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a b s t r a c t 

Human motion capture by optical sensors produces snapshots of the motion of a cloud of points that 

need to be labeled in order to carry out ensuing motion analysis for medical or other purposes. We gen- 

erate the labeling of instantaneous captures of the cloud of points, discarding temporal correlations, in 

the presence of occlusions. Our approach proposes an ensemble of weak classifiers defined over geo- 

metrical features extracted from small subsets of the cloud of points. We apply an Adaboost strategy to 

select a minimal ensemble of weak classifiers achieving a target correct labeling detection accuracy. Fur- 

thermore, we use these features to generate the labeling of the points in the cloud even in the presence 

of occlusions.To deal with the occlusions of markers we search for ensembles of partial labeling solvers 

which can provide partial consistent labelings which cover the unoccluded markers. We test two greedy 

search approaches and a genetic algorithm in the search for the optimal ensemble of partial solvers We 

demonstrate the approach on a real dataset obtained from the measurement of gait motion of persons, 

with available ground truth labeling. Results are encouraging, achieving high accuracy label generation at 

a reduced computational cost. 

© 2019 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Motion capture (MoCap) is the process of object motion quan-

tification in order to build computer models that allow further fine

analysis. Human body Mocap is widely employed in many scien-

tific and industrial applications like entertainment, clinical analysis

and rehabilitation, i.e. gait analysis [5,7] , as well as in the improve-

ment of sport performance (golf, soccer, cycling) [31] where the

biomechanics of the movement plays a crucial role [19] . There are

two main categories of human MoCap: (a) optical, (b) wearable.

Wearable systems attach inertial, magnetic or mechanical track-

ing devices to the body [5,7,31] . Optical systems use a constel-

lation of calibrated, synchronized cameras deployed around the

scene , recording images at a constant frame rate. For each recorded

frame, a set of 2D points called markers are extracted and 3D coor-

dinates of a cloud of points are computed by means of photogram-

metric techniques [6,9,32] . Point labeling is the unique matching

of these points against a body model, allowing further biomechan-

ical calculations. Fig. 1 illustrates the point labeling problem: given

a collection of points C = 

{
c i ∈ R 

3 
}n c 

and a model of the localiza-

i =1 
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ion of these points in the body M = 

{
m j ∈ R 

3 
}n m 

j=1 
, we look for the

njective map from C into M . In our approach, we do not use color

odes, surrounding image, or fiducial schemes, or tracking of the

oints along time. Our research question is posed as: is it possible

o solve the point labeling problem at each frame independently,

et consistently, using only geometrical information even in the

resence of occlusions?. Occlusions happen when a model marker

oint is not present in the cloud of points, i.e. the number of ob-

erved points is lower than the number of model marker points.

hey happen for a variety of reasons, such as the interposition of

paque objects between the marker and the cameras or when the

arker goes out of the camera field of view (FOV). We propose a

obust approach which recovers from occlusions, labeling all the

andidate points at each frame. 

ontributions of the paper. This paper improves over a previous

ystem for point cloud labeling using geometric features as weak

lassifiers that we developed in [10] . Here we solve the issues

aised by marker point occlusions, i.e. when the number of ob-

erved points is lower than the number of model marker points.

n essence, solving the occlusions implies the combinatorial explo-

ation of all possible labeling solutions over subsets of the model

arker points, hence needing to run multiple instances of the

abeling algorithm. We explore several ways to find the optimal
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.neucom.2018.05.132
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.05.132&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jljbascones@gmail.com
mailto:manuel.grana@ehu.eus
mailto:m.lopez@ehu.es
https://doi.org/10.1016/j.neucom.2018.05.132
http://creativecommons.org/licenses/by/4.0/


J.L. Jiménez Bascones, M. Graña and J.M. Lopez-Guede / Neurocomputing 353 (2019) 96–105 97 

Fig. 1. Example of a humanoid model labeling L assigning a unique model point M j 

to each observed point { C i }. 
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atching subset: (a) a genetic algorithm, (b) a tree-search ap-

roach that computes the minimal set of weak classifiers achiev-

ng the maximal labeling accuracy, which is the greatest subset

f model marker points labeled with precision high enough. We

chieve an optimal balance between the number of times that the

verall algorithm succeeds to establish the right labelings, called

it rate, and the number of times the process declares a marker as

ccluded when it isn’t, the false occlusions rate. 

aper contents. Section 2 describes the related works in the liter-

ture. Section 3 describes the previous works on the labeling ef-

orts, giving basic definitions and algorithms. Section 4 describes

he actual contributions in this paper to achieve robust labeling in

he presence of occlusions. Section 5 describes the experimental

ata used for validation computational experiments. Section 6 re-

orts the results of computational validation experiments. Finally,

ection 7 gives our conclussions and some lines for future work. 

