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Abstract

We quantitatively assess the energetic cost of several well-known control protocols that achieve a finite
time adiabatic dynamics, namely counterdiabatic and local counterdiabatic driving, optimal control,
and inverse engineering. By employing a cost measure based on the norm of the total driving
Hamiltonian, we show that a hierarchy of costs emerges that is dependent on the protocol duration. As
case studies we explore the Landau—Zener model, the quantum harmonic oscillator, and the Jaynes—
Cummings model and establish that qualitatively similar results hold in all cases. For the analytically
tractable Landau—Zener case, we further relate the effectiveness of a control protocol with the spectral
features of the new driving Hamiltonians and show that in the case of counterdiabatic driving, it is
possible to further minimize the cost by optimizing the ramp.

1. Introduction

The inherent fragility of quantum systems necessitates that we develop methods to coherently control their
evolution [1, 2]. The need for high precision control is evidently ubiquitous; the study of how and why peculiar
quantum properties manifest requires techniques that allows for the careful manipulation of these systems.
While a variety of techniques have been developed for many types of quantum system [ 1-4], often neglected has
been the associated resources needed to achieve this high degree of control. While such an omission is evidently
justified when one is solely interested in studying a particular quantum phenomenon, it is vital to account for
such expenditures when developing novel technologies that exploit these quantum features. Indeed, recently the
application of control techniques that can achieve an effective adiabatic dynamics in a finite time, called
‘shortcuts-to-adiabaticity’ [1, 2], has been shown to be highly effective in a diverse range of settings including
quantum gates [5], quantum games [6, 7] nano-scale thermodynamic cycles [8—12], open quantum systems
[13-16], manipulating critical many-body systems [17, 18], and quantum precision measurements [19]. This
further highlights the importance of understanding the additional resources required to achieve precise control
in a quantitative manner.

The question of how to quantify the necessary resources to control a quantum system using a particular
protocol has recently become a topic of intense research activity (indeed, in the context of thermodynamic cycles
the issue becomes more subtle since any additional energy which is not dissipated can in principle be recycled
and act as a catalyst [20]). The variety of ways in which a particular set-up can be coherently controlled has led to
aplethora of definitions [5, 8—11, 21-38]. Nevertheless, since many of these quantifiers invariably share some
common traits, it leads to a natural question: which control protocols are the most resource intensive?

In this work we begin to tackle this issue by employing the cost measure introduced in [28] and, through it,
quantitatively and qualitatively compare and contrast several different coherent control protocols. For a fixed
protocol duration, 7, naturally, one must choose a figure of merit with which to judge the success of the process.
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Here we choose the target state fidelity, 7 = [{1)(7)| ¥)[>* — 1, where [¢)(7)) is the evolved state of our system
using a particular control protocol and | ¥) is the target state we are aiming to achieve. By fixing the quantifier of
cost and examining the paradigmatic settings of the Landau—Zener model, which serves to elucidate the control
needs of critical many-body systems [17], the parametric quantum harmonic oscillator, and the Jaynes—
Cummings model, we show that a consistent hierarchy of costs can emerge. We find that techniques that
suppress all non-adiabatic excitations are generally energetically costly protocols and we relate this to the effect
that these more resource intensive techniques have on the energy spectrum of the controlled system. However,
we show that the cost can be minimized by exploiting the freedom in choosing how one ramps the system.
Furthermore, we establish that optimal control (OC) and inverse engineering (IE) protocols are generally less
energetically costly.

The manuscript is organized as follows. In section 2, we outline the basic tools utilized throughout this work.
Section 3 quantitatively analyzes the energetic cost of control for three paradigmatic settings: ramping the
ground state of the Landau—Zener model through its avoided crossing, compressing the thermal state of a
quantum harmonic oscillator, and tuning the light—matter interaction strength in the Jaynes—Cummings model.
Finally, in section 4 we draw our conclusions and provide some further discussions.

