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Abstract
Wequantitatively assess the energetic cost of several well-known control protocols that achieve afinite
time adiabatic dynamics, namely counterdiabatic and local counterdiabatic driving, optimal control,
and inverse engineering. By employing a costmeasure based on the normof the total driving
Hamiltonian, we show that a hierarchy of costs emerges that is dependent on the protocol duration. As
case studies we explore the Landau–Zenermodel, the quantumharmonic oscillator, and the Jaynes–
Cummingsmodel and establish that qualitatively similar results hold in all cases. For the analytically
tractable Landau–Zener case, we further relate the effectiveness of a control protocol with the spectral
features of the newdrivingHamiltonians and show that in the case of counterdiabatic driving, it is
possible to furtherminimize the cost by optimizing the ramp.

1. Introduction

The inherent fragility of quantum systems necessitates that we developmethods to coherently control their
evolution [1, 2]. The need for high precision control is evidently ubiquitous; the study of how andwhy peculiar
quantumpropertiesmanifest requires techniques that allows for the carefulmanipulation of these systems.
While a variety of techniques have been developed formany types of quantum system [1–4], often neglected has
been the associated resources needed to achieve this high degree of control.While such an omission is evidently
justifiedwhen one is solely interested in studying a particular quantumphenomenon, it is vital to account for
such expenditures when developing novel technologies that exploit these quantum features. Indeed, recently the
application of control techniques that can achieve an effective adiabatic dynamics in a finite time, called
‘shortcuts-to-adiabaticity’ [1, 2], has been shown to be highly effective in a diverse range of settings including
quantumgates [5], quantumgames [6, 7]nano-scale thermodynamic cycles [8–12], open quantum systems
[13–16], manipulating criticalmany-body systems [17, 18], and quantumprecisionmeasurements [19]. This
further highlights the importance of understanding the additional resources required to achieve precise control
in a quantitativemanner.

The question of how to quantify the necessary resources to control a quantum systemusing a particular
protocol has recently become a topic of intense research activity (indeed, in the context of thermodynamic cycles
the issue becomesmore subtle since any additional energy which is not dissipated can in principle be recycled
and act as a catalyst [20]). The variety of ways inwhich a particular set-up can be coherently controlled has led to
a plethora of definitions [5, 8–11, 21–38]. Nevertheless, sincemany of these quantifiers invariably share some
common traits, it leads to a natural question: which control protocols are themost resource intensive?

In this workwe begin to tackle this issue by employing the costmeasure introduced in [28] and, through it,
quantitatively and qualitatively compare and contrast several different coherent control protocols. For afixed
protocol duration, τ, naturally, onemust choose afigure ofmerit withwhich to judge the success of the process.
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Herewe choose the target state fidelity,  y t= á Yñ ∣ ( )∣ ∣ 12 , where y t ñ∣ ( ) is the evolved state of our system
using a particular control protocol and Yñ∣ is the target statewe are aiming to achieve. Byfixing the quantifier of
cost and examining the paradigmatic settings of the Landau–Zenermodel, which serves to elucidate the control
needs of criticalmany-body systems [17], the parametric quantumharmonic oscillator, and the Jaynes–
Cummingsmodel, we show that a consistent hierarchy of costs can emerge.Wefind that techniques that
suppress all non-adiabatic excitations are generally energetically costly protocols andwe relate this to the effect
that thesemore resource intensive techniques have on the energy spectrumof the controlled system.However,
we show that the cost can beminimized by exploiting the freedom in choosing how one ramps the system.
Furthermore, we establish that optimal control (OC) and inverse engineering (IE) protocols are generally less
energetically costly.

Themanuscript is organized as follows. In section 2, we outline the basic tools utilized throughout this work.
Section 3 quantitatively analyzes the energetic cost of control for three paradigmatic settings: ramping the
ground state of the Landau–Zenermodel through its avoided crossing, compressing the thermal state of a
quantumharmonic oscillator, and tuning the light–matter interaction strength in the Jaynes–Cummingsmodel.
Finally, in section 4we drawour conclusions and provide some further discussions.