. Related work 

Human motion capture is often needed for clinical purposes,

uch as gait analysis [28] , but there are emerging applications such

s human-robot collaboration [14] , where human motion predic-

ion is critical for the safe interaction of humans and robots in

he workplace. Human motion capture has been an active research

rea in last decades, many effort s have been addressed to com-

uter vision based techniques [19] , but other sensors that need to
e in direct contact with the body (wearables) have been used to

easure body motion parameters, such as inertial sensors [5,11] ,

ensors attached to a tailored costume [27] , wireless markers [25] ,

r stretching, bending, torsion sensors directly applied to the skin

o measure for accurate local motion measurement [31] . The main

dvantage of remote sensors, such as conventional computer vi-

ion, Leap Motion Controller [26] . or the kinect 2D+ sensor [21,22] ,

s that they are (almost) not invasive so that they do not interfere

n the subject motion. Techniques using body markers can be con-

idered somehow invasive, but always less than the wearable sen-

ors. The computer vision approaches relying only on optical infor-

ation captured by cameras often require large constellations of

ameras [2] (in our work we used a six camera deployment) that

eed careful calibration processes in order to have accurate esti-

ations of measurement error [20] . If specific infrared light sen-

ors are used, then careful capture conditions are required, such as

arm up time for cameras or blocking any external sun infrared

nterference. 

There are three basic approaches to extract pose information

rom the optical information: skeleton, silhouette, and pointwise

eatures [19,21,22] . The skeleton and silhouette based approaches

rst extract the human shape region of the image and then they

roceed by either computing its medial axis aka skeleton or ex-

racting the boundaries of the shape. The pointwise feature ap-

roach usually proceeds by attaching highly reflectant markers to

he body in specific places, often in the infrared band spectra in or-

er to simplify image processing to the maximum. Image segmen-

ation and extraction of the points is then quite easy and robust. In

ur work we follow this approach, which is the most frequent in

ndustrial/commercial settings. Some authors try to extract point-

ise feature from shape analysis, but such attempts have shown

ittle reliability. It must be noted that all approaches suffer from

cclusions that may lose part of the skeleton, confuse the silhou-

tte, or miss some pointwise features. 

From the computational point of view, most approaches try to

se time information in order to increase robustness. For instance

31] uses a Hidden Markov Model approach on human shapes,

hile [8,15] apply extended Kalman filters to predict the motion of

oint features. Other authors minimize energy function measuring

he difference between the predicted trajectory and the observed

oint features [13,23] . Other works [16,18,24] address the question

rying to minimize the mean distance between the candidates and

he predicted marker positions by a tailored implementation of the

ungarian method [12] . In general, these approaches are quite sen-

itive to occlusions and have difficulties to recover from small er-

ors, often leading to divergent behaviors. For this reason, we have

ocus our efforts here and in [10] on the construction of a marker

oint labeling that does not use past time information, working

n each time cloud independently. On a different note, some au-

hors [16,18] try to use the biomechanical information of the hu-

an skeleton structure, so that they can benefit from the kine-

atic models of the skeleton in order to predict future locations

f the marker points [4,17,30] . However, these approaches also suf-

er great divergences in the case of occlusions. Our approach is

ompletely original in that we learn the relevant geometric rela-

ions between marker points from the data, selecting by an Ad-

boost approach the optimal collection of weak classifiers, aggre-

ated into partial solvers that can produce the marker labeling in-

tantaneously. 

The conventional task is to recognize the human action or activ-

ty after it has been completed [22] , but some works try to recog-

ize the activity while it is happening [3] . These approaches would

ave the advantage of adding recognition robustness to the predic-

ion of the human motion that can be required in some environ-

ents, such as human-robot interaction. In clinical/sport applica-

ions the task often consists in the measurement of some specific
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biometric parameters of the motion under observation, such as

gait parameter measurement [1,2,5,7] , or exploratory behavior [25] .

This is specifically the relevant task for our works. The robust

marker labeling is the key requirement to allow the robust mea-

surement of motion parameters of clinical significance. 

There are a number of commercial solutions for human body

marker tracking, such as Cortex developed by Motion Analy-

sis, 1 Track Manager from Qualisys, 2 or Clima from STT Systems, 3 of-

ten integrated in a more complete and generic hardware-software

solutions. However, little has been published about the details of

the core tracking mechanism they implement due to the propri-

etary nature of these packages. It is possible to guess from their

descriptions that some of them use heuristic methods, but oth-

erwise those systems are unrelated to the present work which

presents an unpublished approach till the date. Hence it is not pos-

sible to make detailed comparisons with their performances. 