2. Preliminaries

Controlling quantum systems such that an effective adiabatic dynamics is realized in a finite time can be
achieved through a variety of techniques [1, 2, 39]. In this work, we will focus on several of the most prevalent of
such protocols for a given situation and, for brevity, we refer to the comprehensive reviews on the topics for a
detailed discussion of their derivations and implementations [ 1, 2]. Counter-diabatic (CD) or transitionless
quantum driving is one such method that involves adding an additional correction term to the bare
Hamiltonian, Hy, such that the resulting dynamics exactly tracks the corresponding adiabatic dynamics [40—42].
If one is only interested in controlling populations, then with a suitable choice of phase [30] this can be achieved
through the CD term

Hep = 1) 1000n(0) (a1, (Y]

where |1, (¢)) are the eigenstates of the bare system Hamiltonian one is interested in manipulating and where we
assume units such that 7 = 1. An oft-cited drawback of this approach is that the resulting correction term can be
highly non-local [17, 29, 43] and therefore difficult to implement. However, for certain systems by exploiting a
unitary transformation, the total Hy + Hcp Hamiltonian can be re-expressed in the so-called local counter-
diabatic (LCD) form, Hi cp, where perfect final target state fidelity is still achieved [44]. Crucially, though, Hy cp
does not involve any complex non-local operators and is instead constructed using the same operators that
appear in Hy. Another drawback of the CD approach is that, in principle, it requires full spectral knowledge.
Thus often for complex systems where complete spectral information is not available, alternative approaches
must be employed. In this work, when possible, we will also consider other more heuristic protocols, OC theory
[45-47]and IE [1], and compare the resource intensiveness of their implementation.

Our aim is to both qualitatively and quantitatively assess the cost of implementing these protocols, which is a
topic that has ignited significant interest recently [5, 811, 21-38]. Indeed as discussed in [2] the notion of the
cost has been somewhat loosely employed and therefore different quantifiers probe different aspects of the
system’s energy or its interactions. In this regard, we are in principle free to choose or define any meaningful
quantifier we wish. However, we must ensure that whichever approach we use provides a sound basis for
drawing a comparison. For example, simply determining the average energy of the state (¢ (¢)| Ho|t(¢))is
insufficient as the CD approach will appear to be free as the instantaneous energy will be identical to the adiabatic
energy. Here we mainly focus on the cost as defined by Zheng et al [28] and use the norm of the Hamiltonian to
define the instantaneous cost of the evolution

atc = HHk” (2)

using the Frobenius norm, where Hy is the total Hamiltonian used in determining the evolution and k is used to
distinguish the various protocols. Notice that [28] was concerned with determining the additional resources
necessary to implement CD only and therefore defined the cost in terms of the additional energy added to the
bare Hamiltonian. Here the costis related to the norm of the full Hamiltonian implemented during the
evolution and thus accounts for the total energy of the process, rather than only defining the energetic cost to
achieve the control protocol.

A few important remarks are in order. Firstly, as we shall focus on unitary dynamics, any additional energy
resources employed are not dissipated. This is a subtle issue that is particularly relevant if one wishes to extend
our analysis to the performance of thermodynamic cycles [8—12], as it is possible for the additional energy
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requirements invested in achieving coherent control to be recycled, see e.g. [20, 21]. Secondly, to ensure a fair
comparison, we explicitly account for the bare Hamiltonian contribution to the energy requirements, thus
ensuring that no evolution is free. By employing equation (2) our analysis essentially focuses on the intensity of
all the driving fields in achieving high fidelity control, and while we expect the qualitative behavior to persist for
other definitions of cost, this question requires nevertheless a systematic study in itself.

3. Case studies

3.1. Landau—Zener model
To begin, we consider a single spin in a time-dependent field

Hyo=AZ + o0&, 3
0 > g()z 3)

In what follows we will assume that the system is initialized in its ground state with g(0) = —0.2 and we wish to
evolve through the avoided crossing to g(7) = 0.2. Our goal is to estimate the energy used to achieve this
evolution under the condition that the fidelity at the start and end of the process is close to unity. Depending on
the control protocol employed we may allow for the transient to leave the ground state manifold.

For OC the fastest approach is given by a bang-off-bang (BOB) pulse [48—50], where the system is suddenly
and strongly quenched, followed by a free evolution with no field, and finally a reverse sudden quench is applied

gQ) t=0,
o) =9 0, 0<t<T, “4)
_gQ> t=r,

with g, > ¢(0) (in our simulations go = 100 is sufficient). This approach is effective when the evolution time is
given by the quantum speed limit (QSL) time, Tqsy, [39, 48, 49, 51]. However we will also consider more general
approaches valid for 7 > Tqg later. By focusing on initial and target ground states of the Landau—Zener model,
equation (3), the QSL time can be found fully analytically and is given by [49]

A
cos(gm) ~ Jvaul + 1884, )

where o, and By, correspond to the o, basis coefficients of the normalized initial (target) state, respectively.
The CD control field which must be added to the bare Hamiltonian is given by [42]

__fwA
2AN + g2 (]

Hep = (6)
This control technique ensures that not only will the system be in the required state at the end of the protocol but
it will also remain in the instantaneous eigenstate of the original Hamiltonian throughout. There is complete
freedom in both the form of the ramp and its duration.

