT2A 

serotonin receptor antagonist, has been described as a cell viability inhibitor through the 

inactivation of  ERK1/2 and JAK2/STAT3 signaling pathways in human choriocarcinoma cell lines 

(Oufkir et al., 2010). Additionally, SB216641, a selective 5-HT1B serotonin receptor antagonist 

has been described as an apoptosis inducer in human uterine leiomyoma cells (Gurbuz et al., 

2016). The results gathered in our apoptosis screening assay are consistent with a role for the 

serotonin signaling in mediating cell survival. Serotonin receptor antagonists emerge as 

promising inhibitors of E2F1-mediated apoptosis. A more throrough characterization of the 

effect of the serotonin signaling pathway in E2F1-driven apoptosis in cancer, should provide a 

better understanding of apoptosis inhibitory processes in tumor progression and help in the 

development of therapeutic strategies against it.
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1. E2F7 represses the expression of a set of microRNAs. E2F7-responsive microRNAs 

harbor E2F binding sites in their regulatory regions, and E2F7 directly binds to the 

promoters of miR-7, miR-92 and miR-25.  

2. E2F7-target microRNAs regulate expression of cell cycle inhibitors and promote cellular 

proliferation, implying a negative regulatory role for E2F7 in cell cycle progression 

through suppression of microRNA expression. 

3. E2F7 directly binds to the promoters of FANCE, FANCI, CTIP, RAD51, BARD1 and BRIP1 

genes and represses their expression- These genes are key to several DNA repair 

pathways such as Fanconi Anemia or Homologous Recombination that modulate the 

DNA damage response.  

4. E2F7 transcriptionally regulates the cellular response to DNA lesions induced by 

interstrand-crosslinks and PARP1 inhibition. Loss of E2F7 confers an increase on the 

short-term and long-term cellular recovery to these lesions, which compromise 

replication fork progression.  

5. E2F7 restricts short-term and long-term cellular recovery to DNA damage induced by 

alkylating treatments. Present evidence suggests that this response is not regulated 

transcriptionally by E2F7.  

6. E2F7 suppresses homologous recombination-directed DNA repair activity and prevents 

genomic instability in HR-deficient cells.  

7. Serotonin receptor antagonists amplify E2F1-driven apoptosis in a tumor model.
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Protein lysis buffer 

10 mM NaH2PO4 (pH7.2) 

1 mM EDTA 

1 mM EGTA 

150 mM NaCl 

1% NP-40 (v/v) 

10 mM β-glycerophosphate 

10 mM PMSF 

10 mM Na3VO4 

10 µg/ml Leupeptin 

10 µg/ml Aprotinin 

10 µg/ml Pepstatin 

1X PBS (pH 7.6) 

137 mM NaCl 

2.7 mM KCl 

1.8 mM KH2PO4 

8.1 mM Na2HPO4 

6X Protein Loading Buffer 

350 mM Tris-HCl pH 6.8 

34.4% Glycerol (v/v) 

10% SDS (w/v) 

10% β-mercaptoethanol (v/v) 

0.06% Bromophenol blue (w/v) 

SDS-PAGE Running buffer 

0.25 mM Tris base 
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1.92 mM Glycine 

1% SDS 

Transfer buffer 

120 mM Tris base 

40 mM Glycine 

20% Methanol 

Tris Buffered Saline (TBS) (pH 7.6) 

20 mM Tris base 

137 mM NaCl 

Stacking gel for SDS-PAGE 

63 mM Tris HCl pH6.8 

0.1% SDS (v/v) 

5% Acrylamide  

0.1% TEMED 

0.1% APS 

Resolving gel for SDS-PAGE 

376 mM Tris HCl pH8.8 

0.1% SDS (v/v) 

Acrylamide (variable %) 

0.04% TEMED 

0.1% APS 

Formaldehyde dilution buffer (ChIP) 

50mM Hepes/KOH pH8 

100mM NaCl 

1mM EDTA pH8 

0.5mM EGTA pH8 

Cell lysis buffer (ChIP) 

5mM PIPES pH8 
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85mM KCl 

0.5% NP-40 

1mM PMSF 

1X Protease inhibitor cocktail 

 Nuclei lysis buffer (ChIP) 

50mM Tris-Cl pH8 

10mM EDTA pH8 

1% SDS 

1mM PMSF 

1X Protease inhibitor cocktail 

ChIP dilution buffer (ChIP) 

0.01% SDS 

1.1% Triton X-100 

1.2mM EDTA 

16.7mM Tris-Cl pH8 

167mM NaCl 

Low Salt Wash Buffer (ChIP) 

20mM Tris HCl pH8 

0.1% SDS 

1% Triton X-100 

2mM EDTA pH8 

150mM NaCl 

High Salt Wash Buffer (ChIP) 

20mM Tris HCl pH8 

0.1% SDS 

1% Triton X-100 

2mM EDTA pH8 

500mM NaCl 
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LiCl Wash Buffer (ChIP) 

10mM Tris HCl pH8 

0.25M LiCl 

1% NP-40 

1% Na-deoxycholate 

1mM EDTA pH8 

TE 

10mM Tris HCl pH8 

1mM EDTA pH8 
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ABSTRACT

E2F transcription factors (E2F1-8) are known to co-
ordinately regulate the expression of a plethora of
target genes, including those coding for microRNAs
(miRNAs), to control cell cycle progression. Recent
work has described the atypical E2F factor E2F7
as a transcriptional repressor of cell cycle-related
protein-coding genes. However, the contribution of
E2F7 to miRNA gene expression during the cell cy-
cle has not been defined. We have performed a
genome-wide RNA sequencing analysis to identify
E2F7-regulated miRNAs and show that E2F7 plays
as a major role in the negative regulation of a set of
miRNAs that promote cellular proliferation. We pro-
vide mechanistic evidence for an interplay between
E2F7 and the canonical E2F factors E2F1-3 in the
regulation of multiple miRNAs. We show that miR-
25, -26a, -27b, -92a and -7 expression is controlled
at the transcriptional level by the antagonistic ac-
tivity of E2F7 and E2F1-3. By contrast, let-7 miRNA
expression is controlled indirectly through a novel
E2F/c-MYC/LIN28B axis, whereby E2F7 and E2F1-3
modulate c-MYC and LIN28B levels to impact let-7
miRNA processing and maturation. Taken together,
our data uncover a new regulatory network involving
transcriptional and post-transcriptional mechanisms
controlled by E2F7 to restrain cell cycle progression
through repression of proliferation-promoting miR-
NAs.

INTRODUCTION

Since the initial identification of E2F as the cellular factor
required for activation of the E2 adenoviral promoter, the
E2F family of transcription factors has expanded through

the addition of new members in mammals and through the
discovery of homologs in other eukaryotes. Eight mam-
malian E2F family members (E2F1-8) have been identi-
fied, which orchestrate a complex gene regulatory network
to ensure proper cell cycle progression, cellular differentia-
tion and development (1,2). However, it is still unclear what
the precise roles of each individual E2F member are, and
how the activity of the whole E2F family is coordinated to
achieve an integrated regulation of gene expression.

Canonical E2F proteins (E2F1-6) bear one DNA-
binding domain (DBD) immediately followed by a dimer-
ization domain, which mediates interaction with the dimer-
ization partner protein (DP). This dimerization enables
E2Fs to bind DNA with high affinity, and to function as
transcriptional regulators (3). According to the prevailing
model, transcriptional regulation by canonical E2Fs is con-
trolled through association with the retinoblastoma (RB)
family of tumor suppressor proteins (pRB, p107 and p130)
in the case of E2F1-5, or with polycomb group (PcG) pro-
teins, in the case of E2F6 (4). These associations facilitate
recruitment of histone deacetylases and methyltransferases
to target promoters and subsequent transcriptional repres-
sion. Disruption of repressor complexes unleashes E2F ac-
tivity, thereby triggering target gene transcription (3).

By contrast to canonical E2Fs, the atypical members
E2F7 and E2F8, display two tandem DBDs and lack se-
quences that mediate RB and DP binding (5). The mech-
anisms by which atypical E2Fs regulate gene expression
as well as their biological roles are still unclear. Gain-of-
function experiments have revealed that E2F7 and E2F8 are
recruited to promoters of several E2F target genes involved
in DNA replication and DNA repair, and repress E2F site-
dependent transcription in a RB-independent manner (6–
11). Furthermore, overexpression of either E2F7 or E2F8
disrupts cell cycle progression, suggesting that they might
promote negative cell cycle control through transcriptional
repression of cell cycle genes (6–11). However, knockout
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(KO) of E2F7 or E2F8 in mice has no significant effect
on cell cycle progression, and a concomitant inactivation
of E2F7 and E2F8 is needed to impact on cell cycle pro-
gression in vivo (12). This is probably due to compensatory
mechanisms between both E2Fs, a common outcome in
constitutive KO mouse models. Thus, the specific contribu-
tion of E2F7 and E2F8 to cell cycle control remains to be
elucidated.

Significant progress in the understanding of E2F-
mediated regulation of gene expression has been achieved
by the finding that many microRNA-coding genes are bona
fide E2F target genes (13–20). In line with the complex na-
ture of the E2F pathway, many reports have uncovered an
essential role for E2F-regulated microRNAs in modulat-
ing distinct cellular processes, most notably pathways in-
volved in neoplastic transformation (21,22). Some of these
E2F-regulated miRNAs, including miR-17-92, miR-106b-
25, mir-15b-16-2 and miR-15a-16-1, appear to function
as tumor suppressors that modulate and restrict progres-
sion through the cell cycle by limiting the expression of
E2Fs themselves as well as other pathway components,
thereby creating negative feedback loops (14,16,18). By
contrast, there is also evidence for an oncogenic poten-
tial for some E2F-dependent miRNAs. For instance, miR-
17-92 and miR-106b-25 clusters have been found to sup-
press the expression of anti-proliferative and pro-apoptotic
genes, such as p21CIP1, pRB, p130, p57KIP2, PTEN and BIM
(13,17,23–25). Given that each miRNA can regulate the ex-
pression of numerous genes, the list of genes regulated by
miRNAs under E2F control is likely to include other, yet to
be identified, targets.

The contribution of atypical E2F factors to miRNA ex-
pression regulation, and the effect that target miRNAs have
on the biological roles mediated by E2F7 and E2F8, are
still unknown. In this work, we have investigated the role
of E2F7 in the regulation of miRNA-coding gene expres-
sion. We show that E2F7 is required for the timely repres-
sion of a set of miRNAs that function to promote cell prolif-
eration. Importantly, our data uncover both transcriptional
and post-transcriptional mechanisms for E2F7-mediated
regulation of these miRNAs, and provide new insights to
the understanding of E2F-regulated gene network.

MATERIALS AND METHODS

Cell culture conditions and flow cytometry

Human U2OS osteosarcoma cell line and human embry-
onic kidney (HEK) 293T cells were maintained in Dul-
becco’s modified Eagle’s medium supplemented with 10%
fetal bovine serum (FBS). For cell synchronization in G1/S,
exponentially growing cells were incubated with 4 mM hy-
droxyurea (HU) for 24 h and subsequently washed and cul-
tured in complete medium. For cell synchronization at mi-
tosis, cell cultures were incubated with thymidine (2 mM)
for 18 h. Subsequently, cells were washed and cultured for
an additional 20 h in fresh medium. Nocodazole (50 ng/ml)
was added to the cultures for the last 16 h. Mitotic cells were
collected by shaking off the plates and seeded in complete
medium for subsequent analyses. To assess the cell cycle dis-
tribution, cells were fixed with chilled 70% ethanol, stained
with 50 �g/ml propidium iodide (PI) and analyzed by flow

cytometry (FACSCalibur, BD). To analyze the percentage
of cells in mitosis, ethanol-fixed cells were stained with an
antibody recognizing Histone H3 phosphorylated on Ser-
ine 10 (p-H3) conjugated with FITC (06-570, Millipore),
subsequently incubated with PI and analyzed by flow cy-
tometry. Cell cycle distribution and mitotix index analysis
was performed with Summit 4.3 software. For cell prolifer-
ation assays, cells were stained with 0.5 �M carboxyfluores-
cein diacetate succinimidyl ester (CFSE) (MolecularProbes)
in phosphate buffered saline for 15 min at 37◦C, washed
with complete medium for 20 min and then treated and cul-
tured as indicated. Cells were fixed for 10 min in a solution
of buffered formaldehyde (3.7%) and fluorescence was de-
tected and analyzed by flow cytometry. Proliferation Wiz-
ard software was used to identify cells in different cellular
generations and determine proliferation index, which was
calculated as the sum of the cells in all generations includ-
ing the parental divided by the computed number of origi-
nal parent cells present at the start of the experiment.

