

TELEKOMUNIKAZIO TEKNOLOGIAREN INGENIARITZAKO GRADUA GRADU AMAIERAKO LANA

L.I.S.N. SAREAK:

SOFTWARE BIDEZKO SIMULAZIOA,

NEURKETETAN OINARRITUTAKO

SINTESIA ETA ZIURGABETASUNAREN KALKULUA.

Ikaslea: Gallarreta, Canteli, Alexander

Zuzendaria: Arrinda, Sanzberro, Amaia

Ikasturtea: 2018-2019

Data: Bilbon, 2019ko uztailaren 19an

LABURPENA

Azken hamarkadetan, sare elektrikoa erabiliz komunikazioak ahalbidetzen dituzten teknologiak sortu eta garatu egin dira, hots, PLC *(Power Line Communications)* komunikazioak. Transmisio hauek, ingurune oso aldakor eta ezegonkorrean ematen dira, sare elektrikoa, ezaugarri hauek komunikazio kanal batentzako erabat desegokiak izanik. Egoera honek ezinbestekoa egiten du komunikazio kanal berri honen ikerketa eta karakterizazioa, baita ingurune honetan gailu elektriko eta elektronikoek sortzen dituzten emisio elektromagnetikoen neurketa ere. Lan honen helburua software bidezko simulazioen bitartez LISN *(Line Impedance Stabilization Network,* ingelesez) baten egoera simulatzea izango da; egonkortze-sare hau EUTn (*Equipment Under Test,* proban dagoen gailua) emisio elektrikoak neurtzerakoan, zein gailuen inpedantziak neurtzerakoan, duen konportamendua ebaluatzeko. Honekin guztiarekin, LISNaren neurketen fidagarritasuna eta ziurgabetasun kontribuzioa kuantifikatzen ahalegingo da. Beste alde batetik, LISN modelo berrien eraikuntzarako eskema elektriko berri bat proposatuko da, honen ezaugarriak gaur egungo sare elektrikoaren hurbilagoko antzekotasuna izan dezaten.

Hitz gakoak: LISN, emisio gidatuak, PLC, EMC

En las últimas décadas, se han desarrollado tecnologías que hacen posible la comunicación entre dispositivos a través de la red eléctrica, conocidas como PLC (*Power Line Communications*). Este medio de comunicación es muy cambiante e inestable, unas características nada recomendables para un canal de comunicación. Este hecho hace necesario el estudio y caracterización, tanto de este nuevo canal de comunicación, como de las emisiones radioeléctricas que inyectan los dispositivos eléctricos y electrónicos en el mencionado medio. El objetivo de este trabajo es tratar de simular, mediante software, las condiciones de una LISN (*Line Impedance Stabilization Network*, en inglés) y caracterizar el comportamiento de esta red de estabilización cuando se emplea en la medida de emisiones eléctricas generadas por los EUT (*Equipment Under Test*, equipo sometido a ensayo), y la impedancia de salida que presentan estos últimos. Con todo ello, se intentará cuantificar la fiabilidad y la incertidumbre de las mediciones realizadas con la LISN. Por otro lado, se propondrá un nuevo esquema eléctricos para la construcción de nuevos modelos de LISN, de manera que sus características eléctricas sean más parecidas a las de la red eléctrica actual.

Palabras clave: LISN, emisiones conducidas, PLC, EMC

In the last decades, technologies that make possible communication between devices through the electrical network have been developed; they are known as PLC (Power Line Communications). This new communication channel, the low voltage network, is very changeable and unstable, features that are not recommended. These facts make necessary the study and characterization of this new communication channel, and also, the radioelectric emissions that are injected by electrical and electronic devices in the aforementioned medium. The aim of this work, on the one hand, is to try to simulate, by software, the conditions of a LISN (Line Impedance Stabilization Network), to characterize the behavior of this device when it is used to measure electrical emissions generated by the EUT (Equipment Under Test) and the output impedance presented by the devices. With all these simulations, this project is going to try to quantify the fidelity and the uncertainty of the measurements made with the LISN. On the other hand, a new electrical characteristics are more similar to the ones that the current electrical grid has.

Keywords: LISN, conducted emissions, PLC, EMC

AURKIBIDEA

LABURPENA	i
AURKIBIDEA	iii
TAULEN ZERRENDA	vii
IRUDIEN ZERRENDA	ix
Ω Δ ΕΙΥΛΕΝΙ 7Ε Ο ΓΕΝΙΩ Δ	viii
ARRONIMOEN ZERRENDA	XV11
MEMORIA	1
1. SARRERA	1
2. TESTUINGURUA	3
2.1. LV sare elektrikoa	5
2.2. LISN: azalpena, ezaugarriak eta erabilera	6
2.3. EMC iragazkiak	9
3. LANAREN HELBURUAK ETA IRISMENA	
3.1. Helburuak	
3.2. Irismena	12
4. LANAK DAKARTZAN ONURAK	
4.1. Onura teknikoak	
4.2. Onura ekonomikoak	15
5. GAIAREN EGOERAREN AZTERKETA	
5.1. LISNen inguruko araudia	
5.1.1. LISN mota ezberdinak	
5.2. Neurketen Artearen Egoera	23
5.2.1. M. A. O. Kharraz <i>et al.</i> [14]	23
5.2.2. A. S. de Beer <i>et al.</i> [15]	24
5.2.3. C. M. Tsui <i>et al.</i> [16]	26
6. AUKEREN ANALISIA	
6.1. OrCAD PSpice [17]	
6.2. ADS Keysight [18]	

6	6.3. <i>I</i>	Aukeren analisiaren eraginkortasun taula	31
6	6.4. F	łautatutako aukeraren arrazoiketa	32
7.	PRO	POSATUTAKO IRTENBIDEAREN DESKRIBAPENA	33
7	.1. A	ADS bidezko simulazioak	
	7.1.1.	LISNaren karakterizazioa	34
	7.1.2.	Inpedantzia ezberdinak duten EUTn aurrean LISNak duen	
	konp	ortamenduaren karakterizazioa	37
	7.1.3.	LISNaren konportamendua emisioen neurketan	
	7.1.4.	EMC iragazki komertzialen karakterizazioa	40
	7.1.	4.1. EMC iragazkiek LISNaren S parametroetan duten eragina	44
	7.1.	4.2. EMC iragazkiek LISNaren emisioen neurketan duten eragina	45
7	.2. I	.ISNaren sintesia	46
	7.2.1.	LV sare elektrikoaren inpedantziaren karakterizazioa	46
	7.2.2.	50 Ω/(50 μH + 5 Ω) LISN motaren osagaien eragina egonkortze-sarea	iren
	funtz	ionamenduan	47
	7.2.3.	LISN berriaren eskema elektronikoa	50
7	.3. I	ISNen ziurgabetasun kontribuzioa zehazteko eskarri digitalak	52
	7.3.1.	LISN mota baten ziurgabetasun kontribuzioaren kalkuluak	53
	7.3.2.	LISN konkretu baten ziurgabetasun kontribuzioaren kalkuluak	56
8.	ЕМА	ITZEN DESKRIBAPENA	61
8	8.1. A	ADS bidezko simulazioak	61
	8.1.1.	LISNaren karakterizazioa	61
	8.1.2.	Inpedantzia ezberdinak duten EUTn aurrean LISNak duen	
	konp	ortamenduaren karakterizazioa	62
	8.1.3.	LISNaren konportamendua emisioen neurketan	63
	8.1.4.	EMC iragazki komertzialen karakterizazioa	64
	8.1.	4.1. EMC iragazkiek LISNaren S parametroetan duten eragina	64
	8.1.	4.2. EMC iragazkiek LISNaren emisioen neurketan duten eragina	65
8	8.2. I	.ISNaren sintesia	66
	8.2.1.	LV sare elektrikoaren inpedantziaren karakterizazioa	66
	8.2.2.	50 $\Omega/(50\mu\text{H}+5\Omega)\text{LISN}$ motaren osagaien eragina egonkortze-sarea	iren
	funtz	ionamenduan	66
	8.2.3.	LISN berriaren eskema elektronikoa	66
8	3.3. L	ISNen ziurgabetasun kontribuzioa zehazteko eskarri digitala	67
	8.3.1.	LISN mota baten ziurgabetasun kontribuzioaren kalkuluak	68

	8.3.	2. LISN konkretu baten ziurgabetasun kontribuzioaren kalkuluak	69
LANE	ERA	AKO ERABILITAKO METODOLOGIA	71
9.	EG	INDAKOEN DESKRIBAPENA	71
10.	F	PROIEKTU PLANA ETA PLANIFIKAZIOA	73
11.	(GANTT-EN DIAGRAMA	83
12.	A	ARRISKUEN ANALISIA	84
12	2.1.	Simulazioen parametroen konfigurazio okerra (1)	84
12	2.2.	Datuen galera (2)	85
12	2.3.	Prozesatze astunak (3)	85
12	2.4.	Atzerapenak (4)	85
12	2.5.	Arriskuen analisiaren laburpena	86
ALDE	ERI	DI EKONOMIKOAK	87
13.	ŀ	AURREKONTUAREN DESKRIBAPENA	87
13	8.1.	Barne orduak	87
13	3.2.	Amortizazioak	87
13	8.3.	Gastuak	88
13	3.4.	Diru-laguntzak	88
13	8.5.	Aurrekontua	88
OND	OR	IOAK	89
BIBL	100	GRAFIA	91
I. ERA	٩N	SKINA: ADS SIMULAZIOEN EMAITZAK	95
II. ER	AN	ISKINA: L.I.S.N.AREN SINTESIAREN EMAITZAK	119
111. EF	XA]	NSKINA: L.I.S.N.EN ZIURGABETASUN KONTRIBUZIOAREN	
EUSKARRI DIGITALEN EMAITZAK129			
IV. ERANSKINA: ERABILTZAILE GIDA			141

TAULEN ZERRENDA

Taula 1: LISN mota ezberdinak eta lan frekuentzia banda	19
Taula 2: 50 $\Omega/(50\mu H$ + 5 $\Omega)$ LISN motaren osagai elektronikoen taula [2]	21
Taula 3: 50 $\Omega/(50\mu H$ + 5 $\Omega)$ LISN motaren osagai elektronikoen taula [2]	22
Taula 4: 50 $\Omega/(50\mu H+1\Omega)$ LISN motaren osagai elektronikoen taula [2]	22
Taula 5: Aukeren analisiaren eraginkortasun taula	32
Taula 6: LISNaren portuen eta ADSko eskematikoaren arteko erlazioa	35
Taula 7: Z_{EUT} EUTn inpedantzien balioekin	37
Taula 8: SCHURTER 5500.2044 iragazkiaren zirkuitu elektronikoaren osagaiak [20].	41
Taula 9: SCHURTER 5500.2052 eta 5500.2055 iragazkien zirkuitu elektronikoen osag	gaiak
[21]	41
Taula 10: SCHURTER 5500.2060 iragazkiaren zirkuitu elektronikoaren osagaiak [22]42
Taula 11: TSRk egindako sarearen neurketen inpedantziaren modulua [10]	47
Taula 12: TSRk egindako sarearen neurketen inpedantziaren fasea [10]	47
Taula 13: 50 $\Omega/(50 \ \mu\text{H} + 5 \ \Omega)$ LISN motaren osagai elektronikoen taula [2]	48
Taula 14: Sarearen inpedantziaren moduluaren balioen datu gehigarriak	50
Taula 15: 50 $\Omega/(50 \ \mu\text{H} + 5\Omega)$ eta 50 $\Omega/(2,5 \ \mu\text{H} + 4\Omega)$ LISN moten osagaiak	51
Taula 16: R&S®ENV216 Two-Line V-Network LISNaren Z _{an} inpedantzia [24]	58
Taula 17: Bileren planifikazioaren taula	77
Taula 18: Zereginen planifikazioaren taula	82
Taula 19: Arriskuen analisiaren laburpen taula	86
Taula 20: Barne orduen taula	87
Taula 21: Amortizazioen taula	87
Taula 22: Gastuen taula	88
Taula 23: Z_{EUT_port} portuaren sarrera-inpedantziaren simulazioen emaitzak eta UN	E-EN
55016-1-2 arauak xedatutako balioak [2]	99
Taula 24: 50 Ω 50 μ H LISN motaren ziurgabetasun kontribuzioa maximoaren kalku	ıluak
eta R&S-en balioen konparaketa [23]	133
Taula 25: 50 $\Omega/(50\mu H + 5 \Omega)$ LISN motaren ziurgabetasun kontribuzio maximo	aren
kalkuluen emaitza	134
Taula 26: 50 $\Omega/(50\mu H + 5 \Omega)$ LISN motaren ziurgabetasun kontribuzio maximo	aren
kalkuluen emaitza, tolerantzia %10 dela	135

Taula 27: 50 $\Omega/(50\mu H + 5 \Omega)$ LISN motaren ziurgabetasun kontribuzio maximoaren
kalkuluen emaitza, tolerantzia %30 dela136
Taula 28: 50 $\Omega/(50\mu H + 5 \Omega)$ LISN motaren ziurgabetasun kontribuzio maximoaren
kalkuluen emaitza, tolerantzia %50 dela137
Taula 29: TSR ikerketa taldearen R&S®ENV216 Two-Line V-Network LISNaren
ziurgabetasun kontribuzioaren kalkuluak
Taula 30: ADSn inplementatutako 50 $\Omega/(50~\mu H$ + 5 $\Omega)$ LISNaren konponentearen
terminalak146
Taula 31: ADSn inplementatutako SCHURTER iragazkien konponentearen terminalak

IRUDIEN ZERRENDA

Irudia 1: LISN baten diagrama	1
Irudia 2: R&S®ENV216 Two-Line V-Network	2
Irudia 3: Landa eremuko sare elektrikoaren inpedantziaren neurketak [10]	5
Irudia 4: Hiri eremuko sare elektrikoaren inpedantziaren neurketak [10]	5
Irudia 5: Gailuen (EUT) emisioak neurtzeko era arrunta	6
Irudia 6: Gailuen (EUT) emisioak LISN baten bitartez neurtzeko era	6
Irudia 7: EMC probetan emisioak neurtzeko LISNaren muntaia [10]	8
Irudia 8: EMC iragazki baten diagrama	9
Irudia 9: : SCHURTER 5500.2044 iragazkia	10
Irudia 10: SCHURTER 5500.2055 iragazkia	10
Irudia 11: LISN moten sailkapena [13]	18
Irudia 12: 50 Ω/(50 μH + 5 Ω) LISN motaren eskema elektronikoa [2]	21
Irudia 13: 50 Ω / 50 μH eta 50 Ω (50 μH + 1 Ω) LISN moten eskema elektronikoa [2]22
Irudia 14: M. A. O. Kharraz et al. proposatutako neurketen muntaia [14]	23
Irudia 15: LISNaren muntaiaren eskemak [15]	25
Irudia 16: Modu diferentzialeko neurketak [15]	25
Irudia 17: Modu komuneko neurketak [15]	25
Irudia 18: Modu diferentzialeko neurketen emaitzak	25
Irudia 19: Modu komuneko neurketan emaitzak	26
Irudia 20: Sare elektrikoaren entxufeak eta BNC konektorea duten konektoreak [16]26
Irudia 21: EUTaren inpedantzia neurtzeko muntaia [16]	27
Irudia 22: Isolamendua neurtzeko muntaia [16]	28
Irudia 23: VDFa neurtzeko 1. Muntaia (set 1) [16]	28
Irudia 24: VDFa neurtzeko 2. Muntaia (set 2) [16]	28
Irudia 25: Konektoreek sortutako atenuazioa neurtzeko muntaia	29
Irudia 26: OrCAD-en logoa	30
Irudia 27: ADSren logoa	31
Irudia 28:"7." puntuan jorratuko diren gaien eskema	33
Irudia 29: R&S®ENV216 LISNaren zirkuitu elektronikoa [28]	34
Irudia 30: 50 Ω/(50 μH + 5 Ω) LISNa ADSn inplementatua	35
Irudia 31: EUT inpedantzia ezberdinen eragina karakterizatzeko LISN zirkui	tuaren
eskema elektrikoa	38

Irudia 32: EUTn emisioak kuantifikatzeko eskema elektronikoa, sarearen inpedantzia
ktea. delarik
Irudia 33: EUTn emisioak kuantifikatzeko eskema elektronikoa, sarearen inpedantzia
aldakorra delarik
Irudia 34: SCHURTER 5500.2044 iragazkiaren zirkuitu elektronikoa [20]41
Irudia 35: SCHURTER 5500.2052 eta 5500.2055 iragazkien zirkuitu elektronikoak [21]41
Irudia 36: SCHURTER 5500.2060 iragazkiaren zirkuitu elektronikoa [22]42
Irudia 37: ADSen inplementatutako 5500.2044 iragazkiaren zirkuitua
Irudia 38: ADSen inplementatutako 5500.2052 iragazkiaren zirkuitua
Irudia 39: ADSen inplementatutako 5500.2055 iragazkiaren zirkuitua
Irudia 40: ADSen inplementatutako 5500.2060 iragazkiaren zirkuitua
Irudia 41: TSR ikerketa taldeak hiri-zonaldean egindako sarearen inpedantziaren
neurketak [11]46
Irudia 42: 50 $\Omega/(50~\mu H$ + 5 $\Omega)$ LISN motaren eskema elektronikoa [2]48
Irudia 43: Inpedantzien moduluaren eta fasearen tolerantzien definizioa52
Irudia 44: R&S - AN Impedance Uncertainty Contribution [23]53
Irudia 45: LISNa eta EUTaren zirkuitu baliokidea
Irudia 46: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelaren
Irudia 46: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelaren orri nagusia
Irudia 46: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelaren orri nagusia
Irudia 46: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelaren orri nagusia
Irudia 46: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelaren orri nagusia
Irudia 46: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelaren orri nagusia
Irudia 46: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelaren orri nagusia
Irudia 46: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelaren orri nagusia
Irudia 46: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelaren orri nagusia
Irudia 46: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelaren orri nagusia
Irudia 46: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelaren orri nagusia
Irudia 46: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelaren orri nagusia
Irudia 46: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelarenorri nagusia
Irudia 46: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelarenorri nagusia55Irudia 47: Edozein LISN motak frekuentzia batean duen ziurgabetasun kontribuzioakalkulatzeko Excelaren orria56Irudia 48: LISN jakin baten ziurgabetasun kontribuzioa lortzeko prozedura57Irudia 49: LISN konkretu baten ziurgabetasun kontribuzioa kalkulatzeko Excelaren orri59Irudia 50:Edozein LISN motak frekuentzia batean duen ziurgabetasun kontribuzioa60Irudia 51: Gantt-en diagrama60Irudia 52: ADSn inplementatutako 50 $\Omega/(50 \mu H + 5 \Omega)$ LISNaren zirkuitua145Irudia 54:SCHURTER 5500.2044 EMC iragazkiaren eskema elektronikoa147Irudia 55: SCHURTER 5500.2044 EMC iragazkiaren konponentea148
Irudia 46: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelarenorri nagusia
Irudia 46: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelarenorri nagusia.55Irudia 47: Edozein LISN motak frekuentzia batean duen ziurgabetasun kontribuzioakalkulatzeko Excelaren orria56Irudia 48: LISN jakin baten ziurgabetasun kontribuzioa lortzeko prozedura.57Irudia 49: LISN konkretu baten ziurgabetasun kontribuzioa kalkulatzeko Excelaren orri59Irudia 50:Edozein LISN motak frekuentzia batean duen ziurgabetasun kontribuzioa60Irudia 51: Gantt-en diagrama.60Irudia 52: ADSn inplementatutako 50 Ω/(50 μH + 5 Ω) LISNaren zirkuitua.145Irudia 53: ADSn inplementatutako 50 Ω/(50 μH + 5 Ω) LISNaren konponentea146Irudia 54: SCHURTER 5500.2044 EMC iragazkiaren eskema elektronikoa147Irudia 56: SCHURTER 5500.2052 EMC iragazkiaren konponentea148Irudia 57: SCHURTER 5500.2052 EMC iragazkiaren konponentea148

Irudia 59: SCHURTER 5500.2055 EMC iragazkiaren konponentea
Irudia 60: SCHURTER 5500.2060 EMC iragazkiaren eskema elektronikoa
Irudia 61: SCHURTER 5500.2060 EMC iragazkiaren konponentea
Irudia 62: Ziurgabetasun kontribuzioaren kalkulagailu sinplearen Excel orria
Irudia 63: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelarer
orri nagusia152
Irudia 64: Edozein LISN motak frekuentzia batean duen ziurgabetasun kontribuzioa
kalkulatzeko Excelaren orria
Irudia 65: LISN konkretu baten ziurgabetasun kontribuzioa kalkulatzeko Excelaren orr
nagusia154
Irudia 66: Edozein LISN motak frekuentzia batean duen ziurgabetasun kontribuzioa
kalkulatzeko Excelaren orria

GRAFIKOEN ZERRENDA

Grafikoa 1: EPCOS B84142A0010A166 EMC iragazkiaren eragina emisio gidatuetan. [11] o
Grafikoa 2: 50 Ω/(50 μH + 5 Ω) LISN motaren EUTaren portuan sarrera-inpedantziaren
20 modula eta fasea
Grafikoa 3: 50 Ω / 50 μ H LISN motaren EUTaren portuan sarrera-inpedantziaren modula
eta fasea [2]20
Grafikoa 4: 50 Ω/(50 μH +1 Ω) LISN motaren EUTaren portuan sarrera-inpedantziaren
20 modula eta fasea
Grafikoa 5: 50 $\Omega/(50~\mu H$ + 5 $\Omega)$ inpedantziaren balio nominala, TSR laborategiko
LISNaren inpedantzia eta tolerantzia maximoko zirkunferentzien (Tolerance Circle)
diagrama59
Grafikoa 6: 50 $\Omega/(50\mu\text{H}$ +5 $\Omega)$ LISNaren portuen sarrera-inpedantziaren modulua 100
Grafikoa 7: 50 $\Omega/(50\mu\text{H}$ +5 $\Omega)$ LISNaren portuen sarrera-inpedantziaren fasea
Grafikoa 8:50 $\Omega/(50~\mu H$ +5 $\Omega)$ LISN motaren portuen arteko transferentzia kurben
modulua101
Grafikoa 9: 50 $\Omega/(50\mu\text{H}$ +5 $\Omega)$ LISN motaren portuen arteko transferentzia kurben fasea
Grafikoa 10: S _{EUT-IN} transferentzia funtzioaren anplitudea
Grafikoa 11: S $_{EUT-IN}$ transferentzia funtzioren fasea
Grafikoa 12: S _{RX-EUT} transferentzia funtzioaren anplitudea
Grafikoa 13: S _{RX-EUT} transferentzia funtzioaren fasea
Grafikoa 14: S $_{EUT-IN}$ transferentzia funtzioaren anplitudea
Grafikoa 15: S _{EUT-IN} transferentzia funtzioaren fasea 104
Grafikoa 16: $Z_{RX_{port}}$ neurgailuaren portuaren sarrera-inpedantziaren modulua 105
Grafikoa 17: Z_{RX_port} neurgailuaren portuaren sarrera-inpedantziaren modulua
(handipena)
Grafikoa 18: $Z_{RX_{port}}$ neurgailuaren portuaren sarrera-inpedantziaren fasea 106
Grafikoa 19: Z $_{\rm IN_port}$ neurgailuaren portuaren sarrera-inpedantziaren modulua
Grafikoa 20: Z $_{\rm IN_port}$ neurgailuaren portuaren sarrera-inpedantziaren fasea 107
Grafikoa 21: H(f) transferentzia kurbaren modulua
Grafikoa 22: H(f) transferentzia kurbaren modulua (handipena)

Grafikoa 23: H(f) transferentzia kurbaren fasea 108
Grafikoa 24: EMC iragazkien sarrera-inpedantziaren modulua (zirkuitu irekian) 109
Grafikoa 25: EMC iragazkien sarrera-inpedantziaren fasea (zirkuitu irekian) 109
Grafikoa 26: EMC iragazkien S(1,2) transferentzia funtzioen modulua 110
Grafikoa 27: EMC iragazkien S(1,2) transferentzia funtzioen fasea
Grafikoa 28: EMC iragazkien S(2,1) transferentzia funtzioen modulua 111
Grafikoa 29: EMC iragazkien S(2,1) transferentzia funtzioen fasea
Grafikoa 30: EMC iragazkiekin S_{EUT-IN} transferentzia funtzioaren anplitudea 112
Grafikoa 31: EMC iragazkiekin S_{EUT-IN} transferentzia funtzioaren fasea
Grafikoa 32: EMC iragazkiekin S_{RX-EUT} transferentzia funtzioaren anplitudea
Grafikoa 33: EMC iragazkiekin SRX-EUT transferentzia funtzioaren fasea
Grafikoa 34: EMC iragazkiekin S_{RX-IN} transferentzia funtzioaren anplitudea 114
Grafikoa 35: EMC iragazkiekin S_{RX-IN} transferentzia funtzioaren anplitudea 114
Grafikoa 36: EMC iragazkiekin Z_{RX_port} neurgailuaren portuaren sarrera-inpedantziaren
modulua
$Grafikoa 37: EMC iragazkiekin Z_{RX_port}\ neurgailuaren portuaren sarrera-inpedantziaren$
fasea
Grafikoa 38: Z_{IN_port} sarearen portuaren sarrera-inpedantziaren modulua
Grafikoa 39: Z $_{\rm IN_port}$ sarearen portuaren sarrera-inpedantziaren modulua
Grafikoa 40: EMC iragazkiekin H(f) transferentzia kurbaren modulua
Grafikoa 41: EMC iragazkiekin H(f) transferentzia kurbaren fasea
Grafikoa 42:Sarearen inpedantziaren moduluaren eta erregresio polinomikoaren
konparaketa
Grafikoa 43: Sarearen inpedantziaren fasearen eta erregresio polinomikoaren
konparaketa
Grafikoa 44: Sarearen balioen, erregresio polinomikoaren eta 50 Ω / (2,5 μH + 4 $\Omega)$
inpedantziaren arteko konparaketa
Grafikoa 45: LISNek EUTaren portuan duten sarrera-inpedantziaren modulua
Grafikoa 46:LISNek EUTaren portuan duten sarrera-inpedantziaren fasea
Grafikoa 47: LISNen S parametroen modulua 126
Grafikoa 48: LISNen S parametroen fasea
Grafikoa 49: LISNek portuetan duten sarrera-inpedantziaren modulua 127
Grafikoa 50: LISNek portuetan duten sarrera-inpedantziaren fasea

AKRONIMOEN ZERRENDA

ADS	Advanced Design System
AENOR	Asociación Española de NORmalización y certificación
AMM	Automated Meter Management
AMN	Artificial Main Network
BNC	Bayonet Neill-Concelman
CENELEC	Comité Européen de Normalisation Électrotechnique
CIS	Component Information System
CISPR	Comité International Spécial des Perturbations Radioélectriques
D8QPSK	Differential 8-Phase Shift Keying
DBPSK	Differential Binary Phase Shift Keying
DQPSK	Differential Quadrature Phase Shift Keying
DUT	Device Under Test
EA	Equipo Auxiliar
EMC	Electromagnetic Compatibility
EMI	ElectroMagnetic Interference
ESE	Equipo Sometido a Ensayo
EUT	Equipment Under Test
FCC	Federal Communications Commission
GrAL	Gradu Amaierako Lana
HES-SO	Haute école spécialisée de Suisse occidentale
IEC	International Electrotechnical Commission
LISN	Line Impedance Stabilization Network
LV	Low Voltage
PLC	Power Line Communication
PRIME	PoweRline Intelligent Metering Evolution
REE	Red Eléctrica de España
S parametroak	"Scattering parameters", dispertsio parametroak
SG	Smart Grid
SM	Smart Meters
TSR	Tratamiento de la Señal y Radiocomunicaciones

UNE-EN	Una Norma Española – European Norm
UPV/EHU	Universidad del País Vasco / Euskal Herriko Unibertsitatea
VDF	Voltage Division Factor
VHDL	VHSIC Hardware Description Language
VNA	Vector Network Analyzer

MEMORIA

1. SARRERA

Txosten honetan zehar GrAL-ean (Gradu Amaierako Lana) jorratutako lan guztiak azalduko dira. Bildutako informazioa eta azalpenak hiru zati garrantzitsuetan banatuko dira. Alde batetik, LISN batek, bere portu guztietan, eremu elektromagnetikoen elkarrekintzan aurkezten duen konportamendua ebaluatuko da. Bestetik, LISNak neurketak egiteko erabiltzerakoan, egonkortze-sare hauek sortzen duten ziurgabetasun kontribuzioa analizatuko da. Amaitzeko, eskema elektriko berri bat proposatuko da LISN berrien eraikuntzarako; honen xedea gaur egungo sare elektrikoaren ezaugarriak dituen LISNa sortzea delarik.

LISNak hiru portu dituzten egonkortze-sareak dira. Portu hauek IN (sare elektrikoaren portua), EUT (proban dagoen gailuaren portua) eta Rx (neurgailuaren portua) dira. LISNen eginkizunik garrantzitsuenak honako hauek dira: IN portutik datozen emisioak iragaztea, baina 50 Hz edo 60 Hz-ko korronte aldakorreko seinalea pasatzen

uztea; EUT portuan ezaguna, sarearen ezaugarrien independentea eta finkoa den sarrera-inpedantzia aurkeztea; eta EUTek sortzen dituzten emisioak Rx portura transmititzea. LISNak EUTn emisioen eta inpedantzien neurketetan erabiltzen dira. Dena dela, parametro hauen inguruan egindako neurketak Rx portuan egiten dira; eta hortaz, LISNek parametro hauen neurketen balioetan eragina dute. LISN mota ezberdinak existitzen dira, EUTei egin nahi zaizkien proben arabera sailkatzen direnak. Egonkortze-sare hauekin EMC probak egiten dira, besteak beste, hauek xedatzen duten araudia nahiko zabala dena.