3. Labeling without occlusions 

In this section, we review the cloud of points labeling system in

the case when there are no occlusions as introduced in [10] . This

system is the baseline needed to understand the contributions of

this paper. The algorithm we presented in [10] follows a classifica-

tion approach that does not use any prior structural or time series

information, such as the kinematic joint model of the tracked ob-

ject. Instead, a set of weak classifiers defined over geometric fea-

tures are trained from the available ground truth data. An optimal

ensemble of weak classifiers are then chosen and assembled into a

strong classifier by means of a tailored Adaboost machine learning

meta-algorithm. 

3.1. Some definitions 

We provide here the basic definitions of the labeling algorithm

elements. 

• A marker model M = 

{
m 1 , m 2 , . . . , m n m ; m j ∈ R 

3 
}

is a set of

cartesian points called markers to be identified in the observed-

unlabeled point cloud. 

• An observation at time t consists of a cloud of unlabeled XYZ

points C ( t ) = 

{
c 1 , c 2 , . . . , c n c ; c i ∈ R 

3 
}

provided by the optical

data capture hardware/software, that we call the set of candi-

date points . 

• A labeling L ( t ) of the observation at time t is the mapping of

markers of the given model M into the candidate points C ( t ).

A labeling is encoded as a set of integers L ( t ) = { l 1 , l 2 , . . . , l n m } ,
where l i denotes the map m i → c l i , i.e. l i is the index in the set

C ( t ) of the candidate points to be assigned to the i th marker

m i . The occlusions (markers not assigned to any candidate) are

encoded as an assignment to a virtual null candidate ’0’, so that

l i = 0 means that the i th marker is considered as occluded. The

labeling L ( t ) does not have non-zero repeated values (meaning

that the same candidate point cannot be labeled twice). 

• Let us denote a subset of markers as M s ⊂ M . A partial labeling

L M s ( t ) ⊂ L ( t ) is the mapping of the marker subset M s into the

candidate points at time t . 

• We consider weak classifiers h (M s , C ( t ) , L M s ( t ) ) = T ∈ { 0 , 1 } ,
which are decision functions whose output is whether the par-

tial labeling L M s ( t ) is correct (1) or not (0). 

• We build up a strong classifier as an ensemble of weak classi-

fiers φ = { h 1 , h 2 , . . . } . We look for the minimal set of weak clas-

sifiers able to decide if a (partial or complete) labeling is correct

( true ) or not ( false ): φ(M, C, L ) = T ∈ { 0 , 1 } . 
1 http://ftp.motionanalysis.com/html/industrial/cortex.html . 
2 https://www.qualisys.com/software/qualisys-track-manager/ . 
3 https://www.stt-systems.com/products/3d- optical- motion- capture/clima/ . 

r  

m  

o  

o  
• The set of weak classifiers is trained over a set of labeled sam-

ples extracted from a large number of frames whose labeling

relative to a given marker set has been manually generated. 

• The training method is a very specifically tailored version of

Adaboost [10] . 

• As we are treating each data capture frame independently, we

can drop the time parameter. 

• The solver S ( C, M, φ) is the algorithm that finds the set of feasi-

ble labeling maps L = 

{
L 1 , L 2 , . . . 

}
, such that φ(M, C, L i ) = true .

Solver S ( C, M, φ) makes use of the strong classifier φ and an

efficient tree exploration method to find all the feasible marker

labelings of the candidate points. Despite its efficiency in terms

of computation time, its main drawback is that it cannot han-

dle null labels. Hence, for each labeling found L i ∈ L all of its

components l j ∈ L i are positive l j > 0. The set of labelings found

by S might be the empty set L = ∅ , meaning that the solver

S ( C, M, φ) could not find any feasible solution. The algorithm of

S ( C, M, φ) is unable to deal with occlusions: either it assigns a

candidate to each marker or to no one. 

• Once we have trained a strong classifier φ, we can assess by

means of random samples coming from the ground truth the

hit rate P (S, m i ) = P i (S) ∈ [0 , 1] of the solver in the assignment

of any marker m i to its right candidate. This assessment infor-

mation is computed and stored as a metadata of the solver S for

further usage. 

.2. The weak classifiers 

Given the candidate points, we define scalar valued geometric

unctions { g k : D k → R } , where D k is the specific domain of the

unction defined by the required number of points. Examples of

eometric functions are listed in Table 1 , each corresponding to a

eometric property of the polygon defined by the set of points.

ach geometric function allows to build a collection of features

rom the cloud of candidate points applying it to all possible com-

inations of points that fit into the domain D k definition. Thus we

an compute over a given cloud of points as many features as com-

inations allowed by the used geometric functions. This number of

eatures grows combinatorially with the size of the cloud of can-

idate points. Following an Adaboost [29] approach, we define a

eak classifier from each feature as as follows: each feature falls

ithin a range of values [ α, β] when the labeling of is correct,

herefore a weak classifier checks if the feature value falls within

he specified interval, i.e. 