2. Preliminaries

Controlling quantum systems such that an effective adiabatic dynamics is realized in afinite time can be
achieved through a variety of techniques [1, 2, 39]. In this work, wewill focus on several of themost prevalent of
such protocols for a given situation and, for brevity, we refer to the comprehensive reviews on the topics for a
detailed discussion of their derivations and implementations [1, 2]. Counter-diabatic (CD) or transitionless
quantumdriving is one suchmethod that involves adding an additional correction term to the bare
Hamiltonian,H0, such that the resulting dynamics exactly tracks the corresponding adiabatic dynamics [40–42].
If one is only interested in controlling populations, thenwith a suitable choice of phase [30] this can be achieved
through theCD term

å y y= ¶ ñá∣ ( ) ( )∣ ( )H t ti , 1
n

t n nCD

where y ñ∣ ( )tn are the eigenstates of the bare systemHamiltonian one is interested inmanipulating andwherewe
assume units such that  = 1. An oft-cited drawback of this approach is that the resulting correction term can be
highly non-local [17, 29, 43] and therefore difficult to implement. However, for certain systems by exploiting a
unitary transformation, the totalH0+HCDHamiltonian can be re-expressed in the so-called local counter-
diabatic (LCD) form,HLCD, where perfectfinal target statefidelity is still achieved [44]. Crucially, though,HLCD

does not involve any complex non-local operators and is instead constructed using the same operators that
appear inH0. Another drawback of theCDapproach is that, in principle, it requires full spectral knowledge.
Thus often for complex systemswhere complete spectral information is not available, alternative approaches
must be employed. In this work, when possible, wewill also consider othermore heuristic protocols, OC theory
[45–47] and IE [1], and compare the resource intensiveness of their implementation.

Our aim is to both qualitatively and quantitatively assess the cost of implementing these protocols, which is a
topic that has ignited significant interest recently [5, 8–11, 21–38]. Indeed as discussed in [2] the notion of the
cost has been somewhat loosely employed and therefore different quantifiers probe different aspects of the
systemʼs energy or its interactions. In this regard, we are in principle free to choose or define anymeaningful
quantifierwewish.However, wemust ensure that whichever approachwe use provides a sound basis for
drawing a comparison. For example, simply determining the average energy of the state y yá ñ( )∣ ∣ ( )t H t0 is
insufficient as theCD approachwill appear to be free as the instantaneous energywill be identical to the adiabatic
energy.Herewemainly focus on the cost as defined byZheng et al [28] and use the normof theHamiltonian to
define the instantaneous cost of the evolution

¶ =   ( )H 2t k

using the Frobenius norm,whereHk is the totalHamiltonian used in determining the evolution and k is used to
distinguish the various protocols. Notice that [28]was concernedwith determining the additional resources
necessary to implement CDonly and therefore defined the cost in terms of the additional energy added to the
bareHamiltonian.Here the cost is related to the normof the full Hamiltonian implemented during the
evolution and thus accounts for the total energy of the process, rather than only defining the energetic cost to
achieve the control protocol.

A few important remarks are in order. Firstly, as we shall focus on unitary dynamics, any additional energy
resources employed are not dissipated. This is a subtle issue that is particularly relevant if onewishes to extend
our analysis to the performance of thermodynamic cycles [8–12], as it is possible for the additional energy
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requirements invested in achieving coherent control to be recycled, see e.g. [20, 21]. Secondly, to ensure a fair
comparison, we explicitly account for the bareHamiltonian contribution to the energy requirements, thus
ensuring that no evolution is free. By employing equation (2) our analysis essentially focuses on the intensity of
all the drivingfields in achieving highfidelity control, andwhile we expect the qualitative behavior to persist for
other definitions of cost, this question requires nevertheless a systematic study in itself.

3. Case studies

3.1. Landau–Zenermodel
To begin, we consider a single spin in a time-dependent field

s s
= D + ( ) ( )H g t

2 2
. 3x z

0

Inwhat followswewill assume that the system is initialized in its ground state with g(0)=−0.2 andwewish to
evolve through the avoided crossing to g(τ)=0.2.Our goal is to estimate the energy used to achieve this
evolution under the condition that thefidelity at the start and end of the process is close to unity. Depending on
the control protocol employedwemay allow for the transient to leave the ground statemanifold.

ForOC the fastest approach is given by a bang-off-bang (BOB) pulse [48–50], where the system is suddenly
and strongly quenched, followed by a free evolutionwith nofield, andfinally a reverse sudden quench is applied

t
t

=
=

< <
- =

⎧
⎨⎪
⎩⎪

( ) ( )g t

g t

t
g t

, 0,

0, 0 ,
, ,

4
Q

Q

BOB

with  ( )g g 0Q (in our simulations gQ=100 is sufficient). This approach is effective when the evolution time is
given by the quantum speed limit (QSL) time, τQSL [39, 48, 49, 51]. However wewill also considermore general
approaches valid for τ>τQSL later. By focusing on initial and target ground states of the Landau–Zenermodel,
equation (3), theQSL time can be found fully analytically and is given by [49]

t a a b b
D

= +⎜ ⎟⎛
⎝

⎞
⎠ ∣ ∣ ∣ ∣ ( )cos

2
, 5i t i tQSL

whereαi(t) andβi(t) correspond to theσz basis coefficients of the normalized initial (target) state, respectively.
TheCD control fieldwhichmust be added to the bareHamiltonian is given by [42]

s= -
¢ D

D +
( )

[ ( )]
( )H

g t

g t2
. 6yCD 2 2

This control technique ensures that not only will the systembe in the required state at the end of the protocol but
it will also remain in the instantaneous eigenstate of the originalHamiltonian throughout. There is complete
freedom in both the formof the ramp and its duration.