Transfections

Plasmid transfection was performed using XtremeGENE
HD (Roche) transfection reagent following manufac-
turer´s recommendations. Mammalian expression plasmids
pRc-CMV-HA-E2F1, pRc-CMV-HA-E2F2, pRc-CMV-
HA-E2F3, pCEFL-MYC and pFRT/FLAG/HA-DEST-
LIN28B have been previously described (26–28). For ex-
ogenous expression of miRNAs, miRNA genes were ex-
pressed in the pMirVec vector (29). To silence endoge-
nous expression of E2F1, E2F2, E2F3, E2F7, c-MYC and
LIN28B, and to inhibit endogenous microRNA activity,
cells were transfected with commercial siRNAs and with
miRVana microRNA Inhibitors, respectively (Life Tech-
nologies), at a final concentration of 10 nM using Lipofec-
tamine RNAiMAX (Life Technologies) following manufac-
turer’s recommendations.

RNA expression analyses

Total RNA extraction was performed with TRIzol Reagent
(Life Technologies) and purified using the miRNeasy kit
(Qiagen) following the manufacturer’s recommendations.
For small RNA-Sequencing (RNA-Seq), 2 �g of total
RNA containing the small RNA fraction including miR-
NAs was processed using the TruSeq Small RNA Sam-
ple Preparation kit from Illumina. The resulting libraries
were sequenced on the Genome Analyzer IIx with SBS
TruSeq v5 reagents following manufacturer’s protocols. To
test for differential miRNA expression between different
samples the Bioconductor DESeq package was used (30).
The list of differentially expressed miRNAs produced by
DESeq was further filtered to remove miRNAs with fewer
than 10 reads in the different samples under comparison
(31). Clustering analysis of differentially expressed miR-
NAs was performed with Perseus software (http://www.
perseus-framework.org/).

Predicted targets of microRNAs were identified using
the DIANA-microT-CDS miRNA target prediction server
(32) and then analyzed for pathway enrichment using terms
from the Reactome database (33). We used low P-values (P
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< 0.001) to avoid inconsistent results due to the use of dif-
ferent databases or algorithms, as suggested previously (34).
Gene ontology analysis was performed using the FatiScan
algorithm (35).

Mature microRNA and Primary microRNA (Pri-
miRNA) RT-Q-PCR analyses were performed using
specific TaqMan microRNA and Pri-miRNA assays,
respectively (Life Technologies) (Supplementary Table
S1). For mRNA expression analysis, RNA was reverse-
transcribed into cDNA with the High-Capacity cDNA
RT Kit (Life Technologies) and Q-PCR was performed as
described previously (36). Sequences of Q-PCR primers
are listed in Supplementary Table S2.

Protein expression analyses

For western blot analyses, cells were lysed in buffer con-
taining 10 mM NaH2PO4 pH 7.2; 1 mM EDTA; 1
mM EGTA; 150 mM NaCl; 1% NP-40 and a cock-
tail of protease and phosphatase inhibitors (Roche). Pro-
tein concentrations in supernatants were determined us-
ing a commercially available kit (DC Protein Assay from
Bio-Rad). A total of 20 �g of protein were loaded per
lane, fractionated in 8–10% sodium dodecyl sulphate-
polyacrylamide gels and transferred onto nitrocellulose
membranes (Bio-Rad). Antibodies against the following
proteins were used: E2F7 (sc-32574, Santa Cruz), Cyclin E1
(4129, Cell Signaling), c-MYC (sc-42, Santa Cruz), LIN28B
(4192, Cell Signaling), HA (MMS-101R, Covance), p-H3
(06-570, Millipore), �-Tubulin (T-9026, Sigma), �-Actin
(A5441, Sigma). Immunocomplexes were visualized with
horseradish peroxidase-conjugated anti-mouse, anti-goat
or anti-rabbit IgG antibodies (Santa Cruz), followed by
chemiluminiscence detection (ECL, Amersham) with a
ChemiDoc camera (Bio-Rad).

Chromatin immunoprecipitation

Chromatin immunoprecipitations (ChIPs) and the quantifi-
cation of immunoprecipitated DNA sequences by Q-PCR
were performed as described previously (36). The localiza-
tion of E2F motifs in E2F7-regulated miRNAs was carried
out with the MotifLocator tool of the TOUCAN program
(37). The search was restricted to the proximal promoter re-
gion (−1000 and +500 bp relative to the transcription start
site) (38). Sequences of Q-PCR primers are listed in Supple-
mentary Table S3. Antibodies used for ChIP analysis were:
E2F1 (sc-193, Santa Cruz), E2F2 (sc-633, Santa Cruz),
E2F3 (sc-878, Santa Cruz), E2F4 (sc-1082, Santa Cruz),
E2F7 (sc-66870, Santa Cruz), RB (sc-50 Santa Cruz), p107
(sc-318 Santa Cruz), p130 (sc-317 Santa Cruz), MYC (sc-
764 Santa Cruz), RNA polymerase II (sc-899, Santa Cruz)
and SV40LT (sc-147, Santa Cruz).

Statistical analysis

Data are presented as mean ± SD. The significance of the
difference between two groups was assessed using the Stu-
dent two-tailed t-test. A P < 0.05 was considered statisti-
cally significant.

RESULTS

Acute loss of E2F7 accelerates cell cycle progression

E2F7 gene expression is regulated in a cell cycle-dependent
manner in U2OS cells, with reduced levels at M and G1
phases and a peak expression in G1/S transition and S
phase (Supplementary Figure S1 A and B), consistent with
previous reports (11). We assessed whether E2F7 is re-
quired for timely cell cycle progression by acutely deplet-
ing E2F7 and examining cell cycle distribution over time.
Endogenous E2F7 was depleted very efficiently in U2OS
cells individually transfected with three independent RNAi
molecules specific for E2F7 (siE2F7), but not in cells trans-
fected with an oligonucleotide whose sequence has no speci-
ficity to any human protein (siNT) used as a control (Fig-
ure 1A and Supplementary Figure S2). Importantly, E2F7
depletion resulted in substantially increased mRNA levels
of known E2F7-downregulated genes (E2F1, E2F2, E2F3
and Cyclin E1), confirming loss of E2F7-mediated repres-
sion in siE2F7-transfected cells (Figure 1A and Supplemen-
tary Figure S2).

To monitor cell cycle progression upon acute silencing of
E2F7, U2OS cells were HU-synchronized at G1/S bound-
ary and subsequently transfected with E2F7-specific siR-
NAs. Upon removal of the drug, cells were harvested every
3 h for FACS analyses (Figure 1B). DNA content analyses
revealed a comparable block in G1/S in non-target control
and E2F7 siRNA transfected cells. Remarkably, upon HU
release, entry into S-phase in E2F7-depleted cells was signif-
icantly accelerated compared to control cells. This effect was
visible as early as 3 h after HU release (48% in siE2F7 versus
40% siNT). Likewise, E2F7 depleted cells showed an ear-
lier entry into G2 phase 6 h after exiting from HU-induced
block (41 versus 27%) and it was also evident at the 9 h
time point (67 versus 52%). Similarly, E2F7 depleted cells
synchronized in M-phase with nocodazole showed acceler-
ated entry and progression into S phase as well as into G2
(50% in siE2F7 versus 39% siNT at the 15 h-time-point fol-
lowing exit from mitotic arrest) in comparison with control
siRNA transfected cells (Supplementary Figure S3). Con-
sistent with these results, E2F7 siRNA transfected cells ex-
hibited earlier and increased levels of the mitotic marker p-
H3 after cell cycle re-entry from a HU-induced block (Fig-
ure 1C). By contrast, E2F8 depletion in U2OS cells did not
result in a significant impact on cell cycle progression, even
though E2F7 and E2F8 showed similar expression levels in
U2OS cells (Supplementary Figure S4).

In parallel, we examined the rate of cell proliferation by
labeling the cells with the vital fluorescent dye CFSE, which
is diluted ∼2-fold with each cell division. Consistent with
cell cycle analyses, E2F7-depleted cells displayed a higher
proliferation rate compared to siNT cells (Figure 1D). Thus,
by inducing acute loss of E2F7, our data reveal that E2F7 is
indispensable for correct progression through the cell cycle
and for cellular proliferation, and that this role is not satis-
fied by E2F8 or by other E2F family members upon E2F7
knockdown.
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Figure 1. Accelerated cell cycle progression and increased proliferation in cells lacking E2F7. (A) RT-Q-PCR analyses of E2F1, E2F2, E2F3 and Cyclin E1
(CCNE1) in cells treated with siE2F7 #1 or a non-target siRNA (siNT) for 12 h. Western blot analysis shows efficient depletion of E2F7 by transfection
of specific siRNA molecules. mRNA expression values are normalized to the expression of EIF2C2, used as a standard control. Results are expressed
as fold over siNT values (mean ± SD) from three independent experiments. (B) U2OS cells were treated with 4 mM HU and 12 h later were transfected
with NT siRNA and E2F7 siRNA (#1). Cells were washed after 24 h of HU treatment, harvested every 3 h and processed for FACS analysis. Shown
is the experimental design followed. The percentage of cells in G1 (green), S (red) and G2/M (blue) ± SEM (standard error of the mean) is indicated
and correspond to the average of three independent replicates. (C) Lysates from cells treated as in panel B, harvested at indicated times after HU release
were used for western blot analyses of p-H3 (Ser 10). (D) Proliferation of representative siNT and siE2F7 transfected cultures. U2OS cells were incubated
with CFSE, transfected with indicated siRNAs and cultured for 24 h. Proliferation Index (PI) corresponds to the average of three experiments. Shown are
representative images of the parental population (P) and the proliferative cellular generations in each condition (indicated with numbers). Asterisks (*)
indicate significant differences (P < 0.05), and were derived from a two-tailed t-test between siE2F7- and siNT-transfected cells.
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Identification of E2F7-regulated miRNAs

We set out to identify microRNAs that could contribute to
E2F7-mediated cell cycle and proliferation control. To this
end, unbiased RNA-Seq experiments were conducted using
RNA derived from E2F7-competent and E2F7-depleted
cells at G1/S transition (0 h), S phase (3 h) and G2/M
boundary (12 h) of cell cycle following exit from HU-
induced block. The expression level of endogenous E2F7
was appreciable in all three time-points (Supplementary
Figure S1B). Three independent RNA-Seq experiments
were performed for each condition (siE2F7 versus siNT)
and time-point. Close to 1100 miRNAs were identified in
the three time-points analyzed. A list of differentially ex-
pressed miRNAs between control and E2F7-depleted cells
was produced by Bioconductor DESeq package (30) and
only those miRNAs with fold-changes higher than 1.5
(siE2F7 versus siNT) in at least two of the three experiments
were considered. Using these criteria a total of 18 miR-
NAs were found to be consistently deregulated upon E2F7
knockdown (Figure 2A and Supplementary Table S4), 15 of
which were upregulated in at least two time-points of the cell
cycle. These data suggest a major role for E2F7 as a negative
regulator of miRNA expression throughout the cell cycle.

Within the set of E2F7-regulated miRNAs, miR-25, let-
7f and miR-92a have been previously identified as E2F1
and E2F3 targets (14,17–19,39). Of note, whereas E2F1 and
E2F3 are known to induce the expression of these miR-
NAs, our data indicate that E2F7 represses their expres-
sion. In addition, our deep-sequencing analyses produced
many other miRNAs that represent potentially novel E2F-
regulated miRNAs (Figure 2A and Supplementary Table
S4). E2F7 has been reported to repress E2F site-dependent
transcription (7,8,11). To identify potential E2F motifs
within E2F7-represed microRNAs, we made use of the Mo-
tifLocator tool provided by TOUCAN program (37). Using
a threshold level of 0.8 for similarity with the canonical E2F
motif recorded in the TRANSFAC database, we found that
67% of E2F7-repressed genes harbored at least one canoni-
cal E2F motif within the −1000/+500 bp regulatory region
(Supplementary Table S5).

