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We study fragmentation in electron-positron annihilation assuming a dijet situation, using variables
defined independent of any frame. In a collinear situation some of the variables are centered around zero
with the small deviations attributed to intrinsic transverse momenta and large deviations attributed to
additional hard subprocesses. Of course there is a gradual transition. Our modest goal is to show that
covariantly defined variables are well suited to get a feeling for the magnitude of intrinsic transverse
momenta.
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I. INTRODUCTION

Inclusive production of two hadrons in electron-positron
annihilation is a way to study intrinsic transverse momenta
in the fragmentation functions of those hadrons. The
noncollinearity in the process can be defined as a spacelike
vector qT to be specified below. In the basic transverse
momentum dependent (TMD) treatment, the qT depend-
ence is a folding of intrinsic transverse momenta of the two
fragmentation functions in the case of inclusive two-hadron
production. Of course, we have in mind the situation shown
in Fig. 1 where the two hadrons emerge in two jets with
opposite momenta, where in zeroth order the jet directions
can be identified with the parent partons. In this paper, we
just want to look at how scaling variables constructed with
invariants in the scattering process can be linked to the
hadron momentum fractions in a dijet situation. One has to
keep in mind that partonic transverse momenta are not
unique as they depend on a Sudakov expansion for the
momenta involving a lightlike vector n (n2 ¼ 0) conjugate
to the hadron momentum P · n ¼ 0. The lightlike vector
acquires a meaning if in a hard process transverse momenta
are probed, and it then depends on a combination of hard
momenta in the scattering process. This is relevant for mass
corrections (from hadron masses) and factorization. In this
paper, we are just after observables that like rapidity or

pseudorapidity are useful as measures of noncollinearity
and intrinsic transverse momenta.

II. BASIC DEFINITIONS

We look at e−ðl1Þ þ eþðl2Þ → H1ðP1Þ þH2ðP2Þ þ
anything, having in mind an intermediate step into two
partons e−ðl1Þ þ eþðl2Þ → parton1ðk1Þ þ parton2ðk2Þ. The
dijet situation is then the case that k21 ¼ k22 ¼ 0. The
measure for noncollinearity [1–4] is given by

qT ≡ q −
P1

ζ1
−
P2

ζ2
; ð1Þ

with q ¼ l1 þ l2 ¼ k1 þ k2 and the requirements that
P1 · qT ¼ P2 · qT ¼ 0 implying that the hadrons determine
the lightlike directions in which case the transverse
directions for two-particle inclusive (2PI) annihilation

are given by gμνT ¼ gμν − Pfμ
1 Pνg

2 =2P1 · P2. This is sufficient
to solve for what we will refer to as 2PI momentum
fractions ζ1;2, which do include mass corrections,

ζ1 ¼
P1 · P2 −

M2
1
M2

2

P1·P2

P2 · q − M2
2
P1·q

P1·P2

; ð2Þ

and

ζ2 ¼
P1 · P2 −

M2
1
M2

2

P1·P2

P1 · q − M2
1
P2·q

P1·P2

; ð3Þ

with Mi representing the hadron masses.
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The (negative) invariant length of q2T signaling non-
collinearity can be expressed in the invariants as

q2T ¼ q2
�
1 −

P1 · q
ζ1q2

−
P2 · q
ζ2q2

�
ð4Þ

¼ q2
�
1 −

2P1 · P2

ζ1ζ2q2
−

M2
1

ζ21q
2
−

M2
2

ζ22q
2

�
ð5Þ

¼ q2

2

�
2 −

z1
ζ1

−
z2
ζ2

�
; ð6Þ

where z1 and z2 are the equivalents of the Bjorken scaling
variable in deep-inelastic scattering [5],

z1 ¼
2P1 · q
q2

and z2 ¼
2P2 · q
q2

: ð7Þ

In the e−eþ center-of-mass frame, henceforth called CM
frame, these are zi ¼ 2Ei=

ffiffiffi
s

p
, where s ¼ 2l1 · l2. In the

2PI case, these variables are restricted to 0 ≤ zi ≤ 1 [5].
The 2PI variables ζ1 and ζ2 are not constrained to this
interval, as will be illustrated further.
The variables zi together with the ratio,