 

(
f S k ( M, C ) , αS 

k , β
S 
k 

)
= 

{
1 if αS 

k 
< f S 

k ( M, C ) < βS 
k 

0 otherwise 
, (1)

here f S 
k 

is a feature computed applying geometric function g k (.)

o a subset of points S ⊂ M selected from the candidate points C ,

αS 
k 
, βS 

k 

]
are interval of values where the feature falls when the

abeling is correct, and class 1 denotes correct labeling of the cloud

f points. 

.3. The ensemble strong classifier 

The first step in building the labeling algorithm is to compute

he range of values of the feature from a set of learning obser-

ations O i = { C i , L i , b i } corresponding to a common model M . The

ector b i encodes the correctness of the mapping, so that b i j = 1 if

he label of the j th cloud point is correct. The observations in the

iven ground truth are error-free, but it is easy to generate incor-

ectly labeled observations as permutations L i . The number of per-

uted elements (from 2 to n, the number of markers) is an index

f the severity of the labeling error. The strong classifier consists

f a collection of features whose corresponding weak classifier is

http://ftp.motionanalysis.com/html/industrial/cortex.html
https://www.qualisys.com/software/qualisys-track-manager/
https://www.stt-systems.com/products/3d-optical-motion-capture/clima/
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Table 1 

Examples of the basic geometric functions with different domain sizes used to build the fea- 

tures used by the weak classifiers. 

Geometric property g # points Points Expression 

Angle between consecutive angles g 1 3 A, B, C arccos 
(

AB ·AC 
| AB | ·| AC | 

)
Distance between points g 2 2 A, B | AB | 

Similarity ratio between segments g 3 4 A, B, C, D 2 | AB | −| CD | 
| AB | + | CD | 

Height difference between two points g 4 2 A, B A y − B y 

w  

s

φ

w  

f  

c  

p  

s  

i  

a  

e  

c  

s

 

s  

c  

t  

r  

b  

c  

t  

s  

l  

d

3

 

t  

b  

o  

n  

c  

n  

t  

t  

f

 

 

 

 

 

 

 

 

 

w  

w  

c  

l  

j  

i

4

 

p  

i  

i  

o  

τ  

φ

4

D  

r  

c  

p  

t  

b  

p  

a

P  

r  

o  

o

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

s  

m  

o  

d  
eighted by its accuracy gain relative to the remaining weak clas-

ifiers. The output of the strong classifier is computed as: 

J ( M, C, L ) = 

∑ J 
j=1 

w j h j ( f S 
k ( C ) , α

S 
k 
, βS 

k 
) ∑ J 

j=1 
w j 

, (2) 

here the index j refers to the order of selection of the feature

or inclusion in the ensemble and J is the size of the ensemble. By

onstruction any collection of weak classifiers will have 100% true

ositive rate, but we need to reduce the false positive rate by en-

uring that the selected weak classifiers show the least false pos-

tive rate. According to the Adaboost strategy, initially, all weights

re initialized to zero and the set of selected weak classifiers is

mpty. Weak classifier selection is carried out by feeding all weak

lassifiers with incorrectly labeled observations of different error

everity. 

Training process after presentation of each incorrectly labeled

ample is as follows: If the actual φJ ( M, C, L ) does reject the in-

orrectly labeled sample, then no further process is done. If not,

he weights of unselected (out of φJ ( M, C, L )) weak classifiers that

eject it are updated according to the error severity. After a num-

er of incorrect observations is processed, the strong ensemble

lassifier is updated adding the unselected weak classifier having

he greatest weight. The whole process eventually stops when the

trong classifier reaches a preset accuracy threshold. Finally, the se-

ected weak classifiers are stored together with the weight they got

uring the learning process as their score. 

.4. Generating a labeling 

After constructing the strong ensemble classifier we can use it

o generate the labelings when there is none. Generating the la-

eling of a cloud of points can be stated as looking for the value

f L that maximizes the number of weak positive classifications

eeded to achieve φJ ( M, C, L ) = 1 . When ther e ar e no occlusions L

an be anyone of the permutations of the integers between 1 and

 . Therefore, the number of possible configurations for L is n !. For-

unately, we can exploit the structure of the strong classifier in a

ree-search strategy to explore the labeling permutations using the

ollowing properties: 

• Each single weak classifier can be computed independently

from a handful of points (usually from 2 to 6) which represents

a subset of the vector L ; 

• The strong ensemble classifier φ can be evaluated over a par-

tial solution where only a subset of elements of L has meaning-

ful labels. Weak classifiers using unassigned labels are simply

ignored; 

• A single weak classifier rejecting a label permutation rules it

out, so that we can stop the evaluation of the ensemble classi-

fier over L as soon as one weak classifier gives a negative out-

come. 

Hence the training process is a depth first tree search process,

here nodes are values of the labeling vector L , and branches are

eak classifier evaluations. The number of unassigned labels de-

reases as the level nodes in the tree increase, when we reach the
evel where candidate points are labeled we are finished. The re-

ection of a partial label by a weak classifier terminates the search

n this branch. 