From the collection of miRNAs that were differentially
expressed in E2F7-depleted cells, we selected those that
have been previously related with E2F (miR-25, let-7f and
miR-92a) as well as a set of miRNAs bearing E2F mo-
tifs in their promoter regions (let-7b, miR-26a, miR-27b
and miR-7) (Supplementary Table S5) for further analyses.
Conventional RT-Q-PCR assays of the selected miRNAs
showed significantly increased expression levels upon E2F7
knockdown in the three cell cycle phases analyzed (Figure
2B), thus validating the small RNA-Seq experiment results.
We subsequently examined potential pathways regulated by
these miRNAs by performing a bioinformatics analysis of
their predicted targets. Interestingly, Gene Ontology anal-
ysis of the combined predicted targets revealed that E2F7-
repressed miRNAs preferentially modulate genes involved
in cell cycle and mitotic regulation (Figure 2C). Other bio-
logical processes including hemostasis, signaling by Nerve
Growth Factor (NGF) or transmembrane transport also
appeared enriched in this analysis, suggesting that E2F7

regulates a diversity of functions through control of mi-
croRNA expression.

E2F7-repressed miRNAs modulate cell proliferation

We tested whether miRNAs repressed by E2F7 (miR-
25, let-7f, let-7b, miR-26a, miR-27b, miR-92a and miR-
7) could contribute to E2F7-dependent control of the cell
cycle. U2OS cells were transfected with expression vectors
coding for these miRNAs, and cell cycle distribution pro-
files were analyzed. Ectopic expression of individual miR-
NAs gave rise to a slight acceleration of the first cell division
cycle relative to scramble control-transfected cells (Supple-
mentary Figures S5, S6 and data not shown). Importantly,
this effect was amplified after several cell division cycles,
and we observed significantly increased proliferation rates
when fluorescence of CFSE-stained cells was quantified af-
ter overexpression of individual miRNAs (Figure 3A and
Supplementary Table S6). Furthermore, blocking endoge-
nous miRNA activity with a pool of anti-miRNA oligonu-
cleotides reversed the accelerated cell cycle progression in-
duced by E2F7 knockdown (Supplementary Figure S7).

We next assessed whether E2F7-regulated miRNAs could
promote cell proliferation by limiting the expression of
miRNA target genes involved in cell growth inhibition. Sev-
eral critical cell cycle inhibitors reported to be regulated by
these miRNAs, such as p21Cip1, p57Kip2, PTEN and p130,
were indeed downregulated in U2OS cells overexpressing
individual E2F7-repressed miRNAs (Figure 3B). p18INK4C,
which has not been reported to be regulated by microRNAs,
showed no differences in this assay, ruling out possible gen-
eral effects due to an overall proliferation increase. Collec-
tively, these results point to a role for these microRNAs in
E2F7-mediated negative regulation of cell proliferation and
cell cycle control by modulating the levels of critical cell cy-
cle inhibitors.

E2F factors are bound to the promoter region of miR-25,
miR-26a, miR-27b, miR-92a and miR-7

To begin to dissect the mechanism by which E2F7 represses
the expression of miRNAs during the cell cycle, we exam-
ined binding of E2F7 to the regulatory regions of the val-
idated miRNAs. Binding of E2F7 was examined by ChIP
analyses followed by Q-PCR with specific oligonucleotides
for each miRNA regulatory region bearing E2F consen-
sus sites (Figure 4A). The regulatory region of let-7f lacks
putative E2F binding sites, and was therefore discarded
for binding studies. The �-actin gene (ACTB), whose pro-
moter lacks active E2F sites (36), was used as a negative
promoter control. We made use of chromatin derived from
cells collected at 3 h following HU release (corresponding
to S-phase cells). Additionally, as a control for non-specific
ChIP, parallel ChIP assays were carried out with an irrel-
evant antibody (SV40LT). As shown in Figure 4B, ChIP
analyses revealed robust E2F7 binding to the regulatory re-
gion of miR-25, miR-92a and miR-7 (compare binding to
ACTB), suggesting that E2F7 represses miR-25, miR-92a
and miR-7 expression by directly binding to their regulatory
region. By contrast, we did not to detect binding of E2F7
to the regulatory regions of miR-26a, miR-27b and let-7b,
which harbor consensus E2F sites (Figure 4A and B).
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Figure 2. Identification of E2F7-regulated miRNAs by small RNA-Seq analysis. (A) MicroRNA expression profiles in siE2F7#1 transfected cells at various
time-points after HU release. Data are normalized to the levels of siNT-treated cells. Red indicates upregulation and blue indicates downregulation. (B)
Confirmatory RT-Q-PCR expression analyses in E2F7-depleted cells at various time-points after HU release. Mature miR-25, let-7f, let-7b, miR-26a,
miR-27b, miR-92a and miR-7 expression levels were analyzed and normalized to RNU6B and RNU19 levels. Data are represented as fold-change relative
to siNT-transfected samples (*P < 0.05). (C) Gene ontology (GO) analysis of predicted targets of E2F7-repressed miRNAs using FatiGO tool. Only terms
with adjusted P-value of > 0.001 were considered.

It has been shown that individual E2F target promot-
ers are bound by multiple E2Fs in vivo (36,40). Therefore,
we tested whether other E2F family members could oc-
cupy the regulatory regions of these miRNAs. We focused
on E2F1, E2F2 and E2F3 because they are regulated by
E2F7 (Figure 1A), and thus, could potentially be involved
in E2F7-dependent miRNA regulation. As shown in Figure
4C, we found that E2F1, E2F2 and E2F3 were efficiently
recruited to the promoter region of miR-25 and miR-92a
(>2-fold over �-actin promoter amplification), supporting
previous data (14,18,19). Interestingly, miR-26a regulatory
region was bound by E2F3, and both, E2F1 and E2F3,
occupied miR-27b and miR-7 promoters. None of them
was significantly recruited to let-7b. Remarkably, E2F7 de-
pletion led to a dramatic increase in recruitment of E2F1,
E2F2 and E2F3 to miR-25, miR-26a, miR-27b, miR-92a
and miR-7 promoters (Figure 4C, note scale difference),
consistent with the increased expression of these E2Fs in
E2F7-knockdown cells (Figure 1A). Moreover, ectopic ex-
pression of E2F1-3 factors led to an induction of E2F7-
regulated miRNAs (Supplementary Figure S8). These re-
sults point to a direct role for E2F1, E2F2 and E2F3 in the
transcriptional activation of E2F7-repressed miRNAs.

E2F7 regulates let-7 microRNA maturation

The absence of consensus E2F motifs in let-7f regulatory
region and the lack of binding of E2F factors to let-7b,
points to an indirect mechanism for E2F7 in the regula-
tion of these miRNAs. We examined the abundance of let-
7f and let-7b immature primary transcripts in U2OS cells
transfected with non-target or E2F7-specific siRNAs. We
included miR-25 in our assay as a control of a miRNA
whose promoter is bound by E2F7 (Figure 4B). Unpro-
cessed pri-miR-25 levels were increased in E2F7-depleted
cells (Figure 5A), demonstrating that E2F7 regulates miR-
25 expression at the transcriptional level. By contrast, pri-
let-7f and pri-let-7b levels remained unaffected upon E2F7
knockdown. These findings rule out a transcriptional regu-
lation of let-7f and let-7b by E2F7 and point to a role of this
E2F factor in the maturation pathway of let-7 miRNAs.

The RNA binding proteins LIN28A and LIN28B have
been reported to directly bind to let-7 precursor miRNA
molecules and inhibit their processing into mature and
functional miRNAs (41–45). We tested whether E2F7 de-
pletion had an effect on LIN28 expression. Interestingly,
RT-Q-PCR and western blot analyses showed a substantial
reduction of LIN28B mRNA and protein levels (both al-
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Figure 3. E2F7-regulated miRNAs target critical cell cycle regulators and enhance cell proliferation. (A) U2OS cells were transfected with various miRNA-
coding plasmids and incubated with CFSE. A vector coding a scramble sequence (scr) was used as a negative control. Cells were harvested 24, 48 and 72
h after transfection and CFSE fluorescence was determined by flow cytometry. Shown are representative images of the distribution of cellular generations
48 h after transfection (indicated with numbers). (B) p21CIP1, p57KIP2, PTEN, p130 and p18INK4C mRNA levels were assessed by RT-Q-PCR in RNA
samples extracted from cells treated as in panel A. Data are represented as normalized log2-ratios over control scr transfection.

ternatively spliced forms) upon E2F7 knockdown (Figure
5B). LIN28A levels were not detected in U2OS cells (data
not shown).

We next assessed whether LIN28B was required for
downregulation of let-7b and let-7f in cell cycle synchro-
nized U2OS cells. Knockdown of LIN28B by RNAi led
to an increased expression of endogenous let-7b and let-7f
(Figure 5C). Conversely, ectopic LIN28B expression abol-
ished the increased expression levels exhibited by let-7f and
let-7b in cells lacking E2F7, but not the levels of miR-
25 (Figure 5D). Collectively, these results imply a post-
transcriptional pathway regulated by E2F7 and LIN28B in
dictating the levels of let-7 miRNAs.

E2F7 regulation of let-7 involves the LIN28/c-MYC axis

LIN28B expression has not been previously linked to E2F.
Instead, LIN28B expression is known to be induced by c-
MYC (46). In addition to the c-MYC binding site previ-
ously reported (46), inspection of LIN28B promoter region
revealed three putative E2F-recognition sites near the tran-
scription start site (Figure 6A). However, ChIP analyses did
not detect endogenous E2F7 bound to LIN28B promoter.
Likewise, E2F1, E2F2 and E2F3 were absent from LIN28B
promoter both in control- and E2F7-depleted cells (Sup-
plementary Figure S9 and data not shown). In contrast,
c-MYC was efficiently recruited to the promoter region
of LIN28B (Figure 6A), and subsequent functional anal-
yses showed that knockdown of c-MYC led to decreased
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Figure 4. E2F factors are recruited to the promoter region of multiple microRNAs. (A) Schematic representation of human miR-25, let-7b, miR-26a, miR-
27b, miR-92a and miR-7 loci within the human MCM7, MIRLET7BHG, CTDSPL, C9ORF3, MIR17HG and HRNPK transcription units, respectively.
The predicted E2F recognition sites are indicated by small filled boxes. Horizontal lines depict the chromatin sequences amplified by Q-PCR. (B) ChIP-
Q-PCR analyses of E2F7-regulated miRNAs. Cell lysates were harvested 3 h after HU release and used for ChIP assays with an antibody against E2F7.
Promoter regions near E2F consensus sites were amplified by Q-PCR. The promoter of �-Actin (ACTB) was used as a negative control. An unrelated
antibody against the SV40 large T antigen (SV40LT) was used as a control for background immunoprecipitation. Data are presented as percentage of input
chromatin (representative experiment of three independent experiments where the values are the mean ± SD of triplicate determinations). (C) Cell lysates
from siNT and siE2F7-transfected cells were harvested 3 h after HU release and used for ChIP assays with antibodies against E2F1, E2F2 and E2F3. Note
the Y-axis scale difference in the siE2F7-treated samples. ACTB amplification values are represented as dotted horizontal lines.

LIN28B mRNA and protein levels (Figure 6B), suggesting
that c-MYC directly transactivates LIN28B expression in
U2OS cells.

Importantly, ectopic expression of c-MYC impaired the
reduction of LIN28B expression in E2F7-depleted cells,
and led to a recovery of LIN28B levels close to those in
siNT-treated cells (Figure 6C), suggesting that E2F7 could
control LIN28B expression indirectly through the modula-

tion of c-MYC levels. Furthermore, let-7b upregulation in
siE2F7 treated cells was partially reversed upon c-MYC ex-
pression, whereas miR-25 expression was not negatively af-
fected by c-MYC (Figure 6D).