R12 ¼
2P1 · P2

q2
¼ 2P1 · P2

s
; ð8Þ

can help to identify hadrons that fit a description as
belonging to opposite or same parton jets. We note first
of all that this ratio satisfies R12 < 1, with the upper limit,
up to mass corrections, reached in an elastic process like
eþe− → πþπ−. An appropriate lower limit for our consid-
erations would be something like back-to-back pions with a
minimal energy E of around 0.5 GeV in the CM frame,
corresponding to R12 ≳ ð1 GeV2Þ=s. In the CM frame the
following ratio holds for any pair:

4P1 · P2

z1z2s
¼ E1E2 − P1 · P2

E1E2

¼ 1 − v1 · v2; ð9Þ

thus

z1z2 ¼
2R12

1 − v1 · v2
; ð10Þ

where the three-momentum scalar product v1 · v2, here and
in the following evaluated in the CM frame, is positive for
fast hadrons within a cone around the same fragmenting
parton, while it is negative for fast hadrons from different
parton jets, as indicated in Fig. 1. The limit between both

FIG. 1. Basic vectors in e−eþ annihilation (momenta l1 and l2)
into two hadrons with momenta P1 and P2 originating from two
(nonobserved) partons with momenta k1 and k2.

R12

R12

2 R12

2 R12

1
2 R12

1
2 R12

1 
1 

SAME  
HEMISPHERE 

OPPOSITE HEMISPHERE 

z 2
(l

og
sc

al
e)

z1 (log scale)

v1·v2 = 0
z1z2 = 2R12

ζcol
1 ζcol

2 = 1
2R12

ζcol
1 = R12

ζ
c
o
l

2
=

R
1
2

z
1 z

2 =
ζ col1

ζ col2
=

R
12

v
1 ·v

2 = −1

v1·v2 = 1 − 2R12

R12

R12

2 R12

2 R12

1
2 R12

1
2 R12

1 
1 

SAME  
HEMISPHERE 

OPPOSITE HEMISPHERE 

ζcol
1 (log scale)

ζ
c
o
l

2
(l

og
sc

al
e)

z
1 z

2 =
ζ col1

ζ col2
=

R
12

v
1 ·v

2 = −1

v1·v2 = 0

v1·v2 = 1 − 2R12

z1z2 = 2R12

ζcol
1 ζcol

2 = 1
2R12

z1 = 1

z 2
=

1

R12 21
2 R12

v
1 ·v

2

v1·v2 = 1 − 2R12

SAME 
HEMISPHERE

v1·v2 = 0
z1z2 = 2R12

ζcol
1 ζcol

2 = 1
2R12

ζcol
1 = R12

ζ
c
o
l

2
=

R
1
2

R12

2 R12

2 R12

1
2 R12

1 
1 

z 2
(l

og
sc

al
e)

z1 (log scale)

z
1 z

2 =
ζ col1

ζ col2
=

R
12

v
2 = −1

R12

R12

2 R12

2 R12

1
2 R12

1
2 R12

1 
1 

SAME  
HEMISPHERE 

OPPOSITE HEMISPHERE 

z 2
(l

og
sc

al
e)

z1 (log scale)

v1·v2 = 0
z1z2 = 2R12

ζcol
1 ζcol

2 = 1
2R12

ζcol
1 = R12

ζ
c
o
l

2
=

R
1
2

z
1 z

2 =
ζ col1

ζ col2
=

R
12

v
1 ·v

2 = −1

v1·v2 = 1 − 2R12

SAME 
HEMISPHERE 

v1·v2 = 0
z1z2 = 2R12

ζcol
1 ζcol

2 = 1
2R12

z1 = 1

z 2
=

1

R12

R12

2 R12

2 R12

1
2 R12

1
2 R12

1 
1 ζcol

1 (log scale)

ζ
c
o
l

2
(l

og
sc

al
e)

v1·v2 = 1 − 2R12

2

v
1 ·v

2 =

z
1 z

2 =
ζ col1

ζ col2
=

R
12

= −1

R12

R12

2 R12

2 R12

1
2 R12

1
2 R12

1 
1 

SAME  
HEMISPHERE 

OPPOSITE HEMISPHERE 

ζcol
1 (log scale)