Proiektu honetan, lehendabizi, UPV/EHUko TSR *(Tratamiento de la Señal y Radiocomunicaciones)* ikerketa taldeak bere laborategian duten LISNa, *R&S®ENV216*

Two-Line V-Network, aztertuko da. Hau, CISPR 16-1-2 [1] eta UNE-EN 55016-1-2 [2] arauek xedatutako 50 $\Omega/(50$ H + 5 $\Omega)$ LISN motan oinarritzen da, eta software bidezko simulazioekin egonkortze-sare mota hau analizatuko da. Ikerketa honen helburua, gailu mota honek, uhin elektromagnetikoen elkarrekintzan, duen konportamendua ulertzea,

Irudia 2: R&S®ENV216 Two-Line V-Network

ebaluatzea eta kuantifikatzea izango da. Analisi hau, gailuak dituen hiru portuetan egingo da: sarera konektatzen den portua, EUTra konektatzen den portua eta neurketa gailura (sare analizatzailea, espektro analizatzailea, osziloskopioa, etab.) konektatzen den portua. Azterketa hau, portu ezberdinetan S parametroen eta tentsio neurketen simulazioak erabiliz egingo da; hauek 30 MHz frekuentziara arte egingo direlarik. Simulatuko diren parametroekin, LISNaren portu guztietan aurkezten den sarrerainpedantzia kalkulatuko da, baita portuen arteko transferentzia funtzioak ere.

Ondoren, aipatutako LISN mota, 50 $\Omega/(50 \mu H + 5 \Omega)$, EUTen emisio elektromagnetikoen eta inpedantzien neurketak egiteko erabiltzen denean egonkortze-sareak duen fidagarritasuna aztertuko da. Izan ere, LISNen ezaugarriak xedatzen dituzten arauek, lehen aipatutako CISPR 16-1-2 eta UNE-EN 55016-1-2 arauek, tolerantzia tarte bat baimentzen dute. Hau dela medio, egiten diren neurketak, eta hauen ostean egiten diren emaitzen prozesaketak, errore edo desbiderapen esanguratsuak izan ditzakete. Gainera, EUTen portuaren sarrera-inpedantziaren tolerantzia honek, neurketetan ziurgabetasun maila bat sortzen du; lan honetan zehar ziurgabetasun kontribuzio hori kalkulatzeko euskarri digitalak sortuko dira.

Azkenik, gaur egungo sare elektrikoaren ezaugarrietatik abiatuta, LISN berri baten eskema elektrikoa proposatuko da; izan ere, gailu hauen ezaugarriak, gehienetan, ez datoz bat sareak duen balio errealekin. Hau dela eta, TSR ikerketa taldeak egindako LV *(Low Voltage)* sarearen inpedantziaren neurketekin; eta CISPR 16-1-2 eta UNE-EN 55016-1-2 arau teknikoetan jasotzen diren LISNen zirkuituak oinarri hartuta (azkenengo hauetan aldaketak eginez) LISN berri bat sortzeko zirkuitu elektronikoa proposatuko da.

2. TESTUINGURUA

Azken belaunaldian, enpresa elektrikoek beraien LV sareen kontrola eta kudeaketa berritu dute, hau automatizatuz. Eboluzio honi esker egindako aldaketek sare elektriko moderno bat sortu dute. Hau *Smart Grid* edo SG moduan ezagutzen da, sarean sartu edo berritu egin diren ekipo berrien automatizazioa dela eta. REE *(Red Eléctrica de España)* Espainiako elektrizitate garraio sare-operadorearen esanetan "sare adimentsu bat horretara konektatuta dauden erabiltzaile guztien konportamendua eta ekintzak era efizientean bateratzen dituen sarea da. Honek sistema energetiko jasangarri eta eraginkorra bermatu behar du; galerak baxuak izanik, kalitate maila altuak eskainiz eta hornikuntza segurtasuna ziurtatuz" [3].

Espainian SGen zein hauei lotutako teknologien garapena eta ezarpena handia izan da; izan ere, 2012. urteko otsailaren 16an argitaratu zen IET/290/2012 arauak elektrizitate-operadoreei, beraien LV sareetan, elektrizitate-neurgailu guztiak adimentsuak (edo SM, *Smart Meters)* instalatzera eta SGarekin bateragarriak izatera behartzen zien, 2018ko abenduaren 31ra arteko epea muga zutelarik. [4]

Behe-tentsioko sareetan, kontagailu elektrikoak dira ekiporik garrantzitsuenak, gehien bat, ekipo guztien artean kopururik handiena direlako. Kontagailu elektriko berri hauek (etxebizitzetan daudenak, adibidez) hainbat ekintza egiten dituzte, haien artean: kontsumo elektrikoen neurketak, teleneurketak eta telekudeaketa, besteak beste. Datu fluxu hauek kable elektrikoaren bitartez bidaltzen dira auzoen transformadore elektrikoetan dauden kontzentratzaile batzuetara, hauetatik aurrera datuak elektrizitate operadoreei helarazten zaizkielarik.

Sare elektrikoaren bitartez egiten diren konexioak PLC komunikazio sistemen bidez ematen dira, Espainian PRIME *(PoweRline Intelligent Metering Evolution)* estandarrarekin. Dena dela, beste herrialde batzuetan beste protokolo batzuk erabiltzen dira, halan hola, G3-PLC, ITU-T G.9960 edota IEEE 1901 [5]

PRIME protokoloa "PRIME Alliance" enpresa multzoak sortutako "telekomunikazio arkitektura publikoa, irekia eta jabego gabekoa da, AMMen *(Automated Meter Management)* funtzionalitateen oraina eta etorkizuna euskarri izango duena; etorkizuneko sare elektrikoen, edo Smart Griden,, sorkuntza ahalbidetuko duena" [6].

Komunikazio sistema hau, Europan, "CENELEC-A" banda (3 kHz-etik 95 kHz-rako banda) erabiltzeko baimenduta dago eta, Estatu Batuetan berriz, "FCC Part 15" banda, 500 kHz-era arte heltzen dena. PRIME arkitekturak hainbat babes eta sendotasun mekanismo inplementatzen ditu, haien artean OFDM (*Orthogonal Frequency Division Multiplexing*) multiplexazioa eta DBPSK, DQPSK eta D8PSK modulazioak daudelarik [7] [8].

Komunikazio hauek datuen transmisiorako prestatuta ez dagoen kanal batean gertatzen dira, sare elektrikoa, oso aldakorra eta ezegonkorra dena, konektatuta dauden ekipoen kopuruaren eta erabileraren menpekoa dena. Gainera sare honetan erabiltzen diren kableak ez daude blindatuta, beraz, ingurune honetatik kanpo sortzen diren perturbazio elektromagnetikoek komunikazio hauetan interferentziak sortzen dituzte. Hau dela medio, oso garrantzitsua da sare honek jasan ditzakeen aldaketak karakterizatzen jakitea; baita honetara konektatzen diren gailuek sortzen dituzten emisio elektromagnetikoak neurtzen jakitea ere.

Bilboko Ingeniaritza Eskolako TSR (*Tratamiento de la Señal y Radiocomunicaciones*) ikerketa taldeak *"Communications for Smart Grids"* ikerketa lerroa jorratzen du, besteak beste. Honetan, sare elektrikoen bitartez gauzatzen diren komunikazio elektronikoak eta SGen arkitektura aztertzen dira. Ikerketa taldearen helburuak komunikazio protokolo hauentzako kodetze eta dekodetze teknika berriak definitzea, egoera ezberdinetan komunikazio sistemaren efizientziaren analisia egitea, ezbeharrezko emisioen eta interferentzien karakterizazioa eta analisia jorratzea, etab dira [9]. GrAL hau azken sakontze lerro honetan oinarritzen da; izan ere, aztertuko diren ekipoak, LISNak, sarera konektatzen diren gailu pasiboek sortzen dituzten emisioen eta interferentzien baitira.

Ikerketa talde honek, *R&S®ENV216 Two-Line V-Network* LISNa dauka bere laborategian. Gailu honetatik eta haren ezaugarrietatik abiatuz GrAL-aren nondik norako guztiak jorratuko dira.

2.1. LV sare elektrikoa

Behe-tentsioko sare elektrikoa, aipatu den moduan, oso ingurune ezegonkorra eta aldakorra da, ingurune honen propietateak honetara konektatuta dauden gailuen menpekoa delako. TSR ikerketa taldeak, LV sarearen karakterizazioan lan egiten du. Lan horri esker, sareak, frekuentzia baxuetan (35 kHz eta 500 kHz bitartean), 2 Ω eta 70 Ω –eko inpedantzia duela eta ia induktiboa dela frogatu da. Dena dela, neurketa puntuaren arabera, sarearen arkitekturaren eragina dela eta, balioak nahiko aldakorrak dira. Hots, eremu landatarretan eta hiri inguruneetan egindako neurketen emaitzak nahiko desberdinak dira [10].

LV sarearen neurketa hauek lagungarriak izango dira lan honetan zehar; izan ere, sare elektrikoak duen ezaugarriak LISNetan nahiko garrantzitsuak dira.

2.2. LISN: azalpena, ezaugarriak eta erabilera

GrAL honen txostenarekin jarraitu baino lehen, LISN bat zer den eta zertarako erabiltzen den azaltzea ezinbestekoa da.

LISNak sortu baino lehen, gailu elektrikoek sarean sortzen zituzten emisio elektrikoak eta hauen inpedantzia neurtzeko, neurketa aparatuak EUTen entxufeetara konektatu behar ziren, eta hortaz, zuzenean sarera konektatzen ziren. Jakina den

Irudia 5: Gailuen (EUT) emisioak neurtzeko era arrunta

moduan, gailuek sarearen elektro-indarra behar dutelako haien funtzionamendua burutzeko. Konexio hauek direla eta, neurgailuetan neurtzen ziren emisioak sare elektrikoaren eta EUTaren batura ziren; eta inpedantzien neurketak, EUTen eta sare elektrikoaren paraleloak. Egoera honek hainbat arazo sortzen ditu: ezin da ziurtatu zeintzuk diren EUTek sortzen dituzten emisio elektrikoak eta zenbatekoak diren EUTn inpedantziak. Gainera, sare elektrikoa oso aldakorra eta ezegonkorra da, lekuan lekuko gailu eta LV sarearen arkitekturaren menpekoa delarik. Neurketa inguruaren aldakortasuna dela eta, neurketa egiteko hasierako baldintzak beti ezberdinak izango dira, eta hortaz, neurketak errepikatzeko eta toki ezberdinetan egindako neurketak konparatzeko inbariantza baldintza ezin da bete.

Arazo honi irtenbide bat emateko LISNak sortu ziren. LISN, ingelesezko *Line Impedance Stabilization Network* hitzetatik dator, euskaraz, "linearen inpedantzia egonkortze-sarea" esan nahi

egonkortze-sarea" esan nahi ^{Irudia 6:} Gailuen (EUT) emisioak LISN baten bitartez neurtzeko era duelarik. Gailu honen izena bere funtzionamendutik dator; izan ere, LISN batek

analizatzen ari den gailuaren portuan sarrera-inpedantzia bera duelako; ezaguna eta sarearen menpekotasunik gabekoa dena. Portu honetan dagoen sarrera-inpedantzia hau, sarearen inpedantziaren antzekoa balioak ditu, izan ere, sarearen konportamendua simulatu nahi da portu honetan. LISNek, sare elektrikoaren goi maiztasuneko emisioak iragazten dituzte; hain zuzen ere, sarearen portutik eta EUT portuaren artean behe paseko iragazki baten konportamendua hartzen dute, 50 edo 60 Hz-eko sarearen korronte aldakorreko seinalea pasatzen uzteko eta sarearen zarata elektrikoa iragazteko diseinatuta daudelako. EUT eta neurgailuaren portuen artean goi paseko iragazki baten moduan funtzionatzen dute, EUTak sortutako emisioak neurgailuaren portuan edukitzeko. Gainera, sarean dauden emisioak neurgailura ez pasatzeko diseinatuta dago. Ezaugarri hauek direla eta, denboran zehar neurketak egiteko baldintzak berak dira, hortaz, neurketen errepikapena eta konparaketa egitea posiblea izango da, neurketak LV sarearen eta honetan konektatutako gailuen independenteak direlako.

Aipatu den moduan, EUTaren portuko sarrera-inpedantzia ezaguna eta lekuan lekuko sare elektrikoaren independentea da. Portu honetan dagoen inpedantzia hau, sare elektrikoaren inpedantziaren antzeko balioak izan beharko ditu. Izan ere, gailu hauekin sare elektrikoa simulatu nahi bada, EUTek sarearen inpedantzia bera ikusi beharko dute, egoera arrunten baldintza sortzeko eta neurketak zenbat eta zehatzagoak izateko.

LISN gehienak EMC *(ElectroMagnetic Compatibility)* probak egiteko erabiltzen dira. Proba hauetan, emisio elektromagnetikoek gailuen funtzionamenduan eraginik ez izatea eta gailuek sortzen dituzten emisioak beste gailuetan perturbaziorik ez sortzea aztertzen da. LISNak azkenengo hauek egiteko erabiltzen dira. Hauen bitartez gailuek, kable elektrikoen bidez, sortutako emisioak neurtzen dira eta CISPR arauen araberako atalase balioekin konparatzen dira, gailuen funtzionamendua egokia dela ziurtatzeko.

EMC proba hauetan, emisio gidatuak neurtzen direnean, CISPR erakundeak araututako muntaiak erabiltzen dira. Honako hau, proposatzen den muntaietako bat da:

Irudia 7: EMC probetan emisioak neurtzeko LISNaren muntaia [10]

Muntaia hauetan hainbat elementu egotea beharrezkoa da, aipagarrienak hauek izanik:

- AMN *(Artificial Main Network),* txosten honetan zehar LISN moduan izendatu dena. Honetan proba pasatu beharko duen gailua (ESE/EA) eta neurgailua konektatzen dira.
- ESE/EA *(Equipo Sometido a Ensayo / Equipo Auxiliar),* lan honetan EUT moduan aipatu egin dena. Probak egingo zaizkion gailua da, hau AMNra konektatuta egongo da eta honetatik 0,8 m-ra kokatuta egon beharko da.
- Zurezko mahia. ESE/EAk kokatzen diren planoa da (AMNak ere hemen koka daitezke 0,8 m-ko distantzia betetzen bada)
- Lurreko planoa. 2 m-ko altuera eta zabalera duen xafla metalikoa da. Hau AMNen lurrarekin zirkuitulaburtu behar da eta ekipo guztietatik 0,4 m-ra kokatu behako da.
- Isolamendu-transformadore elektrikoa, 1:1 erlazioa duena. Transformadore hau beharrezkoa da LISNak dituzten ihes korronte handiak direla eta. Instalazio elektriko arrunt batera konektatuz gero, segurtasun mekanismoak (etengailu diferentzialak, hain zuzen ere) aktibatuko ziren.

2.3. EMC iragazkiak

GrAL honetan erabiliko diren EMC iragazkien azalpena ematea beharrezkotzat hartzen da.

EMC iragazkiak, hauen izenak adierazten duen moduan, gailuen emisioak EMC araudian ezarritako atalasea ez gainditzeko iragazkiak dira.

Irudia 8: EMC iragazki baten diagrama

Osagai hauek bi portu dituzte, sare elektrikoaren linearen portua (LINE) eta kargaren portua (LOAD) (gailuak konektatuko diren portua). Hauen helburua, lehenago adierazi den moduan, gailu elektriko eta elektronikoek sortutako emisio gidatuak iragaztea izango da, EMC araudi teknikoak jasotzen dituen balio maximoak gaindi ez daitezen. Iragazki hauek duten ezaugarriak direla eta, funtzionamendu ez simetrikoa dutela aipatu behar da; beraz, LINE portua sare elektrikora eta LOAD portua gailuetara konektatu beharko dira nahi eta nahi ez. Hurrengo irudian, motor batek sortutako perturbazioak, emisio gidatuen neurketan EMC iragazki zehatz batek duen eragina eta EMC araudiaren atalase balioak adierazten dira:

Grafikoa 1: EPCOS B84142A0010A166 EMC iragazkiaren eragina emisio gidatuetan. [11]

Proiektu honetan EMC iragazki komertzial batzuk aztertu egin dira, SCHURTER fabrikatzailearen 5500.2044, 5500.2052, 5500.2055 eta 5500.2060 erreferentzia zenbakiak duten iragazkiak hain zuzen ere.

Irudia 9: : SCHURTER 5500.2044 iragazkia

Irudia 10: SCHURTER 5500.2055 iragazkia

GrAL honetan, gailu hauek inpedantzia aldakorra duten EUT modura erabiliko dira. Erabilera hau emango zaien arren, hauen karakterizazioa ere egingo da.

3. LANAREN HELBURUAK ETA IRISMENA

Atal honetan proiektuak dituen helburuak eta irismena azalduko dira. Helburuetan, proiektu honetan lortu behar diren lanak biltzen dira. Irismenean, berriz, proiektu honekin, eta beste batzuekin batera, lortu nahi den norainokoa azalduko da.

3.1. <u>Helburuak</u>

GrAL honen helburuak honako hauek dira:

- 1. Software bidezko simulazioen bidez, TSR ikerketa taldeak duen *R&S®ENV216 Two-Line V-Network* LISNaren, edo baliokidearen, S parametroen bidezko konportamenduaren karakterizazioa egitea:
 - a. LISNaren zirkuitu elektronikoa simulazio software-ean inplementatzea
 - b. S parametroekin LISNaren portuen arteko transferentzia kurbak lortzea; garrantzitsuenak hauek izanik: sare elektrikoaren portutik (IN) EUTaren portuaren artekoa (S_{EUT-IN}), EUTaren portutik neurgailuaren (Rx) portuaren artekoa (S_{RX-EUT}) eta sare elektrikoaren portutik (IN) neurgailuaren portuaren artekoa (S_{RX-EUT}).
 - c. S parametroetatik abiatuz, LISNaren portu guztietan aurkezten den sarrera-inpedantzia karakterizatzea; hots, sare elektrikoaren portuan (Z_{IN_port}), EUTaren portuan (Z_{EUT_port}) eta neurgailuaren portuan (Z_{RX_port}).
 - d. Inpedantzia ezberdinetako EUTak analizatzerakoan, S parametroen balioen aldakuntza zehaztea.
 - e. Inpedantzia ezberdinetako EUTak analizatzerakoan, neurgailuaren portuko sarrera-inpedantziaren (Z_{RX_port}) aldakuntza zehaztea.
 - f. Inpedantzia ezberdinetako EUTak analizatzerakoan, sare elektrikoaren portuko sarrera-inpedantziaren (Z_{IN_port}) aldakuntza zehaztea.
- 2. Simulazioen bitartez, *R&S®ENV216 Two-Line V-Network* LISNak, edo baliokideak, emisio elektromagnetikoen aurrean duen erantzuna kuantifikatzea:
 - a. Inpedantzia ezberdinak dituzten EUTen aurrean, EUT eta neurgailuaren portuen arteko transferentzia kurbak karakterizatzea.
- 3. Software bidezko simulazioak erabiliz, EMC iragazki komertzial batzuen karakterizazioa egitea:

- a. EMC iragazkien bi portuen artean, S parametroak erabiliz, transferentzia kurbak lortzea.
- b. S parametroetatik abiatuz, EMC iragazkien portuetan dagoen sarrerainpedantzia kuantifikatzea.
- c. EMC iragazkiak LISNaren simulazioetan EUT moduan erabiliz:
 - i. S parametroek jasaten dituzten aldakuntza zehaztea.
 - ii. LISNaren neurgailuaren portuan Z_{RX_port} sarrera-inpedantzia karakterizatzea.
 - iii. LISNaren sare elektrikoaren portuan $Z_{\text{IN}_\text{port}}$ sarrera-inpedantzia kuantifikatzea.
- 4. LISN batean sintesia egitea, hots, eskema elektriko berri bat proposatzea.
 - a. LISN baten osagai elektronikoek, eta hauen balioek, S parametroetan eta portuen sarrera-inpedantzian duten eragina zehaztuz.
 - b. LISNaren EUTaren portuaren sarrera-inpedantziak egungo LV sare elektrikoaren inpedantziaren hurbileko balioak lortzea.
- 5. CISPR 16-1-2 eta UNE-EN 55016-1-2 arauetan xedatutako LISNentzako tolerantzia kontuan hartuta, hauek neurketetan sortzen duten ziurgabetasun kontribuzioa kalkulatu dezakeen euskarri digitala sortzea:
 - a. LISN mota ezberdinetarako, EUTaren portuaren sarrera-inpedantzia edozein izanik, LISNen neurketetan sortzen den ziurgabetasun kontribuzi maximoa kalkulatzeko baliabidea sortzea.
 - b. *R&S®ENV216 Two-Line V-Network* LISNaren kalibrazio liburuako baliokin, TSR taldeak duen LISNak neurketetan sortzen duen ziurgabetasun kontribuzioa zehaztea.

3.2. <u>Irismena</u>

Txosten honetan zehar aipatu den moduan, GrAL honetan garatutako lana proiektu handiago baten barruan kokatuta dago, TSR ikerketa taldearen *"Communications for Smart Grids"* proiektuan, hain zuzen ere. Ikerketa lerro honen barruan hainbat proiektu burutzen dira aldi berean, egiteke dagoen hauetako bat LISN batekin gailuen inpedantziak eta emisioak neurtzea delarik. Gradu Amaierako Lan honen helburuetako bat LISN horren neurketa postua martxan jartzen laguntzea da, gailuaren neurketa funtzionamendua baldintzatzen duten parametroen karakterizazioarekin.

Beste alde batetik, ikerketa lerro honetan, beste ikerketa talde batzuekin batera, TSR taldea LISNen araudia berritzeko proiektu baten partaide da, proiektuaren izena SupraEMI delarik. Honen xedea, LISNen ezaugarriak eta araudia gaur egungo sarearen ezaugarriekin bat egitea da, proiektuan bertan honako hau biltzen da: "proiektu hau estandarizazio batzordeekin lankidetzan egingo da, neurri-esparru berri bat garatzeko, supraharmonikoen interferentzien mugak era errealista eta sinesgarrian ezartzeko eta merkatuko masa-ondasunen erregulazioa eta betetzea ahalbidetzeko". GrAL honetan, proiektu honetan planteatutako lan horri hasiera eman zaio.

4. LANAK DAKARTZAN ONURAK

Proiektu hau burutzeak hainbat onura ekarri ditu. Hauen artean garrantzitsuenak onura teknikoak eta ekonomikoak direlarik.

4.1. <u>Onura teknikoak</u>

Lanean zehar aipatu den moduan, Smart Griden hedapena hazkundean dago. Hauetan ematen diren komunikazioetan gertatzen diren interferentziak hobeto ezagutzea, karakterizatzea eta zein gailuetatik datozen jakitea oso onuragarria da hauen garapenerako. Izan ere, PLC komunikazio arkitekturan hobekuntzak eta babes mekanismoak inplementatzeko, komunikazio hauetan eragiten duten faktoreen analisia ezinbestekoa da.

LISN sareak, sare elektrikoan, sortutako interferentzia edo emisioak neurtzeko erabiltzen direnez, hauen hobekuntza jorratzen duten proiektuek, zeharka den arren, SGetan eta EMC probetan hobekuntzak ekar ditzakete.

GrAL honek eman dituen onura teknikoen artean, garrantzitsuena, LISN ezberdinen funtzionamendua simulatzeko sortu diren euskarri digitalak izango lirateke. Software bidez sortutako tresna hauekin, LISN ezberdinek sortzen duten ziurgabetasun kontribuzioa, portuen arteko transferentzia kurbak, portuen sarrera-inpedantziak, etab. simula daitezkeelako. Hau dela medio, LISN batekin neurketak egin baino lehen, honek izango duen konportamendua ebaluatu ahalko da; eta behin neurketak eginda, hauek zuzen egin direla ziurtatzeko erabili ahalko dira.

Beste alde batetik, "2.2 LISN: azalpena, ezaugarriak eta erabilera" puntuan azaldu den moduan, LISNek ihes korronte oso altuak dituzte; ekipo hauek erabiltzen dituzten pertsonek hainbat segurtasun neurri hartu behar dituzte, arrisku elektrikoa dela eta. Sortutako simulazio paketeekin LISNaren erabilera gutxitu daitekeela uste da, izan ere, neurketak egin baino lehen EUTak LISNetan izango duten konportamendua

karakterizatu ahalko da eta neurtu nahi den parametroa hobeto karakterizatzen duen muntaia aukeratu ahalko da, beharrezkoak diren neurketen kopurua gutxituz.

4.2. <u>Onura ekonomikoak</u>

Onura ekonomikoak jorratuz gero, LISNekin lan egiteak, eta hauen funtzionamendua karakterizatuta edukitzeak, ikerketa lerro honen inguruko nazioarteko proiektuetan parte hartzeko aukera ematen dio TSR ikerketa taldeari. Izan ere, LISN bat edukitzeak, eta honekin neurketak egiteak, beste ikerketa taldeekin lankidetza ahalbidetzen du, talde ezberdinek egiten dituzten neurketak konparatzeko edota partekatutako proiektuetan parte hartzeko aukera ematen dutelako. Lankidetza hauek TSR taldeari onura ekonomikoak ekarri diezazkiokete.

5. GAIAREN EGOERAREN AZTERKETA

GrAL proiektu hau garatu den bitartean ikerketa bibliografiko bat egin da. Honetan, LISNen funtzionamenduaren eta hauen araudiaren nondik norako guztiak aztertzeaz gain, ikerketa talde ezberdinek haien ikerlanetan erabilitako LISNen neurketen prozedura ezberdinak aztertu egin dira.

5.1. LISNen inguruko araudia

Atal hau jorratzen hasi baino lehen, aipatu beharra dago LISNen funtzionamendua, LISNekin egindako neurketen muntaiak, EMC probak, etab. arautzen duten arauek jerarkia bat jarraitzen dutela. GrAL hau jorratzeko, AENOR-en *(Asociación Española de NORmalización y certificación)* UNE-EN *(Una Norma Española – European Norm)* arauak kontsultatu egin dira. Dena dela, arau hauek Europako normalizazio erakundeetatik eratortzen dira eta AENORek arau hauek gaztelerara itzultzen ditu, Espainian indarrean jartzeko. Adibidez, txosten honetan erabiliko diren arauak CISPR edo CENELEC erakundeetatik datoz.

LISNen inguruko araudia oso zabala da; aipatu den moduan, hauek EMC probak egiteko erabiltzen direnez, proba hauek egiten dituzten laborategiek jarraibide berberak izan behar dituzte. Gainera, neurtzen den gailu elektriko edo elektronikoaren arabera araudi ezberdina aplikatu behar da.

EMC probak nola egiten diren, neurketa aparailuen ezaugarriak eta neurketa prozedurak arautzen dituen arau bilduma "CISPR 16" da. IEC-k *(International Electrotechnical Commission)* honako sailkapen hau ematen du [12]:

- CISPR 16-1: Tentsio, korronte eta eremuen neurketak eta neurketa lekuak arautzen dira. Atal hauetan neurketa aparatuen kalibrazio eta egiaztapen alderdiak biltzen dira.
 - o 1-1 atala: Neurketa Aparatuak.
 - 1-2 atala: Ekipamendu lagungarriak: Emisio gidatuak.

- o 1-3 atala: Ekipamendu lagungarriak: Potentzia perturbazioak.
- o 1-4 atala: Ekipamendu lagungarriak: Irradiatutako emisioak.
- o 1-5 atala: Antenen kalibrazioa 30 MHz eta 1000 MHz artean.
- o 1-6 atala: EMC-antenen kalibrazioa.
- CISPR 16-2: Goi maiztasuneko EMC fenomenoak, emisioak eta immunitatea.
 - 2-1 atala: Emisio gidatuen neurketak.
 - o 2-2 atala: Potentzia perturbazioen neurketak.
 - o 2-3 atala: Irradiatutako emisioen neurketak.
 - o 2-4 atala: Immunitate neurketak.
 - o 2-5 atala: Fisikoki handiak diren ekipoen *In situ* egindako emisioen neurketa.
- CISPR 16-3: CISPR-ren historian zehar egindako txosten teknikoa eta informazioa biltzen dituen IECren txosten teknikoa.
- CISPR 16-4: Ziurgabetasuna, estatistikak eta mugako modelatzeari buruzko informazioa jasotzen ditu.
 - o 4-1 atala: Ziurgabetasuna EMC proba estandarizatuetan.
 - 4-2 atala: Ziurgabetasuna EMC neurketetan.
 - 4-3 atala: Masa-ondasun produktuen EMC onarpena erabakitzeko faktore estatistikoak.
 - o 4-4 atala: Arrangura estatistikoak eta limiteen kalkuluen modelatzea.
 - o 4-5 atala: Probetan metodo alternatiboak erabiltzeko baldintzak.

Nahiz eta araudia oso zabala izan, LISNen ezaugarriak eta funtzionamendua ezartzen duen araua CISPR 16-1-2 da, UNE-EN 55016-1-2 araua honen baliokidea delarik. Arauaren dokumentu honetan LISN mota ezberdinek izan behar dituzten eskema elektrikoak, osagaien balioak, EUTaren portuak eduki behar duen sarrerainpedantzia, portuen arteko isolamendua, etab. arautzen da. Gainontzekoek, neurketak egiteko prozedurak, ziurgabetasuna edota beste motako emisioak neurtzeko ekipamendua arautzen dute.

Dena dela, EMC proben araudia ez da bakarrik CISPR 16 bilduman geratzen, hainbat araudi osagarri daude. Neurtu nahi den gailuaren arabera, neurketak nola eta emisioek zein balio eduki ditzaketen adierazten dute.

Smart Gridekin erlazionatutako araudia ere existitzen da. Hauetan, SGetan dauden ekipoek bete behar dituzten ezaugarriak agertzen dira:

- CISPR 11: Gailu industrial, zientifiko eta medikoen emisioak.
- CISPR 32: Informazio teknologien, ekipo multimedien eta hartzaileen emisioak.
- CISPR 24: Informazio teknologien ekipoen immunitatea eta Smart Griden kontrol sistemak.
- CISPR 12/25: Ibilgailuen emisioen neurketa metodologia; ibilgailu elektrikoen eta karga estazioen eragina kontuan hartzen duena.

Inpedantzien neurketari buruz araudia hain zabala ez den arren, UNE-EN 50065-7 arauan ekipoen inpedantzien neurketa arautzen da 3 kHz eta 148,5 kHz frekuentzia bitartean.

5.1.1. LISN mota ezberdinak

LISN mota ezberdinak existitzen dira, egonkortze-sareekin egin nahi diren neurketen menpeko sailkapena existitzen delako. LISNen saikaketa nagusia hiru egonkortze-sare mota ezberdinek osatzen dute: V-LISN, Delta-LISN eta T-LISN [13].