The above results raised the possibility that E2F7 may
control let-7 and LIN28B expression through c-MYC. In-
deed, we found that c-MYC expression was significantly de-
creased upon knockdown of endogenous E2F7 by two inde-
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Figure 5. E2F7 controls let-7f and let-7b maturation through LIN28B (A) E2F7 does not regulate let-7f and let-7b transcription. HU-synchronized cells
were transfected with siNT and siE2F7 and RNA was purified 3 h after cell cycle re-entry. Expression analyses of the indicated pri-miRNAs were performed
using specific Taqman assays. (B) LIN28B expression was analyzed by RT-Q-PCR in cells transfected with siNT or siE2F7 RNAs. mRNA expression values
are normalized to the expression of EIF2C2, used as a standard control. Western blot analysis shows significant downregulation of LIN28B expression
after E2F7 depletion. Specific bands corresponding to two isoforms of LIN28B are indicated with arrows. A non-specific band is indicated with an asterisk.
(C) LIN28B controls let-7f and let-7b expression in U2OS cells. U2OS cells were synchronized in mitosis by nocodazole treatment and transfected with
LIN28B siRNA molecules. RT-Q-PCR analyses of let-7f and let-7b were carried out with RNA samples after 6 h of mitotic block release. Let-7f and let-7b
expression was normalized to RNU6B and RNU19 small RNAs expression, used as standard controls. Data are represented as fold change relative to siNT.
Western blot shows efficient siRNA-mediated knockdown of LIN28B. (D) E2F7 and LIN28B cooperate to regulate let-7f and let-7b expression. let-7f,
let-7b and miR-25 levels were determined in U2OS cells synchronized in mitosis and transfected with E2F7 siRNA together with an expression plasmid
encoding LIN28B (pFRT-LIN28B). Cells were harvested 6 h after block release. miRNA expression levels are shown over the empty transfection. (*P <

0.05 in all graphs). Western blot shows expression of E2F7 and LIN28B in the samples used for miRNA expression analysis. A non-specific band in E2F7
blot is indicated with an asterisk.

pendent siRNA molecules (Figure 6E and Supplementary
Figure S10). This surprising result prompted us to examine
c-MYC regulation in more detail. c-MYC promoter region
has been reported to contain several E2F elements (47),
and our bioinformatic analysis confirmed this point (Figure
7A). However, whether E2Fs are involved in c-MYC regu-
lation has not been clarified. We assessed c-MYC promoter
occupancy by E2F7 as well as by its targets E2F1, E2F2
and E2F3. ChIP analyses revealed robust binding by all
four E2Fs to c-MYC promoter. In addition, E2F7-depleted
cells exhibited dramatically increased promoter binding by
E2F1, E2F2 and E2F3 factors (Figure 7A, note scale dif-
ference), suggesting that E2F7-dependent c-MYC regula-
tion might be mediated, at least in part, by E2F1-3. Ac-

cordingly, c-MYC mRNA and protein levels were increased
upon E2F1, E2F2 and E2F3 depletion (Figure 7B and Sup-
plementary Figure S11A). By contrast, another E2F tar-
get (Cyclin E1) showed decreased expression upon the com-
bined knockdown of E2F1-3 (Figure 7B), as previously re-
ported (48). Moreover, c-MYC expression was negatively
affected by the ectopic expression of E2F1-3, both at the
mRNA and protein levels (Figure 7C and Supplementary
Figure S11B).

Modulation of c-MYC levels by E2F1-3 was not the re-
sult of altered cell-cycle profiles in these cells (Supplemen-
tary Figure S11C) and it did not involve increased pro-
moter binding by classical E2F repressors, such as E2F4,
or by pocket proteins (Supplementary Figure S12 and data
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Figure 6. E2F7 controls LIN28B expression through c-MYC. (A) Schematic representation of LIN28B promoter region, indicating the localization of
consensus E2F (boxes; −539: TTTCGGGC; −188: GCACGAAA; +177: TTTGGAGC) and c-MYC (triangle; TCCTCGTGCCC) binding motifs. ChIP
analyses were performed with the indicated antibodies and Q-PCR was performed using primers spanning genomic regions around or close to E2F and c-
MYC sites. The horizontal line depicts the chromatin sequence amplified by Q-PCR. Data correspond to a representative experiment of three independent
replicates. (B) RT-Q-PCR and western blot analyses of LIN28B levels in c-MYC depleted cells. Cells blocked in mitosis were transfected with siNT or
siMYC molecules and RNA and protein extracts were harvested 9 h after block release. Western blot shows efficient knockdown of c-MYC in U2OS cells.
mRNA data are shown as fold-change over siNT. (C) RT-Q-PCR analysis of LIN28B mRNA levels in U2OS cells synchronized in mitosis and transfected
with E2F7 siRNA along with an expression plasmid encoding c-MYC (pCEFL-MYC). Cells were harvested 9 h after block release. Data are shown as fold
over the empty vector transfection. Western blot shows c-MYC and E2F7 expression levels in samples used for LIN28B expression analysis. (D) miRNA
levels were assessed in cells treated as in panel C. (E) c-MYC mRNA and protein levels were analyzed in cells synchronized in the cell cycle by HU treatment
and transfected with siNT or siE2F7. mRNA expression values are normalized to the expression of EIF2C2, used as a standard control. (*P < 0.05).

not shown), suggesting that repression of c-MYC by E2F1-
3 could involve RB-independent mechanisms. Consistent
with this, a similar level of c-MYC repression by E2F1-3 was
detected in HEK293T cells (Supplementary Figure S13),
which harbor inactive RB (49).

Importantly, modulation of E2F1-3 levels affected RNA
Pol II occupancy downstream of c-MYC transcription start
site (Figure 7D), which is a measure of c-MYC transcription
rate (50). ChIP data revealed increased association of RNA
Pol II with c-MYC gene in E2F1-3 depleted cells, whereas
RNA Pol II occupancy in Cyclin E1 gene was decreased in
the same experiment. Conversely, ectopic E2F2 expression
negatively impacted on RNA Pol II association to c-MYC
promoter, while Cyclin E1 gene showed an increased occu-

pancy by RNA Pol II in these samples. These results further
demonstrate that E2F1-3 repress c-MYC at the transcrip-
tional level. Thus, we conclude that E2F7 regulates let-7
miRNA expression through a miRNA maturation pathway
involving several intermediate steps controlled by the tran-
scriptional activity of E2F and c-MYC factors.

DISCUSSION

In this work, we have analyzed the contribution of E2F7
transcription factor to the regulation of a subset of novel
target miRNAs during the cell division cycle. We have
discovered transcriptional and post-transcriptional mecha-
nisms by which E2F7 modulates target miRNA expression.
Our data support a model whereby E2F7 ensures repression
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Figure 7. E2F1, E2F2, E2F3 and E2F7 bind to c-MYC promoter and regulate its expression. (A) Schematic representation of c-MYC promoter region,
indicating the localization of consensus E2F motifs (filled boxes; −977: GCGCCACA; −733: GCAGCAAA; +99: GCGGGAAA; +343: CTTGCCGC).
The horizontal line depicts the ChIP-Q-PCR amplicon. Binding of E2F1, E2F2, E2F3 and E2F7 was assessed by ChIP-Q-PCR in HU-synchronized
cells transfected with E2F7 siRNA or control NT siRNAs. Cell lysates of siNT and siE2F7 treated cells were harvested 3 h after HU release. Note scale
difference between siNT and siE2F7. Dotted horizontal lines represent ACTB amplification values. Data correspond to a representative experiment of
three independent replicates. (B) c-MYC and CCNE1 expression was analyzed by RT-Q-PCR in cells transfected with siNT or a pool of E2F1, E2F2
and E2F3 specific siRNAs. mRNA data are presented as normalized log2-ratios over siNT transfection. (C) U2OS cells were synchronized in mitosis and
transfected with plasmids expressing HA-tagged E2F1, E2F2 and E2F3. c-MYC and CCNE1 levels were analyzed by RT-Q-PCR in samples harvested 6
h after block release. mRNA data are shown as log2-ratios over the empty pCMV transfection. (D) ChIP analyses of RNA-Pol II binding at downstream
regions (>1 kb) of c-MYC and CCNE1 genes. U2OS cells transfected with E2F1, E2F2 and E2F3 specific siRNAs or pCMV-E2F2-HA were used for ChIP
assays with an antibody against RNA-Pol II. Immunoprecipitated DNA was analyzed by Q-PCR using primers in c-MYC and CCNE1 +1 kb region. Data
correspond to a representative experiment of three independent replicates.

of a set of miRNA genes throughout the cell cycle, which in
turn may finely tune pathways controlling cell proliferation.

The role of E2F7 in cell cycle progression has not been
clearly established. Early overexpression experiments sug-
gested that E2F7 could be a negative regulator of the cell cy-
cle (7,8). However, chronic ablation of E2F7 did not impact
cellular proliferation (12). By inducing acute depletion of
E2F7, and thus largely avoiding compensatory mechanisms
that are common after chronic ablation, our data clearly es-
tablish a unique requirement for E2F7 in dictating proper

cell cycle kinetics, a role that is not shared with E2F8 in
U2OS cells. Our observation that E2F7 restrains cell cycle
progression raises the possibility that E2F7 could function
as a tumor suppressor gene, and is consistent with recent
data showing that E2F7 loss together with RB inactivation
promotes oncogenic transformation of murine cells (51).

E2F7 has been shown to repress a set of protein-coding
genes involved in DNA replication and metabolism (11).
The miRNA expression profiling analysis performed in the
present work significantly expands our understanding of
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E2F7 function, by providing evidence that this factor has
a major role as a negative regulator of miRNA expression.
miR-25 and let-7f exhibited the highest levels of overexpres-
sion upon E2F7 loss. Interestingly, these miRNAs have pre-
viously been identified as induced by E2F1 and E2F3 in S
phase entry (14), indicating that E2F7 might repress the ex-
pression of miRNAs activated by canonical E2Fs. Other
miRNAs previously related to E2F, such as miR-449a/b
and miR-15 (15,16,20), were not detected in our work, per-
haps because of the restrictive criteria that we used in the
different steps of RNA-Seq data analysis. On the other
hand, our small RNA-Seq experiment has revealed many
other differentially expressed miRNAs that have not been
previously linked to E2F activity, and thus represent poten-
tially novel E2F-regulated miRNAs.

Several of the miRNAs that we found to be repressed by
E2F7 have previously been described as regulators of pro-
liferation pathways (13,14,17,23,24,52–59). However, their
potential roles in cancer have not been clearly established,
as these miRNAs appear to have both oncogenic and anti-
oncogenic functions in different cellular contexts. Our data
evidence that miR-25, let-7f, miR-27b, let-7b, miR-92a,
miR-7 and to a lesser extent miR-26a, promote cell prolif-
eration in U2OS cells, at least in part by silencing the ex-
pression of anti-proliferative cell cycle regulators. Thus, by
downregulating miRNA expression, E2F7 would indirectly
upregulate the levels of cell cycle inhibitors to restrain cell
cycle progression. These findings suggest that E2F7 controls
cell cycle progression and cellular proliferation through a
coordinated performance of both protein-coding and non-
coding genes.

According to our promoter occupancy analyses, the chro-
matin binding properties of E2F7 and canonical E2F fac-
tors in the regulation of target genes appear to be different.
The finding that E2F7 is only bound to E2F sites present
in miR-25, miR-92a, miR-7 and c-MYC, suggests that the
affinity of E2F7 for its binding site could be more restricted
than that of canonical E2F1-3 factors. The basis for this se-
lectivity remains unknown, and could involve unique inter-
actions between E2F7 and other transcription factors at a
particular promoter, as it has been proposed for other mem-
bers of the E2F family (60).

miRNA biogenesis is thought to be regulated at multi-
ple levels through mechanisms that are still not well un-
derstood. Our work reveals that regulation of let-7f and
let-7b maturation by E2F7 involves both transcriptional
and post-transcriptional mechanisms mediated by c-MYC
and LIN28B, adding a new level of complexity to E2F-
mediated miRNA regulation. The mechanism by which
E2F7 modulates c-MYC expression is presently unknown,
although our findings suggest that it involves negative reg-
ulation of E2F1-3 and RNA Pol II activities. Interestingly,
an interplay between E2F7 and c-MYC activity has recently
been suggested (61). Interfering with E2F7 expression re-
sulted in inhibition of c-MYC functional activity in acute
myeloid leukemia (AML) cells by an unknown mechanism.
However, the authors did not report changes in c-MYC or
LIN28B expression. It would be interesting to examine if
E2F7 regulates c-MYC gene expression in AML cells, sim-
ilarly to what we have observed in U2OS cells, and inquire

Figure 8. Model summarizing the mechanism of action of E2F factors,
c-MYC and LIN28B in miRNA expression regulation described in this
study.

into the biological relevance of this novel E2F7-c-MYC-
LIN28B axis in AML cells.