ζ
c
o
l

2
(l

og
sc

al
e)

z
1 z

2 =
ζ col1

ζ col2
=

R
12

v
1 ·v

2 = −1

v1·v2 = 0

v1·v2 = 1 − 2R12

z1z2 = 2R12

ζcol
1 ζcol

2 = 1
2R12

z1 = 1

z 2
=

1

FIG. 2. Range of zi and ζcoli for a given value of the ratio R12 ¼ 2P1 · P2=s, divided in opposite and same hemisphere events
according to Eq. (11). An indication of the regions where (for sufficiently small R12) the quantities ζi turn negative is indicated as the
red triangular regions (see discussion following Eq. (14)). The distance of points to the line z1z2 ¼ ζcol1 ζcol2 ¼ R12 is a measure of
q2T=s (see Eqs. (6) and (16)).
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situations, with two fast hadrons perpendicular to each other,
corresponds to z1z2 ¼ 2R12, resulting in the criterion,

opposite hemisphere∶ R12 ≤ z1z2 ≤ 2R12;

same hemisphere∶ 2R12 ≤ z1z2 ≤ 1; ð11Þ

as a first-order requirement to characterize hadrons as
belonging to back-to-back parton jets or to the same parton
jet, respectively.
We want to further illustrate this by a comparison

with the collinear fractions ζcol1 and ζcol2 , scaling variables
defined as [6]

ζcol1 ¼ P1 · P2

P2 · q
and ζcol2 ¼ P1 · P2

P1 · q
: ð12Þ

These variables are also limited to 0 ≤ ζcoli ≤ 1 [5]. We note
that

z1ζcol2 ¼ ζcol1 z2 ¼ R12: ð13Þ

The range of the scaling variables ζcoli and zi is illustrated in
Fig. 2. Using ϵi ¼ M2

i =P1 · P2 we have the exact relations,

ζ1 ¼ ζcol1

1 − ϵ1ϵ2
1 − ϵ2ζ

col
1 =ζcol2

; ζ2 ¼ ζcol2

1 − ϵ1ϵ2
1 − ϵ1ζ

col
2 =ζcol1

:

ð14Þ

From it, we obtain the region where ζ becomes negative,
e.g., ζ1 < 0, when ζcol2 < ϵ2ζ

col
1 ¼ ð2M2

2=R12sÞζcol1 , or
z2 < ð2M2

2=R12sÞz1. It just signals that one is outside the
region of validity for simple parton branching and frag-
mentation. Note that the regions for hadrons 1 and 2 may
be different (hence the asymmetry of the effect in Fig. 2).
Up to ϵ2 terms we have (if ζcol2 is not too small)

ζ1 ≈ ζcol1 ð1þ ϵ2ζ
col
1 =ζcol2 Þ; ð15Þ

(thus ζi ≳ ζcoli ) and for sufficiently small ϵi, for instance for
pions,

ζ1=2 ≈ z1=2

�
1þ q2T

q2

�
ð16Þ

(thus ζi < zi for small ϵi).
There is a second measure for noncollinearities, which is

the determinant of the four measured four-momenta,

DT ≡ −
4ϵl1l2P1P2

ζ1ζ2s3=2
¼ −

4ϵμνρσl
μ
1l

ν
2P

ρ
1P

σ
2

ζ1ζ2s3=2
: ð17Þ

Here, a particular normalization has been chosen, a
choice that will become clear in the next section via
the link to the intrinsic transverse momentum. The
invariant q2T only signals that the lepton momenta and
hadron momenta are not in a single plane, while the
determinant contains also information on the relative
orientations of the hadrons.

III. INTERPRETING NONCOLLINEARITIES

For the interpretation of the noncollinearities defined in
the previous section, it is convenient to make the four
vectors explicit in the leptonic and partonic restframe, using
either p ¼ ðp0; p1; p2; p3Þ or p ¼ ½p−; pþ; p1

T; p
2
T � with

p� ¼ ðp0 � p3Þ= ffiffiffi
2

p
, and starting with

l1 ¼
ffiffiffi
s

p
2

0
BBB@

1

0

0

1

1
CCCA ¼

ffiffiffi
s
2

r
2
6664
0

1

0

0

3
7775;

l2 ¼
ffiffiffi
s

p
2

0
BBB@

1

0

0

−1

1
CCCA ¼

ffiffiffi
s
2

r
2
6664
1

0

0

0

3
7775; ð18Þ

and the partonic lightlike momenta,

k1 ¼
ffiffiffi
s

p
2

0
BBB@

1

sin θ

0

cos θ

1
CCCA ¼

ffiffiffi
s
2

r
2
6664

−t=s
−u=sffiffiffiffiffiffiffi
2tu

p
=s

0

3
7775;

k2 ¼
ffiffiffi
s

p
2

0
BBB@

1

− sin θ

0

− cos θ

1
CCCA ¼

ffiffiffi
s
2

r
2
6664

−u=s
−t=s

−
ffiffiffiffiffiffiffi
2tu

p
=s

0

3
7775: ð19Þ

We have used here the Mandelstam variables in the process
e−eþ → jet1jet2,

s ¼ q2 ¼ 2l1 ⋅ l2;