Turning to LCD, perfect target state fidelity can be achieved by making a unitary transformation of
H, + Hcptoarriveat[14,52]

Hycp = P(t)% +[g(t) — ﬁ(t)]%, @)

with P(t) = A2 + 0%,0 = arccot[g(t) /Al,and n(t) = arctan(f/A). Notice that, as with OC, the shortcut
is now achieved using a Hamiltonian that is of the same general form as the bare Hamiltonian, Hy. Unlike CD,
where the form of the ramp can be completely arbitrary, for the LCD term to be effective a particular form of
ramp is required, one with smooth start and end points, given by [14]

£y ) £y
=5y o5 1552 + a2 @

with gy = —0.2and g; = 0.4. Despite this, we can choose 7to be arbitrarily small and, in particular, smaller than
the QSL time. This shows a key difference between OC, where an optimized path for varying g(¢) is found, and
the LCD approach. On the one hand, we see that OC is bounded by the QSL when only the field is varied. On the
other hand, with LCD we are also time-dependently varying the energy splitting, A, via P(¢) in equation (7) and
therefore we can drive the system faster than the QSL. It is important to notice that we ‘beat’ the speed limit using
CD and LCD because we are significantly altering the spectrum of the system. In essence, the more energy
available to be imparted to the system the faster the evolution can be performed [29].

As mentioned, we will initialize our system in the ground state for g(0) = —0.2, the target state will be the
ground state at g(7) = 0.2 and we initially fix the gap A = 0.1. We will consider the BOB pulse performed at the
QSL, T = Tqs1, &~ 22.14, while for CD and LCD, as there are no constraints on how fast the protocol can be
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Figure 1. (a) Fidelity of various control protocols with the instantaneous ground state, assuming g(t) takes the form in equation (8).
Here we fix 7 = 7qgL & 22.14. (b) Corresponding instantaneous cost equation (2) for BOB (bottom-most, orange), CD (solid, red)
and LCD (dotted—dashed, purple). (c) Energy spectra for the full CD Hamiltonian, Hy + Hcp, (solid colors) and the LCD
Hamiltonian, H; cp, (dashed, black). (d)—(f) As for previous panels with 7 = 0.1. In (e) and (f) we have truncated the vertical axis for
clarity. In all figures we fix the energy gap A = 0.1 in equation (3).

achieved we will consider, 7 = Tqg; 50 as to compare faithfully with BOB, and 7 = 0.1, i.e. extremely fast
driving. For both CD and LCD we will employ the smooth ramp as given by equation (8).

In figure 1(a) we examine the instantaneous fidelity, 7 = | (1) (t)| ¢)|*, between the states |t (¢)) evolved
according to BOB, CD, LCD, and the bare Hamiltonian, with the corresponding instantaneous adiabatic state
| ) of Hy using the ramp equation (8) with 7 = Tqg.. Clearly we see a qualitative similarity in the behavior of
BOB and LCD, both protocols achieve the target state by evolving through partially excited states of the system.
Figure 1(b) shows the corresponding instantaneous cost, equation (2). Immediately, and somewhat expectantly
as they involve strong additional control fields, CD and LQD are resource intensive approaches. Interestingly,
the BOB protocol is by far the most efficient. With the exception of two strong pulses when driving at the QSL,
the system consumes comparatively little energy. It is worth noting the dichotomy between the behavior of the
cost for CD and LCD compared with BOB: the former ones are maximized at the avoided crossing while the
latter is minimized. For CD, as discussed in [29], the speed up facilitated by the driving term is related to a sharp
increase in the speed of the dynamics near the avoided crossing. In essence, CD seeks to ‘run’ through the
difficult points in the evolution, and this leads to an increase in the energy used. This can also been seen by
examining the energy spectra of the control Hamiltonians themselves which are shown in figure 1(c) where the
solid curves correspond to the ground and excited state for H = Hy + Hcp. We see that the addition of the
control field leads to the evolving Hamiltonian having an increasingly large gap. Thus, as the system is evolved
according to this new Hamiltonian, it can be driven progressively faster until it reaches the avoided crossing of
the original Hamiltonian. The dashed curves show the corresponding energy eigenvalues for the LCD
Hamiltonian, where a similar behavior is observed throughout except at the start and end of the ramp. In
contrast, BOB essentially does not have to deal with the difficulties that arise when approaching the avoided
crossing as it mostly evolves according to a system with no applied field. It is interesting that when the system is
evolving near the avoided crossing the instantaneous cost for both CD and LCD exhibit an identical behavior
despite their respective evolved states differing greatly at these times, see figure 1(a). We find notable differences
in the behavior of the instantaneous costs appear only in the earlier and later stages of the protocols and again
these features are reflected in the respective energy eigenvalues of the applied Hamiltonians. These differences
are very sensitive to the total protocol duration, as shown in figures 1(d)—(f) where we we show the same
quantities for 7 = 0.1 (notice that this duration is significantly shorter than the QSL time and therefore OC only
varying the field is not possible). For fast driving the LCD has very high instantaneous costs, while for longer
protocols we find 0,C can be lower for LCD compared to CD.