Overall, our study identifies E2F7 as a critical regula-
tor of miRNA biogenesis throughout the cell cycle (Figure
8). Interestingly, we have uncovered a novel interplay be-
tween E2F7 and E2F1-3 in the regulation of miRNAs to
ensure induction and repression of miRNA genes during
the cell division cycle, which in turn could contribute to cell
growth control. In this regard, E2F7 might repress miRNA
gene expression through multiple mechanisms: by binding
to its target genes and directly repressing their transcription
(miR-25, miR-92a and miR-7); by repressing the expression
of E2F1-3, and indirectly suppressing miRNA expression at
the level of transcription (miR-25, miR-26a, miR-27b) or
maturation (let-7b, let-7f); or probably by a combination of
both mechanisms. These findings support a model in which
the transcriptional activity of E2F-target miRNAs may be
dictated by an ‘E2F-network’ in which E2F1-3 and E2F7
play antagonistic roles. A similar mechanism may also be
operating in E2F7-mediated regulation of protein-coding
genes. Future studies may help to further identify the com-
ponents of this novel molecular network as well as its bio-
logical relevance.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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ABSTRACT

The cellular response to DNA damage is essential
for maintaining the integrity of the genome. Recent
evidence has identified E2F7 as a key player in DNA
damage-dependent transcriptional regulation of cell-
cycle genes. However, the contribution of E2F7 to
cellular responses upon genotoxic damage is still
poorly defined. Here we show that E2F7 represses
the expression of genes involved in the maintenance
of genomic stability, both throughout the cell cy-
cle and upon induction of DNA lesions that inter-
fere with replication fork progression. Knockdown
of E2F7 leads to a reduction in 53BP1 and FANCD2
foci and to fewer chromosomal aberrations follow-
ing treatment with agents that cause interstrand
crosslink (ICL) lesions but not upon ionizing radi-
ation. Accordingly, E2F7-depleted cells exhibit en-
hanced cell-cycle re-entry and clonogenic survival
after exposure to ICL-inducing agents. We further re-
port that expression and functional activity of E2F7
are p53-independent in this context. Using a cell-
based assay, we show that E2F7 restricts homolo-
gous recombination through the transcriptional re-
pression of RAD51. Finally, we present evidence that
downregulation of E2F7 confers an increased resis-
tance to chemotherapy in recombination-deficient
cells. Taken together, our results reveal an E2F7-
dependent transcriptional program that contributes
to the regulation of DNA repair and genomic integrity.

INTRODUCTION

Mammalian E2F transcription factors (E2F1-E2F8) are
key components of the Retinoblastoma (RB) pathway that

control cell-cycle progression through the activation or re-
pression of target genes. Deregulation of E2F activity has
a high impact on health and disease (1). An insight into
the specific functions of E2F family members has been pro-
vided by the identification of a large set of genes regulated
by each individual factor (2). These studies have revealed a
key role for RB-dependent classical E2Fs (E2F1-5) in cell-
cycle control and DNA damage response (DDR). By con-
trast, the contribution of RB-independent atypical E2F fac-
tors, E2F7-8, to these processes has not been clearly defined.

E2F7, a predominantly transcriptional repressor, is
known to be induced in late G1 by E2F1, together with a
large array of E2F target genes (3,4). E2F7 binds to promot-
ers of microRNA and protein-coding genes bearing E2F
consensus motifs, such as E2F1, CDC6, MCM2 or miR-
25 during S-phase, thereby repressing their expression (4,5).
These findings have raised the possibility that E2F7 protein
may be a key component of a negative feedback loop re-
quired to turn off transcription of E2F-driven G1/S tar-
get genes, thus allowing progression through the cell cy-
cle. Accordingly, overexpression of E2F7 blocks S-phase en-
try (4,6,7), whereas acute loss of E2F7 accelerates cell-cycle
progression (5).

Involvement of E2F7 in stress responses is supported
by various lines of evidence, although the mechanisms by
which E2F7 participates in these processes remain unre-
solved. E2F7 and E2F8 double knockout mouse embryos
exhibit widespread apoptosis, suggesting a role for these
E2Fs in cell survival (8). Furthermore, depletion of atypi-
cal E2Fs has been shown to reduce survival of tumor cells,
primary mouse keratinocytes and embryonic fibroblasts af-
ter treatment with several DNA damaging compounds, in-
dicating that sensitivity to cytotoxic/genotoxic stimuli is en-
hanced by loss of E2F7 or by the combined loss of E2F7/8
(8–10). Co-depletion of E2F1 under these circumstances
could rescue stress-induced apoptosis (8,11) and acceler-

*To whom correspondence should be addressed. Tel: +34 94 601 2603; Fax: +34 94 601 3143; Email: ana.zubiaga@ehu.es
†The authors wish it to be known that, in their opinion, the first three authors should be regarded as joint First Authors.
Present Address: Jone Mitxelena, Department of Molecular Mechanisms of Disease, University of Zurich, Switzerland.

C© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Downloaded from https://academic.oup.com/nar/article-abstract/46/9/4546/4953336
by UNIVERSIDAD DEL PAIS VASCO user
on 08 August 2018



Nucleic Acids Research, 2018, Vol. 46, No. 9 4547

ate tumorigenesis in a two-stage skin carcinogenesis model
(10), implying a key role for E2F1 in E2F7/8-dependent
stress responses. Additional mediators of E2F7-dependent
resistance to DNA damaging drugs include the sphingo-
sine kinase SPHK1 and its downstream target AKT (12),
although the precise role of E2F7 in this pathway remains
to be elucidated.

Both transcription-independent and transcription-
dependent roles of E2F7 in the response to DNA damage
have been suggested. On the one hand, a recruitment of
E2F7 to the sites of DNA breaks has been reported, and
it has been suggested that E2F7 represses DNA repair
process directly on the lesion (13). On the other hand, a
p53-dependent E2F7 transactivation has been described
after treatment with DNA topoisomerase inhibitors,
which leads to repression of a subset of cell-cycle genes,
including DHFR, RRM2 and E2F1 (14), suggesting a key
transcriptional role for E2F7 in cell-cycle arrest upon DNA
damage.

Genes involved in DNA repair have been reported as tar-
gets of E2F factors, including E2F7 (4,15), but whether
E2F7 modulates responses to DNA damage through reg-
ulation of DNA repair gene expression remains to be estab-
lished. In this work we have investigated the role of E2F7
in the transcriptional regulation of genes involved in DNA
repair, and the functional consequences of E2F7-mediated
transcriptional program upon genotoxic damage. Our re-
sults suggest that E2F7 plays a p53-independent role in
the attenuation of DNA repair function through transcrip-
tional repression of target genes that are required for the
timely regulation of replication fork-associated DNA dam-
age repair.

MATERIALS AND METHODS

Cell culture and flow cytometry

Human cell lines were maintained in Dulbecco’s modified
Eagle’s medium supplemented with fetal bovine serum (10%
for U2OS and HeLa cells; 20% for CAPAN-1 cells). For cell
synchronization in G1/S, exponentially growing U2OS cells
were incubated with 4 mM hydroxyurea (HU) for 24 h and
subsequently washed and cultured in complete medium.
For cell synchronization at mitosis, cell cultures were in-
cubated with nocodazole (50–100 ng/ml) for the last 14 h
of culture. To assess cell-cycle distribution, cells were fixed
with chilled 70% ethanol, stained with 50 �g/ml propid-
ium iodide (PI) and analyzed by flow cytometry (FACSCal-
ibur, BD). To analyze the percentage of mitotic or � -H2AX-
positive cells, ethanol-fixed cells were stained with an anti-
body recognizing Histone H3 phosphorylated on Serine 10
(pH3) conjugated with FITC (06-570, Millipore), or an an-
tibody recognizing � -H2AX protein conjugated with FITC
(05-636, Millipore), subsequently incubated with PI and an-
alyzed by flow cytometry. Cell-cycle distribution, mitotic in-
dex and � -H2AX accumulation analyses were performed
with Summit 4.3 software. To analyze the percentage of cells
replicating DNA, cells were pulse-labeled with 10 �M BrdU
for the last 2 h of cell culture, washed in ice-cold phosphate-
buffered saline and fixed in ice-cold 70% ethanol. Cells were
stained with an antibody recognizing BrdU (M0744, Dako)
and analyzed by flow cytometry as described (16).

Generation of U2OS E2F7 knockout cells

E2F7 knockout cells were generated using the
CRISPR/Cas9 system. A CRISPR guide RNA (gRNA)
targeting the first coding exon of E2F7 was designed
using Benchling, and cloned into the BbsI site of pX330
(42230, Addgene). U2OS cells were co-transfected with this
plasmid, together with a plasmid containing a gRNA to the
zebrafish TIA gene (5′-GGTATGTCGGGAACCTCTCC-
3′) and a P2A-puromycin resistance cassette flanked by two
TIA target sites. Co-transfection results in excision of the
cassette and subsequent sporadic incorporation at the site
of the targeted genomic locus as previously described (17).
Successful integration of the cassette into the targeted gene
disrupts the allele and renders cells resistant to puromycin.
After puromycin selection, resistant clones were expanded,
screened for cassette integration and indels into the target
gene.

Clonogenic survival assays

Cells were treated with cisplatin (CSP) at the indicated con-
centrations for 24 h. Cells were then washed free of the drug
and incubated in fresh medium for 14 days or left untreated.
The number of colonies of more than 50 cells in each dish
was counted after staining with crystal violet.

Analysis of chromosomal aberrations

Chromosomal aberrations were visualized in chromosome
spreads following published protocols, with minor modifi-
cations (18). Cells were arrested in metaphase after treating
cell cultures with Karyomax Colcemid (Life Technologies)
for 12 h at a final concentration of 100 ng/ml. Metaphase-
arrested cells were subsequently harvested and fixed in
Carnoy solution. An aliquot of the cellular suspension was
dropped onto microscopy slides to obtain chromosome
spreads, which were stained and mounted with ProLong
Gold Antifade with DAPI reagent (Life Technologies). Im-
age acquisition was performed on a Leica DMI 6000B flu-
orescence microscope.

Transfections and homologous recombination assay

To silence endogenous expression of E2F7, p53, BRCA2
and RAD51, cells were transfected with commercial siR-
NAs (Life Technologies), at a final concentration of 10
nM (sequences provided in Supplementary Table S1) using
Lipofectamine RNAiMAX (Life Technologies) following
manufacturer’s recommendation. Plasmid transfection was
performed with various amounts of DNA in 6-well culture
dishes using XtremeGENE HP transfection reagent (Roche
Pharma), following manufacturer’s recommendations. The
mixture was incubated for 15 min at room temperature and
added dropwise to cell cultures.

Homologous recombination (HR)-dependent DNA dou-
ble stranded break (DSB) repair was assessed using the
DR-GFP/SceI assay described by M. Jasin’s group (19).
For these experiments we used a U2OS cell line that car-
ries a recombination substrate, DR–GFP, inserted in the
genome (U2OS DR-GFP cell line). To induce a double-
strand break in the HR reporter, U2OS-DR-GFP cells were
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transfected with I-SceI restriction enzyme expression con-
struct (pCBAI-SceI) (20). HR repair was analyzed using
flow cytometry by scoring GFP-positive cells.

RNA expression analyses

Total RNA extraction was performed with TRIzol Reagent
(Life Technologies) and purified using the RNeasy Mini kit
(Qiagen) following the manufacturer’s recommendations.
mRNA was used to build a cDNA library using the reagents
provided in the Illumina TruSeq RNA Sample Preparation
Kit following the manufacturer’s instructions. The result-
ing purified cDNA library was sequenced on the Genome
Analyzer IIx with SBS TruSeq v5 reagents following manu-
facturer’s protocols.

Sequencing reads obtained in each condition were
mapped to the human reference genome (GRCh37/hg19)
with TopHat software tool (21). After running TopHat, the
resulting alignment files were supplied to Cufflinks tool to
generate a transcriptome assembly for each sample. The
reads were subsequently fed to Cuffdiff, which calculates the
expression levels of each identified transcript and tests the
statistical significance of the expression changes between
conditions. This tool assumes that the number of sequenc-
ing reads generated from a transcript is directly propor-
tional to the relative abundance of that transcript in the
sample. Expression levels were represented by FPKM val-
ues (fragments per kilobase per million sequenced reads),
which incorporate two normalization steps to ensure that
expression levels of different transcripts can be compared
across different runs (longer transcripts produce more se-
quencing fragments than shorter transcripts and different
sequencing runs may produce different volumes of sequenc-
ing reads). Changes in gene expression between samples
were considered significant at a false discovery rate (FDR)-
adjusted P-value (q-value) < 0.05.

For individual mRNA expression analysis, RNA was
reverse-transcribed into cDNA with the High-Capacity
cDNA RT Kit (Life Technologies) and qPCR was per-
formed as described previously (22), following Minimal In-
formation for Publication of Quantitative Real-Time PCR
Experiments (MIQE) guidelines. Sequences of RT-qPCR
primers are listed in Supplementary Table S2.