Irudia 11: LISN moten sailkapena [13]

- **V-LISN**: GrAL honetan landu egin diren LISNak dira. Hauek emisio ez simetrikoak neurtzen dituzte. Hau da, sarearen linea batean dauden emisioak lurrarekiko neurtzen ditu.
- **Delta-LISN:** LISN mota hauek emisio simetrikoak neurtzen dituzte, izan ere, bi lineen arteko emisioak neurtzen dira.
- **T-LISN:** Mota honetako LISNek emisio asimetrikoak neurtzen dituzte. Emisioen neurketa hauek bi lineen anteko bitarteko puntu baten eta lurraren artean neurtzen dira.

Aipatutako moduan, GrAL honetan V-LISNak bakarrik aztertuko dira; izan ere, TSR ikerketa taldeak duen *R&S®ENV216* egonkortze-sarea mota honetako LISNa da.

V-LISN mota bakoitza frekuentzia tarte zehatz batean neurketak egiteko homologatuta dago. Mota ezberdinak identifikatzeko LISNen sailkapena inpedantzia baten bitartez egiten da, adibidez, 50 $\Omega/(50 \mu H + 5 \Omega)$ edo 50 $\Omega/50 \mu H$. Lehen aipatu den moduan, inpedantziaren balio hau EUTaren portuan egongo den sarrera-inpedantziari dagokio. CISPR 16-1-2 arauan, hainbat LISN mota ezberdintzen dira:

LISN mota	Lan frekuentzia banda
50 Ω/(50 μΗ + 5 Ω)	9 kHz – 150 kHz ¹
50 Ω / 50 μΗ	150 kHz – 30 MHz
50 Ω/(50 μΗ + 1 Ω)	150 kHz – 108 MHz

Taula 1: LISN mota ezberdinak eta lan frekuentzia banda

UNE-EN 55016-1-2 arauan, CISPR 16-1-2 arauaren baliokidea dena, LISN mota ezberdinak hauek EUTaren portuan izan behar duten inpedantziaren moduluaren eta fasearen grafiko biltzen dira:

 $^{^1}$ LISNak, 150 kHz eta 30 MHz frekuentzia tartean, EUTaren portuan 50 Ω / 50 µH inpedantziaren balioak baditu, LISN mota hau 30 MHz arte erabiltzea baimenduta dago.

Grafikoa 2: 50 $\Omega/(50 \ \mu H + 5 \ \Omega)$ LISN motaren EUTaren portuan sarrera-inpedantziaren modula eta fasea [2]

Grafikoa 3: 50 Ω / 50 μ H LISN motaren EUTaren portuan sarrera-inpedantziaren modula eta fasea [2]

 $Grafikoa~4:~50~\Omega/(50~\mu H~+1~\Omega)~LISN~motaren~EUTaren~portuan~sarrera-inpedantziaren~modula~eta~fasea~[2]$

UNE-EN 55016-1-2 arauak, LISN mota ezberdinetarako zirkuitu elektrikoak proposatzen ditu. Zirkuitu hauetan LISN erreal batek izan behar dituen osagai elektronikoak jasotzen ditu:

Irudia 12: 50 $\Omega/(50 \mu H + 5 \Omega)$ LISN motaren eskema elektronikoa [2]

Osagaia	Balioa
R1	5 Ω
R2	10 Ω
R3	1 000 Ω
R4	50 Ω
R5	50 Ω (neurketa hargailuaren sarrera-inpedantzia)
C1	8 μF
C2	4 μF
Сз	0,25 μF
L1	50 µH
L2	250 μΗ

Taula 2: 50 $\Omega/(50 \,\mu\text{H} + 5 \,\Omega)$ LISN motaren osagai elektronikoen taula [2]

Irudia 13: 50 Ω / 50 μH eta 50 Ω (50 μH + 1 $\Omega)$ LISN moten eskema elektronikoa [2]

Osagaia	Balioa
R1	1000 Ω
R2	50 Ω
R3	0 Ω
R4	50 Ω (neurketa hargailuaren sarrera-inpedantzia)
R5	0 Ω
C1	1 μF
C2	0,1 μF
L1	50 µH

Taula 3: 50 $\Omega/(50 \,\mu\text{H} + 5 \,\Omega)$ LISN motaren osagai elektronikoen taula [2]

Osagaia	Balioa
R 1	1000 Ω
R2	50 Ω
R3	0 Ω
R4	50 Ω (neurketa hargailuaren sarrera-inpedantzia)
R5	1 Ω
C1	2 μF (minimo)
C2	0,1 μF
L1	5 μΗ

Taula 4: 50 $\Omega/(50 \,\mu\text{H} + 1 \,\Omega)$ LISN motaren osagai elektronikoen taula [2]

5.2. <u>Neurketen Artearen Egoera</u>

Nahiz eta lan hotan LISNen konportamendua simulazioen bitartez karakterizatu den, ezinbestekoa da neurketak ingurune erreal batean nola egiten diren jakitea, software bidezko parametrizazioak zuzenak izan daitezen.

Emisioen neurketei dagokionez, ikerketa talde ezberdinek ekipoen muntaia, neurrien prozedura eta neurketa parametro berdinak erabiltzen dituzte. Izan ere, dokumentu honetan aipatu den moduan, neurri hauen inguruko araudi oso zabala eta zorrotza existitzen da. Hau dela eta, gailuen inpedantzien neurketa, egindako neurketen ziurgabetasuna eta LISNen kalibrazioari buruzko artearen egoera jorratu da atal honetan:

5.2.1. M. A. O. Kharraz et al. [14]

"Characterization of the Input Impedance of Household Appliances in the FCC Frequency Band" artikuluan, 9 kHz eta 500 kHz bitarteko FCC bandan gailuen sarrerainpedantzia neurtzen da LISN baten bitartez. Proposatzen den neurketa muntaia honako hau da:

Irudia 14: M. A. O. Kharraz et al. proposatutako neurketen muntaia [14]

Irudian ikusten den moduan, neurketak VNA *(Vector Network Analyzer)* edo sare analizatzaile batekin egiten dira, Keysight E5061B-arekin hain zuzen ere. LISNa, alde batetik, sare elektrikora konektatzen da eta, bestetik, akopladore kapazitibo baten bitartez (ZIV TABT- 2) sare analizatzailera.

DUT-en (*Device Under Test*) -dokumentu honetan aipatu den EUTn baliokidea dena- inpedantzia neurtzeko sare analizatzailearekin bi neurketa egiten dira:

- 1. DUTa LISNera konektatu barik S(1,1) parametroa neurtzen da, "Irudia 14"-an agertzen den "(a)" atalean jasotzen den moduan. Parametroa hau $S(1,1)_{ref}$ deitzen zaio.
- DUTa LISNera konektatuta S(1,1) parametroa berriro neurtzen da, Irudia 14"-an agertzen den "(b)" atalean jasotzen den moduan. Parametro berri hau S(1,1)_{tot} moduan ezagutuko da.

Behin S(1,1) parametroak neurtuta, S parametroen propietateak aplikatuz, Z_{ref} eta Z_{tot} inpedantzien balioak lortuko dira, "(a)" eta "(b)" egoerei dagokien inpedantziak, hurrenez hurren.²

$$Z_{ref} = 50 \cdot \frac{1 + S(1,1)_{ref}}{1 - S(1,1)_{ref}} \qquad \qquad Z_{tot} = 50 \cdot \frac{1 + S(1,1)_{tot}}{1 - S(1,1)_{tot}}$$

Behin bi inpedantziak lortuta, hauen arteko paraleloa desegin behar da DUTaren inpedantzia lortu ahal izateko:

$$Z_{tot} = \frac{Z_{DUT} \cdot Z_{ref}}{Z_{DUT} + Z_{ref}} \qquad \rightarrow \qquad Z_{DUT} = \frac{Z_{ref} \cdot Z_{tot}}{Z_{ref} - Z_{tot}}$$

 Z_{DUT} inpedantzia hori LISNarekin aztertu den gailuaren inpedantzia izango da.

5.2.2. <u>A. S. de Beer et al. [15]</u>

"Problematic Aspects when using a LISN for Converter EMI Characterisation" artikuluan, LISN bat EMI *(ElectroMagnetic Interference)* interferentzien neurketa egiteko erabiltzen denean, neurketa hauetan LISNak duen eragina kuantifikatu da.

 $^{^2}$ 50 zenbakia VNAek duten Z_0 inpedantziaren balioari dagokio, 50 Ω dena.

Analisi hau, geroago emaitzen irudietan ikusi ahal izango den moduan, 10 kHz eta 30 MHz bitartean egin da, eta honako muntaiarekin gauzatu egin dira neurketak:

Irudia 16: Modu diferentzialeko neurketak [15]

Irudia 17: Modu komuneko neurketak [15]

Muntaia honekin, EMI interferentzien neurketan LISNak erabiltzeak, edo ez erabiltzeak, duen eragina honako emaitza hauetan islatu da:

Irudia 18: Modu diferentzialeko neurketen emaitzak

Irudia 19: Modu komuneko neurketan emaitzak

5.2.3. <u>C. M. Tsui et al. [16]</u>

"Calibration of AMN/LISN at SCL" artikuluan LISN mota bat kalibratzeko garatutako metodoa azaltzen da. Ikerketa honetan, CISPR-16-1-2 arauak xedatutako 50 Ω /(50 μ H + 5 Ω) inpedantzia duen LISN kalibratzeko metodoa azaltzen da, 9 kHz eta 30 MHz frekuentzia bitartean.

Kalibrazio hau egiteko, sarearen eta EUTaren portuetan BNC *(Bayonet Neill-Concelman)* konektoreak jartzea ezinbestekoa da, hau dela medio, ikerketa taldeak honako sare elektrikoaren entxufea eta BNCa duten konektoreak sortu ditu:

Irudia 20: Sare elektrikoaren entxufeak eta BNC konektorea duten konektoreak [16]

Konektore hauekin, LISN bat karakterizatzeko behar diren parametroak neurtuko dira. Azalpenetan eta irudietan honako izenekin aipatuko dira: kable horia duen

konektorea "EUT port to BNC adaptor" izango da; eta entxufe konektorea duen kutxa, ordea, "Power port to BNC adaptor" izenarekin adieraziko da.

Lehendabizi, EUTaren portuan dagoen sarrera-inpedantzia neurtzen da, honako muntaia honekin:

Irudia 21: EUTaren inpedantzia neurtzeko muntaia [16]

Muntaia honekin bi neurketa egiten dira, lehengoan sarearen portuan *(Power Port)* zirkuitu laburra jartzen da, eta bigarrenean zirkuitu irekia. Bi neurketa hauek kalibrazioa txostenean biltzen dira. Sare analizatzaileak, VNA, gordetako S(1,1) parametroari honako eragiketa matematikoak aplikatzen zaizkio $Z_{EUT_{port}}$ portuaren sarrera-inpedantzia lortzeko:

$$Z_{EUT_port} = 50 \cdot \frac{1 + S(1,1)}{1 - S(1,1)}$$
$$|Z_{EUT_port}| = \left| 50 \cdot \frac{1 + S(1,1)}{1 - S(1,1)} \right| + \Delta Z_{adapter} + \Delta Z_{termination}$$
$$phase\left(Z_{EUT_{port}} \right) = phase\left(50 \cdot \frac{1 + S(1,1)}{1 - S(1,1)} \right) + \Delta P_{adapter}$$

non:

 $\Delta Z_{adapter}$ "EUT port to BNC adaptor"-ek eragiten duen.

 $\Delta Z_{termination}$ neurgailuaren konektoreak sortzen duen.

 $\Delta P_{adapter}$ "EUT port to BNC adaptor" konektorearen kableak sortutako fasearen atzerapena den.

Sare elektrikoaren portuaren eta neurgailuaren portuaren arteko isolamendua kuantifikatzeko honako muntaia hau erabili behar da:

Irudia 22: Isolamendua neurtzeko muntaia [16]

Isolamenduaren balioak honako formularekin lortzen dira:

 $Isolation = -mag(S(2,1)) + A_{adaptor}$

non A_{adaptor} konektoreek sortzen duten atenuazioa den.

VDF (Voltage Division Factor) faktorea lortzeko bi neurketa egin behar dira:

Irudia 23: VDFa neurtzeko 1. Muntaia (set 1) [16]

Irudia 24: VDFa neurtzeko 2. Muntaia (set 2) [16]

VDFaren balioak lortzeko honako formula matematiko hau aplikatu behar da bi muntaien neurketekin:

$$VDF = mag(S(2,1)_{set2}) - mag(S(2,1)_{set1})$$

Amaitzeko, konektore guztiek sortzen duten atenuazioa kalkulatzeko hurrengo muntaian S(2,1) parametroa erabiltzen da:

Irudia 25: Konektoreek sortutako atenuazioa neurtzeko muntaia

6. AUKEREN ANALISIA

GrAL honetan proposatutako helburuak lortzeko hainbat aukera tekniko kontuan hartu ziren. Atal honetan zehar aukera tekniko hauek aztertuko dira, bat hautatuko da eta aukeraketaren zergatia azalduko da.

Zirkuitu elektronikoak era profesional batean simulatu dezaketen software programen bilaketa egin ostean bi nagusi aurkitu dira: OrCAD PSpice eta ADS Keysight. Programa bi hauen ezaugarriak hauek dira:

6.1. OrCAD PSpice [17]

OrCAD programa PSpice markaren simulazio pakete bat da. Arrazoi sinple bat dela eta OrCAD zirkuituen simulazioan programarik ezagunena da: eskema elektronikoen simulazioetarako erraminta unibertsala da. *OrCAD Capture CIS*-ekin

CADENCE PCB SOLUTIONS

(Component Information System), osagaien informazioa interneten dauden datu-base zentralizatuetatik atzi daiteke. Beste alde batetik, *Interchange Architecture* erramintan diseinuen zeregin guztiak ingurune berean konbinatzen dira. *OrCAD Capture*-k interfaze intuitiboa dauka eta, era eskematikoan, industriaren estandarren ezaugarriak eskaintzen du. *OrCAD Capture*-ek egiten duen osagaien datuen kudeaketa dela eta, egiten diren simulazioak era oso efizientean burutzen dira.

OrCAD programa paketearekin hainbat simulazio egin daitezke, haien artean eskema unibertsalak sortzea (PCB, FPGA edo CPLD, bloke diagramak) edota zirkuitu eskematikoak Verilog edo VHDL bidez programatzea. Gainera, zirkuitu elektronikoen S parametroak eta tentsio eta korronte simulazioak ere egin ditzake, GrAL hau aurrera eramateko ezinbestekoak direnak.

6.2. ADS Keysight [18]

Keysight Technologies enpresaren ADS *(Advanced Design System)* programa telekomunikazio gailu ugariren diseinua egiteko programa da; hauen artean osziladoreak, anplifikadoreak, banda zabaleko sareak, irrati komunikazio sistemak, sateliteak, etab. daudelarik.

Software honek osagaien liburutegi zabala du, gainera, mota ^{Irudia 27: ADSren logoa} guztietako simulazioetan zehaztasun handiko kalkuluak egiten ditu; hau dela eta, emaitzak zirkuituen konportamendua era fidagarrian islatzen du. Etengabeko simulazioen bidez eta zirkuituen analisirako tresna batzuen laguntzaz, zirkuituen hobekuntza eta optimizazioa ahalbidetzen du, erabiltzailearen beharren arabera konfigura daitekeena. ADSek simulazio algoritmoak eta konbergentzia aurreratuen errutinak ere inplementatzen ditu, antzeko beste programa batzuekin alderatuta simulazio-denborak era nabarmenean murriztuz.

Programa honek, GrAL hau egiteko ezinbestekoak diren simulazio erramintak inplementatzen ditu; S parametroen, korronte eta tentsioen simulazioak, hain zuzen ere.

6.3. <u>Aukeren analisiaren eraginkortasun taula</u>

Atal honetan, simulazio programa bat aukeratzeko egin den eraginkortasun analisia agertzen da. Ikerketa lan honetan egingo diren simulazioak egiteko erabiliko den programa aukeratzeko hurrengo irizpideak erabili dira:

- **Programaren ezagutza (10 puntu):** GrAL hau jorratuko duen junior ikertzaileak programa hauen inguruan duen ezagutza ebaluatuko da.
- **Programa edukitzea (2 puntu)**: Junior eta senior ikertzaileek programa hau beraien ordenagailuetan jadanik instalatuta duten puntuatuko da (puntu bat programa hau instalatuta duten ikertzaile bakoitzeko).

- *User friendly* (3 puntu): Simulazio programa erabiltzeko erraztasuna ebaluatzen da atal honetan.
- **TSR taldearen zirkuituak (5 puntu):** TSR taldeak dituen zirkuituak zein programetan inplementatuta dituen puntuatuko da hemen.

Aukeraketa egiteko irizpideak zeintzuk izango diren azalduta, bi aukerek atal bakoitzean lortutako puntuazioaren taula egin da:

Ebaluatuko diren item-ak	Programaren ezagutza (10 puntu)	Programa edukitzea (2 puntu)	User friendly (3 puntu)	TSR taldearen zirkuituak (5 puntu)	Emaitza (20 puntutatik)
OrCAD PSpice	5	0	2	0	7
ADS Keysight	8	2	1	5	16

Taula 5: Aukeren analisiaren eraginkortasun taula

6.4. <u>Hautatutako aukeraren arrazoiketa</u>

GrAL honetan jorratutako lana egiteko ADS Keysight programa aukeratu egin da. Hautaketa hau egitearen arrazoi nagusiak hauek diralarik:

- ADS programaren erabileraren ezagutza sakonagoa izatea. Programa hau Telekomunikazio Teknologiaren Ingeniaritzako Graduko azken kurtsoetan oso erabilia da eta honen erabilpenean trebetasuna handiagoa da.
- Aurreko puntuan azaldutakoa dela eta, junior eta senior ikertzaileek programa hau huen ordenagailuetan instalatuta daukate.
- ADS programak, era oso intuitiboan, zirkuitu elektronikoen optimizazioa eta afinazioa *(tuning)* ahalbidetzen du.
- TSR taldeak zirkuitu elektroniko askoren eskema elektrikoak ADS inplementatuta ditu jadanik. GrAL honetan existitzen diren zirkuitu hauek berrerabiliko dira, eta proiektuan zehar sortutakoak TSR taldeari emango zaizkio.

7. PROPOSATUTAKO IRTENBIDEAREN DESKRIBAPENA

Proiektuaren atal honetan GrAL-ean xedatutako helburuak jorratzeko erabili den prozedura azalduko da. Azalpenak bete behar diren helburuen arabera banatuta dago. Dena dela, hiru atal nagusi bereiz daitezke: ADS programarekin egindako simulazioak, LISNen ziurgabetasun kontribuzioa kalkulatzen duen euskarri digitala eta, azkenik, LISN berri baten eskema elektronikoa proposatzen duen atala.

Atal honetan jorratuko diren gaien eskema honako hau da:

Irudia 28:"7." puntuan jorratuko diren gaien eskema

7.1. ADS bidezko simulazioak

7.1.1. LISNaren karakterizazioa

Lehendabizi, helburuen lehenengo puntuaren irtenbidea azalduko da, hots, "Software bidezko simulazioen bidez, TSR ikerketa taldeak duen *R&S®ENV216 Two-Line V-Network* LISNaren, edo baliokidearen, S parametroen bidezko konportamenduaren karakterizazioa egitea".

R&S®ENV216 LISNa karakterizatzen hasteko bere eskema elektrikoa lortu behar da. Rohde & Schwarz markak, LISN honen eskuliburuan, honako zirkuitu hau jasotzen du:

Irudia 29: R&S®ENV216 LISNaren zirkuitu elektronikoa [28]

Irudian ikus daitekeen moduan, *R&S®ENV216* LISNaren zirkuituaren osagai elektronikoen hainbat zehaztapen ez dira agertzen. Hau dela eta, CISPR 16-1-2 arauak bildutako 50 Ω/(50 µH + 5 Ω) LISN motaren eskema erabiliko da (txosten honen "Irudia 12"-an agertzen dena). Izan ere, *R&S®ENV216* LISNa CISPR 16-1-2 arauko mota honetan sailkatzen da eta, arauei jarraituz, antzeko konportamendua izan behar du.

$50~\Omega/(50~\mu H+5~\Omega)$ LISNaren zirkuitua ADSen inplementatzen da, honako hau lortuz:

Irudia 30: 50 Ω/(50 μ H + 5 Ω) LISNa ADSn inplementatua

Irudian ikus daitekeen moduan, "Term" delako ADS programaren osagai batzuk gehitu zaizkio, hauen inpedantzia 50 Ω -ekoa da eta sare analizatzaile baten terminalen antzera funtzionatzen dute. Hauekin zirkuituaren S parametroak lortuko dira. Hauek LISNaren 3 portuetan kokatzen dira: 1. (IN) sare elektrikoaren portuari dagokio, 2. (EUT) analizatu nahi den gailuaren portuan kokatzen da eta 3. (Rx) neurgailuaren portura, gehienetan sare analizatzaile bat, espektro analizatzaile bat edo osziloskopio bat izango dena.

Portuaren zenb.	Portuaren siglak	Portuaren konexioa
1	IN	Sare elektrikoa
2	EUT	EUT
3	Rx	Neurgailura

Taula 6: LISNaren portuen eta ADSko eskematikoaren arteko erlazioa

LISNaren konportamendua karakterizatzeko S parametrorik garrantzitsuenak honako hauek dira:

- 3 portuetan sortzen den islapena kontuan hartzen dutenak (S(1,1), S(2,2) eta S(3,3)). Hauek portu bakoitzean dagoen sarrera-inpedantzia karakterizatzeko erabiliko dira: Z_{IN_port}, Z_{EUT_port} eta Z_{RX_port}
- IN portutik EUTaren porturako transferentzia funtzioa (S(2,1) edo $S_{EUT,IN}$), sare elektrikotik EUTra pasatzen diren interferentziak ebaluatzeko erabiliko dena.
- EUTaren portutik Rx porturako transferentzia funtzioa (S(3,2) edo S_{RX,EUT}), EUTak sortutako emisioak neurgailura pasatzerakoan jasaten dituzten atenuazioa eta desfasea kuantifikatzeko.

• IN portutik Rx porturako transferentzia funtzioa (S(3,1) edo $S_{RX,IN}$), sare elektrikoan dauden perturbazioak neurgailura iristen diren konprobatzeko.

Portuen arteko S parametroak (S_{EUT,IN}, S_{RX,EUT} eta S_{RX,IN}) eskala logaritmikora pasatuz gero, zuzenean portuen arteko transferentzia kurbak lortzen dira. Portuen sarrerainpedantzia lortzeko, ordea, S parametroen propietateak aplikatu beharko dira, adibidez, EUTaren porturako ekuazio hau erabiliz lortzen da:³

$$Z_{EUT_port} = Z_0 \ \frac{1 + S(2,2)}{1 - S(2,2)} = 50 \ \frac{1 + S(2,2)}{1 - S(2,2)}$$

Portu ezberdinen sarrera-inpedantzia lortzeko, portu horri lotutako S(x,x) parametroa aurreko ekuazioan ordezkatuz lortuko da.

Simulazioak egiteko, zirkuituen osagaiak definitzeaz gain, simulazioaren frekuentzia tartea ere konfiguratu behar da. Simulazio hauek egiteko 0 Hz eta 30 MHz bitarteko frekuentzia banda aukeratu egin da, 50 $\Omega/(50 \,\mu\text{H} + 5 \,\Omega)$ motako LISNa 30 MHz arte neurketak egiteko baimenduta dagoelako. Dena dela, erresoluzio ezberdinak dituzten bi tarte aukeratu dira. 0 Hz eta 500 kHz bitartean simulazioen kalkuluak 500 Hz-en multiploetan egingo dira, 1001 lagin lortuz. 500 kHz eta 30 MHz bitartean simulazioen kalkuluak 5 kHz-en multiploetan egiteko konfiguratu da, 5900 lagin lortuz. Lagintze berezi hau, datuak, frekuentziaren ardatzean, eskala logaritmikoa duten grafikoetan aurkeztuko direlako aukeratu da. Metodo honekin frekuentzia baxuetan grafikoen bereizmena handia izango da.

Atal honetan, "7.1.1 LISNaren karakterizazioa" puntuan, erabilitako LISNaren zirkuitua ADS programan inplementatzeaz gain, egonkortze-sarearen zirkuituarekin ADS programako konponentea sortu da. Honen erabilera "IV. ERANSKINA: ERABILTZAILE GIDA" eranskinean azalduta dago.

 $^{^{3}}$ Z₀ inpedantzia karakteristikoa 50 Ω -ekoa denez, zuzenean ordezka daiteke.

7.1.2. <u>Inpedantzia ezberdinak duten EUTn aurrean LISNak duen</u> <u>konportamenduaren karakterizazioa</u>

Atal honen xedea, inpedantzia balio ezberdinak duten EUTak erabiltzerakoan LISNak S parametroetan, eta hortaz portu guztien sarrera-inpedantzian, jasaten duen aldakuntza kuantifikatzea da.

Atal hau jorratzeko, "Irudia 30"-an agertzen den zirkuituaren bigarren terminalaren, "EUT" terminala inpedantzia aldatuz lortuko da. Inpedantziaren hauek 5 Ω eta 50 Ω bitarteko balioak izango dituzte, eta zirkuitu irekia ($\infty \Omega$) eta zirkuitu laburra (0Ω) muturreko egoerak ere simulatuko dira. Azkenengo hauek era egokian simulatzeko inpedantzia balio oso handiak eta oso txikiak erabiliko dira, ADSn S parametroak lortzeko "Term" osagaiak 0 eta ∞ inpedantzien balioak onartzen ez dituelako. Hauek izango dira, beraz, erabiliko diren EUTn inpedantziaren balio guztiak:

1e12 Ω (∞ Ω)		
50 Ω		
40 Ω		
30 Ω		
20 Ω		
10 Ω		
5 Ω		
1e-6 Ω (0 Ω)		
1e-12 Ω (0 Ω)		
Taula 7: Z _{EUT} EUTn inpedantzien balioekin		

Simulatuko den zirkuitua hurrengoa izango da:

Irudia 31: EUT inpedantzia ezberdinen eragina karakterizatzeko LISN zirkuituaren eskema elektrikoa

Zirkuitu honen bitartez, hurrengo parametroak simulatuko dira: $S_{EUT,IN}$, $S_{RX,EUT}$, $S_{RX,IN}$, Z_{IN_port} eta Z_{RX_port} . Lortutako parametro bakoitzaren balioekin bi grafiko sortuko dira (bat parametroen moduluarekin eta beste bat parametroen fasearekin) EUT ezberdinek LISNetan duten eragina era intuitiboagoan ulertu ahal izateko.

Simulazioen frekuentzia tartea, aurreko atalean deskribatutako berdina izango da: 0 Hz eta 500 kHz artean 500 Hz-en frekuentziaren multiploetan laginduko da eta 500 kHz eta 30 MHz bitartean, berriz, 5 kHz-en multiploetan.

7.1.3. LISNaren konportamendua emisioen neurketan

Atal honetan, helburuen bigarren puntua jorratzeko metodologia azalduko da, hots, "Simulazioen bitartez, *R&S®ENV216 Two-Line V-Network* LISNak, edo baliokideak, emisio elektromagnetikoen aurrean duen erantzuna kuantifikatzea".

50 $\Omega/(50 \mu H + 5 \Omega)$ LISNa emisio elektromagnetikoen elkarrekintzan duen konportamendua karakterizatzeko, "Irudia 30"-an agertzen den zirkuitua oinarri hartuta, honako bi eskema elektriko hauek erabili egin dira:

Irudia 32: EUTn emisioak kuantifikatzeko eskema elektronikoa, sarearen inpedantzia ktea. delarik

Irudia 33: EUTn emisioak kuantifikatzeko eskema elektronikoa, sarearen inpedantzia aldakorra delarik

Simulazio hauek egiteko bi eskema proposatzen dira; sareak emisioen neurketan duen eragina aztertzeko asmoz. "Irudia 32"-an sarearen inpedantzia 5 Ω -ekoa da (R26 osagaia); izan ere, LV sare elektrikoaren inpedantzia oso txikia da. "Irudia 33"-an, ordea, ADSren "Z1P1" osagaia erabili da sarearen inpedantzia simulatzeko, honen bitartez, frekuentziaren menpeko funtzio polinomikoekin inpedantziak sortu ahal direlako, eta sarearen balio errealak dituen ekuazioa erabili da (balio hau lortzeko prozedura txosten honen "7.2.1" atalean jorratuko da).

EUTi dagokionez, aurreko ataletan egindako moduan, "Taula 7"-an bildutako balio ezberdinekin egingo dira simulazioak, emisioen neurketan EUTn inpedantzien balioa duten eragina analizatzeko.

Simulazio hauek 0 Hz eta 500 kHz frekuentzia tartean egingo dira, 100 Hz-eko bereizmenarekin, 5001 lagin lortuko dira.

Simulazio hauen bitartez, LISNaren EUT portutik Rx porturako transferentzia funtzioak karakterizatuko dira, hau dela medio, eskema elektrikoan agertzen diren V_{EUT} eta V_{RX} tentsioen parametroak simulatu eta gorde beharko dira. Transferentzia kurba hauek eskala logaritmikoan egongo dira, hau dela eta, honako formula aplikatuko da:

 $|H(f)| = -20\log|V_{EUT}/V_{Rx}|$

7.1.4. EMC iragazki komertzialen karakterizazioa

Atal honetan helburuen hirugarren puntua jorratuko da, "Software bidezko simulazioak erabiliz, EMC iragazki komertzial batzuen karakterizazioa egitea" proposatzen duena. Atal honen xedea, EMC iragazki batzuen karakterizazioa egiteaz gain, EMC iragazki hauek - frekuentzian zehar inpedantzia aldakorra dutela jakinik – LISNera konektatzerakoan hauek duten eragina kuantifikatzea izango da.

Hau jorratzeko, EMC iragazki komertzial batzuk aukeratu egin dira, SCHURTER fabrikatzailearen 5500.2044, 5500.2052, 5500.2055 eta 5500.2060 erreferentzia duten iragazkiak, hain zuzen ere. Aukeraketa hau hiru arrazoi nagusitan oinarritzen da: aipatutako SCHURTER markaren lau iragazkiak TSR laborategian daude, hauen zirkuituak fabrikatzailearen *Data Sheet*-etan daude eta zirkuitu hauen ezaugarrien neurketak egin dira [19], simulazioak ondo egin direla egiaztatzeko baliagarriak izango direnak.