This last observation has an interesting consequence: if we compute the total cost, by integrating equation (2)

1 T
C=— H,||dt, 9
Tf;” el ©)
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Figure 2. Cost versus the protocol duration, 7, for CD (solid, red) and LCD (dotted—dashed, purple) when the ramp takes the form
given by equation (8). For sufficiently slow protocols, we see a cross over in the overall energy used. The dashed black curve
corresponds to the optimized ramp for CD given by equation (17) taking e = 0.1 and m = 40. Orange circles correspond to the OC
pulse of equation (10) with an infidelity g < 10~ °. The square point is the cost for the BOB pulse equation (4) resulting in unit fidelity.

we find that for fast protocols using the ramp given by equation (8) CD is less costly, as shown in figure 2.
However there is a crossover. For sufficiently slow processes, but still faster than the adiabatic limit, LCD
becomes the less resource intensive control method. The crossover is dependent on the value of A; we find that
larger values lead to a crossover at smaller 7.

In figure 2, we also add results obtained with an OC method that is applicable for 7 > Tg; in which the time
dependence of the control field is the sum of alinear ramp and a truncated Fourier series as

Mmax
Goc(t) = g — 28,5 + 3 aysin (”—m + %), (10)
T 0 T
where #1,,,,, is the maximum number of Fourier components. To obtain the optimized parameters {a,, ¢,} and
thus the function g (¢), we numerically minimize the combined function: g7C where g = 1 — F isthe final
infidelity. We tune the power 7 to best minimize simultaneously the infidelity and the cost C. In our calculations
we choose 107> < 7 < 10 %and 20 < .y < 50 dependingon 7. For 7 > Tqsp ~ 22.14, we are consistently
able to achieve a very small infidelity of g < 10~°. We find that OC is always the minimally resource intensive
control technique, and more remarkably, for the considered Landau—Zener model here, the total cost appears
almost independent of the protocol duration.

In thelimit of 7 — Tqg1, we find this particular OC method becomes less efficient as the number of
frequencies to be retained increases very rapidly, thus indicating that the form of control pulse is becoming
progressively harder to realize using a smooth function. Indeed, we know that at 7o¢; the required ramp is given
by the BOB pulse. Of course, this could in principle be emulated by equation (10) for sufficiently large #1,,,,,. We
show the total cost for the BOB pulse in figure 2 (blue square) and the agreement with the OC results obtained at
larger 7is clearly evident, thus indicating the claimed invariance of the cost of OC to protocol duration. Finally,
we remark that OC could also be directly applied to when both A and g vary time-dependently. In such a case it is
likely that 7 < 7Tqg is achievable, however, evidently, this is a more involved scenario.