Turning to LCD, perfect target state fidelity can be achieved bymaking a unitary transformation of
H0+HCD to arrive at [14, 52]

s
h

s
= + -( ) [ ( ) ˙ ( )] ( )H P t g t t

2 2
, 7x z

LCD

with q= D +( ) ˙P t 2 2 , q = D[ ( ) ]g tarccot , and h q= D( ) (˙ )t arctan . Notice that, as withOC, the shortcut
is now achieved using aHamiltonian that is of the same general form as the bareHamiltonian,H0. UnlikeCD,
where the formof the ramp can be completely arbitrary, for the LCD term to be effective a particular formof
ramp is required, onewith smooth start and end points, given by [14]

t t t
= + - +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )g t g g

t
g

t
g

t
10 15 6 , 8d d d0

3 4 5

with g0=−0.2 and gd=0.4. Despite this, we can choose τ to be arbitrarily small and, in particular, smaller than
theQSL time. This shows a key difference betweenOC,where an optimized path for varying g(t) is found, and
the LCDapproach.On the one hand, we see thatOC is bounded by theQSLwhen only the field is varied.On the
other hand, with LCDwe are also time-dependently varying the energy splitting,Δ, via P(t) in equation (7) and
therefore we can drive the system faster than theQSL. It is important to notice that we ‘beat’ the speed limit using
CDand LCDbecausewe are significantly altering the spectrumof the system. In essence, themore energy
available to be imparted to the system the faster the evolution can be performed [29].

Asmentioned, wewill initialize our system in the ground state for g(0)=−0.2, the target statewill be the
ground state at g(τ)=0.2 andwe initially fix the gapΔ=0.1.Wewill consider the BOBpulse performed at the
QSL, τ=τQSL≈22.14, while for CDand LCD, as there are no constraints on how fast the protocol can be
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achievedwewill consider, τ=τQSL so as to compare faithfully with BOB, and τ=0.1, i.e. extremely fast
driving. For bothCD and LCDwewill employ the smooth ramp as given by equation (8).

Infigure 1(a)we examine the instantaneous fidelity,  y f= á ñ∣ ( )∣ ∣t 2, between the states y ñ∣ ( )t evolved
according to BOB,CD, LCD, and the bareHamiltonian, with the corresponding instantaneous adiabatic state
fñ∣ ofH0 using the ramp equation (8)with τ=τQSL. Clearly we see a qualitative similarity in the behavior of
BOB and LCD, both protocols achieve the target state by evolving through partially excited states of the system.
Figure 1(b) shows the corresponding instantaneous cost, equation (2). Immediately, and somewhat expectantly
as they involve strong additional control fields, CD and LQDare resource intensive approaches. Interestingly,
the BOBprotocol is by far themost efficient.With the exception of two strong pulses when driving at theQSL,
the system consumes comparatively little energy. It is worth noting the dichotomy between the behavior of the
cost for CD and LCDcomparedwith BOB: the former ones aremaximized at the avoided crossing while the
latter isminimized. For CD, as discussed in [29], the speed up facilitated by the driving term is related to a sharp
increase in the speed of the dynamics near the avoided crossing. In essence, CD seeks to ‘run’ through the
difficult points in the evolution, and this leads to an increase in the energy used. This can also been seen by
examining the energy spectra of the controlHamiltonians themselves which are shown infigure 1(c)where the
solid curves correspond to the ground and excited state forH=H0+HCD.We see that the addition of the
control field leads to the evolvingHamiltonian having an increasingly large gap. Thus, as the system is evolved
according to this newHamiltonian, it can be driven progressively faster until it reaches the avoided crossing of
the originalHamiltonian. The dashed curves show the corresponding energy eigenvalues for the LCD
Hamiltonian, where a similar behavior is observed throughout except at the start and end of the ramp. In
contrast, BOB essentially does not have to deal with the difficulties that arise when approaching the avoided
crossing as itmostly evolves according to a systemwith no applied field. It is interesting that when the system is
evolving near the avoided crossing the instantaneous cost for bothCDand LCD exhibit an identical behavior
despite their respective evolved states differing greatly at these times, see figure 1(a).Wefindnotable differences
in the behavior of the instantaneous costs appear only in the earlier and later stages of the protocols and again
these features are reflected in the respective energy eigenvalues of the appliedHamiltonians. These differences
are very sensitive to the total protocol duration, as shown infigures 1(d)–(f)wherewewe show the same
quantities for τ=0.1 (notice that this duration is significantly shorter than theQSL time and thereforeOConly
varying the field is not possible). For fast driving the LCDhas very high instantaneous costs, while for longer
protocols wefind ¶t can be lower for LCD compared toCD.