−t ¼ 2l1 ⋅ k1 ¼ s sin2
�
1

2
θ

�

−u ¼ 2l1 ⋅ k2 ¼ s cos2
�
1

2
θ

�
ð20Þ

and angle θ for which
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cos θ ¼ t − u
s

; sin θ ¼ 2
ffiffiffiffiffi
tu

p
s

: ð21Þ

If we take the jet direction as z-axis, we are in a frame
in which the momenta of the hadrons will have per-
pendicular components indicated as pseudoquark momenta
pi⊥ ≡ Pi⊥=ζi. The hadron momenta can be written as

P1

ζ1
¼

ffiffiffi
s

p
2

0
BBBBB@

1þ μ21⊥=s
2px

1⊥=
ffiffiffi
s

p

2py
1⊥=

ffiffiffi
s

p

1 − μ21⊥=s

1
CCCCCA

¼
ffiffiffi
s
2

r
2
666664

μ21⊥=s
1

px
1⊥

ffiffiffiffiffiffiffi
2=s

p
py
1⊥

ffiffiffiffiffiffiffi
2=s

p

3
777775
;

P2

ζ2
¼

ffiffiffi
s

p
2

0
BBBBB@

1þ μ22⊥=s
2px

2⊥=
ffiffiffi
s

p

2py
2⊥=

ffiffiffi
s

p

−1þ μ22⊥=s

1
CCCCCA

¼
ffiffiffi
s
2

r
2
666664

1

μ22⊥=s
px
2⊥

ffiffiffiffiffiffiffi
2=s

p
py
2⊥

ffiffiffiffiffiffiffi
2=s

p

3
777775
; ð22Þ

where μ2i⊥≡ðM2
i −P2

i⊥Þ=ζ2i ¼M2
i =ζ

2
i þp2i⊥. These momenta

are measurable quantities if the jet axis (e.g., identified with
a thrust axis) is known, since the angles assume the lepton-
jet plane to be the x-z plane. In this frame the partonic
momenta do not have transverse components, thus ki⊥ ≡ 0.
Thus explicitly the partonic momenta are

k1 ¼
ffiffiffi
s

p
2

0
BBB@

1

0

0

1

1
CCCA ¼

ffiffiffi
s
2

r
2
6664
0

1

0

0

3
7775;

k2 ¼
ffiffiffi
s

p
2

0
BBB@

1

0

0

−1

1
CCCA ¼

ffiffiffi
s
2

r
2
6664
1

0

0

0

3
7775; ð23Þ

while choosing them along the z-axis implies that the
vectors in Eq. (22) are rotated over the angle θ in the x-z
plane, and

l1 ¼
ffiffiffi
s

p
2

0
BBB@

1

sin θ

0

cos θ

1
CCCA ¼

ffiffiffi
s
2

r
2
6664

−t=s
−u=sffiffiffiffiffiffiffi
2tu

p
=s

0

3
7775;

l2 ¼
ffiffiffi
s

p
2

0
BBB@

1

− sin θ

0

− cos θ

1
CCCA ¼

ffiffiffi
s
2

r
2
6664

−u=s
−t=s

−
ffiffiffiffiffiffiffi
2tu

p
=s

0

3
7775: ð24Þ

Rotating the lepton momenta is less cumbersome than
rotating the hadron momenta in Eqs. (22).
For the jet momenta, which are just lightlike directions,

we have

k1 ¼
P1

ζ1
þ p1⊥ −

μ21⊥
s

k2; ð25Þ

k2 ¼
P2

ζ2
þ p2⊥ −

μ22⊥
s

k1: ð26Þ

We nicely have ζ1¼P1 ·k2=k1 ·k2 and ζ2 ¼ P2 · k1=k1 · k2.
The noncollinearity measures introduced in the previous
section are