While we have restricted to using the smooth ramp equation (8), as noted previously, CD allows for any
ramp to be used. Thus, unlike in typical OC methods where fidelity is maximized for a given protocol duration,
since CD already guarantees perfect fidelity, we are able to optimize the choice of ramp which minimizes the
cost. We refer to [37] where a similar approach is successfully implemented. The cost, equation (9) can be
expressed in terms of s = ¢/7as

1/2
1 T 1 1
C:?fo ||H(t)||c‘lt:f0 ||H0(s)+7—1HCD(s)||ds:ﬁ ;E,f(swfzg;mw(s)p ds, (1)

where Am,n — i{m | (0:Ho) | n)

= and we have used the Frobenius norm as before. Clearly the cost scales with the total
time 7 and the contributions from the different Hamiltonian terms Hy and Hcp is evident. Note that the
contribution from H¢p is similar to the usual criteria for adiabaticity i.e. 3=, ., |A,,,|* < 1asone would expect.

In the non-adiabatic regime (i.e. small total time 7)

n=m

1
C~ Tflfo I[Hep (s)||ds. (12)

If we define ||Hcp (s)|| as a Lagrangian and minimizing the corresponding action, we find the ramp with the
lowest cost in this regime to be given by
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Eua(s) = Atan [ A(s + )], (13)

where ¢; ; are constants of integration which are fixed by the boundary conditions of g(f). The cost in this case is
Cr~ %. The dependence on the energy gap shows that for large A, the ramp tends toward a linear pulse while
for small A it tends towards a delta pulses at each endpoint. Similarly, in the adiabatic regime (i.e. large 7) we
have

1
Czj; I|Ho(s)|ds, (14)

:fl (A2 + g(s)2) /2 ds. (15)
0

Thus the optimal ramp is a delta pulse at the endpoints, in order to fulfill the boundary conditions, and zero
otherwise, so the positive integrand is as small as possible. This can be approximated by a continuous function as

84(s) = —g,[tanh(ms — m) + tanh(ms)] (16)
for m > 1.Itsimply remains to tackle intermediate values of 7. The results for the two regimes can be combined as

8c(s, T) = f(1)g4(s) + [1 — f(T)]guu(5) (17)

for monotonically increasing f (7) bounded between 0 and 1. One choiceis f (1) = % arctan(er), where €
determines how fast one changes from one regime to another. This approach has the advantage that the total
time 7 does not have to be accounted for when determining the optimal pulse. It may also prove useful in cases
where calculating the norm of the full Hamiltonian is difficult but estimating the norm of the adiabatic and
counterdiabatic components is more tractable.

In figure 2, the dashed black curve corresponds to CD when the ramp is given by equation (17). Thus, for the
paradigmatic Landau—Zener model we see that OC is the lowest cost control technique, however, CD and LCD
offer some noticeable advantages. Using these techniques, the final state fidelity is guaranteed independent of the
protocol duration and these methods are applicable when arbitrarily fast control is required. For CD the
associated cost can be further minimized with respect to the form of ramp employed. While this is still more
costly than OC, it allows for driving times faster than the QSL which are not achievable using OC techniques that
depend solely on manipulating the applied field.

3.2. Parametrically driven quantum harmonic oscillator
Let us now consider the case of a time-dependent harmonic oscillator, initially in thermal equilibrium at inverse
temperature 3 = 1/(kg T), with mass m whose Hamiltonian is of the usual form
2
Hy= 2= + ™22, (18)
2m 2
where x and p are the position and momentum operators, respectively, and we assume that the time-dependent
frequency w(t) starts with initial value wyat t = 0 and ends with final value w, at # = 7. The state of the oscillator
remains Gaussian for any driving protocol w(#) due to the quadratic form of the Hamiltonian. The Schrodinger
equation for the parametric quantum harmonic oscillator can be solved exactly for any frequency modulation
[53-55]. The system dynamics are completely determined by a dimensionless adiabaticity parameter, Q*, as
introduced by Husimi [53]

QF = — L {Wllwr(®) X2 + X2 + [w2(0) Y2 + V2L, (19)
2wow (1)

where X, and Y, are the solutions of the force-free classical oscillator equation, X, + w?(t)X, = 0, satisfying the
boundary conditions X, = 0, X, = land Y, = 1, Y, = 0. The adiabaticity quantity Q* > 1is the ratio of the
nonadiabatic mean energy and the adiabatic energy and is equal to one for slow driving that realizes adiabatic
transformations.