Bioinformatic tools

For gene set enrichment analysis (GSEA) analyses we tested
whether 137 pathways obtained from the Pathway Inter-
action Database (NCI-Nature) are enriched among E2F7-
regulated genes. We considered as statistically enriched
those pathways with normalized enrichment scores (NES)
higher than 1.5 and FDRs < 10%.

Search for E2F motifs in E2F7-regulated genes was
carried out with the MotifLocator tool from TOUCAN
program (https://gbiomed.kuleuven.be/english/research/
50000622/lcb /tools/toucan) (23). The search was restricted
to the proximal promoter region (−1000 and +500 bp
relative to the transcription start site). Cutoffs of 0.8, 0.85
and 0.9 were applied, and the ‘Human 1 Kb Proximal 1000
ENSMUSG’ was used as background.

Identification of over-represented transcription factor
binding motifs in the regulatory regions of E2F7-regulated

genes was performed using the DiRE server (http://DiRE.
dcode.org/) (24). For these analyses, the list of up-regulated
genes and the list of downregulated genes obtained in the
RNA-seq experiments were submitted independently. A list
of 5000 human genes randomly selected by DiRE were used
as background.

Protein expression and chromatin immunoprecipitation anal-
yses

For western blot analyses, cells were lysed in buffer con-
taining 10 mM NaH2PO4 pH 7.2; 1 mM ethylenedi-
aminetetraacetic acid; 1 mM Ethylene glycol tetraacetic
acid (EGTA); 150 mM NaCl; 1% NP-40, and a cocktail of
protease and phosphatase inhibitors (Roche). Protein con-
centrations in supernatants were determined using a com-
mercially available kit (DC Protein Assay from Bio-Rad). A
total of 20 �g of protein were loaded per lane, fractionated
in 8–10% sodium dodecyl sulphate-polyacrylamide gels and
transferred onto nitrocellulose membranes (Bio-Rad). An-
tibodies against the following proteins were used: E2F7
(sc-32574, Santa Cruz), Cyclin E1 (4129, Cell Signaling),
p53 (sc-1312, Santa Cruz), RAD51 (sc-8349, Santa Cruz),
pH3 (06-570, Millipore), �-Tubulin (T-9026, Sigma), �-
Actin (A5441, Sigma). Immunocomplexes were visualized
with horseradish peroxidase-conjugated anti-mouse, anti-
goat or anti-rabbit IgG antibodies (Santa Cruz), followed
by chemiluminiscence detection (ECL, Amersham) with a
ChemiDoc camera (Bio-Rad).

Chromatin immunoprecipitations (ChIPs) and the quan-
tification of immunoprecipitated DNA sequences by qPCR
were performed as described previously (25). Sequences of
qPCR primers are listed in Supplementary Table S3. Anti-
bodies used for ChIP analysis were: E2F7 (sc-66870, Santa
Cruz), and SV40LT (sc-147, Santa Cruz).

Immunoflorescence/high-throughput microscopy (HTM)

For standard immunofluorescence, cells were grown on cov-
erslips in 12-well plates. For FANCD2 staining, cells were
fixed for 10 min with 3.7% paraformaldehyde in phosphate-
buffered saline (PBS) and permeabilized in PBS containing
0.5% Triton X-100. Primary antibodies against FANCD2
(sc-20022, Santa Cruz) and RAD51 (sc-8349, Santa Cruz)
were applied to the coverslips for 2 h at room temperature.
After washing twice with PBS-T, samples were incubated
with the corresponding diluted fluorescent secondary an-
tibody for 1 h. Finally, samples were stained with DAPI
and mounted on a microscopy slide using Prolong Gold an-
tifade (Life Technologies) mounting medium. Image acqui-
sition was performed on a Leica DMI 6000B fluorescence
microscope. FANCD2 foci quantification was performed
with the Definiens Tissue Phenomics analysis software.

High-throughput microscopy (HTM) was performed
with the protocol described above, except that in this case
cells were grown in 96-well plates with flattened glass bot-
tom (mCLEAR, Greiner Bio-One) at a density of 7500 cells
per well. An antibody against 53BP1 (NB100-304, Novus)
was used. As a final step nuclei were stained with a DAPI
containing solution and the preparations were kept in PBS.
Images were automatically acquired with the Opera High

Downloaded from https://academic.oup.com/nar/article-abstract/46/9/4546/4953336
by UNIVERSIDAD DEL PAIS VASCO user
on 08 August 2018

https://gbiomed.kuleuven.be/english/research/50000622/lcb%20/tools/toucan
http://DiRE.dcode.org/


Nucleic Acids Research, 2018, Vol. 46, No. 9 4549

Content Screening platform (Perkin Elmer). Data analysis
was performed with the Acapella Imaging and analysis soft-
ware (Perkin Elmer) as described previously (26). Data were
represented with the Prism software (GraphPad Software).

Statistical analysis

Data are presented as mean ± SD. The significance of the
difference between two groups was assessed using the Stu-
dent two-tailed t-test. A P < 0.05 was considered statisti-
cally significant.

RESULTS

E2F7-regulated gene expression profiling in the cell cycle

To better define E2F7 function we analyzed global gene ex-
pression profiles during the cell cycle after acute depletion
of E2F7. To this end, U2OS cells were synchronized in G1/S
transition with HU, and subsequently transfected with siR-
NAs specific for E2F7 (siE2F7) or with non-target control
siRNAs (siNT), as previously described (5). RNA was iso-
lated at three time-points following exit from cell-cycle ar-
rest, which represent G1/S transition (0 h), S phase (3 h)
and G2/M boundary (12 h) of the cell cycle (Supplementary
Figure S1A). Kinetics of CCNE1 protein levels confirmed
the cell-cycle phases of the selected time-points, with high
levels at 0 h (G1/S) and a stepwise reduction in the follow-
ing time-points (Supplementary Figure S1B). Furthermore,
we showed efficient E2F7 protein depletion upon siE2F7
transfection, with a concomitant increase in CCNE1 lev-
els, in line with an E2F7-dependent regulation of this gene
(Supplementary Figure S1B) (7).

RNA samples were harvested from three independent ex-
periments and subsequently pooled. PolyA+ enriched sam-
ples from siNT- and siE2F7-transfected cells were used to
build cDNA libraries that were sequenced by RNA-seq.
Close to 107 high quality reads were obtained per sample.
Changes in gene expression between siE2F7-transfected rel-
ative to siNT-transfected cells were scored as significant at
q-value < 0.05. In all three time-points under study, RNA-
seq analyses showed close to 500 genes with altered expres-
sion upon E2F7 knockdown in comparison with control
cells. The proportion of overexpressed and underexpressed
genes was similar (data not shown).

We analyzed the potential pathways regulated by E2F7
by performing GSEA. We considered as significantly en-
riched the pathways with an NES above 1.5 and an FDR
below 10%. In concordance with the role of E2F7 as tran-
scriptional repressor of RB/E2F-regulated cell-cycle genes
(4), GSEA analyses showed highest enrichment values for
E2F and RB pathways (Figure 1A) among the set of E2F7-
repressed genes. This group included many genes previously
described as E2F targets: CCND3, CDC6, DHFR and sev-
eral MCM-s among others.

Interestingly, pathways involved in (DDR) and repair, in-
cluding BARD1, Fanconi anemia (FA) and Ataxia telang-
iectasia and Rad3-related protein (ATR) pathways were
also over-represented among the genes repressed by E2F7
in all cell-cycle phases (Figure 1A). We confirmed E2F7-
mediated repression of genes belonging to these functional
groups by RT-qPCR analysis (Figure 1B). RNAi-mediated

depletion of E2F7 resulted in a significantly increased ex-
pression of genes involved in HR-mediated repair of dam-
aged DNA (RAD51, CTIP, BARD1) or in FA pathway
(FANCE, FANCI, BRIP1). These results suggest that, in
addition to the previously reported regulation of cell-cycle
genes, E2F7 might also mediate repression of genes involved
in DNA damage response and repair pathways.

E2F7 is recruited to the promoters of DNA damage repair
genes

A search for promoter regulatory elements of the differen-
tially expressed genes showed that about 40% of overex-
pressed genes in E2F7-depleted cells harbor E2F binding
sites. In fact, the canonical E2F-binding motif was the most
over-represented transcription factor-binding site among
the upregulated set of genes in the three time-points ana-
lyzed according to DiRE analysis. By contrast, this motif
was not over-represented among the set of genes displaying
decreased mRNA levels in cells lacking E2F7. This find-
ing supports a role for E2F7 in transcriptional repression
through binding to consensus E2F motifs, in agreement
with previous data (4,5).

To identify the E2F motifs within E2F7-repressed RNAs
we made use of MotifLocator tool provided by TOUCAN
program. We focused our search on the genes belonging to
BARD1, FA and ATR pathways that showed aberrant ex-
pression upon E2F7 attenuation in at least two of the an-
alyzed time-points. Taking into account previous evidence
suggesting that E2F factors are predominantly recruited to
the proximal promoter of their target genes (4,15,27,28), we
limited our search to a region spanning −1000 to +500 bp
relative to transcription initiation. Using a threshold level
of 0.8 for similarity with the canonical E2F motif recorded
in the JASPAR database, we found that all E2F7-repressed
genes included in the selected subset harbored at least one
canonical E2F motif (Figure 2A and Supplementary Table
S4).

We next assessed E2F7 binding activity to the promot-
ers of E2F7-regulated genes by performing ChIP analyses
with an anti-E2F7 specific antibody followed by qPCR us-
ing promoter-specific primers. Amplification of the �-actin
promoter was used as a negative control, since this promoter
lacks E2F binding sites but is highly expressed in U2OS cells
(5). In addition, as a control for antibody specificity, we used
an irrelevant antibody (anti-SV40LT), which has no affinity
for chromatin and is unable to immunoprecipitate any of the
various E2F target sequences (25). As shown in Figure 2B,
ChIP analyses revealed efficient binding of E2F7 to all an-
alyzed promoters, suggesting an important role for E2F7 in
the direct transcriptional repression of DNA repair genes.

E2F7 controls cellular responses after genotoxic damage

Given the enrichment in DDR and DNA repair genes
within the list of E2F7-regulated transcripts, and having
validated several of them as direct E2F7 target genes, we
hypothesized that E2F7 could control cellular responses
following DNA damage. To test this possibility, G1/S-
synchronized cells were transfected with siNT or siE2F7,
and subsequently cultured under several genotoxic con-
ditions (Figure 3A): mitomycin C (MMC) and CSP are

Downloaded from https://academic.oup.com/nar/article-abstract/46/9/4546/4953336
by UNIVERSIDAD DEL PAIS VASCO user
on 08 August 2018



4550 Nucleic Acids Research, 2018, Vol. 46, No. 9

A

Calcium signaling  in TCR pathway

AURORA B  signaling pathway

OSTEOPONIN pathway
INTEGRIN3 pathway
INTEGRIN1 pathway

E2F network

ATR signaling pathway

BARD1 signaling events
RB signaling pathway

Fanconi Anemia pathway

FOXM1 network

PLK1 signaling events
AURORA A signaling events

Regulation of telomerase

SIGNALING PATHWAY
G1/S  S G2/M

Enrichment   score
1 2.5

Upregulated
genes

Downregulated
genes

2.5

B siNT siE2F7

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5 BARD1

G1/S  S G2/M
0

0.5

1

1.5 BRIP1

G1/S  S G2/M

FANCERAD51

Re
lat

ive
mR

NA
lev

els
Re

lat
ive

mR
NA

lev
els

Re
lat

ive
mR

NA
lev

els *
* *

*

*

*

0

0.5

1

1.5

2 FANCI

*

*

0

0.5

1

1.5

2 CTIP

*

*

*

Figure 1. E2F7 represses the expression of genes involved in cell cycle and DNA repair pathways. (A) Functional classification of E2F7-regulated genes
by GSEA analysis using Pathway Interaction Database. The heat map shows the enriched pathways among the list of genes differentially expressed in cells
lacking E2F7. Normalized enrichment ratios obtained in GSEA analyses are represented as colors (red for upregulated genes, green for downregulated
genes). Only pathways with FDR < 10% were considered significantly enriched. (B) Validation of RNA-seq results. U2OS cells transfected with NT control
or E2F7 siRNAs were synchronized in the cell cycle by HU treatment. RT-qPCR analyses of indicated genes were carried out with RNA samples harvested
at 0h (G1/S), 3 h (S phase) and 12 h (G2/M) after HU treatment release. Expression values are normalized to the expression of EIF2C2, used as standard
control. Data are represented as fold-change (mean ± SEM) relative to siNT-transfected samples from three independent experiments (*, P < 0.05).
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from four independent experiments. (B) Asynchronously growing U2OS cells were transfected with siNT and siE2F7 and subsequently treated with 8 �M
CSP for 12 h. BrdU was present in the cultures for the last 2 h. Cells were stained with anti-BrdU conjugated with FITC and with propidium iodide. A
representative FACS analysis is shown. (C) E2F7 knockout and wild-type cells were treated and analyzed as in (A). NCS (20 ng/ml) and OLA (4 �M) were
also analyzed in these cells. The graphs represent fold-change of E2F7-knockout pH3-positive cells over parental wild-type values (mean ± SD) from three
independent experiments. (D) Clonogenic survival assays were carried out with E2F7-knockout and parental U2OS cells treated with indicated doses of
CSP. For each cell line tested, cell viability of untreated cells was defined as 1. Data represent mean ± SD from two independent experiments. Ø, untreated.

known to generate DNA interstrand crosslinks (ICL), in
which FA repair pathway is involved (29), whereas � -
irradiation (IR) or neocarzinostatin (NCS), which mimics
DNA damage caused by � -IR (30) are known to induce
DNA double-stranded breaks (31).