qT ¼ −p1⊥ − p2⊥ −
μ22⊥
s

k1 −
μ21⊥
s

k2; ð27Þ

q2T ¼ ðp1⊥ þ p2⊥Þ2 þ
μ21⊥μ22⊥

s
≈ ðp1⊥ þ p2⊥Þ2; ð28Þ

and with pi⊥ ¼ ðpx
i⊥; p

y
i⊥Þ ¼ jpi⊥jðcosφi; sinφiÞ, we get

DT ¼ −jp1⊥j sin θ sinφ1

�
1 −

μ22⊥
s

�

− jp2⊥j sin θ sinφ2

�
1 −

μ21⊥
s

�

−
jp1⊥jjp2⊥jffiffiffi

s
p cos θ sinðφ1 − φ2Þ

≈ −ðpy
1⊥ þ py

2⊥Þ sin θ þ
ðpx

1⊥p
y
2⊥ − py

1⊥px
2⊥Þffiffiffi

s
p cos θ

≈ qyT sin θ þ
pcm1⊥ × pcm2⊥ffiffiffi

s
p cos θ; ð29Þ

where (illustrated in Fig. 1) the y-direction is the one
orthogonal to the plane formed by the lepton and (back-to-
back) jet directions. In Eq. (29) one recognizes

ϵl1P1l2P2=ζ1ζ2 ≈ ϵl1l2k1p2⊥ þ ϵl1l2p1⊥k2 − ϵl1l2p1⊥p2⊥ ; ð30Þ

following from Eqs. (25) and (26) omitting mass correc-
tions. The third term in Eq. (30) corresponds to the 1=

ffiffiffi
s

p
suppressed term in Eq. (29).
In this section, knowledge of all components of the

hadrons in the (theoretical) lepton-parton CM frame has
been assumed. The magnitude of the combined transverse-
momentum components can be extracted from the lepton
and hadron momenta in the lepton CM frame via the
approximate relation in Eq. (28), but the azimuthal ori-
entation of the hadrons cannot be determined as is clear
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from Eq. (29). It is only possible to obtain information on
the azimuthal orientation in the lepton-parton CM frame if
we know the partonic axis. The latter can be reasonably
well approximated by the thrust axis. In order to study this,
let us consider hadron 1 as the one to be studied; thus 1 → h
and identify hadron 2 with jet 2, k2 ¼ P2=ζ2. In that case
M2 ¼ jp2⊥j ¼ 0, the angle φ2 becomes undefined and
ζ2 ¼ 1. We get the information on hadron 1 ¼ h obviously
from qT ¼ −ph⊥ ¼ −Ph⊥=ζh,

q2T ¼ −jph⊥j2 ð31Þ

DT ¼ −jph⊥j sin θ sinφh ¼ qyT sin θ; ð32Þ

everything measured with respect to the jet direction.

IV. FEATURES IN DATA

In this section, observables discussed above are illus-
trated using a PYTHIA Monte-Carlo simulation [7] of the
process eþe− → qq̄ at a CM energy of 10.58 GeV, where
qðq̄Þ represents an (anti)up, down or strange quark. This
energy corresponds to the ϒð4SÞ mass and is characteristic
for data collection at the Belle and BABAR experiments [8].
Quantum electrodynamics radiative effects are absent in the
simulation, and hadron pairs are selected based on the value
of their generated momentum. Unless stated otherwise,
results are shown for pairs of positively charged pions.
In Fig. 3, left, the hadron momentum fractions ζ1

(continuous, red line), ζcol1 (large-dashed, blue line), and
z1 (dash-dotted, green line) are presented for hadrons that
lie in the hemisphere opposite to that of the second hadron
in the event. In order to fulfill the latter condition, only
hadron pairs with negative three-momentum scalar product
are considered. As can be seen from the figure, the variables
ζcol1 and z1 are contained in the interval between 0 and 1,1

while the value of ζ1 exceeds 1. If the variable ζ2 of the
second hadron is required to be not too small, not smaller
than 0.05 in the present case, then ζ1 is also constrained to
0 ≤ ζ1 ≤ 1, as illustrated by the short-dashed, orange
curve, and it follows the distribution of ζcol1 .
When selecting hadrons that lie in the same hemisphere,