Using equation (1) we can determine the CD term [43]

w(t)
Hep = — xp + px), 20
cD o (t)( p + px) (20)
and consequently the adiabaticity parameter can be expressed as [56]
3 —1/2
CA PR SO I 21
Qb [ eI (21)

We note that the time variation of the frequency must fulfill the condition, w?(t) > w?(t) /[4w?(t)], to avoid
the trap inversion. This is consistent with the conditions in typical experimental realizations and also ensures
that the adiabaticity criterion equation (19) retains a clear physical interpretation during the process.
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Figure 3. Quantum harmonic oscillator. (a) Adiabaticity parameter Q" of various control protocols as a function of time, assuming
w(t) takes the form in equation (28). The adiabaticity parameter Q" of bare Hamiltonian H; (solid black) is compared with LCD
(dotted—dashed, purple), CD (red) and IE (dotted, blue) for 7 = 1.6. (b) The adiabaticity parameter Q" for 7 = 2.5. (c) Cost for the full
CD Hamiltonian, Hy + Hcp, (solid, dark red), the LCD Hamiltonian, H; p, (dotted—dashed, purple) and the IE Hamiltonian, Hyg,
(dotted, blue). The inset shows azoom when LCD becomes less costly and the vertical dotted line corresponds to the time, 7 a2 1.52
that constrains the CD protocol to ensure no trap inversion occurs. In all panels we fix the initial frequency wy = 1, final frequency

w; = 10and the inverse temperature 5 = 1/(kgT) = 3.

Considering the LCD approach [1, 44, 57], similarly to the qubit case, the nonlocal CD term is mapped onto
aunitarily equivalent Hamiltonian with a local potential of the form
p? mQ(t) x?

Heep="—+—"", (22)
LCD m P

with the modified time-dependent squared frequency
3w (t) ()

2 _ 2 _
T =i 4021 2w()

(23)
The exact dynamics of the system are obtained from the solution of the adiabaticity parameter, equation (19)
solved by replacing w(#) with €2(#). Again, to avoid the inversion of the harmonic trapping potential, the effective
frequency Q(f) must be positive (2*() > 0).

A final control technique that is particularly effective for the oscillator case is IE based on constructing
appropriate parameter trajectories of the frequency by employing the Lewis-Riesenfeld invariants of motion
[58]. Considering Hy, the dynamics are obtained by solving the Schrédinger equation based on the invariants of
motion of the following form [32, 59]

1( x? 1
I1(t) = E(b—zmwg + ;7‘(’2), (24)

where 7 = bp — mbx plays the role of a momentum conjugate to x/b, w, and is, in principle, an arbitrary
constant taken as wy = w(0), and the dimensionless scaling function b(¢) satisfies the Ermakov equation

b(t) + W (Ob(1) = wi /B3 (D). (25)

The resulting time-dependent instantaneous energy of the Hamiltonian reads

1 6% w2Ob() wo (ﬁwo)
Hg(t) = — + + th| — |, 26
(Hie (1) 2[ 2w 2w 2wy |\ 2 (26
and corresponding adiabaticity parameter is given by [10]
.2

fiy =14 20O 27
Qi) o 27

The behavior of the various adiabaticity parameters for the three considered control protocols is shown in
figure 3 using a ramp analogous to equation (8) [1]

AN t\* Y
w(t) = wo + IOwd(—) — ISwd(—) + 6wd(—) , (28)
T T T

where the difference between final and initial frequencyis w; = w; — wy. We clearly see a similarity between the
methods as they all start and end at the same value of adiabaticity. However, the CD has the largest fluctuation
while the behavior of the LCD and IE show significantly smaller peaks. The IE technique gives the smallest value
of adiabaticity parameter which results in the smallest nonadiabatic excitation during the process. In figure 3(a)
we show the adiabaticity parameter for a shorter time duration (7 = 1.6) and observe alarge increase in the
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nonadiabatic excitations than the case of 7 = 2.5, see figure 3(b). The validity CD protocol, as dictated by the
constraint ensuring no trap inversion occurs, breaks down at time 7 ~ 1.52.