This last observation has an interesting consequence: if we compute the total cost, by integrating equation (2)

 òt
=

t
  ( )H t

1
d , 9k

0

Figure 1. (a) Fidelity of various control protocols with the instantaneous ground state, assuming g(t) takes the form in equation (8).
Here we fix τ=τQSL≈22.14. (b)Corresponding instantaneous cost equation (2) for BOB (bottom-most, orange), CD (solid, red)
and LCD (dotted–dashed, purple). (c)Energy spectra for the full CDHamiltonian,H0+HCD, (solid colors) and the LCD
Hamiltonian,HLCD, (dashed, black). (d)–(f)As for previous panels with τ=0.1. In (e) and (f)wehave truncated the vertical axis for
clarity. In allfigureswe fix the energy gapΔ=0.1 in equation (3).
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wefind that for fast protocols using the ramp given by equation (8)CD is less costly, as shown infigure 2.
However there is a crossover. For sufficiently slow processes, but still faster than the adiabatic limit, LCD
becomes the less resource intensive controlmethod. The crossover is dependent on the value ofΔ; wefind that
larger values lead to a crossover at smaller τ.

Infigure 2, we also add results obtainedwith anOCmethod that is applicable for τ>τQSL inwhich the time
dependence of the control field is the sumof a linear ramp and a truncated Fourier series as

åt
p
t

f= - + +
=

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )g t g g

t
a

n t
2 sin , 10

n

n

n nOC 0 0
1

max

where nmax is themaximumnumber of Fourier components. To obtain the optimized parameters f{ }a ,n n and
thus the function ( )g tOC , we numericallyminimize the combined function: gq where = -q 1 is thefinal
infidelity.We tune the power γ to bestminimize simultaneously the infidelity and the cost  . In our calculations
we choose 10−3<γ<10−2 and 20<nmax<50 depending on τ. For τ>τQSL∼22.14, we are consistently
able to achieve a very small infidelity of q<10−9.Wefind thatOC is always theminimally resource intensive
control technique, andmore remarkably, for the considered Landau–Zenermodel here, the total cost appears
almost independent of the protocol duration.

In the limit of τ→τQSL, wefind this particularOCmethod becomes less efficient as the number of
frequencies to be retained increases very rapidly, thus indicating that the formof control pulse is becoming
progressively harder to realize using a smooth function. Indeed, we know that at τQSL the required ramp is given
by the BOBpulse. Of course, this could in principle be emulated by equation (10) for sufficiently large nmax.We
show the total cost for the BOBpulse infigure 2 (blue square) and the agreementwith theOC results obtained at
larger τ is clearly evident, thus indicating the claimed invariance of the cost ofOC to protocol duration. Finally,
we remark thatOC could also be directly applied towhen bothΔ and g vary time-dependently. In such a case it is
likely that τ<τQSL is achievable, however, evidently, this is amore involved scenario.

While we have restricted to using the smooth ramp equation (8), as noted previously, CD allows for any
ramp to be used. Thus, unlike in typicalOCmethodswhere fidelity ismaximized for a given protocol duration,
sinceCD already guarantees perfect fidelity, we are able to optimize the choice of rampwhichminimizes the
cost.We refer to [37]where a similar approach is successfully implemented. The cost, equation (9) can be
expressed in terms of s=t/τ as

 ò ò ò å åt
t t= = + = +

t
- -

¹

   
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( ) ( ) ( ) ∣ ( )∣ ( )H t t H s H s s E s A s s

1
d d d , 11

n
n

n a
n a

n a
0 0

1

0
1

CD
0

1
2 2

,
,

2

1 2

where = á ¶ ñ
-

∣ ( ) ∣
Am n

m H n

E E,
i t

n m

0 andwe have used the Frobenius norm as before. Clearly the cost scales with the total

time τ and the contributions from the differentHamiltonian termsH0 andHCD is evident. Note that the
contribution fromHCD is similar to the usual criteria for adiabaticity i.e. å ¹ ∣ ∣A 1n m m n,

2 as onewould expect.
In the non-adiabatic regime (i.e. small total time τ)

 òt» -  ( ) ( )H s sd . 121

0

1

CD

If we define ( )H sCD as a Lagrangian andminimizing the corresponding action, we find the rampwith the
lowest cost in this regime to be given by