as shown in Fig. 3, right, a larger amount of hadrons have a
momentum fraction ζ1 larger than 1 (continuous, red line).
In addition, also negative values for ζ1 are now observed.
Requiring again ζ2 > 0.05, restricts ζ1 to 0.0 ≤ ζ1 ≤ 0.5
(short-dashed, orange line). Also ζcol1 is confined to this
interval, while z1 lies as before between 0 and 1. Hadrons
originating from the same quark need to share half of the
available CM energy. This is reflected in the upper limit of
0.5 for ζ1 and ζcol1 .
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FIG. 3. Hadron momentum fractions ζ1 (continuous, red line), ζ1 for ζ2 > 0.05 (short-dashed, orange line), ζcol1 (large-dashed, blue
line), and z1 (dash-dotted, green line) for hadrons in the opposite (left) and same (right) hemisphere, based on their relative orientation.
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FIG. 4. Hadron momentum fractions ζ1 (continuous, red line),
ζ1 for ζ2 > 0.05 (short-dashed, orange line), ζcol1 (large-dashed,
blue line), and z1 (dash-dotted, green line) for hadrons in
opposite hemispheres, based on their orientation with respect to
the thrust axis.

1In the limit of massless hadrons or infinite CM energy, the
values 0 and 1 would effectively be reached.
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If the hemisphere selection of hadrons is not based on
their relative orientation, but on their orientation with
respect to the thrust axis, a small fraction of hadrons have
a negative ζ1 value when considering the configuration
of opposite hemispheres, as can be seen in Fig. 4 (con-
tinuous, red line). These hadrons correspond to pairs that
are associated to the same hemisphere when basing the
selection criterion on the hadrons’ relative orientation.
Requiring ζ2 > 0.05 removes these hadrons from the
selection (short-dashed, orange line).
For low-energetic hadrons there is an ambiguity in the

determination of hemispheres, while for hadrons with
fractional momenta above 0.1 both hemisphere selection
criteria coincide, as can be seen from the comparison of
open and closed symbols for ζ1, ζcol1 , and z1 in Fig. 5. Most
commonly, experimental measurements are restricted to

fractional hadron momenta above 0.1 because of instru-
mental limitations, while phenomenological extractions
of fragmentation functions from experimental data avoid
low-z regions because of singularities in the QCD evolution
equations [9]. Figure 5 also makes clear that at small values
of fractional momentum, the three variables ζ, ζcol, and z
are relatively close to each other, with a good agreement
between ζ and ζcol, while at larger values, they differ more.
Alternatively, the difference between ζ and z is also

visible in Fig. 6. In this figure,
ffiffiffiffiffiffiffiffiffi
−q2T

p
is presented (dashed,

blue line) together with jP2tj=ζ2 (continuous, red line) and
jP2tj=z2 (dash-dotted, green line). Here, P2t refers to the
component of hadron 2 orthogonal to P1 of hadron 1, all
measured in the CM frame and with hadron 1 and hadron 2
required to lie in opposite hemispheres. The results are
shown for ζ1 ¼ ζ2 comprised between 0.15 and 0.20 (left)
and between 0.40 and 0.50 (right). While

ffiffiffiffiffiffiffiffiffi
−q2T

p
and

jP2tj=ζ2 (as expected from Eq. (1)) agree, up to mass
corrections, over the full range, both for low and higher
regions of hadron fractional momentum, jP2tj=z2 only
agrees with them at low values of jP2tj=ζ2, strongly
differing at higher values. This also illustrates the approxi-
mate relation in Eq. (16), which shows that the difference
between ζ and z increases with increasing jqT j. In addition
we note that the variable jP2tj=z2 is restricted to an upper
limit of ≈

ffiffiffi
s

p
=2.

In Fig. 7, the distributions of ζcol2 versus ζcol1 (left) and z2
versus z1 (right) are presented for three ranges in R12:
0.00600 < R12 < 0.00625, 0.02500 < R12 < 0.03000, and
0.19750 < R12 < 0.20250. The respective hemisphere ori-
entation of the hadrons and the sign of ζi are identified by
different colors. For the two highest intervals in R12, the
lower limit of the interval is also indicated in the figures
(vertical and horizontal lines). The value of R12 determines
the minimal values that zi and ζcoli can take, as follows from
Eqs. (9) and (13). The diagonal lines correspond to v1 ·
v2 ¼ −1 or v1 · v2 ¼ 0, as indicated. The latter delimits the
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configurations where the hadron pairs have the same or
the opposite orientation for the respective values of R12.
When v1 · v2 ¼ −1, ζcol1 ζcol2 attains its maximum, while z1z2
reaches its minimum. These products ζcol1 ζcol2 and z1z2 are
then equal to R12.