. Robust labeling in the presence of occlusions 

In this section, we introduce the main contributions of this pa-

er: generating the labeling of the observed cloud points deal-

ng with occlusions of the markers. We introduce partial solvers

n order to achieve the maximal number of correct labels. More-

ver, it is desirable the specification of individual target hit rates

i for each marker, that is, we require after training that P i ( S ( C, M,

)) > τ i . 

.1. Partial solvers 

efinition. A partial solver S = S(C, M s , φs ) is not forced to find cor-

esponding candidate observed points to all markers M . Its asso-

iated strong ensemble classifier φs can be trained to generate a

artial labeling L s ⊆ L for a subset of markers M s ⊆ M . Obviously,

he strong ensemble classifier φs only can be used to generate la-

elings over the markers belonging to M s . The definition of hit rate

er marker P i applies also to partial solvers, provided they can be

ssessed against the ground truth. 

roperties. We can state several interesting properties of the hit

ates of the partial solver. Some of them were formulated from

bservations taken on the computational experiments and may be

bject of theoretical research in future works. 

• If a marker m i doesn’t belong to the subset M s of the partial

solver, its hit rate remains undefined: if m i / ∈ M s ⇒ P i (S s , m i ) =
NaN; 

• The hit rate for a marker m i is strictly increasing

with the size of the marker subset: if m i ∈ M A ⊂ M B ,

| M B | > | M A | ⇒ P i ( S B ) ≥ P i ( S A ); 

• Because the hit rates grow with with solver size, we would ex-

pect that only big solvers may provide high hit rates. However,

our empirical finding reveals that there are also small solvers

showing up high hit rates. 

• We consider a marker model as optimally designed if its label-

ing is feasible with a 100% confident rate in absence of occlu-

sions. In other words, there is at least a solver whose hit rates

are 1 for each one of the markers when working over the whole

set: if M s ≡ M → ∃ S \ P i (S s (C, M s , φs )) = P i (S(C, M, φ)) = 1 ; 

• We found out that such solver exists for the marker set used

in the experimental tests of our work, hence our set of markers

was optimally designed. 

.2. Partial solver ensemble 

We define a partial solver ensemble as a set of partial solvers

uch that the union of their marker subsets covers the complete

odel: � = { S 1 , S 2 , . . . , S N } s.t. M s 1 ∪ M s 2 ∪ . . . ∪ M s N = M. The aim

f defining the ensemble is to overcome the limitation of an in-

ividual solver to give an answer when there is an occlusion. If
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Algorithm 2 Greedy top down partial solver mining. 

• Input data: target hit rates τi for each marker m i of the full 

marker model M, n = | M | . 
• Output data: set of partial solvers � = { φk } N k =1 

with hit rates 

higher than the target at least in one of their markers. 

1. Set up initial solver of dimension n , Ω = { S} and initialize 

Φ = ∅ ; 
2. For each solver S i in �: 

(a) remove it from � ; 

(b) remove each of its marker once at a time, generating 

dim (S i ) new solvers stored in Ω i ; 

(c) for each solver of Ω i , its hit rates are assessed; 

(d) if no solver from Ω i reaches the target rates, it isre- 

moved from Ω i and joined to Φ; 

(e) the remaining solver from Ω i are added to �; 

3. If � is not empty, go back to 2. 

t  

t

 

n  

f  

w

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

b  

g  

d  

s  

c  

t  

w  

p

4

 

{  

i  

u  
there is an occlusion, the unaffected partial solvers (i.e. those de-

fined over a subset of not occluded markers) may still provide

the labeling of the unoccluded markers. More formally, let us de-

note M 

∗ the set of not occluded markers, we can find a set of

partial solvers �∗ = { S ∗1 , S ∗2 , . . . , S ∗N∗} ∈ � such that M 

∗
S 1 

∪ M 

∗
S 2 

∪ . . . ∪
M 

∗
S N 

⊆ M 

∗. Given that we use a deterministic learning algorithm

for the construction of the strong classifiers, two partial solvers

are different only if they are defined over different marker sub-

sets: S A ( M A ) 
 = S B ( M B ) ⇐⇒ M A 
 = M B . According to that criteria, the

total number of partial solvers is the size of the markers power set

P ( M ) , i.e. 
∑ n m 

i = 1 ( 
n m 

i 
) , where n m 

= | M | . 
The problem of generating marker labeling robust to occlusion

is, thus, formulated as the search for small size partial solvers with

high target rates to compose a partial solver ensemble which can

produce partial labelings that give the best partial labeling solu-

tion when there are occlusions. The emphasis on small size par-

tial solvers, is because if one is affected by an occlusion it will

not compromise the labeling of many additional markers. The em-

phasis on high target rates is because they will increase the con-

fidence on the labeling. A brute force exhaustive search approach

is, of course, unfeasible even for moderate sizes of the marker set,

therefore we have explored two heuristic approaches. 