Turning our attention to the instantaneous cost as defined in equation (2), as the spectrum is unbounded,
the resulting norm is not finite. To circumvent this issue we note that the the average energy of the system
evaluated over the the full Hamiltonian will behave in a qualitatively identical manner and as such we use it as an
indicator of the control cost. Thus for the oscillator, we must modify our definition of the total cost to

1 T
C=— Hior) dt, 29
= RS (29)
where the full Hamiltonian for a given control protocol is [10]
t
(Ho) = 22 QI(H () = 21Qf coth (Bwo/2 (30)
0

with k = CD, LCD, IE. We note, for the LCD, the w(¥) is replaced with 2(¢) in the equation above as well as in
evaluation of Q" with equation (19). In figure 3(c) we numerically evaluate the cost of the evolution for the
various control protocols using ramp equation (28). We observe that while all the protocols lead to the same
value of cost for long durations, they significantly differ for fast processes. We find that IE is the most efficient of
the three protocols. Furthermore, in line with the Landau—Zener model, for intermediate timescales the CD
performs better than the LCD but there is a crossover as the driving time becomes smaller. Thus, our results
indicate that a qualitatively similar hierarchy emerges in the case of driving a thermal harmonic oscillator.

3.3.Jaynes—Cummings model

As afinal case study, we examine the Jaynes—Cummings model [60]. Recently, owing to its richness, this model
has attracted renewed interest in diverse areas such as quantum control [61, 62]. We thus consider the model
[63,64]

Hyc = %az + wa'a + g(t)(act + a'o), (3D

which describes the interaction of a two-level atom, modeled as a spin—% particle, with a single mode of the

electromagnetic field whose annihilation and the creation operators are aand a', respectively. While the free
Hamiltonian Hy = w0, /2 + wa'a is assumed to be time-independent, the interaction Hamiltonian

Hiy = g(t)(ac™ + a'o~) depends on a time-dependent coupling rate g(£), upon which we exert control
[63—65]. As the total number of excitations in the system N, = |e) (e| + a'a is a constant of motion, for any
given initial number of photons # in the field the dynamics is restricted to the subspace spanned by states

{le, n), |g, n + 1)}. Owing to this feature equation (3 1) may be written as the direct sum of Hamiltonian terms
(Hjc), labeled by the corresponding number of photons in the field. Over the basis {|e, 1), |g, n + 1)}, such
terms take the form [61, 66]

(Hio), = 1 Cn+ Dw+6 2¢@)Jyn+1
o e v 1 @nt Dw—6)
where Qg () = 2g(t)/n + 1 is the n-photon time-varying Rabi frequency and § = w, — wcorresponds to
the detuning parameter of the radiation from the atomic resonance.
Equation (32), can be mapped to a Landau—Zener model by introducing the spin-like operators
g =g n+ 1){en,eg"=le n){gn+ 1,5 = le n)(e, n| —|g, n+ 1){(g, n + 1], sothat

2n + l)w]I " gf_fz i Qr(t)

(32)

(Hic)n = Ox. (33)

Moreover, through a 7/2 rotation about the y-axis, we have 3, — &, and 5, — —&,, which takes us to

(Hyo), = ZnE e - Doy, gax _ RO

(34)
From equation (34), we can already see that equations (6) and (7) are valid upon the identification of A — ¢
and g(t) — —Qr(®).

The desired CD Hamiltonian corresponding to this problem is given by [40, 42]

Hep =1 Y. (8(n, a()){n, o) — (n, o(®)| &|(n, o(t))n, c(®))n, o)) = 0,(1)5, (35)
no==4
with the mixing angle 6,(¢) = % arctan (%) and |n, o (¢)) denoting the dressed-atom eigenstates of the
original Hamiltonian. The explicit expressions of the new modified total Hamiltonian for CD and LCD are
presented in the appendix.
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Figure 4. Examples for the Jaynes—Cummings model. (a) Fidelity F(¢) with respect to the instantaneous ground state of the
corresponding original Hamiltonian, assuming g(t) of the form in equation (8). Bare Hamiltonian evolution (solid black curve) is
compared with CD (solid dark red curve) and LCD (dotted—dashed purple curve) protocols. Here, the total time of the protocol is

7 = 10. (b) Cost C as a function of the total time 7 (in units of w) for the ramp in equation (8). The inset shows a zoom when LCD
becomes less costly than the CD (ataround 7 ~ 17). (c) Jaynes—Cummings model with an initial coherent state | ) of the field (the
total initial state of the system is thus |e, «)). Cost Cy as a function of the total time 7 (in units of w) for the ramp in equation (8) and

o = 2. The inset shows the fidelity with respect to the instantaneous ground state of the corresponding Hamiltonian for the total time
7 = 10 with the same color conventions as the previous plots. The parameters used are g(0) = 0,g(7) = 0.2w, 6 = 0.lwandw = 1.