For low enough values of R12 and for hadrons in the
same hemisphere, ζi can be negative. These events are
indicated in red. The boundary line for points with ζi < 0
follows from Eqs. (2) or (14). The numerator of Eq. (14) for
ζ1 is always positive, but the denominator turns negative if
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ζcol2 =ζcol1 < 2M2
2=R12s. This effect is more clearly visible in

Fig. 8, where the distribution for a kaon-pion pair is
presented, and then particularly the region of ζK < 0 for
smallest R12 ≈ 0.006, in which case the relation is
ζcolK =ζcolπ ¼ 2M2

K=R12s ≈ 0.7. It is asymmetric as for the
same R12 we have for pions ζcolπ =ζcolK ¼ 2M2

π=R12s ≈ 0.06.
Note also that the larger kaonmass creates a distortion of the
distributions. The effect is more prominent for the lowest
value of R12. This region of R12 is actually lower than the
“safe region” R12 ∼ 1 GeV2=s. The analogous situation
occurs for the zi distribution.
For the here presented highest region inR12, there are only

hadrons originating from opposite hemispheres. One has
from Eq. (9) that for the same-hemisphere configuration,
z1z2 is at its minimum for v1 · v2 ¼ 0. In this limit, and with
R12 ¼ 0.2, one obtains z1z2 ¼ 0.4. For this value of z1z2,
z1 þ z2 > 1. Hence hadron pairs cannot originate from the
same hemisphere, as indeed is observed from Figs. 7 and 8.
For values of R12 > 0.125, there are no hadron pairs in the
same hemisphere, as follows from Eq. (9).
Equations (9) and (11) are illustrated in Fig. 9, where

R12s=ð2z1z2Þ is shown for increasing ranges of z1 ¼ z2

for hadron pairs irrespective of their hemisphere
(continuous, blue line) and for hadron pairs in opposite
hemispheres (dashed, red line). At z1z2 ¼ 2R12, i.e.,
R12s=ð2z1z2Þ ¼ s=4 ¼ 27.98 GeV2, there is a sharp sep-
aration between the regions corresponding to the same-
hemisphere and opposite-hemisphere configuration. At low
values of fractional momentum, the transition between
these regions is continuous, while for higher fractional
momenta, both regions are progressively better separated
from each other. With increasing fractional momenta, there
are also gradually less pairs of hadrons belonging to the
same hemisphere, while at the highest values of zi, their
contribution completely disappears.
In Fig. 10, jph⊥j obtained from Eq. (31) (open, red

circles), using the thrust axis as reference axis, is compared
to the hadron transverse-momentum component with
respect to the qq̄ axis scaled with ζh, p

qq̄
h⊥, (filled, blue

squares), for 0.15 < ζh < 0.20 (left) and 0.40 < ζ < 0.50
(right). A lower limit on the value of the thrust variable of
0.85 is required in order to select events that have a two-jet
configuration. This cut affects the distribution of the
transverse momentum, since it affects to which degree
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tracks are collimated rather than isotropically distributed.
At small values of jph⊥j, there is good agreement between
the generated distribution and that obtained from Eq. (31).
At larger values disagreement is observed, which can be
explained by the contribution of events where more than
two jets are created.
In Fig. 11, sinφh extracted from Eq. (32) (open, red

circles), using the thrust axis as reference, with as explained
for Eqs. (31) and (32), ζ of the thrust axis set to 1 and
the magnitude of the thrust axis normalized to

ffiffiffi
s

p
=2, is

compared to sinφqq̄
h , where the angle φqq̄

h is the angle
between the plane containing the qq̄ axis and the eþe− axis
and the plane containing the qq̄ axis and hadron h. The ζh
ranges covered are the same as those in Fig. 10, and
also here a minimal thrust value of 0.85 is required.
The distribution is insensitive to the latter requirement.
The sinφh and sinφqq̄

h distributions show a very good
agreement, irrespective of the value of ζh. Extracting the
determinant defined in Eq. (17), using as reference the