Cell-cycle progression was assessed by recording the ac-
cumulation of pH3-positive mitotic cells after nocodazole
addition. Only a small fraction of siNT-transfected cells ex-

posed to non-lethal doses of DNA-damaging agents was
able to enter mitosis, reflecting the efficient arrest in G2
caused by these genotoxic agents (Figure 3A and Supple-
mentary Figure S2A). Strikingly, knockdown of E2F7 led
to a significant increase in the fraction of cells capable of
exiting from the G2 arrest imposed by MMC and CSP rel-
ative to siNT-transfected cells (Figure 3A). This difference
in recovery capacity between siNT and siE2F7-transfected
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cells was not observed upon ionizing radiation-induced G2
arrest. Results compiled from multiple biological replicates
of synchronized as well as asynchronous cells confirmed the
significant increase in the percentage of E2F7-silenced mi-
totic cells after treatment with MMC and CSP (Figure 3A
and Supplementary Figure S2B). Similar results were ob-
tained after treatment with Olaparib (OLA), an inhibitor
of poly(ADP-ribose) polymerase-1 (PARP1) that induces
single-strand break accumulation and reduced fork stabil-
ity (32) (Supplementary Figure S2B and C).

Given the known effect of these drugs in replication fork
progression, we next examined DNA replication rates after
knockdown of E2F7 by measuring BrdU incorporation in
asynchronously growing cells treated with CSP for 12 h. As
expected, DNA synthesis rate was reduced in siNT cells un-
der this treatment. By contrast, the reduction in DNA repli-
cation was alleviated in siE2F7 cells (Figure 3B), suggesting
that E2F7 inhibits DNA replication when DNA lesions that
interfere with fork progression are generated.

To confirm the functional significance of E2F7 in DNA
damage responses, a CRISPR/Cas9 mediated E2F7 gene
knockout was established in U2OS cells using a gRNA
that targets the N-terminal region of E2F7 protein. Effi-
cient E2F7 knockout of a selected cell line was demon-
strated by DNA sequencing and Western analysis (Sup-
plementary Figure S3). E2F7 knockout cells were treated
with DNA damaging compounds, and pH3-positive mi-
totic cells were scored. Similarly to our finding with E2F7-
knockdown cells, the fraction E2F7 knockout cells that
was positive for pH3 was significantly increased relative to
parental E2F7 wild-type cells after ICL induction or PARP
inhibition (Figure 3C).

We next determined whether the improved cell-cycle pro-
gression of E2F7-deficient cells after genotoxic damage im-
pacted their long-term clonogenic survival. To this end, we
treated E2F7-knockout cells with CSP for 24 h and cultured
them for two additional weeks to allow for colony formation
from individual surviving cells. As shown in Figure 3D, the
number of colonies that were scored in E2F7-knockout cul-
tures exposed to CSP was significantly higher than in wild-
type cultures, in concordance with cell-cycle analyses (Sup-
plementary Figure S4). Altogether, our results suggest that
lack of E2F7 confers an increased checkpoint recovery com-
petence upon treatment with compounds that affect replica-
tion fork progression (CSP, MMC, OLA).

E2F7 expression and activity in cells exposed to DNA
crosslinkers is p53-independent

It has been reported that E2F7 expression is induced when
DNA lesions are generated upon treatment with selected
drugs (11,14). We tested whether E2F7 expression and tran-
scriptional activity are also regulated upon ICL induc-
tion. Asynchronously growing U2OS cells transfected with
siE2F7 or siNT were treated with CSP or left untreated for
24 h, and gene expression was analyzed at the mRNA level.
A significant increase in E2F7 levels was detected upon CSP
exposure, which was blocked in siE2F7-transfected cells
(Figure 4A). In contrast to E2F7 expression, the mRNA
levels of target genes involved in DNA replication and re-
pair identified in our RNA-seq were consistently reduced

upon CSP treatment. Importantly, silencing of E2F7 led
to a robust overexpression of target genes in CSP treated
cells (Figure 4A and Supplementary Figure S5). Similar re-
sults were obtained after MMC treatment (data not shown).
These findings point to a role for E2F7 in the negative regu-
lation of genes involved in DNA damage responses during
cell-cycle progression, but also following ICL induction.

ICL damage and PARP inhibition also led to a substan-
tial induction of E2F7 at the protein level, concomitant with
p53 accumulation (Figure 4B). To determine whether the
observed accumulation of E2F7 levels was mediated by p53,
as had been reported previously for cells treated with DNA
topoisomerase II inhibitors (14), we silenced p53 expression
by specific siRNA transfection and examined E2F7 expres-
sion upon genotoxic treatment. Remarkably, loss of p53 did
not reduce E2F7 levels (Figure 4B). In functional assays, we
found that depletion of p53 had no effect on the recovery of
U2OS cells exposed to CSP, MMC or OLA, whereas con-
comitant depletion of p53 and E2F7 led to a significant in-
crease in the number of mitotic cells (Figure 4C), suggesting
that E2F7’s role in cell-cycle recovery from ICL damage or
PARP inhibition is p53-independent.

To confirm these results we made use of HeLa cells, in
which p53 activity is very low due to human papillomavirus-
derived E6 protein expression in these cells (33). HeLa
cells that were transfected with siRNA molecules specific
for E2F7 and subsequently treated with genotoxic com-
pounds accumulated a significantly higher percentage of
pH3-positive mitotic cells compared to control cells trans-
fected with non-target siRNAs (Figure 4D). Furthermore,
exposure to CSP led to an induction of E2F7 mRNA levels
and to an upregulation of target gene expression in E2F7-
depleted HeLa cells (Figure 4E). These results suggest a
p53-independent role in the regulation of cellular responses
by E2F7 after DNA damage by ICLs and PARP inhibition.

Reduced number of DNA repair foci and chromosome breaks
after E2F7 silencing

We next considered the possibility that E2F7 could con-
tribute to the modulation of DNA repair pathways involved
in ICL resolution. To test this hypothesis, we examined the
accumulation of 53BP1 foci in the nuclei of damaged cells.
53BP1 has been involved in DNA damage signaling and re-
pair, and is well characterized for its ability to localize to
DNA lesions in cells exposed to genotoxic agents, includ-
ing ICL-inducing agents (34). U2OS cells were transfected
with E2F7-specific siRNAs and subsequently treated with
MMC, CSP or the radiomimetic drug NCS. Twenty-four
hours after treatments, cells were fixed and 53BP1 foci were
analyzed and quantified by immunofluorescence and high-
throughput microscopy (Figure 5A). As expected, treat-
ments with DNA damaging agents resulted in an increased
number of foci relative to untreated cells. Interestingly, de-
pletion of E2F7 caused a significant decrease in MMC or
CSP-induced 53BP1 foci, but did not alter NCS-derived foci
number. Furthermore, E2F7-null cells showed lower levels
of � -H2AX compared to E2F7-competent cells after 24 h of
genotoxic treatment, whereas the � -H2AX levels were com-
parable at earlier time points in both cell lines (Supplemen-
tary Figure S6). These data imply that E2F7 does not affect
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p53-depleted pH3-positive cells from three independent experiments. (D) Asynchronously growing HeLa cells were transfected and treated as in (A). Shown
are RT-qPCR analyses of indicated genes. (E) HeLa cells were treated as in Figure 3B, and the percentage of mitotic pH3-positive cells was analyzed by
flow cytometry. The graph represents fold-change of E2F7-depleted pH3-positive cells over siNT values (mean ± SD) from three independent experiments.
Ø, untreated. (*, P < 0.05)

foci formation, but instead E2F7 plays a role in the negative
control of pathways involved specifically in ICL repair.

It has been shown that FANCD2 recruitment to sites of
DNA crosslinks is an essential step for ICL repair (35,36).
Thus, we analyzed FANCD2 foci by immunofluorescence,
and quantified the number of foci per nucleus in E2F7-
depleted cells exposed to MMC or CSP. As expected, MMC
and CSP treatments increased the number of FANCD2
foci/nucleus. Importantly, depletion of E2F7 caused a sig-

nificant decrease in MMC or CSP-induced FANCD2 foci
(Figure 5B).

We next assessed the accumulation of chromosomal aber-
rations, a hallmark of ICL-inducing agents (29,37), visual-
ized in metaphase spreads. Numerous control cells (siNT)
displayed radial and broken chromosomes (nearly 0.5 aber-
rations per metaphase) upon MMC exposure. Silencing of
E2F7 provided partial resistance against MMC-induced
chromosomal aberrations, with a reduced presence of radial
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Figure 5. E2F7 knockdown results in reduced foci and chromosome break number after ICL induction. (A) siNT and siE2F7 transfected U2OS cells
were treated with MMC, CSP and NCS and fixed 24 h later. Cells were stained for 53BP1 with a FITC-conjugated specific antibody. Nuclear DNA was
stained with DAPI. The number of 53BP1 foci was scored by HTM. Data are representative of three independent analyses. Horizontal lines indicate mean
vales. (B) siNT and siE2F7 transfected U2OS cells were treated with 250nM MMC or with 4 �M CSP. Twenty fours hours later, samples were fixed and
stained for FANCD2. The number of FANCD2 foci was scored on fluorescence microscope images. Continuous horizontal lines indicate mean values. Data
are representative of three independent analyses. (C) siNT and siE2F7 transfected U2OS cells were treated with 250 nM MMC for 48 h and scored for
chromosomal aberrations by analyzing metaphase spreads. Representative images of a radial chromosome and a chromatid break are shown. Chromosomal
aberrations are expressed as the average breaks and radial chromosomes found per metaphase (n = 50 cells) in three independent experiments. (*, P < 0.05;
***, P < 0.001), Ø, untreated, n.s. not significant.

and broken chromosomes (Figure 5C). Thus, E2F7 appears
to have a negative role in the repair of chromosomal aber-
rations resulting from MMC treatment. The reduction in
53BP1 and FANCD2 foci upon MMC treatment shown by
cells lacking E2F7 supports this hypothesis.

E2F7 modulates homology-directed DNA repair

We next investigated the efficiency of HR in cells depleted of
E2F7. We used a U2OS cell line with an integrated direct re-
peat recombination reporter (DR-GFP). With this reporter,
homology-directed DNA repair is detected when a DSB in-
troduced into the chromosome by the I-SceI endonuclease
is repaired by HR to give rise to GFP-positive cells (20).
Knockdown of E2F7 resulted in a significant increase in
HR efficiency (Figure 6A). Conversely, overexpression of
E2F7 in U2OS-DR-GFP cells to levels that are comparable
to those observed after ICL induction led to a significant

reduction in HR efficiency, suggesting that E2F7 inhibits
HR-mediated repair.