Figure 2.Cost versus the protocol duration, τ, for CD (solid, red) and LCD (dotted–dashed, purple)when the ramp takes the form
given by equation (8). For sufficiently slow protocols, we see a cross over in the overall energy used. The dashed black curve
corresponds to the optimized ramp forCD given by equation (17) taking ò=0.1 andm=40.Orange circles correspond to theOC
pulse of equation (10)with an infidelity q<10−9. The square point is the cost for the BOBpulse equation (4) resulting in unitfidelity.
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= D D +( ) [ ( )] ( )g s c s ctan , 13NA 1 2

where c1,2 are constants of integrationwhich are fixed by the boundary conditions of g(t). The cost in this case is
 »

t
D∣ ∣c

2
1 . The dependence on the energy gap shows that for largeΔ, the ramp tends toward a linear pulsewhile

for smallΔ it tends towards a delta pulses at each endpoint. Similarly, in the adiabatic regime (i.e. large τ)we
have

 ò»  ( ) ( )H s sd , 14
0

1

0

ò= D +( ( ) ) ( )g s s2 d . 15
0

1
2 2

Thus the optimal ramp is a delta pulse at the endpoints, in order to fulfill the boundary conditions, and zero
otherwise, so the positive integrand is as small as possible. This can be approximated by a continuous function as

= - - +( ) [ ( ) ( )] ( )g s g ms m mstanh tanh 16A 0

for m 1. It simply remains to tackle intermediate values ofτ. The results for the two regimes canbe combined as

t t t= + -( ) ( ) ( ) [ ( )] ( ) ( )g s f g s f g s, 1 17C A NA

formonotonically increasing f (τ) bounded between 0 and 1.One choice is t t=
p

( ) ( )f arctan2 , where ò
determines how fast one changes fromone regime to another. This approach has the advantage that the total
time τ does not have to be accounted forwhen determining the optimal pulse. Itmay also prove useful in cases
where calculating the normof the fullHamiltonian is difficult but estimating the normof the adiabatic and
counterdiabatic components ismore tractable.

Infigure 2, the dashed black curve corresponds toCDwhen the ramp is given by equation (17). Thus, for the
paradigmatic Landau–Zenermodel we see thatOC is the lowest cost control technique, however, CD and LCD
offer some noticeable advantages. Using these techniques, thefinal statefidelity is guaranteed independent of the
protocol duration and thesemethods are applicable when arbitrarily fast control is required. For CD the
associated cost can be furtherminimizedwith respect to the formof ramp employed.While this is stillmore
costly thanOC, it allows for driving times faster than theQSLwhich are not achievable usingOC techniques that
depend solely onmanipulating the applied field.

3.2. Parametrically driven quantumharmonic oscillator
Let us now consider the case of a time-dependent harmonic oscillator, initially in thermal equilibrium at inverse
temperatureβ=1/(kB T), withmassmwhoseHamiltonian is of the usual form

w= + ( ) ( )H
p

m

m
t x

2 2
, 180

2
2 2

where x and p are the position andmomentumoperators, respectively, andwe assume that the time-dependent
frequencyω(t) starts with initial valueω0 at t=0 and endswith final valueω1 at t=τ. The state of the oscillator
remainsGaussian for any driving protocolω(t) due to the quadratic formof theHamiltonian. The Schrödinger
equation for the parametric quantumharmonic oscillator can be solved exactly for any frequencymodulation
[53–55]. The systemdynamics are completely determined by a dimensionless adiabaticity parameter,Q*, as
introduced byHusimi [53]

*
w w

w w w= + + +t t t t( )
{ [ ( ) ˙ ] [ ( ) ˙ ]} ( )Q

t
t X X t Y Y

1

2
, 19

0
0
2 2 2 2 2 2 2

whereXt andYt are the solutions of the force-free classical oscillator equation, w+ =( )X t X¨ 0t t
2 , satisfying the

boundary conditionsX0=0, =Ẋ 10 andY0=1, =Ẏ 00 . The adiabaticity quantity * Q 1 is the ratio of the
nonadiabaticmean energy and the adiabatic energy and is equal to one for slow driving that realizes adiabatic
transformations.

Using equation (1)we can determine theCD term [43]

w
w

= - +˙ ( )
( )

( ) ( )H
t

t
xp px

4
, 20CD

and consequently the adiabaticity parameter can be expressed as [56]

* w
w

= -
-⎡

⎣⎢
⎤
⎦⎥

˙ ( )
( )

( )Q
t

t
1

4
. 21CD

2

4

1 2

Wenote that the time variation of the frequencymust fulfill the condition, w w w>( ) ˙ ( ) [ ( )]t t t42 2 2 , to avoid
the trap inversion. This is consistent with the conditions in typical experimental realizations and also ensures
that the adiabaticity criterion equation (19) retains a clear physical interpretation during the process.
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Considering the LCDapproach [1, 44, 57], similarly to the qubit case, the nonlocal CD term ismapped onto
a unitarily equivalentHamiltonianwith a local potential of the form

= +
W ( ) ( )H

p

m

m t x

2 2
, 22LCD

2 2 2

with themodified time-dependent squared frequency

w
w
w

w
w

W = - +( ) ( ) ˙ ( )
( )

( )
( )

( )t t
t

t

t

t

3

4

¨

2
. 232 2

2

2

The exact dynamics of the system are obtained from the solution of the adiabaticity parameter, equation (19)
solved by replacingω(t)withΩ(t). Again, to avoid the inversion of the harmonic trapping potential, the effective
frequencyΩ(t)must be positive (Ω2(t)>0).