Considering again the smooth ramp of g(¢) in the form of equation (8) and for the initial state |e, 0), a unitary
evolution is performed from g(0) = 0 to a target state at g(7) = 0.2w with initially fixed § = 0.1wand setting
w = 1.Infigure 4(a) we show the fidelity of the state evolving according to CD, LCD, and the bare Hamiltonian
using ramp equation (8), with respect to the instantaneous ground state of (Hjc),—o for 7 = 10. Again, we find a
qualitative similarity in the behavior of CD and LCD when compared with the Landau—Zener model.

In figure 4(b) we show the cost by applying equations (2) and (9) for both a CD and LCD strategyand n = 0
excitations (we neglect constant energy factors of Hjc cp and Hjc1cp), finding it again qualitatively in line with
was observed for the Landau—Zener model (see figure 2).

In figure 4(c) we examine the cost and fidelity of the state evolving according to CD and LCD strategies
starting from a coherent state | ) of the cavity field with the ramp in equation (8) and the amplitude o = 2.
Clearly we see a similarity in the behavior of both shortcut protocols with the case of vacuum initial state in
perfectly achieving the target state (see inset of figure 4(c)). However, the cost of shortcut to adiabaticity
protocols are higher than the vacuum state situation as more n-subspaces must be considered, in light of the
form of the initial state of the field. For our calculations we have computed the cost and the fidelity using
n = 0, ...,40. Such a cutoff is well justified as the populations of the states |g, m) and |e, m) withm > 40
arep,, - 40 < 102°. Inkeeping with the previous results we once again find that, for shorter protocol
durations, CD is energetically more efficient than LCD, while for larger values of 7, the LCD strategy becomes
less costly.

4. Conclusions

We have quantitatively compared and contrasted the energetic cost of achieving finite time adiabatic
dynamics in a variety of physically relevant settings, namely the Landau—Zener model, the parametric
quantum harmonic oscillator, and the Jaynes—Cummings model. By exploiting a cost function based on the
norm of the driving Hamiltonian [28], we have shown that a hierarchy in the resource intensiveness emerges.
For the Landau—Zener model, we have shown that OC protocols appear to be the most efficient techniques
and presented a remarkable invariance to the protocol duration. Conversely, CD driving was shown to be
more costly, however it allows for arbitrarily fast manipulation. We showed the manipulation of a system
beyond the QSL is possible only when the system energy spectrum is affected, precisely as is the case for local
and full counterdiabatic drivings. We found that the general features exhibited in the Landau—Zener case are
also present in other physically relevant settings. While we have focused on one particular definition of cost,
we nevertheless expect our results to qualitatively hold for other suitable choices, such as those based on excess
energy [9] or work fluctuations [25]. Our analysis sheds light on the relative effectiveness of promising
strategies for the control of quantum dynamics. By highlighting the respective advantages of such strategies,
and the associated cost, the information provided by our study will be useful in conjunction with
complementary studies on the achievable minimal control time of quantum dynamics [67] for the
development of future energy-efficient quantum devices.
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Appendix

As discussed in section 3.3, the Jaynes—Cummings model can be expressed as a direct sum of 2 x 2-matrix
Hamiltonians (Hjc), with 2 excitations by resorting to the constant of motion N,. This allows for a direct
identification with a Landau—Zener problem. For each block, one can construct a CD Hamiltonian, which reads as

Q2n + NHw 6_ _ gWHJn+16  _
Hicop)w = (Hio)n + Hop = 22 2914 %5 o) Jn + 15, + G, 36
(Hyic,cp)n = (Hye) o) 5 5 g() 7+ 40+ D) (36)
while the LCD is analogous to equation (7), which becomes (neglecting a constant energy shift)
1 An + 1)) 62
H ,=— 6%+ A 37
(Hyc.ep) 2\/ & 1 40+ D) e; (37)

_ (62 + 4(n + DAE®) — 80 + Dg (1)
NTEY (g Ot @ a0+ DEOF T 46+ DEO ) Y

Note that the operators 3 , . refer here to the dressed atom-field basis, namely, &, = e, 1) (e, n| — |g, n + 1)
(g n + 1,6, = —ile, n) (g, n + 1| + ilg, n 4 1) (e, n|and
g,=—le,n)(g,n+ 1| — |g, n + 1)(g, n + 1| (see section 3.3).
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