thrust axis, offers thus the possibility to learn about
the hadron azimuthal distribution.
To illustrate the DT distribution by itself, we begin by

recalling that it is not uniformly distributed in θ. Firstly,
the θ-dependence is determined by the hard process,
where we expect the cross section of eþe− → qq̄ to have
a ð1þ cos2 θÞ behavior. This dependence, ideally, is
decoupled from the noncollinearity due to the fragmenta-
tion process. Secondly, there is the sin θ and cos θ depend-
ence that comes back in the orientation of the hadron
production planes as defined in Fig. 1 and appears in
Eq. (29). In particular close to θ ¼ 0 and θ ¼ π, there is a
contribution of the second term in Eq. (29), even if its
magnitude is suppressed by a factor jp⊥j=

ffiffiffi
s

p ≲ 0.1 as
compared to the first term. Note, however, that for θ ¼ 0
and θ ¼ π, the azimuthal angle is not defined. In Fig. 12,
the distribution of DT= sin θ is shown for two hadrons from
opposite hemispheres (left) and for the configuration of a
hadron and the thrust axis (right). Here,
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sin θ ¼ 2
ffiffiffiffiffi
tu

p
s

¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl1 · k1Þðl2 · k1Þ

p
s

ð33Þ

is obtained from the directions in the CM frame of the
lepton axis and a (fast) hadron or the thrust axis,

sin θ ≈
jl1 × P1j
jl1jjP1j

; ð34Þ

where P1 is to be replaced by Pthrust when considering the
thrust axis. Other possible approximations for sin θ, in
order of decreasing accuracy, involve one or two of the
hadron momenta,

sin θ ≈
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl1 · P1Þðl2 · P1Þ
p

ζ1s
ð35Þ

≈
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl1 · P1Þðl1 · P2Þ
p

s
ffiffiffiffiffiffiffiffiffi
ζ1ζ2

p ; ð36Þ

where the hadron P1 in the first equation or one of the
hadrons in the second equation can be replaced by Pthrust
(and also ζthrust), which gives a better accuracy. In particu-
lar, replacing the hadron in the first approximation by the
thrust axis coincides with Eq. (34) for the thrust axis. The
DT= sin θ distribution shows a dependence on θ for low and
mid values of θ, whereas for higher values, where the cos θ
contribution inDT is strongly suppressed, no θ dependence
is observed. The distribution from two opposite hemisphere
hadrons nicely shows a transverse momentum distribution
with a width of the order of 1.5 GeV. Using the thrust
axis and one hadron the width is about 1.0 GeV, indeed
something like a factor 1=

ffiffiffi
2

p
less as expected for a uniform

transverse momentum distribution.

V. CONCLUSIONS

Two measures for noncollinearity have been introduced
and discussed. One is the invariant length of the non-
collinearity vector qT, in a back-to-back jet situation
directly related to the transverse momenta of partons in
the hadrons that are produced in the hadronization process.
The other is a determinant constructed from the two lepton
momenta and the hadron and thrust momenta, or from the

two lepton momenta and two opposite-hemisphere–hadron
momenta, which in the back-to-back jet situation contains
information on the transverse momentum orthogonal to the
lepton-parton plane. The latter thus also contains informa-
tion on the azimuthal orientation of the back-to-back
partons through the orientation of the momenta of the
produced hadrons with respect to the lepton plane.
Our results show that the 2PI variables (ζ) are perfectly

suitable to correct for various shortcomings of the variables
ζcol or the CM energy fractions z. The 2PI variables ζ by
construction account for hadronic mass corrections and the
deviation from noncollinearity. They are not constrained
between 0 and 1 as the other variables, but in the back-to-
back jet situation the ζ’s also tend to approximate light cone
momentum fractions (just as ζcol), which are suitable
variables when it comes to QCD factorization.
In how far the given measures for noncollinearity, qT

and DT , measure the transverse momenta for an individual
fragmenting parton depends on the appropriate definition
of these quantities in a high energy scattering process. We
considered in this note their importance as approximants of
quantities that have a natural interpretation in the back-to-
back two-jet situation.
All quantities and corresponding distributions have been

exemplified with studies from a Monte-Carlo simulation.
Alongside, three different momentum fractions have been
presented and compared, and their relation to quantities
characterizing hemisphere orientation and the transverse
momentum acquired in the hadronization process has been
exposed.
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