Iragazki hauen analisiarekin hasteko, beraien zirkuitu elektronikoak lortu behar dira. Eskematiko hauek 3 datu fitxa ezberdinetan daude [20] [21] [22].

Irudia 34: SCHURTER 5500.2044 iragazkiaren zirkuitu elektronikoa [20]

Osagaiak	Balioak
L	0,8 mH
Сх	100 nF
Су	2,2 nF
R	0,5 MΩ

Taula 8: SCHURTER 5500.2044 iragazkiaren zirkuitu elektronikoaren osagaiak [20]

Irudia 35: SCHURTER 5500.2052 eta 5500.2055 iragazkien zirkuitu elektronikoak [21]

	Balioak		
Osagaiak	5500.2052	5500.2055	
L1	10 mH	6 mH	
L2	0,4 mH	0,5 mH	
L3	0,4 mH	-	
Cx1	0,1 µF	0,1 µF	
Cx2	0,47 µF	0,68 µF	
Cy1	1,5 nF	10 nF	
Cy2	1 nF	4,7 nF	
R	1 ΜΩ	1 ΜΩ	

Taula 9: SCHURTER 5500.2052 eta 5500.2055 iragazkien zirkuitu elektronikoen osagaiak [21]

Irudia 36: SCHURTER 5500.2060 iragazkiaren zirkuitu elektronikoa [22]

Osagaiak	Balioak
L	0,8 mH
Сх	0,1 µF
Cy1	1,5 nF
Су2	1 nF
R	1 MΩ

Taula 10: SCHURTER 5500.2060 iragazkiaren zirkuitu elektronikoaren osagaiak [22]

Zirkuitu hauek nola erabiltzen diren hobeto ulertzeko, argitu behar dago "Irudia 34", "Irudia 35" eta "Irudia 36" agertzen diren "1)" eta "2)" ikurrek, sare elektrikoaren portua eta kargen portua adierazten dute, hurrenez hurren. Hau dela eta, zirkuitu hauen funtzionamendua ez da simetrikoa eta LV sarea "1)" portuan konektatu behar da eta karga elektrikoak "2)" portura.

ADSen inplementatutako zirkuituak honako hauek izango dira:

Irudia 37: ADSen inplementatutako 5500.2044 iragazkiaren zirkuitua

Irudia 38: ADSen inplementatutako 5500.2052 iragazkiaren zirkuitua

Irudia 39: ADSen inplementatutako 5500.2055 iragazkiaren zirkuitua

Irudia 40: ADSen inplementatutako 5500.2060 iragazkiaren zirkuitua

Zirkuitu hauekin bi simulazio mota ezberdin egingo dira, EMC iragazkien konportamendua bakarrik aztertzeko:.

- "Term" osagai bakar batekin zirkuituen "1)" portura konekatatua, (sarearen portua) sarrera-inpedantzia simulatzea, "2)" portua (kargaren portua) zirkuitu irekian utzita.
- "Term" osagai bi erabilita, bi portuetan konektatuta, zirkuituaren transferentzia funtzioak simulatzea, S(1,2) eta S(2,1) parametroen bidez.

Simulazio hauek 0 Hz eta 500 kHz frekuentzia tartean egingo dira, 100 Hz-eko bereizmenarekin, 5001 lagin lortuko dira.

7.1.4.1. <u>EMC iragazkiek LISNaren S parametroetan duten</u> <u>eragina</u>

Behin EMC iragazkien konportamendua karakterizatuta dagoela, egonkortze-sare hauek LISNaren konportamenduan duten eragina aztertuko da. Jarraituko den prozedura, txosten honen "7.1.2" atalean azaldutakoaren antzekoa izango da. Hau lortzeko, honako simulazio hauek egingo dira:

 EMC iragazkien "1)" portua LISNaren EUTaren portuan konektatuta, eta "2)" portua "Term" terminal batetara, LISNaren konportamendua hurrengo parametroetan ebaluatzeko: S_{EUT,IN}, S_{RX,EUT}, S_{RX,IN}, Z_{IN_port} eta Z_{RX_port}.

Parametro hauek lortzeko, EMC iragazkien zirkuituak LISNaren zirkuitura konektatu beharko da. Hau lortzeko, zirkuituetan "L_eut" eta "N_eut" etiketak duten konexio puntuak zirkuitu laburtzen dira eta EMC iragazkien "2)" portuan EUT "Term -EUT" terminala jarri behar da.

Simulazioen frekuentzia tartea, aurreko atalean deskribatutako berdina izango da: 0 Hz eta 500 kHz artean 500 Hz-en frekuentziaren multiploetan laginduko da eta 500 kHz eta 30 MHz bitartean, berriz, 5 kHz-en multiploetan.

7.1.4.2. <u>EMC iragazkiek LISNaren emisioen neurketan duten</u> <u>eragina</u>

Atal honetan, GrAL honen "7.1.3" atalean jorratu den moduan, EMC iragazki ezberdinek LISNaren emisioen neurketan duten eragina kuantifikatuko da.

Parametro hauek lortzeko, EMC iragazkien zirkuituak LISNaren zirkuitura konektatu beharko dira. Hau lortzeko, zirkuituetan "L_eut" eta "N_eut" etiketak duten konexio puntuak zirkuitu laburtzen dira eta EMC iragazkien "2)" portuan tentsio sorgailua jarriko da. Emisioen transferentzia funtzioak lortzeko, V_eut (EMC iragazkien "2)" portuan dagoen tentsioa izango dena) eta V_rx (LISNaren neurgailuaren portuan dagoena) tentsio parametroak zatitu beharko dira transferentzia funtzioak lortzeko. Hurrengo formula honen bitartez eskala logaritmikora pasatuko da:

 $|H(f)| = -20\log|V_{EUT}/V_{Rx}|$

"7.1.3" atalean egin den moduan, simulazio puntuak 0 Hz eta 500 kHz bitartean egingo dira, 100 Hz-ko bereizmenarekin, 5001 puntutako simulazioak lortuko direlarik.

Atal honetan, "7.1.4 EMC iragazki komertzialen karakterizazioa" puntuan, erabilitako EMC iragazkiak ADS programan inplementatzeaz gain, iragazkien zirkuituekin ADS programako konponenteak sortu dira. Hauen erabilera "IV. ERANSKINA: ERABILTZAILE GIDA" eranskinean azalduta dago.

7.2. <u>LISNaren sintesia</u>

Atal honen bitartez, LISN berri bat sortzeko eman diren pausoak azalduko dira. Zentzu honetan egindako lanik garrantzitsuenak hauek izango litzateke: LV sare elektrikoaren inpedantziaren karakterizazioa, CISPR 16-1-2 arauaren 50 $\Omega/(50 \mu H + 5 \Omega)$ LISN motaren osagaien eragina egonkortze-sarearen funtzionamenduan eta sare elektrikoaren ezaugarriak dituen LISN berriaren eskema elektrikoa.

7.2.1. LV sare elektrikoaren inpedantziaren karakterizazioa

Aipatu den moduan, atal honen helburua sare elektrikoaren ezaugarriak dituen LISN bat sortzea da, proiektu osoan zehar azaldutako moduan, LISNak, EUTaren portuan, behe-tentsioko sare elektrikoaren inpedantzia simulatzeko sortu direlako, besteak beste. Sare elektrikoaren propietate hauek aztertzeko, TSR taldeak LV sare elektrikoan egindako inpedantziaren neurketak oinarri moduan hartu dira [10].

"2.1" atalean azaldu den moduan, sarearen propietateak nahiko aldakorrak dira, neurketa puntuaren menpekoa direlako. Hau dela medio, sarearen inpedantzian egindako neurketatik, batezbesteko balioak jasotzen dituen neurketa hautatu da. Hori dela eta, analisi hau egiteko, "Irudia 41"-en agertzen diren datuak erabili dira.

Irudia 41: TSR ikerketa taldeak hiri-zonaldean egindako sarearen inpedantziaren neurketak [11]

Grafiko bi hauetatik inpedantziaren moduluaren eta fasearen balio batzuk aukeratu egin dira:

Frek (kHz)	Sarearen inpedantziaren modulua (Ω)
50	2,5
100	10
150	2,5
250	5
400	7,5
450	10
500	12,5

Taula 11: TSRk egindako sarearen neurketen inpedantziaren modulua [10]

Erol (kUz)	Sarearen inpedantziaren fasea	
FIER (KHZ)	(rad)	(°)
50	1,2	68,75
125	0	0,000
200	0,8	45,83
250	1,2	68,75
300	1,3	74,48
350	1,4	80,21
400	1,4	80,21
450	1,4	80,21
500	1,4	80,21

Taula 12: TSRk egindako sarearen neurketen inpedantziaren fasea [10]

Balio hauen bitartez, eta Excel programaren erregresio polinomikoak egiteko erramintarekin, sarearen inpedantziaren karakterizazioa lortu egin da, emaitza honako hau delarik:

$$\begin{split} |Z_{Sarea}\left(f\right)| = -2,1348E-27\cdot f^{\,4} + 1,1106E-19\cdot f^{\,3} - 1,8225E-12\cdot f^{\,2} + 1,3908E-05\cdot f + 3,4567 \\ phase(Z_{Sarea}\left(f\right)) = -2,338E-25\cdot f^{\,5} + 3,754E-19\cdot f^{\,4} - 2,275E-13\cdot f^{\,3} + 6,323E-08\cdot f^{\,2} - 7,518E-03\cdot f + 3,125E+022 \end{split}$$

7.2.2. <u>50 Ω/(50 μH + 5 Ω) LISN motaren osagaien eragina</u> egonkortze-sarearen funtzionamenduan

Puntu hau egiteko, 50 $\Omega/(50 \mu H + 5 \Omega)$ LISN motako zirkuitua eta honetan dauden osagai elektronikoak sakonki aztertu dira. Azterketa hau, ADS simulazio programaren

Optimization eta *Tuning* erramintekin garatu egin da. Analisi honen ondorioz, LISNaren osagaiek, eta hauen balioek, egonkortze-sarearen S parametroetan eta portuen sarrera-inpedantzietan duten eragina konprobatu da. 50 Ω / (50 μ H + 5 Ω) LISN motaren osagaiei erreferentzia egingo zaienez, zirkuituaren eskema elektronikoa eta osagaien zerrenda berriro agertuko dira:

Irudia 42: 50 Ω/(50 μ H + 5 Ω) LISN motaren eskema elektronikoa [2]

Osagaia	Balioa
R 1	5 Ω
R2	10 Ω
Rз	1 000 Ω
R4	50 Ω
R5	50 Ω (neurketa hargailuaren sarrera-inpedantzia)
C1	8 μF
C2	4 μF
Сз	0,25 μF
L1	50 µH
L2	250 μΗ

Taula 13: 50 $\Omega/(50 \mu H + 5 \Omega)$ LISN motaren osagai elektronikoen taula [2]

Egindako lanarekin honako ondorio hauetara heldu da:

 LISN batek EUTaren portuan aurkezten duen sarrera-inpedantzia "R_{par.}/(L_{ser.}+R_{ser.})" moduan adierazten dela jakinda, egiazta daiteke osagaien balio hauek "Taula 13"-an eta "Irudia 42"-an bildutako osagaiekin erlazionatuta

daudela. Hots, $R_{par.} R_4$ erresistentzia da, $L_{ser} L_1$ harilaren balio bera dauka eta $R_{ser.} R_1$ erresistentziaren baliokidea da. Hau dela eta, EUT portuan inpedantzia ezberdina duten LISN berriak sortzeko balio hauek aldatu beharko dira nahi den inpedantzia simulatzeko.

- 2. Osagai hauen (R₄, L₁ eta R₁) balioak honela eragiten dute Z_{EUT_port} portuaren inpedantzia: R₄ erresistentzia frekuentzia altuetan Z_{EUT_port} portuak aurkeztuko duen inpedantziaren modulua ezarriko du. C₁ kondentsadoreak Z_{EUT_port} portuak maiztasun baxuetan aurkeztuko duen inpedantzia baldintzatuko du. R₁ erresistentziaren balioak EUTaren portuan, frekuentzia ertainetan (1 kHz eta 1 MHz bitartean, kasuan kasu), dagoen inpedantziaren moduluaren balioa baldintzatzen du. Azkenik, L₁-ekin Z_{EUT_port} inpedantzia zein frekuentzia tartetan handitzen den ezartzen da. Hau da, osagai honek 50 µH balioa duenean Z_{EUT_port} inpedantziaren moduluaren hazkundea 6 kHz eta 5 MHz bitartean ematen da; balioa, adibidez, 2,5 µH-koa denean hazkunde hori 3 MHz eta 15 MHz bitartean funtzioa ardatz horizontalean desplazatzen duela esan daiteke.
- 3. "Taula 13"-an eta "Irudia 42"-an jasotako R₂, C₂ eta L₂ osagaiek Z_{IN_port} sarera konektatzen den portuan dute eragina. R₂ erresistentzia frekuentzia altuetan Z_{IN_port} portuak aurkeztuko duen inpedantziaren modulua ezarriko du. C₂ kondentsadoreak Z_{IN_port} portuak maiztasun baxuetan aurkeztuko duen inpedantzia baldintzatuko du. Azkenik, L₂-k L₁ duen konportamendu bera aurkezten du Z_{IN_port} portuan.
- 4. Neurgailuaren portuari dagokionez, C₃ kondentsadoreak Z_{RX_port} neurgailuaren portuan, frekuentzia baxuetan, inpedantzia altua izatea baldintzatzen du; C₃-k zenbat eta balio txikiagoa izan, orduan eta inpedantzia handiagoa izango du Z_{RX_port} frekuentzia baxuetan. R₃ erresistentziak Z_{RX_port} portuaren inpedantziaren frekuentzia altuetan du eragina; zenbat eta altuagoa izan erresistentzia honen balioa, frekuentzia altuetan, Z_{RX_port} portuaren inpedantzia 50 Ω -eko baliotik hurbilago egongo da.
- 5. L₁ harilaren balioa txikiagoa egiteak, S_{RX-EUT} parametroaren balioak okerragotzen dute. Parametro honetan honelako aldaketa izatea nahiko kritikoa da, EUT-tik neurgailura doazen, eta neurtu nahi diren, emisio elektromagnetikoak ahuldu egiten direlako. Egoera hau dela eta, 50 Ω /(50 μ H + 5 Ω) LISNean 90 kHz-eko frekuentziatik aurrera S_{RX-EUT} parametroak -3 dB baino gutxiagoko ahuldura aurkezten du.

7.2.3. LISN berriaren eskema elektronikoa

Aurreko bi ataletan azaldutakoa kontuan hartuz, LISN berri baten eskema elektronikoa proposatuko da. Zirkuitu berri honekin, sarearen inpedantziaren modulua era fidagarriagoan simulatzen duen LISNa proposatuko da. Dena dela, sintesi hau CISPR 16-1-2 arauak xedatutako 50 $\Omega/(50 \mu H + 5 \Omega)$ LISN motaren eskema elektrikoaren osagaien balioak aldatuz lortu egin da. Gainera, sarearen inpedantziaren fasearen balioak ez dira kontuan hartuko sintesia egiteko.

Sarearen balioak eta erregresio polinomikoa oinarri hartuta, EUTaren portuan LISN berriak izan behar duen sarrera-inpedantzia zehaztu behar da. Horretarako, "Taula 13"an agertzen diren sarearen inpedantziaren moduluaren balioei beste batzuk gehitu zaizkio. Izan ere, LISN guztiak, frekuentzia altuetan, 50 Ω inpedantziako modulua aurkezten dute EUTaren portuan.

Frek (MHz)	Sarearen inpedantziaren modulua (Ω)
1	15
5	40
10	50
30	50

Taula 14: Sarearen inpedantziaren moduluaren balioen datu gehigarriak

Datu berri hauekin, eta Excel programan inplementatutako kalkulu eta grafiko batzuen bitartez, sarearen inpedantziaren modulua hobeto simulatzen duen inpedantziaren sintesi sinplea eginda da, honako hau delarik:

LISNak EUTaren portuan duen sarrera-inpedantzia 50 $\Omega/(2,5 \mu H + 4 \Omega)$ izateko CISPR 16-1-2 arauan jasotzen den 50 $\Omega/(50 \mu H + 5\Omega)$ zirkuituan zenbait aldaketa proposatzen dira, honako hauek izanik:

	CISPR 16-1-2	LISN berria
Osagaia	50 Ω/(50 μΗ + 5Ω)	50 Ω/(2,5 μH + 4 Ω)
	Balioa	Balioa
R ₁	5 Ω	4 Ω
R ₂	10 Ω	10 Ω
R ₃	1000 Ω	5000 Ω
R_4	50 Ω	50 Ω
R ₅	50 Ω	50 Ω
C ₁	8 μF	8 μF
C ₂	4 μ <i>F</i>	4 μ <i>F</i>
C ₃	0,25 μ <i>F</i>	0,25 μ <i>F</i>
L_1	50 µH	2,5 μΗ
L ₂	250 μΗ	250 μΗ

Taula 15: 50 Ω/(50 μH + 5Ω) eta 50 Ω/(2,5 μH + 4Ω) LISN moten osagaiak

7.3. <u>LISNen ziurgabetasun kontribuzioa zehazteko</u> <u>eskarri digitalak</u>

Neurketa baten ziurgabetasuna, hau egiteko erabiltzen diren ekipo guztien ziurgabetasunek osatzen LISNak dute. Atal honetan. erabiltzerakoan hauek neurketen ziurgabetasunari gehitzen dioten kontribuzioa kalkulatzen duten baliabide digitalen garapena azalduko da.

Irudia 43: Inpedantzien moduluaren eta fasearen tolerantzien definizioa

LISNen ziurgabetasun kontribuzioa kalkulatzeko lehenengo pausoak, UNE-EN 55016-1-2 arauaren "Anexo I" eranskinean agertzen diren hastapenetan oinarritzen dira. Honetan. CISPR 16-1-2 arauak LISNentzako arautzen dituen tolerantziak direla eta. LISNekin egiten diren neurketak duten ziurgabetasuna analizatzen da. CISPR 16-1-2 arauan EUTaren portuan LISNek izan behar duten inpedantzia xedatzen da; dena dela, balio hauek tolerantzia batzuk biltzen dituzte: anplitudean \pm % 20-koa eta fasean \pm 11,5 °-koa. Egoera honek, "Irudia 43"-an agertzen den figuran, sortzen den "tolerantzia zirkulua" (Tolerance Circle) adierazita dator, non ΔZ zirkunferentziak EUTaren portuaren sarrera-inpedantzian baimendutako balioak barruan biltzen dituen. Azaldutako inpedantziak baimenduta dauden arren, neurketetan eragina dute, probaren baldintza teorikoak aldatzen direlako. Hau dela eta, neurketen ziurgabetasuna kalkulatu behar da. Dena dela, LISN batek neurketetan sortzen duen tolerantziak ziurgabetasunaren kontribuzioa, sortutako EUTaren sarrerainpedantziaren errealaren (Z_{an}) eta EUTek duten islapen koefizientearen (Γ_{eut}) menpekoa izango da; eta hortaz, EUTen inpedantziek eragina izango dute LISNekin egindako neurketen ziurgabetasunaren kontribuzioan.

Rhode & Schawarz fabrikatzaileak *"R&S – AN Impedance Uncertainty Contribution"* programa informatikoa sortu du ziurgabetasun kontribuzio hau lortzeko. Kalkulagailu

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

honen bidez, CISPR 16-1-2 arauan biltzen diren LISNen zirkuituekin egindako neurketen desbiderapen maximoa jakin daiteke. Kalkulagailu honek, EUTaren portuan, frekuentzia zehatz baterako, LISNak aurkezten duen sarrera-inpedantzia eskatzen du, bai moduluan bai fasean. Behin hau jakinda, programak frekuentzia horretarako emisioen neurketak duten desbiderapen maximoa adieraziko du, baita EUTaren islapen koefizientearen fasea ere.

Artificial Network (AN)						
C 50 Ω // 50 μH + 5 Ω	C 50 Q /	/5µH+1Ω				
© 50 Ω // 50 μH C 150 Ω						
nput Values (AN Impedance)						
Frequ	ency	30	MHz			
Magni	itude	40	Ω			
PI	hase 🗌	0	deg			
Results						
Maximum Devi	ation	-1.94	dÐ			
Phase of EUT reflection coeffic	cient	358.1	deg			

Irudia 44: R&S - AN Impedance Uncertainty Contribution [23]

7.3.1. <u>LISN mota baten ziurgabetasun kontribuzioaren</u> <u>kalkuluak</u>

"R&S – AN Impedance Uncertainty Contribution" programak egiten dituen kalkulu hauek orokortu daitezke; edozein LISN motak frekuentzia ezberdinetan, izan dezakeen desbiderapen maximoa kalkulatzeko. Kalkulu hauek egiteko prozedura, R&S fabrikatzaileak ziurgabetasunaren kalkulagailuaren gidaliburutik lortu dira [23]:

EUTaren portuan dagoen inpedantzia teorikoa, adibidez 50 Ω /(50 µH +5 Ω), Z_{nom} moduan definitzen badugu; portu horretan, araututako tolerantziak direla eta egon daitekeen inpedantzia erreala, Z_{an}, honako hau izango da:

$$Z_{an} = Z_{nom} + \alpha |Z_{nom}| \exp(j\theta)$$
, non $0 \le \alpha \le 0,2$ eta $0 \le \theta < 2\pi$

Formula honetan, α inpedantziaren moduluan egon daitekeen tolerantzia adierazten du, eta θ , berriz, tolerantzia horrek sortutako bektoreak izango duen noranzkoa definituko du, guzti hau "Irudia 43"-an agertzen den ΔZ bektorea da.

Gainera, Z_{an} eta Z_{nom} inpedantzien islapen koefizientea definitu beharko da:

$$\Gamma_{an} = \frac{\mathbf{Z}_{an} - \mathbf{Z}_0}{\mathbf{Z}_{an} + \mathbf{Z}_0} \qquad \qquad \Gamma_{nom} = \frac{\mathbf{Z}_{nom} - \mathbf{Z}_0}{\mathbf{Z}_{nom} + \mathbf{Z}_0}$$

Beste alde betetik, EUT gailuak sortuko duen islapen koefizientea kontuan hartu behar da:

$$\Gamma_{eut} = \rho \exp(j\phi), non \quad 0 \le \rho \le 1 \quad eta \quad 0 \le \phi < 2\pi$$

Hemen, ρ islapen koefizientearen modulua izango da, eta ϕ islapen koefizientearen fasea.

Zirkuituen eta mikrouhinen teoria aplikatuz, Z_{nom} inpedantzia idealean dagoen tentsio erorketa kalkula daiteke:

$$V_{nom} = \frac{Z_{nom}}{Z_{eut} + Z_{nom}} V_0 = \frac{(1 + \Gamma_{nom})(1 - \Gamma_{eut})}{2(1 - \Gamma_{nom}\Gamma_{eut})} V_0$$

Gauza bera egin daiteke Zan inpedantzia errealarekin:

$$V_{an} = \frac{Z_{an}}{Z_{eut} + Z_{an}} V_0 = \frac{(1 + \Gamma_{an})(1 - \Gamma_{eut})}{2(1 - \Gamma_{an}\Gamma_{eut})} V_0$$

Jakinda LISN baten neurketen desbiderapena Z_{an} inpedantzian dagoen tentsioaren eta Z_{nom} inpedantziaren zatidura dela:

Neurketen desbiderapena =
$$\left|\frac{V_{an}}{V_{nom}}\right| = \left|\frac{1+\Gamma_{an}}{1-\Gamma_{an}\Gamma_{eut}} \cdot \frac{1-\Gamma_{nom}\Gamma_{eut}}{1+\Gamma_{nom}}\right|$$

LISNen ziurgabetasun kontribuzioak eragindako desbiderapen maximoa eta minimoa kalkulatzeko, aurreko formula aplikatu beharko da honako baldintza hauekin:

- Muturreko egoeren balioak lortu nahi direnez, ziurgabetasun kontribuzioak eragindako desbiderapen maximoak eta minimoak, Z_{an} inpedantziaren α aldagaiaren balioa 0,2 izan beharko da.
- Printzipio bera aplikatuz, Γ_{eut} islapen koefizientearen ρ parametroaren balioa 1 izan beharko da.
- Desbiderapenaren balio maximoak eta minimoak Z_{an} inpedantziaren θ eta Γ_{eut} islapen koefizientearen ϕ parametroen konbinazio guztiak kalkulatuz,

parametro hauetan 1º aldaketa eginez, lortuko dira. Guztira, 129.600 kalkulu egin behako dira.

• Desbiderapen maximoa, kalkulu guztietatik balio absolutu handiena lortu duen emaitzak adieraziko du.

Aurreko pausoekin lortutako desbiderapen maximoa, frekuentzia jakin batean LISN mota jakin batek izango duen ziurgabetasun kontribuzioak adieraziko du. LISNaren ziurgabetasun kontribuzioa frekuentzia ezberdinetan zein den jakiteko, kalkulu hauek frekuentzia zehatz horietan aplikatu beharko dira.

Lan honetan, kalkulu hauek Excel orri batean automatizatu egin dira. Euskarri digital honen bidez, edozein LISN motaren ziurgabetasun kontribuzioa kalkula daiteke, eta ez bakarrik CISPR 16-1-2 arauak biltzen dituenak, "R&S – AN Impedance Uncertainty Contribution" programak egiten duen moduan. Erremienta honekin etorkizunean TSR taldeak proposatu ditzakeen LISN berrien ziurgabetasun kontribuzioa kalkulatu ahalko dira.

Input param.		Zo	50 Ω		Z_lisn	50 Ω //	5,00E-05 H +	0 Ω	Zan	
Output									α (0 ≤ α ≤ 0,2)	0,2
									Гeut	
									ρ (0 ≤ ρ ≤ 1)	1
		Freq (MHz)	Min (Van/Vnom)	Max (Van/Vnom)						
	<u>f1</u>	0,15 MHz	2,6751 dB	-2,5978 dB						
	<u>f2</u>	0,16 MHz	2,5565 dB	-2,5317 dB						
	<u>f3</u>	0,17 MHz	2,4564 dB	-2,4747 dB						
	<u>f4</u>	0,18 MHz	2,3708 dB	-2,4253 dB						
	<u>f5</u>	0,19 MHz	2,2971 dB	-2,3823 dB						
	<u>f6</u>	0,20 MHz	2,2332 dB	-2,3445 dB						
	<u>f7</u>	0,25 MHz	2,0132 dB	-2,2114 dB						
	<u>f8</u>	0,30 MHz	1,8880 dB	-2,1335 dB						
	<u>f9</u>	0,50 MHz	1,6969 dB	-2,0118 dB						
	<u>f10</u>	1,00 MHz	1,6124 dB	-1,9570 dB						
	<u>f11</u>	5,00 MHz	1,5847 dB	-1,9389 dB						
	<u>f12</u>	10,00 MHz	1,5839 dB	-1,9383 dB						
	<u>f13</u>	30,00 MHz	1,5837 dB	-1,9382 dB						

Excel programan inplementatutako kalkuluen orria hau da:

Irudia 46: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelaren orri nagusia

Irudia 47: Edozein LISN motak frekuentzia batean duen ziurgabetasun kontribuzioa kalkulatzeko Excelaren orria

Aurreko irudietan ikus daitekeen moduan, "Irudia 46"-an (Excelaren orri nagusia) hainbat parametro konfigura daitezke: inpedantzia karakteristikoa (Z₀), LISNaren EUTaren portuan dagoen inpedantzia teorikoa (Z_lisn), Z_{an}-ren α tolerantzia, Γ_{eut} islapen koefizientearen modulua (ρ) eta ziurgabetasun kontribuzioa kalkulatzeko frekuentziak. "Irudia 47"-n ordea, frekuentzia bakoitzeko Excelak burutzen dituen kalkuluen emaitzak agertzen dira.

7.3.2. <u>LISN konkretu baten ziurgabetasun kontribuzioaren</u> <u>kalkuluak</u>

Aurreko ataleko kalkuluetatik abiatuta, LISN konkretu batek EUTaren portuan duen inpedantzia zein den jakinda, gailu honek neurketetan sortzen duen ziurgabetasun kontribuzioa kalkulatzeko algoritmoa ere sor daiteke.

LISN batek EUTaren portuan duen inpedantzia bi eratara lor daiteke: kalibrazio txosten baten bidez, edota neurketak eginez (sare analizatzaile batekin, adibidez). Metodo biekin, frekuentzia ezberdinetan EUTaren portuan LISNak duen inpedantziaren balioak lortuko dira. Kalibrazio liburuan agertutako edo laborategi batean neurtutako inpedantzia hauek Z_{an} izango dira, LISNak duen inpedantzia erreala

delako. Frekuentzia ezberdinetarako Z_{an} zein den jakinda, ziurgabetasun kontribuzioa kalkulatzeko Γ_{eut} islapen koefizienteak duen aldakortasuna bakarrik kontuan hartu behar da. Dena dela, desbiderapen maximoaren formula berdina izango da:

Neurketen desbiderapena =
$$\left|\frac{V_{an}}{V_{nom}}\right| = \left|\frac{1+\Gamma_{an}}{1-\Gamma_{an}\Gamma_{eut}} \cdot \frac{1-\Gamma_{nom}\Gamma_{eut}}{1+\Gamma_{nom}}\right|$$

Hortaz, kalkuluak honako prozedura berria jarraituko dute:

- Muturreko egoeren balioak lortu nahi direnez (ziurgabetasun kontribuzioak eragindako desbiderapen maximoak eta minimoak) Γ_{eut} islapen koefizientearen ρ parametroaren balioa 1 izan beharko du.
- Desbiderapenaren balio maximoak eta minimoak Γ_{eut} islapen koefizientearen ϕ parametroaren konbinazio guztiak kalkulatuz, parametro honetan 1° aldaketa eginez, lortuko dira. Guztira, 360 kalkulu egin behako dira.
- Desbiderapen maximoa, kalkulu guztietatik balio absolutuan handiena den emaitzak adieraziko du. Balio maximo hau ematen duen Γ_{eut} islapen koefizientearen ϕ fasea ere adieraziko da.