To better define the mechanism underlying E2F7-
mediated modulation of DNA repair, we analyzed whether
the improved genomic stability conferred by loss of E2F7
could be attributed to increased expression of E2F7 tar-
get genes necessary for HR repair. We examined RAD51
recombinase activity, a surrogate marker of HR efficiency
and transcriptional target of E2F7 (Figures 1B and 2). In
E2F7-depleted U2OS cells, RAD51 foci were significantly
increased under both basal and ICL-inducing conditions
(Supplementary Figure S7), suggesting that HR may be hy-
peractive upon loss of E2F7. Using the DR-GFP reporter
system, siRNA-mediated RAD51 depletion led to a reduc-
tion in HR repair, whereas E2F7 depletion resulted in in-
creased HR rates, as measured by the differences in the per-
centages of GFP-positive cells detected by flow cytometry
(Figure 6B). Western blot analysis of protein extracts de-
rived from E2F7-silenced cells showed overexpression of
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Figure 6. E2F7 suppresses HR through transcriptional repression of DNA repair genes. (A) U2OS-DR-GFP cells were transfected with siRNAs specific
for E2F7 or with a plasmid expressing E2F7 together with an SceI expression vector. GFP-positive cells were analyzed by FACS. Data are shown as a
percentage over siNT or over empty pCMV transfection. The values shown represent the mean ± SD of three independent experiments (*, P < 0.05). (B)
U2OS-DR-GFP cells were transfected with siRNAs specific for E2F7, RAD51 or with a combination of both and analyzed as in (A). Western blot analysis
confirms knockdown of E2F7 and RAD51 (arrow). Shown is a representative experiment of two independent experiments. A non-specific band in RAD51
blot is indicated with an asterisk.

RAD51 protein levels, in line with the mRNA results de-
scribed in Figure 1B. We next co-transfected E2F7-specific
siRNAs with a concentration of RAD51-specific siRNAs
that would attenuate RAD51 expression to the levels found
in E2F7 competent cells. Interestingly, the increased HR re-
pair efficiency conferred by loss of E2F7 was abrogated un-
der these conditions, and the percentage of GFP positive
cells decreased to the levels found in control cells (Figure 6B
and Supplementary Figure S8). These results suggest that
E2F7 modulates DNA repair through the transcriptional
repression of target genes that play a central role in the reso-
lution of DNA lesions requiring homology-directed repair,
such as RAD51. In the absence of E2F7 the HR pathway
could become hyperactive and potentially harmful.

Improved genomic stability in HR-deficient cells after E2F7
depletion

Given that E2F7 displays features of an HR inhibitor, we
next tested whether downregulation of E2F7 could suppress
genomic instability in cells with an underlying genetic de-
fect in HR. We hypothesized that the increased recombi-
nation conferred by E2F7 depletion might promote DNA
repair and protect cells from genomic instability and cell
death. To test this possibility we used RNA interference
to attenuate the expression of BRCA2 in the U2OS DR-
GFP cell line. As expected, knockdown of BRCA2 abol-
ished HR repair in this assay. Interestingly, we observed that
E2F7 co-depletion could improve HR in cells with reduced
BRCA2 activity, therefore ensuring genomic stability (Fig-
ure 7A and Supplementary Figure S9). We next made use of
CAPAN-1 pancreatic adenocarcinoma cells, which are de-
fective in HR due to a loss-of-function mutation of BRCA2
(38). Treatment of these cells with PARP1 inhibitor OLA

compromised cell viability as seen in short-term and long-
term clonogenic survival assays (Figure 7B and Supplemen-
tary Figure S10), consistent with the finding that cancer
cells deficient in HR repair through loss of BRCA2 are hy-
persensitive to PARP inhibitors (39). Importantly, down-
regulation of E2F7 expression in CAPAN-1 cells was associ-
ated with increased resistance to the PARP1 inhibitor OLA
(Figure 7B and Supplementary Figure S10). Thus, E2F7
knockdown confers an increased resistance to chemother-
apy in cells carrying defects in genes involved in HR.

DISCUSSION

In this work we have investigated the role of the atypical
E2F member E2F7 in DNA damage repair by analyzing its
contribution to the control of gene expression and to cellu-
lar responses upon exposure to genotoxic damage. We find
that in addition to controlling the timely expression of genes
necessary for G1/S transition and DNA replication in un-
perturbed conditions, E2F7 is involved in the negative reg-
ulation of genes controlling DNA repair pathways. Conse-
quently, E2F7 activity is associated with a suppression of
DNA repair reactions.

The expression of genes that are involved in various as-
pects of the DDR and DNA repair pathways is cell-cycle
regulated, showing highest expression in G1/S transition
and decreasing thereafter. Here, we show that the down-
regulation of these genes throughout the cell cycle is E2F7-
dependent. Interestingly, all upregulated genes included in
the DNA damage repair functional group harbor at least
one E2F binding site in their promoters, and although many
of those have been previously identified as targets of clas-
sical E2F proteins (15,40–44), their regulation by E2F7
has only been demonstrated for some of them (4). Our
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Figure 7. Improved genomic stability and survival upon E2F7 depletion in BRCA2-deficient cells. (A) Direct repeat recombination was measured in U2OS-
DR-GFP cells transfected with siRNAs specific for E2F7, BRCA2 or with a combination of both. E2F7 knockdown partly rescued the severe defect caused
by BRCA2 depletion. Data are represented as fold-change (mean ± SEM) relative to siNT-transfected samples from two independent experiments. (B)
Clonogenic survival assays were carried out with siE2F7 or siNT transfected CAPAN-1 cells treated with indicated doses of OLA. For each siRNA, cell
viability of untreated cells was defined as 1. Data represent mean ± SD from two independent experiments. Ø, untreated. (*, P < 0.05).

RNA-seq and ChIP experiments have extended the collec-
tion of direct E2F7 target genes involved in DNA repair
by demonstrating that E2F7 is recruited to the promoter
regions of RAD51, FANCE, FANCI, CTIP, BARD1 and
BRIP1, implying their direct transcriptional repression by
E2F7. An E2F7-dependent downregulation of replication
fork-associated DNA damage repair genes in the cell cy-
cle could help restrict DNA repair activities to the S phase,
which might otherwise give rise to unscheduled DNA re-
pair activity and genome instability.Exposure of siE2F7-
transfected cells to ICL-inducing DNA damaging agents re-
sults in higher levels of DNA replication and mitotic cells
compared to siNT-transfected cells, consistent with a role
for E2F7 in cell-cycle arrest. Supporting this possibility, we
demonstrate that loss of E2F7 confers an increased recovery
competence upon treatment with DNA damage-inducing
doses of CSP, MMC or OLA, suggesting that E2F7 is a fac-
tor that controls cellular recovery during an ongoing DNA
damage response. In contrast to our findings, it has been re-
ported that lack of E2F7 sensitizes cells to topoisomerase
inhibitors by inducing apoptosis through a mechanism in-
volving E2F1 upregulation (10,11). Several reasons could
explain the disparity between our results and those from
previous studies. On the one hand, we have used a set of
genotoxic agents that are known to differ in their mech-
anism of DNA damage and in the elicited response from
the previously analyzed ones. On the other hand, the drug
doses used in our study were non-lethal although sufficient
to induce checkpoint arrest in G2, whereas previous studies
employed doses sufficiently high to induce apoptosis. Thus,
there could be a DNA damage threshold below which cells
lacking E2F7 could be involved in repairing the damage, but
above which these cells would activate cell death pathways.
Systematic analyses using a wide range of doses of a variety
of compounds may help resolve these differences.

E2F7 expression and cell-cycle target gene repression
have been previously linked to p53 after DNA damage
by topoisomerase inhibitors (14). Unexpectedly, we found
that E2F7 expression and E2F7-modulated cellular recov-
ery upon ICL damage is largely p53-independent. Our

results point to a fundamental difference in the DNA
damage-mediated regulation of E2F7 expression and func-
tion between DNA topoisomerase inhibitors and inter-
strand crosslink inducers. Further studies should determine
whether other p53 family members are involved in E2F7
regulation upon ICL induction or whether a distinct path-
way mediates E2F7 regulation in this context. In contrast to
DNA crosslinkers, ionizing radiation did not induce E2F7
expression in U2OS cells, which may explain why depletion
of E2F7 did not confer increased cellular recovery after ra-
diation.

Remarkably, our data show that E2F7 has additional
roles beyond inhibition of DNA replication in the presence
of DNA damage. In fact, DNA damage foci are significantly
reduced upon MMC and CSP treatments in E2F7-depleted
cells. These results point to a uniquely increased DNA re-
pair competence upon treatment with ICL-inducing agents
in cells lacking E2F7, leading to an earlier release from the
chromatin of � -H2AX, 53BP1 and FANCD2. Our obser-
vation that E2F7 knockdown has a protective effect against
chromosomal aberrations induced by MMC treatment sup-
ports this hypothesis.

Interestingly, the FA pathway, which is known to be in-
volved in ICL repair (45), is highly enriched among E2F7-
repressed genes. ICL-resistant cell lines are known to have
elevated gene expression involving the FA/BRCA pathway,
including FANCF and RAD51C, which was suggested to
be causally related with enhanced removal of ICLs by the
resistant cells (46,47). We have found evidence that the ex-
pression of at least FANCE, FANCI, BRIP1 (also called
FANCJ) or RAD51 (also called FANCR) is directly reg-
ulated by E2F7, and that E2F7 depletion results in en-
hanced expression of these FA genes, particularly during
S/G2 phases or after DNA damage, two cellular contexts
exhibiting high E2F7 levels (5) (Figure 4B). By contrast, this
enhanced expression of E2F7 target genes was not observed
in asynchronously growing cells, probably because most of
these cells are in G1, a time-point where E2F7 levels are very
low (5) and therefore unable to repress target gene expres-
sion. It will be interesting to analyze whether a correlation
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can be found between ICL resistance and E2F7 levels in dif-
ferent cancer cell lines in unperturbed conditions, but also
upon exposure to ICL-inducing chemotherapy.

ICL repair is known to involve homology-directed repair
machinery and increased HR is associated with resistance
to ICL-inducing agents in human tumor cells (48,49). Our
results are consistent with a negative role for E2F7 in HR
repair activity. Indeed, using a DR-GFP assay to measure
the effect of E2F7 in HR, we found that E2F7 negatively af-
fects HR activity. A transcription-independent contribution
to DNA repair process for E2F7 and E2F1 has been previ-
ously reported, which involves the binding of these E2Fs
and recruitment of several factors to damaged DNA sites
(13,50–52). We cannot discard the possibility that there is a
transcription-independent contribution to E2F7-mediated
regulation of ICL lesion repair in our system, which should
be important to analyze. However, our data strongly sug-
gest that a major DNA damage response function of E2F7
is through transcription-dependent regulation of DNA re-
pair genes. Several genes involved in HR were found upreg-
ulated upon E2F7 depletion, including RAD51, CTIP and
BARD1, among others. Most importantly, the results ob-
tained in our E2F7/RAD51 co-depletion experiments sug-
gest that increased HR activity in E2F7 silenced cells is asso-
ciated with increased levels of RAD51 recombinase, imply-
ing a transcriptional role for E2F7 in repair of ICL lesions,
through upregulation of target genes involved in homology-
directed DNA repair. Thus, the transcriptional landscape
regulated by E2F7 could provide an additional level of re-
combination control in addition to that described for sev-
eral recombinases (53,54), whereby cells can interfere with
HR at different steps in the process.

Increasing recombination in HR-deficient cells might re-
sult in protective effects. Our results have revealed an in-
triguing link between genomic integrity of DNA repair-
deficient cells and E2F7. HR-deficient (BRCA2 mutated)
cells exhibit increased genomic instability and accumulation
of mutations that ultimately disrupt cell-cycle control path-
ways, leading to cancer. In this scenario, increased HR ac-
tivity conferred by inactivation of E2F7 might prevent ge-
nomic instability in the cells of these patients and protect
against cancer onset, as has been proposed for the depletion
of the PCNA-binding protein PARI (54). However, dysreg-
ulated hyper-recombination has also been associated with
increased genomic instability and resistance to genotoxic
therapy in some cellular contexts, such as after RAD51 up-
regulation (55). In fact, the increased survival of BRCA2-
deficient tumor cells treated with a PARP inhibitor that
we observe after knockdown of E2F7 implies that loss of
E2F7 in the context of HR deficiency confers resistance to
chemotherapy, a potentially harmful outcome for cancer
treatment.

Although further research will be needed to elucidate the
molecular mechanisms underlying E2F7-dependent control
of genomic stability, our data are consistent with an an-
tioncogenic function for E2F7 whereby E2F7 functions to
inhibit or to switch off repair pathways for specific DNA le-
sions. It has been reported that efficient ICL repair requires
negative regulation of the FA pathway. Once repair is com-
pleted, the repair factors have to be inactivated to avert in-
appropriate action and corruption of genetic information

(56). Thus, the inability to turn off or reset the FA path-
way after the repair of specific DNA damage sites may have
deleterious effects on genome integrity. In a similar manner,
E2F7 might counter-balance the transcriptional program
activated in response to ICL repair to fine-tune the cellular
response to DNA lesions and ensure response termination.
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