Greedy search. By taking advantage of the 2nd solver property

–hit rates strictly increase with dimension–, we can start with

n m 

solvers of dimension 1 (one solver per marker), adding one

more extra marker at each step of the search. This is an incre-

mental building process, that stops when the target hit rate is

reached. This strategy avoids unnecessarily big solvers, thus sav-

ing computation time. The searching algorithm is described in

Algorithm 1 and depicted in the diagram shown in Fig. 2 . 

Algorithm 1 Greedy bottom up partial solver search. 

• Input data: target hit rates τi for each marker m i of the full

marker model M, n = | M | . 
• Output data: set of partial solvers � = { φk } N k =1 

with hit rates

higher than the target at least in one of their markers. 

1. Set up an initial set of n solvers of dimension 1, Ω =
{ S 1 , . . . , S n } . Initialize Φ = ∅ ; 

2. For each solver in �, assess its hit rates, if higher thatthe

goal, it is removed from � and added to Φ; 

3. Terminate if � is empty, or the dimension of its elemental-

solvers equals n ; 

4. For each solver S i from �, a new marker is added toit, and

thus n − dim (S i ) new solvers are generated, replacing S i in �;

5. Go back to 2. 

Conversely, we can proceed in a top down way. Starting from

the full marker set solver S , dim (S) = n, which we assume to meet

the target hit rates, we can generate new partial solvers of lower

dimension by progressively removing markers in a recursive man-

ner. In this case, the process stops if the new generated solvers

fall under the target hit rates (see Algorithm 2 and the diagram in

Fig. 3 ). 

Genetic algorithm search. In order to look for good approximations

to global optima we have defined an ad-hoc genetic algorithm con-

structed as follows. Encoding: A partial solver acting over a subset

of markers M s ⊂ M can be encoded as an array of n boolean values

{ b i } such that b i = 1 if m i ∈ M s and 0 otherwise. Such encoding is

the chromosome of the genetic algorithm. The optimal ensemble of

partial solvers � is encoded by the entire population at the end of
he evolution process. The fitness function of each chromosome is

he maximum of the hit rates of the corresponding partial solver. 

Starting from a randomly generated population composed by a

umber of partial solvers encoded as chromosomes, we apply the

ollowing genetic operators to improve the population fitness to-

ards finding the global optimal collection of partial solvers: 

• Crossover: two parent chromosomes (partial solvers) are se-

lected randomly from the population, the crossover operator

generates a new chromosome by picking randomly its genes

from either one of parent chromosomes. 

• Mutation: a chromosome is randomly selected and a new one is

generated either by random permutation, addition or subtrac-

tion of one of the parent’s genes; 

– permutation: pick a pair of genes of different values and

permute them. The size of the child partial solver remains

the same; 

– addition: pick a random ’0’ gen and reverse its value. The

size of the child partial solver increases by one; 

– subtraction: pick a random ’1’ and reverse its value. The size

of the child partial solver decreases by one. The subtraction

operation is biased towards the search of small specimens; 

• Selection: after application of genetic operators, the fitness of

the chromosomes in the population are evaluated selecting

those that meet the target hit rate, when there is equal hit rate,

smaller solvers are preferred. After that, a massive die out re-

moves the 25% worse specimens. The survivors join the ensem-

ble of partial solvers. 

We conducted several computational experiments in which we

lways managed to improve the initial population after a num-

er of generations. The resulting solver ensembles proved to be

ood enough to meet the requirements of the labeling algorithm

iscussed later. In any case, the efficiency of the genetic search

trongly depends on its meta-parameters: initial population size,

rossover and mutation frequencies, number of operations be-

ween die outs and percentage of specimens to wipe out. Future

ork may be devoted to the optimal tuning of this evolutionary

rocess. 

.3. Integration of partial solvers for labeling generation. 

After we have found an optimal ensemble of partial solvers � =
 

φk } N k =1 , whose hit rates meet preset targets τ i . Each partial solver

s defined over a subset of the complete marker model, and the

nion of all solvers covers the complete model M . The formulation
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Fig. 2. Greedy bottom up search diagram representation. 
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f � is a time consuming training process to be done offline before

he online execution of the complete labeling algorithm. 