Irudia 48: LISN jakin baten ziurgabetasun kontribuzioa lortzeko prozedura

Azaldutako prozedura guztia Excel baten inplementatu da, TSR ikerketa taldeak duen *R&S®ENV216 Two-Line V-Network* LISNaren ziurgabetasun kontribuzioa kalkulatzeko. Kalkuluak egin baino lehen, R&S fabrikatzaileak emandako LISN konkretu honen kalibrazio txostenetik EUTaren sarrera-inpedantzia lortu da:

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

Freq (MHz)	$ Zan (\Omega)$	phase(Zan) (°)
0,009 MHz	5,60 Ω	19,01 °
0,015 MHz	5,94 Ω	34,72 °
0,020 MHz	6,95 Ω	43,69 °
0,025 MHz	8,13 Ω	48,50 °
0,030 MHz	9,37 Ω	51,88 °
0,050 MHz	14,59 Ω	55,89 °
0,070 MHz	19,10 Ω	54,53 °
0,080 MHz	21,39 Ω	53,17 °
0,100 MHz	25,25 Ω	50,12 °
0,150 MHz	32,62 Ω	42,01 °
0,170 MHz	34,68 Ω	39,24 °
0,200 MHz	37,30 Ω	35,42 °
0,250 MHz	40,36 Ω	30,35 °
0,300 MHz	42,45 Ω	26,38 °
0,350 MHz	43,95 Ω	23,22 °
0,400 MHz	44,87 Ω	20,74 °
0,500 MHz	46,19 Ω	17,01 °
0,700 MHz	47,50 Ω	12,53 °
0,900 MHz	48,06 Ω	9,91 °
1,000 MHz	48,23 Ω	8,98 °
1,500 MHz	48,66 Ω	6,23 °
2,000 MHz	48,83 Ω	4,86 °
2,500 MHz	48,91 Ω	4,07 °
3,000 MHz	48,97 Ω	3,56 °
4,000 MHz	49,04 Ω	3,00 °
5,000 MHz	49,08 Ω	2,72 °
7,000 MHz	49,13 Ω	2,53 °
10,000 MHz	49,13 Ω	2,53 °
15,000 MHz	49,09 Ω	3,00 °
20,000 MHz	48,88 Ω	3,24 °
30.000 MHz	47 72 0	4 1 4 °

 $Taula \ 16: {\tt R} \& {\tt S} \\ @ {\tt ENV216} \\ {\tt Two-Line} \\ V-{\tt Network} \\ LISNaren \\ Z_{an} \\ inpedantzia \\ [24]$

Programan, *R&S®ENV216 Two-Line V-Network* LISNaren kalibrazio txostenean agertzen diren inpedantziaren balioak sartuz eta LISN honen mota 50 Ω /(50 µH + 5 Ω) dela adieraziz, LISN honek frekuentzia ezberdinetan duen ziurgabetasun kontribuzioa azalduko da.

Kalibrazio txostenean jasotako LISNaren Z_{an} inpedantzia erreala eta Z_{nom} inpedantzia teorikoa nahiko hurbileko balioak dituztela egiazta daiteke. Gainera Z_{an} inpedantziaren balioak tolerantzia parametroen barruan daude, grafiko honetan frogatzen den moduan (III. Eranskineko139. orrialdean grafiko honen handipena dago):

 $Grafikoa 5: 50 \,\Omega/(50 \,\mu\text{H} + 5 \,\Omega) in pedantziaren balio nominala, TSR laborategiko LISNaren in pedantzia eta tolerantzia maximoko zirkunferentzien (Tolerance Circle) diagrama$

Input param.		Z_lisn	50 Ω	//	5,00E-05 H	5 Ω	
Output							
Zo	50 Ω						
Гeut							
ρ (0 ≤ ρ ≤ 1)	1		Freq (MHz)	Zan (Ω) [mod]	phase(Zan) (°)	MAXIMUN DEVIATION	Phase of EUT reflection coeff.
		<u>f1</u>	0,009 MHz	5,60 Ω	19,01 °	0,7742 dB	153 °
		<u>f2</u>	0,015 MHz	5,94 Ω	34,72 °	-0,8393 dB	199 °
		<u>f3</u>	0,020 MHz	6,95 Ω	43,69 °	-0,5722 dB	207 °
		<u>f4</u>	0,025 MHz	8,13 Ω	48,50 °	-0,4330 dB	209 °
		<u>f5</u>	0,030 MHz	9,37 Ω	51,88 °	-0,2830 dB	214 °
		<u>f6</u>	0,050 MHz	14,59 Ω	55,89 °	-0,1236 dB	204 °
		fZ	0,070 MHz	19,10 Ω	54,53 °	-0,1966 dB	219 °
		<u>f8</u>	0,080 MHz	21,39 Ω	53,17 °	-0,2118 dB	220 °
		<u>f9</u>	0,100 MHz	25,25 Ω	50,12 °	-0,2152 dB	229 °
		<u>f10</u>	0,150 MHz	32,62 Ω	42,01 °	-0,2461 dB	249 °
		<u>f11</u>	0,170 MHz	34,68 Ω	39,24 °	-0,2506 dB	259 °
		<u>f12</u>	0,200 MHz	37,30 Ω	35,42 °	-0,2500 dB	268 °
		<u>f13</u>	0,250 MHz	40,36 Ω	30,35 °	-0,2410 dB	284 °
		<u>f14</u>	0,300 MHz	42,45 Ω	26,38 °	-0,2287 dB	294 °
		<u>f15</u>	0,350 MHz	43,95 Ω	23,22 °	-0,2114 dB	301 °
		<u>f16</u>	0,400 MHz	44,87 Ω	20,74 °	-0,2227 dB	311 °
		<u>f17</u>	0,500 MHz	46,19 Ω	17,01 °	-0,2126 dB	321 °
		<u>f18</u>	0,700 MHz	47,50 Ω	12,53 °	-0,1915 dB	336 °
		<u>f19</u>	0,900 MHz	48,06 Ω	9,91 °	-0,1865 dB	344 °
		<u>f20</u>	1,000 MHz	48,23 Ω	8,98 °	-0,1847 dB	348 °
		<u>f21</u>	1,500 MHz	48,66 Ω	6,23 °	-0,1776 dB	6 °
		<u>f22</u>	2,000 MHz	48,83 Ω	4,86 °	-0,1743 dB	9 °
		<u>f23</u>	2,500 MHz	48,91 Ω	4,07 °	-0,1744 dB	16 °
		<u>f24</u>	3,000 MHz	48,97 Ω	3,56 °	-0,1730 dB	21 °
		<u>f25</u>	4,000 MHz	49,04 Ω	3,00 °	-0,1746 dB	30 °
		<u>f26</u>	5,000 MHz	49,08 Ω	2,72 °	-0,1789 dB	39 °
		<u>f27</u>	7,000 MHz	49,13 Ω	2,53 °	-0,1913 dB	49 °
		<u>f28</u>	10,000 MHz	49,13 Ω	2,53 °	-0,2160 dB	56 °
		<u>f29</u>	15,000 MHz	49,09 Ω	3,00 °	-0,2718 dB	65 °
		<u>f30</u>	20,000 MHz	48,88 Ω	3,24 °	-0,3243 dB	64 °
		f31	30,000 MHz	47,72 Ω	4,14 °	-0,5461 dB	55 °

Excelak honako interfaze hau dauka:

Irudia 49: LISN konkretu baten ziurgabetasun kontribuzioa kalkulatzeko Excelaren orri nagusia

						mod	phase (rad)	phase(deg.)	Binomial	
					Znom	5,2150 Ω	0,4633 rad	26,54 °	4,66526383087926+2,33056266711284j	
					Zan	5,6000 Ω	0,3318 rad	19,01 °	5,29458573748263+1,82410577227459j	
Freq	9,00E+03 Hz	Zo	50 Ω		Гnom	0,829657	3,0476 rad	174,62 °	-0,825996302267206+0,0778483174528491j	
					Гап	0,808728	3,0678 rad	175,77 *	-0,806529345180011+0,0595953575268854j	
Z_lisn	50 Ω	//	5,00E-05 H +	5 Ω						
					φ (deg.)	φ (rad)	Гeut		Van/Vnom	20log(Van/Vnom)
Гeut					0°	0,0000 rad	1		1,06455396779813-0,14080746256075j	0,6187 dB
ρ (0 ≤ ρ ≤ 1)	1				1°	0,0175 rad	0,999847695156391+0	,0174524064372835	1,0646634045938-0,140702910682259j	0,6194 dB
					2 °	0,0349 rad	0,999390827019096+0	,034899496702501j	1,0647725950002-0,140598207730445j	0,6202 dB
					3 *	0,0524 rad	0,998629534754574+0	,0523359562429438	1,06488155535635-0,140493338514686j	0,6210 dB
Emaitza					4 °	0,0698 rad	0,997564050259824+0	,0697564737441253	1,06499030186394-0,140388287743831j	0,6217 dB
Maximun Deviation	0,7742 dB				5 °	0,0873 rad	0,996194698091746+0	,0871557427476582	1,06509885059692-0,140283040017503j	0,6225 dB
φ (deg.)	153*				6 *	0,1047 rad	0,994521895368273+0	,104528463267653j	1,06520721751082-0,140177579817247j	0,6232 dB
					7 *	0,1222 rad	0,992546151641322+0	,121869343405147j	1,06531541845197-0,14007189149755j	0,6240 dB
					8°	0,1396 rad	0,99026806874157+0,1	L39173100960065j	1,06542346916654-0,139965959276662j	0,6248 dB
20log(Van/Vnom)					9°	0,1571 rad	0,987688340595138+0	,156434465040231j	1,06553138530948-0,139859767227288j	0,6255 dB
Max	0,7742 dB				10 *	0,1745 rad	0,984807753012208+0	,17364817766693j	1,06563918245338-0,139753299267062j	0,6263 dB
Min	-0,6356 dB				11°	0,1920 rad	0,981627183447664+0	,190808995376545j	1,06574687609713-0,139646539148856j	0,6270 dB
					12 °	0,2094 rad	0,978147600733806+0	,207911690817759j	1,06585448167457-0,139539470450851j	0,6278 dB
					13 °	0,2269 rad	0,974370064785235+0	,224951054343865j	1,065962014563-0,139432076566415j	0,6285 dB
					14 °	0,2443 rad	0,970295726275996+0	,241921895599668j	1,06606949009161-0,139324340693721j	0,6293 dB
					15 °	0,2618 rad	0,965925826289068+0	,258819045102521j	1,06617692354994-0,139216245825155j	0,6300 dB
					16 *	0,2793 rad	0,961261695938319+0	,275637355816999j	1,06628433019612-0,139107774736414j	0,6308 dB
					17 °	0,2967 rad	0,956304755963036+0	,292371704722737j	1,06639172526514-0,138998909975368j	0,6315 dB
					18 °	0,3142 rad	0,951056516295154+0	,309016994374947j	1,06649912397712-0,138889633850599j	0,6322 dB
					19°	0,3316 rad	0,945518575599317+0	,325568154457157j	1,06660654154552-0,138779928419671j	0,6330 dB
					20 °	0,3491 rad	0,939692620785908+0	,342020143325669j	1,06671399318527-0,138669775477031j	0,6337 dB

Irudia 50:Edozein LISN motak frekuentzia batean duen ziurgabetasun kontribuzioa kalkulatzeko Excelaren orria

"Irudia 49"-an Excel honen orrialde nagusia ikusten da. Honetan konfigura daitezkeen parametroak biltzen dira: inpedantzia karakteristikoa (Z₀), LISNaren EUTaren portuan dagoen inpedantzia teorikoa (Z_lisn), Γ_{eut} islapen koefizientearen ρ , ziurgabetasun kontribuzioa ebaluatzeko frekuentziak eta frekuentzia bakoitzean neurtutako (edo kalibrazio txostenean bildutako) LISNaren inpedantzia erreala. Euskarri digital honek, emaitza moduan, frekuentzia bakoitzean LISNak izango duen ziurgabetasun kontribuzioa eta EUTaren islapen koefizientearen zein angelurako emango duen ziurgabetasun kontribuzio hori itzultzen ditu. "Irudia 50"-an berriz, frekuentzia batean Excel orrian egin beharreko kalkuluak azaltzen dira.

Deskribatutako kalkuluekin sortu den baliabide digital honekin edozein LISN motak, nahi den tolerantziarekin, neurketetan sortzen duen ziurgabetasun kontribuzioa kalkula daiteke. "R&S – AN Impedance Uncertainty Contribution" programak, ordea, CISPR 16-1-2 arau teknikoko LISN motek, % 20ko tolerantziarekin, neurketetan sortzen duten ziurgabetasun kontribuzioak bakarrik kalkula ditzake.

Atal honetan, "7.3 LISNen ziurgabetasun kontribuzioa zehazteko eskarri digitalak" puntuan, adierazitako baliabide digital guztien funtzionamendua zehatza "IV. ERANSKINA: ERABILTZAILE GIDA" eranskinean azalduta dago.

8. EMAITZEN DESKRIBAPENA

Atal honetan, GrAL honetan emandako irtenbideari esker lortutako emaitzak azalduko dira. Gainera, emaitzen azalpena dokumentu honetan dagoen "I. Eranskina: Emaitzak" atalean dauden grafikoekin eta taulekin erlazionatuko dira. Emaitzen antolakuntzari dagokionez, txosten honen "7." puntuan erabilitako lanaren sailkapena jarraituko da.

8.1. ADS bidezko simulazioak

ADS bidezko simulazioen emaitzen grafiko eta taula guztiak dokumentu honen "I. ERANSKINA: ADS SIMULAZIOEN EMAITZAK" eranskinean agertzen dira.

8.1.1. LISNaren karakterizazioa

Puntu honetan jorratutako simulazioekin, 50 $\Omega/(50\mu H + 5 \Omega)$ LISN mota ADS programan ondo inplementatzea eta, behin hau ziurtatuta, egonkortze-sare honen funtzionamendua karakterizatzea lortu da.

Zirkuitua ondo inplementatu dela egiaztatzeko, EUTaren portuan CISPR 16-1-2 arauak xedatzen duen sarrera-inpedantziaren balioak daudela egiaztatu da. Hau, aipatutako eranskinaren taula honetan ikus daiteke:

• Taula 23: Z_{EUT_port} portuaren sarrera-inpedantziaren simulazioen emaitzak eta UNE-EN 55016-1-2 arauak xedatutako balioak [2]

LISNaren karakterizazioa biltzen duten grafikoak honako hauek dira:

- Grafikoa 6: 50 $\Omega/(50 \mu H + 5 \Omega)$ LISNaren portuen sarrera-inpedantziaren modulua
- Grafikoa 7: 50 $\Omega/(50 \mu H + 5 \Omega)$ LISNaren portuen sarrera-inpedantziaren fasea
- Grafikoa 8: 50 $\Omega/($ 50 μH +5 $\Omega)$ LISN motaren portuen arteko transferentzia kurben modulua
- Grafikoa 9: 50 $\Omega/(50~\mu H$ +5 $\Omega)$ LISN motaren portuen arteko transferentzia kurben fasea

Grafiko hauen bitartez honako hastapen hauek egiaztatu dira:

- 1. Sarearen (IN) eta EUTaren portuaren artean LISNa behe-paseko iragazki baten moduan funtzionatzen du.
- 2. EUTaren eta neurgailuaren (Rx) portuen artean LISNa goi-paseko iragazkiaren konportamendua dauka.
- 3. Sarearen (IN) eta neurgailuaren (Rx) portuen artean LISNa behe paseko iragazki baten funtzionamendua dauka. Dena dela, gutxienez 25 dB-ko atenuazioa ziurtatzen da bi portu hauen artean, hortaz, sarean dauden emisioak neurgailura oso ahulduta helduko direla konproba daiteke.
- 4. Z_{IN_port} inpedantziaren modulua ia konstante mantentzen da LISNaren lan maiztasunetan, 20 Ω ingurukoa delarik.
- 5. Z_{EUT_port} eta Z_{RX_port} portuen sarrera-inpedantziaren moduluak 50 Ω inguruko balioak lortzen dituzte frekuentzia altuetan, 1 MHz-tik aurrera.
- 6. Z_{RX_port} sarrera-inpedantziaren modulua oso balio altuak ditu frekuentzia baxuetan, 0 Hz eta 10 kHz bitartean.

8.1.2. <u>Inpedantzia ezberdinak duten EUTn aurrean LISNak duen</u> <u>konportamenduaren karakterizazioa</u>

Atal honetan, inpedantzia ezberdinak duten EUTak erabili dira LISNaren funtzionamenduan duten eragina kuantifikatzeko. Eranskinean honako grafiko hauek biltzen dute simulazio guztien emaitzak:

- Grafikoa 10: S_{EUT-IN} transferentzia funtzioaren anplitudea
- Grafikoa 11: S_{EUT-IN} transferentzia funtzioren fasea
- Grafikoa 12: S_{RX-EUT} transferentzia funtzioaren anplitudea
- Grafikoa 13: S_{RX-EUT} transferentzia funtzioaren fasea
- Grafikoa 14: S_{EUT-IN} transferentzia funtzioaren anplitudea
- Grafikoa 15: S_{EUT-IN} transferentzia funtzioaren fasea
- Grafikoa 16: Z_{RX_port} neurgailuaren portuaren sarrera-inpedantziaren modulua
- Grafikoa 17: Z_{RX_port} neurgailuaren portuaren sarrera-inpedantziaren modulua (handipena)
- Grafikoa 18: Z_{RX_port} neurgailuaren portuaren sarrera-inpedantziaren fasea
- Grafikoa 19: Z_{IN_port} neurgailuaren portuaren sarrera-inpedantziaren modulua

• Grafikoa 20: Z_{IN_port} neurgailuaren portuaren sarrera-inpedantziaren fasea

Grafiko hauetan jasotako informazioaren bitartez honako ondorio hauetara hel daiteke:

- 1. Portuen arteko S parametroetan, 5 Ω eta 50 Ω bitarteko inpedantzia duten EUTak ez dute eragin handirik egiten. Zirkuitu laburra eta zirkuitu irekia simulatzen duten inpedantziek, ordea, S parametroen modulua era oso esanguratsuan ahultzen dute.
- 2. LISNaren lan frekuentzia tartean, EUT ezberdinek ez dute eragin handirik eragiten $Z_{IN_{port}}$ sarrera-inpedantzian.
- Frekuentzia altuetan, 1 MHz-etik aurrera, Z_{RX_port} inpedantziak aurkezten duen inpedantzia EUTaren inpedantziaren oso antzekoa da.

8.1.3. LISNaren konportamendua emisioen neurketan

Lanaren atal honetan, LISN batekin emisioak neurtzerakoan eta inpedantzia ezberdinak dituzten EUTak erabiltzerako, egonkortze-sareak duen konportamendua karakterizatu da. Emaitzak honako grafiko hauetan bildu dira:

- Grafikoa 21: |H(f)| transferentzia kurbaren modulua
- Grafikoa 22: |H(f)| transferentzia kurbaren modulua (handipena)
- Grafikoa 23: H(f) transferentzia kurbaren fasea

Simulazio hauen bitartez, aurreko azpiatalean adierazi den moduan, 5 Ω eta 50 Ω bitarteko inpedantziek ez dutela eragin askorik sorrarazten egiaztatu da. Dena dela, zirkuitu laburra eta zirkuitu irekia, H(f) transferentzia funtzioetan, nahiko ahuldura handiak sortzen dituztela frogatu da.

8.1.4. EMC iragazki komertzialen karakterizazioa

Simulazio hauen bitartez, SCHUTER fabrikatzailearen iragazkien karakterizazioa eta hauek ADSn ondo inplementatu direla egiaztatuko da. Simulazio hauek honako grafikoetan bildu dira:

- Grafikoa 24: EMC iragazkien sarrera-inpedantziaren modulua (zirkuitu irekian)
- Grafikoa 25: EMC iragazkien sarrera-inpedantziaren fasea (zirkuitu irekian)
- Grafikoa 26: EMC iragazkien S(1,2) transferentzia funtzioen modulua
- Grafikoa 27: EMC iragazkien S(1,2) transferentzia funtzioen fasea
- Grafikoa 28: EMC iragazkien S(2,1) transferentzia funtzioen modulua
- Grafikoa 29: EMC iragazkien S(2,1) transferentzia funtzioen fasea

EMC iragazkiak ondo inplementatu direla egiaztatu da, TSR taldeak egindako neurketa batzuen bidez [19], simulatutako balioak eta errealitatean neurtutakoak berdinak direlako.

8.1.4.1. <u>EMC iragazkiek LISNaren S parametroetan duten</u> <u>eragina</u>

Behin EMC iragazkiak karakterizatuta, hauek LISNaren zirkuituan konektatzerakoan duten eragina kuantifikatu da. Honako grafiko hauetan jaso dira simulazioen emaitzak:

- Grafikoa 30: EMC iragazkiekin S_{EUT-IN} transferentzia funtzioaren anplitudea
- Grafikoa 31: EMC iragazkiekin S_{EUT-IN} transferentzia funtzioaren fasea
- Grafikoa 32: EMC iragazkiekin S_{RX-EUT} transferentzia funtzioaren anplitudea
- Grafikoa 33: EMC iragazkiekin S_{RX-EUT} transferentzia funtzioaren fasea
- Grafikoa 34: EMC iragazkiekin S_{RX-IN} transferentzia funtzioaren anplitudea
- Grafikoa 35: EMC iragazkiekin S_{RX-IN} transferentzia funtzioaren anplitudea
- Grafikoa 36: EMC iragazkiekin Z_{RX_port} neurgailuaren portuaren sarrera-inpedantziaren modulua
- Grafikoa 37: EMC iragazkiekin Z_{RX_port} neurgailuaren portuaren sarrera-inpedantziaren fasea
- Grafikoa 38: Z_{IN_port} sarearen portuaren sarrera-inpedantziaren modulua

- Grafikoa 39: Z_{IN_port} sarearen portuaren sarrera-inpedantziaren modulua
 Emaitza hauek izanda, hainbat ondorio lortu dira:
- 1. Emaitzak EUT konstanteekin konparatzen badira, zenbait frekuentziatan emaitzen balioak aldatzen dira, oro har, parametroen moduluen grafika guztien itxura nahiko antzeko da. Beraz, LISNa bere funtzioa era egokian betetzen du.
- 2. Parametroen fasea, ordea, guztiz aldatzen da inpedantzia konstantea duten EUTekin konparatzen bada.
- 3. Aipagarria da Z_{IN_port} sarrera-inpedantzian aldaketarik ez dela nabaritzen, inpedantzia konstantea duten EUTn grafikekin konparatzen bada.

8.1.4.2. <u>EMC iragazkiek LISNaren emisioen neurketan duten</u> <u>eragina</u>

Aurreko azpiatalean egindako moduan, EMC iragazkian emisioen neurketan LISNaren funtzionamenduan duten eragina kuantifikatu egin da. Simulazioen emaitzak eranskinaren honako grafiko hauetan jaso egin dira:

- Grafikoa 40: EMC iragazkiekin |H(f)| transferentzia kurbaren modulua
- Grafikoa 41: EMC iragazkiekin H(f) transferentzia kurbaren fasea

Simulazio hauekin, emisioen neurketen transferentzia kurben modulua, inpedantzia konstanteekin konparatuz, aldatzen direla ikusi da. Inpedantzia konstantea duten EUTak erabiliz, frekuentzia altuetan (100 kHz-etik aurrera), emisioen neurketek jasaten duten ahuldura gehienez 5 dB-koa da; EMC iragazkiekin, berriz, 20 dB-ko ahuldura ematen da, frekuentzia zehatz batzuetan izan ezik.

8.2. <u>LISNaren sintesia</u>

GrAL-aren atal honen bitartez, LISN berri bat sortzeko eman diren lehenengo hastapenen emaitzak biltzen dira. LISNaren sintesiari buruzko emaitzen grafiko eta taula guztiak dokumentu honen "II. ERANSKINA: L.I.S.N.AREN SINTESIAREN EMAITZAK" eranskinean agertzen dira.

8.2.1. LV sare elektrikoaren inpedantziaren karakterizazioa

Sare elektrikoaren karakterizazioari dagokionez, egindako erregresio polinomikoen eta LV sarearen inpedantzia errealen balioen konparaketa egin da. Hauen bitartez, erregresio polinomikoak balio errealekin bat egiten dutela konprobatu da. Konparaketa hauek honako grafiko hauetan jaso dira:

- Grafikoa 42: Sarearen inpedantziaren moduluaren eta erregresio polinomikoaren konparaketa
- Grafikoa 43: Sarearen inpedantziaren fasearen eta erregresio polinomikoaren konparaketa

8.2.2. 50 $\Omega/(50 \mu H + 5 \Omega)$ LISN motaren osagaien eragina egonkortze-sarearen funtzionamenduan

Atal honen inguruko azalpen guztiak "7. Proposatutako irtenbidearen deskribapena" atalaren "7.2.2" puntuan eman dira. Izan ere, atal horretan 50 Ω /(50 μ H + 5 Ω) motako LISNak dituen osagaiek egonkortze-sarearen funtzionamenduan duten eragina azaltzen da.

8.2.3. LISN berriaren eskema elektronikoa

Lehendabizi, EUTaren sarrera-inpedantziaren sintesi sinplea zuzena dela egiaztatu behar da. Hurrengo grafiko honen bitartez, sarearen inpedantziaren moduluaren

neurtutako balioak, sarearen inpedantziaren moduluaren erregresio polinomikoa eta 50 Ω / (2,5 µH + 4 Ω) inpedantzia berria konparatuko da, egindako sintesi sinplea nahiko hurbilekoa dela frogatzeko:

- Grafikoa 44: Sarearen balioen, erregresio polinomikoaren eta 50 Ω / (2,5 μH + 4 $\Omega)$ inpedantziaren arteko konparaketa

Behin LISN berriaren inpedantzia definituta dagoela (50 $\Omega/(2,5 \mu H + 4 \Omega)$) eta LISN berriaren zirkuituaren proposamena eginda, LISN berriaren inpedantzia teorikoa eta zirkuiturena, 50 $\Omega/(50 \mu H + 5 \Omega)$ LISN motaren eta honen inpedantzia teorikoarekin, sarearen neurketekin eta erregresio polinomikoarekin konparatu dira:

- Grafikoa 45: LISNek EUTaren portuan duten sarrera-inpedantziaren modulua
- Grafikoa 46: LISNek EUTaren portuan duten sarrera-inpedantziaren fasea

Beste alde batetik, definitutako LISN berriaren zirkuituaren funtzionamendua karakterizatu egin da:

- Grafikoa 47: LISNen S parametroen modulua
- Grafikoa 48: LISNen S parametroen fasea
- Grafikoa 49: LISNek portuetan duten sarrera-inpedantziaren modulua
- Grafikoa 50: LISNek portuetan duten sarrera-inpedantziaren fasea

8.3. <u>LISNen ziurgabetasun kontribuzioa zehazteko</u> <u>eskarri digitala</u>

Ziurgabetasun kontribuzioa kalkulatzeko sortutako euskarri digitalekin lortutako emaitzak azalduko dira atal honetan. LISNen ziurgabetasun kontribuzioa zehazteko sortu diren eskarri digitalekin lortutako emaitzen grafiko eta taula guztiak dokumentu honen "III. ERANSKINA: L.I.S.N.EN ZIURGABETASUN KONTRIBUZIOAREN EUSKARRI DIGITALEN EMAITZAK" eranskinean agertzen dira.

8.3.1. <u>LISN mota baten ziurgabetasun kontribuzioaren</u> <u>kalkuluak</u>

Lehendabizi, LISN mota baten ziurgabetasun kontribuzio maximoa kalkulatzen duen Excel orria era egokian sortu dela egiaztatzeko, honen bitartez lortutako balioak eta R&S fabrikatzaileak ziurgabetasun kontribuzioa kalkulatzeko aplikazioaren eskuliburuan jasotako balioak konparatu dira:

• Taula 24: 50 Ω /50µH LISN motaren ziurgabetasun kontribuzioa maximoaren kalkuluak eta R&S-en balioen konparaketa [21]

Balio hauek bat datoz, hau dela eta, kalkuluak era egokian inplementatu direla egiazta daiteke. Gainera, proiektu honetan ikertu den 50 Ω /(50 µH + 5 Ω) LISN motaren ziurgabetasun kontribuzio maximoaren kalkuluak egin dira:

• Taula 25: 50 $\Omega/(50\mu H$ + 5 $\Omega)$ LISN motaren ziurgabetasun kontribuzio maximoaren kalkuluen emaitza

Emaitzen atal honetan, LISNaren tolerantzia ezberdinek ziurgabetasun kontribuzioaren kalkuluan duten eragina kuantifikatu nahi izan da. Izan ere, LISNak EUTaren portuan duen sarrera-inpedantziaren moduluaren tolerantzia % 20koa bada, neurketa guztien desbiderapen maximoa eta minimoa 3 dB baino txikiagoak izango dira, balio absolutuan. Tolerantzia hori handiagoa izatekotan (% 30a edota % 50a) ziurgabetasun kontribuzioa, zenbait frekuentziatan, 3 dB baino altuagoa den balioak izan ditzake. Txikiago bada, ordea, ziurgabetasun kontribuzioaren balioak txikiagoak dira. Fenomeno hau nahiko ulergarria da, izan ere, ziurgabetasun kontribuzioa LISNak EUTaren portuan izan beharko lukeen inpedantzia nominalaren ezberdina delako ematen da; zenbat eta ezberdinagoa izan inpedantzia horren balioa, orduan eta ziurgabetasun kontribuzio handiago izango dute neurketek. Ondorio honetara heltzeko datuak hurrengo tauletan daude:

- Taula 26: 50 $\Omega/(50\mu H + 5 \Omega)$ LISN motaren ziurgabetasun kontribuzio maximoaren kalkuluen emaitza, tolerantzia %10 dela
- Taula 27: 50 $\Omega/(50\mu H + 5 \Omega)$ LISN motaren ziurgabetasun kontribuzio maximoaren kalkuluen emaitza, tolerantzia %30 dela

• Taula 28: 50 $\Omega/(50\mu H + 5 \Omega)$ LISN motaren ziurgabetasun kontribuzio maximoaren kalkuluen emaitza, tolerantzia %50 dela

8.3.2. <u>LISN konkretu baten ziurgabetasun kontribuzioaren</u> <u>kalkuluak</u>

Aurreko azpiatalean erabilitako kalkuluak zuzenak direla egiaztatu denez, LISN konkretu baten ziurgabetasun kontribuzioa kalkulatzeko euskarri digitalaren emaitzak emango dira. Kalkulu hauek TSR ikerketa taldearen *R&S®ENV216 Two-Line V-Network* LISN konkretuari egin zaizkio:

• Taula 29: TSR ikerketa taldearen R&S®ENV216 Two-Line V-Network LISNaren ziurgabetasun kontribuzioaren kalkuluak

Gainera, emaitzen atal honetan, frekuentzia ezberdinetan 50 $\Omega/(50 \mu H + 5\Omega)$ LISN motaren inpedantzia nominala, TSR ikerketa taldeak duen R&S®ENV216 LISNaren Z_{an} inpedantzia erreala eta CISPR 16-1-2 arau teknikoak xedatzen duen tolerantziak (% 20koa moduluan eta 11,5 °-koa fasean) adierazten duten zirkunferentziak grafiko bakar batean adierazi egin dira, informazio hau "Irudia 43"-an agertzen den moduan:

• Grafikoa 51: 50 $\Omega/(50 \mu H + 5 \Omega)$ inpedantziaren balio nominala, TSR laborategiko LISNaren inpedantzia eta tolerantzia maximoko zirkunferentzien (Tolerance Circle) diagrama

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

LANERAKO ERABILITAKO METODOLOGIA

9. EGINDAKOEN DESKRIBAPENA

GrAL proiektu hau garatzeko hainbat informazio, programa informatiko, araudi, eta abar jaso egin dira. Guzti hauek lan honetan zehar egindako atazak jorratzeko nahitaezkoak izan dira. Izan ere, proiektu honetan sortu den eduki guztia jasotako euskarriei esker egin da. Atal honen helburua proiektua egiteko jaso den, eta proiektua bukatuta sortu den, material guztia zerrendatzean datza.