Afinal control technique that is particularly effective for the oscillator case is IE based on constructing
appropriate parameter trajectories of the frequency by employing the Lewis-Riesenfeld invariants ofmotion
[58]. ConsideringH0, the dynamics are obtained by solving the Schrödinger equation based on the invariants of
motion of the following form [32, 59]

w p= +
⎛
⎝⎜

⎞
⎠⎟( ) ( )I t

x

b
m

m

1

2

1
, 24

2

2 0
2 2

where p = - ˙bp mbx plays the role of amomentum conjugate to x/b,ω0 and is, in principle, an arbitrary
constant taken asω0=ω(0), and the dimensionless scaling function b(t) satisfies the Ermakov equation

w w+ =( ) ( ) ( ) ( ) ( )b t t b t b t¨ . 252
0
2 3

The resulting time-dependent instantaneous energy of theHamiltonian reads

w
w

w
w bw

á ñ = + + ⎜ ⎟
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠( )

˙ ( ) ( ) ( )
( )

( )H t
b t t b t

b t

1

2 2 2 2
coth

2
, 26IE

2

0

2 2

0

0
2

0

and corresponding adiabaticity parameter is given by [10]

* w
w

= +( ) ˙ ( )
( )

( )Q t
t

t
1

8
. 27IE

2

4

The behavior of the various adiabaticity parameters for the three considered control protocols is shown in
figure 3 using a ramp analogous to equation (8) [1]

w w w
t

w
t

w
t

= + - +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )t

t t t
10 15 6 , 28d d d0

3 4 5

where the difference betweenfinal and initial frequency isωd=ω1−ω0.We clearly see a similarity between the
methods as they all start and end at the same value of adiabaticity. However, the CDhas the largestfluctuation
while the behavior of the LCD and IE show significantly smaller peaks. The IE technique gives the smallest value
of adiabaticity parameter which results in the smallest nonadiabatic excitation during the process. In figure 3(a)
we show the adiabaticity parameter for a shorter time duration (τ=1.6) and observe a large increase in the

Figure 3.Quantumharmonic oscillator. (a)Adiabaticity parameterQ* of various control protocols as a function of time, assuming
ω(t) takes the form in equation (28). The adiabaticity parameterQ* of bareHamiltonianH0 (solid black) is comparedwith LCD
(dotted–dashed, purple), CD (red) and IE (dotted, blue) for τ=1.6. (b)The adiabaticity parameterQ* for τ=2.5. (c)Cost for the full
CDHamiltonian,H0+HCD, (solid, dark red), the LCDHamiltonian,HLCD, (dotted–dashed, purple) and the IEHamiltonian,HIE,
(dotted, blue). The inset shows a zoomwhen LCDbecomes less costly and the vertical dotted line corresponds to the time, τ≈1.52
that constrains theCDprotocol to ensure no trap inversion occurs. In all panels wefix the initial frequencyω0=1,final frequency
ω1=10 and the inverse temperature b = =( )k T1 3B .
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nonadiabatic excitations than the case of τ=2.5, see figure 3(b). The validity CDprotocol, as dictated by the
constraint ensuring no trap inversion occurs, breaks down at time τ≈1.52.

Turning our attention to the instantaneous cost as defined in equation (2), as the spectrum is unbounded,
the resulting norm is notfinite. To circumvent this issuewe note that the the average energy of the system
evaluated over the the full Hamiltonianwill behave in a qualitatively identicalmanner and as suchwe use it as an
indicator of the control cost. Thus for the oscillator, wemustmodify our definition of the total cost to

 òt
= á ñ

t
( )H t

1
d , 29

0
tot

where the full Hamiltonian for a given control protocol is [10]

* *w
w

w
bwá ñ = á ñ =

( ) ( ) ( ) ( )H
t

Q H Q0
2

coth 2 30k
t

ktot
0

0

with =k CD, LCD, IE.We note, for the LCD, theω(t) is replacedwithΩ(t) in the equation above aswell as in
evaluation ofQ*with equation (19). Infigure 3(c)we numerically evaluate the cost of the evolution for the
various control protocols using ramp equation (28).We observe that while all the protocols lead to the same
value of cost for long durations, they significantly differ for fast processes.We find that IE is themost efficient of
the three protocols. Furthermore, in linewith the Landau–Zenermodel, for intermediate timescales theCD
performs better than the LCDbut there is a crossover as the driving time becomes smaller. Thus, our results
indicate that a qualitatively similar hierarchy emerges in the case of driving a thermal harmonic oscillator.