During the labeling process, every time a new frame is ac-

uired, the list of candidate 3D points extracted from the multi-

amera captures is built and exposed to each solver of the ensem-

le � of partial solvers. Each member of the ensemble φk output

s none, one or several candidate points assigned to the markers

 k within its scope. The contribution of each solver is recorded in

 labeling matrix that has as many rows as candidate points ( n c )

nd columns as model markers ( n m 

), so that each matrix entry

 i, j ) contains { S i, j 
s } : the set of partials solvers belonging to the en-

emble � who suggested the i th candidate to the j th marker. This

atrix will be sparse because we expect most of the times the

artial solvers to agree on the mappings, as follows: 

m 1 m 2 · · · m j · · · m n m 

c 1 ∅ 

{
S 1 , 2 s 

}
· · · ∅ · · · ∅ 

c 2 ∅ ∅ · · · ∅ · · · ∅ 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

c i ∅ ∅ · · ·
{

S i, j 
s 

}
· · · ∅ 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

c n c ∅ ∅ · · · ∅ · · ·
{

S n c ,n m s 

}

fl  
The columns in this matrix specify the labeling of the candidate

oints. We may have the following situations and labeling assign-

ents: 

• A column j is empty: we interpret that it corresponds to an oc-

cluded marker, so no labeling can be given l j = 0 

• A column j has more than one non-null entry, which means

that there is an ambiguous assignment. We also assume that

this is an occluded marker, and give no labeling, l j = 0 . 

• A row has more than on non-null entry in columns j 1 , j 2 , . . . ,

which means that a candidate point is assigned to more than

one marker point. In this case, we assume that all conflicting

markers are occluded giving no labeling for them, i.e. l j 1 = 0 ,

l j 2 = 0 , ... 

• A labeling l j = i is given when the i th row and j th column con-

tain only one non-null entry. 

. Experimental data 

In this section, we describe the data that has been used for the

omputational validation experiments referred below. The whole

xperimental setup corresponds to an industrial MoCap setting for

port performance measurement with a constellation of six syn-

hronized cameras of 80 0x80 0 pixel with infrared filters, infrared

ight sources, and the actor wearing dark clothes and infrared re-

ecting markers and shown in Fig. 4 . The experimental data has
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Fig. 3. Greedy top down search diagram representation. 

Fig. 4. Actor wearing reflective markers and corresponding digital model. 
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4 http://www.stt-systems.com/products/3d- optical- motion- capture/clima/ . 
been manually labeled. It consists of 70 videosequences (100 Hz)

recording 14 different people of diverse ages and body shapes

walking at random speed. The average duration of the sequences

is three seconds, so that we have more than 20.0 0 0 frames to ex-

tract the clouds of candidate points. Manual labeling has been car-

ried out by the first author. Labeled clouds correspond to correct

labelings categorized as class 1 for classification purposes. Point

clouds with incorrect labeling corresponding to class 0 data items

are generated by random permutations of the labels of correct la-
eling data. The point cloud sequence capture follows the Helen

ayes lower train protocol [28] , widely applied in clinical gait anal-

sis, with the use ofproprietary optical motion tracking system.

he proprietary CLIMA software 4 automates the whole process of

otion capture from camera management, camera calibration, 3D

econstruction, marker tracking and further biomechanical analysis.

. Computational experiments results 

We assess the efficiency of algorithm according to two main

erformance indices: 

• False assignments rate (FA): number of wrong assignments of

candidate points to marker vs. total number of assignments.

This is the rate of incorrect labelings. 

• False occlusions rate(FO) : number of wrong occlusion assign-

ments vs. total number of occlusion assignments 

It is desirable to keep both rates low: obviously we want to

void wrong labelings, but not at the expense missing detection of

any actual wrong labelings. We try to achieve a balance between

oth performance indices in the algorithm settings. 

To validate the whole process, a large set of frames are bor-

owed from the ground truth. The candidates for each frame are

andomly permuted to obtain wrong labelings. To simulate occlu-

ions we remove between 1 and 5 candidate points. The label-

ng generated by the approach presented above is compared with

he correct labeling and the validation statistics are continuously

pdated. Summary description of the experimental conditions is

http://www.stt-systems.com/products/3d-optical-motion-capture/clima/
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Fig. 5. Graph: false assignments and false occlusions under different test conditions. 

Table 2 

Experimental conditions summary. 

Test conditions 

Number of markers 15 

Target hit rate 99.99% 

Target failure rate 0.01% 

Occlusions per frame 4 

Number of test frames 16 , 384 
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Table 3 

False assignments (FA) and false occlusions (FO) results. Rows correspond to model 

markers located over parts of the body. 

Marker ID FA # FA % (%) FO # FO % (%) 

r_asis 2 0 . 02 300 6 . 38 

l_asis 2 0 . 02 254 5 . 55 

s2 0 0 . 00 286 6 . 11 

r_l_thigh 0 0 . 00 3564 45 . 03 

l_l_thigh 1 0 . 01 220 4 . 85 

r_knee 0 0 . 00 1912 30 . 03 

l_knee 1 0 . 01 3532 44 . 58 

r_calf 1 0 . 01 194 4 . 20 

l_calf 3 0 . 03 218 4 . 71 

r_ankle 3 0 . 03 2302 34 . 02 

l_ankle 1 0 . 01 4348 49 . 30 

r_heel 4 0 . 05 3195 42 . 14 

l_heel 1 0 . 01 3579 45 . 06 

r_toe 4 0 . 04 2332 34 . 67 

l_toe 4 0 . 05 3627 45 . 13 

Average 1.8 0.02 1991 31.16 

 

f  
iven in Table 2 . The frames are extracted from a gait measure-

ent experiment, so that markers correspond to the lower limbs

f the human body. 