GrAL hau jorratzeko jaso ziren datuak honako hauek izan ziren:

- *R&S*®*ENV216 Two-Line V-Network* LISNa: TSR ikerketa taldeak duen LISNetik abiatuta sortu egin ziren ikerketa lerroa eta GrAL-aren lana. Egonkortze-sare honekin batera, fabrikatzaileak emandako dokumentazioa guztia dago: LISNaren erabiltzailearen gidak, LISNaren kalibrazio txostena, *Data Sheet*-ak, etab.
- Araudia: CISPR 16-1-2 izan lehendabizi lortu zen araua, izan ere, TSR ikerketa taldeak duen LISNaren funtzionamendua arautzen duen txosten teknikoa da. Dokumentu honetatik abiatuz, EMC probak arautzen duten gainontzeko araudia lortu zen.
- Rohde & Schwarz AN Impedance Uncertainty Contribution: LISNen ziurgabetasun kontribuzioa kalkulatzeko programa honetatik abiatuz, proiektu honetan garatutako ziurgabetasun kontribuzioaren kalkuluak egiteko euskarri digitalak sortu dira.
- EMC iragazki komertzialak: Zirkuitu hauekin LISN baten funtzionamenduan inpedantzia aldakor batek duen eragina kuantifikatu da. Hauek aukeratu ziren TSR taldeak EMC iragazki konkretu hauek laborategian dituelako, hauekin neurketak egin direlako (hauen konportamendu erreala karakterizatuta zegoen) eta hauen zirkuituaren eskema elektrikoa eskuragarri dagoelako.
- Sarearen inpedantziaren neurketak: LISN berri baten sintesia egiteko, ezinbestekoa izan da TSR taldeak egindako LV sare elektrikoaren karakterizazioa.

GrAL honetan egin den lana dela eta, hainbat eduki sortu dira, zerrenda honetan biltzen dira:

- **Simulazioen emaitzak**: LISNaren funtzionamendua karakterizatzen duten simulazioak lortu egin dira. Hauei esker, LISNaren portu ezberdinen artean ematen diren transferentzia funtzioak, portuen sarrera-inpedantziak eta inpedantzia ezberdinak dituzten EUTn aurrean egonkortze-sareak duen konportamendua kuantifikatu egin da.
- Simulazioak lortzeko euskarri digitalak: LISNaren simulazioak lortzeko, egokitzapen-sarea ADS programan inplementatu egin da. Etorkizunean LISNaren konportamendua beste egoera batean ebaluatu nahi bada euskarri digital hauek erabili ahal izango dira.
- Sare elektrikoaren eredu matematikoa, Z(f): Proiektu honetan, TSR ikerketa taldeak egindako neurketetan oinarrituz, sare elektrikoak duen inpedantziaren eredu matematikoa sortu da.
- Ziurgabetasun kontribuzioa kalkulatzen duten euskarri digitalak: LISN mota batek izan dezakeen ziurgabetasun kontribuzio maximoa kalkulatzen duen Excel orria sortu da. Gainera, LISN konkretu baten EUTaren portuan dagoen sarrerainpedantzia zein den jakinda, LISN horrek duen ziurgabetasun kontribuzioa kalkulatzen duen euskarri digitala sortu da.
- 50 $\Omega/(50 \mu H + 5 \Omega)$ LISN motaren ziurgabetasun kontribuzio maximoa eta TSR taldeak duen LISNaren ziurgabetasun kontribuzioa: Aurreko puntuan aipatutako euskarri digitalak erabiliz, 50 $\Omega/(50 \mu H + 5 \Omega)$ LISN motak izango duen ziurgabetasun kontribuzio maximoa kalkulatu egin da. Beste alde batetik, TSR taldeak duen LISNaren ziurgabetasun kontribuzioa lortu egin da.
- 50 $\Omega/(50 \mu H + 5 \Omega)$ LISNaren osagaien eragina egonkortze-sarearen parametroetan: GrAL honetan egindako ikerketaren ondorioz LISNaren osagaiek, eta hauen balioek, egonkortze-sarearen funtzionamenduan eta parametroetan duen eragina azaldu da.
- LV sarearen ezaugarriak dituen LISNaren sintesia: Sarearen karakterizazio matematikotik eta 50 $\Omega/(50 \mu H + 5 \Omega)$ LISN motaren zirkuitutik abiatuz, LISN berriaren eskema elektronikoa proposatu egin da.

10. PROIEKTU PLANA ETA PLANIFIKAZIOA

Proiektu hau bukatu egin denez, ikerketa lanak burutu diren bitartean zereginen garapena nola egin den azalduko atal honetan. Hau azaltzeko, GrAL-aren garapenean zehar edukitako bileren zerrenda erabiliko da, egindako atazekin batera.

	BILEREN PLANIFIKAZIOA						
Zk.	Data	Irakaslea/ Ikertzailea	Egiteko atazak – Bileraren azalpena				
1.	2018/06/12	Amaia Arrinda	-GrAL proiektua egiteko lehenengo bilera. TSR				
		eta TSR taldea	taldeak eskaintzen zituen proiektuak azaldu				
			ziren.				
2.	2018/07/04	Amaia Arrinda	-GrAL-aren ikerketa lerroa definitzeko bilera:				
			TSR taldeak jorratzen duen "Communications				
			<i>for Smart Grids"</i> ikerketa lerroan egingo da.				
3.	2018/07/11	Igor Fernandez	-"Communications for Smart Grids" ikerketa				
			lerroaren hastapenak azaltzeko bilera.				
			-Udan zehar David De la Vegak emailez				
			bidalitako bibliografia irakurtzea gomendatu				
			da.				
4.	2018/09/19	Amaia Arrinda	-GrAL-aren proiektua definitzeko bilera.				
			-Gainera, Eusko Jaurlaritzaren IKASIKER beka				
			eskatzeko dokumentazioa jaso zen.				
5.	2018/12/04	Amaia Arrinda	-LISNen inguruko Artearen Egoera egitea				
			adosten da. Egokitzapen-sare hauekin zein				
			neurketa egiten diren, zein ekipamenduarekin,				
			zein frekuentzia tartetan, etab. lortu behar da.				
6.	2019/01/29	Amaia Arrinda	-LISNaren simulazioak ADSn egitea				
			erabakitzen da.				

7.	2019/02/05	Amaia Arrinda	-CISPR erakundearen arauak kontsultatzea
			proposatzen da, LISNaren funtzionamendua
			ulertzeko.
			-Egindako simulazioekin txosten bat idazteko
			eskatzen da.
			-Egin den Artearen Egoeraren inguruko
			dokumentu bat prestatzea eskatzen da.
8.	2019/02/12	Amaia Arrinda	-Simulazioen txostenean, AENORen araudian
			eta LISNaren kalibrazio liburuan bildutako
			datuekin konparaketa egitea adosten da
			-LISN mota ezberdinen aplikazioa ikertzea
			eskatzen da.
9.	2019/02/26	Amaia Arrinda	-Gaizki dauden simulazioak identifikatzen dira
			eta berregitea proposatzen da.
			-Portuen arteko transferentzia kurbak
			karakterizatzea adosten da.
			-ADS programan lortutako simulazioen
			emaitzak Excel orri batera pasatzea
			proposatzen da.
10.	2019/03/07	Amaia Arrinda	-Simulazioen txostenean dauden datuak
			zuzenak direla egiaztatzen da.
			-Txosten honetan jorratutako simulazioen
			ondorioak idaztea erabakitzen da.
11	0010/00/10		Come elabertita energia la relatorización esitas
11.	2019/03/12	Amala Amnua	-Safe elektrikoaren karakterizazioa egitea
			-Sarearen innedantzia aldakor hau LISNaren
			simulazioatan aragina duten agiaztatzaa
			eskatzen da
			-LISNa emisioen neurketak egiterakoan duen
			konnortamendua simulatzea adosten da

12.	2019/04/02	Amaia Arrinda	-Simulazioetan EUTek sortutako emisioak
			LISNean duten eragina kuantifikatzea
			eskatzen da.
13.	2019/04/09	Amaia Arrinda	-EUT ezberdinek sortzen duten emisioen eta
			inpedantzien simulazioak egitea erabakitzen
			da.
14.	2019/04/16	Amaia Arrinda	-Simulazio ezberdinak konparatzen dituen
			grafikoak egitea proposatzen da.
15.	2019/04/30	Amaia Arrinda	-Rx portuan neurgailuak neurtzen duen
			inpedantziatik EUTaren inpedantzia erreala
			lortzeko prozedura ikertzea adosten da.
	0.010/05/05		
16.	2019/05/06	Amaia Arrinda	-Aurreko astean proposatutako lana jarraitzea
			erabakitzen da. Hau lortzeko "Characterization
			of the input impedance of household
			appliances in the FCC frequency band
			artikuluan luatzitakoa simulatzea eskatzen da
17	2019/06/05	Amaia Arrinda	-LISNen ziurgabetasun kontribuzioa ikertzea
11.	2015/00/05		pronosatzen da
			-IEC 61000-4-7 arayan jasotako AMN bat
			karakterizatzea eskatzen da
18.	2019/06/10	Amaia Arrinda	-LINS ezberdinen ziurgabetasun
10.			kontribuzioaren kalkuluak egitea proposatzen
			da, R&S fabrikatzailearen <i>"R&S - AN</i>
			Impedance Uncertainty Contribution"
			kalkulagailuarekin
			-LV sarearen propietateak dituen LISN baten
			zirkuituan lan egitea adosten da
L	1	1	1

19.	12/06/2019	Amaia Arrinda	 -Inpedantzia ezberdinak duten EUTak LISNean eragiten duten konportamendua karakterizatzea eskatzen da: S parametroekin eta emisio simulazioekin. -EMC iragazkiak karakterizatzea eta LISNena duen eragina kuantifikatzea proposatzen da. -Ziurgabetasun kontribuzioa kalkulatzeko euskarri digitalak sortzea adosten da. -Emaitza guztiekin txosten bat idaztea erabakitzen da.
20.	13/06/2019	Amaia Arrinda David De la Vega Leire García	-Tecnalia-ra bisita. EMC probak nola egiten dituzten ikusi zen. LISN baten muntaia eta funtzionamendua hobeto ulertzeko baliagarria izan zen.
21.	2019/06/27	Amaia Arrinda	 -EMC iragazkien simulazioen inplementazioa txarto egin dela egiaztatzen da. -Emisioen simulazioak gaizki egin direla konprobatzen da. -Txarto simulatutako atazak errepikatzea adosten da. -Simulazioetatik lortutako ziurgabetasun kontribuzioaren emaitzen bitartez ziurgabetasun kontribuzio zirkunferentzia marrazten saiatzea eskatzen da.
22.	2019/07/02	Amaia Arrinda	-Simulazioak zuzenak direla egiaztatzen da. -Bakarrik GrAL-aren dokumentua idaztea adosten da
23.	2019/07/05	Amaia Arrinda	-GrAL dokumentuaren idazketan sortutako zalantzak argitzen dira.

24.	2019/07/10	Amaia Arrinda	-GrAL dokumentuaren lehenengo bertsioaren
			zuzenketa egiten da.
			-GrAL dokumentuaren idazketan sortutako
			zalantzak argitzen dira.
25.	2019/07/12	Amaia Arrinda	-GrAL dokumentuaren bigarren bertsioaren
			zuzenketa egiten da.
26.	2019/07/17	Amaia Arrinda	-GrAL dokumentuaren hirugarren bertsioaren
			zuzenketa egiten da.

Taula 17: Bileren planifikazioaren taula

Bilera ezberdinetan proposatutako zereginenak taula batean jaso dira. Zerrenda honetan, lanen zehaztasunak eta epeak adierazi dira:

	ZEREGINEN PLANIFIKAZIOA				
Kodea	Hasiera data	Amaiera data	Zereginak		
Z1	11/07/2018	18/09/2018	PLC komunikazioei buruzko bibliografia		
			aztertzea, irakurtzea eta gai honi buruzko		
			informazio gehiago biltzea.		
Z2	04/12/2018	28/01/2019	LISNen Artearen Egoera egitea: zertarako		
			erabiltzen diren, LISN ezaugarriak, LISN		
			funtzionamendua, eta abar.		
Z3	29/01/2019	04/02/2019	R&S ENV216 LISNaren zirkuitu ADSn		
			inplementatu eta funtzionamenduaren		
			lehenengo simulazioak egitea.		
Z4	05/02/2019	11/02/2019	LISNak arautzen duten araudia (CISPR 16-1-2)		
			lortzea eta R&S ENV216 LISNaren		
			funtzionamendua xedatzen duen araudian		
			sakontzea.		

Z5	05/02/2019	11/02/2019	ADSn inplementatutako LISNaren zirkuituarekin
			(50 Ω /(50 μ H + 5 Ω)) egindako simulazio guztiak
			txosten batean biltzea eta hauetatik ateratako
			ondorioak idaztea.
Z6	05/02/2019	11/02/2019	Egindako LISNen Artearen Egoeraren
			informazioarekin txostena bat egitea
Z7	12/02/2019	25/02/2019	ADSn inplementatutako zirkuituaren
			simulazioen txostenean, lortutako simulazioen
			balioak, CISPR 16-1-2 araudiarekin eta R&S
			ENV216 LISNaren kalibrazio liburuarekin
			konparatzea.
Z8	12/02/2019	25/02/2019	LISNekin egiten diren neurketen Artearen
			Egoera: egiten diren neurketa motak, neurtzen
			diren parametroak, neurketen frekuentzia
			tarteak, neurgailu mota, etab.
Z9	26/02/2019	06/03/2019	Egindako txostenean aurkitutako akatsak
			zuzentzea.
Z10	26/02/2019	06/03/2019	ADSn inplementatutako LISNaren
			zirkuituarekin, egonkortze-sarearen portuen
			artean dauden transferentzia kurbak
			karakterizatzea.
Z11	26/02/2019	06/03/2019	Simulazioen datuak Excel orrietara pasatzea,
			hauen prozesaketa programa honetan egiteko.
Z12	07/03/2019	11/03/2019	ADSn egindako simulazioetan lortutako
			ondorioak simulazioen txostenean jasotzea.

Z13	12/03/2019	01/04/2019	LV sare elektrikoaren karakterizazioa egiten
			hastea. Sare elektrikoaren inpedantziaren
			bitartez, honen eredu matematikoa lortzea
Z14	12/03/2019	01/04/2019	ADSn inplementatutako LISNaren
			zirkuituarekin, inpedantzia ezberdinak dituzten
			EUTak duten eragina kuantifikatzeko
			simulazioak egitea.
Z15	12/03/2019	01/04/2019	ADSn inplementatutako LISNaren
			zirkuituarekin, LV sare elektrikoaren portutik
			neurgailuaren portura doazen emisioen
			iragazketa karakterizatzea.
Z16	02/04/2018	15/04/2019	ADSn inplementatutako LISNaren
			zirkuituarekin, EUTek sortutako emisioak
			neurgalluaren portuan duten ahuldura
			Kafaktefizatzea.
717	09/04/2019	15/04/2019	ADSn innlementatutako LISNaren
211	05/01/2015	15/01/2015	zirkuituarekin, inpedantzia ezberdinak dituzten
			EUTak erabiliz, neurgailuaren portuan dagoen
			sarrera-inpedantzia karakterizatzea.
Z18	16/04/2019	29/04/2019	ADSn inplementatutako LISNaren zirkuituarekin
			egindako simulazio guztien datuen prozesaketa
			egitea.
Z19	30/04/2019	04/05/2019	ADSn inplementatutako LISNaren
			zirkuituarekin, inpedantzia ezberdinak dituzten
			EUTak erabiliz eta neurgailuaren portuan dagoen
			sarrera-inpedantziaren balioak edukita, EUTaren
			inpedantzia kalkulatzeko prozedura
			matematikoa zehaztea.

Naren
kortze-
zea.
buzioa
ea.
egitea
oetatik
Naren
ultzoa
EUTek
ragina
EUTek
ntzian
sare
ntzian
isioen
tatzea
atzea.
entzia

			-EMC iragazkiak LISNaren zirkuituaren EUT		
			portuan konektatzea eta transferentzia kurbetan		
			duten eragina kuantifikatzea.		
			-EMC iragazkiak LISNaren zirkuituaren EUT		
			portuan konektatzea eta neurgailuaren		
			portuaren sarrera-inpedantzian duten eragina		
			karakterizatzea.		
			-EMC iragazkiak LISNaren zirkuituaren EUT		
			portuan konektatzea eta sare elektrikoaren		
			portuaren sarrera-inpedantzian duten eragina		
			karakterizatzea.		
			-EMC iragazkiak LISNaren zirkuituaren EUT		
			portuan konektatzea eta emisioen neurketan		
			duten eragina kuantifikatzea.		
Z26	12/06/2019	26/06/2019	LISNen neurketen ziurgabetasun kontribuzioa		
			kalkulatzeko euskarri digitalak sortzea:		
			-LISN motaren neurketen ziurgabetasun		
			kontribuzio maximoa kalkulatu beharko dute.		
			-LISN konkretu baten neurketen ziurgabetasun		
			kontribuzioa kalkulatu boharko duto		
			KOITTIDUZIOA KAIKUIATU DEITAIKO UUTE.		
			Kontribuzioa kaikulatu benaiko uute.		
Z27	12/06/2019	26/06/2019	Egindako lanen txostena idaztea. Atal nagusiak:		
Z27	12/06/2019	26/06/2019	Egindako lanen txostena idaztea. Atal nagusiak: -EUT ezberdinek LISNaren funtzionamenduan		
Z27	12/06/2019	26/06/2019	Egindako lanen txostena idaztea. Atal nagusiak: -EUT ezberdinek LISNaren funtzionamenduan duten eragina.		
Z27	12/06/2019	26/06/2019	Egindako lanen txostena idaztea. Atal nagusiak: -EUT ezberdinek LISNaren funtzionamenduan duten eragina. -EMC iragazkien karakterizazioa eta LISNaren		
Z27	12/06/2019	26/06/2019	Egindako lanen txostena idaztea. Atal nagusiak: -EUT ezberdinek LISNaren funtzionamenduan duten eragina. -EMC iragazkien karakterizazioa eta LISNaren funtzionamenduan duten eragina.		
Z27	12/06/2019	26/06/2019	Egindako lanen txostena idaztea. Atal nagusiak: -EUT ezberdinek LISNaren funtzionamenduan duten eragina. -EMC iragazkien karakterizazioa eta LISNaren funtzionamenduan duten eragina. -LISNen neurketen ziurgabetasun kontribuzioa		
Z27	12/06/2019	26/06/2019	Egindako lanen txostena idaztea. Atal nagusiak: -EUT ezberdinek LISNaren funtzionamenduan duten eragina. -EMC iragazkien karakterizazioa eta LISNaren funtzionamenduan duten eragina. -LISNen neurketen ziurgabetasun kontribuzioa kalkulatzeen duten euskarri digitalak.		
Z27	12/06/2019	26/06/2019	Egindako lanen txostena idaztea. Atal nagusiak: -EUT ezberdinek LISNaren funtzionamenduan duten eragina. -EMC iragazkien karakterizazioa eta LISNaren funtzionamenduan duten eragina. -LISNen neurketen ziurgabetasun kontribuzioa kalkulatzeen duten euskarri digitalak.		
Z27 Z28	20/06/2019	26/06/2019	Egindako lanen txostena idaztea. Atal nagusiak: -EUT ezberdinek LISNaren funtzionamenduan duten eragina. -EMC iragazkien karakterizazioa eta LISNaren funtzionamenduan duten eragina. -LISNen neurketen ziurgabetasun kontribuzioa kalkulatzeen duten euskarri digitalak. GrAL dokumentua idatzi. Ikerketan egindako		
Z27 Z28	20/06/2019	26/06/2019	Egindako lanen txostena idaztea. Atal nagusiak: -EUT ezberdinek LISNaren funtzionamenduan duten eragina. -EMC iragazkien karakterizazioa eta LISNaren funtzionamenduan duten eragina. -LISNen neurketen ziurgabetasun kontribuzioa kalkulatzeen duten euskarri digitalak. GrAL dokumentua idatzi. Ikerketan egindako lanak, prozedura, helburuak, etab. azaltzen		
Z27 Z28	12/06/2019 20/06/2019	26/06/2019	Egindako lanen txostena idaztea. Atal nagusiak: -EUT ezberdinek LISNaren funtzionamenduan duten eragina. -EMC iragazkien karakterizazioa eta LISNaren funtzionamenduan duten eragina. -LISNen neurketen ziurgabetasun kontribuzioa kalkulatzeen duten euskarri digitalak. GrAL dokumentua idatzi. Ikerketan egindako lanak, prozedura, helburuak, etab. azaltzen dituen dokumentua sortzea.		

Z29	27/06/2019	01/07/2019	50 Ω/(50 μ H + 5 Ω) LISN motaren neurketen
			ziurgabetasun kontribuzio maximoa eta TSR
			laborategiko LISNaren ziurgabetasun
			kontribuzioa biltzen duen <i>"Tolerance Circle"</i>
			diagrama sortzea.

Taula 18: Zereginen planifikazioaren taula

11. GANTT-EN DIAGRAMA

12. ARRISKUEN ANALISIA

Atal honen helburua proiektuaren garapenean zehar eman ahal ziren arriskuak ebaluatzea izango da; izan ere, proiektu hau burutu zen bitartean lana bertan behera utzi zezaketen hainbat gertaera eman zitezkeen. Proiektua amaitu egin denez, arrisku hauek era egokian kudeatu egin direla eta ezbeharrik gertatu ez dela ondoriozta daiteke.

Analisi hau egiteko, lehendabizi arriskuak identifikatu egin dira, eta hauen sailkapena egiteko bi kontzeptu nagusi hartu dira kontuan. Alde batetik, hauek gertatzeko probabilitatea balioetsi da. Bestetik, proiektuan duten eragina kuantifikatu da. Amaitzeko, hauek ekiditeko kontingentzia plan bat proposatzen da.

12.1. Simulazioen parametroen konfigurazio okerra (1)

Zirkuitu elektronikoen simulazioak egiterakoan hainbat parametro ezarri behar dira software programek lortu nahi diren emaitzak eman ditzaten. Parametro hauen konfigurazio zuzena izatea ezinbestekoa da, programek emandako balioen araberako simulazioak ematen dituztelako, nahiz eta hauek errealitatean lortu nahi diren gertaerekin erlaziorik ez izan. GrAL hau simulazioekin egindako proiektu bat denez, arrisku hau kontuan hartzea oso garrantzitsua da.

Arrisku hau ekiditeko, simulatu nahi diren gailuen *Data Sheet*-ean, edo datu-fitxan, bildutako informazioa era egokian inplementatu egin dela egiaztatzea proposatzen da. Gainera, behin emaitzak lortuta, hauek zuzenak direla ziurtatzeko, GrAL-eko zuzendariarekin egiaztatzea ere proposatzen da.

Arrisku hau gertatzeko probabilitatea nahiko handia da, lan guztia simulazioetan oinarritzen delako. Dena dela, proposatutako kontingentzia plana dela eta, proiektuan eragina izateko probabilitatea ez da hain altua.

12.2. Datuen galera (2)

Proiektu honen lan osoa erraminta informatikoen bidez egingo denez, lortuko diren emaitza guztiak formatu digitalean egongo dira. Hauek euskarri digitaletan gorde beharko dira, formatu fisikoetan, paperan adibidez, edukitzea bideraezina delako; hauek lortu eta gero egingo den prozesaketa eta datuen bolumena dela eta.

Datu digitalak ez galtzeko proposatzen den neurria informazio guztiaren segurtasun-kopiak edukitzea izango litzateke. Arrisku hau gertatzearen probabilitatea baxua den arren, proiektuan izango dezakeen eragina oso altua da.

12.3. Prozesatze astunak (3)

GrAL honetan garatutako simulazioetan lortutako emaitzen balioak Excel datu tauletan gordetzen dira. Simulazioa gehienak 0 Hz eta 30 MHz bitartean egiten dira eta, frekuentzian nahi den erresoluzioaren arabera, analizatu nahi den parametro bakoitzeko 6.000 eta 10.000 frekuentzia lagintze puntu lortzen dira. Informazio guzti hau lortu ostean, programa informatikoen bitartez datuak prozesatzen dira, lortu nahi diren parametroak kurbak eskuratzeko. Datuen bolumena oso handia bada prozesatze hau oso astuna izan daiteke.

Arrisku hau ekiditeko, parametroaren bereizmenaren eta datu bolumenaren arteko konpromisoa hartuko da, biak orekatuta egoteko. Nahiz eta arrisku hau nahi komuna izan, proiektuaren garapenean duen eragina oso txikia da.

12.4. Atzerapenak (4)

Lan honen planifikazioan, ezusteak direla eta, hainbat atzerapen gerta daitezke. Hauek proiektuaren zereginetan eragina izan dezakete eta ezarritako helburuak ez lortzea ekarri dezakete.

Egoera hau ekiditeko eginbeharren planifikazioa egitea proposatzen da, eta zeregin batekin ezin bada jarraitu hurrengoekin hastea proposatzen da. Arrisku honen probabilitatea ertaina den arren, emandako irtenbidearekin proiektuan ez du eragin handirik izango.

12.5. Arriskuen analisiaren laburpena

Atal honetan identifikatutako arrisku guztiak taula batena bildu dira ikuspegi zabalago bat edukitzeko:

Taula 19: Arriskuen analisiaren laburpen taula

ALDERDI EKONOMIKOAK

13. AURREKONTUAREN DESKRIBAPENA

Atal honetan, GrAL hau garatzeak sortutako kostuak azalduko dira. Kostu guztiak lau ataletan banatuko dira: Barne orduak, amortizazioak, azpikontratazioak eta gastuak.

13.1. Barne orduak

Proiektu honetan parte hartu duten langileen kostua kuantifikatuko da hemen:

Partaidea	Kostua (€/orduko)	Ordu kopurua	Partaidearen kostua (€)
Senior ingeniaria	50,00 €/h	52 h	2.600,00€
Junior ingeniaria	20,00 €/h	350 h	7.000,00€
Barr	9.600,00€		

Taula 20: Barne orduen taula

13.2. Amortizazioak

Atala honetan, proiektuan erabilitako baliabideen amortizazioak aztertuko da:

Baliabidea	Kostua (€)	Bizitza erabilgarria (ordu)	Ordu kopurua	Baliabidearen kostua (€)
Senior ing.	1500,00€	5.000 h	52 h	15,60€
ordenagailua				
Junior ing.	2499,00€	5.000 h	350 h	174,93€
ordenagailua				
ADS Keysight	2.000,00€	5.000 h	225 h	90,00€
lizentzia				
R&S ENV216	1.935,00€	5.000 h	3 h	1,16€
LISNa				
	281,69€			

Taula 21: Amortizazioen taula

13.3. Gastuak

GrAL burutzeko erabili den materialaren gastuaren aitorpena egingo da hemen:

Baliabidea	Kostua (€)
Fotokopiak	45,00€
Orri zuriak	2,00€
Pendrive-a	12,00€
Guztira:	59,00€
T 1 44 0 1	

Taula 22: Gastuen taula

13.4. Diru-laguntzak

Proiektu hau garatzeko junior ikertzaileak, ikerkuntza eta ikasketak batera egiteko, Eusko Jaurlaritzaren IKASIKER diru-laguntza jaso egin du:

Diru-laguntza programa	Zenbatekoa (€)
IKASIKER 2018/2019	2500,00€
Guztira:	2500,00€

13.5. <u>Aurrekontua</u>

Behin ataza guztiak zatika analizatu direla, aurrekontuaren guztizkoa jaso da:

Ataza	Kostua (€)
Barne orduak	9.600,00€
Amortizazioak	281,69€
Azpikontratazioak	0,00€
Gastuak	59,00€
Diru-laguntzak	- 2.500,00€
Guztira:	7.440,69€

ONDORIOAK

GrAL honetan garatutako proiektua laburbiltzeko asmoz, atal honetan lan osoan zehar jorratutakoa aipatuko da.

Proiektu hau, TSR taldearen "Communication for Smart Grid" ikerketa lerroan kokatzen da. Talde honek erositako *R&S ENV216* LISNaren funtzionamendua karakterizatzearen beharraren ondorioz sortu zen ikerketa lan hau.