3.3. Jaynes–Cummingsmodel
As afinal case study, we examine the Jaynes–Cummingsmodel [60]. Recently, owing to its richness, thismodel
has attracted renewed interest in diverse areas such as quantum control [61, 62].We thus consider themodel
[63, 64]

w
s w s s= + + ++ -( )( ) ( )† †H a a g t a a

2
, 31A

zJC

which describes the interaction of a two-level atom,modeled as a spin- 1

2
particle, with a singlemode of the

electromagnetic fieldwhose annihilation and the creation operators are a and †a , respectively.While the free
Hamiltonian w s w= + †H a a2A z0 is assumed to be time-independent, the interactionHamiltonian

s s= ++ -( )( )†H g t a aint depends on a time-dependent coupling rate g(t), uponwhichwe exert control
[63–65]. As the total number of excitations in the system º ñá +∣ ∣ †N e e a ae is a constant ofmotion, for any
given initial number of photons n in thefield the dynamics is restricted to the subspace spanned by states

ñ + ñ{∣ ∣ }e n g n, , , 1 . Owing to this feature equation (31)may bewritten as the direct sumofHamiltonian terms
( )H nJC labeled by the corresponding number of photons in the field. Over the basis ñ + ñ{∣ ∣ }e n g n, , , 1 , such
terms take the form [61, 66]

w d

w d
=

+ + +

+ + -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( ) ( )
( ) ( )

( )H
n g t n

g t n n

1

2

2 1 2 1

2 1 2 1
, 32nJC

where W º +( ) ( )t g t n2 1R is the n-photon time-varying Rabi frequency and δ=ωA−ω corresponds to
the detuning parameter of the radiation from the atomic resonance.

Equation (32), can bemapped to a Landau–Zenermodel by introducing the spin-like operators
s = + ñá-¯ ∣ ∣g n e n, 1 , , s = ñá ++¯ ∣ ∣e n g n, , 1 , s = ñá - + ñá +¯ ∣ ∣ ∣ ∣e n e n g n g n, , , 1 , 1z , so that

w d
s s=

+
+ +

W( ) ( ) ¯ ( ) ¯ ( )H
n t2 1

2 2 2
. 33n z xJC

R

Moreover, through aπ/2 rotation about the y-axis, we have s s¯ ¯z x and s s -¯ ¯x z , which takes us to

w d
s s=

+
+ -

W( ) ( ) ¯ ( ) ¯ ( )H
n t2 1

2 2 2
. 34n x zJC

R

From equation (34), we can already see that equations (6) and(7) are valid upon the identification of dD 
and  -W( ) ( )g t tR .

The desiredCDHamiltonian corresponding to this problem is given by [40, 42]

å s s s s s s q s= ¶ - ¶ =
s=

( ∣( ( ))⟩⟨ ( )∣ ⟨ ( )∣ ∣( ( ))⟩∣ ( )⟩⟨ ( )∣) ˙ ( ) ( )H n t n t n t n t n t n t ti , , , , , , 35
n

t t n yCD
,

with themixing angle q =
d

W( )( ) ( )t arctann
t1

2
R and s ñ∣ ( )n t, denoting the dressed-atom eigenstates of the

originalHamiltonian. The explicit expressions of the newmodified totalHamiltonian for CD and LCDare
presented in the appendix.
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Considering again the smooth rampof g(t) in the formof equation (8) and for the initial state ñ∣e, 0 , a unitary
evolution is performed from g(0)=0 to a target state at g(τ)=0.2ωwith initially fixed δ=0.1ω and setting
ω=1. Infigure 4(a)we show thefidelity of the state evolving according toCD, LCD, and the bareHamiltonian
using ramp equation (8), with respect to the instantaneous ground state of =( )H nJC 0 for τ=10. Again, wefind a
qualitative similarity in the behavior of CD and LCDwhen comparedwith the Landau–Zenermodel.

Infigure 4(b)we show the cost by applying equations (2) and(9) for both aCD and LCD strategy and n=0
excitations (we neglect constant energy factors of HJC,CD and HJC,LCD),finding it again qualitatively in linewith
was observed for the Landau–Zenermodel (see figure 2).