In Table 3 the rates of false assignments and false occlusions

re shown for a training and validation instances where the tar-

et marker hit rate was set to 99.99% and the number of occluded

oints per frame was set to 4 for a model of 15 markers. While

he false assignments stands around the 0.01%, the rate of unas-

igned markers (despite being present in the candidate list) fluctu-

tes from 4.20% to 45.13% with an average of 31.16%. Broadly speak-

ng, some markers are harder to catch with high confidence when

he rate of actual occlusions reaches the 25%. 
Repeating the above test with different target hit rates and dif-

erent number of simulated occlusions, we see the variation of the
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Table 4 

False assignments sensitivity to target marker hit rate and number of occlusions. 

False assignments rate 

Target marker hit rate 99.0 0 0 (%) 99.900 (%) 99.990 (%) 99.999 (%) 

Number of true occlusions per frame 1 8 . 13 1 . 12 0 . 09 0 . 04 

2 8 . 89 0 . 94 0 . 09 0 . 05 

3 7 . 04 0 . 58 0 . 07 0 . 02 

4 4 . 28 0 . 34 0 . 02 0 . 01 

5 2 . 35 0 . 16 0 . 01 0 . 00 

Table 5 

False occlusion sensitivity to target marker hit rate and number of occlusions. 

False occlusions rate 

Target marker hit rate 99.0 0 0 (%) 99.900 (%) 99.990 (%) 99.999 (%) 

Number of true occlusions per frame 1 0 . 25 0 . 52 12 . 10 16 . 40 

2 5 . 74 14 . 30 19 . 96 21 . 76 

3 9 . 56 19 . 76 25 . 18 26 . 20 

4 13 . 16 24 . 35 30 . 90 32 . 17 

5 18 . 25 33 . 39 39 . 65 40 . 67 
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efficiency indicators. The sensitivity of the false assignments rate

(see Table 4 ), for a constant number of simulated occlusions (the

rows), when the target hit rate increases (along the columns) the

algorithm reduces dramatically the number of false assignments.

Likewise, the rate of false occlusions gets bigger ( Table 5 , right). 

We plot these numbers in Fig. 5 . Each line corresponds to the

same number of simulated occlusions, while the dot symbol cor-

responds to a given target hit rate. Low false assignment rates (x

axis) correspond to high false occlusions rate. On the other hand,

when the number of simulated occlusions gets bigger, the rate of

false occlusions increases as well. 

The reason behind this behavior is the following. When it is not

possible to formulate assignments due a lack of information (occlu-

sions), the weak classifiers can’t be evaluated and consequently the

strong classifier loses its strength. The intuitive interpretation is

that the identification of each single marker depends on the iden-

tification of the others. Indeed, the markers themselves act as a

community where the identity of a member is backed up by its

peers. If too many of them are missing, we just can’t tell the iden-

tity of the remaining ones. 

7. Conclusions and further work 

Our work is directed towards the labelling of labelling of clouds

of points against a model given by a collection of marker points

with direct application to human body motion analysis. Though

the marker points may have a priori relations due to anatom-

ical constraints and can be tracked in time when we perform

videosequence analysis, we discard using this information, aim-

ing to achieve the observed points labelling on the basis of their

geometrical relations only. Therefore, each frame in the videose-

quences are independently analysed. We developed a classification

based approach that was able to carry out the labelling in the case

of no occlusions up to a prespecified false detection accuracy. In

this paper we have extended the approach to the case of occlu-

sions, reaching also prespecified false detections rates. The empiri-

cal results on simulated occlusions show that our system is rather

robust with very low false occlusion and false labelling rates. The

system can be easily tuned to different human motion scenarios

in offline training that may require several hours in a conventional

off-the-shelf current laptop computer. Actual labelling can be car-

ried out in realtime in the same kind of conventional computers.

Another advantage of our approach is that labeling errors do not

propagate in the time sequence, so that recovery from occlusions

is immediate. A main line for improvement of our system is the
peedup and efficiency increase of the search for the ensemble of

artial solvers, for instance by fine tuning of the genetic algorithm

electing the optimal population of partial solvers. Finally, it may

e interesting to use the algorithm to test the optimality of the

istribution of markers over the body, as a design quality measure

ool. Bad designs lead to ambiguities in the labeling, therefore the

nability to achieve a labelling can be understood as a poor design

f marker placements. 
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