Proiektu honen xedea hiru helburu garrantzitsuetan laburbil daiteke: LISNen funtzionamenduaren karakterizazioa, LISNek duten ziurgabetasun kontribuzioaren kalkulua eta LV sare elektrikoaren ezaugarriak dituen LISN berri baten sintesia. Jomuga hauek lortzeko, TSR taldearen eskutik hainbat eduki jaso ziren: LISNen araudi teknikoa, R&S ENV216 LISNaren dokumentazioa, sarearen inpedantziaren neurketak, EMC iragazki komertzialen informazioa eta neurketak, etab. Hauekin guztiekin, xedatutako helburuak lortzeko beste hainbat eduki sortu dira: LISN simulazioen grafikoak, LISNen ziurgabetasun kontribuzioa kalkulatzeko euskarri digitalak, sarearen karakterizazio matematikoa, LISN berriaren eskema elektrikoa, eta abar.

GrAL hau garatu ostean, ikerketa lerro honetan lanean jarraitzen duten ikertzaileek, proiektuan landutakoa erabilgarri izan diezaieke, hurrengo kasuetan:

- GrAL honetan sortu diren ziurgabetasun kontribuzioen kalkulua egiten dituzten baliabide digitaletatik abiatuz, LISN berrien sintesia egitea; LISNek EUTaren portuan duten sarrera-inpedantziaren tolerantzia murrizteko helburuarekin.
- Proiektu honetan garatutako euskarri eta teknikekin, arau tekniko berriek proposatutako LISNak aztertzea. Egonkortze sare hauen funtzionamendu parametroak, emisio neurketetan EUTn eragina, LISNaren ziurgabetasun kontribuzioa, eta abar kuantifika daitezke proiektu honetan egindako proposamen teknikoarekin.
- Lan honetan egonkortze-sareen analisitik abiatuz, baita LISN eta EMC iragazkien zirkuituak ADSn inplementatzeko gomendioak ere kontuan izanda, egonkortze-

sareen zirkuitu berrien sintesia egin ostean, zirkuitu errealak eta simulazioak konparatzeko inguruneak prestatu ahal izatea.

BIBLIOGRAFIA

- [1] Comité International Spécial des Perturbations Radioélectriques (CISPR), «CISPR 16-1-2:2014+AMD1:2017 CSV Consolidated version: Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-2: Radio disturbance and immunity measuring apparatus – Coupling devices for conducted disturbance measurements,» International Electrotechnical Commission, 2017.
- [2] AENOR, «UNE-EN 55016-1-2:2015. Especificación para los métodos y aparatos de medida de las perturbaciones radioeléctricas y de la inmunidad a las perturbaciones radioeléctricas. Parte 1-2: Aparatos de medida de las perturbaciones radioeléctricas y de la inmunidad,» AENOR, Madrid, 2015.
- [3] Red Eléctrica de España, «¿Qué son las Smartgrid?,» [Online]. Available: https://www.ree.es/es/red21/redes-inteligentes/que-son-las-smartgrid. [Atzitzedata: 25 06 2019].
- [4] Boletín Oficial del Estado, «Orden IET/290/2012, de 16 de febrero, por la que se modifica la Orden ITC/3860/2007, de 28 de diciembre, por la que se revisan las tarifas eléctricas a partir del 1 de enero de 2008 en lo relativo al plan de sustitución de contadores.,» 2012/02/21. [Online]. Available: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2012-2538. [Atzitze-data: 25 06 2019].
- [5] L. Lampe, A. M. Tonello eta T. G. Swart, Power Line Communications Principles, Standars and applications from multimedia to Smart Grid, New Delhi: John Wiley & Sons, 2010.
- [6] PRIME Alliance, «Technology | PRIME Alliance,» 2013. [Online]. Available: https://www.prime-alliance.org/?page_id=748. [Atzitze-data: 26 06 2019].
- [7] PRIME Alliance, «PRIME v1.4 White Paper,» [Online]. Available: https://www.prime-alliance.org/wpcontent/uploads/2014/10/whitePaperPrimeV1p4_final.pdf. [Atzitze-data: 26 06 2019].
- [8] PRIME Alliance, «PRIME. Technology Whitepaper. PHY, MAC and Convergence layers,» 2018/07/21. [Online]. Available: https://www.prime-alliance.org/wp-

content/uploads/2013/03/MAC_Spec_white_paper_1_0_080721.pdf. [Atzitze-data: 26 06 2019].

- [9] TSR, «Communications for Smart Grids,» [Online]. Available: http://www.ehu.eus/tsr_radio/index.php/research-areas/communications-forsmart-grids. [Atzitze-data: 26 06 2019].
- [10] I. Fernandez, A. Arrinda, I. Angulo, D. d. l. Vega, N. Uribe eta A. Llano, « Field trials for the Empirical Characterization of the Low Voltage Grid Access Impedance from 35 kHz to 500 kHz,» *IEEE Access*, 2019.
- [11] Mouser Electronics, Inc., «EMC Filters EPCOS / TDK EMC Filters,» Mouser Electronics, Inc., [Online]. Available: https://www.mouser.es/new/EPCOS/epcos_emclinefilter/. [Atzitze-data: 2019 07 17].
- [12] IEC: International Electrotechnical Commission, «Structure of CISPR 16,» [Online]. Available: https://www.iec.ch/emc/basic_emc/basic_cispr16.htm. [Atzitze-data: 04 07 2019].
- [13] EMC EV, «EMC EV | LISN (Line Impedance Stabilization Network) or AN (Artificial Network),» EMC - EV, [Online]. Available: http://www.flexautomotive.net/EMCFLEXBLOG/post/2015/09/14/lisn-lineimpedance-stabilization-network-or-an-artificial-network. [Atzitze-data: 2019 07 16].
- [14] M. A. O. Kharraz, C. Lavenu, P. Jensen, D. Picard eta M. Serhir, «Characterization of the input impedance of household appliances in the FCC frequency band,» in 2017 IEEE International Symposium on Power Line Communications and its Applications (ISPLC), Madrid, 2017.
- [15] A. de Beer, G. Wooding eta J. van Wyk, «Problematic Aspects when using a LISN for Converter EMI Characterisation,» 2013 IEEE International Conference on Industrial Technology (ICIT), 2013.
- [16]C. Tsui, H. Lai eta H. Li, «Calibration of AMN/LISN at SCL,» in *2018 Conference on Precision Electromagnetic Measurements (CPEM 2018)*, Paris, 2018.

- [17] OrCAD, «OrCAD Capture | OrCAD,» [Online]. Available: https://www.orcad.com/products/orcad-capture/features. [Atzitze-data: 2019 07 06].
- [18]Keysight Technologies, «Advanced Design System (ADS),» [Online]. Available: https://www.keysight.com/en/pc-1297113/advanced-design-system-ads. [Atzitze-data: 2019 07 06].
- [19]L. Capponi, I. Fernández, D. Roggo, A. Arrinda, I. Angulo eta D. De la Vega, «Comparison of measurement methods of grid impedance for Narrow Band-PLC up to 500 kHz,» in 2018 IEEE 9th International Workshop on Applied Measurements for Power Systems (AMPS), Bologna, 2018.
- [20]AC Filter 2-Stage, «SCHURTER,» [Online]. Available: https://www.schurter.com/en/datasheet/typ_FMW-52.pdf. [Atzitze-data: 23 06 2019].
- [21]AC Filter 2-Stage, Very High Symmetrical Attenuation, «SCHURTER,» [Online]. Available: https://www.schurter.com/en/datasheet/typ_FSS.pdf. [Atzitze-data: 23 06 2019].
- [22]AC Filter 2-Stage, Very High Symmetrical and Asymmetrical Attenuation, «SCHURTER,» [Online]. Available: https://www.schurter.com/en/datasheet/typ_FSW.pdf. [Atzitze-data: 23 06 2019].
- [23] Rhode & Schwarz, «Impedance Uncertainty Contribution of Artificial Networks (AN, AMN and ISN). Application Note,» 2010. [Online]. Available: https://scdn.rohdeschwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ee23/1EE 23_0e.pdf. [Atzitze-data: 23 06 2019].
- [24] Rohde & Schwarz, «Calibration Certificate. Certificate Number 17-725035,» Rohde & Schwarz, Vimperk, 2018.
- [25] ITU-T, «G.9904 : Narrowband orthogonal frequency division multiplexing power line communication transceivers for PRIME networks,» 10 2012. [Online]. Available: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-G.9904-201210-I!!PDF-E&type=items. [Atzitze-data: 25 06 2019].

- [26] AENOR, «UNE-EN 55032:2016. Compatibilidad electromagnética de equipos multimedia. Requisitos de emisión.,» AENOR, Madrid, 2016.
- [27] C. J. Kikkert eta S. Zhu, «Measurement of Powerlines and Devices Using an Inductive Shunt On-Line Impedance Analyzer,» in 2015 IEEE International Symposium on Power Line Communications and Its Applications (ISPLC), Austin, 2015.
- [28] Rohde & Schwarz, «Operating Manual. Two Line V-Network. R&S ENV216.,» Rohde & Schwarz, Munich.
- [29] P. Wright, «Annex I JRP protocol. 18NRM05 SupraEMI. Grid measurements of 2 kHz -150 kHz harmonics to support normative emission limits for mass-market electrical goods,» National Physical Laboratory, London, 2019.
- [30] I. Fernandez, A. Arrinda, I. Angulo, D. De la Vega, N. Uribe eta A. Llano, 2019. [Online].
 Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8743370.
 [Atzitze-data: 23 06 2019].

I. ERANSKINA: ADS SIMULAZIOEN EMAITZAK

I. ERANSKINAREN AURKIBIDEA

1.	Sarrera	99		
2.	LISNaren karakterizazioa	99		
3.	Inpedantzia ezberdinak duten EUTn aurrean LISNak duen			
konportamenduaren karakterizazioa102				
4.	LISNaren konportamendua emisioen neurketan	.07		
5.	EMC iragazki komertzialen karakterizazioa	.09		
5.1	. EMC iragazkiek LISNaren S parametroetan duten eragina	112		
5.2	. EMC iragazkiek LISNaren emisioen neurketan duten eragina	117		

1. <u>Sarrera</u>

Eranskin honen bitartez, GrAL proiektu honetan garatutako irtenbidearen ADS programan egindako simulazioetan lortutako emaitzak adieraziko dira.

2. LISNaren karakterizazioa

	Z _{EUT_port} portuaren sarrera-inpedantzia					
Frekuentzia	Simulazioen emaitzak		UNE-EN 55016-1-2 [2]			
(MHz)	Inpedantziaren	Inpedantziaren	Inpedantziaren	Inpedantziaren		
	modulua (Ω)	fasea (º)	modulua (Ω)	fasea (º)		
0,009	5,228	23,806	5,22	26,55		
0,015	6,546	36,434	6,22	38,41		
0,020	7,717	43,291	7,25	44,97		
0,025	8,896	47,578	8,38	49,39		
0,030	10,196	50,548	9,56	52,33		
0,050	15,374	54,154	14,41	56,40		
0,070	20,115	52,651	19,04	55,40		
0,080	22,337	51,199	21,19	54,19		
0,100	26,182	47,928	25,11	51,22		
0,150	33,366	39,688	32,72	43,35		
0,170	35,414	36,809	36,50	43,11		
0,200	37,821	33,040	39,12	38,51		
0,250	40,608	27,983	42,18	38,42		
0,300	42,402	24,148	44,17	27,95		
0,350	43,617	21,153	45,52	24,45		
0,400	44,464	18,782	46,46	21,70		
0,500	45,524	15,304	47,65	17,66		
0,700	46,515	11,111	48,76	12,81		
0,900	46,941	8,704	49,24	10,03		
1,000	47,068	7,848	49,38	9,04		
1,500	47,372	5,260	49,72	6,06		
2,000	47,479	3,952	49,84	4,55		
2,500	47,529	3,164	49,90	3,64		
3,000	47,557	2,637	49,93	3,04		
4,000	47,584	1,979	49,96	2,28		
5,000	47,597	1,583	49,98	1,82		
7,000	47,608	1,131	49,99	1,30		
10,00	47,613	0,792	49,99	0,91		
15,00	47,617	0,528	50,00	0,61		
20,00	47,618	0,396	50,00	0,46		
30,00	47,618	0,264	50,00	0,30		

Taula 23: Z_{EUT_port} portuaren sarrera-inpedantziaren simulazioen emaitzak eta UNE-EN 55016-1-2 arauak xedatutako balioak [2]

Grafikoa 6: 50 $\Omega/(50~\mu\mathrm{H}$ +5 $\Omega)$ LISNaren portuen sarrera-inpedantziaren modulua

Grafikoa 7: 50 Ω /(50 µH +5 Ω) LISNaren portuen sarrera-inpedantziaren fasea

Grafikoa 8:50 $\Omega/($ 50 μH +5 $\Omega)$ LISN motaren portuen arteko transferentzia kurben modulua

Grafikoa 9: 50 $\Omega/(50 \ \mu H + 5 \ \Omega)$ LISN motaren portuen arteko transferentzia kurben fasea

3. <u>Inpedantzia ezberdinak duten EUTn aurrean LISNak</u> <u>duen konportamenduaren karakterizazioa</u>

Grafikoa 10: S_{EUT-IN} transferentzia funtzioaren anplitudea

Grafikoa 11: S_{EUT-IN} transferentzia funtzioren fasea

Grafikoa 13: S_{RX-EUT} transferentzia funtzioaren fasea

Grafikoa 14: S_{EUT-IN} transferentzia funtzioaren anplitudea

Grafikoa 15: S_{EUT-IN} transferentzia funtzioaren fasea

Grafikoa 16: Z_{RX_port} neurgailuaren portuaren sarrera-inpedantziaren modulua

Grafikoa 17: Z_{RX_port} neurgailuaren portuaren sarrera-inpedantziaren modulua (handipena)

Grafikoa 18: Z_{RX_port} neurgailuaren portuaren sarrera-inpedantziaren fasea

Grafikoa 19: Z_{IN_port} neurgailuaren portuaren sarrera-inpedantziaren modulua

Grafikoa 20: Z_{IN_port} neurgailuaren portuaren sarrera-inpedantziaren fasea

4. LISNaren konportamendua emisioen neurketan

Grafikoa 21: |H(f)| transferentzia kurbaren modulua

Grafikoa 22: |H(f)| transferentzia kurbaren modulua (handipena)

Grafikoa 23: H(f) transferentzia kurbaren fasea

5. EMC iragazki komertzialen karakterizazioa

Grafikoa 24: EMC iragazkien sarrera-inpedantziaren modulua (zirkuitu irekian)

Grafikoa 25: EMC iragazkien sarrera-inpedantziaren fasea (zirkuitu irekian)

Grafikoa 26: EMC iragazkien S(1,2) transferentzia funtzioen modulua

Grafikoa 27: EMC iragazkien S(1,2) transferentzia funtzioen fasea

Grafikoa 28: EMC iragazkien S(2,1) transferentzia funtzioen modulua

Grafikoa 29: EMC iragazkien S(2,1) transferentzia funtzioen fasea

5.1. <u>EMC iragazkiek LISNaren S parametroetan duten</u> <u>eragina</u>

Grafikoa 30: EMC iragazkiekin S_{EUT-IN} transferentzia funtzioaren anplitudea

Grafikoa 31: EMC iragazkiekin S_{EUT-IN} transferentzia funtzioaren fasea

Grafikoa 32: EMC iragazkiekin S_{RX-EUT} transferentzia funtzioaren anplitudea

Grafikoa 33: EMC iragazkiekin SRX-EUT transferentzia funtzioaren fasea

Grafikoa 34: EMC iragazkiekin $S_{\mbox{\tiny RX-IN}}$ transferentzia funtzioaren anplitudea

Grafikoa 35: EMC iragazkiekin $S_{\mbox{\tiny RX-IN}}$ transferentzia funtzioaren anplitudea

 $Grafikoa~36: {\tt EMC}~iragazkiekin~Z_{\tt RX_port}~neurgailuaren~portuaren~sarrera-inpedantziaren~modulua$

 $Grafikoa~37: EMC~iragazkiekin~Z_{RX_port}~neurgailuaren~portuaren~sarrera-inpedantziaren~fasea$

 $Grafikoa~38:~Z_{IN_port}~sare are n~portuare n~sarrera-inpedant ziare n~modulua$

Grafikoa 39: Z_{IN_port} sarearen portuaren sarrera-inpedantziaren modulua

5.2. <u>EMC iragazkiek LISNaren emisioen neurketan</u> <u>duten eragina</u>

Grafikoa 40: EMC iragazkiekin |H(f)| transferentzia kurbaren modulua

Grafikoa 41: EMC iragazkiekin H(f) transferentzia kurbaren fasea

II. ERANSKINA: L.I.S.N.AREN SINTESIAREN EMAITZAK

II. ERANSKINAREN AURKIBIDEA

1.	Sarrera	123
2.	LV sare elektrikoaren inpedantziaren karakterizazioa	123
3.	50 $\Omega/(50\mu\text{H}$ + 5 $\Omega)$ LISN motaren osagaien eragina egonkortze-	
sare	aren funtzionamenduan	124
4.	LISN berriaren eskema elektronikoa	125

1. <u>Sarrera</u>

Eranskin honen bitartez, GrAL proiektu honetan garatutako LISN berriaren sintesiaren analisiaren ondorioz lortutako emaitzak adieraziko dira.

2. <u>LV sare elektrikoaren inpedantziaren</u> <u>karakterizazioa</u>

Sarearen inpedantziaren moduluaren erregresio polinomikoa:

 $|Z_{Sarea}(f)| = -2,1348E-27 \cdot f^{4} + 1,1106E-19 \cdot f^{3} - 1,8225E-12 \cdot f^{2} + 1,3908E-05 \cdot f + 3,4567$

Grafikoa 42:Sarearen inpedantziaren moduluaren eta erregresio polinomikoaren konparaketa

Sarearen inpedantziaren fasearen erregresio polinomikoa:

phase(Z_{Sarea} (f))= -2,338E-25·f⁵+3,754E-19·f⁴ - 2,275E-13·f³ + 6,323E-08·f² - 7,518E-03·f +

3,125E+022

Grafikoa 43: Sarearen inpedantziaren fasearen eta erregresio polinomikoaren konparaketa

3. $50 \Omega/(50 \mu H + 5 \Omega)$ LISN motaren osagaien eragina egonkortze-sarearen funtzionamenduan

Atal honen inguruko azalpen guztiak "7. Proposatutako irtenbidearen deskribapena" atalaren "7.2.2" puntuan eman dira. Izan ere, atal horretan 50 Ω /(50 μ H + 5 Ω) motako LISNak dituen osagaiek egonkortze-sarearen funtzionamenduan duten eragina azaltzen da.

4. LISN berriaren eskema elektronikoa

Grafikoa 44: Sarearen balioen, erregresio polinomikoaren eta 50 Ω / (2,5 μH + 4 $\Omega) inpedantziaren arteko konparaketa$

Grafikoa 45: LISNek EUTaren portuan duten sarrera-inpedantziaren modulua

Grafikoa 46:LISNek EUTaren portuan duten sarrera-inpedantziaren fasea

Grafikoa 47: LISNen S parametroen modulua

Grafikoa 48: LISNen S parametroen fasea

Grafikoa 49: LISNek portuetan duten sarrera-inpedantziaren modulua

Grafikoa 50: LISNek portuetan duten sarrera-inpedantziaren fasea

III. ERANSKINA: L.I.S.N.EN ZIURGABETASUN KONTRIBUZIOAREN EUSKARRI DIGITALEN EMAITZAK

III. ERANSKINAREN AURKIBIDEA

1.	Sarrera	133

- 2. LISN mota baten ziurgabetasun kontribuzioaren kalkuluak 133
- 3. LISN konkretu baten ziurgabetasun kontribuzioaren kalkulua. 138

1. <u>Sarrera</u>

Eranskin honen bitartez, GrAL proiektu honetan garatutako LISNen ziurgabetasun kontribuzioa kalkulatzeko sortu diren baliabide digitalekin lortutako emaitzak adieraziko dira.

2. <u>LISN mota baten ziurgabetasun kontribuzioaren</u> <u>kalkuluak</u>

	R&S bal	ioak [23]	Excel bidezko kalkuluak			
FIER. (MHZ)	Max (dB)	Min (dB)	Max (dB)	Min (dB)		
0,15	2,68	-2,60	2,6751	-2,5978		
0,16	2,56	-2,53	2,5565	-2,5317		
0,17	2,46	-2,47	2,4564	-2,4747		
0,18	2,37	-2,43	2,3708	-2,4253		
0,19	2,30	-2,38	2,2971	-2,3823		
0,20	2,23	-2,34	2,2332	-2,3445		
0,25	2,01	-2,21	2,0132	-2,2114		
0,30	1,89	-2,13	1,8880	-2,1335		
0,50	1,70	-2,01	1,6969	-2,0118		
1,00	1,61	-1,96	1,6124	-1,9570		
5,00	1,58	-1,94	1,5847	-1,9389		
10,0	1,58	-1,94	1,5839	-1,9383		
30,0	1,58	-1,94	1,5837	-1,9382		

Taula 24: 50 Ω50µH LISN motaren ziurgabetasun kontribuzioa maximoaren kalkuluak eta R&S-en balioen konparaketa [23]

Frek. (MHz) 0,009 0,015 0,030 0,060	50 Ω/(50 μH + 5 Ω)				
FIER. (MHZ)	Max (dB)	Min (dB)			
0,009	1,8550	-2,1128			
0,015	2,2287	-2,3417			
0,030	3,1333	-2,8417			
0,060	3,5715	-3,0581			
0,100	3,0295	-2,7881			
0,150	2,4696	-2,4823			
0,160	2,3916	-2,4374			
0,170	2,3225	-2,3972			
0,180	2,2610	-2,3611			
0,190	2,2063	-2,3286			
0,200	2,1577	-2,2993			
0,250	1,9794	-2,1905			
0,300	1,8708	-2,1228			
0,500	1,6945	-2,0103			
1,000	1,6122	-1,9569			
5,000	1,5847	-1,9389			
10,00	1,5839	-1,9383			
30,00	1,5837	-1,9382			

Taula 25: 50 $\Omega/(50\mu H + 5 \Omega)$ LISN motaren ziurgabetasun kontribuzio maximoaren kalkuluen emaitza

Erok (MHz)	50 Ω/(50	μΗ + 5 Ω)
FIER. (MITZ)	Max (dB)	Min (dB)
0,009	0,9435	-1,0085
0,015	1,1010	-1,1323
0,030	1,4692	-1,4074
0,060	1,6410	-1,5289
0,100	1,4284	-1,3776
0,150	1,2010	-1,2090
0,160	1,1688	-1,1844
0,170	1,1400	-1,1624
0,180	1,1145	-1,1427
0,190	1,0916	-1,1250
0,200	1,0712	-1,1092
0,250	0,9962	-1,0504
0,300	0,9502	-1,0138
0,500	0,8752	-0,9536
1,000	0,8401	-0,9251
5,000	0,8283	-0,9155
10,00	0,8280	-0,9152
30,00	0,8279	-0,9151

Taula 26: 50 Ω/(50µH + 5 Ω) LISN motaren ziurgabetasun kontribuzio maximoaren kalkuluen emaitza, tolerantzia %10 dela

	50 Ω/(50	μΗ + 5 Ω)
FIER. (MHZ)	Max (dB)	Min (dB)
0,009	2,7793	-3,3481
0,015	3,4687	-3,6734
0,030	5,2137	-4,3727
0,060	6,1155	-4,6720
0,100	5,0059	-4,2987
0,150	3,9208	-3,8714
0,160	3,7735	-3,8083
0,170	3,6437	-3,7516
0,180	3,5289	-3,7006
0,190	3,4270	-3,6546
0,200	3,3366	-3,6131
0,250	3,0076	-3,4589
0,300	2,8082	-3,3624
0,500	2,4843	-3,2015
1,000	2,3322	-3,1249
5,000	2,2810	-3,0990
10,00	2,2794	-3,0983
30,00	2,2789	-3,0980

Taula 27: 50 Ω/(50μH + 5 Ω) LISN motaren ziurgabetasun kontribuzio maximoaren kalkuluen emaitza, tolerantzia %30 dela

	50 Ω/(50	μΗ + 5 Ω)
FIER. (MIFIZ)	Max (dB)	Min (dB)
0,009	4,9954	-6,4216
0,015	6,9445	-6,9365
0,030	13,2759	-8,0198
0,060	18,5259	-8,4735
0,100	12,3383	-7,9057
0,150	8,3381	-7,2459
0,160	7,8719	-7,1478
0,170	7,4729	-7,0589
0,180	7,1268	-6,9789
0,190	6,8253	-6,9068
0,200	6,5617	-6,8417
0,250	5,6281	-6,5973
0,300	5,0753	-6,4440
0,500	4,1720	-6,1873
1,000	3,7121	-6,0639
5,000	3,5305	-6,0223
10,00	3,5240	-6,0210
30,00	3,5220	-6,0204

Taula 28: 50 $\Omega/(50\mu H + 5 \Omega)$ LISN motaren ziurgabetasun kontribuzio maximoaren kalkuluen emaitza, tolerantzia %50 dela

3. <u>LISN konkretu baten ziurgabetasun kontribuzioaren</u> <u>kalkulua</u>

Freq (MHz)	Zan ()	fasea(Zan) (°)	MAXIMUN DEVIATION	Phase of EUT reflection coeff.
0,009 MHz	5,60 Ω	19,01 °	0,7742 dB	153 °
0,015 MHz	5,94 Ω	34,72 °	-0,8393 dB	199 °
0,020 MHz	6,95 Ω	43,69 °	-0,5722 dB	207 °
0,025 MHz	8,13 Ω	48,50 °	-0,4330 dB	209 °
0,030 MHz	9,37 Ω	51,88 °	-0,2830 dB	214 °
0,050 MHz	14,59 Ω	55,89 °	-0,1236 dB	204 °
0,070 MHz	19,10 Ω	54,53 °	-0,1966 dB	219 °
0,080 MHz	21,39 Ω	53,17 °	-0,2118 dB	220 °
0,100 MHz	25,25 Ω	50,12 °	-0,2152 dB	229 °
0,150 MHz	32,62 Ω	42,01 °	-0,2461 dB	249 °
0,170 MHz	34,68 Ω	39,24 °	-0,2506 dB	259 °
0,200 MHz	37,30 Ω	35,42 °	-0,2500 dB	268 °
0,250 MHz	40,36 Ω	30,35 °	-0,2410 dB	284 °
0,300 MHz	42,45 Ω	26,38 °	-0,2287 dB	294 °
0,350 MHz	43,95 Ω	23,22 °	-0,2114 dB	301 °
0,400 MHz	44,87 Ω	20,74 °	-0,2227 dB	311 °
0,500 MHz	46,19 Ω	17,01 °	-0,2126 dB	321 °
0,700 MHz	47,50 Ω	12,53 °	-0,1915 dB	336 °
0,900 MHz	48,06 Ω	9,91 °	-0,1865 dB	344 °
1,000 MHz	48,23 Ω	8,98 °	-0,1847 dB	348 °
1,500 MHz	48,66 Ω	6,23 °	-0,1776 dB	6 °
2,000 MHz	48,83 Ω	4,86 °	-0,1743 dB	9 °
2,500 MHz	48,91 Ω	4,07 °	-0,1744 dB	16 °
3,000 MHz	48,97 Ω	3,56 °	-0,1730 dB	21 °
4,000 MHz	49,04 Ω	3,00 °	-0,1746 dB	30 °
5,000 MHz	49,08 Ω	2,72 °	-0,1789 dB	39 °
7,000 MHz	49,13 Ω	2,53 °	-0,1913 dB	49 °
10,000 MHz	49,13 Ω	2,53 °	-0,2160 dB	56 °
15,000 MHz	49,09 Ω	3,00 °	-0,2718 dB	65 °
20,000 MHz	48,88 Ω	3,24 °	-0,3243 dB	64 °
30,000 MHz	47,72 Ω	4,14 °	-0,5461 dB	55 °

Taula 29: TSR ikerketa taldearen R&S®ENV216 Two-Line V-Network LISNaren ziurgabetasun kontribuzioaren kalkuluak

 $\label{eq:Grafikoa 51: 50 } Grafikoa 51: 50 \,\Omega/(50 \,\mu\text{H}+5 \,\Omega) \ inpedantziaren \ balio \ nominala, \ TSR \ laborategiko \ LISN aren \ inpedantzia \ eta \ tolerantzia \ maximoko \ zirkunferentzien \ (Tolerance \ Circle) \ diagrama$

IV. ERANSKINA: ERABILTZAILE GIDA

IV. ERANSKINAREN AURKIBIDEA

1.	S	arrera	145
2.	A	DS-n inplementatutako zirkuitua	145
2	.1.	50 Ω / (50 μH + 5 Ω) LISNa	145
2	.2.	SCHURTER EMC iragazkiak	147
	2.2.1	. SCHURTER 5500.2044 EMC iragazkia	147
	2.2.2	2. SCHURTER 5500.2052 EMC iragazkia	148
	2.2.3	8. SCHURTER 5500.2055 EMC iragazkia	149
	2.2.4	e. SCHURTER 5500.2060 EMC iragazkia	149
3.	zi	urgabetasun kontribuzioa kalkulatzeko baliabideak	150
3	.1.	Ziurgabetasun kontribuzioaren kalkulagailu sinplea	150
3	.2.	LISN motaren neurketen ziurgabetasun kontribuzio maximoa	
k	alku	latzen duen euskarri digitala	152
3	.3.	LISN konkretu baten neurketen ziurgabetasun kontribuzio	
k	alku	latzen duen euskarri digitala	153

1. <u>Sarrera</u>

GrAL-aren bigarren eranskin honetan, TSR ikerketa taldean utziko diren euskarri digitalen erabiltzaile gida dago. Proiektu osoan zehar erabilitako simulazio eta kalkulu baliabideak nola erabiltzen diren azalduko da, ikerketa lan honekin jarraitzen duen ikertzaileak euskarri digital hauek nola erabiltzen diren uler dezan. Erabiltzaile gida hau bi atal nagusitan banatzen da: alde batetik, ADSn inplementatutako zirkuituen erabilpena, eta bestetik, LISNen neurketen ziurgabetasun kontribuzioa kalkulatzeko baliabideen azalpena.