In figure 4(c)we examine the cost and fidelity of the state evolving according to CD and LCD strategies
starting from a coherent state añ∣ of the cavity field with the ramp in equation (8) and the amplitudeα=2.
Clearly we see a similarity in the behavior of both shortcut protocols with the case of vacuum initial state in
perfectly achieving the target state (see inset of figure 4(c)). However, the cost of shortcut to adiabaticity
protocols are higher than the vacuum state situation asmore n-subspacesmust be considered, in light of the
form of the initial state of the field. For our calculations we have computed the cost and thefidelity using
n=0,K,40. Such a cutoff is well justified as the populations of the states ñ∣g m, and ñ∣e m, withm>40
are pm>40<10−20. In keeping with the previous results we once again find that, for shorter protocol
durations, CD is energeticallymore efficient than LCD, while for larger values of τ, the LCD strategy becomes
less costly.

4. Conclusions

Wehave quantitatively compared and contrasted the energetic cost of achieving finite time adiabatic
dynamics in a variety of physically relevant settings, namely the Landau–Zenermodel, the parametric
quantumharmonic oscillator, and the Jaynes–Cummingsmodel. By exploiting a cost function based on the
normof the drivingHamiltonian [28], we have shown that a hierarchy in the resource intensiveness emerges.
For the Landau–Zenermodel, we have shown thatOC protocols appear to be themost efficient techniques
and presented a remarkable invariance to the protocol duration. Conversely, CD drivingwas shown to be
more costly, however it allows for arbitrarily fastmanipulation.We showed themanipulation of a system
beyond theQSL is possible only when the system energy spectrum is affected, precisely as is the case for local
and full counterdiabatic drivings.We found that the general features exhibited in the Landau–Zener case are
also present in other physically relevant settings.While we have focused on one particular definition of cost,
we nevertheless expect our results to qualitatively hold for other suitable choices, such as those based on excess
energy [9] or work fluctuations [25]. Our analysis sheds light on the relative effectiveness of promising
strategies for the control of quantumdynamics. By highlighting the respective advantages of such strategies,
and the associated cost, the information provided by our study will be useful in conjunctionwith
complementary studies on the achievableminimal control time of quantumdynamics [67] for the
development of future energy-efficient quantumdevices.

Figure 4.Examples for the Jaynes–Cummingsmodel. (a) Fidelity ( )t with respect to the instantaneous ground state of the
corresponding originalHamiltonian, assuming g(t) of the form in equation (8). BareHamiltonian evolution (solid black curve) is
comparedwithCD (solid dark red curve) and LCD (dotted–dashed purple curve) protocols. Here, the total time of the protocol is
τ=10. (b)Cost k as a function of the total time τ (in units ofω) for the ramp in equation (8). The inset shows a zoomwhen LCD
becomes less costly than theCD (at around τ≈17). (c) Jaynes–Cummingsmodel with an initial coherent state añ∣ of thefield (the
total initial state of the system is thus añ∣e, ). Cost k as a function of the total time τ (in units ofω) for the ramp in equation (8) and
α=2. The inset shows thefidelity with respect to the instantaneous ground state of the correspondingHamiltonian for the total time
τ=10with the same color conventions as the previous plots. The parameters used are g(0)=0, g(τ)=0.2ω, δ=0.1ω andω=1.
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Appendix

Asdiscussed in section3.3, the Jaynes–Cummingsmodel canbe expressed as a direct sumof 2×2-matrix
Hamiltonians ( )H nJC withn excitations by resorting to the constant ofmotion N̂e. This allows for a direct
identificationwith aLandau–Zenerproblem.For eachblock, one can construct aCDHamiltonian,which reads as

w d
s s

d
d

s= + =
+

+ - + +
+

+ +
( ) ( ) ( ) ( ) ˙ ( )

( ) ( )
( )H H H

n
g t n

g t n

n g t

2 1

2 2
1

1

4 1
, 36n n x z yJC,CD JC CD 2 2

while the LCD is analogous to equation (7), which becomes (neglecting a constant energy shift)

d
d

d
s= +

+
+ +

( ) ( ) ( )
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¯ ( )H
n g t

n g t

1
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4 1

4 1
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2
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d
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( ( ) ( )) ( ) ˙ ( )
( )n g t

n g t g t n g t g t

n g t n g t
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4 1 ¨ 8 1
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2 2 2

2 2 2 2

Note that the operators s̄x y z, , refer here to the dressed atom-field basis, namely, s = ñá - + ñ¯ ∣ ∣ ∣e n e n g n, , , 1x

á + ∣g n, 1 , s = - ñá + + + ñá¯ ∣ ∣ ∣ ∣e n g n g n e ni , , 1 i , 1 ,y and
s = - ñá + - + ñá +¯ ∣ ∣ ∣ ∣e n g n g n g n, , 1 , 1 , 1z (see section 3.3).
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