2. ADS-n inplementatutako zirkuitua

Txostenean zehar azaldu den moduan, GrAL hau jorratzeko hainbat zirkuitu ADS simulazio programan inplementatu egin dira, zirkuitu hauen funtzionamendua karakterizatu ahal izateko. ADSn jasotako zirkuituen artean honako hauek daude: CISPR 16-1-2 arau teknikoak xedatutako 50 $\Omega/(50 \mu H + 5 \Omega)$ LISNa eta SCHURTER fabrikatzailearen 5500.2044, 5500.2052, 5500.2055 eta 5500.2060 zenbakidun EMC iragazkiak. Zirkuitua hauek, eta hauekin eskema elektronikoarekin sortutako konponenteak, ADSn nola erabiltzen diren azalduko da:

2.1. <u>50 Ω / (50 μH + 5 Ω) LISNa</u>

Atal hau jorratzeko, 50 $\Omega/(50 \mu H + 5 \Omega)$ LISNaren zirkuitua berreskuratu egin da:

Irudia 52: ADSn inplementatutako 50 $\Omega/(50 \mu H + 5 \Omega)$ LISNaren zirkuitua

Lan honetan jasotako "7.1.1 LISNaren karakterizazioa" puntuan erabilitako zirkuituari, "Term" osagaiak kendu eta hexagono itxurako etiketak gehitu zaizkio. Elementu berri hauek jartzearen helburua LISNaren zirkuitu osoa konponente batean jasotzea da; "kutxa" itsura duen osagai batean, hexagono formako etiketak konponentearen terminalak izango direlarik. Lortutako konponentea hau da:

Irudia 53: ADSn inplementatutako 50 $\Omega/(50 \,\mu\text{H} + 5 \,\Omega)$ LISNaren konponentea

Puntu honetara helduta, terminalak duten izena eta hauei lotutako funtzionamendua azaltzea beharrekoa da: "_L1" atzizkia duten terminaletan, portu horri lotutako linearen puntu elektrikoarekin konektatuta daude. "_N" atzizkia duten terminaletan, ordean, portuen neutroaren puntu elektrikora konektatuta daude.

Terminalaren izena	Azalpena
IN_L1	Sare elektrikoaren portuaren linearen terminala
IN_N	Sare elektrikoaren portuaren neutroaren terminala
EUT_L1	EUTaren portuaren linearen terminala
EUT_N	EUTaren portuaren neutroaren terminala
Rx_L1	Neurgailuaren portuaren linearen terminala
Rx_N	Neurgailuaren portuaren neutroaren terminala

Taula 30: ADSn inplementatutako 50 Ω /(50 μ H + 5 Ω) LISNaren konponentearen terminalak

Behin hau azalduta, GrAL honetan ADS bidez jorratutako 50 Ω /(50 μ H + 5 Ω) LISN motaren emisioen, sarrera-inpedantzien, transferentzia funtzioen, eta abarreko simulazioak konponente honen bidez egin daitezke.

2.2. <u>SCHURTER EMC iragazkiak</u>

LISNaren zirkuituarekin erabilitako prozedura berbera jarraituz, SCHURTER marka komertzialaren iragazkien konponenteak ADSn sortuko dira. Aurrerago ikusi ahal izango den moduan, EMC iragazki hauek lau terminal izango dituzte. "IN" aurrizkia duten terminalak sare elektrikora konektatzen den portua adierazi nahi dute, eta "LOAD" atzizkia dutenak, ordean, kargara konektatzen portua. Atzizkiei dagokionez, 50 $\Omega/(50 \mu H + 5 \Omega)$ LISNarekin jarraitutako "_L1" eta "_N" hizkien irizpidea mantenu da.

Terminalaren izena	Azalpena
IN_L1	Sare elektrikoaren portuaren linearen terminala
IN_N	Sare elektrikoaren portuaren neutroaren terminala
LOAD_L1	Kargaren portuaren linearen terminala
LOAD_N	Kargaren portuaren neutroaren terminala

Taula 31: ADSn inplementatutako SCHURTER iragazkien konponentearen terminalak

Azaldutakoarekin, EMC iragazkien eta lortu diren konponente bakoitzaren irudiak agertuko dira aurrerantzean:

2.2.1. SCHURTER 5500.2044 EMC iragazkia

Irudia 54:SCHURTER 5500.2044 EMC iragazkiaren eskema elektronikoa

Irudia 55: SCHURTER 5500.2044 EMC iragazkiaren konponentea

2.2.2. SCHURTER 5500.2052 EMC iragazkia

Irudia 56: SCHURTER 5500.2052 EMC iragazkiaren eskema elektronikoa

Irudia 57: SCHURTER 5500.2052 EMC iragazkiaren konponentea

2.2.3. SCHURTER 5500.2055 EMC iragazkia

Irudia 58: SCHURTER 5500.2055 EMC iragazkiaren eskema elektronikoa

Irudia 59: SCHURTER 5500.2055 EMC iragazkiaren konponentea

2.2.4. SCHURTER 5500.2060 EMC iragazkia

Irudia 60: SCHURTER 5500.2060 EMC iragazkiaren eskema elektronikoa

Irudia 61: SCHURTER 5500.2060 EMC iragazkiaren konponentea

3. <u>ziurgabetasun kontribuzioa kalkulatzeko</u> <u>baliabideak</u>

Atal honetan LISNen neurketetan dagoen ziurgabetasun kontribuzioa kalkulatzen duten hiru euskarri digitalak nola erabiltzen diren azalduko da.

3.1. <u>Ziurgabetasun kontribuzioaren kalkulagailu</u> <u>sinplea</u>

Puntu honetan, LISN baten ziurgabetasun kontribuzioa kalkulatzen duen kalkulagailu sinplearen erabilera azalduko da. Euskarri digital hau Excel programaren orri bakar batean inplementatu da:

Irudia 62: Ziurgabetasun kontribuzioaren kalkulagailu sinplearen Excel orria

Aurreko irudian kalkula gailu sinple honen interfazea ikus daiteke. Baliabide honen bitartez frekuentzia jakin batean, EUT jakin batekin, LISN mota batek izango duen ziurgabetasun kontribuzioa kalkula daiteke. Kalkulu hauek egiteko programari lauki berdeetan dauden datuak eman behar zaizkio:

- **Freq:** LISNaren ziurgabetasun kontribuzioa ebaluatu nahi den frekuentzia.
- Z_0 : LISNaren inpedantzia karakteristikoa, normalean 50 Ω -eko izango dena.
- **Z_lisn:** LISN motaren inpedantzia, hots, LISNak EUTaren portuan edukiko duen sarrera-inpedantziaren balio nominala.
- $Z_{an} \alpha$: EUTaren portuan LISNak izango duen tolerantziaren balioa. CISPR 16-1-2 arauak % 20-ko tolerantzia maximoa arautzen du, hau dela eta, alfak 0 eta 0,2 balioen artean egon behar da.
- $Z_{an} \theta$: EUTaren portuan LISNak duen tolerantziaren fasea.
- Γ_{eut} ρ: EUTaren islapen koefizienteak duen modulua.
- Γ_{eut} ϕ : EUTaren islapen koefizienteak duen fasea

Sarrera parametroekin euskarri digitalak laukizuzen gorrietan bildutako informazioa itzultzen du, honako hau delarik:

- **Z**_{nom}: Emandako frekuentzian ezarritako LISN motak izan behar duen inpedantzia nominala edo teorikoa.
- **Z**_{an}: Jarritako tolerantziarekin, EUTaren portuan egongo den inpedantzia erreala.
- Γ_{nom} : Inpedantzia nominalak, inpedantzia karakteristikoarekiko, sortzen duen islapen koefizientea.
- Γ_{an}: Jarritako tolerantziarekin, EUTaren portuan egongo den inpedantzia errealak, inpedantzia karakteristikoarekiko, sortzen duen islapen koefizientea.
- Γ_{eut}: EUTaren inpedantziak, inpedantzia karakteristikoarekiko, sortzen duen islapen koefizientea.
- V_{an}/V_{nom}: Neurketen desbiderapena.
- |V_{an}/V_{nom}|: Neurketen desbiderapenaren modulua.
- **20log(|V**_{an}/**V**_{nom}|): Neurketen desbiderapenaren modulua eskala logaritmikoan.

3.2. <u>LISN motaren neurketen ziurgabetasun</u> <u>kontribuzio maximoa kalkulatzen duen euskarri</u> <u>digitala</u>

GrAL-aren txosten honetan azaldu den moduan, LISN mota ezberdinen neurketen ziurgabetasun kontribuzio maximoa kalkulatzen duen euskarri digitala sortu da. Baliabide honen printzipio matematikoak lan honen "7.3.1 LISN mota baten ziurgabetasun kontribuzioaren kalkuluak" puntuan deskribatu dira.

Input param.		Zo	50 Ω		Z_lisn	50 Ω /	7	5,00E-05 H +	0 Ω	Zan	
Output										$\alpha (0 \le \alpha \le 0,2)$	0,2
										Гeut	
										ρ (0 ≤ ρ ≤ 1)	1
		Freq (MHz)	Min (Van/Vnom)	Max (Van/Vnom)							
	<u>f1</u>	0,15 MHz	2,6751 dB	-2,5978 dB							
	<u>f2</u>	0,16 MHz	2,5565 dB	-2,5317 dB							
	<u>f3</u>	0,17 MHz	2,4564 dB	-2,4747 dB							
	<u>f4</u>	0,18 MHz	2,3708 dB	-2,4253 dB							
	<u>f5</u>	0,19 MHz	2,2971 dB	-2,3823 dB							
	<u>f6</u>	0,20 MHz	2,2332 dB	-2,3445 dB							
	<u>f7</u>	0,25 MHz	2,0132 dB	-2,2114 dB							
	<u>f8</u>	0,30 MHz	1,8880 dB	-2,1335 dB							
	<u>f9</u>	0,50 MHz	1,6969 dB	-2,0118 dB							
	<u>f10</u>	1,00 MHz	1,6124 dB	-1,9570 dB							
	<u>f11</u>	5,00 MHz	1,5847 dB	-1,9389 dB							
	<u>f12</u>	10,00 MHz	1,5839 dB	-1,9383 dB							
	<u>f13</u>	30,00 MHz	1,5837 dB	-1,9382 dB							

Irudia 63: Edozein LISN motaren ziurgabetasun kontribuzioa kalkulatzeko Excelaren orri nagusia

Freq	1.50E+05 H	Van/Vnom						
an	-,	Max	2 6751 dB					
$10 \le \alpha \le 0.21$	0.3	Min	-2.5978 dB					
'eut								
o (0 ≤ ρ ≤ 1)	1	L						
	mod	phase (rad)	phase(deg.)	Binomial				
nom	34,2933 (0,8150 rae	46,70 °	23,5206573277972+24,9561925232636j				
"nom	0,468650	2,0586 rat	117,95 *	-0,219632627408007+0,413997749252169j				
(deg.)	de (deg)	Q (rad)	de (rad)	750	Enn	Fout	VanMnom	20log(IVanA/nomI)
/ (ueg.)	φ (deg.)	0,0000 ray	φ (au) 0.0000 rad	20 2702244472506+24 0561025222626i	0 124716620266648+0 252207099895616	1	1 12717224228024.0 145545426677005	2010g([vall/vhol1]])
0	° 1	0,0000 rat	0.0175 rad	30,3793244472596+24,9561925232636j	-0.134716630366648±0.352307099885616	A 0 999847695156391+0 0174524064372835i	1 13733965804276.0 144189159516592	1,1871 dB
		0.0000 rat	0.0349 rad	30,3793244472596+24,9561925232030j	0.134716630366648+0.352307099885010j	0.999390827019096+0.034899496702501	1 13749040697734.0 142842806741622	1,18/1 00
0		0,0000 rat	0.0524 rad	20 3703244472596+24 9561925232636j	0.1347166303666648+0.352307099885616	0.998629534754574+0.0523359562429438	1 13762596363956.0 141506288659478	1,1867 dB
0	° 4	0,0000 rat	0.0698 rad	30 3793244472596+24 9561925232636	0 134716630366648+0 352307099885616	0.997564050259824+0.0697564737441253	1 13774668972826.0 14017951243974i	1 1863 dB
0		0,0000 rat	0.0873 rad	30 3793244472596+24 9561925232636i	-0 134716630366648+0 352307099885616j	0 996194698091746+0 0871557427476582i	1 13785293456632-0 138862382435736	1,1859 dB
0	* 6	0.0000 rat	0.1047 rad	30.3793244472596+24.9561925232636i	-0.134716630366648+0.352307099885616	0.994521895368273+0.104528463267653i	1.13794503546248-0.137554800484315	1,1854 dB
0	• 7	0.0000 rat	0.1222 rad	30.3793244472596+24.9561925232636i	-0.134716630366648+0.352307099885616i	0.992546151641322+0.121869343405147	1.13802331806381-0.136256666185999i	1.1848 dB
0	* 8	0.0000 rat	0.1396 rad	30.3793244472596+24.9561925232636i	-0.134716630366648+0.352307099885616i	0.99026806874157+0.139173100960065i	1.13808809669831-0.134967877166809i	1.1842 dB
0	• 9	0.0000 rat	0.1571 rad	30.3793244472596+24.9561925232636	-0.134716630366648+0.352307099885616	0.987688340595138+0.156434465040231	1.13813967470789-0.13368832932273i	1.1834 dB
0	* 10	0.0000 rat	0.1745 rad	30.3793244472596+24.9561925232636i	-0.134716630366648+0.352307099885616i	0.984807753012208+0.17364817766693i	1.13817834477199-0.13241791704796i	1.1826 dB
0	* 11	0.0000 rat	0.1920 rad	30.3793244472596+24.9561925232636i	-0.134716630366648+0.352307099885616	0.981627183447664+0.190808995376545i	1.13820438922143-0.131156533447832	1.1817 dB
0	* 12	0,0000 rat	0,2094 rad	30,3793244472596+24,9561925232636j	-0,134716630366648+0,352307099885616j	0,978147600733806+0,207911690817759j	1,13821808034317-0,129904070537448j	1,1807 dB
0	* 13	0,0000 rat	0,2269 rad	30,3793244472596+24,9561925232636j	-0,134716630366648+0,352307099885616j	0,974370064785235+0,224951054343865j	1,13821968067564-0,128660419426819	1,1797 dB
0	* 14	0,0000 rad	0,2443 rad	30,3793244472596+24,9561925232636	-0,134716630366648+0,352307099885616	0,970295726275996+0,241921895599668	1,13820944329505-0,127425470493289	1,1785 dB
a	* 15	0,0000 rat	0,2618 rad	30,3793244472596+24,9561925232636j	-0,134716630366648+0,352307099885616j	0,965925826289068+0,258819045102521	1,13818761209263-0,126199113542267	1,1773 dB
a	° 16	0,0000 rai	0,2793 rad	30,3793244472596+24,9561925232636	-0,134716630366648+0,352307099885616	0,961261695938319+0,275637355816999	1,13815442204321-0,124981237956646	1,1761 dB
0	* 17	0,0000 rat	0,2967 rad	30,3793244472596+24,9561925232636j	-0,134716630366648+0,352307099885616j	0,956304755963035+0,292371704722737j	1,13811009946502-0,123771732835911j	1,1747 dB
0	* 18	0,0000 rat	0,3142 rad	30,3793244472596+24,9561925232636j	-0,134716630366648+0,352307099885616j	0,951056516295154+0,309016994374947j	1,13805486227101-0,122570487125431j	1,1734 dB
0	* 19	0,0000 rat	0,3316 rad	30,3793244472596+24,9561925232636j	-0,134716630366648+0,352307099885616j	0,945518575599317+0,325568154457157j	1,137988920212-0,121377389736614j	1,1719 dB
0	* 20	0,0000 rat	0,3491 rad	30,3793244472596+24,9561925232636j	-0,134716630366648+0,352307099885616j	0,939692620785908+0,342020143325669j	1,13791247511158-0,12019232965844j	1,1704 dB
0	° 21	0,0000 rad	0,3665 rad	30,3793244472596+24,9561925232636j	-0,134716630366648+0,352307099885616j	0,933580426497202+0,3583679495453j	1,13782572109309-0,119015196061034j	1,1688 dB
0	* 22	0,0000 rat	i 0,3840 rad	30,3793244472596+24,9561925232636j	-0,134716630366648+0,352307099885616j	0,927183854566787+0,374606593415912j	1,13772884479891-0,117845878391649j	1,1671 dB
0	° 23	0,0000 rat	i 0,4014 rad	30,3793244472596+24,9561925232636j	-0,134716630366648+0,352307099885616j	0,92050485345244+0,390731128489274j	1,13762202560212-0,116684266463719j	1,1654 dB
0	* 24	0,0000 rat	0,4189 rad	30,3793244472596+24,9561925232636j	-0,134716630366648+0,352307099885616j	0,913545457642601+0,4067366430758j	1,13750543581082-0,115530250539242j	1,1636 dB
0	° 25	0,0000 rat	0,4363 rad	30,3793244472596+24,9561925232636j	-0,134716630366648+0,352307099885616j	0,90630778703665+0,422618261740699j	1,13737924086521-0,114383721405142j	1,1618 dB
0	° 26	0,0000 rat	0,4538 rad	30,3793244472596+24,9561925232636j	-0,134716630366648+0,352307099885616j	0,898794046299167+0,438371146789077j	1,13724359952767-0,113244570443816j	1,1599 dB
0	* 27	0,0000 rad	0,4712 rad	30,3793244472596+24,9561925232636j	-0,134716630366648+0,352307099885616j	0,891006524188368+0,453990499739547j	1,13709866406609-0,112112689698393j	1,1580 dB
0	° 28	0,0000 rat	0,4887 rad	30,3793244472596+24,9561925232636j	-0,134716630366648+0,352307099885616j	0,882947592858927+0,469471562785891	1,13694458043041-0,110987971932974j	1,1560 dB
0	* 29	0,0000 rat	0,5061 rad	30,3793244472596+24,9561925232636j	-0,134716630366648+0,352307099885616j	0,874619707139396+0,484809620246337j	1,13678148842276-0,109870310688328j	1,1539 dB
0	° 30	0,0000 rat	0,5236 rad	30,3793244472596+24,9561925232636j	-0,134716630366648+0,352307099885616j	0,866025403784439+0,5j	1,13660952186142-0,108759600333135j	1,1518 dB

Irudia 64: Edozein LISN motak frekuentzia batean duen ziurgabetasun kontribuzioa kalkulatzeko Excelaren orria

Euskarri digitalaren orri nagusian, hurrengo sarrera parametroak ditu:

- **Freq**: LISNaren ziurgabetasun kontribuzioa ebaluatu nahi den frekuentzien zerrenda, MHz-etan.
- Z_0 : LISNaren inpedantzia karakteristikoa, normalean 50 Ω -eko izango dena.
- **Z_lisn:** LISN motaren inpedantzia, hots, LISNak EUTaren portuan edukiko duen sarrera-inpedantziaren balio nominala.
- $Z_{an} \alpha$: EUTaren portuan LISNak izango duen tolerantziaren balioa. CISPR 16-1-2 arauak % 20-ko tolerantzia maximoa arautzen du, hau dela eta, alfak 0 eta 0,2 balioen artean egon behar da.
- $\Gamma_{eut} \rho$: EUTaren islapen koefizienteak duen modulua.

Irteera parametro modura, aurreko puntuan (3.1 Ziurgabetasun kontribuzioaren kalkulagailu sinplea) azaldutako guztiez gain, honako bi parametro garrantzitsu hauek ere kalkulatzen ditu:

- Max(V_{an}/V_{nom}): LISNaren tolerantzia dela eta, frekuentzia konkretu horretan, neurketek izango duten desbiderapenaren maximoa, dB-tan.
- Min(V_{an}/V_{nom}): LISNaren tolerantzia dela eta, frekuentzia konkretu horretan, neurketek izango duten desbiderapenaren minimoa, dB-tan.

Frekuentzia zehatz baterako, LISN motak izan dezakeen ziurgabetasun kontribuzioa aurreko bi parametroen balio absolutuen maximoak adieraziko du.

Azaldu beharra dago, "Irudia 63"-an urdinez idatzitako "fx" (f1,f2, f3, etab.) letretan klikatuz gero, errenkada horren kalkuluak dituen orrialdea irekiko duela, "Irudia 64"-an ikusten den moduko orria.

3.3. <u>LISN konkretu baten neurketen ziurgabetasun</u> <u>kontribuzio kalkulatzen duen euskarri digitala</u>

Arestian aipatu den moduan, LISN konkretu baten ziurgabetasun kontribuzioa kalkulatzen duen euskarri digitala sortu da. Baliabide honen printzipio matematikoak

lan honen "7.3.2 LISN konkretu baten ziurgabetasun kontribuzioaren kalkuluak" puntuan deskribatu dira.

Hurrengo irudietan baliabide digital honek duen interfazea azaltzen da:

Input param.		Z_lisn	50 Ω	//	5,00E-05 H	5 Ω	
Output							
Zo	50 Ω						
Гeut							
ρ (0 ≤ ρ ≤ 1)	1		Freq (MHz)	Zan (Ω) [mod]	phase(Zan) (°)	MAXIMUN DEVIATION	Phase of EUT reflection coeff.
		<u>f1</u>	0,009 MHz	5,60 Ω	19,01 °	0,7742 dB	153 °
		<u>f2</u>	0,015 MHz	5,94 Ω	34,72 °	-0,8393 dB	199 °
		<u>f3</u>	0,020 MHz	6,95 Ω	43,69 °	-0,5722 dB	207 °
		<u>f4</u>	0,025 MHz	8,13 Ω	48,50 °	-0,4330 dB	209 °
		<u>f5</u>	0,030 MHz	9,37 Ω	51,88 °	-0,2830 dB	214 °
		<u>f6</u>	0,050 MHz	14,59 Ω	55,89 °	-0,1236 dB	204 °
		fZ	0,070 MHz	19,10 Ω	54,53 °	-0,1966 dB	219 °
		<u>f8</u>	0,080 MHz	21,39 Ω	53,17 °	-0,2118 dB	220 °
		<u>f9</u>	0,100 MHz	25,25 Ω	50,12 °	-0,2152 dB	229 °
		<u>f10</u>	0,150 MHz	32,62 Ω	42,01 °	-0,2461 dB	249 °
		<u>f11</u>	0,170 MHz	34,68 Ω	39,24 °	-0,2506 dB	259 °
		<u>f12</u>	0,200 MHz	37,30 Ω	35,42 °	-0,2500 dB	268 °
		<u>f13</u>	0,250 MHz	40,36 Ω	30,35 °	-0,2410 dB	284 °
		<u>f14</u>	0,300 MHz	42,45 Ω	26,38 °	-0,2287 dB	294 °
		<u>f15</u>	0,350 MHz	43,95 Ω	23,22 °	-0,2114 dB	301 °
		<u>f16</u>	0,400 MHz	44,87 Ω	20,74 °	-0,2227 dB	311 °
		<u>f17</u>	0,500 MHz	46,19 Ω	17,01 °	-0,2126 dB	321 °
		<u>f18</u>	0,700 MHz	47,50 Ω	12,53 °	-0,1915 dB	336 °
		<u>f19</u>	0,900 MHz	48,06 Ω	9,91 °	-0,1865 dB	344 °
		<u>f20</u>	1,000 MHz	48,23 Ω	8,98 °	-0,1847 dB	348 °
		<u>f21</u>	1,500 MHz	48,66 Ω	6,23 °	-0,1776 dB	6 °
		<u>f22</u>	2,000 MHz	48,83 Ω	4,86 °	-0,1743 dB	9 °
		<u>f23</u>	2,500 MHz	48,91 Ω	4,07 °	-0,1744 dB	16 °
		<u>f24</u>	3,000 MHz	48,97 Ω	3,56 °	-0,1730 dB	21 °
		<u>f25</u>	4,000 MHz	49,04 Ω	3,00 °	-0,1746 dB	30 °
		<u>f26</u>	5,000 MHz	49,08 Ω	2,72 °	-0,1789 dB	39 °
		<u>f27</u>	7,000 MHz	49,13 Ω	2,53 °	-0,1913 dB	49 °
		<u>f28</u>	10,000 MHz	49,13 Ω	2,53 °	-0,2160 dB	56 °
		<u>f29</u>	15,000 MHz	49,09 Ω	3,00 °	-0,2718 dB	65 °
		<u>f30</u>	20,000 MHz	48,88 Ω	3,24 °	-0,3243 dB	64 °
		<u>f31</u>	30,000 MHz	47,72 Ω	4,14 °	-0,5461 dB	55 °

Irudia 65: LISN konkretu baten ziurgabetasun kontribuzioa kalkulatzeko Excelaren orri nagusia

						mod	phase (rad)	phase(deg.)	Binomial	
					Znom	5,2150 Ω	0,4633 rad	26,54 °	4,66526383087926+2,33056266711284j	
					Zan	5,6000 Ω	0,3318 rad	19,01*	5,29458573748263+1,82410577227459j	
Freq	9,00E+03 Hz	Zo	50 Ω		Гnom	0,829657	3,0476 rad	174,62 *	-0,825996302267206+0,0778483174528491j	
					Гап	0,808728	3,0678 rad	175,77*	-0,806529345180011+0,0595953575268854j	
Z_lisn	50 Ω	//	5,00E-05 H +	5 Ω						
					ф (deg.)	φ (rad)	Гeut		Van/Vnom	20log(Van/Vnom)
Гeut					0 *	0,0000 rad	1		1,06455396779813-0,14080746256075j	0,6187 dB
ρ (0 ≤ ρ ≤ 1)	1				1 *	0,0175 rad	0,999847695156391+0	,0174524064372835	1,0646634045938-0,140702910682259j	0,6194 dB
					2 °	0,0349 rad	0,999390827019096+0	,034899496702501j	1,0647725950002-0,140598207730445j	0,6202 dB
					3 °	0,0524 rad	0,998629534754574+0	,0523359562429438	1,06488155535635-0,140493338514686j	0,6210 dB
Emaitza					4 °	0,0698 rad	0,997564050259824+0	,0697564737441253	1,06499030186394-0,140388287743831j	0,6217 dB
Maximun Deviation	0,7742 dB				5 *	0,0873 rad	0,996194698091746+0	,0871557427476582	1,06509885059692-0,140283040017503j	0,6225 dB
φ (deg.)	153*				6 *	0,1047 rad	0,994521895368273+0	,104528463267653j	1,06520721751082-0,140177579817247j	0,6232 dB
					7 *	0,1222 rad	0,992546151641322+0	,121869343405147j	1,06531541845197-0,14007189149755j	0,6240 dB
					8 *	0,1396 rad	0,99026806874157+0,3	139173100960065j	1,06542346916654-0,139965959276662j	0,6248 dB
20log(Van/Vnom)					9 *	0,1571 rad	0,987688340595138+0	,156434465040231j	1,06553138530948-0,139859767227288j	0,6255 dB
Max	0,7742 dB				10 °	0,1745 rad	0,984807753012208+0	,17364817766693j	1,06563918245338-0,139753299267062j	0,6263 dB
Min	-0,6356 dB				11 *	0,1920 rad	0,981627183447664+0	,190808995376545j	1,06574687609713-0,139646539148856j	0,6270 dB
					12 *	0,2094 rad	0,978147600733806+0	,207911690817759j	1,06585448167457-0,139539470450851j	0,6278 dB
					13 *	0,2269 rad	0,974370064785235+0	,224951054343865j	1,065962014563-0,139432076566415j	0,6285 dB
					14 °	0,2443 rad	0,970295726275996+0	,241921895599668j	1,06606949009161-0,139324340693721j	0,6293 dB
					15 °	0,2618 rad	0,965925826289068+0	,258819045102521j	1,06617692354994-0,139216245825155j	0,6300 dB
					16 *	0,2793 rad	0,961261695938319+0	,275637355816999j	1,06628433019612-0,139107774736414j	0,6308 dB
					17 *	0,2967 rad	0,956304755963036+0	,292371704722737j	1,06639172526514-0,138998909975368j	0,6315 dB
					18 °	0,3142 rad	0,951056516295154+0	,309016994374947j	1,06649912397712-0,138889633850599j	0,6322 dB
					19 °	0,3316 rad	0,945518575599317+0	,325568154457157j	1,06660654154552-0,138779928419671j	0,6330 dB
					20 *	0,3491 rad	0,939692620785908+0	,342020143325669j	1,06671399318527-0,138669775477031j	0,6337 dB

Irudia 66: Edozein LISN motak frekuentzia batean duen ziurgabetasun kontribuzioa kalkulatzeko Excelaren orria

Euskarri digitalaren orri nagusian, hurrengo sarrera parametroak ditu:

- **Freq**: LISNaren ziurgabetasun kontribuzioa ebaluatu nahi den frekuentzien zerrenda, MHz-etan.
- Z_0 : LISNaren inpedantzia karakteristikoa, normalean 50 Ω -eko izango dena.
- **Z_lisn:** LISN motaren inpedantzia, hots, LISNak EUTaren portuan edukiko duen sarrera-inpedantziaren balio nominala
- $|\mathbf{Z}_{an}|$: Neurtutako edo LISNaren kalibrazio liburuan jasotako EUTaren portuan egonkortze-sarearen inpedantziaren moduluaren balioan, Ω -etan.
- **phase(Z**_{an}): Neurtutako edo LISNaren kalibrazio liburuan jasotako EUTaren portuan egonkortze-sarearen inpedantziaren fasearen balioan, gradu sexagesimaletan.
- $\Gamma_{eut} \rho$: EUTaren islapen koefizienteak duen modulua.

Irteera parametro modura, "3.1 Ziurgabetasun kontribuzioaren kalkulagailu sinplea" puntuan azaldutako guztiez gain, honako bi parametro garrantzitsu hauek ere kalkulatzen ditu:

- MAXIMUN DEVIATION: LISNaren tolerantzia dela eta, frekuentzia konkretu horretan, neurketek izango duten ziurgabetasun kontribuzioa, dB-tan. Balio hau, adierazitako frekuentzian, neurketen desbiderapen balio maximo eta minimoen balio handienak adierazten du, balio absolutuan.
- Phase of the EUT refflection coeff.: "MAXIMUN DEVIATION" balioa lortzeko EUTaren islapen koefizienteak duen fasearen balioa, gradu sexagesimaletan.

Azaldu beharra dago, "Irudia 65"-an urdinez idatzitako "fx" (f1,f2, f3, etab.) letretan klikatuz gero, errenkada horren kalkuluak dituen orrialdea irekiko duela, "Irudia 66"-an ikusten den moduko orria.

